Science.gov

Sample records for human fetal heart

  1. Immunohistochemical distribution of desmin in the human fetal heart.

    PubMed

    Yamamoto, Masahito; Abe, Shin-ichi; Rodríguez-Vázquez, José Francisco; Fujimiya, Mineko; Murakami, Gen; Ide, Yoshinobu

    2011-08-01

    Desmin is a member of the intermediate filaments, which play crucial roles in the maturation, maintenance and recovery of muscle fibers. Its expression has been examined in human cardiac muscle, rat and chicken, but its spatial distribution in the human fetal heart has not been described. The present study investigated desmin expression in the human fetal heart and associated great vessels in 14 mid-term fetuses from 9 to 18 weeks of gestation. Immunoreactivity for myosin heavy chain (MHC) and alpha smooth muscle actin (α-SMA), as well as neuron-specific enolase (NSE), was also examined. Increased expression of desmin from 9 to 18 weeks was clearly localized in the atrial wall, the proximal portions of the pulmonary vein and vena cava, and around the atrioventricular node. Desmin-positive structures were also positive for MHC. Meanwhile, the great vessels were also positive for α-SMA. The distribution of desmin exhibited a pattern quite different from that described in previous studies of rat and chicken. Thus, desmin in the human fetal heart does not seem to play a general role in myocardial differentiation but rather a specific role closely related to the maturation of the α-isozyme of MHC. Desmin expression in the developing fetal heart also appeared to be induced by mechanical stress due to the involvement of venous walls against the atrium.

  2. Metabolic gene profile in early human fetal heart development.

    PubMed

    Iruretagoyena, J I; Davis, W; Bird, C; Olsen, J; Radue, R; Teo Broman, A; Kendziorski, C; Splinter BonDurant, S; Golos, T; Bird, I; Shah, D

    2014-07-01

    The primitive cardiac tube starts beating 6-8 weeks post fertilization in the developing embryo. In order to describe normal cardiac development during late first and early second trimester in human fetuses this study used microarray and pathways analysis and created a corresponding 'normal' database. Fourteen fetal hearts from human fetuses between 10 and 18 weeks of gestational age (GA) were prospectively collected at the time of elective termination of pregnancy. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15 (H2) and 16-18 (H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cutoff to determine differential gene expression for individual genes. Test for enrichment to identify functional groups was carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR. Single transcript and Ontology analysis showed first trimester heart expression of myosin-related genes to be up-regulated >5-fold compared with second trimester heart. In contrast the second trimester hearts showed further gestation-related increases in many genes involved in energy production and cardiac remodeling. In conclusion, fetal heart development during the first trimester was dominated by heart-specific genes coding for myocardial development and differentiation. During the second trimester, transcripts related to energy generation and cardiomyocyte communication for contractile coordination/proliferation were more dominant. Transcripts related to fatty acid metabolism can be seen as early as 10 weeks and clearly increase as the heart matures. Retinol

  3. Cardioprotective stress response in the human fetal heart

    PubMed Central

    Coles, John G.; Boscarino, Cathy; Takahashi, Mark; Grant, Diane; Chang, Astra; Ritter, Julia; Dai, Xiaojing; Du, Changqing; Musso, Gabriel; Yamabi, Hideaki; Goncalves, Jason; Kumar, Ashu Sunny; Woodgett, James; Lu, Huanzhang; Hannigan, Gregory

    2016-01-01

    Objective We propose that the fetal heart is highly resilient to hypoxic stress. Our objective was to elucidate the human fetal gene expression profile in response to simulated ischemia and reperfusion to identify molecular targets that account for the innate cardioprotection exhibited by the fetal phenotype. Methods Primary cultures of human fetal cardiac myocytes (gestational age, 15–20 weeks) were exposed to simulated ischemia and reperfusion in vitro by using a simulated ischemic buffer under anoxic conditions. Total RNA from treated and baseline cells were isolated, reverse transcribed, and labeled with Cy3 or Cy5 and hybridized to a human cDNA microarray for expression analysis. This analysis revealed a highly significant (false discovery rate, <3%) suppression of interleukin 6 transcript levels during the reperfusion phase confirmed by means of quantitative polymerase chain reaction (0.25 ± 0.11-fold). Interleukin 6 signaling during ischemia and reperfusion was assessed at the protein expression level by means of Western measurements of interleukin 6 receptor, the signaling subunit of the interleukin 6 receptor complex (gp130), and signal transducer of activated transcription 3. Posttranslational changes in the protein kinase B signaling pathway were determined on the basis of the phosphorylation status of protein kinase B, mitogen-activated protein kinase, and glycogen synthase kinase 3β. The effect of suppression of a prohypertrophic kinase, integrin-linked kinase, with short-interfering RNA was determined in an ischemia and reperfusion–stressed neonatal rat cardiac myocyte model. Endogenous secretion of interleukin 6 protein in culture supernatants was measured by enzyme-linked immunosorbent assay. Results Human fetal cardiac myocytes exhibited a significantly lower rate of apoptosis induction during ischemia and reperfusion and after exposure to staurosporine and recombinant interleukin 6 compared with that observed in neonatal rat cardiac myocytes

  4. Myocardial bridges of the coronary arteries in the human fetal heart.

    PubMed

    Cakmak, Yusuf Ozgür; Cavdar, Safiye; Yalin, Aymelek; Yener, Nuran; Ozdogmus, Omer

    2010-09-01

    During the last century, many investigators reported on myocardial bridges in the adult human heart. In the present study, 39 human fetal hearts (the mean gestastional age was 30 weeks) were studied for myocardial bridging, and the results were correlated with adult data. Among the 39 (27 male and 12 female) fetal hearts studied, 26 bridges were observed on 18 fetal hearts (46.2%). Ten of the bridges had one myocardial bridge, whereas double myocardial bridges were observed in eight fetal hearts. The most frequent myocardial bridges were observed on the left anterior descending artery (LAD), which had 13 bridges (50%). Eight (30.7%) myocardial bridges were on the diagonal artery, and on the posterior descending artery there were five (19.3%). Myocardial bridges were not observed on the circumflex artery. The data presented in this study may provide potentially useful information for the preoperative evaluation of the newborn and may have a clinical implication for sudden fetal death.

  5. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    PubMed

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  6. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver*

    PubMed Central

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-01-01

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. PMID:26719341

  7. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development.

  8. Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue.

    PubMed

    Ardehali, Reza; Ali, Shah R; Inlay, Matthew A; Abilez, Oscar J; Chen, Michael Q; Blauwkamp, Timothy A; Yazawa, Masayuki; Gong, Yongquan; Nusse, Roeland; Drukker, Micha; Weissman, Irving L

    2013-02-26

    A goal of regenerative medicine is to identify cardiovascular progenitors from human ES cells (hESCs) that can functionally integrate into the human heart. Previous studies to evaluate the developmental potential of candidate hESC-derived progenitors have delivered these cells into murine and porcine cardiac tissue, with inconclusive evidence regarding the capacity of these human cells to physiologically engraft in xenotransplantation assays. Further, the potential of hESC-derived cardiovascular lineage cells to functionally couple to human myocardium remains untested and unknown. Here, we have prospectively identified a population of hESC-derived ROR2(+)/CD13(+)/KDR(+)/PDGFRα(+) cells that give rise to cardiomyocytes, endothelial cells, and vascular smooth muscle cells in vitro at a clonal level. We observed rare clusters of ROR2(+) cells and diffuse expression of KDR and PDGFRα in first-trimester human fetal hearts. We then developed an in vivo transplantation model by transplanting second-trimester human fetal heart tissues s.c. into the ear pinna of a SCID mouse. ROR2(+)/CD13(+)/KDR(+)/PDGFRα(+) cells were delivered into these functioning fetal heart tissues: in contrast to traditional murine heart models for cell transplantation, we show structural and functional integration of hESC-derived cardiovascular progenitors into human heart.

  9. The roadmap of WT1 protein expression in the human fetal heart.

    PubMed

    Duim, Sjoerd N; Smits, Anke M; Kruithof, Boudewijn P T; Goumans, Marie-José

    2016-01-01

    The transcription factor Wilms' Tumor-1 (WT1) is essential for cardiac development. Deletion of Wt1 in mice results in disturbed epicardial and myocardial formation and lack of cardiac vasculature, causing embryonic lethality. Little is known about the role of WT1 in the human fetal heart. Therefore, as a first step, we analyzed the expression pattern of WT1 protein during human cardiac development from week 4 till week 20. WT1 expression was apparent in epicardial, endothelial and endocardial cells in a spatiotemporal manner. The expression of WT1 follows a pattern starting at the epicardium and extending towards the lumen of the heart, with differences in timing and expression levels between the atria and ventricles. The expression of WT1 in cardiac arterial endothelial cells reduces in time, whereas WT1 expression in the endothelial cells of cardiac veins and capillaries remains present at all stages studied. This study provides for the first time a detailed description of the expression of WT1 protein during human cardiac development, which indicates an important role for WT1 also in human cardiogenesis.

  10. A single-channel SQUID magnetometer for measuring magnetic field of human fetal heart

    NASA Astrophysics Data System (ADS)

    Bachir, Wesam; Grot, Przemyslaw; Dunajski, Zbigniew

    2004-07-01

    A non-invasive single-channel SQUID magnetometer for fetal magnetocardiography has been developed. The signal is picked-up with a wire wound third order gradiometer. The optimal configuration of the flux transformer is a trade-off between sufficient sensitivity for the magnetic field originated in fetal heart and effective immunity against the ambient magnetic noise. The over all system performance together with the measuring probe and SQUID electronics is described. The balancing of the third order flux transformer is discussed as well as the signal processing of fetal magnetocardiogram recordings.

  11. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Mowrey, Dennis L. (Inventor)

    2003-01-01

    A fetal heart monitoring system and method for detecting and processing acoustic fetal heart signals transmitted by different signal transmission modes. One signal transmission mode, the direct contact mode, occurs in a first frequency band when the fetus is in direct contact with the maternal abdominal wall. Another signal transmission mode, the fluid propagation mode, occurs in a second frequency band when the fetus is in a recessed position with no direct contact with the maternal abdominal wall. The second frequency band is relatively higher than the first frequency band. The fetal heart monitoring system and method detect and process acoustic fetal heart signals that are in the first frequency band and in the second frequency band.

  12. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.

    PubMed

    Gaber, Naila; Gagliardi, Mark; Patel, Pranali; Kinnear, Caroline; Zhang, Cindy; Chitayat, David; Shannon, Patrick; Jaeggi, Edgar; Tabori, Uri; Keller, Gordon; Mital, Seema

    2013-09-01

    Hypoplastic left heart syndrome (HLHS) is a severe cardiac malformation characterized by left ventricle (LV) hypoplasia and abnormal LV perfusion and oxygenation. We studied hypoxia-associated injury in fetal HLHS and human pluripotent stem cells during cardiac differentiation to assess the effect of microenvironmental perturbations on fetal cardiac reprogramming. We studied LV myocardial samples from 32 HLHS and 17 structurally normal midgestation fetuses. Compared with controls, the LV in fetal HLHS samples had higher nuclear expression of hypoxia-inducible factor-1α but lower angiogenic growth factor expression, higher expression of oncogenes and transforming growth factor (TGF)-β1, more DNA damage and senescence with cell cycle arrest, fewer cardiac progenitors, myocytes and endothelial lineages, and increased myofibroblast population (P < 0.05 versus controls). Smooth muscle cells (SMCs) had less DNA damage compared with endothelial cells and myocytes. We recapitulated the fetal phenotype by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation. DNA damage was prevented by treatment with a TGF-β1 inhibitor (P < 0.05 versus nonhypoxic cells). The hypoplastic LV in fetal HLHS samples demonstrates hypoxia-inducible factor-1α up-regulation, oncogene-associated cellular senescence, TGF-β1-associated fibrosis and impaired vasculogenesis. The phenotype is recapitulated by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation and rescued by inhibition of TGF-β1. This finding suggests that hypoxia may reprogram the immature heart and affect differentiation and development.

  13. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    PubMed

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  14. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2004-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  15. Fetal heart and uterine contraction monitor (image)

    MedlinePlus

    The fetal heart monitor and uterine contraction monitor provide a continuous record of the baby's heart rate and the mother's contraction rate as labor progresses. This device can provide early warning of fetal distress.

  16. Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)

    1996-01-01

    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.

  17. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves.

    PubMed

    van Geemen, Daphne; Soares, Ana L F; Oomen, Pim J A; Driessen-Mol, Anita; Janssen-van den Broek, Marloes W J T; van den Bogaerdt, Antoon J; Bogers, Ad J J C; Goumans, Marie-José T H; Baaijens, Frank P T; Bouten, Carlijn V C

    2016-01-01

    There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.

  18. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts.

    PubMed

    Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia

    2016-01-01

    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts

  19. Assessment of fetal heart disorder by means of fetal magnetocardiography

    NASA Astrophysics Data System (ADS)

    Łozińska, Maria; Dunajski, Zbigniew

    2006-10-01

    Fetal magnetocardiography is new method for investigations of electrical activity of the fetal heart. The idea and build of system for magnetic signal registration is described. Two cases of premature atrial contraction and complete AV block diagnosis by means of magnetic field recording system are described.

  20. Human fetal thyroid function.

    PubMed

    Polak, Michel

    2014-01-01

    The early steps of thyroid development that lead to its function in the human fetus and subsequently the further maturation that allows the human fetus to secrete thyroxine (T4) in a significant amount are reviewed here. We underline the importance of the transfer of T4 from the pregnant woman to her fetus, which contributes at all stages of the pregnancy to fetal thyroid function and development. In the first trimester of pregnancy, the temporal and structural correlation of thyroid hormone synthesis with folliculogenesis supported the concept that structural and functional maturations are closely related. Human thyroid terminal differentiation follows a precisely timed gene expression program. The crucial role of the sodium/iodine symporter for the onset of thyroid function in the human fetus is shown. Fetal T4 is detected by the eleventh week of gestation and progressively increases throughout. The pattern of thyroid hormones and thyroid-stimulating hormone levels in the course of pregnancy is given from fetal blood sampling data, and the mechanisms governing this maturation in the human fetus are discussed. Finally an example of primary human fetal thyroid dysfunction, such as in Down syndrome, is given. The understanding of the physiology of the human fetal thyroid function is the basis for fetal medicine in the field of thyroidology.

  1. Haemodynamic assessment of fetal heart arrhythmias.

    PubMed

    Lingman, G; Dahlström, J A; Eik-Nes, S H; Marsál, K; Ohlin, P; Ohrlander, S

    1984-07-01

    The effects of fetal heart arrhythmias were examined serially in two pregnancies by three non-invasive methods: fetal ECG, fetal phonocardiography and ultrasonic measurement of fetal blood flow. In a case of supraventricular arrhythmia, there was evidence suggesting that the stroke volume varied with ventricular filling according to the Frank-Starling law. In a case of total atrioventricular block the mean blood flow in the fetal descending aorta and in the umbilical vein was within the normal range. Blood flow velocity in the inferior vena cava of the fetus reflected atrial contractions. In the phonocardiogram, a phenomenon similar to 'bruit de canon' was found. Both pregnancies had good outcomes and subsequent development of the infants was normal except for the persisting dysrhythmias. The two cases exemplify how fetal heart function can be assessed in utero.

  2. [A new method in fetal heart electrophysiology - fetal magnetocardiography].

    PubMed

    Wacker-Gussmann, A; Lim, M; Henes, J; Preissl, H; Abele, H; Kiefer, I

    2011-06-01

    Fetal magnetocardiography (fMCG) is used as a non-invasive method for registering the electrophysiological fetal heart activity. Superconducting quantum interference device-based magnetometers are currently used to make fMCG recordings. In contrast to fetal ECG, this method is independent of signal loss due to isolating factors such as, especially, the vernix caesaroa between the 27th and 34th weeks of gestation. We report about a term newborn with a third degree AV block, examined by this method.

  3. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  4. Fetal Heart Rate Monitoring during Labor

    MedlinePlus

    ... of monitoring? • How is auscultation performed? • How is electronic fetal monitoring performed? • How is external monitoring performed? • ... method of periodically listening to the fetal heartbeat. Electronic fetal monitoring is a procedure in which instruments ...

  5. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  6. Human fetal mesenchymal stem cells.

    PubMed

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  7. Exploring the Relationship between Fetal Heart Rate and Cognition

    ERIC Educational Resources Information Center

    Kisilevsky, Barbara S.; Hains, Sylvia M. J.

    2010-01-01

    A relationship between fetal heart rate (HR) and cognition is explored within the context of infant, child and adult studies where the association is well established. Lack of direct access to the fetus and maturational changes limit research paradigms and response measures for fetal studies. Nevertheless, neural regulation of HR shows a number of…

  8. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    NASA Astrophysics Data System (ADS)

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-01

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced `modified' Sensitivity (SE°) and `modified' Positive Predictive Value (PPV°) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  9. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    SciTech Connect

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-25

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced 'modified' Sensitivity (SE deg.) and 'modified' Positive Predictive Value (PPV deg.) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  10. Fetal Echocardiography/Your Unborn Baby's Heart

    MedlinePlus

    ... in the Young, American Heart Association Overview of congenital heart disease: Congenital heart disease is a problem that occurs with the baby's ... Find answers to common questions about children and heart disease. CHD Personal Stories ... and hope. Popular Articles ...

  11. [An Algorithm for Correcting Fetal Heart Rate Baseline].

    PubMed

    Li, Xiaodong; Lu, Yaosheng

    2015-10-01

    Fetal heart rate (FHR) baseline estimation is of significance for the computerized analysis of fetal heart rate and the assessment of fetal state. In our work, a fetal heart rate baseline correction algorithm was presented to make the existing baseline more accurate and fit to the tracings. Firstly, the deviation of the existing FHR baseline was found and corrected. And then a new baseline was obtained finally after treatment with some smoothing methods. To assess the performance of FHR baseline correction algorithm, a new FHR baseline estimation algorithm that combined baseline estimation algorithm and the baseline correction algorithm was compared with two existing FHR baseline estimation algorithms. The results showed that the new FHR baseline estimation algorithm did well in both accuracy and efficiency. And the results also proved the effectiveness of the FHR baseline correction algorithm.

  12. Quantification of fetal heart rate regularity using symbolic dynamics

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.

    2007-03-01

    Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to

  13. Robust estimation of fetal heart rate from US Doppler signals

    NASA Astrophysics Data System (ADS)

    Voicu, Iulian; Girault, Jean-Marc; Roussel, Catherine; Decock, Aliette; Kouame, Denis

    2010-01-01

    Introduction: In utero, Monitoring of fetal wellbeing or suffering is today an open challenge, due to the high number of clinical parameters to be considered. An automatic monitoring of fetal activity, dedicated for quantifying fetal wellbeing, becomes necessary. For this purpose and in a view to supply an alternative for the Manning test, we used an ultrasound multitransducer multigate Doppler system. One important issue (and first step in our investigation) is the accurate estimation of fetal heart rate (FHR). An estimation of the FHR is obtained by evaluating the autocorrelation function of the Doppler signals for ills and healthiness foetus. However, this estimator is not enough robust since about 20% of FHR are not detected in comparison to a reference system. These non detections are principally due to the fact that the Doppler signal generated by the fetal moving is strongly disturbed by the presence of others several Doppler sources (mother' s moving, pseudo breathing, etc.). By modifying the existing method (autocorrelation method) and by proposing new time and frequency estimators used in the audio' s domain, we reduce to 5% the probability of non-detection of the fetal heart rate. These results are really encouraging and they enable us to plan the use of automatic classification techniques in order to discriminate between healthy and in suffering foetus.

  14. Fetal magnetocardiography: time intervals and heart rate variability.

    PubMed

    Van Leeuwen, P

    2004-11-30

    Biomagnetism in the perinatal domain has been dominated by fetal cardiology, and early work pointed out the potential of both fetal cardiac time intervals (CTI) and heart rate variability (HRV) for future clinical applications. Recent improvements in instrumentation have permitted numerous groups to investigate a substantial number of healthy fetuses in these two areas and to lay the groundwork for a delineation of normal ranges. With respect to fetal CTI it is now clear that in particular the duration of P wave, PR interval and QRS complex reflect fetal growth and development. Preliminary studies have shown that the age-adjusted CTI are shorter in growth-retarded fetuses and altered in cases of structural cardiac defects and in specific types of arrhythmia. Less work has been published on MCG-determined fetal HRV although parameters from both the time and frequency domains as well as complexity have been examined. Concomitant with the gradual change in heart rate during pregnancy, increases in time domain variables and complexity have been described for normal pregnancies. Furthermore, gestational age-related changes in specific spectral bands have been noted and increases in power have been documented at frequencies which are associated with fetal breathing movements. The fact that little has been reported to date on discriminatory power with respect to pathological states may be due to the lack of extended data acquisition in a clinical setting documenting acute states. Nonetheless, it may be expected that both fetal HRV and CTI will supplement standard fetal surveillance techniques in the near future.

  15. Association of Fetal Heart Rate Baseline Change and Neonatal Outcomes.

    PubMed

    Yang, Michael; Stout, Molly J; López, Julia D; Colvin, Ryan; Macones, George A; Cahill, Alison G

    2017-03-16

    Objective The objective of this study was to describe the incidence of baseline change within normal range during labor and its prediction of neonatal outcomes. Materials and Methods This was a prospective cohort of singleton, nonanomalous, term neonates with continuous electronic fetal monitoring and normal baseline fetal heart rate throughout the last 2 hours of labor. We determined baseline in 10-minute segments using Eunice Kennedy Shriver National Institute of Child Health and Human Development criteria. We evaluated baseline changes of ≥ 20 and ≥ 30 bpm for association with acidemia (umbilical cord arterial pH ≤ 7.10) and neonatal intensive care unit (NICU) admission. Finally, we performed a sensitivity analysis of normal neonates, excluding those with acidemia, NICU admission, or 5-minute Apgar < 4. Results Among all neonates (n = 3,021), 1,267 (41.9%) had change ≥ 20 bpm; 272 (9.0%) had ≥ 30 bpm. Among normal neonates (n = 2,939), 1,221 (41.5%) had change ≥20 bpm. Acidemia was not associated with baseline change of any direction or magnitude. NICU admission was associated with decrease ≥ 20 bpm (adjusted odds ratio [aOR]: 2.93; 95% confidence interval [CI]: 1.19 - 7.21) or any direction ≥ 20 bpm (aOR: 4.06; 95% CI: 1.46-11.29). For decrease ≥ 20 bpm, sensitivity and specificity were 40.0 and 81.7%; for any direction ≥ 20 bpm, 75.0 and 58.3%. Conclusion Changes of normal baseline are common in term labor and poorly predict morbidity, regardless of direction or magnitude.

  16. Simulation of fetal heart rate variability with a mathematical model.

    PubMed

    Jongen, Germaine J L M; van der Hout-van der Jagt, M Beatrijs; Oei, S Guid; van de Vosse, Frans N; Bovendeerd, Peter H M

    2017-04-01

    In the clinic, the cardiotocogram (CTG), the combined registration of fetal heart rate (FHR) and uterine contractions, is used to predict fetal well-being. Amongst others, fetal heart rate variability (FHRV) is an important indicator of fetal distress. In this study we add FHRV to our previously developed CTG simulation model, in order to improve its use as a research and educational tool. We implemented three sources of variability by applying either 1/f or white noise to the peripheral vascular resistance, baroreceptor output, or efferent vagal signal. Simulated FHR tracings were evaluated by visual inspection and spectral analysis. All power spectra showed a 1/f character, irrespective of noise type and source. The clinically observed peak near 0.1 Hz was only obtained by applying white noise to the different sources of variability. Similar power spectra were found when peripheral vascular resistance or baroreceptor output was used as source of variability. Sympathetic control predominantly influenced the low frequency power, while vagal control influenced both low and high frequency power. In contrast to clinical data, model results did not show an increase of FHRV during FHR decelerations. Still, addition of FHRV improves the applicability of the model as an educational and research tool.

  17. Monitoring Fetal Heart Rate during Labor: A Comparison of Three Methods

    PubMed Central

    Darmanjian, Shalom; Nguyen, Minh Tam; Busowski, John D.; Euliano, Neil; Gregg, Anthony R.

    2017-01-01

    The purpose of the study was to compare the accuracy of a noninvasive fetal heart rate monitor with that of ultrasound, using a fetal scalp electrode as the gold standard, in laboring women of varying body habitus, throughout labor and delivery. Laboring women requiring fetal scalp electrode were monitored simultaneously with the investigational device (noninvasive fetal ECG), ultrasound, and fetal scalp electrode. An algorithm extracted the fetal heart rate from the noninvasive fetal ECG signal. Each noninvasive device recording was compared with fetal scalp electrode with regard to reliability by positive percent agreement and accuracy by root mean squared error. Seventy-one women were included in this analysis. Positive percent agreement was 83.4 ± 15.4% for noninvasive fetal ECG and 62.4 ± 26.7% for ultrasound. The root mean squared error compared with fetal scalp electrode-derived fetal heart rate was 4.8 ± 2.0 bpm for noninvasive fetal ECG and 14.3 ± 8.2 bpm for ultrasound. The superiority of noninvasive fetal ECG was maintained for stages 1 and 2 of labor and increases in body mass index. Compared with fetal scalp electrode-derived fetal heart rate, noninvasive fetal ECG is more accurate and reliable than ultrasound for intrapartum monitoring for stages 1 and 2 of labor and is less affected by increasing maternal body mass index. This confirms the results of other workers in this field. PMID:28392944

  18. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development

    PubMed Central

    Brändle, Johanna; Preissl, Hubert; Draganova, Rossitza; Ortiz, Erick; Kagan, Karl O.; Abele, Harald; Brucker, Sara Y.; Kiefer-Schmidt, Isabelle

    2015-01-01

    Fetal behavioral states are defined by fetal movement and heart rate variability (HRV). At 32 weeks of gestational age (GA) the distinction of four fetal behavioral states represented by combinations of quiet or active sleep or awakeness is possible. Prior to 32 weeks, only periods of fetal activity and quiesence can be distinguished. The increasing synchronization of fetal movement and HRV reflects the development of the autonomic nervous system (ANS) control. Fetal magnetocardiography (fMCG) detects fetal heart activity at high temporal resolution, enabling the calculation of HRV parameters. This study combined the criteria of fetal movement with the HRV analysis to complete the criteria for fetal state detection. HRV parameters were calculated including the standard deviation of the normal-to-normal R–R interval (SDNN), the mean square of successive differences of the R–R intervals (RMSSD, SDNN/RMSSD ratio, and permutation entropy (PE) to gain information about the developing influence of the ANS within each fetal state. In this study, 55 magnetocardiograms from healthy fetuses of 24–41 weeks’ GA were recorded for up to 45 min using a fetal biomagnetometer. Fetal states were classified based on HRV and movement detection. HRV parameters were calculated for each state. Before GA 32 weeks, 58.4% quiescence and 41.6% activity cycles were observed. Later, 24% quiet sleep state (1F), 65.4% active sleep state (2F), and 10.6% active awake state (4F) were observed. SDNN increased over gestation. Changes of HRV parameters between the fetal behavioral states, especially between 1F and 4F, were statistically significant. Increasing fetal activity was confirmed by a decrease in PE complexity measures. The fHRV parameters support the differentiation between states and indicate the development of autonomous nervous control of heart rate function. PMID:25904855

  19. Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches?

    PubMed

    Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R

    2014-10-15

    Ultrasonography is a safe and efficient technique for monitoring fetal development and viability. One of the most important and widely used parameters to verify fetal viability is the fetal heart rate (HR). In human medicine, the fetal HR normally oscillates during labor in transient accelerations and decelerations associated with uterine contractions. The present study investigated whether these variations also occur in canine fetuses and its relationship to parturition. A cohort study was conducted in 15 pregnant bitches undergoing two-dimensional high-resolution ultrasonographic examination during the 8th and 9th week of gestation. Fetal HR was assessed in M-mode for 5 minutes in each fetus in all bitches. In addition, the bitches were monitored for clinical signs of imminent parturition. Associations between the HR, antepartum time, and delivery characteristics were evaluated with a Poisson regression model. Fetal HR acceleration and deceleration occurred in canine fetuses and predicted the optimal time of parturition. These findings can help veterinarians and sonographers better understand this phenomenon in canine fetuses.

  20. Zinc antagonizes homocysteine-induced fetal heart defects in rats.

    PubMed

    He, Xiaoyu; Hong, Xinru; Zeng, Fang; Kang, Fenhong; Li, Li; Sun, Qinghua

    2009-09-01

    It has been suggested that zinc may have a protective role against heart defects during fetal development. We investigated the effects of zinc on the development of fetal cardiac malformations induced by homocysteine. Pregnant Sprague-Dawley rats were randomized into one of five groups: control (C), homocysteine (H), homocysteine + zinc (Z), homocysteine + folic acid (F), or homocysteine + zinc + folic acid (ZF) (each n = 8). Homocysteine (8 nmol/day) was administered intraperitoneally in the H, Z, F, and ZF groups on gestation days (GD) 8, 9, and 10. Zinc (30 mg/kg day), folic acid (30 mg/kg day), or both (30 mg/kg day each) were administered intragastrically daily in the Z, F, and ZF groups, respectively, throughout the pregnancy. In each group, two fetuses were removed on GD 13, 15, 17, and 19 and examined for cardiac malformations; maternal copper/zinc-containing-superoxide dismutase (Cu/Zn-SOD) activity and metallothionein type I (MT-1) mRNA expression were measured simultaneously. The prevalence of cardiac malformations was significantly higher in group H than in group C, and significantly lower in group Z than in group H at the studied time points. Cu/Zn-SOD activity and MT-1 mRNA levels were significantly lower in group H than in group C, and significantly higher in group Z than in group H. Our data suggest that zinc antagonizes homocysteine-induced teratogenic effects on the fetal heart, possibly via the inhibition of excessive peroxidation.

  1. Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao

    1995-05-01

    Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.

  2. Prone position craniotomy in pregnancy without fetal heart rate monitoring.

    PubMed

    Jacob, Jean; Alexander, Ashish; Philip, Shoba; Thomas, Anoop

    2016-09-01

    A pregnant patient in second trimester scheduled for posterior fossa craniotomy in prone position is a challenge for the anesthesiologist. Things to consider are physiological changes during pregnancy, non-obstetric surgery in pregnant patients, neuroanesthetic principles, effects of prone positioning, and need for fetal heart rate (FHR) monitoring. We have described the anesthetic management of this case and discussed intra-operative FHR monitoring including controversies about its role, indications, and various options available as per fetal gestational age. In our case we attempted intermittent intra-operative FHR monitoring to optimize maternal positioning and fetal oxygenation even though the fetus was pre-viable. However the attempt was abandoned due to practical difficulties with prone positioning. Patient made good neurological recovery following the procedure and delivered a healthy term baby 4 months later. Decisions regarding fetal monitoring should be individualized based on viability of the fetus and feasibility of emergency cesarean delivery. Good communication between a multidisciplinary team involving neurosurgeon, anesthesiologist, obstetrician, and neonatologist is important for a successful outcome for mother and fetus. We conclude that prone position neurosurgery can safely be carried out in a pregnant patient with pre-viable fetus without FHR monitoring.

  3. Hypoplastic left heart syndrome with restrictive atrial septum and advanced heart block documented with a novel fetal electrocardiographic monitor

    PubMed Central

    NARAYAN, H. K.; FIFER, W.; CARROLL, S.; KERN, J.; SILVER, E.; WILLIAMS, I. A.

    2012-01-01

    Hypoplastic left ventricle with congenital heart block has been reported previously in a fetus with concurrent left atrial isomerism and levo-transposition of the great arteries. We present the unusual case of an infant diagnosed in utero with hypoplastic left heart syndrome, a restrictive atrial septum and advanced heart block but with D-looping of the ventricles and no atrial isomerism. In addition, fetal heart rhythm was documented with the assistance of a new fetal electrocardiographic monitor. PMID:21374749

  4. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep.

    PubMed

    Wang, Xiaogang; Durosier, L Daniel; Ross, Michael G; Richardson, Bryan S; Frasch, Martin G

    2014-01-01

    Severe fetal acidemia during labour can result in life-lasting neurological deficits, but the timely detection of this condition is often not possible. This is because the positive predictive value (PPV) of fetal heart rate (FHR) monitoring, the mainstay of fetal health surveillance during labour, to detect concerning fetal acidemia is around 50%. In fetal sheep model of human labour, we reported that severe fetal acidemia (pH<7.00) during repetitive umbilical cord occlusions (UCOs) is preceded ∼60 minutes by the synchronization of electroencephalogram (EEG) and FHR. However, EEG and FHR are cyclic and noisy, and although the synchronization might be visually evident, it is challenging to detect automatically, a necessary condition for bedside utility. Here we present and validate a novel non-parametric statistical method to detect fetal acidemia during labour by using EEG and FHR. The underlying algorithm handles non-stationary and noisy data by recording number of abnormal episodes in both EEG and FHR. A logistic regression is then deployed to test whether these episodes are significantly related to each other. We then apply the method in a prospective study of human labour using fetal sheep model (n = 20). Our results render a PPV of 68% for detecting impending severe fetal acidemia ∼60 min prior to pH drop to less than 7.00 with 100% negative predictive value. We conclude that this method has a great potential to improve PPV for detection of fetal acidemia when it is implemented at the bedside. We outline directions for further refinement of the algorithm that will be achieved by analyzing larger data sets acquired in prospective human pilot studies.

  5. Design of an FECG scalp electrode fetal heart rate monitor.

    PubMed

    Reguig, F B; Kirk, D L

    1996-03-01

    The design of a fetal heart rate (FHR) monitor using fetal electrocardiogram (FECG) scalp electrodes is described. It is shown that the design approach followed two stages: generation of FHR pulses at R-R intervals and FHR computation. The former uses a simple hardware approach for QRS detection and R-wave enhancement, while the latter requires a software implementation in order to produce FHR traces on a beat to beat basis. The QRS detection is based on bandpass filtering using switched mode capacitor technique; the R-wave enhancement and amplitude information are achieved by differentiation followed by fullwave rectification and peak detection. An adaptive threshold together with a comparator circuit are used to generate FHR pulses at R-R intervals. Beat to beat variations of FHR traces are produced by hardware and software implementation on a Z80 microprocessor board. Results obtained by the FHR monitor are evaluated and contrasted to other commercial FHR monitors.

  6. Linear and nonlinear measures of fetal heart rate patterns evaluated on very short fetal magnetocardiograms.

    PubMed

    Moraes, Eder Rezende; Murta, Luiz Otavio; Baffa, Oswaldo; Wakai, Ronald T; Comani, Silvia

    2012-10-01

    We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short- and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.

  7. Linear and nonlinear measures of fetal heart rate patterns evaluated on very short fetal magnetocardiograms

    PubMed Central

    Moraes, Eder Rezende; Murta, Luiz Otavio; Baffa, Oswaldo; Wakai, Ronald T; Comani, Silvia

    2012-01-01

    We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short- and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs. PMID:22945491

  8. Human heart by art.

    PubMed

    Tamir, Abraham

    2012-11-01

    Heart is of great importance in maintaining the life of the body. Enough to stop working for a few minutes to cause death, and hence the great importance in physiology, medicine, and research. This fact was already emphasized in the Bible in the Book of Proverbs, chapter 4 verse 23: "Keep your heart with all diligence, for out of it is the wellspring of life." Art was able to demonstrate the heart from various aspects; realistically, as done by Leonardo de Vinci who demonstrated the halves of the heart and its blood vessels. Symbolically, as a source of life, the heart was demonstrated by the artist Mrs. Erlondeiel, as a caricature by Salvador Dali, as an open heart by Sawaya, etc. Finally, it should be emphasized that different demonstrations of the human heart by many artworks make this most important organ of our body (that cannot be seen from outside) more familiar and clearer to us. And this is the purpose of this article-to demonstrate the heart through a large number of artworks of different kinds.

  9. The Effect of Maternal Relaxation Training on Reactivity of Non-Stress Test, Basal Fetal Heart Rate, and Number of Fetal Heart Accelerations: A Randomized Controlled Trial

    PubMed Central

    Akbarzade, Marzieh; Rafiee, Bahare; Asadi, Nasrin; Zare, Najaf

    2015-01-01

    Background: Relaxation-training, as an anxiety-reducer intervention, plays an important role in fetal health. The present study aimed to analyze the effect of maternal relaxation on stress test (NST), basal fetal heart rate, and number of fetal heart accelerations. Methods: In this randomized controlled trial, 84 pregnant women were randomly divided into two groups of teaching relaxation and control groups in 2012. In the intervention group, 60-90 minute classes were held every week lasting for 4 weeks. Besides, home practice charts were given to the mothers and researchers controlled the home practices by phone calls every week. The control group received routine prenatal care. In the 4th week, NST was performed in the intervention group 30 minutes before and after the 4th session. In the control group, NST was done in the 4th week. The quantitative variables in the two groups were compared through ANOVA and Chi-square test. Results: The results of paired t-test showed that relaxation could improve the NST results (P=0.01). Mean and standard deviation of basal fetal heart rate was 138.95±8.18 before the intervention and 133.07±6.9 after the intervention. Paired t-test also showed that relaxation reduced the basal fetal heart rate (P=0.001). Mean and standard deviation of the number of fetal heart accelerations was 1.5±0.8 before the intervention and 2.2±0.9 after it. The results of paired t-test also showed that relaxation increased the number of fetal heart accelerations (P=0.001). Conclusions: Relaxation could improve the NST results, reduce the basal fetal heart rate, and increase the number of fetal heart accelerations. Therefore, relaxation is recommended during pregnancy. Trial Registration Number: IRCT2012072810418N1 PMID:25553334

  10. Stochastic time series analysis of fetal heart-rate variability

    NASA Astrophysics Data System (ADS)

    Shariati, M. A.; Dripps, J. H.

    1990-06-01

    Fetal Heart Rate(FHR) is one of the important features of fetal biophysical activity and its long term monitoring is used for the antepartum(period of pregnancy before labour) assessment of fetal well being. But as yet no successful method has been proposed to quantitatively represent variety of random non-white patterns seen in FHR. Objective of this paper is to address this issue. In this study the Box-Jenkins method of model identification and diagnostic checking was used on phonocardiographic derived FHR(averaged) time series. Models remained exclusively autoregressive(AR). Kalman filtering in conjunction with maximum likelihood estimation technique forms the parametric estimator. Diagnosrics perfonned on the residuals indicated that a second order model may be adequate in capturing type of variability observed in 1 up to 2 mm data windows of FHR. The scheme may be viewed as a means of data reduction of a highly redundant information source. This allows a much more efficient transmission of FHR information from remote locations to places with facilities and expertise for doser analysis. The extracted parameters is aimed to reflect numerically the important FHR features. These are normally picked up visually by experts for their assessments. As a result long term FHR recorded during antepartum period could then be screened quantitatively for detection of patterns considered normal or abnonnal. 1.

  11. Dual transmission model of the fetal heart tone

    NASA Astrophysics Data System (ADS)

    Baker, Donald A.; Zuckerwar, Allan J.

    2004-05-01

    Detection of the fetal heart tone by auscultation is sometimes easy, other times very difficult. In the model proposed here, the level of difficulty depends upon the position of the fetus within the maternal abdomen. If the fetus lies in the classical left/right occiput anterior position (head down, back against the maternal abdominal wall), detection by a sensor or stethoscope on the maternal abdominal surface is easy. In this mode, named here the ``direct contact'' mode, the heartbeat pushes the fetus against the detecting sensor. The motion generates pressure by impact and does not involve acoustic propagation at all. If the fetus lies in a persistent occiput posterior position (spine-to-spine, fetus facing forward), detection is difficult. In this, the ``fluid propagation'' mode, sound generated by the fetal heart and propagating across the amniotic fluid produces extremely weak signals at the maternal surface, typically 30 dB lower than those of the direct contact mode. This reduction in tone level can be compensated by judicious selection of detection frequency band and by exploiting the difference between the background noise levels of the two modes. Experimental clinical results, demonstrating the tones associated with the two respective modes, will be presented.

  12. Intermittent auscultation of the fetal heart rate during labor: an opportunity for shared decision making.

    PubMed

    Hersh, Sally; Megregian, Michele; Emeis, Cathy

    2014-01-01

    Electronic fetal heart rate monitoring is the most common form of intrapartal fetal assessment in the United States. Intermittent auscultation of the fetal heart rate is an acceptable option for low-risk laboring women, yet it is underutilized in the hospital setting. Several expert organizations have proposed the use of intermittent auscultation as a means of promoting physiologic childbirth. Within a shared decision-making model, the low-risk pregnant woman should be presented with current evidence about options for fetal heart rate assessment during labor.

  13. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  14. Intermittent Auscultation for Intrapartum Fetal Heart Rate Surveillance: American College of Nurse-Midwives.

    PubMed

    2015-01-01

    Fetal heart rate surveillance is a standard component of intrapartum care. The fetal heart rate can be evaluated using intermittent auscultation or electronic fetal monitoring. Research that has compared these 2 strategies found them to be equivalent with respect to long-term neonatal outcomes. The purpose of this clinical bulletin by the American College of Nurse-Midwives is to review the evidence for use of intermittent auscultation and provide recommendations for intermittent auscultation technique, interpretation, and documentation.

  15. Feature selection using genetic algorithms for fetal heart rate analysis.

    PubMed

    Xu, Liang; Redman, Christopher W G; Payne, Stephen J; Georgieva, Antoniya

    2014-07-01

    The fetal heart rate (FHR) is monitored on a paper strip (cardiotocogram) during labour to assess fetal health. If necessary, clinicians can intervene and assist with a prompt delivery of the baby. Data-driven computerized FHR analysis could help clinicians in the decision-making process. However, selecting the best computerized FHR features that relate to labour outcome is a pressing research problem. The objective of this study is to apply genetic algorithms (GA) as a feature selection method to select the best feature subset from 64 FHR features and to integrate these best features to recognize unfavourable FHR patterns. The GA was trained on 404 cases and tested on 106 cases (both balanced datasets) using three classifiers, respectively. Regularization methods and backward selection were used to optimize the GA. Reasonable classification performance is shown on the testing set for the best feature subset (Cohen's kappa values of 0.45 to 0.49 using different classifiers). This is, to our knowledge, the first time that a feature selection method for FHR analysis has been developed on a database of this size. This study indicates that different FHR features, when integrated, can show good performance in predicting labour outcome. It also gives the importance of each feature, which will be a valuable reference point for further studies.

  16. Improving Interprofessional Consistency in Electronic Fetal Heart Rate Interpretation.

    PubMed

    Govindappagari, Shravya; Zaghi, Sahar; Zannat, Ferdous; Reimers, Laura; Goffman, Dena; Kassel, Irene; Bernstein, Peter S

    2016-07-01

    Objective To determine if mandatory online training in electronic fetal monitoring (EFM) improved agreement in documentation between obstetric care providers and nurses on labor and delivery. Methods Health care professionals working in obstetrics at our institution were required to complete a course on EFM interpretation. We performed a retrospective chart review of 701 charts including patients delivered before and after the introduction of the course to evaluate agreement among providers in their documentation of their interpretations of the EFM tracings. Results Agreement between provider and nurse documentation at the time of admission improved for variability and accelerations (variability: 91.1 vs. 98.3%, p < 0.001; and accelerations: 75.2 vs. 87.7%, p < 0.001). Similarly, agreement improved at the time of the last note prior to delivery for documentation of variability and accelerations (variability: 82.1 vs. 90.6%, p = 0.001; and accelerations: 56.7 vs. 68.6%, p = 0.0012). Agreement in interpretation of decelerations both at the time of admission and at the time of delivery increased (86.3 vs. 90.6%, p = 0.0787, and 56.7 vs. 61.1%, p = 0.2314, respectively) but was not significant. Conclusion An online EFM course can significantly improve consistency in multidisciplinary documentation of fetal heart rate tracing interpretation.

  17. Large-scale discovery of enhancers from human heart tissue.

    PubMed

    May, Dalit; Blow, Matthew J; Kaplan, Tommy; McCulley, David J; Jensen, Brian C; Akiyama, Jennifer A; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Afzal, Veena; Simpson, Paul C; Rubin, Edward M; Black, Brian L; Bristow, James; Pennacchio, Len A; Visel, Axel

    2011-12-04

    Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart.

  18. The NPL Doppler fetal heart beat detector test facility.

    PubMed

    Bond, A D; Preston, R C

    1998-03-01

    There are many thousands of Doppler fetal heart beat detectors in medical use and many different detector manufacturers but, until recently, there has been no well-defined quantitative method for measuring the sensitivity of these detectors and, therefore, no way of directly comparing their technical performance under standardised test conditions. At NPL, we have developed a reference test facility for measuring detector sensitivity to meet the needs of manufacturers, and to comply with the requirements of an international standard (IEC 1995) that defines methods of measurement of the sensitivity of fetal heart beat detectors. The test facility has primarily been developed for detectors operating at a transmitted frequency of 2 MHz and with Doppler shifts of up to 1 kHz. The detectors are tested by directing the ultrasound beam at a small moving target being driven at a constant velocity, and then monitoring the output signal from the detector, which will be at the Doppler shift frequency. To determine the sensitivity, attenuators are inserted into the beam until the output signal is reduced to 6 dB above the noise level. The sensitivity is calculated by adding the final signal level above the noise to the total insertion loss of the attenuators in the ultrasound path and the reflection loss of the target. A crucial aspect of this calculation is the knowledge of the target strengths and characteristics. This has already been extensively studied (Preston and Bond 1997) over the frequency range of interest. The NPL test facility developed for undertaking the sensitivity measurements is described, including an assessment of the uncertainties in such a measurement and solutions to problems encountered along the way.

  19. Fetal development assessed by heart rate patterns--time scales of complex autonomic control.

    PubMed

    Hoyer, Dirk; Nowack, Samuel; Bauer, Stephan; Tetschke, Florian; Ludwig, Stefan; Moraru, Liviu; Rudoph, Anja; Wallwitz, Ulrike; Jaenicke, Franziska; Haueisen, Jens; Schleussner, Ekkehard; Schneider, Uwe

    2012-03-01

    The increasing functional integrity of the organism during fetal maturation is connected with increasing complex internal coordination. We hypothesize that time scales of complexity and dynamics of heart rate patterns reflect the increasing inter-dependencies within the fetal organism during its prenatal development. We investigated multi-scale complexity, time irreversibility and fractal scaling from 73 fetal magnetocardiographic 30min recordings over the third trimester. We found different scale dependent complexity changes, increasing medium scale time irreversibility, and increasing long scale fractal correlations (all changes p<0.05). The results confirm the importance of time scales to be considered in fetal heart rate based developmental indices.

  20. DNA Methylation Landscapes of Human Fetal Development.

    PubMed

    Slieker, Roderick C; Roost, Matthias S; van Iperen, Liesbeth; Suchiman, H Eka D; Tobi, Elmar W; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P Eline; Heijmans, Bastiaan T; Chuva de Sousa Lopes, Susana M

    2015-10-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.

  1. A Case of Fetal Parvovirus B19 Myocarditis That Caused Terminal Heart Failure

    PubMed Central

    2014-01-01

    Parvovirus B19 is a well-established cause of fetal anemia and nonimmune fetal hydrops in pregnancy. Fetal parvovirus infection can cause severe destruction of erythroid progenitor cells, resulting in fetal anemia, hydrops, and intrauterine death. However, viral myocarditis with subsequent heart failure is another possible mechanism for hydrops formation as viral infection of fetal myocardial cells has been reported in postmortem examinations. We herein report a case of fetal cardiomegaly and massive pericardial effusion secondary to myocarditis as a result of parvovirus B19 infection. The case developed hydrops as consequence of severe anemia and experienced terminal heart failure, which led to the fetus dying an intrauterine death at 22 weeks of gestation. This case demonstrates that there may be an association between myocarditis caused by intrauterine parvovirus B19 infection and a poor outcome. The presence of viral myocarditis may be the determining prognostic factor in that situation. PMID:25328731

  2. Fetal Growth and Neurodevelopmental Outcome in Congenital Heart Disease

    PubMed Central

    Fifer, William P.; Andrews, Howard

    2017-01-01

    We evaluated differences in growth between fetuses with and without congenital heart disease (CHD) and tested associations between growth and early childhood neurodevelopment (ND). In this prospective cohort study, fetuses with hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and tetralogy of Fallot (TOF) and controls had biparietal diameter (BPD), head (HC) and abdominal circumference (AC), femur length (FL), and estimated fetal weight (EFW) recorded serially during pregnancy at 18and controls were assessed using–26 weeks GA (F1), at 27–33 weeks GA (F2), and at 34–40 weeks GA (F3). CHD subjects underwent Bayley Scales of Infant Development-III ND testing at 18 months. Differences between CHD fetuses and controls were assessed using t tests and generalized linear modeling. Correlations between biometry and ND informed regression modeling. We enrolled 41 controls and 68 fetuses with CHD (N = 24 HLHS, N = 21 TGA, N = 23 TOF), 46 of whom had ND scores available. At 18–26 weeks, CHD fetuses were smaller than controls in all biometric parameters. Differences in growth rates were observed for HC, BPD, and AC, but not for FL or EFW. Cognitive score correlated with HC/AC at F2 (r = −0.33, P = 0.04) and mean HC/AC across gestation (r = −0.35, P = 0.03). Language correlated with FL/BPD at F2 (r = 0.34, P = 0.04). In stepwise linear regression, mean HC/AC predicted Cognition (B = −102, P = 0.026, R2 = 0.13) and FL/BPD at F2 predicted Language score (B = 127, P = 0.03, R2 = 0.12). Differences in growth between CHD fetuses and controls can be measured early in pregnancy. In CHD fetuses, larger abdominal relative to head circumference is associated with better 18-month neurodevelopment. PMID:25753684

  3. Atrial and ventricular rate response and patterns of heart rate acceleration during maternal-fetal terbutaline treatment of fetal complete heart block.

    PubMed

    Cuneo, Bettina F; Zhao, Hui; Strasburger, Janette F; Ovadia, Marc; Huhta, James C; Wakai, Ronald T

    2007-08-15

    Terbutaline is used to treat fetal bradycardia in the setting of complete heart block (CHB); however, little is known of its effects on atrial and ventricular beat rates or patterns of heart rate (HR) acceleration. Fetal atrial and ventricular beat rates were compared before and after transplacental terbutaline treatment (10 to 30 mg/day) by fetal echocardiography in 17 fetuses with CHB caused by immune-mediated damage to a normal conduction system (isoimmune, n = 8) or a congenitally malformed conduction system associated with left atrial isomerism (LAI, n = 9). While receiving terbutaline, 9 of the 17 fetuses underwent fetal magnetocardiography (fMCG) to assess maternal HR and rhythm, patterns of fetal HR acceleration, and correlation between fetal atrial and ventricular accelerations (i.e., AV correlation). Maternal HR and fetal atrial and ventricular beat rates increased with terbutaline. However, terbutaline's effects were greater on the atrial pacemaker(s) in fetuses with isoimmune CHB and greater on the ventricular pacemaker(s) in those with LAI-associated CHB. Patterns of fetal HR acceleration also differed between isoimmune and LAI CHB. Finally, despite increasing HR, terbutaline did not restore the normal coordinated response between atrial and ventricular accelerations in isoimmune or LAI CHB. In conclusion, the pathophysiologic heterogeneity of CHB is reflected in the differing effect of terbutaline on the atrial and ventricular pacemaker(s) and varying patterns of HR acceleration. However, regardless of the cause of CHB, terbutaline augments HR but not AV correlation, suggesting that its effects are determined by the conduction system defect rather than the autonomic control of the developing heart.

  4. Atrial and Ventricular Rate Response and Patterns of Heart Rate Acceleration during Maternal–Fetal Terbutaline Treatment of Fetal Complete Heart Block

    PubMed Central

    Cuneo, Bettina F.; Zhao, Hui; Strasburger, Janette F.; Ovadia, Marc; Huhta, James C.; Wakai, Ronald T.

    2012-01-01

    Terbutaline is used to treat fetal bradycardia in the setting of complete heart block (CHB); however, little is known of its effects on atrial and ventricular beat rates or patterns of heart rate (HR) acceleration. Fetal atrial and ventricular beat rates were compared before and after transplacental terbutaline treatment (10 to 30 mg/day) by fetal echocardiography in 17 fetuses with CHB caused by immune-mediated damage to a normal conduction system (isoimmune, n = 8) or a congenitally malformed conduction system associated with left atrial isomerism (LAI, n = 9). While receiving terbutaline, 9 of the 17 fetuses underwent fetal magnetocardiography (fMCG) to assess maternal HR and rhythm, patterns of fetal HR acceleration, and correlation between fetal atrial and ventricular accelerations (i.e., AV correlation). Maternal HR and fetal atrial and ventricular beat rates increased with terbutaline. However, terbutaline's effects were greater on the atrial pacemaker(s) in fetuses with isoimmune CHB and greater on the ventricular pacemaker(s) in those with LAI-associated CHB. Patterns of fetal HR acceleration also differed between isoimmune and LAI CHB. Finally, despite increasing HR, terbutaline did not restore the normal coordinated response between atrial and ventricular accelerations in isoimmune or LAI CHB. In conclusion, the pathophysiologic heterogeneity of CHB is reflected in the differing effect of terbutaline on the atrial and ventricular pacemaker(s) and varying patterns of HR acceleration. However, regardless of the cause of CHB, terbutaline augments HR but not AV correlation, suggesting that its effects are determined by the conduction system defect rather than the autonomic control of the developing heart. PMID:17697825

  5. Maturation of the human fetal startle response: Evidence for sex-specific maturation of the human fetus1

    PubMed Central

    Buss, Claudia; Davis, Elysia Poggi; Class, Quetzal A.; Gierczak, Matt; Pattillo, Carol; Glynn, Laura M.; Sandman, Curt A.

    2009-01-01

    Despite the evidence for early fetal experience exerting programming influences on later neurological development and health risk, very few prospective studies of human fetal behavior have been reported. In a prospective longitudinal study, fetal nervous system maturation was serially assessed by monitoring fetal heart rate (FHR) responses to vibroacoustic stimulation (VAS) in 191 maternal/fetal dyads. Responses were not detected at 26 weeks gestational age (GA). Sex-specific, age-characteristic changes in the FHR response to VAS were observed by 31 weeks’ GA. Males showed larger responses and continued to exhibit maturational changes until 37 weeks’ GA, females however, presented with a mature FHR startle response by 31 weeks’ GA. The results indicate that there are different rates of maturation in the male and female fetus that may have implications for sex-specific programming influences. PMID:19726143

  6. THYROID HORMONE IS REQUIRED FOR GROWTH ADAPTATION TO PRESSURE LOAD IN THE OVINE FETAL HEART

    PubMed Central

    Segar, Jeffrey L; Volk, Ken A; Lipman, Michael H.B.; Scholz, Thomas D

    2012-01-01

    Thyroid hormone exerts broad effects on the adult heart, however little is known regarding the role of thyroid hormone on regulating cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth related gene expression in control and pulmonary artery banded fetal sheep. Fetal thyroidectomy (THX) and placement of a restrictive pulmonary artery band (PAB) was performed at 126 ± 1 d gestation (term 145 d). Four groups of animals (n = 5–6 in each group): 1) control; 2) fetal THX; 3) fetal PAB; and 4) fetal PAB + THX; were monitored for 1 week prior to being euthanized. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kg fetal weight, was significantly increased in PAB (6.27 ± 0.85 g/kg) compared to control animals (4.72 ± 0.12 g/kg). THX significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g/kg) while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g/kg). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX (~16%) compared to the non-THX groups (~27%). No differences in levels of activated Akt, ERK or JNK were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth related genes were lower in the THX and THX+ PAB groups relative to thyroid intact animals. These findings suggest that in the late gestation fetal heart, thyroid hormone has important cellular growth functions in both physiologic and pathophysiologic states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in response to pressure overload. PMID:23104936

  7. Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy

    PubMed Central

    Marzbanrad, Faezeh; Kimura, Yoshitaka; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26–31 weeks) and late (32–41 weeks) gestation compared to early (16–25 weeks) gestation (Mann Whitney Wilcoxon (MWW) p<0.05). TE further increased from mid to late, for the fetuses with RMSSD of fetal heart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being. PMID:26701122

  8. The Application of an Anatomical Database for Fetal Congenital Heart Disease

    PubMed Central

    Yang, Li; Pei, Qiu-Yan; Li, Yun-Tao; Yang, Zhen-Juan

    2015-01-01

    Background: Fetal congenital heart anomalies are the most common congenital anomalies in live births. Fetal echocardiography (FECG) is the only prenatal diagnostic approach used to detect fetal congenital heart disease (CHD). FECG is not widely used, and the antenatal diagnosis rate of CHD varies considerably. Thus, mastering the anatomical characteristics of different kinds of CHD is critical for ultrasound physicians to improve FECG technology. The aim of this study is to investigate the applications of a fetal CHD anatomic database in FECG teaching and training program. Methods: We evaluated 60 transverse section databases including 27 types of fetal CHD built in the Prenatal Diagnosis Center in Peking University People's Hospital. Each original database contained 400–700 cross-sectional digital images with a resolution of 3744 pixels × 5616 pixels. We imported the database into Amira 5.3.1 (Australia Visage Imaging Company, Australia) three-dimensional (3D) software. The database functions use a series of 3D software visual operations. The features of the fetal CHD anatomical database were analyzed to determine its applications in FECG continuing education and training. Results: The database was rebuilt using the 3D software. The original and rebuilt databases can be displayed dynamically, continuously, and synchronically and can be rotated at arbitrary angles. The sections from the dynamic displays and rotating angles are consistent with the sections in FECG. The database successfully reproduced the anatomic structures and spatial relationship features of different fetal CHDs. We established a fetal CHD anatomy training database and a standardized training database for FECG. Ultrasound physicians and students can learn the anatomical features of fetal CHD and FECG through either centralized training or distance education. Conclusions: The database of fetal CHD successfully reproduced the anatomic structures and spatial relationship of different kinds of

  9. Aerobic Exercise during Pregnancy and Presence of Fetal-Maternal Heart Rate Synchronization

    PubMed Central

    Van Leeuwen, Peter; Gustafson, Kathleen M.; Cysarz, Dirk; Geue, Daniel; May, Linda E.; Grönemeyer, Dietrich

    2014-01-01

    It has been shown that short-term direct interaction between maternal and fetal heart rates may take place and that this interaction is affected by the rate of maternal respiration. The aim of this study was to determine the effect of maternal aerobic exercise during pregnancy on the occurrence of fetal-maternal heart rate synchronization. Methods In 40 pregnant women at the 36th week of gestation, 21 of whom exercised regularly, we acquired 18 min. RR interval time series obtained simultaneously in the mothers and their fetuses from magnetocardiographic recordings. The time series of the two groups were examined with respect to their heart rate variability, the maternal respiratory rate and the presence of synchronization epochs as determined on the basis of synchrograms. Surrogate data were used to assess whether the occurrence of synchronization was due to chance. Results In the original data, we found synchronization occurred less often in pregnancies in which the mothers had exercised regularly. These subjects also displayed higher combined fetal-maternal heart rate variability and lower maternal respiratory rates. Analysis of the surrogate data showed shorter epochs of synchronization and a lack of the phase coordination found between maternal and fetal beat timing in the original data. Conclusion The results suggest that fetal-maternal heart rate coupling is present but generally weak. Maternal exercise has a damping effect on its occurrence, most likely due to an increase in beat-to-beat differences, higher vagal tone and slower breathing rates. PMID:25162592

  10. Fetal growth and timing of parturition in humans.

    PubMed

    Zhang, Jun; Sundaram, Rajeshwari; Sun, Wenyu; Troendle, James

    2008-10-15

    Animal studies indicate that either the fetus or the intrauterine environment, both of which set the pattern for fetal growth, may affect the timing of parturition. The authors examined the association between fetal growth and timing of spontaneous onset of labor in humans among low-risk white US women with singleton pregnancies (1987-1991). They restricted the data to pregnancies which had a reliable date of the last menstrual period, normal fetal growth in the first half of pregnancy, and no history of or current pregnancy complications that might have impaired fetal growth (n = 3,360). Subjects received ultrasound examinations at 15-22 and 31-35 weeks' gestation. Fetal growth was adjusted for parity, fetal sex, and maternal prepregnancy weight and height. Results showed that slower or faster fetal growth in the second half of pregnancy resulted in substantially lower or higher birth weight, respectively. However, fetal growth in the second half of pregnancy, even at extremes (2 standard deviations below or above the mean), did not have a meaningful impact on the timing of parturition; neither did fetal growth acceleration or deceleration in late pregnancy. Thus, in low-risk pregnancies where fetal growth is normal in early gestation, fetal growth in the second half of pregnancy does not affect the timing of normal parturition.

  11. PPAR ligands improve impaired metabolic pathways in fetal hearts of diabetic rats.

    PubMed

    Kurtz, Melisa; Capobianco, Evangelina; Martinez, Nora; Roberti, Sabrina Lorena; Arany, Edith; Jawerbaum, Alicia

    2014-10-01

    In maternal diabetes, the fetal heart can be structurally and functionally affected. Maternal diets enriched in certain unsaturated fatty acids can activate the nuclear receptors peroxisome proliferator-activated receptors (PPARs) and regulate metabolic and anti-inflammatory pathways during development. Our aim was to investigate whether PPARα expression, lipid metabolism, lipoperoxidation, and nitric oxide (NO) production are altered in the fetal hearts of diabetic rats, and to analyze the putative effects of in vivo PPAR activation on these parameters. We found decreased PPARα expression in the hearts of male but not female fetuses of diabetic rats when compared with controls. Fetal treatments with the PPARα ligand leukotriene B4 upregulated the expression of PPARα and target genes involved in fatty acid oxidation in the fetal hearts. Increased concentrations of triglycerides, cholesterol, and phospholipids were found in the hearts of fetuses of diabetic rats. Maternal treatments with diets supplemented with 6% olive oil or 6% safflower oil, enriched in unsaturated fatty acids that can activate PPARs, led to few changes in lipid concentrations, but up-regulated PPARα expression in fetal hearts. NO production, which was increased in the hearts of male and female fetuses in the diabetic group, and lipoperoxidation, which was increased in the hearts of male fetuses in the diabetic group, was reduced by the maternal treatments supplemented with safflower oil. In conclusion, impaired PPARα expression, altered lipid metabolism, and increased oxidative and nitridergic pathways were evidenced in hearts of fetuses of diabetic rats and were regulated in a gender-dependent manner by treatments enriched with PPAR ligands.

  12. Fetal manifestations of maternal anti‐Ro and La antibodies – more than complete heart block

    PubMed Central

    2015-01-01

    Abstract Complete heart block (CHB) is a potentially fatal condition occurring in approximately 1:10000 fetuses. Whilst it is well recognised that maternal anti‐Ro and La antibodies are associated with fetal CHB, there are multiple other manifestations of fetal exposure to these autoantibodies which are not widely appreciated and rarely diagnosed. The importance of identifying affected fetuses lies in the significantly increased risk of recurrence in future pregnancies, and the potential for treatments which may modify this risk. This paper presents several cases to highlight the varying fetal presentations of maternal anti‐Ro and La antibodies. PMID:28191254

  13. Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.

    1993-01-01

    A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.

  14. Intrapartum fetal heart rate classification from trajectory in Sparse SVM feature space.

    PubMed

    Spilka, J; Frecon, J; Leonarduzzi, R; Pustelnik, N; Abry, P; Doret, M

    2015-01-01

    Intrapartum fetal heart rate (FHR) constitutes a prominent source of information for the assessment of fetal reactions to stress events during delivery. Yet, early detection of fetal acidosis remains a challenging signal processing task. The originality of the present contribution are three-fold: multiscale representations and wavelet leader based multifractal analysis are used to quantify FHR variability ; Supervised classification is achieved by means of Sparse-SVM that aim jointly to achieve optimal detection performance and to select relevant features in a multivariate setting ; Trajectories in the feature space accounting for the evolution along time of features while labor progresses are involved in the construction of indices quantifying fetal health. The classification performance permitted by this combination of tools are quantified on a intrapartum FHR large database (≃ 1250 subjects) collected at a French academic public hospital.

  15. A portable fetal heart monitor and its adaption to the detection of certain prenatal abnormalities

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A.

    1994-01-01

    There were three primary objectives for this task: (1) The investigation of the feasibility of making the fetal heart rate monitor portable, using a laptop computer; (2) Improvements in the signal processing for the monitor; and (3) Implementation of a real-time hardware software system. These tasks have been completed as discussed in the following section.

  16. Fetal Heart Rate and Variability: Stability and Prediction to Developmental Outcomes in Early Childhood

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Bornstein, Marc H.; Hahn, Chun-Shin; Costigan, Kathleen; Achy-Brou, Aristide

    2007-01-01

    Stability in cardiac indicators before birth and their utility in predicting variation in postnatal development were examined. Fetal heart rate and variability were measured longitudinally from 20 through 38 weeks gestation (n = 137) and again at age 2 (n = 79). Significant within-individual stability during the prenatal period and into childhood…

  17. Fetal Heart Rate Reactivity Differs by Women's Psychiatric Status: An Early Marker for Developmental Risk?

    ERIC Educational Resources Information Center

    Monk, Catherine; Sloan, Richard P.; Myers, Michael M.; Ellman, Lauren; Werner, Elizabeth; Jeon, Jiyeon; Tager, Felice; Fifer, William P.

    2004-01-01

    Objective: To determine whether there are differences in fetal heart rate (FHR) reactivity associated with women's psychiatric status. Method: In 57 women in their 36th to 38th week of pregnancy (mean age 27 [+ or -] 6 years), electrocardiogram, blood pressure (BP), respiration (RSP), and FHR were measured during baseline and a psychological…

  18. Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist.

    PubMed

    DeVore, Greggory R; Polanco, Bardo; Satou, Gary; Sklansky, Mark

    2016-08-01

    Various approaches to 2-dimensional speckle tracking have been used to evaluate left ventricular function and deformation in the fetus, child, and adult. In 2015, because of differences in imaging devices and analytical programs, the cardiology community published a consensus document proposing standards for pediatric/adult deformation imaging using 2-dimensional speckle tracking. The understanding and application of deformation imaging in the fetus have been limited by a lack of uniform software, terminology, techniques, and display. This article provides a practical, step-by-step approach for deformation analysis of the fetal heart using offline software that is independent of specific ultrasound vendors.

  19. Effects of women's stress-elicited physiological activity and chronic anxiety on fetal heart rate.

    PubMed

    Monk, Catherine; Myers, Michael M; Sloan, Richard P; Ellman, Lauren M; Fifer, William P

    2003-02-01

    This study examined the effects of pregnant women's acute stress reactivity and chronic anxiety on fetal heart rate (HR). Thirty-two healthy third trimester pregnant women were instrumented to monitor continuous electrocardiography, blood pressure, respiration, and fetal HR. Subjects completed the trait anxiety subscale of the State Trait Anxiety Index, then rested quietly for a 5-minute baseline period, followed by a 5-minute Stroop color-word matching task and a 5-minute recovery period. Fetal HR changes during women's recovery from a stressful task were associated with the women's concurrently collected HR and blood pressure changes (r =.63, p <.05). Fetal HR changes during recovery, as well as during women's exposure to the Stroop task, were correlated with their mothers' trait anxiety scores (r =.39, p <.05 and r = -.52, p <.01, respectively). Finally, a combination of measures of women's cardiovascular activity during recovery and trait anxiety scores accounted for two thirds of the variance in fetal HR changes during the same recovery period (r =.69, p <.001). The results from this study link changes in fetal behavior with acute changes in women's cardiovascular activity after psychological stress and women's anxiety status. This indicates that variations in women's emotion-based physiological activity can affect the fetus and may be centrally important to fetal development.

  20. Fetal autonomic brain age scores, segmented heart rate variability analysis, and traditional short term variability

    PubMed Central

    Hoyer, Dirk; Kowalski, Eva-Maria; Schmidt, Alexander; Tetschke, Florian; Nowack, Samuel; Rudolph, Anja; Wallwitz, Ulrike; Kynass, Isabelle; Bode, Franziska; Tegtmeyer, Janine; Kumm, Kathrin; Moraru, Liviu; Götz, Theresa; Haueisen, Jens; Witte, Otto W.; Schleußner, Ekkehard; Schneider, Uwe

    2014-01-01

    Disturbances of fetal autonomic brain development can be evaluated from fetal heart rate patterns (HRP) reflecting the activity of the autonomic nervous system. Although HRP analysis from cardiotocographic (CTG) recordings is established for fetal surveillance, temporal resolution is low. Fetal magnetocardiography (MCG), however, provides stable continuous recordings at a higher temporal resolution combined with a more precise heart rate variability (HRV) analysis. A direct comparison of CTG and MCG based HRV analysis is pending. The aims of the present study are: (i) to compare the fetal maturation age predicting value of the MCG based fetal Autonomic Brain Age Score (fABAS) approach with that of CTG based Dawes-Redman methodology; and (ii) to elaborate fABAS methodology by segmentation according to fetal behavioral states and HRP. We investigated MCG recordings from 418 normal fetuses, aged between 21 and 40 weeks of gestation. In linear regression models we obtained an age predicting value of CTG compatible short term variability (STV) of R2 = 0.200 (coefficient of determination) in contrast to MCG/fABAS related multivariate models with R2 = 0.648 in 30 min recordings, R2 = 0.610 in active sleep segments of 10 min, and R2 = 0.626 in quiet sleep segments of 10 min. Additionally segmented analysis under particular exclusion of accelerations (AC) and decelerations (DC) in quiet sleep resulted in a novel multivariate model with R2 = 0.706. According to our results, fMCG based fABAS may provide a promising tool for the estimation of fetal autonomic brain age. Beside other traditional and novel HRV indices as possible indicators of developmental disturbances, the establishment of a fABAS score normogram may represent a specific reference. The present results are intended to contribute to further exploration and validation using independent data sets and multicenter research structures. PMID:25505399

  1. Fetal heart rate and motor activity associations with maternal organochlorine levels: results of an exploratory study.

    PubMed

    DiPietro, Janet A; Davis, Meghan F; Costigan, Kathleen A; Barr, Dana Boyd

    2014-01-01

    Contemporaneous associations between circulating maternal organochlorines (OCs) and measures of fetal heart rate and motor activity were evaluated. A panel of 47 OCs, including pesticides and polychlorinated biphenyls (PCBs), was analyzed from serum of 50 pregnant women at 36 weeks gestation. Data were empirically reduced into four factors and six individual compounds. All participants had detectable concentrations of at least one-quarter of the assayed OCs and, in general, higher socioeconomic level was associated with higher OC concentrations. Fetal heart rate measures were not consistently associated with maternal OCs. In contrast, one or more indicators of greater fetal motor activity were significantly associated with higher levels of the DDT and low chlorinated OC factors and five of the six individual compounds (heptachlor epoxide, trans nonachlor, oxychlordane, and PCBs 18 and 52). This preliminary demonstration of associations between fetal motor activity and maternal concentrations of persistent and pervasive environmental contaminants suggests that fetal assessment may be useful in ascertaining the potential early effects of these compounds on development.

  2. Fetal heart rate and motor activity associations with maternal organochlorine levels: Results of an exploratory study

    PubMed Central

    DiPietro, Janet A.; Davis, Meghan F.; Costigan, Kathleen A; Barr, Dana Boyd

    2015-01-01

    Contemporaneous associations between circulating maternal organochlorines and measures of fetal heart rate and motor activity were evaluated. A panel of 47 organochlorines (OCs), including pesticides and polychlorinated biphenyls (PCBs), was analyzed from serum of 50 pregnant women at 36 weeks gestation. Data were empirically reduced into four factors and six individual compounds. All participants had detectable concentrations of at least one-quarter of the assayed OCs and, in general, higher socioeconomic level was associated with higher OC concentrations. Fetal heart rate measures were not consistently associated with maternal OCs. In contrast, one or more indicators of greater fetal motor activity were significantly associated with higher levels of the DDT and low chlorinated OC factors and five of the six individual compounds (heptachlor epoxide, trans nonachlor, oxychlordane, and PCBs 18 and 52). This preliminary demonstration of associations between fetal motor activity and maternal concentrations of persistent and pervasive environmental contaminants suggests that fetal assessment may be useful in ascertaining the potential early effects of these compounds on development. PMID:23591698

  3. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    PubMed

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  4. Monitoring Fetal Heart Rate during Pregnancy: Contributions from Advanced Signal Processing and Wearable Technology

    PubMed Central

    Signorini, Maria G.

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring. PMID:24639886

  5. Development of multiscale complexity and multifractality of fetal heart rate variability.

    PubMed

    Gierałtowski, Jan; Hoyer, Dirk; Tetschke, Florian; Nowack, Samuel; Schneider, Uwe; Zebrowski, Jan

    2013-11-01

    During fetal development a complex system grows and coordination over multiple time scales is formed towards an integrated behavior of the organism. Since essential cardiovascular and associated coordination is mediated by the autonomic nervous system (ANS) and the ANS activity is reflected in recordable heart rate patterns, multiscale heart rate analysis is a tool predestined for the diagnosis of prenatal maturation. The analyses over multiple time scales requires sufficiently long data sets while the recordings of fetal heart rate as well as the behavioral states studied are themselves short. Care must be taken that the analysis methods used are appropriate for short data lengths. We investigated multiscale entropy and multifractal scaling exponents from 30 minute recordings of 27 normal fetuses, aged between 23 and 38 weeks of gestational age (WGA) during the quiet state. In multiscale entropy, we found complexity lower than that of non-correlated white noise over all 20 coarse graining time scales investigated. Significant maturation age related complexity increase was strongest expressed at scale 2, both using sample entropy and generalized mutual information as complexity estimates. Multiscale multifractal analysis (MMA) in which the Hurst surface h(q,s) is calculated, where q is the multifractal parameter and s is the scale, was applied to the fetal heart rate data. MMA is a method derived from detrended fluctuation analysis (DFA). We modified the base algorithm of MMA to be applicable for short time series analysis using overlapping data windows and a reduction of the scale range. We looked for such q and s for which the Hurst exponent h(q,s) is most correlated with gestational age. We used this value of the Hurst exponent to predict the gestational age based only on fetal heart rate variability properties. Comparison with the true age of the fetus gave satisfying results (error 2.17±3.29 weeks; p<0.001; R(2)=0.52). In addition, we found that the normally

  6. Meeting report: human fetal tissue transplantation research panel.

    PubMed

    Barnes, D W; Stevenson, R E

    1989-01-01

    On September 14 through 16, 1988, a meeting on the use of human fetal tissue in transplantation was held at the National Institutes of Health, Bethesda Maryland, USA. The meeting sponsored by NIH for the Human Fetal Tissue Transplantation Research Panel, a consultant group to the Advisory Committee to the Director. The consultant group was convened to deal with the scientific, judicial and moral questions associated with research involving transplantation of human fetal tissue obtained after induced abortions. The first day of the meeting was devoted to presentations addressing scientific issues. Included among the speakers was Dr. Lars Olson, Professor of Neurobiology, Karolinska Institute, Stockholm, who described the use of transplanted human fetal tissue in the treatment of patients with Parkinson's disease and Dr. Eugene Redmond, Professor of Psychiatry, Yale University School of Medicine, who showed results of work with transplantation of tissue to correct induced Parkinson-like disease in monkeys. Other speakers addressed the present, past or potential use of fetal tissue in the treatment of diabetes, immune disorders, and other diseases, as well as the use of fetal cells in the production of biologicals. At the conclusion of the meeting the panel did not recommend that research be halted on fetal tissue within the context discussed, although the recommendation of the committee is not binding, and an additional assembly of the panel will probably occur before the final recommendation to an NIH advisory committee is made in November. Other meetings on this subject include a meeting on the use of fetal tissue sponsored by the American Association of Tissue Banks, March 6-7, 1989, in Washington D. C. (Crystal City) and a meeting June 10, 1989, the day before the annual meeting of the Tissue Culture Association, USA, in Orlando, Florida, on fetal cells and ownership of cultured cells and products derived from clinical specimens. Following are statements to the

  7. Automated annotation and quantitative description of ultrasound videos of the fetal heart.

    PubMed

    Bridge, Christopher P; Ioannou, Christos; Noble, J Alison

    2017-02-01

    Interpretation of ultrasound videos of the fetal heart is crucial for the antenatal diagnosis of congenital heart disease (CHD). We believe that automated image analysis techniques could make an important contribution towards improving CHD detection rates. However, to our knowledge, no previous work has been done in this area. With this goal in mind, this paper presents a framework for tracking the key variables that describe the content of each frame of freehand 2D ultrasound scanning videos of the healthy fetal heart. This represents an important first step towards developing tools that can assist with CHD detection in abnormal cases. We argue that it is natural to approach this as a sequential Bayesian filtering problem, due to the strong prior model we have of the underlying anatomy, and the ambiguity of the appearance of structures in ultrasound images. We train classification and regression forests to predict the visibility, location and orientation of the fetal heart in the image, and the viewing plane label from each frame. We also develop a novel adaptation of regression forests for circular variables to deal with the prediction of cardiac phase. Using a particle-filtering-based method to combine predictions from multiple video frames, we demonstrate how to filter this information to give a temporally consistent output at real-time speeds. We present results on a challenging dataset gathered in a real-world clinical setting and compare to expert annotations, achieving similar levels of accuracy to the levels of inter- and intra-observer variation.

  8. Cross-hemispheric functional connectivity in the human fetal brain.

    PubMed

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  9. Cross-hemispheric functional connectivity in the human fetal brain

    PubMed Central

    Thomason, ME; Dassanayake, MT; Shen, S; Katkuri, Y; Alexis, M; Anderson, AL; Yeo, L; Mody, S; Hernandez-Andrade, E; Hassan, SS; Studholme, C; Jeong, JW; Romero, R

    2013-01-01

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC. PMID:23427244

  10. The value of 3D and 4D assessments of the fetal heart.

    PubMed

    Araujo Júnior, Edward; Rolo, Liliam Cristine; Rocha, Luciane Alves; Nardozza, Luciano Marcondes Machado; Moron, Antonio Fernandes

    2014-01-01

    The objective of this review was to demonstrate the main tools of three- and four-dimensional ultrasonography, using the spatiotemporal image correlation software and its respective applications for assessing the fetal heart and its vascular connections, along with its potential contribution towards screening for congenital heart diseases. Today, conventional, two-dimensional, echocardiography continues to be the gold standard for diagnosing congenital heart diseases. However, recent studies have demonstrated that spatiotemporal image correlation offers some advantages that boost two-dimensional accuracy in detecting congenital heart diseases, given that the fetal heart assessment can be completed in the absence of the patient (offline) and be discussed by different examiners. Additionally, data volumes can be sent for analysis in reference centers via internet links. Spatiotemporal image correlation also enables direct measurement of heart structures in rendering mode, such as the interventricular septum and the annulus of the atrioventricular valves. Furthermore, it enables assessment of cardiac function when used in association with the virtual organ computer-aided analysis software, thus making it possible to calculate the total systolic function, ejection fraction, and cardiac output.

  11. Preparing Heart and Mind for Becoming a Parent Following a Diagnosis of Fetal Anomaly.

    PubMed

    McKechnie, Anne Chevalier; Pridham, Karen; Tluczek, Audrey

    2015-09-01

    Using a cross-sectional, grounded dimensional analysis study design, we collected demographic and health information and conducted telephone interviews with 37 expectant parents of 26 fetuses within 25 families. We describe a theoretical model with a core process of preparing heart and mind for becoming a parent following a diagnosis of fetal anomaly. The process of preparing was influenced by fetal and future child health, experiences of previous loss, and social interactions within both new and familiar settings. Expectant parents reported varying turning points and strategies associated with three distinct trajectories of relating to the fetus or "baby" yet to be born. These relational trajectories include claiming the child as one's own, delaying the connection to the fetus, and doing the routine of pregnancy. With the findings presented in this article, we extend the understanding of how parenting develops during pregnancy in the context of a fetal anomaly.

  12. Use of Audible and Chart-recorded Ultrasonography to Monitor Fetal Heart Rate and Uterine Blood Flow Parameters in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the present study was to evaluate the use of audible chart-recorded doppler ultrasonography (DUS) to monitor both uterine blood flow and fetal heart rate (FHR) during pregnancy in dairy cattle. Possible applications of DUS include the monitoring of fetal distress when a pregnancy be...

  13. Consumer information on fetal heart rate monitoring during labor: a content analysis: a content analysis.

    PubMed

    Torres, Jennifer; De Vries, Raymond; Low, Lisa Kane

    2014-01-01

    Electronic fetal monitoring (EFM) is used for the majority of births that occur in the United States. While there are indications for use of EFM for women with high-risk pregnancies, its use in low-risk pregnancies is less evidence-based. In low-risk women, the use of EFM is associated with an increased risk for cesarean birth compared with the use of intermittent auscultation of the fetal heart rate. The purpose of this investigation was to evaluate the existence of evidence-based information on fetal heart rate monitoring in popular consumer-focused maternity books and Web sites. Content analysis of information in consumer-oriented Web sites and books was completed using the NVivo software (QRSinternational, Melbourne, Australia). Themes identified included lack of clear terminology when discussing fetal monitoring, use of broad categories such as low risk and high risk, limited presentation of information about intermittent auscultation, and presentation of EFM as the standard of care, particularly upon admission into the labor unit. More than one-third of the sources did not mention auscultation, and conflicting information about monitoring methods was presented. The availability of accurate, publically accessible information offers consumers the opportunity to translate knowledge into the power to seek evidence-based care practices during their maternity care experience.

  14. Gestational Dietary Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal Heart Growth and Post-Natal Blood Pressure of Progeny

    PubMed Central

    2015-01-01

    Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506

  15. How to read fetal heart rate tracings in labor: a comparison between ACOG and NICE guidelines.

    PubMed

    Buscicchio, Giorgia; Gentilucci, Lucia; Martorana, Rossana; Martino, Cristina; Tranquilli, Andrea Luigi

    2012-12-01

    The aim of this study was to assess reproducibility and clinical relevance of current guidelines on fetal heart rate interpretation in labor. Two obstetricians with comparable experience analyzed one hundred fetal heart rate tracings. One doctor made a first analysis using American College of Obstetricians and Gynecologists (ACOG) 2009 guideline's criteria; the other used National Institute for Health and Clinical Excellence (NICE) 2007 guideline's criteria; subsequently they repeated the evaluation crossing the guidelines used. The primary outcome of this experiment was to determine the time spent to evaluate the tracings, secondary outcomes were: the intraobserver concordance (concordance of the evaluation with the two systems for each investigator), the interobserver concordance (concordance between the interpretation given by each investigator) and. the concordance between operators' grading and actual outcome of labor. The interpretation of fetal heart rate tracings was longer using ACOG criteria. The intraobserver agreement was significant. The interobserver agreement was better using NICE guidelines. The same trend showed for the concordance between investigators' grading and actual outcomes There was more discordance in worse outcomes. Both guidelines are interesting and useful, but NICE seems easier to handle than ACOG.

  16. Fetal Circulation

    MedlinePlus

    ... Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection of a Heart Defect - Fetal Circulation • Care & Treatment • Tools & Resources Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Target Heart Rates 4 Heart Attack Symptoms in Women ...

  17. Robust estimation of fetal heart rate variability using Doppler ultrasound.

    PubMed

    Fernando, Kumari L; Mathews, V John; Varner, Michael W; Clark, Edward B

    2003-08-01

    This paper presents a new measure of heart rate variability (HRV) that can be estimated using Doppler ultrasound techniques and is robust to variations in the angle of incidence of the ultrasound beam and the measurement noise. This measure employs the multiple signal characterization (MUSIC) algorithm which is a high-resolution method for estimating the frequencies of sinusoidal signals embedded in white noise from short-duration measurements. We show that the product of the square-root of the estimated signal-to-noise ratio (SNR) and the mean-square error of the frequency estimates is independent of the noise level in the signal. Since varying angles of incidence effectively changes the input SNR, this measure of HRV is robust to the input noise as well as the angle of incidence. This paper includes the results of analyzing synthetic and real Doppler ultrasound data that demonstrates the usefulness of the new measure in HRV analysis.

  18. Ethics, public policy, and human fetal tissue transplantation research.

    PubMed

    Childress, James F

    1991-06-01

    This article focuses on the deliberations of the National Institutes of Health Human Fetal Tissue Transplantation Research Panel in 1988. It explores various arguments for and against the use of fetal tissue for transplantation research, following elective abortion, and for and against the use of federal funds for such research. After examining the relevance of various positions on the moral status of the fetus and the morality of abortion, the article critically examines charges that such research, especially with federal funds, would involve complicity in the moral evil of abortion, would legitimate abortion practices, and would provide incentives for abortions. Finally, it considers whether the donation model is appropriate for the transfer of human fetal tissue and whether the woman who chooses to have an abortion is the apppropriate donor of the tissue.

  19. Pregnancy With SLE and Fetal Congenital Heart Block: A Case Report

    PubMed Central

    Puri, Suman; Pooni, Puneet; Mohan, Bishav; Bindal, Vidushi; Verma, Sugam; Verma, Sumati; Gupta, Rajiv Kumar

    2013-01-01

    Autoimmune AV block is usually seen in association with autoimmune antibodies in mother that cross the placenta and damage the AV node of fetus. A 24-year-old primigravida, diagnosed to have SLE, at 25 weeks period of gestation found to have fetal bradycardia. Her ANA was moderately positive, SS-A (Ro) antibodies and SS-B (La) antibodies were positive. Fetal ECHO showed no structural defect but heart rate was 55 - 60 beats per minute. She was put on dexamethasone (4 mg/day). She was lost on follow up and presented at term in emergency with labor pains and fetal bradycardia, underwent a lower segment caesarean section. Baby underwent a temporary cardiac pacing within 10 hours of birth followed by permanent pacing on day 3 of birth. Baby is doing well on follow up. Neonates with isolated congenital heart block who are monitored antenatally and delivered in a planned fashion at an institution capable of early pacing can have favorable outcomes.

  20. Fetal development of complex autonomic control evaluated from multiscale heart rate patterns.

    PubMed

    Hoyer, Dirk; Nowack, Samuel; Bauer, Stephan; Tetschke, Florian; Rudolph, Anja; Wallwitz, Ulrike; Jaenicke, Franziska; Heinicke, Esther; Götz, Theresa; Huonker, Ralph; Witte, Otto W; Schleussner, Ekkehard; Schneider, Uwe

    2013-03-01

    Development of the fetal autonomic nervous system's integrative capacity in relation to gestational age and emerging behavioral pattern is reflected in fetal heart rate patterns. Conventional indices of vagal and sympathetic rhythms cannot sufficiently reflect their complex interrelationship. Universal behavioral indices of developing complex systems may provide additional information regarding the maturating complex autonomic control. We investigated fetal magnetocardiographic recordings undertaken at 10-min intervals in active (n = 248) and quiet (n = 111) states between 22 and 39 wk gestational age. Standard deviation of heartbeat intervals, skewness, contribution of particular rhythms to the total power, and multiscale entropy were analyzed. The multiscale entropy methodology was validated for 10-min data sets. Age dependence was analyzed by linear regression. In the quiet state, contribution of sympathovagal rhythms and their complexity over a range of corresponding short scales increased with rising age, and skewness shifted from negative to positive values. In the active state, age dependencies were weaker. Skewness as the strongest parameter shifted in the same direction. Fluctuation amplitude and the complexity of scales associated with sympathovagal rhythms increased. We conclude that in the quiet state, stable complex organized rhythms develop. In the active state, however, increasing behavioral variability due to multiple internal coordinations, such as movement-related heart rate accelerations, and external influences develop. Hence, the state-selective assessment in association with developmental indices used herein may substantially improve evaluation of maturation age and early detection and interpretation of developmental problems in prenatal diagnosis.

  1. The rhetoric of informed choice: perspectives from midwives on intrapartum fetal heart rate monitoring

    PubMed Central

    Hindley, Carol; Thomson, Ann M.

    2005-01-01

    Abstract Objective  To investigate midwives’ attitudes, values and beliefs on the use of intrapartum fetal monitoring. Design  Qualitative, semi‐structured interviews Subjects and setting  Fifty‐eight registered midwives in two hospitals in the North of England. Results  In this paper two main themes are discussed, these are: informed choice, and the power of the midwife. Midwives favoured the application of informed choice and shared a unanimous consensus on the definition. However, the idealistic perception of informed choice, which included contemporary notions of empowerment and autonomy for women expressing an informed choice, was not reportedly translated into practice. Midwives had to implement informed choice on intrapartum fetal monitoring within a competing set of health service agendas, i.e. medically driven protocols and a political climate of actively managed childbearing. This resulted in the manipulation of information during the midwives’ interactions with women. This ultimately meant that the women often got the choice the midwives wanted them to have. Conclusions  The information that a midwife imparts may consciously or subconsciously affect the woman's uptake and understanding of information. Therefore, the midwife has a powerful role to play in balancing the benefits and risk ratios applicable to fetal heart rate monitoring. However, a deeply ingrained pre‐occupation with technological methods of intrapartum fetal monitoring over many years has made it difficult for midwives to offer alternative forms of monitoring. This has placed limits on the facilitation of informed choice and autonomous decision making for women. PMID:16266418

  2. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  3. Psychoneuroendocrine processes in human pregnancy influence fetal development and health.

    PubMed

    Wadhwa, Pathik D

    2005-09-01

    Individual differences in psychoneuroendocrine function play an important role in health and disease. Developmental models postulate that these individual differences evolve through a progressive series of dynamic time-, place- and context-dependent interactions between genes and environments in fetal, infant and adult life. The effects of early experience have longer-lasting and more permanent consequences than those later in life. Experimental studies in animals have provided convincing evidence to support a causal role for stress-related psychoneuroendocrine processes in negatively influencing critical developmental and health outcomes over the life span, and have also offered valuable insights into putative physiological mechanisms. However, the generalizability of these findings from animals to humans may be limited by the existence of large inter-species differences in physiology and the developmental time-line. We have initiated a program of research in behavioral perinatology and conducted studies over the past several years to examine the effects of stress-related psychoneuroendocrine processes in human pregnancy on fetal developmental and health outcomes. Our findings support a significant and independent role for maternal prenatal stress in the etiology of prematurity-related outcomes, and suggest that these effects are mediated, in part, by the maternal-placental-fetal neuroendocrine axis, and specifically by placental corticotropin-releasing hormone. Our findings also suggest that the use of a fetal challenge paradigm offers a novel way to quantify fetal neurobehavioral maturity in utero, and that the maternal environment exerts a significant influence on the fetal neurodevelopmental processes related to recognition, memory and habituation. Finally, our findings provide preliminary evidence to support the notion that the influence of prenatal stress and maternal-placental hormones on the developing fetus may persist after birth, as assessed by measures

  4. Fetal cardiac interventions: clinical and experimental research

    PubMed Central

    Humuruola, Gulimila

    2016-01-01

    Fetal cardiac interventions for congenital heart diseases may alleviate heart dysfunction, prevent them evolving into hypoplastic left heart syndrome, achieve biventricular outcome and improve fetal survival. Candidates for clinical fetal cardiac interventions are now restricted to cases of critical aortic valve stenosis with evolving hypoplastic left heart syndrome, pulmonary atresia with an intact ventricular septum and evolving hypoplastic right heart syndrome, and hypoplastic left heart syndrome with an intact or highly restrictive atrial septum as well as fetal heart block. The therapeutic options are advocated as prenatal aortic valvuloplasty, pulmonary valvuloplasty, creation of interatrial communication and fetal cardiac pacing. Experimental research on fetal cardiac intervention involves technical modifications of catheter-based cardiac clinical interventions and open fetal cardiac bypass that cannot be applied in human fetuses for the time being. Clinical fetal cardiac interventions are plausible for midgestation fetuses with the above-mentioned congenital heart defects. The technical success, biventricular outcome and fetal survival are continuously being improved in the conditions of the sophisticated multidisciplinary team, equipment, techniques and postnatal care. Experimental research is laying the foundations and may open new fields for catheter-based clinical techniques. In the present article, the clinical therapeutic options and experimental fetal cardiac interventions are described. PMID:27279868

  5. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    PubMed Central

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  6. The effect of maternal methadone use on the fetal heart pattern: a computerised CTG analysis.

    PubMed

    Navaneethakrishnan, R; Tutty, S; Sinha, C; Lindow, S W

    2006-08-01

    Using a computerised analysis, the cardiotocograph (CTG) from women who use methadone (n= 25) when compared with women who do not use methadone (n= 25) showed a significant reduction in the fetal heart baseline rate, with a significant reduction in number of accelerations and episodes of high variation. The short-term variation, number of decelerations and episodes of low variation were not different between the two groups. The time taken to meet the standardised criteria was not different, and it is possible that a computer-assisted CTG analysis could be more accurate than a naked eye interpretation.

  7. Maternal and Fetal Outcomes in Pregnant Women with a Prosthetic Mechanical Heart Valve

    PubMed Central

    Ayad, Sherif W.; Hassanein, Mahmoud M.; Mohamed, Elsayed A.; Gohar, Ahmed M.

    2016-01-01

    BACKGROUND Pregnancy is associated with several cardiocirculatory changes that can significantly impact underlying cardiac disease. These changes include an increase in cardiac output, sodium, and water retention leading to blood volume expansion, and reductions in systemic vascular resistance and systemic blood pressure. In addition, pregnancy results in a hypercoagulable state that increases the risk of thromboembolic complications. OBJECTIVES The aim of this study is to assess the maternal and fetal outcomes of pregnant women with mechanical prosthetic heart valves (PHVs). METHODS This is a prospective observational study that included 100 pregnant patients with cardiac mechanical valve prostheses on anticoagulant therapy. The main maternal outcomes included thromboembolic or hemorrhagic complications, prosthetic valve thrombosis, and acute decompensated heart failure. Fetal outcomes included miscarriage, fetal death, live birth, small-for-gestational age, and warfarin embryopathy. The relationship between the following were observed: – Maternal and fetal complications and the site of the replaced valve (mitral, aortic, or double)– Maternal and fetal complications and warfarin dosage (≤5 mg, >5 mg)– Maternal and fetal complications and the type of anticoagulation administered during the first trimester RESULTS This study included 60 patients (60%) with mitral valve replacement (MVR), 22 patients (22%) with aortic valve replacement (AVR), and 18 patients (18%) with double valve replacement (DVR). A total of 65 patients (65%) received >5 mg of oral anticoagulant (warfarin), 33 patients (33%) received ≤5 mg of warfarin, and 2 patients (2%) received low-molecular-weight heparin (LMWH; enoxaparin sodium) throughout the pregnancy. A total of 17 patients (17%) received oral anticoagulant (warfarin) during the first trimester: 9 patients received a daily warfarin dose of >5 mg while the remaining 8 patients received a daily dose of ≤5 mg. Twenty

  8. Behavioral perinatology: biobehavioral processes in human fetal development.

    PubMed

    Wadhwa, Pathik D; Glynn, Laura; Hobel, Calvin J; Garite, Thomas J; Porto, Manuel; Chicz-DeMet, Aleksandra; Wiglesworth, Aileen K; Sandman, Curt A

    2002-10-15

    Behavioral perinatology is as an interdisciplinary area of research that involves conceptualization of theoretical models and conduct of empirical studies of the dynamic time-, place-, and context-dependent interplay between biological and behavioral processes in fetal, neonatal, and infant life using an epigenetic framework of development. The biobehavioral processes of particular interest to our research group relate to the effects of maternal pre- and perinatal stress and maternal-placental-fetal stress physiology. We propose that behavioral perinatology research may have important implications for a better understanding of the processes that underlie or contribute to the risk of three sets of outcomes: prematurity, adverse neurodevelopment, and chronic degenerative diseases in adulthood. Based on our understanding of the ontogeny of human fetal development and the physiology of pregnancy and fetal development, we have articulated a neurobiological model of pre- and perinatal stress. Our model proposes that chronic maternal stress may exert a significant influence on fetal developmental outcomes. Maternal stress may act via one or more of three major physiological pathways: neuroendocrine, immune/inflammatory, and vascular. We further suggest that placental corticotropin-releasing hormone (CRH) may play a central role in coordinating the effects of endocrine, immune/inflammatory, and vascular processes on fetal developmental outcomes. Finally, we hypothesize that the effects of maternal stress are modulated by the nature, duration, and timing of occurrence of stress during gestation. In this paper, we elaborate on the conceptual and empirical basis for this model, highlight some relevant issues and questions, and make recommendations for future research in this area.

  9. Enabling research with human embryonic and fetal tissue resources.

    PubMed

    Gerrelli, Dianne; Lisgo, Steven; Copp, Andrew J; Lindsay, Susan

    2015-09-15

    Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle, UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large-scale genomic/transcriptomic studies. Increasingly, HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long-term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention.

  10. Enabling research with human embryonic and fetal tissue resources

    PubMed Central

    Gerrelli, Dianne; Lisgo, Steven; Copp, Andrew J.; Lindsay, Susan

    2015-01-01

    Summary Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large scale genomic/transcriptomic studies. Increasingly HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention. PMID:26395135

  11. Fetal Heart

    MedlinePlus

    ... There is actually no direct contact between the circulatory systems of the mother and fetus. The fetus does ... use its own lungs until birth, so its circulatory system is different from that of a newborn baby. ...

  12. The Influence of Bearing-Down Technique on the Fetal Heart Rate during the Second Stage of Labor.

    NASA Astrophysics Data System (ADS)

    Perlis, Deborah Woolley

    This experimental study contrasted the effects of sustained bearing-down efforts with short bearing-down efforts during the first twelve contractions of the second stage of labor. A single subject design with intrasubject replication was used to compare the incidence, duration, and amplitude of fetal heart rate decelerations, as well as the beat-to-beat variability of those decelerations. Neonatal outcome was evaluated with umbilical arterial cord blood pH values and the one- and five-minute APGAR scores. Thirty -two nulliparous women alternated the use of vigorous, sustained Valsalva-style bearing-down efforts with shorter efforts called minipushes every three contractions during the second stage of labor. Sixteen women began the second stage using the Valsalva-style bearing-down technique; sixteen began the second stage using the minipush. The fetal heart rate was recorded by an internal fetal scalp electrode. Uterine contractility was measured by an internal uterine pressure catheter. A repeated-measures MANOVA showed a significant interaction between the order of implementation of the bearing-down techniques and the amplitude of the fetal heart rate decelerations. A similar comparison of the duration of the decelerations showed no significant differences between the two bearing-down techniques. Likewise, analysis of the incidence of fetal heart rate decelerations and the magnitude of the beat-to-beat variability revealed no significant differences between the two techniques.

  13. Association of GDF1 rs4808863 with fetal congenital heart defects: a case–control study

    PubMed Central

    Zhang, Juan; Wu, Qingqing; Wang, Li; Li, Xiaofei; Ma, Yuqing; Yao, Ling

    2015-01-01

    Background Congenital heart defects (CHDs) are the most common fetal defects and the most important cause of child mortality and morbidity. Objective To investigate the association between growth/differentiation factor 1 (GDF1) polymorphisms and fetal CHDs, by evaluating the association of GDF1 rs4808863 with fetal CHDs. Design A case–control study. Setting Beijing, China. Participants We selected 124 fetuses with a CHD and a normal karyotype and normal array-based comparative genomic hybridisation analysis and compared them with 124 normal fetuses matched for gestational age and sex. Fetuses with a CHD, from 20 to 32 weeks of gestation were included. Fetuses with any chromosomal abnormalities, and fetuses from multiple pregnancies and those carried by pregnant women with chronic diseases, were excluded from this research. DNA extraction and genotyping were carried out for all cases to investigate the genotype distributions of GDF1 rs4808863. Results A significant difference was noted for the CT phenotype of GDF1 rs4808863 between the controls and the fetuses with CHDs using homozygote and heterozygote comparisons. The minor allele (T allele) of GDF1 rs4808863 was associated with an increased risk of CHD (p<0.05). A statistically significant difference between controls and fetuses with CHDs was noted in a comparison with the mutation genotype CT+TT and wild-type genotype CC (p<0.05) using dominant modal analysis. After stratification analysis, the CT phenotype, the minor allele (T allele) and the mutation genotype CT+TT of the rs4808863 polymorphism were associated with atrioventricular septal defect (AVSD), left ventricular outflow tract obstruction (LVOTO) and left–right laterality defects (p<0.05). Conclusions Our results suggest that the GDF1 rs4808863 polymorphism contributes to an increased risk of fetal CHDs, especially the subtypes of AVSD, LVOTO and left–right laterality defects. PMID:26656983

  14. Ibuprofen results in alterations of human fetal testis development

    PubMed Central

    Ben Maamar, Millissia; Lesné, Laurianne; Hennig, Kristin; Desdoits-Lethimonier, Christèle; Kilcoyne, Karen R.; Coiffec, Isabelle; Rolland, Antoine D.; Chevrier, Cécile; Kristensen, David M.; Lavoué, Vincent; Antignac, Jean-Philippe; Le Bizec, Bruno; Dejucq-Rainsford, Nathalie; Mitchell, Rod T.; Mazaud-Guittot, Séverine; Jégou, Bernard

    2017-01-01

    Among pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7–17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8–9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10–12 GW, or in second trimester xenografted testes (14–17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow ‘early window’ of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology. PMID:28281692

  15. An improved method of isolating fetal human retinal pigment epithelium.

    PubMed

    Castillo, B V; Little, C W; del Cerro, C; del Cerro, M

    1995-08-01

    The purpose of this study was to develop an improved method of isolating fetal human retinal pigment epithelium (RPE) for tissue culture or transplantation. Fetal human eyes ranging from 8 to 20 wks of gestation were collected and stored in Optisol solution. Under a dissecting microscope, an incision was made behind the ora serrata and extended circumferentially to remove the anterior segment. The vitreous was withdrawn, and the neural retina was carefully detached from the RPE. The sclera then was teased away from the choroid-RPE. The choroid-RPE was treated with 2% dispase in DMEM + 20 mM HEPES at 37 degrees C for 25 min. While still in dispase, the RPE was separated from the choroid using a pair of fine tipped jeweler's forceps under dark-field. An intact sheet of RPE could be separated from the choroid after treatment with dispase. No choroidal contamination was present as determined by light microscopy or cell culture. In vitro, the isolated RPE cells demonstrated classic cobblestone phenotype and expressed cytokeratin. This technique provides an easy and reliable method for isolating pure sheets of fetal human RPE. It also allows utilization of the neural retina of the same eye for other purposes, as the neural retina is not exposed to the enzymatic digestion. These features make this method especially useful for RPE and retinal transplantation; such an application is already underway.

  16. Right ventricular nitric oxide signaling in an ovine model of congenital heart disease: a preserved fetal phenotype.

    PubMed

    Kameny, Rebecca Johnson; He, Youping; Morris, Catherine; Sun, Christine; Johengen, Michael; Gong, Wenhui; Raff, Gary W; Datar, Sanjeev A; Oishi, Peter E; Fineman, Jeffrey R

    2015-07-01

    We recently reported superior right ventricle (RV) performance in response to acute afterload challenge in lambs with a model of congenital heart disease with chronic left-to-right cardiac shunts. Compared with control animals, shunt lambs demonstrated increased contractility because of an enhanced Anrep effect (the slow increase in contractility following myocyte stretch). This advantageous physiological response may reflect preservation of a fetal phenotype, since the RV of shunt lambs remains exposed to increased pressure postnatally. Nitric oxide (NO) production by NO synthase (NOS) is activated by myocyte stretch and is a necessary intermediary of the Anrep response. The purpose of this study was to test the hypothesis that NO signaling is increased in the RV of fetal lambs compared with controls and shunt lambs have persistence of this fetal pattern. An 8-mm graft was placed between the pulmonary artery and aorta in fetal lambs (shunt). NOS isoform expression, activity, and association with activating cofactors were determined in fetal tissue obtained during late-gestation and in 4-wk-old juvenile shunt and control lambs. We demonstrated increased RNA and protein expression of NOS isoforms and increased total NOS activity in the RV of both shunt and fetal lambs compared with control. We also found increased NOS activation and association with cofactors in shunt and fetal RV compared with control. These data demonstrate preserved fetal NOS phenotype and NO signaling in shunt RV, which may partially explain the mechanism underlying the adaptive response to increased afterload seen in the RV of shunt lambs.

  17. Detection of fetal congenital heart disease in a low-risk population.

    PubMed

    Hafner, E; Scholler, J; Schuchter, K; Sterniste, W; Philipp, K

    1998-08-01

    Our purpose was to evaluate the efficacy of level two ultrasound screening for the detection of congenital heart defects (CHD) in a low-risk population by using three standardized cuts. Within a period of four years a total of 6727 pregnant women of a low-risk population undertook several ultrasound examinations on the basis of screening for fetal malformations. All ultrasound examinations were performed by three experienced doctors. At every single scan three standardized cuts (apical and lateral four-chamber view, crossing over of the great arteries) were obtained in order to detect congenital heart defects. Of 87 CHDs (1.33 per cent of the examined women) 39 (43.8 per cent) were diagnosed prenatally. The detection rate was 10/48 (20.8 per cent) in the presence of VSD, ASD2 or combined ASD2 + VSD, the detection rate was 29/39 (74.3 per cent) in the presence of other forms of congenital heart disease. None of the 38 missed cases in the first group but three of the ten missed CHDs in the second group had emergency neonatological problems. Aneuploidy and/or other malformations existed in 22/87 cases of CHD. The obstetrical management was changed in nearly all cases after the diagnosis of a CHD. Twenty-two women opted for termination of pregnancy because of additional fetal malformations or chromosomal defects. Five women were transferred prenatally to a tertiary centre for neonatal cardiac surgery. Ten deliveries were performed in the presence of a neonatologist. Good detection rates for CHD can be achieved in a low-risk population on the basis of level two ultrasound screening by using the above mentioned three cuts and thus, the perinatal mortality and morbidity can be improved.

  18. Computer Simulation of the Beating Human Heart

    NASA Astrophysics Data System (ADS)

    Peskin, Charles S.; McQueen, David M.

    2001-06-01

    The mechanical function of the human heart couples together the fluid mechanics of blood and the soft tissue mechanics of the muscular heart walls and flexible heart valve leaflets. We discuss a unified mathematical formulation of this problem in which the soft tissue looks like a specialized part of the fluid in which additional forces are applied. This leads to a computational scheme known as the Immersed Boundary (IB) method for solving the coupled equations of motion of the whole system. The IB method is used to construct a three-dimensional Virtual Heart, including representations of all four chambers of the heart and all four valves, in addition to the large arteries and veins that connect the heart to the rest of the circulation. The chambers, valves, and vessels are all modeled as collections of elastic (and where appropriate, actively contractile) fibers immersed in viscous incompressible fluid. Results are shown as a computer-generated video animation of the beating heart.

  19. Data from acellular human heart matrix.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Espinosa, M Angeles; González-Nicolas, M Angeles; Acebes, Judith R; Costanza, Salvatore; Moscoso, Isabel; Rodríguez, Hugo; García, Julio; Romero, Jesús; Kren, Stefan M; Bermejo, Javier; Yotti, Raquel; Del Villar, Candelas Pérez; Sanz-Ruiz, Ricardo; Elizaga, Jaime; Taylor, Doris A; Fernández-Avilés, Francisco

    2016-09-01

    Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, "Acellular human heart matrix: a critical step toward whole heat grafts" (Sanchez et al., 2015) [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process.

  20. Organization of human hypothalamus in fetal development.

    PubMed

    Koutcherov, Yuri; Mai, Jürgen K; Ashwell, Ken W S; Paxinos, George

    2002-05-13

    The organization of the human hypothalamus was studied in 33 brains aged from 9 weeks of gestation (w.g.) to newborn, using immunohistochemistry for parvalbumin, calbindin, calretinin, neuropeptide Y, neurophysin, growth-associated protein (GAP)-43, synaptophysin, and the glycoconjugate 3-fucosyl- N-acetyl-lactosamine. Developmental stages are described in relation to obstetric trimesters. The first trimester (morphogenetic periods 9-10 w.g. and 11-14 w.g.) is characterized by differentiating structures of the lateral hypothalamic zone, which give rise to the lateral hypothalamus (LH) and posterior hypothalamus. The PeF differentiates at 18 w.g. from LH neurons, which remain anchored in the perifornical position, whereas most of the LH cells are displaced laterally. A transient supramamillary nucleus was apparent at 14 w.g. but not after 16 w.g. As the ventromedial nucleus differentiated at 13-16 w.g., three principal parts, the ventrolateral part, the dorsomedial part, and the shell, were revealed by distribution of calbindin, calretinin, and GAP43 immunoreactivity. The second trimester (morphogenetic periods 15-17 w.g., 18-23 w.g., and 24-33 w.g.) is characterized by differentiation of the hypothalamic core, in which calbindin- positive neurons revealed the medial preoptic nucleus at 16 w.g. abutted laterally by the intermediate nucleus. The dorsomedial nucleus was clearly defined at 10 w.g. and consisted of compact and diffuse parts, an organization that was lost after 15 w.g. Differentiation of the medial mamillary body into lateral and medial was seen at 13-16 w.g. Late second trimester was marked by differentiation of periventricular zone structures, including suprachiasmatic, arcuate, and paraventricular nuclei. The subnuclear differentiation of these nuclei extends into the third trimester. The use of chemoarchitecture in the human fetus permitted the identification of interspecies nuclei homologies, which otherwise remain concealed in the cytoarchitecture.

  1. Fetal echocardiography

    MedlinePlus

    ... JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) to evaluate the baby's heart for ... moved over the area. The probe sends out sound waves, which bounce off the baby's heart and ...

  2. Cardiomyocyte clusters derived from human embryonic stem cells share similarities with human heart tissue.

    PubMed

    Asp, Julia; Steel, Daniella; Jonsson, Marianne; Améen, Caroline; Dahlenborg, Kerstin; Jeppsson, Anders; Lindahl, Anders; Sartipy, Peter

    2010-10-01

    Cardiotoxicity testing is a key activity in the pharmaceutical industry in order to detect detrimental effects of new drugs. A reliable human in vitro model would both be beneficial in selection of lead compounds and be important for reducing animal experimentation. However, the human heart is a complex organ composed of many distinct types of cardiomyocytes, but cardiomyocyte clusters (CMCs) derived from human embryonic stem cells could be an option for a cellular model. Data on functional properties of CMCs demonstrate similarities to their in vivo analogues in human. However, development of an in vitro model requires a more thorough comparison of CMCs to human heart tissue. Therefore, we directly compared individually isolated CMCs to human fetal, neonatal, adult atrial and ventricular heart tissues. Real-time qPCR analysis of mRNA levels and protein staining of ion channels and cardiac markers showed in general a similar expression pattern in CMCs and human heart. Moreover, a significant decrease in beat frequency was noted after addition of Zatebradine, a blocker to I(f) involved in regulation of spontaneous contraction in CMCs. The results underscore the similarities of CMCs to human cardiac tissue, and further support establishment of novel cardiotoxicity assays based on the CMCs in drug discovery.

  3. Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure.

    PubMed

    Yan, Hualin; Li, Yifei; Wang, Chuan; Zhang, Yi; Liu, Cong; Zhou, Kaiyu; Hua, Yimin

    2016-08-10

    microRNAs (miRNAs) belong to a class of non-coding RNAs that regulate post-transcriptional gene expression during development and disease. Growing evidence indicates abundant miRNA expression changes and their important role in cardiac hypertrophy and failure. However, the role of miRNAs in fetal cardiac remodeling is little known. Here, we investigated the altered expression of fifteen miRNAs in rat fetal cardiac remodeling compared with adult cardiac remodeling. Among fifteen tested miRNAs, eleven and five miRNAs (miR-199a-5p, miR-214-3p, miR-155-3p, miR-155-5p and miR-499-5p) are significantly differentially expressed in fetal and adult cardiac remodeling, respectively. After comparison of miRNA expression in fetal and adult cardiac remodeling, we find that miRNA expression returns to the fetal level in adult cardiac failure and is activated in advance of the adult level in fetal failure. The current study highlights the contrary expression pattern between fetal and adult cardiac remodeling and that supports a novel potential therapeutic approach to treating heart failure.

  4. Isolation and characterization of human fetal macrophages from placenta.

    PubMed Central

    Sutton, L N; Mason, D Y; Redman, C W

    1989-01-01

    Human fetal macrophages expressing class II major histocompatibility complex (MHC) antigens have been isolated from the stroma of the chorionic plate of term placentas, using enzymatic digestion procedures, and enriched by Percoll density centrifugation. These cells are adherent, phagocytic and express Fc receptors for IgG. By rosetting with bovine erythrocytes coated with IgG, they can be enriched to 77-95% purity. Placental macrophages isolated in this way stimulate the proliferation of lymphocytes from unrelated donors in mixed-cell cultures, and act as accessory cells in oxidative mitogenesis. In a family study, placental macrophages stimulated proliferation of maternal and paternal lymphocytes but there was no evidence for either priming to, or suppression by, the fetal cells when the responses of lymphocytes from the mother and her HLA identical twin were compared. The possibility that these cells can protect the fetus from infection and/or stimulate the production of maternal anti-fetal HLA-antibodies is discussed. PMID:2532993

  5. Intrapartum fetal heart rate monitoring as a predictor of fetal distress and immediate neonatal condition in low-birth weight (less than or equal to 1,800 grams) infants.

    PubMed

    Douvas, S G; Meeks, G R; Graves, G; Walsh, D A; Morrison, J C

    1984-02-01

    Among 1,318 live born infants delivered in our institution during a 120-day period, 1,025 (77.8%) were monitored electronically. Of the 1,025 monitored infants, 89 were of low birth weight (less than or equal to 1,800 gm) and were admitted to the neonatal intensive care unit. Twenty-seven (30%) of these had abnormal fetal heart rate tracings. The remaining 62 (70%) had normal fetal heart rate tracings. Of the 27 low-birth weight neonates with an abnormal fetal heart rate tracing, 24 (89%) were asphyxiated, whereas of those 62 low-birth weight infants with a normal fetal heart rate tracing, only nine (14%) had asphyxia (p less than 0.001). Of the 27 low-birth weight neonates with abnormal fetal heart rate tracings, 20 (74%) developed hyaline membrane disease, whereas of the 62 low-birth weight neonates with normal fetal heart rate tracings, 10 (16%) developed hyaline membrane disease (p less than 0.001). The results of this study suggest that electronic fetal monitoring provides a specific and sensitive method for identifying those low-birth weight infants who are at high risk for asphyxia and hyaline membrane disease.

  6. The Effects of Maternal Opium Abuse on Fetal Heart Rate using Non-Stress Test

    PubMed Central

    Keikha, Fatemeh; Vahdani, Fahimeh Ghotbizadeh; Latifi, Sahar

    2016-01-01

    Background: Opium is one of the most commonly abused opiates in developing countries including Iran. Considering the importance of maternal health on the newborn, we aimed to assess the effect of opium abuse on fetal heart rate (FHR) characteristics in a sample of pregnant women in Zahedan, Southeast Iran. Methods: This cross-sectional study was done on 100 pregnant women referring to Ali-Ibn-Abi Talib Hospital in Zahedan, during 2011-2013. The participants were divided into two groups comprising of opium abusers and healthy individuals. The participants received 500cc intravenous fluid containing dextrose and then non-stress test results were recorded for 20 minutes. Results: We found no significant difference between the two groups with respect to their demographic characteristics. Fetal movements, variability, acceleration, and reactivity were significantly higher among addicted women (P<0.0001 for all). Periodic change was 9.8 times higher among opium abusers compared with the healthy women. Abnormal variability or oscillations of <15 beats/min, which indicates lack of beat-to-beat variability, was significantly higher in the fetuses of addicted mothers (P<0.0001). Conclusion: Considering significant abnormal patterns in FHR characteristics among the opium abuser group, mothers addicted to opium need specific prenatal care. PMID:27853327

  7. Ethical questions arising from counselling in fetal complex congenital heart disease.

    PubMed

    Menahem, Samuel

    2012-09-01

    Fetal ultrasounds are almost routinely carried out during pregnancies in Western society. It has led to the in-utero diagnosis of congenital malformations, and in skilled hands, complex congenital heart disease which carries a significant morbidity and definite mortality. That has allowed for counselling of the affected parents who may have the option of whether to continue with the pregnancy. Such counselling, however is not without its difficulties and ethical dilemmas. They range from attempting to inform at times very distressed parents, the nature and implications of their fetal abnormality, the outcome and risks involved in the interventions which may be required, while at the same time being asked to prognosticate the long-term outcomes. Such counselling at times is based on incomplete information obtained or refers to lesions that may evolve during the rest of the pregnancy. In addition, the information provided is unable to factor in possible advances that may occur in the future which may alter the quality of life and outcomes of the affected individuals. Other members of the concerned extended family may wish to have a say in the decision making process. The clinicians themselves may wish to take into account not only the burden to the family emotionally and in terms of the possible interventions - surgical or otherwise, hospitalisations, the risks of complications, and so on - but also the financial and other costs borne by the community. This article highlights the problems encountered and raises ethical questions to encourage discussion to guide the clinicians involved.

  8. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress

    PubMed Central

    Rodríguez-Rodríguez, Pilar; López de Pablo, Angel L.; García-Prieto, Concha F.; Somoza, Beatriz; Quintana-Villamandos, Begoña; Gómez de Diego, José J.; Gutierrez-Arzapalo, Perla Y.; Ramiro-Cortijo, David; González, M. Carmen

    2017-01-01

    Background and aims Fetal undernutrition is a risk factor for heart disease in both genders, despite the protection of women against hypertension development. Using a rat model of maternal undernutrition (MUN) we aimed to assess possible sex differences in the development of cardiac alterations and the implication of hypertension and cardiac oxidative stress. Methods Male and female offspring from rats fed ad libitum (control) or with 50% of the normal daily intake during the second half of gestation (MUN) were used. Heart weight/body weight ratio (HW/BW), hemodynamic parameters (anaesthetized rats) and plasma brain natriuretic peptide (BNP, ELISA) were assessed in 21-day, 6-month and 22-month old rats. Plasma testosterone (ELISA) and cardiac protein expression of enzymes related to reactive oxygen species synthesis (p22phox, xanthine-oxidase) and degradation (catalase, Cu/Zn-SOD, Mn-SOD, Ec-SOD) were evaluated in 21-day and 6-month old rats (Western Blot). Heart structure and function was studied at the age of 22 months (echocardiography). Results At the age of 21 days MUN males exhibited significantly larger HW/BW and cardiac p22phox expression while females had reduced p22phox expression, compared to their respective sex-matched controls. At the age of 6-months, MUN males showed significantly larger blood pressure and cardiac xanthine-oxidase expression; MUN females were normotensive and had a lower cardiac expression of antioxidant enzymes, compared to their respective sex-matched controls. At the age of 22 months, both MUN males and females showed larger HW/BW and left ventricular mass and lower ejection fraction compared to sex-matched controls; only MUN males exhibited hypertension and a larger plasma BNP compared to aged male controls. Conclusions 1) During perinatal life females exposed to fetal undernutrition are protected from cardiac alterations, but in ageing they exhibit ventricular hypertrophy and functional loss, like MUN males; 2) cardiac oxidative

  9. Development of the human heart.

    PubMed

    Sylva, Marc; van den Hoff, Maurice J B; Moorman, Antoon F M

    2014-06-01

    Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.

  10. 3D morphometric analysis of human fetal cerebellar development.

    PubMed

    Scott, Julia A; Hamzelou, Kia S; Rajagopalan, Vidya; Habas, Piotr A; Kim, Kio; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2012-09-01

    To date, growth of the human fetal cerebellum has been estimated primarily from linear measurements from ultrasound and 2D magnetic resonance imaging (MRI). In this study, we use 3D analytical methods to develop normative growth trajectories for the cerebellum in utero. We measured cerebellar volume, linear dimensions, and local surface curvature from 3D reconstructed MRI of the human fetal brain (N = 46). We found that cerebellar volume increased approximately 7-fold from 20 to 31 gestational weeks. The better fit of the exponential curve (R (2) = 0.96) compared to the linear curve (R (2) = 0.92) indicated acceleration in growth. Within-subject cerebellar and cerebral volumes were highly correlated (R (2) = 0.94), though the cerebellar percentage of total brain volume increased from approximately 2.4% to 3.7% (R (2) = 0.63). Right and left hemispheric volumes did not significantly differ. Transcerebellar diameter, vermal height, and vermal anterior to posterior diameter increased significantly at constant rates. From the local curvature analysis, we found that expansion along the inferior and superior aspects of the hemispheres resulted in decreased convexity, which is likely due to the physical constraints of the dura surrounding the cerebellum and the adjacent brainstem. The paired decrease in convexity along the inferior vermis and increased convexity of the medial hemisphere represents development of the paravermian fissure, which becomes more visible during this period. In this 3D morphometric analysis of the human fetal cerebellum, we have shown that cerebellar growth is accelerating at a greater pace than the cerebrum and described how cerebellar growth impacts the shape of the structure.

  11. 3D Morphometric Analysis of Human Fetal Cerebellar Development

    PubMed Central

    Hamzelou, Kia S.; Rajagopalan, Vidya; Habas, Piotr A.; Kim, Kio; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    To date, growth of the human fetal cerebellum has been estimated primarily from linear measurements from ultrasound and 2D magnetic resonance imaging (MRI). In this study, we use 3D analytical methods to develop normative growth trajectories for the cerebellum in utero. We measured cerebellar volume, linear dimensions, and local surface curvature from 3D reconstructed MRI of the human fetal brain (N = 46). We found that cerebellar volume increased approximately 7-fold from 20 to 31 gestational weeks. The better fit of the exponential curve (R2 = 0.96) compared to the linear curve (R2 = 0.92) indicated acceleration in growth. Within-subject cerebellar and cerebral volumes were highly correlated (R2 = 0.94), though the cerebellar percentage of total brain volume increased from approximately 2.4% to 3.7% (R2 = 0.63). Right and left hemispheric volumes did not significantly differ. Transcerebellar diameter, vermal height, and vermal anterior to posterior diameter increased significantly at constant rates. From the local curvature analysis, we found that expansion along the inferior and superior aspects of the hemispheres resulted in decreased convexity, which is likely due to the physical constraints of the dura surrounding the cerebellum and the adjacent brainstem. The paired decrease in convexity along the inferior vermis and increased convexity of the medial hemisphere represents development of the paravermian fissure, which becomes more visible during this period. In this 3D morphometric analysis of the human fetal cerebellum, we have shown that cerebellar growth is accelerating at a greater pace than the cerebrum and described how cerebellar growth impacts the shape of the structure. PMID:22198870

  12. Tissue distribution of the laminin beta1 and beta2 chain during embryonic and fetal human development.

    PubMed

    Roediger, Matthias; Miosge, Nicolai; Gersdorff, Nikolaus

    2010-04-01

    Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin beta1 and beta2 chains in various developing fetal organs is already available, a systematic localization of the laminin beta1 and beta2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin beta1 and beta2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin beta1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin beta2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development.

  13. Acceleration and Deceleration Capacity of Fetal Heart Rate in an In-Vivo Sheep Model

    PubMed Central

    Rivolta, Massimo W.; Stampalija, Tamara; Casati, Daniela; Richardson, Bryan S.; Ross, Michael G.; Frasch, Martin G.; Bauer, Axel; Ferrazzi, Enrico; Sassi, Roberto

    2014-01-01

    Background Fetal heart rate (FHR) variability is an indirect index of fetal autonomic nervous system (ANS) integrity. FHR variability analysis in labor fails to detect early hypoxia and acidemia. Phase-rectified signal averaging (PRSA) is a new method of complex biological signals analysis that is more resistant to non-stationarities, signal loss and artifacts. It quantifies the average cardiac acceleration and deceleration (AC/DC) capacity. Objective The aims of the study were: (1) to investigate AC/DC in ovine fetuses exposed to acute hypoxic-acidemic insult; (2) to explore the relation between AC/DC and acid-base balance; and (3) to evaluate the influence of FHR decelerations and specific PRSA parameters on AC/DC computation. Methods Repetitive umbilical cord occlusions (UCOs) were applied in 9 pregnant near-term sheep to obtain three phases of MILD, MODERATE, and SEVERE hypoxic-acidemic insult. Acid-base balance was sampled and fetal ECGs continuously recorded. AC/DC were calculated: (1) for a spectrum of T values (T = 1÷50 beats; the parameter limits the range of oscillations detected by PRSA); (2) on entire series of fetal RR intervals or on “stable” series that excluded FHR decelerations caused by UCOs. Results AC and DC progressively increased with UCOs phases (MILD vs. MODERATE and MODERATE vs. SEVERE, p<0.05 for DC  = 2–5, and AC  = 1–3). The time evolution of AC/DC correlated to acid-base balance (0.4<<0.9, p<0.05) with the highest for . PRSA was not independent from FHR decelerations caused by UCOs. Conclusions This is the first in-vivo evaluation of PRSA on FHR analysis. In the presence of acute hypoxic-acidemia we found increasing values of AC/DC suggesting an activation of ANS. This correlation was strongest on time scale dominated by parasympathetic modulations. We identified the best performing parameters (), and found that AC/DC computation is not independent from FHR decelerations. These findings establish the basis for

  14. Distribution of elastic system fibres in human fetal liver.

    PubMed Central

    Monte, A; Costa, A; Porto, L C

    1996-01-01

    Elastic system fibres are extracellular matrix components found in different organs for which they provide elasticity and some mechanical resistance. Oxytalan, elaunin and elastic fibres, which possess graduated amounts of elastin, are the 3 forms of elastic system fibres that are identifiable by their tinctorial and ultrastructural features. The distribution of these fibres in adult human liver is well-established but little, if anything, is known about them in fetal liver. The distribution of elastic system fibres was therefore investigated in human fetal liver, and the process of elastogenesis characterised. Specimens of liver from 24 human fetuses ranging in age from 13 to 38 wk postfertilisation were studied. The results are presented in relation to gestational age and the size of the portal tracts. Portal tracts exhibited a network of oxytalan fibres at 13 wk; elaunin fibres appeared later after 20 wk postfertilisation. Elastogenesis occurred more rapidly in venous than in arterial walls, and in veins it was more evident in the adventitia. A microfibrillar network of oxytalan fibres was observed around biliary ducts from the outset of their development. Elastogenesis follows the sequence oxytalan, elaunin and elastic fibres, but the elastogenetic process only completes its maturation in arterial walls, thus leading to the internal elastic lamina. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8763481

  15. Center for fetal monkey gene transfer for heart, lung, and blood diseases: an NHLBI resource for the gene therapy community.

    PubMed

    Tarantal, Alice F; Skarlatos, Sonia I

    2012-11-01

    The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; "proof-of-principle"; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field.

  16. The ontogenesis of human fetal hormones. III. Prolactin.

    PubMed Central

    Aubert, M J; Grumbach, M M; Kaplan, S L

    1975-01-01

    The synthesis and release of human prolactin (hPRL) in the human fetus was assessed by radioimmunoassay analysis of the content and concentration of hPRL in 82 pituitary glands and the concentration of serum hPRL in 47 fetuses of gestational age 68 days to term. Fetal hPRL exhibited parallelism with the reference standard (Lewis 203-1). hPRL was detected by 68 days of gestation (10 wk), the earliest fetal pituitary gland studied; 8 out of 33 pituitaries had a prolactin (PRL) content above 2.0 ng between 10-15 wk gestation. The mean ocntent of PRL in the pituitary gland increased sharply from 14.8 plus or minus 4.6 ng at 15-19 wk to 405 plus or minus 142 ng at 20-24 wk and 542 plus or minus ng at 25-29 wk gestation. By term, the mean content was 2,039 plus or minus 459 (range 493-3,689) and the mean concentration 15.9 plus or minus 2.4 ng/mg (range 7-20). There was a significant positive correlation (P less than 0.001) between the hPRL and human growth hormone (hGH) content of fetal pituitary glands; at term the hPRL/hGH ratio was 1/290. The concentration of serum hPRL between 12 and 24 wk ranged from 2.9 to 67 ng/ml, mean 19.5 plus or minus 2.5 ng/ml )n = 21); by 26 wk fetal serum hPRL increased sharply and attained levels of 300-500 ng/ml in late gestation. At delivery, the mean plasma concentration of hPRL was 167 plus or minus 14.2 ng/ml in 36 umbilical venous specimens and 111.8 plus or minus 12.3 ng/ml in the matched maternal venous specimens. No correlation between serum hPRL and the pituitary content or concentration of hPRL was demonstrable in 12 matched fetal specimens. In five anencephalic infants, umbilical venous hPRL levels were between 65 and 283 ng/ml. In two anencephalic infants, thyrotropin releasing factor (TRF) (200 mug IV) evoked a rise in serum hPRL in one patient from 43 to 156 ng/ml at 30 min, and in the other from 65 to 404 ng/ml at 120 min. In both patients, plasma thyroid-stimulating hormone (TSH) rose from undetectable base-line levels to

  17. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans.

    PubMed

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Nuyt, Anne Monique; Fraser, William D; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-12-08

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24-28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = -0.32, p < 0.0001 for MDA; r = -0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = -0.13, p = 0.04 for MDA; r = -0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental "programming" the vulnerability to metabolic syndrome related disorders remain to be elucidated.

  18. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  19. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  20. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  1. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  2. 21 CFR 884.2900 - Fetal stethoscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Fetal stethoscope. (a) Identification. A fetal stethoscope is a device used for listening to fetal heart sounds. It is designed to transmit the fetal heart sounds not only through sound channels by...

  3. Comparison of Immune Profiles in Fetal Hearts with Idiopathic Dilated Cardiomyopathy, Maternal Autoimmune-Associated Dilated Cardiomyopathy and the Normal Fetus.

    PubMed

    Nield, Lynne E; von Both, Ingo; Popel, Najla; Strachan, Kate; Manlhiot, Cedric; Shannon, Patrick; McCrindle, Brian W; Atkinson, Adelle; Miner, Steven E S; Jaeggi, Edgar T; Taylor, Glenn P

    2016-02-01

    The etiology of idiopathic dilated cardiomyopathy (iDCM) remains unknown. Immune therapies have improved outcome in fetuses with DCM born to mothers with autoimmune disease (aDCM). The purpose of this retrospective study was to compare the myocardial B and T cell profiles in fetuses and neonates with idiopathic DCM (iDCM) versus autoimmune-mediated DCM (aDCM) and to describe the normal cell maturation within the human fetal myocardium. Of 60 fetal autopsy cases identified from institutional databases, 10 had aDCM (18-38 weeks), 12 iDCM (19-37 weeks) and 38 had normal hearts (11-40 weeks). Paraffin-embedded myocardium sections were stained for all lymphocyte (CD45), B cells (CD20, CD79a), T cells (CD3, CD4, CD7, CD8) and monocyte (CD68) surface markers. Two independent, blinded cell counts were performed. Normal hearts expressed all B and T cell markers in a bimodal fashion, with peaks at 22 and 37 weeks of gestation. The aDCM cohort was most distinct from normal hearts, with less overall T cell markers [EST -9.1 (2.6) cells/mm(2), p = 0.001], CD4 [EST -2.0 (0.6), p = 0.001], CD3 [EST -3.9 (1.0), p < 0.001], CD7 [EST -3.0 (1.1), p = 0.01] overall B cell markers [EST -4.9 (1.8), p = 0.01] and CD79a counts [EST -2.3 (0.9), p = 0.01]. The iDCM group had less overall B cell markers [EST -4.0 (1.8), p = 0.03] and CD79a [EST -1.7 (0.9), p = 0.05], but no difference in T cell markers. Autoimmune-mediated DCM fetuses have less B and T cell markers, whereas iDCM fetuses have less B cell markers compared with normal fetal hearts. The fetal immune system may play a role in the normal development of the heart and evolution of dilated cardiomyopathy.

  4. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    PubMed Central

    2011-01-01

    Background Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals. PMID:21244712

  5. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: a randomized clinical trial.

    PubMed

    Gustafson, K M; Carlson, S E; Colombo, J; Yeh, H-W; Shaddy, D J; Li, S; Kerling, E H

    2013-05-01

    DHA (22:6n-3) supplementation during infancy has been associated with lower heart rate (HR) and improved neurobehavioral outcomes. We hypothesized that maternal DHA supplementation would improve fetal cardiac autonomic control and newborn neurobehavior. Pregnant women were randomized to 600 mg/day of DHA or placebo oil capsules at 14.4 (+/-4) weeks gestation. Fetal HR and HRV were calculated from magnetocardiograms (MCGs) at 24, 32 and 36 weeks gestational age (GA). Newborn neurobehavior was assessed using the Neonatal Behavioral Assessment Scale (NBAS). Post-partum maternal and infant red blood cell (RBC) DHA was significantly higher in the supplemented group as were metrics of fetal HRV and newborn neurobehavior in the autonomic and motor clusters. Higher HRV is associated with more responsive and flexible autonomic nervous system (ANS). Coupled with findings of improved autonomic and motor behavior, these data suggest that maternal DHA supplementation during pregnancy may impart an adaptive advantage to the fetus.

  6. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: A randomized clinical trial☆, ☆☆

    PubMed Central

    Gustafson, K.M.; Carlson, S.E.; Colombo, J.; Yeh, H.-W.; Shaddy, D.J.; Li, S.; Kerling, E.H.

    2013-01-01

    DHA (22:6n-3) supplementation during infancy has been associated with lower heart rate (HR) and improved neurobehavioral outcomes. We hypothesized that maternal DHA supplementation would improve fetal cardiac autonomic control and newborn neurobehavior. Pregnant women were randomized to 600 mg/day of DHA or placebo oil capsules at 14.4 (+/−4) weeks gestation. Fetal HRand HRV were calculated from magnetocardiograms (MCGs) at 24, 32 and 36 weeks gestational age (GA). Newborn neurobehavior was assessed using the Neonatal Behavioral Assessment Scale (NBAS). Postpartum maternal and infant red blood cell (RBC) DHA was significantly higher in the supplemented group as were metrics of fetal HRV and newborn neurobehavior in the autonomic and motor clusters. Higher HRV is associated with more responsive and flexible autonomic nervous system (ANS). Coupled with findings of improved autonomic and motor behavior, these data suggest that maternal DHA supplementation during pregnancy may impart an adaptive advantage to the fetus. PMID:23433688

  7. Distribution of the IgG Fc Receptor, FcRn, in the Human Fetal Intestine

    PubMed Central

    Shah, Uzma; Dickinson, Bonny L.; Blumberg, Richard S.; Simister, Neil E.; Lencer, Wayne I.; Walker, W. Allan

    2010-01-01

    The intestinal Fc receptor, FcRn, functions in the maternofetal transfer of gamma globulin (IgG) in the neonatal rodent. In humans, most of this transfer is presumed to occur in utero via the placenta. Although the fetus swallows amniotic fluid that contains immunoglobulin, it is unknown whether this transfer also occurs via the fetal intestine. A human FcRn has been identified in the syncytiotrophoblast that mediates the maternofetal transfer of antibody. It has also been identified in human fetal intestine and is postulated to function in IgG transport. We hypothesize that the human fetal intestinal FcRn may play a role in IgG transport from the amniotic fluid into the fetal circulation. The aim of this study was to characterize the distribution of the FcRn along the human fetal intestine. Lysates prepared from human fetal intestine and from a nonmalignant human fetal intestinal epithelial cell line (H4) were subjected to Western blot analysis and probed using anti-FcRn antibodies. A 42-kD band, consistent with the known molecular weight of the FcRn, was detected along the human fetal intestine and in H4 cells. Expression of the human FcRn was confirmed with immunohistochemistry. Our study demonstrates the expression of FcRn along the human fetal intestine and in a human nonmalignant fetal intestinal epithelial cell line (H4), which by location indicates that FcRn could play a role in the uptake and transport of IgG in the human fetus. PMID:12538789

  8. Embryologic and Fetal Development of the Human Eyelid

    PubMed Central

    Abdulhafez, Mohamed H.; Fouad, Yousef A.; Dutton, Jonathan J.

    2016-01-01

    Purpose: To review the recent data about eyelid morphogenesis, and outline a timeline for eyelid development from the very early stages during embryonic life till final maturation of the eyelid late in fetal life. Methods: The authors extensively review major studies detailing human embryologic and fetal eyelid morphogenesis. These studies span almost a century and include some more recent cadaver studies. Numerous studies in the murine model have helped to better understand the molecular signals that govern eyelid embryogenesis. The authors summarize the current findings in molecular biology, and highlight the most significant studies in mice regarding the multiple and interacting signaling pathways involved in regulating normal eyelid morphogenesis. Results: Eyelid morphogenesis involves a succession of subtle yet strictly regulated morphogenetic episodes of tissue folding, proliferation, contraction, and even migration, which may occur simultaneously or in succession. Conclusions: Understanding the extraordinary process of building eyelid tissue in embryonic life, and deciphering its underlying signaling machinery has far reaching clinical implications beyond understanding the developmental abnormalities involving the eyelids, and may pave the way for achieving scar-reducing therapies in adult mammalian wounds, or control the spread of malignancies. PMID:27124372

  9. An improved cryopreservation procedure for human fetal pancreas tissues.

    PubMed

    Shiogama, T; Mullen, Y; Klandorf, H; Terada, M; Clark, W R

    1987-11-01

    Improved viability and function of insulin-producing beta (B) cells of frozen-stored human fetal pancreatic tissue was obtained by a two-step method utilizing high concentrations of dimethyl sulfoxide (DMSO). Human fetal pancreata (14-23-week gestation) obtained from pathologic abortions were teased and cultured overnight. Prior to freezing the tissues were immersed in 0.9% saline containing 0.5 M DMSO for 30 min (room temperature) and then placed in 2.1 M DMSO on ice for 5 min. The tissues were frozen by the method previously developed in our laboratory and stored at -196 degrees C. The frozen-stored tissues were subsequently thawed at 24 degrees C and cultured overnight before viability testing. Viability and function of the B cells were assessed by several specific assay methods; glucose plus theophylline-induced insulin release during static incubation and perifusion, 3H-leucine incorporation into insulin, and insulin content of the tissue grown in athymic mice for 7 days. The response to glucose plus theophylline stimulation, measured on the frozen-thawed tissue one day after thawing, was 80% of the level measured in control tissue maintained in organ culture. Frozen-thawed tissues maintained in organ culture for 1 week responded comparably in the in vitro assay systems. The insulin content of frozen-thawed pancreatic tissue removed from athymic mice 1 week after transplantation was approximately 60% of the amount measured in the control grafts. These results demonstrate the utility of our procedure in the maintenance of the viability and function of frozen-stored human B cells both in culture and after transplantation.

  10. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats.

    PubMed

    Chang, N K; Gu, J; Gu, S; Osorio, R W; Concepcion, W; Gu, E

    2015-06-01

    Here we introduce a novel method of transplanting human fetal kidneys into adult rats. To overcome the technical challenges of fetal-to-adult organ transplantation, we devised an arterial flow regulator (AFR), consisting of a volume adjustable saline-filled cuff, which enables low-pressure human fetal kidneys to be transplanted into high-pressure adult rat hosts. By incrementally withdrawing saline from the AFR over time, blood flow entering the human fetal kidney was gradually increased until full blood flow was restored 30 days after transplantation. Human fetal kidneys were shown to dramatically increase in size and function. Moreover, rats which had all native renal mass removed 30 days after successful transplantation of the human fetal kidney were shown to have a mean survival time of 122 days compared to 3 days for control rats that underwent bilateral nephrectomy without a prior human fetal kidney transplant. These in vivo human fetal kidney models may serve as powerful platforms for drug testing and discovery.

  11. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.

    PubMed

    Cooke, Gerard M

    2014-01-01

    The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.

  12. Fetal breathing movements: antepartum monitoring of fetal condition.

    PubMed

    Manning, F A; Platt, L D

    1979-08-01

    Until recently, the relative inaccessibility of the human fetus to physical assessment has made antepartum assessment of its condition difficult. The development of methods for accurate antepartum fetal heart rate monitoring and the subsequent study of heart rate responses to various stimuli have resulted in a significant improvement in accuracy of antepartum fetal surveillance. The development of real time B-mode ultrasound enables the clinician to assess many additional fetal biophysical variables including fetal breathing movements. In our observations, the combination of heart rate and fetal breathing assessment has produced a significant improvement in differentiating the normal from the compromised fetus. The addition of other biophysical variables (tone, movements and amniotic fluid volume) have further refined the ability to identify the fetus at risk. At this point, we have evaluated only a few of many possible variables. It seems probable that, as other fetal biophysical variables are included with the overall assessment, for example fetal reflexes or fetal biophysical response to exogenous stimuli, the identification of the fetus at risk and the quantitation of the magnitude of risk will become increasingly more precise.

  13. Morphology and biomechanics of human heart

    NASA Astrophysics Data System (ADS)

    Chelnokova, Natalia O.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Polienko, Asel V.; Ivanov, Dmitry V.

    2016-03-01

    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart.

  14. Three-dimensional digital visible heart model and myocardial pathological characteristics of fetal single ventricle connected with aortic coarctation.

    PubMed

    Ren, B; Jiang, Y; Xia, H M; Li, X Y; Tan, L W; Li, Y; Li, Q Y; Li, X S; Gao, Y H

    2013-10-30

    This study aimed to provide data for imaging diagnosis and clinical surgical plans by reconstructing a three-dimensional (3-D) digital visible heart model of single ventricle (SV) connection with aortic coarctation (CoA) and characterizing the myocardial and vascular wall pathological characteristics. Fifteen miscarried fetus cadavers with SV and CoA were selected. Fourteen cardiac specimens were systematically reviewed for segmental anatomy and conventional histological examinations. One fetus cadaver was used to obtain the structural dataset of the fetal body and to reconstruct a 3-D digital visible heart model. Specimen pathological dissection indicated hypertrophic myocardium SV, significant aortic wall thickening, and localized coarctation area elevation. Ten cases of SV with left ventricular morphology displayed a large muscle ridge and solitus normally aligned great arteries. Five cases of SV with right ventricular morphology had coarse, parallel trabeculations and received a common atrioventricular valve. The reconstructed 3-D heart and the main internal structures were realistic, which were beneficial for clinical and image teaching of fetal heart development. The change of characteristics of the myocardium and great vascular wall was obvious and may be the critical cause leading to progressive dysfunction in the postnatal heart.

  15. Morphology of the cervical vertebrae in the fetal-neonatal human skeleton

    PubMed Central

    CASTELLANA, C.; KÓSA, F.

    1999-01-01

    The gross anatomical features of human cervical vertebrae during the fetal-neonatal period were investigated in order to develop morphological standards for the individual ossification centres for use in forensic and anthropological osteology. It was found that the morphology of the cervical vertebral arches and the centra cannot be used for the determination of fetal age although the dens of the axis displays some developmental differences which may be useful for the determination of fetal maturity. PMID:10227677

  16. Oxygen supply to the fetal cerebral circulation in hypoplastic left heart syndrome: a simulation study based on the theoretical models of fetal circulation.

    PubMed

    Sakazaki, Sayaka; Masutani, Satoshi; Sugimoto, Masaya; Tamura, Masanori; Kuwata, Seiko; Kurishima, Clara; Saiki, Hirofumi; Iwamoto, Yoichi; Ishido, Hirotaka; Senzaki, Hideaki

    2015-03-01

    Hypoxia due to congenital heart diseases (CHDs) adversely affects brain development during the fetal period. Head circumference at birth is closely associated with neuropsychiatric development, and it is considerably smaller in newborns with hypoplastic left heart syndrome (HLHS) than in normal newborns. We performed simulation studies on newborns with CHD to evaluate the cerebral circulation during the fetal period. The oxygen saturation of cerebral blood flow in newborns with CHD was simulated according to a model for normal fetal circulation in late pregnancy. We compared the oxygen saturation of cerebral blood flow between newborns with tricuspid atresia (TA; a disease showing univentricular circulation and hypoplasia of the right ventricle), those with transposition of the great arteries (TGA; a disease showing abnormal mixing of arterial and venous blood), and those with HLHS. The oxygen saturation of cerebral blood flow in newborns with normal circulation was 75.7 %, whereas it was low (49.5 %) in both newborns with HLHS and those with TA. Although the oxygen level is affected by the blood flow through the foramen ovale, the oxygen saturation in newborns with TGA was even lower (43.2 %). These data, together with previous reports, suggest that the cerebral blood flow rate is decreased in newborns with HLHS, and the main cause was strongly suspected to be retrograde cerebral perfusion through a patent ductus arteriosus. This study provides important information about the neurodevelopmental prognosis of newborns with HLHS and suggests the need to identify strategies to resolve this unfavorable cerebral circulatory state in utero.

  17. Autonomic nervous functions in fetal type Minamata disease patients: assessment of heart rate variability.

    PubMed

    Oka, Tomoko; Matsukura, Makoto; Okamoto, Miwako; Harada, Noriaki; Kitano, Takao; Miike, Teruhisa; Futatsuka, Makoto

    2002-12-01

    In order to assess the cardiovascular autonomic nervous functions in patients with fetal type Minamata disease (FMD), we investigated blood pressure (BP), and conducted time and frequency domain analysis of heart rate variability (HRV). Subjects were 9 patients in Meisuien recognized as FMD, and 13 healthy age matched control subjects. HRV and BP were assessed after subjects rested in a supine position for 10 minutes. Electrocardiographic (ECG) data were collected for 3 minutes during natural breathing. Time domain analysis (the average of R-R intervals [Mean RR], standard deviation of R-R intervals [SD RR], coefficient of variation [CV]), and frequency domain analysis by fast Fourier transformation (FFT) (power of low frequency [LF] and high frequency [HF] component, expressed in normalized units[nu]) were then conducted. In the time domain analysis, the mean RR of the FMD group was significantly lower than that of the control group. Neither SD RR nor CV showed significant differences between the two groups, but both tended to be lower in the FMD group. In the frequency domain analysis, the HF component of the FMD group was significantly lower than that of the control group. Pulse pressure (PP) was significantly lower in the FMD subjects. These findings suggest that parasympathetic nervous dysfunction might exist in FMD patients, who were exposed to high doses of methylmercury (MeHg) during the prenatal period. Decrease of PP might be due to degenerative changes of blood vessels driven by exposure to high doses of MeHg.

  18. Programming and reprogramming a human heart cell.

    PubMed

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-03-12

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.

  19. Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice

    PubMed Central

    Azibani, Feriel; Devaux, Yvan; Coutance, Guillaume; Schlossarek, Saskia; Polidano, Evelyne; Fazal, Loubina; Merval, Regine; Carrier, Lucie; Solal, Alain Cohen; Chatziantoniou, Christos; Launay, Jean-Marie; Samuel, Jane-Lise; Delcayre, Claude

    2012-01-01

    Background Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of “fetal” gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. Methodology/Principal Findings RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (−75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. Conclusions/Significance Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of

  20. [Fetal magnetocardiography].

    PubMed

    Hosono, Takayoshi

    2006-05-01

    The electrical activities of the heart causes weak changes of the magnetic field, which can be recorded as magnetocardiogram (MCG). Fetal cardiac magnetic activity is measured in the order of less than 10 pT. An advance of the novel technology of a superconducting quantum interference device enabled the first recording of fetal MCG (FMCG) in 1974. In Japan, FMCG instrument (MC6400, Hitachi High-Technologies Ltd) was approved as a diagnostic tool by Japanese Government in 2003 owing to the cooperative studies of Tsukuba University, National Cardiovascular Center and Hitachi Ltd. FMCG offers similar information to a fetal electrocardiogram, which is difficult to be recorded because the fetal skin is covered with fatty caseous vernix of weak electrical conductivity in the second and third trimester of pregnancy. Magnetic flux can pass through the fat layer, and thus FMCG can measure the electrical activity of the fetal heart. Besides FMCG has far higher resolutions in time domain than echocardiography does. The amplitude of FMCG signals depends on the size of fetal heart and the distance between the sensors and the fetal heart. The amplitudes of the QRS, P and T waves increases with gestational age. Since the amplitudes of P and T waves are often weak, averaging of FMCG signals is needed to improve the signal-to-noise ratio. Current-arrow map is a useful mapping technique even in FMCG. FMCG has been applied in the prenatal diagnosis of fetal arrhythmias such as bradyarrhythmia (atrioventricular block, long QT syndrome, etc), tachyarrhythmia (supraventricular tachycardia, atrial flutter, atrial fibrillation and WPW syndrome, etc) and extrasystoles. Fetal cardiomegaly with myocardial abnormalities can be also diagnosed by FMCG. Applications of FMCG for fetal heart rate monitoring using beat-to-beat variability have been also studied to obtain better information on fetal well-beings.

  1. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    PubMed Central

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C.I. Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E.; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-01-01

    Summary The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo. PMID:27052314

  2. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells.

    PubMed

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C I Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-04-12

    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  3. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  4. Fetal diagnosis - obligations of the clinician. Case studies in the prenatal diagnosis of major heart abnormality.

    PubMed

    Menahem, Samuel; Gillam, Lynn

    2007-01-01

    Fetal echocardiography allows for accurate diagnosis of major heart abnormalities by 16-18 weeks. The parents have up to 22 weeks to consider possible termination. What are the obligations of the clinician once an abnormality is found? Should only information be provided or is there a role in influencing the parents' decision? Two diverse examples are provided to discuss these questions. Mrs A., aged 40 years was noted at the 18-week and then the 20-week scan to have a fetus with a complete atrio-ventricular septal defect. In addition, the fetus had a Danny-Walker cyst. There was thickened nuchal folds and echogenic bowel all suggestive of a chromosomal abnormality. Amniocentesis was refused and the pregnancy continued. Mrs B., aged 34 years was noted at 19 weeks and again at 20 weeks to have a fetus with mild thickening of the walls of both the right and left ventricles. The flow patterns appeared normal. Despite a probable good outlook, the parents asked for a repeat scan at 22 weeks to allow them to consider possible termination. Despite a probable chromosomal abnormality, definite major cardiac and neurological abnormalities, Mrs A. refused karotyping and planned to proceed with the pregnancy. Mrs B., despite a probable good outcome for the fetus asserted pressure for us to prognosticate by 22 weeks. While non-directive counselling is the accepted norm, is that appropriate for all situations? Should one strongly influence Mrs A. to have an amniocentesis to confirm a probable Trisomy thereby allowing her to make a more informed decision? How reassuring can the clinician be to Mrs B. and if termination is sought should one counsel against that? Arguments for these positions are described, highlighting the difficulties faced by clinicians as they counsel parents often with incomplete information and in a setting of acute emotional distress.

  5. First trimester fetal heart rate as a predictor of newborn sex*

    PubMed Central

    Bracero, L. A.; Seybold, D. J.; Witsberger, S.; Rincon, L.; Modak, A.; Baxi, L. V.

    2015-01-01

    Objective To predict the sex of newborns using first trimester fetal heart rate (FHR). Methods This was a retrospective review of medical records and ultrasounds performed between 8 and 13 weeks of gestation. Continuous variables were compared using Student's t-tests while categorical variables were compared using Chi-square test. Results We found no significant differences between 332 (50.7%) female and 323 (49.3%) male FHRs during the first trimester. The mean FHR for female fetuses was 167.0 ± 9.1 bpm and for male fetuses 167.3 ± 10.1 bpm (p = 0.62). There was no significant difference in crown rump length between female and male fetuses (4.01 ± 1.7 versus 3.98 ± 1.7 cm; p = 0.78) or in gestational age at birth (38.01 ± 2.1 versus 38.08 ± 2.1 weeks; p = 0.67). The males were significantly heavier than females (3305.3 ± 568.3 versus 3127.5 ± 579.8 g; p < 50.0001) but there were no differences in the proportion of small for gestational age (SGA), average for gestational age (AGA) and large for gestational age (LGA) infants. Conclusions We found no significant difference between the female and male FHR during the first trimester in contrast to the prevailing lay view of females having a faster FHR. The only statistically significant difference was that males weighed more than female newborns. PMID:25754210

  6. Comparison of proliferating cells between human adult and fetal eccrine sweat glands.

    PubMed

    Li, Hai-Hong; Fu, Xiao-Bing; Zhang, Lei; Zhou, Gang

    2008-04-01

    Studies of sweat glands had demonstrated that there were degenerating cells and proliferating cells in the eccrine sweat glands. To compare the differences in the proliferating cells between human adult and fetal eccrine sweat glands, immunostaining of proliferating-associated proliferating cell nuclear antigen (PCNA) and Ki67 nuclear antigen (Ki67) was performed, and the location and the percentage of the positive staining cells were analyzed. The results showed that a few cells of the secretory and ductal portion in both the adult and fetal eccrine sweat glands stained positive with Ki67 and PCNA. The labeling index of PCNA in adult eccrine sweat glands was 34.71 +/- 8.37%, while that in the fetal was 62.72 +/- 6.54%. The labeling index of PCNA in fetal eccrine sweat glands was higher than that in adult. Myoepithelial cells were negative staining with anti-PCNA antibody in adult eccrine sweat glands, while in the fetal a few myoepithelial cells were positive staining. Labeling index of Ki67 in adult eccrine sweat glands was similar to that in the fetal, ranging from 0.5 to 4.3%. Myoepithelial cells of the adult and fetal eccrine sweat glands both were negative staining with anti-Ki67 antibody. We concluded that the myoepithelial cells had proliferating ability only in fetal eccrine sweat glands, and that the proliferating ability of fetal eccrine sweat glands was stronger than that of the adult.

  7. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans.

    PubMed

    Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai

    2016-12-01

    There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts.

  8. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    NASA Astrophysics Data System (ADS)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  9. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis?

    PubMed Central

    Durosier, Lucien D; Herry, Christophe L; Cortes, Marina; Cao, Mingju; Burns, Patrick; Desrochers, André; Fecteau, Gilles; Seely, Andrew J E; Frasch, Martin G

    2017-01-01

    Fetal inflammatory response occurs during chorioamnionitis, a frequent and often subclinical inflammation associated with increased risk for brain injury and life-lasting neurologic deficits. No means of early detection exist. We hypothesized that systemic fetal inflammation without septic shock will be reflected in alterations of fetal heart rate (FHR) variability (fHRV) distinguishing baseline versus inflammatory response states. In chronically instrumented near-term fetal sheep (n = 24), we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 14). Ten additional fetuses served as controls. We measured fetal plasma inflammatory cytokine IL-6 at baseline, 1, 3, 6, 24 and 48 h. 44 fHRV measures were determined continuously every 5 min using continuous individualized multi-organ variability analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. Using principal component analysis (PCA), a widely used technique for dimensionality reduction, we derived and quantitatively compared the CIMVA fHRV PCA signatures of inflammatory response in LPS and control groups. In the LPS group, IL-6 peaked at 3 h. In parallel, PCA-derived fHRV composite measures revealed a significant difference between LPS and control group at different time points. For the LPS group, a sharp increase compared to baseline levels was observed between 3 h and 6 h, and then abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. This pattern was not observed in the control group. We also show that a preselection of fHRV measures prior to the PCA can potentially increase the difference between LPS and control groups, as early as 1 h post LPS injection. We propose a fHRV composite measure that correlates well with levels of inflammation and tracks well its temporal profile. Our results highlight the potential role of HRV to study and monitor the

  10. Length to width ratio of the ductus venosus in simple screening for fetal congenital heart diseases in the second trimester

    PubMed Central

    Chiu, Wei-Hsiu; Lee, Shy-Ming; Tung, Tao-Hsin; Tang, Xiao-Mei; Liu, Ren-Shyan; Chen, Ran-Chou

    2016-01-01

    Abstract Antenatal diagnosis of congenital heart disease (CHD) is still low even though screening was first introduced over 25 years ago. The purpose of our study was to determine the efficacy of a second-trimester prenatal ultrasonographic method of screening for CHD. From September 2012 to September 2013, the length and width of the fetal ductus venosus were measured sonographically in 1006 singleton fetuses, and the ratio of length to width was calculated. The accuracy of each fetal measurement and Doppler ultrasonography were determined. The standard fetal echocardiographic evaluations including 2-dimensional gray-scale imaging, color, and Doppler color flow mapping were performed. The transducer was aligned to the long axis of the fetal trunk to view the ductus venosus in its full length, including the inlet (isthmus) and outlet portions of the vessel. The diameters of the vessel inner wall and mid-point of the ductus venosus were measured using calipers. All scans and fetal measurements were conducted by a registered sonographer with more than 20 years of perinatal ultrasound screening experience. Of the 1006 singleton fetuses between 19+0 and 28+6 weeks’ gestation, 36 had CHD. The ductus venosus length/width ratio (DVR) for the first CHD screening was extremely sensitive at 88.90%, with a specificity of 99.10% for the cardiac abnormalities included in this study. Chromosomal anomalies accompanied CHD in 0.4% (4/1006) of all cases and 11.11% (4/36) of the CHD cases. The DVR differed significantly between fetuses with CHD and normal fetuses during the second trimester. Careful assessment of the ratio should be a part of the sonographic examination of every fetus. In the case of a small DVR, advanced echocardiography and karyotype analysis should be performed. The ratio is a helpful tool for screening CHD abnormalities prenatally in the Chinese population. PMID:27684831

  11. Characterization of a carrier-mediated transport system for taurine in the fetal mouse heart in vitro.

    PubMed

    Grosso, D S; Roeske, W R; Bressler, R

    1978-04-01

    Cardiac taurine levels are elevated in hypertension and congestive heart failure. A possible mechanism for this increase in taurine is an alteration of its uptake. We sought to identify and characterize a carrier-mediated transport system for taurine in the mammalian myocardium utilizing the fetal mouse heart in organ culture. Hearts from fetuses of 16-19 days gestational age used in these studies had an endogenous taurine content of 14.1+/-0.5 nmol/mg tissue. The uptake of [(3)H]taurine was linear for up to 8 h. Taurine was accumulated against a concentration gradient as demonstrated by a net increase in taurine concentration when hearts were incubated in 0.5 mM taurine. [(3)H]Taurine uptake was saturable, K(m) = 0.44 mM, temperature dependent, and required sodium. The close structural analogues, hypotaurine and beta-alanine, reduced [(3)H]taurine uptake by 87% when present in 100-fold excess. The alpha-amino acids alanine, alpha-aminoisobutyric acid, glycine, leucine, and threonine did not inhibit uptake. Other taurine analogues tested were guanidinotaurine, guanidinopropionic acid, gamma-aminobutyric acid, 2-aminoethane phosphonic acid, aminomethane sulfonic acid, 3-aminopropane sulfonic acid, N-acetyltaurine, and isethionic acid. We conclude that a carrier-mediated transport system for taurine exists in the fetal mouse heart based on the demonstration of (a) temperature dependence, (b) saturability, and (c) structural selectivity of the uptake process. Transport was demonstrated to be mediated by a beta-amino acid uptake system. In addition, taurine uptake was observed to be sodium dependent, energy dependent, and capable of accumulating taurine against a concentration gradient.

  12. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    PubMed

    Godfrey, Keith M; Haugen, Guttorm; Kiserud, Torvid; Inskip, Hazel M; Cooper, Cyrus; Harvey, Nicholas C W; Crozier, Sarah R; Robinson, Sian M; Davies, Lucy; Hanson, Mark A

    2012-01-01

    Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  13. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas

    PubMed Central

    Roost, Matthias S.; van Iperen, Liesbeth; Ariyurek, Yavuz; Buermans, Henk P.; Arindrarto, Wibowo; Devalla, Harsha D.; Passier, Robert; Mummery, Christine L.; Carlotti, Françoise; de Koning, Eelco J.P.; van Zwet, Erik W.; Goeman, Jelle J.; Chuva de Sousa Lopes, Susana M.

    2015-01-01

    Summary Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents in vivo. Cellular identity and signaling pathways directing differentiation are usually determined by extrapolating information from either human adult tissue or model organisms, assuming conservation with humans. To resolve this, we generated a collection of human fetal transcriptional profiles at different developmental stages. Moreover, we developed an algorithm, KeyGenes, which uses this dataset to quantify the extent to which next-generation sequencing or microarray data resemble specific cell or tissue types in the human fetus. Using KeyGenes combined with the human fetal atlas, we identified multiple cell and tissue samples unambiguously on a limited set of features. We thus provide a flexible and expandable platform to monitor and evaluate the efficiency of differentiation in vitro. PMID:26028532

  14. FETAL HEART RATE MONITORING PATTERNS IN WOMEN WITH AMNIOTIC FLUID PROTEOMIC PROFILES INDICATIVE OF INFLAMMATION

    PubMed Central

    Buhimschi, Catalin S.; Abdel-Razeq, Sonya; Cackovic, Michael; Pettker, Christian M.; Dulay, Antonette T.; Bahtiyar, Mert Ozan; Zambrano, Eduardo; Martin, Ryan; Norwitz, Errol R.; Bhandari, Vineet; Buhimschi, Irina A.

    2009-01-01

    We hypothesized that abnormal fetal heart rate monitoring patterns (FHR-MP) occur more often in pregnancies complicated by intra-amniotic inflammation. Therefore, our objective was to examine the relationships between FHR-MP abnormalities, intra-amniotic inflammation and/or infection, acute histological chorioamnionitis and early-onset neonatal sepsis (EONS) in pregnancies complicated by preterm birth. Additionally, the ability of various FHR-MPs to predict EONS was investigated. FHR-MP from 87 singleton premature neonates delivered within 48 hours from amniocentesis [gestational age: 28.9 ± 3.3 weeks] were analyzed blindly using strict NICHD criteria. Strips were evaluated at three time points: at admission, at amniocentesis and prior to delivery. Intra-amniotic inflammation was established based on a previously validated proteomic fingerprint (MR score). Diagnoses of histological chorioamnionitis and EONS were based on well-recognized pathological, clinical and laboratory criteria. We determined that fetuses of women with severe intra-amniotic inflammation had a higher FHR baseline throughout the entire monitoring period and an increased frequency of a non-reactive FHR-MP at admission. Of all FHR-MP, a non-reassuring test at admission had 32% sensitivity, 95% specificity, 73% positive predictive value, 77% negative predictive value, and 76% accuracy in predicting EONS. Although a non-reassuring FHR-MP at admission was significantly associated with EONS after correcting for gestational age (OR: 5.6 [95%CI: 1.2–26.2], p=0.030), the majority of the neonates that developed EONS had an overall reassuring FHR-MP. Non-reassuring FHR-MPs at either amniocentesis or delivery had no association with EONS. We conclude that in cases complicated by preterm birth, a non-reassuring FHR-MP at the initial evaluation is a specific but not a sensitive predictor of EONS. An abnormal FHR-MP can thus raise the level of awareness that a fetus with EONS may be born, but is not a

  15. Characterization of Common Measures of Heart Period Variability in Healthy Human Subjects: Implications for Patient Monitoring

    DTIC Science & Technology

    2010-01-01

    RRI) variability preceded other signs of fetal distress [1], heart period variability has been extensively reported in the literature, with consid...application of these metrics to patient monitoring must take into account the impact of other external stimuli, such as pain , anxiety and activity status...Lee ST. Electronic evaluation of the fetal heart rate VIII. Patterns preceding fetal death, further observations. Am J Obstet Gynecol 1963; 87: 814

  16. Human fetal inner ear involvement in congenital cytomegalovirus infection

    PubMed Central

    2013-01-01

    Background Congenital cytomegalovirus (CMV) infection is a leading cause of sensorineural hearing loss (SNHL). The mechanisms of pathogenesis of CMV-related SNHL are still unclear. The aim is to study congenital CMV-related damage in the fetal inner ear, in order to better understand the underlying pathophysiology behind CMV-SNHL. Results We studied inner ears and brains of 20 human fetuses, all at 21 week gestational age, with a high viral load in the amniotic fluid, with and without ultrasound (US) brain abnormalities. We evaluated histological brain damage, inner ear infection, local inflammatory response and tissue viral load. Immunohistochemistry revealed that CMV was positive in 14/20 brains (70%) and in the inner ears of 9/20 fetuses (45%). In the cases with inner ear infection, the marginal cell layer of the stria vascularis was always infected, followed by infection in the Reissner’s membrane. The highest tissue viral load was observed in the inner ear with infected Organ of Corti. Vestibular labyrinth showed CMV infection of sensory cells in the utricle and in the crista ampullaris. US cerebral anomalies were detected in 6 cases, and in all those cases, the inner ear was always involved. In the other 14 cases with normal brain scan, histological brain damage was present in 8 fetuses and 3 of them presented inner ear infection. Conclusions CMV-infection of the marginal cell layer of the stria vascularis may alter potassium and ion circulation, dissipating the endocochlear potential with consequent SNHL. Although abnormal cerebral US is highly predictive of brain and inner ear damage, normal US findings cannot exclude them either. PMID:24252374

  17. Oxidative stress in the human fetal brain: an immunohistochemical study.

    PubMed

    Yamamoto, Tomoko; Shibata, Noriyuki; Muramatsu, Fumiaki; Sakayori, Noriko; Kobayashi, Makio

    2002-02-01

    Because accumulation of oxidative modification products seems to relate to aging and has not been fully studied in fetal brains, an immunohistochemical examination was performed on nine brains ranging from 22-40 weeks of gestation. These brains did not demonstrate lesions except hypoxic-ischemic changes. Advanced glycation end products and 4-hydroxynonenal are generally reported to be negative in neurons of normal young brains, but, in the present study, distinct positive immunoreaction was observed in neurons of fetal brains. Positive immunoreaction appeared earlier in the medulla oblongata than in the cerebrum, and 4-hydroxynonenal began to accumulate earlier than advanced glycation end products. As for glial cells, advanced glycation end products and 4-hydroxynonenal were positive in reactive astrocytes in mid- to late gestation. Because hypoxic-ischemic changes were observed in most of the patients, it is possible that oxidative stress caused by hypoxic-ischemic may be involved in the accumulation of these products in the fetal brain. 8-Hydroxy-2'-deoxyguanosine was negative even in patients demonstrating positive reaction for advanced glycation end products and 4-hydroxynonenal. In the fetal brain, DNA might be strongly protected from oxidative damage. 4-Hydroxynonenal is generally positive in the cytoplasm but was positive in the nucleus of immature neurons and glial cells in the present study, suggesting a unique metabolism of the fetal brain.

  18. The conduction system and expressions of hyperpolarization-activated cyclic nucleotide-gated cation channel 4 and connexin43 expressions in the hearts of fetal day 13 mice.

    PubMed

    Wen, Y; Li, B

    2017-01-01

    We investigated the development of the sinus node of the heart conduction system by localizing hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) and connexin43 (Cx43) in the hearts of fetal day 13 mice. Horizontal serial sections of day 13 whole fetuses were stained by hematoxylin and eosin and immunofluorescence to identify myocardial cells that express HCN4, hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) and Cx43. Expression levels of HCN4 and Cx43 were determined by quantitative RT-PCR in both fetal day 13 and adult mice. We found that both Cx43 and HCN4 expressions were located on the cell membranes in the hearts of fetal day 13 mice, but Cx43 was distributed throughout the myocardial cells. HCN4 expression was concentrated mainly in the left dorsal epicardium of the right atrium where Cx43 expression was low or absent. Quantitative RT-PCR demonstrated that HCN4 expression was significantly higher and HCN2 expression was significantly lower in fetal day 13 mice than in adults. We found no statistically significant difference in Cx43 expression between fetal day 13 mice and adults. HCN4 stained myocardial cells in the left dorsal epicardium of the right atrium are the origin of the sinus node and the remainder of the heart conduction system.

  19. Fetal Heart Rate Analysis for Automatic Detection of Perinatal Hypoxia Using Normalized Compression Distance and Machine Learning

    PubMed Central

    Barquero-Pérez, Óscar; Santiago-Mozos, Ricardo; Lillo-Castellano, José M.; García-Viruete, Beatriz; Goya-Esteban, Rebeca; Caamaño, Antonio J.; Rojo-Álvarez, José L.; Martín-Caballero, Carlos

    2017-01-01

    Accurate identification of Perinatal Hypoxia from visual inspection of Fetal Heart Rate (FHR) has been shown to have limitations. An automated signal processing method for this purpose needs to deal with time series of different lengths, recording interruptions, and poor quality signal conditions. We propose a new method, robust to those issues, for automated detection of perinatal hypoxia by analyzing the FHR during labor. Our system consists of several stages: (a) time series segmentation; (b) feature extraction from FHR signals, including raw time series, moments, and usual heart rate variability indices; (c) similarity calculation with Normalized Compression Distance, which is the key element for dealing with FHR time series; and (d) a simple classification algorithm for providing the hypoxia detection. We analyzed the proposed system using a database with 32 fetal records (15 controls). Time and frequency domain and moment features had similar performance identifying fetuses with hypoxia. The final system, using the third central moment of the FHR, yielded 92% sensitivity and 85% specificity at 3 h before delivery. Best predictions were obtained in time intervals more distant from delivery, i.e., 4–3 h and 3–2 h. PMID:28293198

  20. Expression of Stem Cell Markers in the Human Fetal Kidney

    PubMed Central

    Metsuyanim, Sally; Harari-Steinberg, Orit; Buzhor, Ella; Omer, Dorit; Pode-Shakked, Naomi; Ben-Hur, Herzl; Halperin, Reuvit; Schneider, David; Dekel, Benjamin

    2009-01-01

    In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and

  1. Sodium MRI in human heart: a review.

    PubMed

    Bottomley, Paul A

    2016-02-01

    This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.

  2. Ethical issues surrounding the transplantation of human fetal tissues.

    PubMed

    Hurd, R E

    1992-12-01

    Organ transplants have been one of the greatest advances in medicine. However, organs from living relatives or cadavers are in short supply, and many people die awaiting a donor organ. Increasing the donor pool by using organs from aborted fetuses has been proposed to increase the supply. In addition, there are benefits of using fetal tissue including its particular usefulness in children, the fact that it is not readily rejected, and its potential for growth. Guidelines for fetal research were issued in 1975, but a research moratorium was imposed in 1988 to allow study of ethical and legal issues. While the federal government delays in lifting the ban, several states have written laws governing experimentation with fetuses. Ethical arguments against using fetal tissue for organ transplant include a concern that this would create a branch of biomedicine which depends on the continuation of induced abortions. This could lead to neglect of research for other therapies. The timing and type of abortion should continue to benefit the mother, rather than the organ recipient. Ethicists debate whether or not use of aborted tissue implies complicity in the abortion process beyond that which exists for all members of a society which permits abortion. They also wonder whether knowing that some good could come of an abortion would influence a woman's decision to have one. Proposals to keep the use of fetal tissue ethical include banning the commercial use of sale of tissues, forbidding designation of the tissue recipient (to prevent harvesting fetal tissue for a relative), separating abortion counseling and management from harvesting of the tissue, and obtaining informed consent (perhaps from a proxy surrogate rather than from the mother) for the use of fetal tissue. When the medical and ethical communities have reached some consensus on these issues, crafted safeguards, and precluded conflicts of interest, then restrictions on government funding should be lifted. Whereas it

  3. Third trimester fetal heart rate and Doppler middle cerebral artery blood flow velocity characteristics during prenatal selective serotonin reuptake inhibitor exposure.

    PubMed

    Rurak, Dan; Lim, Ken; Sanders, Ari; Brain, Ursula; Riggs, Wayne; Oberlander, Tim F

    2011-07-01

    Prenatal selective serotonin reuptake inhibitor (SSRI) exposure increases the risk for adverse neonatal behavioral outcomes; although it is unknown whether altered brain function is present before birth. We investigated fetal vascular and heart rate changes at 36-wk gestation in SSRI-treated women with mood disorders (n = 29) [exposed (EXP)] and controls (n = 45) [non-EXP (NEXP)]. Fetal middle cerebral artery (MCA) flow parameters and heart rate characteristics were obtained during pre-SSRI dose morning and postdose afternoon sessions. Maternal mood and cord Hb and hematocrit were measured. Basal fetal heart rate (fHR) did not differ between groups or across the day. The fHR short- and long-term variations, accelerations, and duration of high variability episodes remained lower and did not change across the day in EXP, whereas all increased significantly in NEXP. In both groups, MCA flow velocity and volume flow increased significantly across the day. EXP MCA pulsatility index was significantly lower, as was MCA cross-sectional area. EXP cord Hb and hematocrit were significantly increased. Prenatal SSRI exposure reduced fetal MCA flow resistance and fHR variability, before and after an SSRI dose, controlling for maternal mood. These changes and the SSRI-related increased red cell indices suggest possible fetal hypoxia.

  4. 21 CFR 884.2640 - Fetal phonocardiographic monitor and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal phonocardiographic monitor and accessories. 884.2640 Section 884.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... phonocardiographic monitor is a device designed to detect, measure, and record fetal heart sounds electronically,...

  5. 21 CFR 884.2640 - Fetal phonocardiographic monitor and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal phonocardiographic monitor and accessories. 884.2640 Section 884.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... phonocardiographic monitor is a device designed to detect, measure, and record fetal heart sounds electronically,...

  6. 21 CFR 884.2640 - Fetal phonocardiographic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal phonocardiographic monitor and accessories. 884.2640 Section 884.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... phonocardiographic monitor is a device designed to detect, measure, and record fetal heart sounds electronically,...

  7. 21 CFR 884.2640 - Fetal phonocardiographic monitor and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal phonocardiographic monitor and accessories. 884.2640 Section 884.2640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... phonocardiographic monitor is a device designed to detect, measure, and record fetal heart sounds electronically,...

  8. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  9. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids

    PubMed Central

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l’Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  10. Lipoprotein lipase, LDL receptors and apo-lipoproteins in human fetal membranes at term.

    PubMed

    Huter, O; Wolf, H J; Schnetzer, A; Pfaller, K

    1997-11-01

    Ultrastructurally, all cells of human fetal membranes strongly exhibit a large amount of lipid deposits throughout pregnancy. Their origin and function is still unknown. The aim of this study was to investigate the localization of key components of lipid metabolism in this tissue. Using immunohistochemical techniques, the distribution of lipoprotein lipase (LPL), low density lipoprotein receptors (LDL receptors), and apo-lipoprotein B and E was investigated in 20 human fetal membranes at term. In addition, electron microscopy was used to study the intracellular localization of lipoprotein-sized particles. Amnionic epithelium and trophoblast cells reacted strongly for LPL. LDL receptors and apo-lipoproteins were present in amnionic epithelium and fibroblasts of the amnion. In none of the investigated cells were lipoprotein-sized particles identified. Similar results were obtained in all 20 cases. The findings indicate that lipoprotein from the amniotic fluid or from the maternal circulation may serve as substrate for lipids in human fetal membranes.

  11. Intermittent auscultation of fetal heart rate during labour - a widely accepted technique for low risk pregnancies: but are the current national guidelines robust and practical?

    PubMed

    Sholapurkar, S L

    2010-01-01

    Intermittent auscultation of fetal heart rate is an accepted practice in low risk labours in many countries. National guidelines on intrapartum fetal monitoring were critically reviewed regarding timing and frequency of intermittent auscultation. Hypothetical but plausible examples are presented to illustrate that it may be possible to miss significant fetal distress with strict adherence to current guidelines. Opinion is forwarded that intermittent auscultation should be performed for 60 seconds before and after three contractions over about 10 min every half an hour in the first stage of labour. Reasons are put forward to show how this could be more practical and patient friendly and at the same time could improve detection of fetal distress. The current recommendation of intermittent auscultation every 15 min in the first stage is associated with poor compliance and leads to unnecessary burden, stress and medicolegal liability for birth attendants. Modification of current national guidelines would be desirable.

  12. Zebrafish heart as a model for human cardiac electrophysiology.

    PubMed

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.

  13. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans.

    PubMed

    Lai, Chang Quan; Lim, Guat Ling; Jamil, Muhammad; Mattar, Citra Nurfarah Zaini; Biswas, Arijit; Yap, Choon Hwai

    2016-10-01

    The mechanics of intracardiac blood flow and the epigenetic influence it exerts over the heart function have been the subjects of intense research lately. Fetal intracardiac flows are especially useful for gaining insights into the development of congenital heart diseases, but have not received due attention thus far, most likely because of technical difficulties in collecting sufficient intracardiac flow data in a safe manner. Here, we circumvent such obstacles by employing 4D STIC ultrasound scans to quantify the fetal heart motion in three normal 20-week fetuses, subsequently performing 3D computational fluid dynamics simulations on the left ventricles based on these patient-specific heart movements. Analysis of the simulation results shows that there are significant differences between fetal and adult ventricular blood flows which arise because of dissimilar heart morphology, E/A ratio, diastolic-systolic duration ratio, and heart rate. The formations of ventricular vortex rings were observed for both E- and A-wave in the flow simulations. These vortices had sufficient momentum to last until the end of diastole and were responsible for generating significant wall shear stresses on the myocardial endothelium, as well as helicity in systolic outflow. Based on findings from previous studies, we hypothesized that these vortex-induced flow properties play an important role in sustaining the efficiency of diastolic filling, systolic pumping, and cardiovascular flow in normal fetal hearts.

  14. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  15. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings.

    PubMed

    Dessì, Alessia; Pani, Danilo; Raffo, Luigi

    2014-08-01

    Non-invasive fetal electrocardiography is still an open research issue. The recent publication of an annotated dataset on Physionet providing four-channel non-invasive abdominal ECG traces promoted an international challenge on the topic. Starting from that dataset, an algorithm for the identification of the fetal QRS complexes from a reduced number of electrodes and without any a priori information about the electrode positioning has been developed, entering into the top ten best-performing open-source algorithms presented at the challenge.In this paper, an improved version of that algorithm is presented and evaluated exploiting the same challenge metrics. It is mainly based on the subtraction of the maternal QRS complexes in every lead, obtained by synchronized averaging of morphologically similar complexes, the filtering of the maternal P and T waves and the enhancement of the fetal QRS through independent component analysis (ICA) applied on the processed signals before a final fetal QRS detection stage. The RR time series of both the mother and the fetus are analyzed to enhance pseudoperiodicity with the aim of correcting wrong annotations. The algorithm has been designed and extensively evaluated on the open dataset A (N = 75), and finally evaluated on datasets B (N = 100) and C (N = 272) to have the mean scores over data not used during the algorithm development. Compared to the results achieved by the previous version of the algorithm, the current version would mark the 5th and 4th position in the final ranking related to the events 1 and 2, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. On dataset A, the algorithm achieves 0.982 median sensitivity and 0.976 median positive predictivity.

  16. Expression of cyclo-oxygenase types-1 and -2 in human fetal membranes throughout pregnancy.

    PubMed

    Slater, D; Dennes, W; Sawdy, R; Allport, V; Bennett, P

    1999-04-01

    Human labour is associated with increased prostaglandin synthesis within the fetal membranes. We have studied the expression of the two isoforms of the central prostaglandin synthetic enzyme, cyclo-oxygenase (COX-1 and COX-2), in human fetal membranes throughout pregnancy, at mRNA, protein and activity levels. COX-1 mRNA expression was low in human amnion and chorion-decidua and did not change with gestational age. COX-2 mRNA expression in fetal membranes increased with gestational age, with significant up-regulation prior to the onset of labour and in association with labour. Protein concentrations of COX-1 did not change, whilst concentrations of COX-2 increased from the first to the third trimester. COX activity increased with gestational age and in association with labour, although prostaglandin production in fetal membranes collected after labour was reduced, suggesting reduced substrate supply. These data suggest that it is up-regulation of COX-2, rather than of COX-1, which mediates increased prostaglandin synthesis within the fetal membranes at term. Much of the increase in COX-2 expression precedes the onset of labour, suggesting that it is a cause, rather than a consequence, of labour.

  17. Binding of furosemide to albumin isolated from human fetal and adult serum.

    PubMed

    Viani, A; Cappiello, M; Silvestri, D; Pacifici, G M

    1991-01-01

    Albumin was isolated from pooled fetal serum from 58 placentas obtained at normal delivery at term and from pooled adult plasma from 8 individuals. Albumin isolation was carried out by means of PEG precipitation followed by ion-exchange chromatography on DEAE-Sephadex A 50 and then on SP-Sephadex C 50. The electrophoresis on SDS-polyacrylamide gels showed only one spot that comigrated with commercial human albumin. Binding to albumin was measured by equilibrium dialysis of an aliquot of albumin solution (0.7 ml) against the same volume of 0.13 M sodium orthophosphate buffer (pH 7.4). At a total concentration of 2 micrograms/ml (therapeutic range), the unbound fraction of furosemide was 2.71% (fetal albumin) and 2.51% (adult albumin). Two classes of binding sites for furosemide were observed in fetal and adult albumin. The number of binding sites (moles of furosemide per mole of albumin) was 1.22 (fetal albumin) and 1.58 (adult albumin) for the high-affinity site and 2.97 (fetal albumin) and 3.25 (adult albumin) for the low-affinity site. The association constants (M-1) were 3.1 X 10(4) (fetal albumin) and 2.6 X 10(4) (adult albumin) for the high-affinity set of sites and 0.83 X 10(4) (fetal albumin) and 1.0 X 10(4) (adult albumin) low-affinity site. The displacement of furosemide from albumin was studied with therapeutic concentrations of several drugs. Valproic acid, salicylic acid, azapropazone and tolbutamide had the highest displacing effects which were significantly higher with fetal than with adult albumin.

  18. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?

    PubMed

    Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina

    2016-01-01

    The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications.

  19. [Fetal magnetocardiography].

    PubMed

    van Leeuwen, P

    1997-09-01

    Fetal magnetocardiography is a new, alternative method for prenatal surveillance. The fetal magnetocardiogram (FMCG) registers the magnetic field produced by conduction currents in the fetal heart. Compared to the fetal electrocardiogram, the propagation of magnetic fields is relatively undisturbed by surrounding tissue. The FMCG thus has the advantage of a higher signal-to-noise ratio and can be acquired earlier pregnancy. Also, the high temporal resolution of the signal permits a significantly more precise determination of fetal heart rate parameters than fetal ultrasound. FMCG registration using a biomagnetometer is noninvasive and can be performed as of the second trimeter. It can be used to examine signal morphology, cardiac time intervals, heart rate variability as well as cardiac magnetic fields. To date, arrhythmic activity has been observed in the form of supraventricular and ventricular ectopies as well as atrial flutter, atrio-ventricular block, atrial tachycardia and Torsades de Pointes tachycardia. We also report here on the presence of short episodes of bradycardia in the second trimester of normal pregnancy. Measurement of the magnetic field strength at various locations above the abdomen has allowed the reconstruction of the fetal cardiac magnetic field and the determination of its relation to the position of the fetus. Signal averaging has permitted the precise examination of signal amplitude and cardiac time intervals and has shown that they increase in the course of pregnancy. Heart rate variability could be quantified in the time and frequency domain as well as using parameters of nonlinear dynamics. The results demonstrated an increase of variability and complexity over gestational age. Furthermore spectral analysis of fetal heart arte data could be associated with sympathetic and parasympathetic activity as well as, with respiration. Although the studies presenting these results have involved only limited numbers of observations, they

  20. Wireless Fetal Heart Rate Monitoring in Inpatient Full-Term Pregnant Women: Testing Functionality and Acceptability

    PubMed Central

    Boatin, Adeline A.; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica

    2015-01-01

    We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this

  1. Wireless fetal heart rate monitoring in inpatient full-term pregnant women: testing functionality and acceptability.

    PubMed

    Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica

    2015-01-01

    We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this

  2. Fetal and neonatal imaging and strategy of primary neonatal heart transplantation in hypoplastic left heart with Ebstein's anomaly.

    PubMed

    Hammel, James M; Danford, David A; Spicer, Robert L; Kutty, Shelby

    2015-03-01

    We present the anatomic constellation of mitral stenosis/aortic atresia variant of hypoplastic left heart syndrome, Ebstein's anomaly, and partial anomalous pulmonary venous return, an exceeding rare congenital heart defect. Prenatal echocardiography led to concern about the capacity of the right ventricle to increase cardiac output with lung expansion and pulmonary arterial runoff at birth, prompting the precaution of extracorporeal membrane oxygenator standby at delivery. Stage I palliation was not attempted, and control of pulmonary arterial blood flow was achieved with pulmonary artery banding, allowing sufficient ongoing hemodynamic stability. Orthotopic cardiac transplantation, repair of hypoplastic aortic arch, and primary sutureless repair of left pulmonary veins was performed, using dual-site arterial cannulation and continuous mild hypothermic cardiopulmonary bypass. We discuss how this unique echocardiographic anatomy influenced the surgical decision and point out how it guided therapy toward a strategy of primary transplantation rather than standard staged surgical palliation.

  3. Effect of nitrate and L-arginine therapy on nitric oxide levels in serum, heart, and aorta of fetal hypothyroid rats.

    PubMed

    Ghasemi, Asghar; Mehrazin, Fatemeh; Zahediasl, Saleh

    2013-12-01

    Reduced nitric oxide availability and a heterogeneous pattern of nitric oxide synthase activity in some tissues have been reported in hypothyroidism. This study aimed at determining the effects of oral nitrate and L-arginine administration on serum, heart, and aorta nitric oxide metabolite concentrations in fetal hypothyroid rats. In an experimental study, pregnant Wistar rats were administrated tap water or 0.02 % of 6-propyl-2-thiouracil in drinking water during pregnancy and their male pups were followed (n = 8/group). In adult progeny, serum, heart, and aorta nitric oxide metabolite concentrations were measured by the Griess method after 1-week administration of sodium nitrate (500 mg/L) or L-arginine (2 %) in drinking water. Serum thyroid hormone and thyroid-stimulating hormone levels were also measured. Compared to controls, fetal hypothyroid progeny had significantly lower nitric oxide metabolite concentrations in heart (0.32 ± 0.07 vs. 0.90 ± 0.14 nmol/mg protein, p = 0.004) and aorta (2.98±0.56 vs. 6.15±0.74 nmol/mg protein, p = 0.011) tissues. Nitrate therapy restored heart nitric oxide metabolite levels decreased by fetal hypothyroidism, while L-arginine administration further decreased aorta nitric oxide metabolite levels. Sodium nitrate increased and L-arginine decreased serum nitric oxide metabolite levels in both control and fetal hypothyroid animals. In conclusion, nitrate therapy restores decreased heart nitric oxide metabolite levels, whereas L-arginine decreases aorta nitric oxide metabolite levels even further in fetal hypothyroid rats, findings relevant to the cardiovascular consequences of congenital hypothyroidism in adulthood.

  4. Physiology of the fetal circulation.

    PubMed

    Kiserud, Torvid

    2005-12-01

    Our understanding of fetal circulatory physiology is based on experimental animal data, and this continues to be an important source of new insight into developmental mechanisms. A growing number of human studies have investigated the human physiology, with results that are similar but not identical to those from animal studies. It is time to appreciate these differences and base more of our clinical approach on human physiology. Accordingly, the present review focuses on distributional patterns and adaptational mechanisms that were mainly discovered by human studies. These include cardiac output, pulmonary and placental circulation, fetal brain and liver, venous return to the heart, and the fetal shunts (ductus venosus, foramen ovale and ductus arteriosus). Placental compromise induces a set of adaptational and compensational mechanisms reflecting the plasticity of the developing circulation, with both short- and long-term implications. Some of these aspects have become part of the clinical physiology of today with consequences for surveillance and treatment.

  5. Maternal endotoxemia, fetal anomalies, and central nervous system damage: a rat model of a human problem.

    PubMed

    Ornoy, A; Altshuler, G

    1976-01-15

    Endotoxemia is a common consequence of the gram-negative urinary tract infections that complicate human pregnancies. Only rarely, however, have the effects of maternal endotoxemia been evaluated by animal experiments or by human investigations. Data of the Collaborative Perinatal Study suggest an association between maternal endotoxemia and fetal central nervous system damage. For these reasons we performed controlled studies of the fetal effects of treatment of pregnant rats, at appropriate gestational ages, with E. coli endotoxin. We found a maximum 7 per cent incidence of fetal anomalies in the treated animals but no anomalies in controls. Placental light microscopy examinations indicated the mechanism to include Shwartzman-lixemia produces periventricular leukomalacia. We obtained an incidence of neuronal necrosis in treated fetuses that was 10 times greater than in control fetuses. It is therefore of importance that additional studies of the pathologic effects of endotoxin be performed.

  6. Human cardiac troponin T: Identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q

    SciTech Connect

    Townsend, P.J.; Farza, H.; Yacoub, M.H.; Barton, P.J.R. ); MacGeoch, C.; Spurr, N.K. ); Wade, R. ); Gahlmann, R. )

    1994-05-15

    The troponin complex is located on the thin filament of striated muscle and is composed of three component polypeptides: Troponin T, troponin I, and troponin C. Three troponin T genes have been described on the basis of molecular cloning in humans and other vertebrates. These are expressed in a tissue-specific manner and encode the troponin T isoforms expressed in cardiac muscle, slow skeletal muscle, and fast skeletal muscle, respectively. Each of these genes is subject to alternative splicing, resulting in the production of multiple tissue-specific isoforms. The authors have cloned cDNAs encoding human cardiac troponin T from adult heart and have used these to demonstrate that multiple cardiac troponin T mRNAs are present in the human fetal heart, resulting from alternative splicing in the 5[prime] coding region of the gene. Hybridization of the cloned cDNAs to genomic DNA identifies a single-copy gene, and using somatic cell hybrid analysis, the authors have mapped the corresponding gene locus (designated TNNT2) to the long arm of chromosome 1 (1cen-qter). 52 refs., 2 figs., 1 tab.

  7. Fetoscopic and ultrasound-guided decompression of the fetal trachea in a human fetus with Fraser syndrome and congenital high airway obstruction syndrome (CHAOS) from laryngeal atresia.

    PubMed

    Kohl, T; Hering, R; Bauriedel, G; Van de Vondel, P; Heep, A; Keiner, S; Müller, A; Franz, A; Bartmann, P; Gembruch, U

    2006-01-01

    Congenital high airway obstruction syndrome (CHAOS) from laryngeal atresia bears a poor prognosis for hydropic fetuses owing to cardiac failure. We attempted percutaneous fetoscopic and ultrasound-guided tracheal decompression in a hydropic human fetus with CHAOS associated with Fraser syndrome. Percutaneous fetoscopic and ultrasound-guided tracheal decompression was performed using three trocars under general materno-fetal anesthesia at 19 + 5 weeks of gestation. Abnormal fetoplacental blood flow normalized within hours as a result of the intervention. Furthermore, a normalization of lung : heart size and lung echogenicity was observed within days. Resolution of hydrops was complete within 3 weeks. Premature rupture of membranes and premature contractions prompted emergency delivery of the fetus by ex-utero intrapartum treatment (EXIT) at 28 + 2 weeks of gestation. Following delivery, the lungs could be ventilated at low pressures and ambient oxygen concentration. Weaning from ventilation was achieved at 18 days of postnatal life. Our experience indicated that percutaneous fetoscopic and ultrasound-guided decompression of the fetal trachea is feasible and may permit normalization of hemodynamics in hydropic human fetuses with CHAOS from laryngeal atresia. The procedure may also result in normalization of heart : lung size and provide the time needed to regain the function of the overstretched diaphragm in this grave fetal condition.

  8. Categorization of Fetal Heart Rate Decelerations in American and European Practice: Importance and Imperative of Avoiding Framing and Confirmation Biases.

    PubMed

    Sholapurkar, Shashikant L

    2015-09-01

    Interpretation of electronic fetal monitoring (EFM) remains controversial and unsatisfactory. Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocographs and considered "center-stage" in the interpretation of EFM. A recent American study suggested that the lack of correlation of American three-tier system to neonatal acidemia may be due to the current peculiar nomenclature of FHR decelerations leading to loss of meaning. The pioneers like Hon and Caldeyro-Barcia classified decelerations based primarily on time relationship to contractions and not on etiology per se. This critical analysis debates pros and cons of significant anchoring/framing and confirmation biases in defining different types of decelerations based primarily on the shape (slope) or time of descent. It would be important to identify benign early decelerations correctly to avoid unnecessary intervention as well as to improve the positive predictive value of the other types of decelerations. Currently the vast majority of decelerations are classed as "variable". This review shows that the most common rapid decelerations during contractions with trough corresponding to peak of contraction cannot be explained by "cord-compression" hypothesis but by direct/pure (defined here as not mediated through baro-/chemoreceptors) or non-hypoxic vagal reflex. These decelerations are benign, most likely and mainly a result of head-compression and hence should be called "early" rather than "variable". Standardization is important but should be appropriate and withstand scientific scrutiny. Significant framing and confirmation biases are necessarily unscientific and the succeeding three-tier interpretation systems and structures embodying these biases would be dysfunctional and clinically unhelpful. Clinical/pathophysiological analysis and avoidance of flaws/biases suggest that a more physiological and scientific categorization of decelerations should be based on time relationship to

  9. Categorization of Fetal Heart Rate Decelerations in American and European Practice: Importance and Imperative of Avoiding Framing and Confirmation Biases

    PubMed Central

    Sholapurkar, Shashikant L.

    2015-01-01

    Interpretation of electronic fetal monitoring (EFM) remains controversial and unsatisfactory. Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocographs and considered “center-stage” in the interpretation of EFM. A recent American study suggested that the lack of correlation of American three-tier system to neonatal acidemia may be due to the current peculiar nomenclature of FHR decelerations leading to loss of meaning. The pioneers like Hon and Caldeyro-Barcia classified decelerations based primarily on time relationship to contractions and not on etiology per se. This critical analysis debates pros and cons of significant anchoring/framing and confirmation biases in defining different types of decelerations based primarily on the shape (slope) or time of descent. It would be important to identify benign early decelerations correctly to avoid unnecessary intervention as well as to improve the positive predictive value of the other types of decelerations. Currently the vast majority of decelerations are classed as “variable”. This review shows that the most common rapid decelerations during contractions with trough corresponding to peak of contraction cannot be explained by “cord-compression” hypothesis but by direct/pure (defined here as not mediated through baro-/chemoreceptors) or non-hypoxic vagal reflex. These decelerations are benign, most likely and mainly a result of head-compression and hence should be called “early” rather than “variable”. Standardization is important but should be appropriate and withstand scientific scrutiny. Significant framing and confirmation biases are necessarily unscientific and the succeeding three-tier interpretation systems and structures embodying these biases would be dysfunctional and clinically unhelpful. Clinical/pathophysiological analysis and avoidance of flaws/biases suggest that a more physiological and scientific categorization of decelerations should be based on

  10. Analysis of CD4 gene expression in human fetal brain and neuroblasts.

    PubMed

    Cara, A; Pecorara, M; Cornaglia-Ferraris, P

    1992-04-01

    1. The expression of the gene codifying for CD4, the most important human immunodeficiency virus type 1 (HIV-1) receptor molecule, was analyzed in 11 fetal brains at various gestational ages and in 9 human neuroblastoma (NB) cell lines. CD4 gene expression in fetal and malignant neural cells was then compared with that observed in a hematopoietic cell line and adult hippocampus. 2. In addition, CD4 mRNA was evaluated in two NB cell lines induced to differentiate in vitro with retinoic acid (RA) or 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H7), a protein kinase C inhibitor. 3. All fetal brains and NB cell lines express a 1.8-kb signal when hybridized with pT4BcDNA probe, while a 3.0-kb signal such as observed in hematopoietic human cells was found in 1 of 11 fetal brains and in 0 of 9 NB cell lines. The 1.8-kb signal was lost in all analyzed poly(A)+ mRNA samples. 4. Moreover, CD4 gene expression was not induced in either RA- or H7-treated NB cells at any tested time and dose. The analysis of NB cells by polymerase chain reaction failed to demonstrate CD4 expression in either poly(A)+ or poly(A)- RNA. 5. In conclusion, the results show that the 1.8-kb signal observed in RNA extracted from fetal or transformed human neural cells is probably due to an aspecific hybridization. However, the gene codifying for CD4 can rarely be expressed by fetal brain cells early during gestation, in still unclear circumstances.

  11. [Histological and molecular study of fetal human adrenal cortex (12-36 wk)].

    PubMed

    Folligan, K; Bouvier, R; Targe, F; Morel, Y; Trouillas, J

    2005-12-01

    Histological and functional characteristics of the fetal human adrenals was studied in 119 normal fetuses aged 12 to 36 weeks development (WD). Immunocytochemical detection of steroidogenesis enzyme (3beta-HSD and P450 c21) and evaluation of cell proliferation using two nuclear markers (Ki-67 and PCNA) were performed in 70 of them. The human fetal adrenal cortex is composed of two morphologically distinct zones: the definitive peripheral zone and the fetal inner zone. From the 12th WD, we observed expression of an adherence protein (NCAM) and two steroidogenesis enzymes (3beta-HSD and P450 c21) in the definitive zone cells, attesting to the capacity of these cells to synthesize mineralocorticoids and/or cortisol. In the fetal zone, only P450 c21 immunoreactivity was detected. From the 14th WD, a transitional zone between the definitive zone and the fetal zone was identified by immunocytochemistry, with expression of 3b-HSD from the 21st WD. Only cells of the definitive zone proliferated from the 12th to 25th WD. The indexes of proliferation of PCNA and Ki-67, 40% and 25% respectively, decreased gradually and were lower than 1% at the 25th WD.

  12. Regulation of ACTH-induced steroidogenesis in human fetal adrenals by rTNF-alpha.

    PubMed

    Jäättelä, M; Carpén, O; Stenman, U H; Saksela, E

    1990-01-22

    The presence of tumor necrosis factor type alpha (TNF-alpha) in different fetal tissue and adult adrenal extracts was investigated by radioimmunoassay (RIA). Measurable levels of TNF-alpha were found in 12/22 fetal adrenals, but in none of the seven adult adrenals studied. Since it is known that (i) steroidogenesis in fetal adrenals differs greatly from that in adult glands by having higher androgen/corticosteroid ratio, (ii) and that macrophage-derived factors may cause adrenocortical suppression, the effect of TNF-alpha on corticotropin-induced steroidogenesis in primary cultures of human fetal adrenals was studied. Results show that TNF-alpha effectively suppresses the production of cortisol and shifts the steroid synthesis towards androgen production. The effect was not accompanied by any change in cell viability and could be neutralized by addition of polyclonal rabbit anti-TNF-alpha antiserum to cell cultures. These results suggest that TNF-alpha may take part in the regulation of human fetal steroidogenesis within the network of the fetoplacental unit via inhibition of the cortisol synthesis.

  13. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    PubMed

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube.

  14. On the conscious control of the human heart.

    PubMed

    Pokrovskii, Vladimir M; Polischuk, Lily V

    2012-06-01

    This study describes methods of volitional management of heart rhythms and proves that it is possible by means of management of its operations, subject to arbitrary control, which also has a strong functional connection to the center of the heart rhythm formation in the brain. Experiments demonstrate that it is possible for arbitrary changes in the heart rhythm to be made through conscious control of the breathing rhythm, and even a short-term cardiac arrest by means of contracting abdominal muscles. We postulate that the management of human heart rhythm is indirectly regulated through arbitrary controlled operations. The present article describes and analyzes ways that enable a human to consciously and purposefully manage the frequency of heart contractions. Common principles of arbitrary management of the heart rhythm in humans are uncovered through analysis.

  15. Direct evidence for interaction between human erythroid progenitor cells and a hemoglobin switching activity present in fetal sheep serum.

    PubMed Central

    Stamatoyannopoulos, G; Nakamoto, B; Kurachi, S; Papayannopoulou, T

    1983-01-01

    An activity that induces Hb F to Hb A switching in human cells is present in fetal sheep serum. To test directly the role of cell-to-environment interactions in hemoglobin switching and to define the level of erythroid cell differentiation at which this activity operates, colony transfer experiments were done. Clones grown in the presence of switching activity-containing medium (fetal sheep serum) or control medium (fetal calf serum) were transferred, at the 16- to 30-cell stage, to either fetal sheep serum or fetal calf serum plates and Hb F synthesis was determined in the fully mature erythroid bursts. Fetal calf serum-to-fetal calf serum transfers produced colonies with the high Hb F levels characteristic of undisturbed fetal calf serum-grown clones. Fetal sheep serum-to-fetal calf serum transfers resulted in significant decrease in Hb F synthesis, revealing an interaction between hemoglobin switching activity and cells at an early stage of progenitor cell development. The reduction of Hb F synthesis in fetal calf serum-to-fetal sheep serum transfers indicated that hemoglobin switching activity interacts with cells at later stages of progenitor cell development. Maximal decrease in Hb F synthesis was observed in fetal sheep serum-to-fetal sheep serum transfers, indicating that optimal effects on Hb switching are obtained when the environment that induces Hb switching is present throughout the development of progenitor cells. By splitting single early clones into two parts and transferring them to either a fetal sheep serum or a fetal calf serum environment, these interactions were further demonstrated in the progeny of a single erythroid burst-forming unit. Since all clone transfers were done on cell-free plates, the results of fetal calf serum-to-fetal sheep serum and of fetal sheep serum-to-fetal sheep serum transfers indicated that the switching activity does not require helper cells for its action. These studies show directly that (i) Hb F synthesis is

  16. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development

    PubMed Central

    Camp, J. Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A.; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B.; Treutlein, Barbara

    2015-01-01

    Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. PMID:26644564

  17. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    NASA Astrophysics Data System (ADS)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  18. A comparative biomechanical analysis of term fetal membranes in human and domestic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to biomechanically characterize and compare human, porcine, equine, and ovine fetal membranes. Noncontact metrology was used for topographic analyses. Uniaxial tensile testing was performed to resolve specific biomechanical values. Puncture force and radial stresses we...

  19. Towards a New Study on Associative Learning in Human Fetuses: Fetal Associative Learning in Primates

    ERIC Educational Resources Information Center

    Kawai, Nobuyuki

    2010-01-01

    Research has revealed that fetuses can learn from events in their environment. The most convincing evidence for fetal learning is habituation to vibroacoustic stimulation (VAS) in human fetuses and classical conditioning in rat fetuses. However, these two research areas have been independent of each other. There have been few attempts at classical…

  20. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development.

    PubMed

    Camp, J Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B; Treutlein, Barbara

    2015-12-22

    Cerebral organoids-3D cultures of human cerebral tissue derived from pluripotent stem cells-have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  1. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  2. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  3. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  4. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  5. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen...

  6. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined

    PubMed Central

    DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.

    2016-01-01

    Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  7. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    PubMed

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications.

  8. Developmental origins of health and disease: experimental and human evidence of fetal programming for metabolic syndrome.

    PubMed

    de Gusmão Correia, M L; Volpato, A M; Águila, M B; Mandarim-de-Lacerda, C A

    2012-07-01

    The concept of developmental origins of health and disease has been defined as the process through which the environment encountered before birth, or in infancy, shapes the long-term control of tissue physiology and homeostasis. The evidence for programming derives from a large number of experimental and epidemiological observations. Several nutritional interventions during diverse phases of pregnancy and lactation in rodents are associated with fetal and neonatal programming for metabolic syndrome. In this paper, recent experimental models and human epidemiological studies providing evidence for the fetal programming associated with the development of metabolic syndrome and related diseases are revisited.

  9. Suppression of placental metallothionein 1 and zinc transporter 1 mRNA expressions contributes to fetal heart malformations caused by maternal zinc deficiency.

    PubMed

    Liu, Chaobin; He, Xiaoyu; Hong, Xinru; Kang, Fenhong; Chen, Suqing; Wang, Qing; Chen, Xiaoqiu; Hu, Dian; Sun, Qinghua

    2014-12-01

    Zinc has been implicated to have a protective role against heart malformations during fetal development. Metallothionein 1 (MT-1) and zinc transporter 1 (ZnT-1) are two major metabolic factors that are associated with zinc metabolism. The present work aimed to investigate the association of placental MT-1 and ZnT-1 expressions with fetal heart malformations resulting from maternal zinc deficiency. Sprague-Dawley female rats were randomly divided into five groups of extremely low-zinc, low-zinc, moderately low-zinc, marginally low-zinc and normal zinc (n = 9-12), and were fed diets with controlled zinc content at 1.0 ± 0.3, 8.4 ± 1.8, 15.4 ± 2.8, 22.4 ± 4.1 and 29.4 ± 5.3 [mean ± standard deviation (SD)] mg of zinc/kg, respectively, from day 25 of preconception until day 19 of gestation. The female rats were bred, their fetuses were harvested at day 19 of gestation after killing the dams, and fetal hearts were morphologically examined. Zinc concentration and alkaline phosphatase (ALP) activity in maternal venous blood sera were tested, and MT-1 and ZnT-1 mRNA expressions in the placenta were assayed. Zinc concentrations and ALP activities in the blood were low in all zinc-deficient diet groups in a dose-dependent fashion. The incidences of heart malformations were increased, and the levels of placental MT-1 and ZnT-1 mRNA expressions were decreased in the extremely low-zinc, low-zinc and moderately low-zinc groups compared with the normal zinc group. Specifically, mRNA levels of placental MT-1 or ZnT-1 were significantly decreased and were lower than the specific threshold values in the fetuses with heart malformations but not in the fetuses without heart malformations in all the groups. These data indicate that maternal zinc deficiency resulted in an elevated incidence of fetal heart malformations, which was associated with significant decreases in placental MT-1 and ZnT-1 mRNA expressions to the levels below the threshold values that may be a

  10. [Morphogenesis of Human Fetal Thymus during Weeks 22-27 of Development].

    PubMed

    Kulida, L V; Peretyatko, L P; Nazarov, S B

    2015-01-01

    Distinctive features of human fetal thymus morphogenesis in early ontogeny in the case of uncomplicated pregnancy have been characterized. A steady increase of thymus dimensions and weight occurred concomitantly to differentiation of morphofunctional zones within the organ. Cell differentiation in the subcapsular and inner cortical zones of the thymus lobes was manifested as changes in parameters of expression of T-lymphocyte antigens CD1, CD2, and CD3 and ultrastructural features of reticuloepithelial cells (REC) type I and II forming a microenvironment for lymphocytes. RECs of the medullar zone formed a glomerular syncytium with desmosomal interepithelial contacts by week 22 of fetal development. Small lymphocytes predominated among thymocytes (66%). Hassall's corpuscles, the structural correlates of morphological and functional maturity, predominated in the fetal thymuses during developmental weeks 25-27.

  11. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  12. Maternal growth factor regulation of human placental development and fetal growth.

    PubMed

    Forbes, Karen; Westwood, Melissa

    2010-10-01

    Normal development and function of the placenta is critical to achieving a successful pregnancy, as normal fetal growth depends directly on the transfer of nutrients from mother to fetus via this organ. Recently, it has become apparent from both animal and human studies that growth factors within the maternal circulation, for example the IGFs, are important regulators of placental development and function. Although these factors act via distinct receptors to exert their effects, the downstream molecules activated upon ligand/receptor interaction are common to many growth factors. The expression of numerous signaling molecules is altered in the placentas from pregnancies affected by the fetal growth complications, fetal growth restriction, and macrosomia. Thus, targeting these molecules may lead to more effective treatments for complications of pregnancy associated with altered placental development. Here, we review the maternal growth factors required for placental development and discuss their mechanism of action.

  13. Fetal tolerance in human pregnancy--a crucial balance between acceptance and limitation of trophoblast invasion.

    PubMed

    von Rango, Ulrike

    2008-01-15

    During human pregnancy the semi-allogeneic/allogeneic fetal graft is normally accepted by the mother's immune system. Initially the contact between maternal and fetal cells is restricted to the decidua but during the 2nd trimester it is extended to the entire body. Two contrary requirements influence the extent of invasion of extravillous fetal trophoblast cells (EVT) in the maternal decidua: anchorage of the placenta to ensure fetal nutrition and protection of the uterine wall against over-invasion. To establish the crucial balance between tolerance of the EVT and its limitation, recognition of the semi-allogeneic/allogeneic fetal cell by maternal leukocytes is prerequisite. A key mechanism to limit EVT invasion is induction of EVT apoptosis. Apoptotic bodies are phagocytosed by antigen-presenting cells (APC). Peptides from apoptotic cells are presented by APC cells and induce an antigen-specific tolerance against the foreign antigens on EVT cells. These pathways, including up-regulation of the expression of IDO, IFNgamma and CTLA-4 as well as the induction of T(regulatory) cells, are general immunological mechanisms which have developed to maintain peripheral tolerance to self-antigens. Together these data suggest that the mother extends her "definition of self" for 9 months on the foreign antigens of the fetus.

  14. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero

    PubMed Central

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A.; Kim, Kio; Corbett-Detig, James; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2011-01-01

    Existing knowledge of growth patterns in the living fetal human brain is based upon in utero imaging studies by MRI and ultrasound, which describe overall growth and provided mainly qualitative findings. However, formation of the complex folded cortical structure of the adult brain requires, in part, differential rates of regional tissue growth. To better understand these local tissue growth patterns, we applied recent advances in fetal MRI motion correction and computational image analysis techniques to 40 normal fetal human brains covering a period of primary sulcal formation (20-28 gestational weeks). Growth patterns were mapped by quantifying tissue locations that were expanding more or less quickly than the overall cerebral growth rate, which reveal increasing structural complexity. We detected increased local relative growth rates in the formation of the pre- and post-central gyri, right superior temporal gyrus and opercula, which differentiated between the constant growth rate in underlying cerebral mantle and the accelerating rate in the cortical plate undergoing folding. Analysis focused on the cortical plate revealed greater volume increases in parietal and occipital regions compared to the frontal lobe. Cortical plate growth patterns constrained to narrower age ranges showed that gyrification, reflected by greater growth rates, was more pronounced after 24 gestational weeks. Local hemispheric volume asymmetry was located in the posterior peri-Sylvian area associated with structural lateralization in the mature brain. These maps of fetal brain growth patterns construct a spatially specific baseline of developmental biomarkers with which to correlate abnormal development in the human. PMID:21414909

  15. Evolutionary anticipation of the human heart.

    PubMed

    Victor, S; Nayak, V M

    2000-09-01

    We have studied the comparative anatomy of hearts from fish, frog, turtle, snake, crocodile, birds (duck, chicken, quail), mammals (elephant, dolphin, sheep, goat, ox, baboon, wallaby, mouse, rabbit, possum, echidna) and man. The findings were analysed with respect to the mechanism of evolution of the heart.

  16. Episomal-based generation of an iPS cell line from human fetal foreskin fibroblasts.

    PubMed

    Matz, Peggy; Adjaye, James

    2016-01-01

    Human fetal foreskin fibroblasts (HFF1) were used to generate the iPSC line epiHFF1-B1 employing a combination of three episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC, and KLF4. Pluripotency was confirmed both in vivo and in vitro. The transcriptome profile of epiHFF1-B1 and the human embryonic stem cell line-H1 have a pearson correlation of 0.936.

  17. Insights in spatio-temporal characterization of human fetal neural stem cells.

    PubMed

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were

  18. Modeling heart rate variability in healthy humans: a turbulence analogy.

    PubMed

    Lin, D C; Hughson, R L

    2001-02-19

    Many complex systems share similar statistical characteristics. In this Letter, a turbulence analogy is proposed for the long-term heart rate variability of healthy humans. Based on such an analogy, the equivalence of an inertial range is found and a cascade model, which captures the statistical properties of the heart rate data, is given.

  19. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    SciTech Connect

    Muczynski, V.; Cravedi, J.P.; Lehraiki, A.; Levacher, C.; Moison, D.; Lecureuil, C.; Messiaen, S.; Perdu, E.; Frydman, R.; Habert, R.; and others

    2012-05-15

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation and cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.

  20. Ultrastructural and immunohistochemical analysis of the 8-20 week human fetal pancreas.

    PubMed

    Riopel, Matthew; Li, Jinming; Fellows, George F; Goodyer, Cynthia G; Wang, Rennian

    2014-01-01

    Development of the human pancreas is well-known to involve tightly controlled differentiation of pancreatic precursors to mature cells that express endocrine- or exocrine-specific protein products. However, details of human pancreatic development at the ultrastructural level are limited. The present study analyzed 8-20 week fetal age human pancreata using scanning and transmission electron microscopy (TEM), TEM immunogold and double or triple immunofluorescence staining. Primary organization of islets and acini occurred during the developmental period examined. Differentiating endocrine and exocrine cells developed from the ductal tubules and subsequently formed isolated small clusters. Extracellular matrix fibers and proteins accumulated around newly differentiated cells during their migration and cluster formation. Glycogen expression was robust in ductal cells of the pancreas from 8-15 weeks of fetal age; however, this became markedly reduced at 20 weeks, with a concomitant increase in acinar cell glycogen content. Insulin secretory granules transformed from being dense and round at 8 weeks to distinct geometric (multilobular, crystalline) structures by 14-20 weeks. Initially many of the differentiating endocrine cells were multihormonal and contained polyhormonal granules; by 20 weeks, monohormonal cells were in the majority. Interestingly, certain secretory granules in the early human fetal pancreatic cells showed positivity for both exocrine (amylase) and endocrine proteins. This combined ultrastructural and immunohistochemical study showed that, during early developmental stages, the human pancreas contains differentiating epithelial cells that associate closely with the extracellular matrix, have dynamic glycogen expression patterns and contain polyhormonal as well as mixed endocrine/exocrine granules.

  1. miRNA Expression in Pediatric Failing Human Heart

    PubMed Central

    Stauffer, Brian L.; Russell, Gloria; Nunley, Karin; Miyamoto, Shelley D.; Sucharov, Carmen C.

    2013-01-01

    miRNAs are short regulatory RNAs that can regulate gene expression through interacting with the 3'UTR of target mRNAs. Although the role of miRNAs has been extensively studied in adult human and animal models of heart disease, nothing is known about their expression in pediatric heart failure patients. Different than adults with heart failure, pediatric patients respond well to phosphodiesterase inhibitor (PDEi) treatment, which is safe in the outpatient setting, results in fewer heart failure emergency department visits, fewer cardiac hospital admissions and improved NYHA classification. We have recently shown that the pediatric heart failure patients display a unique molecular profile that is different from adults with heart failure. In this study we show for the first time that pediatric heart failure patients display a unique miRNA profile, and that expression of some miRNAs correlate with response to PDEi treatment. Moreover, we show that expression of Smad4, a potential target for PDEi-regulated miRNAs, is normalized in PDEi-treated patients. Since miRNAs may be used as therapy for human heart failure, our results underscore the importance of defining the molecular characteristics of pediatric heart failure patients, so age-appropriate therapy can be designed for this population. PMID:23333438

  2. Fetal-specific CD8+ cytotoxic T cell responses develop during normal human pregnancy and exhibit broad functional capacity.

    PubMed

    Lissauer, David; Piper, Karen; Goodyear, Oliver; Kilby, Mark D; Moss, Paul A H

    2012-07-15

    Tolerance of the semiallogeneic fetus presents a significant challenge to the maternal immune system during human pregnancy. T cells with specificity for fetal epitopes have been detected in women with a history of previous pregnancy, but it has been thought that such fetal-specific cells were generally deleted during pregnancy as a mechanism to maintain maternal tolerance of the fetus. We used MHC-peptide dextramer multimers containing an immunodominant peptide derived from HY to identify fetal-specific T cells in women who were pregnant with a male fetus. Fetal-specific CD8(+) T lymphocytes were observed in half of all pregnancies and often became detectable from the first trimester. The fetal-specific immune response increased during pregnancy and persisted in the postnatal period. Fetal-specific cells demonstrated an effector memory phenotype and were broadly functional. They retained their ability to proliferate, secrete IFN-γ, and lyse target cells following recognition of naturally processed peptide on male cells. These data show that the development of a fetal-specific adaptive cellular immune response is a normal consequence of human pregnancy and that unlike reports from some murine models, fetal-specific T cells are not deleted during human pregnancy. This has broad implications for study of the natural physiology of pregnancy and for the understanding of pregnancy-related complications.

  3. STUDIES IN FETAL BEHAVIOR: REVISITED, RENEWED, AND REIMAGINED.

    PubMed

    DiPietro, Janet A; Costigan, Kathleen A; Voegtline, Kristin M

    2015-09-01

    Among the earliest volumes of this monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodrmal activity and fetal heartrate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include:within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physio-logical processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship.We pose a number of open questions for future research. Although the human fetus remains just out of reach, new

  4. Differences in tissue distribution of iron from various clinically used intravenous iron complexes in fetal avian heart and liver.

    PubMed

    Spicher, Karsten; Brendler-Schwaab, Susanne; Schlösser, Christoph; Catarinolo, Maria; Fütterer, Sören; Langguth, Peter; Enzmann, Harald

    2015-10-01

    Nanomedicines are more complex than most pharmacologically active substances or medicines and have been considered as non-biological complex drugs. For nanomedicines pivotal pharmacokinetic properties cannot be assessed by plasma concentration data from standard bioequivalence studies. Using intravenous iron complexes (IICs) as model we show that fetal avian tissues can be used to study time dependent tissue concentrations in heart and liver. Clear differences were found between equimolar doses of sucrose, gluconate or carboxymaltose coated iron particles. The range in tissue iron concentrations observed with these clinically widely used IICs provides an orientation as to what should be acceptable for any new IICs. Moreover, sensitivity of the experimental model was high enough to detect a 20% difference in tissue iron concentration. For the authorization of generic products under Article 10 (1) of Directive 2001/83/EC a plasma concentration of an active substance in the range of 80%-125% versus the reference product is usually considered acceptable. Based on its high discriminatory sensitivity this method was used to support a positive marketing authorization decision for a generic nanomedicine product.

  5. In-vivo Stretch of Term Human Fetal Membranes

    PubMed Central

    Joyce, EM; Diaz, P; Tamarkin, S; Moore, R; Strohl, A; Stetzer, B; Kumar, D; Sacks, MS; Moore, JJ

    2015-01-01

    Introduction Fetal membranes (FM) usually fail prior to delivery during term labor, but occasionally fail at preterm gestation, precipitating preterm birth. To understand the FM biomechanical properties underlying these events, study of the baseline in-vivo stretch experienced by the FM is required. This study's objective was to utilize high resolution MRI imaging to determine in-vivo FM stretch. Methods Eight pregnant women (38.4±0.4wks) underwent abdominal-pelvic MRI prior to (2.88±0.83d) caesarean delivery. Software was utilized to determine the total FM in-vivo surface area (SA) and that of its components: placental disc and reflected FM. At delivery, the SA of the disc and FM in the relaxed state were measured. In-vivo (stretched) to delivered SA ratios were calculated. FM fragments were then biaxially stretched to determine the force required to re-stretch the FM back to in-vivo SA. Results Total FM SA, in-vivo vs delivered, was 2135.51±108.47 cm2 vs 842.59±35.86 cm2; reflected FM was 1778.42±107.39 cm2 vs 545.41±22.90 cm2, and disc was 357.10±28.08 cm2 vs 297.18±22.14 cm2. The ratio (in-vivo to in-vitro SA) of reflected FM was 3.26±0.11 and disc was 1.22±0.10. Reflected FM re-stretched to in-vivo SA generated a tension of 72.26N/m, corresponding to approximate pressure of 15.4mmHg. FM rupture occurred at 295.08 ± 31.73N/m corresponding to approximate pressure of 34mmHg. Physiological SA was 70% of that at rupture. Discussion FM are significantly distended in-vivo. FM collagen fibers were rapidly recruited once loaded and functioned near the failure state during in-vitro testing, suggesting that, in-vivo, minimal additional (beyond physiological) stretch may facilitate rapid, catastrophic failure. PMID:26907383

  6. Assessment of fetal neurodevelopment via fetal magnetocardiography.

    PubMed

    Wakai, Ronald T

    2004-11-01

    Fetal magnetocardiography (fMCG) offers unique capabilities for assessment of fetal heart rate (FHR) and fetal behavior, which are fundamental aspects of neurodevelopment. The most important attribute of fMCG for FHR monitoring is its high precision, which allows accurate assessment of beat-to-beat fetal heart rate variability (FHRV), including respiratory sinus arrhythmia. Using mathematical indices to assess FHRV, we find that short- and long-term FHRV both increase during gestation but not in the same manner. The largest increases in short-term FHRV occur during the last trimester, while the largest increases in long-term FHRV occur early on, with smaller changes occurring during the last trimester. The fMCG also allows assessment of fetal activity. This results from the high sensitivity of the signal to the position and orientation of the fetal heart. FMCG actograms are therefore specific for fetal trunk movement, which are thought to be more important than isolated extremity movements and other small fetal movements. The ability to assess FHR, FHRV, and fetal trunk movement simultaneously makes fMCG a valuable tool for neurodevelopment research.

  7. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  8. Avoidance of Maternal Cell Contamination and Overgrowth in Isolating Fetal Chorionic Villi Mesenchymal Stem Cells from Human Term Placenta.

    PubMed

    Sardesai, Varda S; Shafiee, Abbas; Fisk, Nicholas M; Pelekanos, Rebecca A

    2017-04-01

    Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender-discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi-derived MSC (CV-MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV-MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070-1084.

  9. Catalytic ferrous iron in amniotic fluid as a predictive marker of human maternal-fetal disorders.

    PubMed

    Hattori, Yuka; Mukaide, Takahiro; Jiang, Li; Kotani, Tomomi; Tsuda, Hiroyuki; Mano, Yukio; Sumigama, Seiji; Hirayama, Tasuku; Nagasawa, Hideko; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-01-01

    Amniotic fluid contains numerous biomolecules derived from fetus and mother, thus providing precious information on pregnancy. Here, we evaluated oxidative stress of human amniotic fluid and measured the concentration of catalytic Fe(II). Amniotic fluid samples were collected with consent from a total of 89 subjects in Nagoya University Hospital, under necessary medical interventions: normal pregnancy at term, normal pregnancy at the 2nd trimester, preterm delivery with maternal disorders but without fetal disorders, congenital diaphragmatic hernia, fetal growth restriction, pregnancy-induced hypertension, gestational diabetes mellitus, Down syndrome and trisomy 18. Catalytic Fe(II) and oxidative stress markers (8-hydroxy-2'-deoxyguanosine, 8-OHdG; dityrosine) were determined with RhoNox-1 and specific antibodies, respectively, using plate assays. Levels of 8-OHdG and dityrosine were higher in the 3rd trimester compared with the 2nd trimester in normal subjects, and the abnormal groups generally showed lower levels than the controls, thus suggesting that they represent fetal metabolic activities. In contrast, catalytic Fe(II) was higher in the 2nd trimester than the 3rd trimester in the normal subjects, and overall the abnormal groups showed higher levels than the controls, suggesting that high catalytic Fe(II) at late gestation reflects fetal pathologic alterations. Notably, products of H2O2 and catalytic Fe(II) remained almost constant in amniotic fluid.

  10. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.

    PubMed

    Sapparapu, Gopal; Fernandez, Estefania; Kose, Nurgun; Bin Cao; Fox, Julie M; Bombardi, Robin G; Zhao, Haiyan; Nelson, Christopher A; Bryan, Aubrey L; Barnes, Trevor; Davidson, Edgar; Mysorekar, Indira U; Fremont, Daved H; Doranz, Benjamin J; Diamond, Michael S; Crowe, James E

    2016-12-15

    Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies from subjects that were previously infected with ZIKV. We show that a subset of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African and Asian-American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human antibodies can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.

  11. Peroxisome Proliferator-Activated Receptor Alpha (PPARa), Beta (PPARI3), and Gamma (PPARy) Expression in Human Fetal Tissues.

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...

  12. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  13. Moxifloxacin Increases Heart Rate in Humans

    PubMed Central

    Mason, Jay W.; Moon, Thomas E.

    2017-01-01

    (1) Background: We assessed the effect of moxifloxacin on heart rate, and reviewed the heart rate effects of other antibiotics; (2) Methods: A total of 335 normal volunteers had 12-lead electrocardiograms recorded at multiple time points before and during treatment with moxifloxacin and with placebo in seven consecutive, thorough QT studies of crossover design; (3) Results: The average baseline heart rate across the seven studies was 61.5 bpm. The heart rate after moxifloxacin dosing was analyzed at five time points shared by all seven studies (hours 1, 2, 3, 12 and 24). The maximum mean heart rate (HR) increase for the seven studies combined was 2.4 bpm (95% CI 1.6, 3.3) at hour 2. The range of mean maximum increases among the seven studies was 2.1 to 4.3 bpm. For the seven studies combined, the increase was statistically significant at all but the 24 h time point. The maximum observed individual increase in HR was 36 bpm and the mean maximum increase was 30 ± 4.1 bpm by time point and 8 ± 6.9 bpm by subject. Many antibiotics increase HR, some several-fold more than moxifloxacin. However, clinicians and clinical investigators give little attention to this potential adverse effect in the medical literature; (4) Conclusions: The observed moxifloxacin-induced increase in HR is large enough to be clinically relevant, and it is a potentially important confounder in thorough QT studies using moxifloxacin as an active control. More attention to heart rate effects of antibiotics is warranted. PMID:28165431

  14. HCMV induces dysregulation of glutamate uptake and transporter expression in human fetal astrocytes.

    PubMed

    Zhang, Li; Li, Ling; Wang, Bin; Qian, Dong-Meng; Song, Xu-Xia; Hu, Ming

    2014-12-01

    Human cytomegalovirus (HCMV) infections are the leading cause of viral induced birth defects, affecting the central nervous system (CNS) primarily. Fetal CNS is especially vulnerable to CMV induced injury. As HCMV permissive cells, astrocytes are responsible for major glutamate transport and regulate extracellular levels of glutamate avoiding its accumulation which is implicated in neurodegenerative disorders. In this study, highly purified astrocytes isolated from human first trimester aborted fetal brain were infected with HCMV AD169, glutamate uptake function was detected by (3)H labeling technic, and the expression level alterations of glutamate transporters (GLAST, GLT-1), glutamine synthetase (GS) and its activity were also investigated. Protein kinases C (PKC) inhibitor treatment was to identify whether PKC signalling involved in regulating glutamate uptake, protein expression of GLAST, GLT-1, GS and GS activity. Results indicated HCMV AD169 infection could modulate glutamate uptake, expression levels of GLAST, GLT-1, GS and it activity through PKC signalling, suggesting a great susceptibility of human fetal astrocytes to HCMV infection, which significantly alters the uptake and metabolism of an important excitatory amino acid, glutamate, may be a potential mechanism for HCMV associated neurological disease, and an effective therapeutic target in neural diseases.

  15. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    SciTech Connect

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. )

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  16. HMGA2 Moderately Increases Fetal Hemoglobin Expression in Human Adult Erythroblasts

    PubMed Central

    de Vasconcellos, Jaira F.; Lee, Y. Terry; Byrnes, Colleen; Tumburu, Laxminath; Rabel, Antoinette; Miller, Jeffery L.

    2016-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with beta-hemoglobin disorders. Previous studies showed that let-7 microRNAs (miRNAs) are highly regulated in erythroid cells during the fetal-to-adult developmental transition, and that targeting let-7 mediated the up-regulation of HbF to greater than 30% of the total globin levels in human adult cultured erythroblasts. HMGA2 is a member of the high-mobility group A family of proteins and a validated target of the let-7 family of miRNAs. Here we investigate whether expression of HMGA2 directly regulates fetal hemoglobin in adult erythroblasts. Let-7 resistant HMGA2 expression was studied after lentiviral transduction of CD34(+) cells. The transgene was regulated by the erythroid-specific gene promoter region of the human SPTA1 gene (HMGA2-OE). HMGA2-OE caused significant increases in gamma-globin mRNA expression and HbF to around 16% of the total hemoglobin levels compared to matched control transductions. Interestingly, no significant changes in KLF1, SOX6, GATA1, ZBTB7A and BCL11A mRNA levels were observed. Overall, our data suggest that expression of HMGA2, a downstream target of let-7 miRNAs, causes moderately increased gamma-globin gene and protein expression in adult human erythroblasts. PMID:27861570

  17. Zebrafish heart as a model for human cardiac electrophysiology

    PubMed Central

    Vornanen, Matti; Hassinen, Minna

    2016-01-01

    ABSTRACT The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart. PMID:26671745

  18. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb

    PubMed Central

    Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L

    2011-01-01

    Abstract Reduced growth in fetal life together with accelerated growth in childhood, results in a ∼50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137–144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life. PMID:21807611

  19. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats.

    PubMed

    Iglesias, Inmaculada; Albasanz, Jose Luis; Martín, Mairena

    2014-12-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine.

  20. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats

    PubMed Central

    Iglesias, Inmaculada; Albasanz, Jose Luis

    2014-01-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine. PMID:25538864

  1. Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch.

    PubMed

    Lee, King Yiu; Fong, Benny Shu Pan; Tsang, Kam Sze; Lau, Tze Kin; Ng, Pak Cheung; Lam, Audrey Carmen; Chan, Kathy Yuen Yee; Wang, Chi Chiu; Kung, Hsiang Fu; Li, Chi Kong; Li, Karen

    2011-01-01

    Hematopoiesis during mammalian embryonic development has been perceived as a migratory phenomenon, from the yolk sac blood island to the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), and subsequently, the fetal bone marrow. In this study, we investigated the effects of primary stromal cells from fetal hematopoietic niches and their conditioned media (CM), applied singly or in sequential orders, on induction of human embryonic stem cells, H1, H9, and H14 lines, to hematopoietic cells. Our results demonstrated that stromal support of FL, AGM + FL, and AGM + FL + fetal bone marrow significantly increased the proliferation of embryoid bodies (EB) at day 18 of hematopoietic induction in the presence of thrombopoietin, stem cell factor, and Flt-3 ligand. AGM + FL also increased hematopoietic colony-forming unit (CFU) formation. CM did not enhance EB proliferation but CM of FL and AGM + FL significantly increased the density of total CFU and early erythroid (burst-forming unit) progenitors. Increased commitment to the hematopoietic lineage was demonstrated by enhanced expressions of CD45, alpha-, beta-, and gamma-globins in CFU at day 32, compared with EB at day 18. CM of FL significantly increased these globin expressions, indicating enhanced switches from embryonic to fetal and adult erythropoiesis. Over 50% and 10% of cells derived from CFU expressed CD45 and beta-globin proteins, respectively. Expressions of hematopoietic regulatory genes (Bmi-1, β-Catenin, Hox B4, GATA-1) were increased in EB or CFU cultures supported by FL or sequential CM. Our study has provided a strategy for derivation of hematopoietic cells from embryonic stem cells under the influence of primary hematopoietic niches and CM, particularly the FL.

  2. Acyl-CoA dehydrogenase 9 (ACAD 9) is the long-chain acyl-CoA dehydrogenase in human embryonic and fetal brain.

    PubMed

    Oey, N A; Ruiter, J P N; Ijlst, L; Attie-Bitach, T; Vekemans, M; Wanders, R J A; Wijburg, F A

    2006-07-21

    We recently reported the expression and activity of several fatty acid oxidation enzymes in human embryonic and fetal tissues including brain and spinal cord. Liver and heart showed expression of both very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) mRNA. However, while mRNA expression of LCHAD could be clearly detected in the retina and spinal cord, expression of VLCAD mRNA was low to undetectable in these tissues. Nevertheless, abundant acyl-CoA dehydrogenase (ACAD) activity was detected with palmitoyl-CoA as substrate in fetal central nervous tissue. These conflicting data suggested the presence of a different long-chain ACAD in human embryonic and fetal brain. In this study, using in situ hybridization as well as enzymatic studies, we identified acyl-CoA dehydrogenase 9 (ACAD 9) as the long-chain ACAD in human embryonic and fetal central nervous tissue. Until now, no clinical signs and symptoms of central nervous system involvement have been reported in VLCAD deficiency. A novel long-chain FAO defect, i.e., ACAD 9 deficiency with only central nervous system involvement, could, if not lethal during intra uterine development, easily escape proper diagnosis, since probably no classical signs and symptoms of FAO deficiency will be observed. Screening for ACAD 9 deficiency in patients with undefined neurological symptoms and/or impairment in neurological development of unknown origin is necessary to establish if ACAD 9 deficiency exists as a separate disease entity.

  3. New forensic anthropological approachment for the age determination of human fetal skeletons on the base of morphometry of vertebral column.

    PubMed

    Kósa, F; Castellana, C

    2005-01-17

    The anthropometrical study was carried out on 107 human fetal/newborn skeletons (54 male, 43 female, and 9 of unknown sex). The age of the individuals ranged from 4 to 10 lunar months. Each fetal or newborn vertebral region (cervical, thoracal and lumbar) has its own distinguishing features that are easily identifiable even in fragmentary bones. With our large sample size and extension of the age range studied, we are able to determine the fetal age with a considerable degree of accuracy from measurements defined in the vertebral ossification centers using regression equations. A simple rapid method for the identification and classification of fetal vertebral column bones has been contributed. The identification and classifications were carried out using discriminant functions. Knowledge of changes in vertebral column bones during fetal development is important in applied contexts of forensic and anthropology researches.

  4. Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum.

    PubMed

    Vasung, L; Jovanov-Milošević, N; Pletikos, M; Mori, S; Judaš, M; Kostović, Ivica

    2011-01-01

    Periventricular pathway (PVP) system of the developing human cerebrum is situated medial to the intermediate zone in the close proximity to proliferative cell compartments. In order to elucidate chemical properties and developing trajectories of the PVP we used DTI in combination with acetylcholinesterase histochemistry, SNAP-25 immunocytochemistry and axonal cytoskeletal markers (SMI312, MAP1b) immunocytochemistry on postmortem paraformaldehyde-fixed brains of 30 human fetuses ranging in age from 10 to 38 postconceptional weeks (PCW), 2 infants (age 1-3 months) and 1 adult brain. The PVP appears in the early fetal period (10-13 PCW) as two defined fibre bundles: the corpus callosum (CC) and the fetal fronto-occipital fascicle (FOF). In the midfetal period (15-18 PCW), all four components of the PVP can be identified: (1) the CC, which at rostral levels forms a voluminous callosal plate; (2) the FOF, with SNAP-25-positive fibers; (3) the fronto-pontine pathway (FPP) which for a short distance runs within the PVP; and (4) the subcallosal fascicle of Muratoff (SFM) which contains cortico-caudate projections. The PVPs are situated medial to the internal capsule at the level of the cortico-striatal junction; they remain prominent during the late fetal and early preterm period (19-28 PCW) and represent a portion of the wider periventricular crossroad of growing associative, callosal and projection pathways. In the perinatal period, the PVPs change their topographical relationships, decrease in size and the FOF looses its SNAP-25-reactivity. In conclusion, the hitherto undescribed PVP of the human fetal cerebrum contains forerunners of adult associative and projection pathways. Its transient chemical properties and relative exuberance suggest that the PVP may exert influence on the development of cortical connectivity (intermediate targeting) and other neurogenetic events such as neuronal proliferation. The PVP's topographical position also indicates that it is a major

  5. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  6. Intracellular Immunization of Human Fetal Cord Blood Stem/Progenitor Cells with a Ribozyme Against Human Immunodeficiency Virus Type 1

    NASA Astrophysics Data System (ADS)

    Yu, Mang; Leavitt, Mark C.; Maruyama, Midori; Yamada, Osamu; Young, Dennis; Ho, Anthony D.; Wong-Staal, Flossie

    1995-01-01

    Successful treatment of human immunodeficiency virus infection may ultimately require targeting of hematopoietic stem cells. Here we used retroviral vectors carrying the ribozyme gene to transduce CD34^+ cells from human fetal cord blood. Transduction and ribozyme expression had no apparent adverse effect on cell differentiation and/or proliferation. The macrophage-like cells, differentiated from the stem/progenitor cells in vitro, expressed the ribozyme gene and resisted infection by a macrophage tropic human immunodeficiency virus type 1. These results suggest the feasibility of stem cell gene therapy for human immunodeficiency virus-infected patients.

  7. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells

    PubMed Central

    Guo, Hongshan; Hu, Boqiang; Yan, Liying; Yong, Jun; Wu, Yan; Gao, Yun; Guo, Fan; Hou, Yu; Fan, Xiaoying; Dong, Ji; Wang, Xiaoye; Zhu, Xiaohui; Yan, Jie; Wei, Yuan; Jin, Hongyan; Zhang, Wenxin; Wen, Lu; Tang, Fuchou; Qiao, Jie

    2017-01-01

    Chromatin remodeling is important for the epigenetic reprogramming of human primordial germ cells. However, the comprehensive chromatin state has not yet been analyzed for human fetal germ cells (FGCs). Here we use nucleosome occupancy and methylation sequencing method to analyze both the genome-wide chromatin accessibility and DNA methylome at a series of crucial time points during fetal germ cell development in both human and mouse. We find 116 887 and 137 557 nucleosome-depleted regions (NDRs) in human and mouse FGCs, covering a large set of germline-specific and highly dynamic regulatory genomic elements, such as enhancers. Moreover, we find that the distal NDRs are enriched specifically for binding motifs of the pluripotency and germ cell master regulators such as NANOG, SOX17, AP2γ and OCT4 in human FGCs, indicating the existence of a delicate regulatory balance between pluripotency-related genes and germ cell-specific genes in human FGCs, and the functional significance of these genes for germ cell development in vivo. Our work offers a comprehensive and high-resolution roadmap for dissecting chromatin state transition dynamics during the epigenomic reprogramming of human and mouse FGCs. PMID:27824029

  8. The early fetal development of human neocortical GABAergic interneurons.

    PubMed

    Al-Jaberi, Nahidh; Lindsay, Susan; Sarma, Subrot; Bayatti, Nadhim; Clowry, Gavin J

    2015-03-01

    GABAergic interneurons are crucial to controlling the excitability and responsiveness of cortical circuitry. Their developmental origin may differ between rodents and human. We have demonstrated the expression of 12 GABAergic interneuron-associated genes in samples from human neocortex by quantitative rtPCR from 8 to 12 postconceptional weeks (PCW) and shown a significant anterior to posterior expression gradient, confirmed by in situ hybridization or immunohistochemistry for GAD1 and 2, DLX1, 2, and 5, ASCL1, OLIG2, and CALB2. Following cortical plate (CP) formation from 8 to 9 PCW, a proportion of cells were strongly stained for all these markers in the CP and presubplate. ASCL1 and DLX2 maintained high expression in the proliferative zones and showed extensive immunofluorescent double-labeling with the cell division marker Ki-67. CALB2-positive cells increased steadily in the SVZ/VZ from 10 PCW but were not double-labeled with Ki-67. Expression of GABAergic genes was generally higher in the dorsal pallium than in the ganglionic eminences, with lower expression in the intervening ventral pallium. It is widely accepted that the cortical proliferative zones may generate CALB2-positive interneurons from mid-gestation; we now show that the anterior neocortical proliferative layers especially may be a rich source of interneurons in the early neocortex.

  9. Quantifying and modelling tissue maturation in the living human fetal brain.

    PubMed

    Studholme, Colin; Rousseau, François

    2014-02-01

    Recent advances in medical imaging are beginning to allow us to quantify brain tissue maturation in the growing human brain prior to normal term age, and are beginning to shed new light on early human brain growth. These advances compliment the work already done in cellular level imaging in animal and post mortem studies of brain development. The opportunities for collaborative research that bridges the gap between macroscopic and microscopic windows on the developing brain are significant. The aim of this paper is to provide a review of the current research into MR imaging of the living fetal brain with the aim of motivating improved interfaces between the two fields. The review begins with a description of faster MRI techniques that are capable of freezing motion of the fetal head during the acquisition of a slice, and how these have been combined with advanced post-processing algorithms to build 3D images from motion scattered slices. Such rich data has motivated the development of techniques to automatically label developing tissue zones within MRI data allowing their quantification in 3D and 4D within the normally growing fetal brain. These methods have provided the basis for later work that has created the first maps of tissue growth rate and cortical folding in normally developing brains in-utero. These measurements provide valuable findings that compliment those derived from post-mortem anatomy, and additionally allow for the possibility of larger population studies of the influence of maternal environmental and genes on early brain development.

  10. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    PubMed

    Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E

    2011-01-01

    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  11. Potential of human fetal chorionic stem cells for the treatment of osteogenesis imperfecta.

    PubMed

    Jones, Gemma N; Moschidou, Dafni; Abdulrazzak, Hassan; Kalirai, Bhalraj Singh; Vanleene, Maximilien; Osatis, Suchaya; Shefelbine, Sandra J; Horwood, Nicole J; Marenzana, Massimo; De Coppi, Paolo; Bassett, J H Duncan; Williams, Graham R; Fisk, Nicholas M; Guillot, Pascale V

    2014-02-01

    Osteogenesis imperfecta (OI) is a genetic bone pathology with prenatal onset, characterized by brittle bones in response to abnormal collagen composition. There is presently no cure for OI. We previously showed that human first trimester fetal blood mesenchymal stem cells (MSCs) transplanted into a murine OI model (oim mice) improved the phenotype. However, the clinical use of fetal MSC is constrained by their limited number and low availability. In contrast, human fetal early chorionic stem cells (e-CSC) can be used without ethical restrictions and isolated in high numbers from the placenta during ongoing pregnancy. Here, we show that intraperitoneal injection of e-CSC in oim neonates reduced fractures, increased bone ductility and bone volume (BV), increased the numbers of hypertrophic chondrocytes, and upregulated endogenous genes involved in endochondral and intramembranous ossification. Exogenous cells preferentially homed to long bone epiphyses, expressed osteoblast genes, and produced collagen COL1A2. Together, our data suggest that exogenous cells decrease bone brittleness and BV by directly differentiating to osteoblasts and indirectly stimulating host chondrogenesis and osteogenesis. In conclusion, the placenta is a practical source of stem cells for the treatment of OI.

  12. Acellular human heart matrix: A critical step toward whole heart grafts.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Costanza, Salvatore; Climent, Andreu M; Moscoso, Isabel; Gonzalez-Nicolas, M Angeles; Sanz-Ruiz, Ricardo; Rodríguez, Hugo; Kren, Stefan M; Garrido, Gregorio; Escalante, Jose L; Bermejo, Javier; Elizaga, Jaime; Menarguez, Javier; Yotti, Raquel; Pérez del Villar, Candelas; Espinosa, M Angeles; Guillem, María S; Willerson, James T; Bernad, Antonio; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco

    2015-08-01

    The best definitive treatment option for end-stage heart failure currently is transplantation, which is limited by donor availability and immunorejection. Generating an autologous bioartificial heart could overcome these limitations. Here, we have decellularized a human heart, preserving its 3-dimensional architecture and vascularity, and recellularized the decellularized extracellular matrix (dECM). We decellularized 39 human hearts with sodium-dodecyl-sulfate for 4-8 days. Cell removal and architectural integrity were determined anatomically, functionally, and histologically. To assess cytocompatibility, we cultured human cardiac-progenitor cells (hCPC), bone-marrow mesenchymal cells (hMSCs), human endothelial cells (HUVECs), and H9c1 and HL-1 cardiomyocytes in vitro on dECM ventricles up to 21 days. Cell survival, gene expression, organization and/or electrical coupling were analyzed and compared to conventional 2-dimensional cultures. Decellularization removed cells but preserved the 3-dimensional cardiac macro and microstructure and the native vascular network in a perfusable state. Cell survival was observed on dECM for 21 days. hCPCs and hMSCs expressed cardiocyte genes but did not adopt cardiocyte morphology or organization; HUVECs formed a lining of endocardium and vasculature; differentiated cardiomyocytes organized into nascent muscle bundles and displayed mature calcium dynamics and electrical coupling in recellularized dECM. In summary, decellularization of human hearts provides a biocompatible scaffold that retains 3-dimensional architecture and vascularity and that can be recellularized with parenchymal and vascular cells. dECM promotes cardiocyte gene expression in stem cells and organizes existing cardiomyocytes into nascent muscle showing electrical coupling. These findings represent a first step toward manufacturing human heart grafts or matrix components for treating cardiovascular disease.

  13. Best Practice BioBanking of Human Heart Tissue.

    PubMed

    Lal, Sean; Li, Amy; Allen, David; Allen, Paul D; Bannon, Paul; Cartmill, Tim; Cooke, Roger; Farnsworth, Alan; Keogh, Anne; Dos Remedios, Cristobal

    2015-12-01

    This review provides a guide to researchers who wish to establish a biobank. It also gives practical advice to investigators seeking access to samples of healthy or diseased human hearts. We begin with a brief history of the Sydney Heart Bank (SHB) from when it began in 1989, including the pivotal role played by the late Victor Chang. We discuss our standard operating procedures for tissue collection which include cryopreservation and the quality assurance needed to maintain the long-term molecular and cellular integrity of the samples. The SHB now contains about 16,000 heart samples derived from over 450 patients who underwent isotopic heart transplant procedures and from over 100 healthy organ donors. These enable us to provide samples from a wide range of categories of heart failure. So far, we have delivered heart samples to more than 50 laboratories over two decades, and we answer their most frequently asked questions. Other SHB services include the development of tissue microarrays (TMA). These enable end users to perform preliminary examinations of the expression and localisation of target molecules in diseased or aging donor hearts, all in a single section of the TMA. Finally, the processes involved in managing tissue requests from external users and logistics considerations for the shipment of human tissue are discussed in detail.

  14. Best Practice BioBanking of Human Heart Tissue

    PubMed Central

    Lal, Sean; Li, Amy; Allen, David; Allen, Paul D; Bannon, Paul; Cartmill, Tim; Cooke, Roger; Farnsworth, Alan; Keogh, Anne; dos Remedios, Cristobal

    2015-01-01

    This review provides a guide to researchers who wish to establish a biobank. It also gives practical advice to investigators seeking access to samples of healthy or diseased human hearts. We begin with a brief history of the Sydney Heart Bank (SHB) from when it began in 1989, including the pivotal role played by the late Victor Chang. We discuss our standard operating procedures for tissue collection which include cryopreservation and the quality assurance needed to maintain the long-term molecular and cellular integrity of the samples. The SHB now contains about 16,000 heart samples derived from over 450 patients who underwent isotopic heart transplant procedures and from over 100 healthy organ donors. These enable us to provide samples from a wide range of categories of heart failure. So far, we have delivered heart samples to more than 50 laboratories over two decades, and we answer their most frequently asked questions. Other SHB services include the development of tissue microarrays (TMA). These enable end users to perform preliminary examinations of the expression and localisation of target molecules in diseased or aging donor hearts, all in a single section of the TMA. Finally, the processes involved in managing tissue requests from external users and logistics considerations for the shipment of human tissue are discussed in detail. PMID:26998172

  15. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans.

    PubMed

    Mold, Jeff E; Venkatasubrahmanyam, Shivkumar; Burt, Trevor D; Michaëlsson, Jakob; Rivera, Jose M; Galkina, Sofiya A; Weinberg, Kenneth; Stoddart, Cheryl A; McCune, Joseph M

    2010-12-17

    Although the mammalian immune system is generally thought to develop in a linear fashion, findings in avian and murine species argue instead for the developmentally ordered appearance (or "layering") of distinct hematopoietic stem cells (HSCs) that give rise to distinct lymphocyte lineages at different stages of development. Here we provide evidence of an analogous layered immune system in humans. Our results suggest that fetal and adult T cells are distinct populations that arise from different populations of HSCs that are present at different stages of development. We also provide evidence that the fetal T cell lineage is biased toward immune tolerance. These observations offer a mechanistic explanation for the tolerogenic properties of the developing fetus and for variable degrees of immune responsiveness at birth.

  16. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    PubMed

    Goodarzi, Parisa; Arjmand, Babak; Emami-Razavi, Seyed Hassan; Soleimani, Masoud; Khodadadi, Abbas; Mohamadi-Jahani, Fereshteh; Aghayan, Hamid Reza

    2014-01-01

    Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC) in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS) in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS) on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group) or autologous serum (2nd group). After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration) of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35) and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32), 97/33% (SD=1.22) and 11.77 (SD=2.58) days respectively. This parameters were 97.33% (SD=1.00), 97.55% (SD=1.33) and 10.33 days (SD=1.65) in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05). The cells of second group reached to 100% confluency in shorter period of time (P=0.03). The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  17. [Histomorphology of secondary cartilage in human fetal mandibles].

    PubMed

    Martinez, G; Caltabiano, C; Leonardi, R; Caltabiano, M

    1997-01-01

    The aim of this study was to provide a histomorphological analysis of some secondary cartilages of mandible and temporal bone as observed in human fetuses 18-22 weeks old. The behavior of cartilage was studied in both these regions, which were decalcified, cut at 10 mu, stained with Mallory staining and examined by optical microscopy. In mandible symphysis menti and condylar cartilage were described. The symphysis appeared to be formed by a fibrous cartilagineous structure surrounded by membranous bone. This structure seems be round in the caudal sections and ovoidal in the rostral sections with the major axis perpendicular to the mean sagittal plane. Meanwhile the condyle is formed by secondary cartilage which may be appreciated in this development stage 5 zona. Secondary cartilage was observed also in the temporal bone nearby the primitive glenoid fossa. The development and the importance of these cartilagineous structures are discussed.

  18. Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes.

    PubMed

    Doshi, Manali; Marcus, Craig; Bejjani, Bassem A; Edward, Deepak P

    2006-01-01

    CYP1B1 is a cytochrome P450 enzyme implicated in autosomal recessive primary congenital glaucoma (PCG). The mechanism and function of CYP1B1 in the development of the PCG phenotype is unknown. Previously, investigators have reported detection of Cyp1b1 mRNA in the ciliary body and epithelium and neuroepithelium in the developing mouse eye, employing in situ hybridization techniques. Similarly, additional investigators have detected CYP1B1 mRNA in the iris, ciliary body, non-pigmented ciliary epithelial line, cornea, retinal-pigment epithelium, and retina in the human adult eye, using Northern blotting. This study was designed to immunolocalize CYP1B1 protein in the various ocular structures of normal, human fetal and adult eyes. Normal fetal and adult eyes were immunolabeled with a polyclonal antibody against human CYP1B1 using indirect immunofluorescence, and then compared with appropriate controls. The intensity of immunolabeling of the various ocular structures was assessed by qualitative and semi-quantitative techniques. In the anterior segment anti-CYP1B1 immunoreactivity (IR) was detected early in fetal development in the primitive ciliary epithelium. As well, the most intense CYP1B1 IR was in the non-pigmented ciliary epithelium. In addition, CYP1B1 IR was also present in the corneal epithelium and keratocytes, both layers of the iris pigmented epithelium, and retina. However, CYP1B1 IR was absent in the trabecular meshwork in all of the samples. In general, CYP1B1 immunolabeling in the human fetal eyes was more intense when compared to adult eyes. CYP1B1 IR was primarily immunolocalized to the non-pigmented ciliary epithelium and early in fetal development. In addition, CYP1B1 IR was not detected in the trabecular meshwork. These findings suggest that the abnormalities in the development of the trabecular meshwork in PCG may result from diminished or absent metabolism of important endogenous substrates in the ciliary epithelium due to non-functional CYP1B1

  19. How Live Performance Moves the Human Heart

    PubMed Central

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member’s physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists’ performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists’ via speakers. We recorded the audience members’ electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience’s heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience’s sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience’s physiological stress. The results are discussed in terms of the audience’s superior attention and temporal entrainment to live performance. PMID:27104377

  20. How Live Performance Moves the Human Heart.

    PubMed

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member's physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists' performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists' via speakers. We recorded the audience members' electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience's heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience's sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience's physiological stress. The results are discussed in terms of the audience's superior attention and temporal entrainment to live performance.

  1. Maturation of responsiveness to cardioactive drugs. Differential effects of acetylcholine, norepinephrine, theophylline, tyramine, glucagon, and dibutyryl cyclic AMP on atrial rate in hearts of fetal mice.

    PubMed

    Wildenthal, K

    1973-09-01

    Freshly isolated hearts of fetal mice of gestational ages ranging between 12 and 22 days (term) were exposed to several concentrations of a variety of chronotropic agents. Acetylcholine (10(-4)-10(-2) M) caused marked bradycardia in all hearts, even after only 12-14 days' gestation (i.e., even before cardiac innervation had occurred), and the intensity of the response increased steadily with advancing age throughout gestation. Responsiveness to norepinephrine was present but minimal at 12-14 days, so that mean atrial rate rose by < 10% with a maximal concentration of the drug (10(-5) M); responsiveness became more marked by 15-16 days (just after the time atrial innervation is thought to begin) and still greater effects appeared just before term. Glucagon had no effect in hearts of < 17 days' gestational age, but caused tachycardia thereafter, indicating that cardiac responsiveness to glucagon differentiates later than does responsiveness to norepinephrine. Responses to theophyl-line in 12-14 day hearts exceeded those to norepinephrine, indicating that the drug can affect heart rate independently of its ability to cause release of endogenous catecholamines. In contrast, tyramine caused no response until 21-22 days, well after the time the beta-receptor has differentiated and after innervation is fairly well developed, suggesting that the drug's primary sympathomimetic effect is indirect rather than direct. Dibutyryl cyclic AMP did not cause tachycardia at any fetal age. It is concluded that maturation of responsiveness of the mouse heart to cardioactive drugs develops in specific patterns for different agents. The identification of differential patterns of maturation for various drugs may provide valuable means for characterizing the differentiation of specific receptors and for investigating possible mechanisms of action of the drugs.

  2. Comparative gene expression profiling in human-induced pluripotent stem cell--derived cardiocytes and human and cynomolgus heart tissue.

    PubMed

    Puppala, Dinesh; Collis, Leon P; Sun, Sunny Z; Bonato, Vinicius; Chen, Xian; Anson, Blake; Pletcher, Mathew; Fermini, Bernard; Engle, Sandra J

    2013-01-01

    Cardiotoxicity is one of the leading causes of drug attrition. Current in vitro models insufficiently predict cardiotoxicity, and there is a need for alternative physiologically relevant models. Here we describe the gene expression profile of human-induced pluripotent stem cell-derived cardiocytes (iCC) postthaw over a period of 42 days in culture and compare this profile to human fetal and adult as well as adult cynomolgus nonhuman primate (NHP, Macaca fascicularis) heart tissue. Our results indicate that iCC express relevant cardiac markers such as ion channels (SCN5A, KCNJ2, CACNA1C, KCNQ1, and KCNH2), tissue-specific structural markers (MYH6, MYLPF, MYBPC3, DES, TNNT2, and TNNI3), and transcription factors (NKX2.5, GATA4, and GATA6) and lack the expression of stem cell markers (FOXD3, GBX2, NANOG, POU5F1, SOX2, and ZFP42). Furthermore, we performed a functional evaluation of contractility of the iCC and showed functional and pharmacological correlations with myocytes isolated from adult NHP hearts. These results suggest that stem cell-derived cardiocytes may represent a novel in vitro model to study human cardiac toxicity with potential ex vivo and in vivo translation.

  3. The Living Heart Project: A robust and integrative simulator for human heart function.

    PubMed

    Baillargeon, Brian; Rebelo, Nuno; Fox, David D; Taylor, Robert L; Kuhl, Ellen

    2014-11-01

    The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve.

  4. The Living Heart Project: A robust and integrative simulator for human heart function

    PubMed Central

    Baillargeon, Brian; Rebelo, Nuno; Fox, David D.; Taylor, Robert L.; Kuhl, Ellen

    2014-01-01

    The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve. PMID:25267880

  5. Genomics, proteomics and bioinformatics of human heart failure

    PubMed Central

    DOS REMEDIOS, C.G.; LIEW, C.C.; ALLEN, P.D.; WINSLOW, R.L.; VAN EYK, J.E.; DUNN, M.J.

    2005-01-01

    Unraveling the molecular complexities of human heart failure, particularly end-stage failure, can be achieved by combining multiple investigative approaches. There are several parts to the problem. Each patient is the product of a complex set of genetic variations, different degrees of influence of diets and lifestyles, and usually heart transplantation patients are treated with multiple drugs. The genomic status of the myocardium of any one transplant patient can be analysed using gene arrays (cDNA- or oligonucleotide-based) each with its own strengths and weaknesses. The proteins expressed by these failing hearts (myocardial proteomics) were first investigated over a decade ago using two-dimensional polyacrylamide gel electrophoresis (2DGE) which promised to resolve several thousand proteins in a single sample of failing heart. However, while 2DGE is very successful for the abundant and moderately expressed proteins, it struggles to identify proteins expressed at low levels. Highly focused first dimension separations combined with recent advances in mass spectrometry now provide new hope for solving this difficulty. Protein arrays are a more recent form of proteomics that hold great promise but, like the above methods, they have their own drawbacks. Our approach to solving the problems inherent in the genomics and proteomics of heart failure is to provide experts in each analytical method with a sample from the same human failing heart. This requires a sufficiently large number of samples from a sufficiently large pool of heart transplant patients as well as a large pool of non-diseased, non-failing human hearts. We have collected more than 200 hearts from patients undergoing heart transplantations and a further 50 non-failing hearts. By combining our expertise we expect to reduce and possibly eliminate the inherent difficulties of each analytical approach. Finally, we recognise the need for bioinformatics to make sense of the large quantities of data that will

  6. The Meckel's cartilage in human embryonic and early fetal periods.

    PubMed

    Wyganowska-Świątkowska, Marzena; Przystańska, Agnieszka

    2011-06-01

    The Meckel's cartilage itself and the mandible are derived from the first branchial arch, and their development depends upon the contribution of the cranial neural crest cells. The prenatal development of the Meckel's cartilage, along with its relationship to the developing mandible and the related structures, were studied histologically in human embryos and fetuses. The material was obtained from a collection of the Department of Anatomy, and laboratory procedures were used to prepare sections, which were stained according to standard light-microscopy methods. The formation of the Meckel's cartilage and its related structures was observed and documented. Some critical moments in the development of the Meckel's cartilage are suggested. The sequential development of the Meckel's cartilage started as early as stage 13 (32 days) with the appearance of condensation of mesenchymal cells within the mandibular prominence. During stage 17 (41 days), the primary ossification center of the mandible appeared on the inferior margin of the Meckel's cartilage. The muscular attachments to the Meckel's cartilage in embryos were observed at stage 18 (44 days). Their subsequent movement into the developing mandible during the 10th week seemed to diminish the role of the Meckel's cartilage as the supportive core; simultaneously, the process of regression within the cartilage was induced. During the embryonic period, the bilateral Meckel's cartilages were in closest contact at the posterior surface of their superior margins, preceding formation of the symphyseal cartilage at this site. The event sequence in the development of the Meckel's cartilage is finally discussed.

  7. Cytokeratin (CK5, CK8, CK14) expression and presence of progenitor stem cells in human fetal thymuses.

    PubMed

    Gupta, Richa; Gupta, Tulika; Kaur, Harjeet; Sehgal, Shobha; Aggarwal, Anjali; Kapoor, Kanchan; Sharma, Anshu; Sahni, Daisy; Singla, Suhalika

    2016-09-01

    The aim of the current study was to observe the expression of cytokeratins in human fetal thymuses. Specific cytokeratin markers in adult humans and mice have been well described but there has been little similar work on human fetuses. We also aimed to see whether progenitor stem cells that could be harvested to treat various immunodeficiency disorders are present in fetal thymic tissue. Thymuses obtained from 30 aborted human fetuses (12 to 31 weeks) were examined immunohistochemically to investigate changes in cytokeratin expression in the epithelial cells (TEC) at various gestational ages. Before 16 weeks of gestation, cortical (cTEC) and medullary (mTEC) TEC exhibited homogenous staining for cytokeratins CK8 and CK5. After 16 weeks there was differential staining, with cTEC positive for CK8 and mTEC for CK5 and CK14. Interestingly, both CK5 + CK8+ progenitor stem cells were present in the fetal thymic cortex at all gestational ages, with a relatively high number from 12 to 16 weeks. Cytokeratin expression in fetal thymuses was quite different from that in the adult thymus owing to the presence of undifferentiated progenitor stem cells in fetal thymic stroma along with differentiated TEC. The best time to harvest these progenitor stem cells from fetal thymic stroma in order to treat various immune deficiency disorders appears to be 12-16 weeks. Clin. Anat. 29:711-717, 2016. © 2016 Wiley Periodicals, Inc.

  8. Development and Function of the Human Fetal Adrenal Cortex: A Key Component in the Feto-Placental Unit

    PubMed Central

    Ishimoto, Hitoshi

    2011-01-01

    Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591

  9. hPSC-derived lung and intestinal organoids as models of human fetal tissue.

    PubMed

    Aurora, Megan; Spence, Jason R

    2016-12-15

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC).

  10. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow.

    PubMed

    Muench, M O; Namikawa, R

    2001-01-01

    The liver and the bone marrow (BM) are the major organs that support hematopoiesis in the human fetus. Although both tissues contain the spectrum of hematopoietic cells, erythropoiesis dominates the liver. Previous studies suggested that a unique responsiveness of fetal burst-forming units erythroid (BFU-E) to erythropoietin (EPO) obviates the need for cytokines with burst-promoting activity (BPA) in fetal erythropoiesis. This potential regulatory mechanism whereby fetal erythropoiesis is enhanced was further investigated. Fluorescence-activated cell sorting was used to isolate liver and BM progenitors based on their levels of CD34 and CD38 expression. The most mature population of CD34+ lineage (Lin-) cells was also the most prevalent of the three subpopulations and contained BFU-E responsive to EPO alone under serum-deprived conditions. Kit ligand (KL) also strongly synergized with EPO in stimulating the growth of these BFU-E. An intermediate subset of CD34++CD38+Lin- cells contained erythroid progenitors responsive to EPO alone, but also displayed synergism between EPO and KL, granulocyte-macrophage colony-stimulating factor (GM-CSF), or interleukin (IL)-3, demonstrating that erythroid progenitors that respond to cytokines with BPA do exist in fetal tissues as in the adult BM. Candidate stem cells (CD34++CD38-Lin- cells) did not respond to EPO. Synergisms among KL, GM-CSF, and IL-3, and to a lesser extent granulocyte colony-stimulating factor (G-CSF) and FLK-2/FLT-3 ligand (FL), supported the growth of primitive multipotent progenitors that became responsive to EPO. These data define the limits of EPO activity in fetal erythropoiesis to cells that express CD38 and demonstrate the potential for various cytokine interactions to be involved in regulating fetal erythropoiesis. Furthermore, a comparison of the responses of liver and BM erythroid progenitors revealed similarity in their responses to cytokines but a difference in the frequency of BFU-E among the three

  11. Ontological Differences in First Compared to Third Trimester Human Fetal Placental Chorionic Stem Cells

    PubMed Central

    Jones, Gemma N.; Moschidou, Dafni; Puga-Iglesias, Tamara-Isabel; Kuleszewicz, Katarzyna; Vanleene, Maximilien; Shefelbine, Sandra J.; Bou-Gharios, George; Fisk, Nicholas M.; David, Anna L.; De Coppi, Paolo; Guillot, Pascale V.

    2012-01-01

    Human mesenchymal stromal/stem cells (MSC) isolated from fetal tissues hold promise for use in tissue engineering applications and cell-based therapies, but their collection is restricted ethically and technically. In contrast, the placenta is a potential source of readily-obtainable stem cells throughout pregnancy. In fetal tissues, early gestational stem cells are known to have advantageous characteristics over neonatal and adult stem cells. Accordingly, we investigated whether early fetal placental chorionic stem cells (e-CSC) were physiologically superior to their late gestation fetal chorionic counterparts (l-CSC). We showed that e-CSC shared a common phenotype with l-CSC, differentiating down the osteogenic, adipogenic and neurogenic pathways, and containing a subset of cells endogenously expressing NANOG, SOX2, c-MYC, and KLF4, as well as an array of genes expressed in pluripotent stem cells and primordial germ cells, including CD24, NANOG, SSEA4, SSEA3, TRA-1-60, TRA-1-81, STELLA, FRAGILIS, NANOS3, DAZL and SSEA1. However, we showed that e-CSC have characteristics of an earlier state of stemness compared to l-CSC, such as smaller size, faster kinetics, uniquely expressing OCT4A variant 1 and showing higher levels of expression of NANOG, SOX2, c-MYC and KLF4 than l-CSC. Furthermore e-CSC, but not l-CSC, formed embryoid bodies containing cells from the three germ layer lineages. Finally, we showed that e-CSC demonstrate higher tissue repair in vivo; when transplanted in the osteogenesis imperfecta mice, e-CSC, but not l-CSC increased bone quality and plasticity; and when applied to a skin wound, e-CSC, but not l-CSC, accelerated healing compared to controls. Our results provide insight into the ontogeny of the stemness phenotype during fetal development and suggest that the more primitive characteristics of early compared to late gestation fetal chorionic stem cells may be translationally advantageous. PMID:22962584

  12. Transport and Biodistribution of Dendrimers Across Human Fetal Membranes: Implications for Intravaginal Administration of Dendrimers

    PubMed Central

    Menjoge, Anupa R.; Navath, Raghavendra S.; Asad, Abbas; Kannan, Sujatha; Kim, Chong Jai; Romero, Roberto; Kannan, Rangaramanujam M.

    2010-01-01

    Dendrimers are emerging as promising topical antimicrobial agents, and as targeted nanoscale drug delivery vehicles. Topical intravaginal antimicrobial agents are prescribed to treat the ascending genital infections in pregnant women. The fetal membranes separate the extra-amniotic space and fetus. The purpose of the study is to determine if the dendrimers can be selectively used for local intravaginal application to pregnant women without crossing the membranes into the fetus. In the present study, the transport and permeability of PAMAM (poly(amidoamine)) dendrimers, across human fetal membrane (using a side-by-side diffusion chamber), and its biodistribution (using immunofluorescence) are evaluated ex-vivo. Transport across human fetal membranes (from the maternal side) was evaluated using Fluorescein (FITC), an established transplacental marker (positive control, size~ 400 Da) and fluorophore-tagged G4-PAMAM dendrimers (~ 16 kDa). The fluorophore-tagged G4-PAMAM dendrimers were synthesized and characterized using 1H NMR, MALDI TOF-MS and HPLC analysis. Transfer was measured across the intact fetal membrane (chorioamnion), and the separated chorion and amnion layers. Over a five hour period, the dendrimer transport across all the three membranes was less than < 3 %, whereas the transport of FITC was relatively fast with as much as 49% transport across the amnion. The permeability of FITC (7.9 × 10-7 cm2/s) through the chorioamnion was 7-fold higher than that of the dendrimer (5.8 × 10-8 cm2/s). The biodistribution showed that the dendrimers were largely present in interstitial spaces in the decidual stromal cells and the chorionic trophoblast cells (in 2.5 to 4 h) and surprisingly, to a smaller extent internalized in nuclei of trophoblast cells and nuclei and cytoplasm of stromal cells. Passive diffusion and paracellular transport appear to be the major route for dendrimer transport. The overall findings further suggest that entry of drugs conjugated to

  13. Fetal growth restriction and cardiovascular outcome in early human infancy: a prospective longitudinal study.

    PubMed

    Mäkikallio, Kaarin; Shah, Jyotsna; Slorach, Cameron; Qin, Hong; Kingdom, John; Keating, Sarah; Kelly, Ed; Manlhiot, Cedric; Redington, Andrew; Jaeggi, Edgar

    2016-09-01

    The association between low birth weight and premature cardiovascular disease has led to the "prenatal origin of adult disease-hypothesis". We postulated that fetal growth restriction is associated with cardiovascular changes detectable at birth and in early infancy. Fifty-two appropriately grown fetuses (AGA) and 60 growth-restricted fetuses (FGR) with (n = 20) or without (n = 40) absent or reversed end-diastolic umbilical artery blood flow were prospectively examined by echocardiography before birth, at 1 week and 6 months of life. The impact of growth restriction on postnatal blood pressure, heart rate, cardiovascular dimensions, and function, as well as on vascular morphology of umbilical cord vessels was studied. FGR fetuses displayed significant blood flow redistribution and were delivered earlier with lower birth weights than AGA fetuses. After adjustment for gender, gestational age, and weight at birth, there were no intergroup differences in blood pressure, heart rate, left ventricular morphology, mass, and performance, and in cord vessel morphology. During the first 6 months of life brachioradial pulse wave velocity increased more in FGR fetuses, while other parameters describing vascular stiffness remained comparable between the groups. Fetal growth restriction had no detectable adverse impact on cardiovascular dimensions and function at birth. Cardiovascular findings also remained comparable during the first 6 months of life between the groups except a higher increase in brachioradial pulse wave velocity in the FGR group. Our observations suggest that abnormalities that link reduced intrauterine growth with premature cardiovascular diseases may commence later in childhood, indicating a potential window for screening and prevention.

  14. Effect of thrombin on human amnion mesenchymal cells, mouse fetal membranes, and preterm birth.

    PubMed

    Mogami, Haruta; Keller, Patrick W; Shi, Haolin; Word, R Ann

    2014-05-09

    Here, we investigated the effects of thrombin on matrix metalloproteinases (MMPs) and prostaglandin (PG) synthesis in fetal membranes. Thrombin activity was increased in human amnion from preterm deliveries. Treatment of mesenchymal, but not epithelial, cells with thrombin resulted in increased MMP-1 and MMP-9 mRNA and enzymatic activity. Thrombin also increased COX2 mRNA and PGE2 in these cells. Protease-activated receptor-1 (PAR-1) was localized to amnion mesenchymal and decidual cells. PAR-1-specific inhibitors and activating peptides indicated that thrombin-induced up-regulation of MMP-9 was mediated via PAR-1. In contrast, thrombin-induced up-regulation of MMP-1 and COX-2 was mediated through Toll-like receptor-4, possibly through thrombin-induced release of soluble fetal fibronectin. In vivo, thrombin-injected pregnant mice delivered preterm. Mmp8, Mmp9, and Mmp13, and PGE2 content was increased significantly in fetal membranes from thrombin-injected animals. These results indicate that thrombin acts through multiple mechanisms to activate MMPs and PGE2 synthesis in amnion.

  15. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.

  16. Recovery Rates of Human Fetal Skeletal Remains Using Varying Mesh Sizes.

    PubMed

    Pokines, James T; De La Paz, Jade S

    2016-01-01

    Human fetal skeletal elements of different gestational ages were screened with multiple mesh sizes (6.4 mm [1/4 inch], 3.2 mm [1/8 inch], 2.0 mm, and 1.0 mm) to determine their recovery rates. All remains were previously macerated, and no significantly damaged elements were used. The 6.4 mm mesh allowed a large loss of elements (63.2% overall), including diagnostic elements, while no diagnostic elements were lost when the 1 mm mesh (0.2%) was used. When using the 3.2 mm mesh, 16.2% of the bones were lost, including some diagnostic elements (primarily tooth crowns), while 7.5% were lost using the 2.0 mm mesh. The authors recommend that the potential loss of information incurred when utilizing larger mesh sizes be taken into consideration when planning recovery methods where fetal remains may be encountered and that a minimum of 1.0 mm mesh be utilized in recovery contexts known to include fetal remains.

  17. Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use.

    PubMed

    Wang, X; Dow-Edwards, D; Anderson, V; Minkoff, H; Hurd, Y L

    2006-01-01

    Fetal development is a period sensitive to environmental influences such as maternal drug use. The most commonly used illicit drug by pregnant women is marijuana. The present study investigated the effects of in utero marijuana exposure on expression levels of opioid-related genes in the human fetal forebrain in light of the strong interaction between the cannabinoid and opioid systems. The study group consisted of 42 midgestation fetuses from saline-induced voluntary abortions. The opioid peptide precursors (preprodynorphin and preproenkephalin (PENK)) and receptor (mu, kappa and delta) mRNA expression were assessed in distinct brain regions. The effect of prenatal cannabis exposure was analyzed by multiple regression controlling for confounding variables (maternal alcohol and cigarette use, fetal age, sex, growth measure and post-mortem interval). Prenatal cannabis exposure was significantly associated with increased mu receptor expression in the amygdala, reduced kappa receptor mRNA in mediodorsal thalamic nucleus and reduced preproenkephalin expression in the caudal putamen. Prenatal alcohol exposure primarily influenced the kappa receptor mRNA with reduced levels in the amygdala, claustrum, putamen and insula cortex. No significant effect of prenatal nicotine exposure could be discerned in the present study group. These results indicate that maternal cannabis and alcohol exposure during pregnancy differentially impair opioid-related genes in distinct brain circuits that may have long-term effects on cognitive and emotional behaviors.

  18. Differential expression of HLA class II antigens on human fetal and adult lymphocytes and macrophages.

    PubMed Central

    Edwards, J A; Jones, D B; Evans, P R; Smith, J L

    1985-01-01

    A panel of monoclonal antibodies to monomorphic determinants of the MHC class II subregion locus products: DP, DR and DQ, was used to investigate the expression of these antigens on early lymphocytes and macrophages from human fetal liver (13-20 weeks), placenta (16 weeks and term) and cord blood, in relation to the class II phenotype of cells from adult tonsil and peripheral blood. Fetal liver sections and cell suspensions showed differential expression of class II antigens. DP was expressed at a higher frequency (11.0% of nucleated cells) than DR on lymphoid cells and macrophages from fetal liver, and DQ was either absent or expressed on less than 0.3% of nucleated cells. Consistent with this finding, DP but not DR or DQ antigens were observed on vascular elements and macrophages in the villi of 16-week placenta. At term, all three subregion locus products were expressed. Adult tonsil and peripheral blood B lymphocytes expressed DP, DR and DQ antigens with similar frequency; however, DQ was expressed at a lower frequency than DP and DR on cord blood B lymphocytes. In contrast, 30-50% macrophages from cord blood and adult peripheral blood expressed DP and DR, but fewer (5% and 18%, respectively) expressed DQ. These data suggest that class II antigens are expressed in the sequence DP, DR, DQ on developing lymphocytes. A similar sequence is suggested for macrophages. Images Figure 1 Figure 2 Figure 3 PMID:3894221

  19. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    PubMed

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  20. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies

    PubMed Central

    2010-01-01

    Background Quantitative real-time RT-PCR (RT-qPCR) is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s). In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI) heart failure and across developmental stages in fetal and neonatal rat myocardium. Results The abundance of Arbp, Rpl32, Rpl4, Tbp, Polr2a, Hprt1, Pgk1, Ppia and Gapdh mRNA and 18S ribosomal RNA in myocardial samples was quantified by RT-qPCR. The expression variability of these transcripts was evaluated by the geNorm and Normfinder algorithms and by a variance component analysis method. Biological variability was a greater contributor to sample variability than either repeated reverse transcription or PCR reactions. Conclusions The most stable reference genes were Rpl32, Gapdh and Polr2a in mouse post-infarction heart failure, Polr2a, Rpl32 and Tbp in rat post-infarction heart failure and Rpl32 and Pgk1 in human heart failure (ischemic disease and cardiomyopathy). The overall most stable reference genes across all three species was Rpl32 and Polr2a. In rat myocardium, all reference genes tested showed substantial variation with developmental stage, with Rpl4 as was most stable among the tested genes. PMID:20331858

  1. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    PubMed

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  2. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI

    PubMed Central

    Scott, Julia A.; Habas, Piotr A.; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S.; Corbett-Detig, James M.; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    In the latter half of gestation (20 to 40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones—cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)—are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero. PMID:21530634

  3. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.

    PubMed

    Scott, Julia A; Habas, Piotr A; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S; Corbett-Detig, James M; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-08-01

    In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero.

  4. Structural development of human brain white matter from mid-fetal to perinatal stage

    NASA Astrophysics Data System (ADS)

    Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao

    2015-03-01

    The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.

  5. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    SciTech Connect

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg; Fisher, Robyn L.; Vickers, Alison E.M.

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  6. Temporal Patterns in Sheep Fetal Heart Rate Variability Correlate to Systemic Cytokine Inflammatory Response: A Methodological Exploration of Monitoring Potential Using Complex Signals Bioinformatics

    PubMed Central

    Wu, Hau-Tieng; Durosier, Lucien D.; Desrochers, André; Fecteau, Gilles; Seely, Andrew J. E.; Frasch, Martin G.

    2016-01-01

    Fetal inflammation is associated with increased risk for postnatal organ injuries. No means of early detection exist. We hypothesized that systemic fetal inflammation leads to distinct alterations of fetal heart rate variability (fHRV). We tested this hypothesis deploying a novel series of approaches from complex signals bioinformatics. In chronically instrumented near-term fetal sheep, we induced an inflammatory response with lipopolysaccharide (LPS) injected intravenously (n = 10) observing it over 54 hours; seven additional fetuses served as controls. Fifty-one fHRV measures were determined continuously every 5 minutes using Continuous Individualized Multi-organ Variability Analysis (CIMVA). CIMVA creates an fHRV measures matrix across five signal-analytical domains, thus describing complementary properties of fHRV. We implemented, validated and tested methodology to obtain a subset of CIMVA fHRV measures that matched best the temporal profile of the inflammatory cytokine IL-6. In the LPS group, IL-6 peaked at 3 hours. For the LPS, but not control group, a sharp increase in standardized difference in variability with respect to baseline levels was observed between 3 h and 6 h abating to baseline levels, thus tracking closely the IL-6 inflammatory profile. We derived fHRV inflammatory index (FII) consisting of 15 fHRV measures reflecting the fetal inflammatory response with prediction accuracy of 90%. Hierarchical clustering validated the selection of 14 out of 15 fHRV measures comprising FII. We developed methodology to identify a distinctive subset of fHRV measures that tracks inflammation over time. The broader potential of this bioinformatics approach is discussed to detect physiological responses encoded in HRV measures. PMID:27100089

  7. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Avila, Cecilia; Kaplan, Cynthia; Pan, Yingtian

    2011-11-01

    Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness dDV ~ 92+/-38 μm), low-scattering chorion and trophoblast (CT, dCT ~ 150+/-67 μm), high-scattering subepithelial amnion (A, dA ~ 95+/-36 μm), and low-scattering epithelium (E, dE ~ 29+/-8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses dMCP ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., dMCP>615 μm) because of its increased imaging depth.

  8. Fetal cardiac scanning today.

    PubMed

    Allan, Lindsey

    2010-07-01

    The ability to examine the structure of the fetal heart in real-time started over 30 years ago now. The field has seen very great advances since then, both in terms of technical improvements in ultrasound equipment and in dissemination of operator skills. A great deal has been learnt about normal cardiac function in the human fetus throughout gestation and how it is affected by pathologies of pregnancy. There is increasing recognition of abnormal heart structure during routine obstetric scanning, allowing referral for specialist diagnosis and counselling. It is now possible to make accurate diagnosis of cardiac malformations as early as 12 weeks of gestation. Early diagnosis of a major cardiac malformation in the fetus can provide the parents with a comprehensive prognosis, enabling them to make the most informed choice about the management of the pregnancy.

  9. Overview of fetal arrhythmias

    PubMed Central

    Srinivasan, Shardha; Strasburger, Janette

    2012-01-01

    Purpose of review Though fetal arrhythmias account for a small proportion of referrals to a fetal cardiologist, they may be associated with significant morbidity and mortality. The present review outlines the current literature with regard to the diagnosis and, in brief, some management strategies in fetal arrhythmias. Recent findings Advances in echocardiography have resulted in significant improvements in our ability to elucidate the mechanism of arrhythmia at the bedside. At the same time, fetal magnetocardiography is broadening our understanding of mechanisms of arrhythmia especially as it pertains to ventricular arrhythmias and congenital heart block. It provides a unique window to study electrical properties of the fetal heart, unlike what has been available to date. Recent reports of bedside use of fetal ECG make it a promising new technology. The underlying mechanisms resulting in immune-mediated complete heart block in a small subset of ‘at-risk’ fetuses is under investigation. Summary There have been great strides in noninvasive diagnosis of fetal arrhythmias. However, we still need to improve our knowledge of the electromechanical properties of the fetal heart as well as the mechanisms of arrhythmia to further improve outcomes. Multiinstitutional collaborative studies are needed to help answer some of the questions regarding patient, drug selection and management algorithms. PMID:18781114

  10. Reorganized PKA-AKAP associations in the failing human heart.

    PubMed

    Aye, Thin-Thin; Soni, Siddarth; van Veen, Toon A B; van der Heyden, Marcel A G; Cappadona, Salvatore; Varro, Andras; de Weger, Roel A; de Jonge, Nicolaas; Vos, Marc A; Heck, Albert J R; Scholten, Arjen

    2012-02-01

    Here we reveal that the characterization of large-scale re-arrangements of signaling scaffolds induced by heart failure can serve as a novel concept to identify more specific therapeutic targets. In the mammalian heart, the cAMP pathway, with the cAMP-dependent protein kinase (PKA) in a central role, acts directly downstream of adrenergic receptors to mediate cardiac contractility and rhythm. Heart failure, characterized by severe alterations in adrenergic stimulation is, amongst other interventions, often treated with β-blockers. Contrasting results, however, have shown both beneficial and detrimental effects of decreased cAMP levels in failing hearts. We hypothesize that the origin of this behavior lies in the complex spatiotemporal organization of the regulatory subunit of PKA (PKA-R), which associates tightly with various A-kinase anchoring proteins (AKAPs) to specifically localize PKA's activity. Using chemical proteomics directly applied to human patient and control heart tissue we demonstrate that the association profile of PKA-R with several AKAPs is severely altered in the failing heart, for instance effecting the interaction between PKA and the novel AKAP SPHKAP was 6-fold upregulated upon failing heart conditions. Also a significant increase in captured cGMP-dependent protein kinase (PKG) and phosphodiesterase 2 (PDE2) was observed. The observed altered profiles can already explain many aspects of the aberrant cAMP-response in the failing human heart, validating that this dataset may provide a resource for several novel, more specific, treatment options. This article is part of a Special Issue entitled "Local Signaling in Myocytes".

  11. 2058 Expressed sequence tags (ESTs) from a human fetal lung cDNA library

    SciTech Connect

    Kazunori, Sudo |; Katsuya Chinen; Yusuke Nakamura

    1994-11-15

    ESTs (expressed sequence tags) provide complementary resources for structural and functional analyses of the human genome. The authors have performed single-pass sequencing of 2058 randomly selected, directionally cloned cDNAs isolated from a fetal-lung cDNA library constructed with oligo (dT) primers. Computer analyses of the 5{prime}-end sequences revealed that 60.4% of the clones were considered to be identical to previously reported human genes or ESTs; 9.0% of them showed significant homology to known genes in human, other mammals, or lower organisms; 30.6% showed no homology to any genes or DNA sequences in the public database. These data and reagents will be useful for future investigations of gene expression during prenatal development of human lung. 11 refs., 1 fig., 2 tabs.

  12. Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography.

    PubMed

    Takahashi, Emi; Hayashi, Emiko; Schmahmann, Jeremy D; Grant, P Ellen

    2014-08-01

    High angular resolution diffusion imaging (HARDI) tractography has provided insights into major white matter pathways and cortical development in the human fetal cerebrum. Our objective in this study was to further apply HARDI tracography to the developing human cerebellum ranging from fetal to adult stages, to outline in broad strokes the 3-dimensional development of white matter and local gray matter organization in the cerebellum. We imaged intact fixed fetal cerebellum specimens at 17 gestational weeks (W), 21W, 31W, 36W, and 38W along with an adult cerebellum for comparison. At the earliest gestational age studied (17W), coherent pathways that formed the superior, middle, and inferior cerebellar peduncles were already detected, but pathways between deep cerebellar nuclei and the cortex were not observed until after 38W. At 36-38W, we identified emerging regional specification of the middle cerebellar peduncle. In the cerebellar cortex, we observed disappearance of radial organization in the sagittal orientation during the studied developmental stages similar to our previous observations in developing cerebral cortex. In contrast, in the axial orientation, cerebellar cortical pathways emerged first sparsely (31W) and then with increased prominence at 36-38W with pathways detected both in the radial and tangential directions to the cortical surface. The cerebellar vermis first contained only pathways tangential to the long axes of folia (17-21W), but pathways parallel to the long axes of folia emerged between 21 and 31W. Our results show the potential for HARDI tractography to image developing human cerebellar connectivity.

  13. The human fetal retinal pigment epithelium: A target tissue for thyroid hormones.

    PubMed

    Duncan, K G; Bailey, K R; Baxter, J D; Schwartz, D M

    1999-01-01

    Thyroid hormone (T(3)) has previously been shown to regulate visual function in experimental animals and humans. To determine if T(3) exerts direct effects on retinal function, cultured human fetal retinal pigment epithelial (RPE) cells were tested for the presence of thyroid hormone receptors (TRs) and T(3) responses. Using TR-isoform-specific reverse-transcriptase polymerase chain reaction techniques, mRNA was detected for alpha1, alpha2 and beta1 TR isoforms. Immunohistochemistry using a polyclonal antibody that simultaneously recognizes alpha1, alpha2 and beta1 TRs showed nuclear staining of the fetal RPE. Specific binding of (125)I-T(3) to RPE cell nuclear extracts was detected, and Scatchard analysis revealed a K(d) of 110 pM. To determine if RPE cells can respond to T(3), hyaluronic acid (HA) levels in cell culture media were measured after 2, 4 or 6 days of growth in medium containing 10(-7) M T(3). T(3) inhibited accumulation of HA in the cell culture medium of RPE cells. This effect was not evident at 2 days, but at 4 days there was 42.8% less HA in cell culture medium of RPE cells grown in 10(-7) M T(3) (p < 0.01, t test). The effect persisted through 6 days, when there was 46.3% less HA in cell culture medium of RPE cells grown in 10(-7) M T(3) (p < 0.001, t test). The data indicate that human fetal RPE cells are a direct target for thyroid hormones.

  14. Regional development of Langerhans cells and formation of Birbeck granules in human embryonic and fetal skin.

    PubMed

    Fujita, M; Furukawa, F; Horiguchi, Y; Ueda, M; Kashihara-Sawami, M; Imamura, S

    1991-07-01

    The regional development of Langerhans cells (LC) and the formation of Birbeck granules (BG) were examined in human embryonic and fetal skin. Samples were obtained from multiple anatomic sites and stained with anti-CD36, anti-CD1a, and anti-HLA-DR antibody as well as Lag antibody specifically reactive to BG and some vacuoles of human LC. In the first trimester, CD36+ dendritic epidermal cells were identified before the appearance of CD1a+ cells and Lag+ cells. Some of the former co-expressed HLA-DR antigens but not CD1a antigens. In the second trimester, regional variations in LC development were observed. Epidermal LC of palms and soles reached a peak in number in the first trimester but were rarely detected after 18 weeks estimated gestation age (EGA), whereas, in other regions, their number increased with age. In the second trimester, CD1a+ cells and Lag+ cells were also identified in the epidermis, although Lag+ cells appeared later than CD1a+ cells. The Lag+ cells until 17 weeks EGA showed a variety of staining intensities and immunoelectron microscopy revealed that they contained various amounts of Lag-reactive BG. Flow cytometric analysis showed that relative amounts of Lag antigens in LC increased during the second trimester and that fetal LC of 18 weeks EGA expressed the same amounts of HLA-DR, CD1a, and Lag antigens as did adult human LC. In the dermis, in the second trimester, numerous CD36+ cells and HLA-DR+ cells were found, whereas CD1a+ cells and Lag+ cells were rarely detected. Taken together, it is suggested that HLA-DR+ dendritic cells acquire CD1a+ antigens first and then form BG after migration to the epidermis and that fetal LC are phenotypically mature in the second trimester.

  15. FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.

    SciTech Connect

    LIPFERT, F.W.; SULLIVAN, T.M.

    2005-09-21

    Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks in the highest fish-consuming group ({approx}3 times

  16. Programming and reprogramming a human heart cell

    PubMed Central

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-01-01

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the “programming” and “reprogramming” of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart. PMID:25712211

  17. Diagnostic Accuracy of the FIGO and the 5-Tier Fetal Heart Rate Classification Systems in the Detection of Neonatal Acidemia.

    PubMed

    Martí Gamboa, Sabina; Giménez, Olga Redrado; Mancho, Jara Pascual; Moros, María Lapresta; Sada, Julia Ruiz; Mateo, Sergio Castan

    2016-10-25

    Objective The objective of this study was to determine ability to detect neonatal acidemia and interobserver agreement with the FIGO 3-tier and 5-tier fetal heart rate (FHR) classification systems. Design This was a case-control study. Setting This study was set at the University Medical Center. Population A total of 202 FHR tracings of 102 women who delivered an acidemic fetus (umbilical arterial cord gas pH ≤ 7.10 and BE < - 8) and 100 who delivered a nonacidemic fetus (umbilical arterial cord gas pH > 7.10) were assessed. A subanalysis was performed for those fetuses who suffered severe metabolic acidemia (pH ≤ 7.0 and BE < - 12). Methods Two reviewers blind to clinical and outcome data classified tracings according to the new 3-tier system proposed by the FIGO and the 5-tier system proposed by Parer and Ikeda. Main Outcome Measures Sensitivity and specificity for detecting neonatal acidemia and interobserver agreement in classifying FHR tracings into categories of both systems were studied. Results The 3-tier system showed a greater sensitivity and lower specificity to detect neonatal acidemia (43.6% sensitivity, 82.5% specificity) and severe metabolic acidemia (71.4% sensitivity, 74.0% specificity) compared with the 5-tier system (36.3% sensitivity, 88% specificity and 61.9% sensitivity, 80.1% specificity, respectively). Both systems were compared by area under the receiver-operating characteristic curve, with comparable predictive ability for detecting neonatal acidemia (FIGO-area under the curve [AUC]: 0.63 [95% confidence interval [CI]: 0.57-0.68] and Parer-AUC: 0.62 [95% CI: 0.56-0.67]). Interobserver agreement was moderate for both systems, but performance at each specific category showed a better agreement for the 5-tier system identifying a pathological tracing (orange or red, κ: 0.625 vs. pathological category, κ: 0.538). Conclusion Both systems presented a comparable ability to predict neonatal acidemia, although the

  18. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  19. Oxygen consumption of human heart cells in monolayer culture.

    PubMed

    Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya

    2014-09-26

    Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.

  20. Influence of heart failure on nucleolar organization and protein expression in human hearts

    SciTech Connect

    Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel; Azorin, Inmaculada; Sirera, Rafael; Martinez-Dolz, Luis; Hove, Leif; Cinca, Juan; Lago, Francisca; Gonzalez-Juanatey, Jose R.; Salvador, Antonio; Portoles, Manuel

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.

  1. Hear the beat: decellularized mouse heart regenerated with human induced pluripotent stem cells.

    PubMed

    Lin, Bo; Lu, Tung-Ying; Yang, Lei

    2014-02-01

    Heart tissue engineering holds a great potential for human heart disease therapy. Regeneration of whole biofunctional human heart is the ultimate goal of tissue engineering. Recent advances take the first step towards whole heart regeneration. However, a substantial amount of challenges have to be overcome.

  2. Foodborne outbreak of human brucellosis caused by ingested raw materials of fetal calf on Jeju Island.

    PubMed

    Yoo, Jeong Rae; Heo, Sang Taek; Lee, Keun Hwa; Kim, Young Ree; Yoo, Seung Jin

    2015-02-01

    Since the first reported case of human brucellosis in 2002 in South Korea, its incidence has been increasing nationally. However, bovine brucellosis has not been present from 2005 to date on Jeju Island. Despite Jeju Island being considered a clean area for bovine brucellosis, we experienced an outbreak of human brucellosis between 2012 and 2013. Herein, we report cases with human brucellosis after ingestion of raw materials of fetal calf at a restaurant. Patients were identified by isolation of the Brucella abortus in their blood and joint tissue. Because all patients developed zoonosis by a faulty folk remedy, we emphasize the importance of educational programs to increase the awareness of zoonosis, and the need for active surveillance and detection of illegal distribution channels of the infected animal. After the outbreak, we took control of the involved restaurant and its illegal distribution channel, and there have been no further outbreaks.

  3. Ex utero: live human fetal research and the films of Davenport Hooker.

    PubMed

    Wilson, Emily K

    2014-01-01

    Between 1932 and 1963 University of Pittsburgh anatomist Davenport Hooker, Ph.D., performed and filmed noninvasive studies of reflexive movement on more than 150 surgically aborted human fetuses. The resulting imagery and information would contribute substantially to new visual and biomedical conceptions of fetuses as baby-like, autonomous human entities that emerged in the 1960s and 1970s. Hooker's methods, though broadly conforming to contemporary research practices and views of fetuses, would not have been feasible later. But while Hooker and the 1930s medical and general public viewed live fetuses as acceptable materials for nontherapeutic research, they also shared a regard for fetuses as developing humans with some degree of social value. Hooker's research and the various reactions to his work demonstrate the varied and changing perspectives on fetuses and fetal experimentation, and the influence those views can have on biomedical research.

  4. Quantifying and Modelling Tissue Maturation in the Living Human Fetal Brain

    PubMed Central

    Studholme, Colin; Rousseau, François

    2015-01-01

    Recent advances in medical imaging are beginning to allow us to quantify brain tissue maturation in the growing human brain prior to normal term age, and are beginning to shed new light on early human brain growth. These advances compliment the work already done in cellular level imaging in animal and post mortem studies of brain development. The opportunities for collaborative research that bridges the gap between macroscopic and microscopic windows on the developing brain are significant. The aim of this paper is to provide a review of the current research into MR imaging of the living fetal brain with the aim of motivating improved interfaces between the two fields. The review begins with a description of faster MRI techniques that are capable of freezing motion of the fetal head during the acquisition of a slice, and how these have been combined with advanced post-processing algorithms to build 3D images from motion scattered slices. Such rich data has motivated the development of techniques to automatically label developing tissue zones within MRI data allowing their quantification in 3D and 4D within the normally growing fetal brain. These methods have provided the basis for later work that has created the first maps of tissue growth rate and cortical folding in normally developing brains in-utero. These measurements provide valuable findings that compliment those derived from post-mortem anatomy, and additionally allow for the possibility of larger population studies of the influence of maternal environmental and genes on early brain development. PMID:23831076

  5. Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure

    PubMed Central

    Gupte, Anisha A.; Hamilton, Dale J.; Cordero-Reyes, Andrea M.; Youker, Keith A.; Yin, Zheng; Estep, Jerry D.; Stevens, Robert D.; Wenner, Brett; Ilkayeva, Olga; Loebe, Matthias; Peterson, Leif E.; Lyon, Christopher J.; Wong, Stephen T.C.; Newgard, Christopher B.; Torre-Amione, Guillermo; Taegtmeyer, Heinrich; Hsueh, Willa A.

    2015-01-01

    Background Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood. Methods and Results We compared metabolomic, gene transcript, and protein data from six paired failing human left ventricular (LV) tissue samples obtained during left ventricular assist device (LVAD) insertion (heart failure (HF) samples) and at heart transplant (post-LVAD samples). Non-failing left ventricular (NFLV) wall samples procured from explanted hearts of patients with right HF served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in HF tissue: 2.6 fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor gamma co-activator1α (PGC1A, 1.3 fold) and estrogen-related receptor α (ERRA, 1.2 fold) and γ (ERRG, 2.2 fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with LVAD improved all of these metabolic and transcriptional defects. Conclusions These observations underscore an important pathophysiologic role for severely defective metabolism in HF, while the reversibility of these defects by LVAD suggests metabolic resilience of the human heart. PMID:24825877

  6. The human heart: application of the golden ratio and angle.

    PubMed

    Henein, Michael Y; Zhao, Ying; Nicoll, Rachel; Sun, Lin; Khir, Ashraf W; Franklin, Karl; Lindqvist, Per

    2011-08-04

    The golden ratio, or golden mean, of 1.618 is a proportion known since antiquity to be the most aesthetically pleasing and has been used repeatedly in art and architecture. Both the golden ratio and the allied golden angle of 137.5° have been found within the proportions and angles of the human body and plants. In the human heart we found many applications of the golden ratio and angle, in addition to those previously described. In healthy hearts, vertical and transverse dimensions accord with the golden ratio, irrespective of different absolute dimensions due to ethnicity. In mild heart failure, the ratio of 1.618 was maintained but in end-stage heart failure the ratio significantly reduced. Similarly, in healthy ventricles mitral annulus dimensions accorded with the golden ratio, while in dilated cardiomyopathy and mitral regurgitation patients the ratio had significantly reduced. In healthy patients, both the angles between the mid-luminal axes of the pulmonary trunk and the ascending aorta continuation and between the outflow tract axis and continuation of the inflow tract axis of the right ventricle approximate to the golden angle, although in severe pulmonary hypertension, the angle is significantly increased. Hence the overall cardiac and ventricular dimensions in a normal heart are consistent with the golden ratio and angle, representing optimum pump structure and function efficiency, whereas there is significant deviation in the disease state. These findings could have anatomical, functional and prognostic value as markers of early deviation from normality.

  7. Mechanisms for the adverse effects of late gestational increases in maternal cortisol on the heart revealed by transcriptomic analyses of the fetal septum.

    PubMed

    Richards, Elaine M; Wood, Charles E; Rabaglino, Maria Belen; Antolic, Andrew; Keller-Wood, Maureen

    2014-08-01

    We have previously shown in sheep that 10 days of modest chronic increase in maternal cortisol resulting from maternal infusion of cortisol (1 mg/kg/day) caused fetal heart enlargement and Purkinje cell apoptosis. In subsequent studies we extended the cortisol infusion to term, finding a dramatic incidence of stillbirth in the pregnancies with chronically increased cortisol. To investigate effects of maternal cortisol on the heart, we performed transcriptomic analyses on the septa using ovine microarrays and Webgestalt and Cytoscape programs for pathway inference. Analyses of the transcriptomic effects of maternal cortisol infusion for 10 days (130 day cortisol vs 130 day control), or ∼25 days (140 day cortisol vs 140 day control) and of normal maturation (140 day control vs 130 day control) were performed. Gene ontology terms related to immune function and cytokine actions were significantly overrepresented as genes altered by both cortisol and maturation in the septa. After 10 days of cortisol, growth factor and muscle cell apoptosis pathways were significantly overrepresented, consistent with our previous histologic findings. In the term fetuses (∼25 days of cortisol) nutrient pathways were significantly overrepresented, consistent with altered metabolism and reduced mitochondria. Analysis of mitochondrial number by mitochondrial DNA expression confirmed a significant decrease in mitochondria. The metabolic pathways modeled as altered by cortisol treatment to term were different from those modeled during maturation of the heart to term, and thus changes in gene expression in these metabolic pathways may be indicative of the fetal heart pathophysiologies seen in pregnancies complicated by stillbirth, including gestational diabetes, Cushing's disease and chronic stress.

  8. Mechanisms for the adverse effects of late gestational increases in maternal cortisol on the heart revealed by transcriptomic analyses of the fetal septum

    PubMed Central

    Wood, Charles E.; Rabaglino, Maria Belen; Antolic, Andrew; Keller-Wood, Maureen

    2014-01-01

    We have previously shown in sheep that 10 days of modest chronic increase in maternal cortisol resulting from maternal infusion of cortisol (1 mg/kg/day) caused fetal heart enlargement and Purkinje cell apoptosis. In subsequent studies we extended the cortisol infusion to term, finding a dramatic incidence of stillbirth in the pregnancies with chronically increased cortisol. To investigate effects of maternal cortisol on the heart, we performed transcriptomic analyses on the septa using ovine microarrays and Webgestalt and Cytoscape programs for pathway inference. Analyses of the transcriptomic effects of maternal cortisol infusion for 10 days (130 day cortisol vs 130 day control), or ∼25 days (140 day cortisol vs 140 day control) and of normal maturation (140 day control vs 130 day control) were performed. Gene ontology terms related to immune function and cytokine actions were significantly overrepresented as genes altered by both cortisol and maturation in the septa. After 10 days of cortisol, growth factor and muscle cell apoptosis pathways were significantly overrepresented, consistent with our previous histologic findings. In the term fetuses (∼25 days of cortisol) nutrient pathways were significantly overrepresented, consistent with altered metabolism and reduced mitochondria. Analysis of mitochondrial number by mitochondrial DNA expression confirmed a significant decrease in mitochondria. The metabolic pathways modeled as altered by cortisol treatment to term were different from those modeled during maturation of the heart to term, and thus changes in gene expression in these metabolic pathways may be indicative of the fetal heart pathophysiologies seen in pregnancies complicated by stillbirth, including gestational diabetes, Cushing's disease and chronic stress. PMID:24867915

  9. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    PubMed

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing.

  10. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  11. n-Order and maximum fuzzy similarity entropy for discrimination of signals of different complexity: Application to fetal heart rate signals.

    PubMed

    Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc

    2015-09-01

    This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series.

  12. Variability in Expression of CYP3A5 in Human Fetal Liver.

    PubMed

    Vyhlidal, Carrie A; Pearce, Robin E; Gaedigk, Roger; Calamia, Justina C; Shuster, Diana L; Thummel, Kenneth E; Leeder, J Steven

    2015-08-01

    Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.

  13. Cyclosporine A enhances Th2 bias at the maternal-fetal interface in early human pregnancy with aid of the interaction between maternal and fetal cells.

    PubMed

    Piao, Hai-Lan; Wang, Song-Cun; Tao, Yu; Zhu, Rui; Sun, Chan; Fu, Qiang; Du, Mei-Rong; Li, Da-Jin

    2012-01-01

    Our previous study has demonstrated that cyclosporine A (CsA) administration in vivo induces Th2 bias at the maternal-fetal interface, leading to improved murine pregnancy outcomes. Here, we investigated how CsA treatment in vitro induced Th2 bias at the human maternal-fetal interface in early pregnancy. The cell co-culture in vitro in different combination of component cells at the maternal-fetal interface was established to investigate the regulation of CsA on cytokine production from the interaction of these cells. It was found that interferon (IFN)-γ was produced only by decidual immune cells (DICs), and not by trophoblasts or decidual stromal cells (DSCs); all these cells secreted interleukin (IL)-4, IL-10, and tumor necrosis factor (TNF)-α. Treatment with CsA completely blocked IFN-γ production in DICs and inhibited TNF-α production in all examined cells. CsA increased IL-10 and IL-4 production in trophoblasts co-cultured with DSCs and DICs although CsA treatment did not affect IL-10 or IL-4 production in any of the cells when cultured alone. These results suggest that CsA promotes Th2 bias at the maternal-fetal interface by increasing Th2-type cytokine production in trophoblasts with the aid of DSCs and DICs, while inhibiting Th1-type cytokine production in DICs and TNF-α production in all investigated cells. Our study might be useful in clinical therapeutics for spontaneous pregnancy wastage and other pregnancy complications.

  14. Characterization of mesenchymal cells beneath cornification of the fetal epithelium and epidermis at the face: an immunohistochemical study using human fetal specimens

    PubMed Central

    Kim, Ji Hyun; Jin, Zhe Wu; Murakami, Gen

    2016-01-01

    Fetal development of the face involves a specific type of cornification in which keratinocytes provide a mass or plug to fill a cavity. The epithelial-mesenchymal interaction was likely to be different from that in the usual skin. We examined expression of intermediate filaments and other mesenchymal markers beneath cornification in the fetal face. Using sections from 5 mid-term human fetuses at 14–16 weeks, immunohistochemistry was conducted for cytokeratins (CK), vimentin, nestin, glial fibrilary acidic protein, desmin, CD34, CD68 and proliferating cell nuclear antigen (PCNA). Fetal zygomatic skin was composed of a thin stratum corneum and a stratum basale (CK5/6+, CK14+, and CK19+) and, as the intermediate layer, 2–3 layered large keratinocytes with nucleus. The basal layer was lined by mono-layered mesenchymal cells (CD34+ and nestin+). Some of basal cells were PCNA-positive. In the keratinocyte plug at the external ear and nose, most cell nuclei expressed PCNA, CK5/6, CK14, and CK19. Vimentin-positive mesenchymal cells migrated into the plug. The PCNA-positive nucleus as well as mesenchymal cell migration was not seen in the lip margin in spite of the thick keratinocyte layer. The lingual epithelium were characterized by the CK7-positive stratum corneum as well as the thick mesenchymal papilla. CD68-positive macrophages were absent in the epidermis/epithelium. Being different from usual cornification of the skin, loss of a mesenchymal monolayer as well as superficial migration of mesenchymal cells might connect with a specific differentiation of keratinocyte to provide a plug at the fetal nose and ear. PMID:27051567

  15. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.

  16. Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts.

    PubMed Central

    Mavilio, F; Giampaolo, A; Carè, A; Migliaccio, G; Calandrini, M; Russo, G; Pagliardi, G L; Mastroberardino, G; Marinucci, M; Peschle, C

    1983-01-01

    The globin chain synthetic pattern and the extent of DNA methylation within embryonic, fetal, and adult beta-like globin gene domains were evaluated in greater than or equal to 90% purified human erythroblasts from yolk sacs and fetal livers in the 6- to 12-wk gestational period as well as from adult marrows. The 6-wk erythroblasts produce essentially embryonic epsilon chains, whereas the 12-wk erythroblasts synthesize largely fetal gamma globin and the adult marrow erythroblasts synthesize almost exclusively adult beta chains. In all phases of ontogenic development, a strong correlation exists between DNA hypomethylation in the close flanking sequences of globin genes and their expression. These results suggest that modulation of the methylation pattern may represent a key mechanism for regulating expression of human globin genes during embryonic leads to fetal and fetal leads to adult Hb switches in humans. In ontogenic development this mechanism might in turn correlate with a gradual modification of chromatin structure in the non-alpha gene cluster, thus leading to a 5' leads to 3' activation of globin genes in a balanced fashion. Images PMID:6316333

  17. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    PubMed

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  18. Weak functional connectivity in the human fetal brain prior to preterm birth.

    PubMed

    Thomason, Moriah E; Scheinost, Dustin; Manning, Janessa H; Grove, Lauren E; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S; Constable, R Todd; Ment, Laura R; Romero, Roberto

    2017-01-09

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero.

  19. Weak functional connectivity in the human fetal brain prior to preterm birth

    PubMed Central

    Thomason, Moriah E.; Scheinost, Dustin; Manning, Janessa H.; Grove, Lauren E.; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S.; Constable, R. Todd; Ment, Laura R.; Romero, Roberto

    2017-01-01

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero. PMID:28067865

  20. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal.

    PubMed

    Naccache, Alexandre; Louiset, Estelle; Duparc, Céline; Laquerrière, Annie; Patrier, Sophie; Renouf, Sylvie; Gomez-Sanchez, Celso E; Mukai, Kuniaki; Lefebvre, Hervé; Castanet, Mireille

    2016-10-15

    Mast cells are present in the human adult adrenal with a potential role in the regulation of aldosterone secretion in both normal cortex and adrenocortical adenomas. We have investigated the human developing adrenal gland for the presence of mast cells in parallel with steroidogenic enzymes profile and serotonin signaling pathway. RT-QPCR and immunohistochemical studies were performed on adrenals at 16-41 weeks of gestation (WG). Tryptase-immunopositive mast cells were found from 18 WG in the adrenal subcapsular layer, close to 3βHSD- and CYP11B2-immunoreactive cells, firstly detected at 18 and 24 WG, respectively. Tryptophan hydroxylase and serotonin receptor type 4 expression increased at 30 WG before the CYP11B2 expression surge. In addition, HDL and LDL cholesterol receptors were expressed in the subcapsular zone from 24 WG. Altogether, our findings suggest the implication of mast cells and serotonin in the establishment of the mineralocorticoid synthesizing pathway during fetal adrenal development.

  1. Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development.

    PubMed

    Iglesias, Bibiana V; Centeno, Gloria; Pascuccelli, Hector; Ward, Flavia; Peters, María Giselle; Filmus, Jorge; Puricelli, Lydia; de Kier Joffé, Elisa Bal

    2008-11-01

    Glypicans represent a family of cell surface proteoglycans. Loss-of-function mutations in the human glypican-3 (GPC3) gene results in the Simpson-Golabi-Behmel syndrome, characterized by severe malformations and pre- and postnatal overgrowth. Because the expression of GPC3 during human embryonic and fetal periods remains largely unknown, we investigated by immunohistochemistry its pattern of expression during four periods of human development covering the embryonic period (P1) from 5 to 8 weeks of development, and the fetal periods (P2, P3 and P4) from 9 to 28 weeks of development. Hepatocytes were homogeneously positive for GPC3 during the four periods while pancreatic acini and ducts showed a rather high staining only during P1. GPC3 was also detected in several kidney structures and in the genital system where the sex cords were weakly positive in P1 and P2. In later developmental stages the male's genital system expressed GPC3 while the female's did not. While the mesenchyme in the limbs showed positive staining in P1, GPC3 was not detected during the following stages. The mesenchymal tissue localized between the most caudal vertebrae was also positive in P1. A strong GPC3 signal was observed in neurons of the spinal cord and dorsal root ganglia in P2 and P3, while the brain was negative. In sum our studies revealed that GPC3 expression is highly tissue- and stage-specific during human development. The expression pattern of GPC3 is consistent with the abnormalities seen in the Simpson-Golabi-Behmel syndrome.

  2. [Fetal responses to different methods of electrocution of pregnant sows].

    PubMed

    Peisker, Nina; Preissel, Anne-Kathrin; Ritzmann, Mathias; Schuster, Tibor; Thomes, Rainer; Henke, Julia

    2008-01-01

    The fetal stress responses in sows euthanized by electrical current during their second and last trimester of pregnancy (G1 and G2) were evaluated. Three methods of euthanasia of pregnant sows generally applicable to cases of epizootic or emergency slaughter were investigated: 1. conventional application of electrical current to the head and heart (HH); 2. application of electrical current to the head, heart and the uterus (HHU); 3. application of electrical current to the head, heart and from the upper body to the vagina (HHV). Fetuses were delivered by cesarean section at intervals of 3 to 4 minutes and remained attached to the sow by the umbilical cord. Fetal vitality, reflexes, heart rate, blood pressure, rectal body temperature, intracardial arteriovenous pCO2, pH and lactic acid were monitored for a period of 30 minutes. No method was found to kill the fetal pigs immediately. In fetuses at G1 there were no significant differences between the HH and HHU and HHV methods. Fetuses at G2 showed a significantly faster decrease in heart rate and blood pressure as well as a shorter period of time for the absence of fetal body movements and reflexes for the HHT method, compared to the other methods. Since it is not yet known to what extent the fetal pig experiences pain and suffering, the prolonged process of dying for the in utero fetus due to hypoxia which includes struggling and gasps is inconsistent with criteria for humane euthanasia and animal welfare.

  3. General anesthesia suppresses normal heart rate variability in humans

    NASA Astrophysics Data System (ADS)

    Matchett, Gerald; Wood, Philip

    2014-06-01

    The human heart normally exhibits robust beat-to-beat heart rate variability (HRV). The loss of this variability is associated with pathology, including disease states such as congestive heart failure (CHF). The effect of general anesthesia on intrinsic HRV is unknown. In this prospective, observational study we enrolled 100 human subjects having elective major surgical procedures under general anesthesia. We recorded continuous heart rate data via continuous electrocardiogram before, during, and after anesthesia, and we assessed HRV of the R-R intervals. We assessed HRV using several common metrics including Detrended Fluctuation Analysis (DFA), Multifractal Analysis, and Multiscale Entropy Analysis. Each of these analyses was done in each of the four clinical phases for each study subject over the course of 24 h: Before anesthesia, during anesthesia, early recovery, and late recovery. On average, we observed a loss of variability on the aforementioned metrics that appeared to correspond to the state of general anesthesia. Following the conclusion of anesthesia, most study subjects appeared to regain their normal HRV, although this did not occur immediately. The resumption of normal HRV was especially delayed on DFA. Qualitatively, the reduction in HRV under anesthesia appears similar to the reduction in HRV observed in CHF. These observations will need to be validated in future studies, and the broader clinical implications of these observations, if any, are unknown.

  4. Cryopreserved Human Amniotic Membrane and A Bioinspired Underwater Adhesive To Seal And Promote Healing Of Iatrogenic Fetal Membrane Defect Sites

    PubMed Central

    Papanna, Ramesha; Mann, Lovepreet K; Tseng, Scheffer C.G.; Stewart, Russell J; Kaur, Sarbjit S; Swindle, M Michael; Kyriakides, Themis R; Tatevian, Nina; Moise, Kenneth J

    2015-01-01

    Introduction We investigated the ability of cryopreserved human amniotic membrane (hAM) scaffold sealed with an underwater adhesive, bio-inspired by marine sandcastle worms to promote healing of iatrogenic fetal membrane defects in a pregnant swine model. Methods Twelve Yucatan miniature pigs underwent laparotomy under general anesthesia at 70 days gestation (term = 114 days). The gestational sacs were assigned to uninstrumented (n=24) and instrumented with 12 Fr trocar, which was further randomized into four different arms-no hAM patch, (n=22), hAM patch secured with suture (n=16), hAM patch with no suture (n=14), and hAM patch secured with adhesive (n=9). The animals were euthanized 20 days after the procedure. Gross and histological examination of the entry site was performed for fetal membrane healing. Results There were no differences in fetal survival, amniotic fluid levels, or dye-leakage from the amniotic cavity between the groups. The fetal membranes spontaneously healed in instrumented sacs without hAM patches. In sacs with hAM patches secured with sutures, the patch was incorporated into the swine fetal membranes. In sacs with hAM patches without sutures, 100% of the patches were displaced from the defect site, whereas in sacs with hAM patches secured with adhesive 55% of the patches remained in place and showed complete healing (p=0.04). Discussion In contrast to humans, swine fetal membranes heal spontaneously after an iatrogenic injury and thus not an adequate model. hAM patches became incorporated into the defect site by cellular ingrowth from the fetal membranes. The bioinspired adhesive adhered the hAM patches within the defect site. PMID:26059341

  5. Pharmacology and inotropic potential of forskolin in the human heart.

    PubMed Central

    Bristow, M R; Ginsburg, R; Strosberg, A; Montgomery, W; Minobe, W

    1984-01-01

    We evaluated the effects of the diterpene compound forskolin in human myocardial adenylate cyclase preparations, isolated trabeculae and papillary muscles derived from failing human hearts, and acutely instrumented dogs. Forskolin was a potent, powerful activator of human myocardial adenylate cyclase and produced maximal effects that were 4.82 (normally functioning left ventricle) and 6.13 (failing left ventricle) fold greater than isoproterenol. In contrast to isoproterenol, forskolin retained full activity in membrane preparations derived from failing hearts. In cyclase preparations, forskolin demonstrated unique substrate and Mg2+ kinetic properties that could be distinguished from hormone receptor-coupled agonists or fluoride ion. The adenylate cyclase stimulatory effect of forskolin was synergistic with isoproterenol, apparently due to the location of forskolin activation being beyond the level of hormone receptor-agonist in the receptor-cyclase complex. Forskolin was a potent positive inotrope in failing human myocardium, producing a stimulation of contraction that was similar to isoproterenol. Finally, in open chest dogs forskolin was a positive inotropic agent that reduced preload and afterload. We conclude that forskolin belongs to a class of agents that may have therapeutic potential in the treatment of congestive heart failure. Images PMID:6330174

  6. Effect of 4-octylphenol on germ cell number in cultured human fetal gonads.

    PubMed

    Bendsen, E; Laursen, S; Olesen, C; Westergaard, L; Andersen, C; Byskov, A

    2001-02-01

    This study evaluates whether a hormone disruptor found in environment, 4-octylphenol, affects the rate of proliferation of germ cells from human fetal gonads during a 3 week culture period. Five testis and five ovaries were obtained from fetuses of women undergoing legal abortions between the 6th and 9th week of fetal life, representing the period where early gonadal differentiation takes place. Each gonad was divided into equal sized test and control tissue. The test tissue was exposed to a continued presence of 10 micromol/l 4-octylphenol in the culture medium. The cultures were terminated by fixation of the tissues, which where then processed for histology and serially sectioned. The mitotic index of the germ cells (i.e. number of mitosis per 100 germ cells) and the number of germ cells per area was determined. Each of the five testes cultured in 4-octylphenol exhibited a significantly reduced mitotic index and number of pre-spermatogonia compared to the control, whereas none of the five ovaries exposed to 4-octylphenol revealed any difference compared to the control. It is concluded that 4-octylphenol exerts a sex-specific effect on male germ cells.

  7. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells.

    PubMed

    Moutouh-de Parseval, Laure A; Verhelle, Dominique; Glezer, Emilia; Jensen-Pergakes, Kristen; Ferguson, Gregory D; Corral, Laura G; Morris, Christopher L; Muller, George; Brady, Helen; Chan, Kyle

    2008-01-01

    Sickle-cell disease (SCD) and beta thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents. Because clinical trials have demonstrated that lenalidomide reduces or eliminates the need for transfusions in some patients with disrupted blood cell production, we investigated the effects of lenalidomide and pomalidomide on erythropoiesis and hemoglobin synthesis. We used an in vitro erythropoiesis model derived from human CD34+ progenitor cells from normal and SCD donors. We found that both compounds slowed erythroid maturation, increased proliferation of immature erythroid cells, and regulated hemoglobin transcription, resulting in potent induction of HbF without the cytotoxicity associated with other HbF inducers. When combined with hydroxyurea, pomalidomide and, to a lesser extent, lenalidomide were found to have synergistic effects on HbF upregulation. Our results elucidate what we believe to be a new mechanism of action of pomalidomide and lenalidomide and support the hypothesis that pomalidomide, used alone or in combination with hydroxyurea, may improve erythropoiesis and increase the ratio of fetal to adult hemoglobin. These findings support the evaluation of pomalidomide as an innovative new therapy for beta-hemoglobinopathies.

  8. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells.

    PubMed

    Chen, Pei-Min; Yen, Men-Luh; Liu, Ko-Jiunn; Sytwu, Huey-Kang; Yen, B-Linju

    2011-07-18

    In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.

  9. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses

    PubMed Central

    Richard, Audrey Stéphanie; Shim, Byoung-Shik; Kwon, Young-Chan; Zhang, Rong; Otsuka, Yuka; Schmitt, Kimberly; Berri, Fatma; Diamond, Michael S.; Choe, Hyeryun

    2017-01-01

    Although a causal relationship between Zika virus (ZIKV) and microcephaly has been established, it remains unclear why ZIKV, but not other pathogenic flaviviruses, causes congenital defects. Here we show that when viruses are produced in mammalian cells, ZIKV, but not the closely related dengue virus (DENV) or West Nile virus (WNV), can efficiently infect key placental barrier cells that directly contact the fetal bloodstream. We show that AXL, a receptor tyrosine kinase, is the primary ZIKV entry cofactor on human umbilical vein endothelial cells (HUVECs), and that ZIKV uses AXL with much greater efficiency than does DENV or WNV. Consistent with this observation, only ZIKV, but not WNV or DENV, bound the AXL ligand Gas6. In comparison, when DENV and WNV were produced in insect cells, they also infected HUVECs in an AXL-dependent manner. Our data suggest that ZIKV, when produced from mammalian cells, infects fetal endothelial cells much more efficiently than other pathogenic flaviviruses because it binds Gas6 more avidly, which in turn facilitates its interaction with AXL. PMID:28167751

  10. Differential response of the epithelium and interstitium in developing human fetal lung explants to hyperoxia.

    PubMed

    Bustani, Porus; Hodge, Rachel; Tellabati, Ananth; Li, Juan; Pandya, Hitesh; Kotecha, Sailesh

    2006-03-01

    Hyperoxia is closely linked with the development of chronic lung disease of prematurity (CLD), but the exact mechanisms whereby hyperoxia alters the lung architecture in the developing lung remain largely unknown. We developed a fetal human lung organ culture model to investigate (a) the morphologic changes induced by hyperoxia and (b) whether hyperoxia resulted in differential cellular responses in the epithelium and interstitium. The effects of hyperoxia on lung morphometry were analyzed using computer-assisted image analysis. The lung architecture remained largely unchanged in normoxia lasting as long as 4 d. In contrast, hyperoxic culture of pseudoglandular fetal lungs resulted in significant dilatation of airways, thinning of the epithelium, and regression of the interstitium including the pulmonary vasculature. Although there were no significant differences in Ki67 between normoxic and hyperoxic lungs, activated caspase-3 was significantly increased in interstitial cells, but not epithelial cells, under hyperoxic conditions. These changes show that exposure of pseudoglandular lungs to hyperoxia modulates the lung architecture to resemble saccular lungs.

  11. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses.

    PubMed

    Richard, Audrey Stéphanie; Shim, Byoung-Shik; Kwon, Young-Chan; Zhang, Rong; Otsuka, Yuka; Schmitt, Kimberly; Berri, Fatma; Diamond, Michael S; Choe, Hyeryun

    2017-02-21

    Although a causal relationship between Zika virus (ZIKV) and microcephaly has been established, it remains unclear why ZIKV, but not other pathogenic flaviviruses, causes congenital defects. Here we show that when viruses are produced in mammalian cells, ZIKV, but not the closely related dengue virus (DENV) or West Nile virus (WNV), can efficiently infect key placental barrier cells that directly contact the fetal bloodstream. We show that AXL, a receptor tyrosine kinase, is the primary ZIKV entry cofactor on human umbilical vein endothelial cells (HUVECs), and that ZIKV uses AXL with much greater efficiency than does DENV or WNV. Consistent with this observation, only ZIKV, but not WNV or DENV, bound the AXL ligand Gas6. In comparison, when DENV and WNV were produced in insect cells, they also infected HUVECs in an AXL-dependent manner. Our data suggest that ZIKV, when produced from mammalian cells, infects fetal endothelial cells much more efficiently than other pathogenic flaviviruses because it binds Gas6 more avidly, which in turn facilitates its interaction with AXL.

  12. Second heart field and the development of the outflow tract in human embryonic heart.

    PubMed

    Yang, Yan-Ping; Li, Hai-Rong; Cao, Xi-Mei; Wang, Qin-Xue; Qiao, Cong-Jin; Ya, Jing

    2013-04-01

    The second heart field (SHF) is indicated to contribute to the embryonic heart development. However, less knowledge is available about SHF development of human embryo due to the difficulty of collecting embryos. In this study, serial sections of human embryos from Carnegie stage 10 (CS10) to CS16 were stained with antibodies against Islet-1 (Isl-1), Nkx2.5, GATA4, myosin heavy chain (MHC) and α-smooth muscle actin (α-SMA) to observe spatiotemporal distribution of SHF and its contribution to the development of the arterial pole of cardiac tube. Our findings suggest that during CS10 to CS12, SHF of the human embryo is composed of the bilateral pharyngeal mesenchyme, the central mesenchyme of the branchial arch and splanchnic mesoderm of the pericardial cavity dorsal wall. With development, SHF translocates and consists of ventral pharyngeal mesenchyme and dorsal wall of the pericardial cavity. Hence, the SHF of human embryo shows a dynamic spatiotemporal distribution pattern. The formation of the Isl-1 positive condense cell prongs provides an explanation for the saddle structure formation at the distal pole of the outflow tract. In human embryo, the Isl-1 positive cells of SHF may contribute to the formation of myocardial outflow tract (OFT) and the septum during different development stages.

  13. MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction.

    PubMed

    Chan, Shiao Y; Hancox, Laura A; Martín-Santos, Azucena; Loubière, Laurence S; Walter, Merlin N M; González, Ana-Maria; Cox, Phillip M; Logan, Ann; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D

    2014-02-01

    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24-28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r(2)=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development.

  14. MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction

    PubMed Central

    Chan, Shiao Y; Hancox, Laura A; Martín-Santos, Azucena; Loubière, Laurence S; Walter, Merlin N M; González, Ana-Maria; Cox, Phillip M; Logan, Ann; McCabe, Christopher J; Franklyn, Jayne A; Kilby, Mark D

    2014-01-01

    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24–28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r2=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development. PMID:24204008

  15. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells.

    PubMed

    Hemeda, Hatim; Giebel, Bernd; Wagner, Wolfgang

    2014-02-01

    Culture media for therapeutic cell preparations-such as mesenchymal stromal cells (MSCs)-usually comprise serum additives. Traditionally, fetal bovine serum is supplemented in basic research and in most clinical trials. Within the past years, many laboratories adapted their culture conditions to human platelet lysate (hPL), which further stimulates proliferation and expansion of MSCs. Particularly with regard to clinical application, human alternatives for fetal bovine serum are clearly to be preferred. hPL is generated from human platelet units by disruption of the platelet membrane, which is commonly performed by repeated freeze and thaw cycles. Such culture supplements are notoriously ill-defined, and many parameters contribute to batch-to-batch variation in hPL such as different amounts of plasma, a broad range of growth factors and donor-specific effects. The plasma components of hPL necessitate addition of anticoagulants such as heparins to prevent gelatinization of hPL medium, and their concentration must be standardized. Labels for description of hPL-such as "xenogen-free," "animal-free" and "serum free"-are not used consistently in the literature and may be misleading if not critically assessed. Further analysis of the precise composition of relevant growth factors, attachment factors, microRNAs and exosomes will pave the way for optimized and defined culture conditions. The use of hPL has several advantages and disadvantages: they must be taken into account because the choice of cell culture additive has major impact on cell preparations.

  16. Signaling and transcriptional networks in heart development and regeneration.

    PubMed

    Bruneau, Benoit G

    2013-03-01

    The mammalian heart is the first functional organ, the first indicator of life. Its normal formation and function are essential for fetal life. Defects in heart formation lead to congenital heart defects, underscoring the finesse with which the heart is assembled. Understanding the regulatory networks controlling heart development have led to significant insights into its lineage origins and morphogenesis and illuminated important aspects of mammalian embryology, while providing insights into human congenital heart disease. The mammalian heart has very little regenerative potential, and thus, any damage to the heart is life threatening and permanent. Knowledge of the developing heart is important for effective strategies of cardiac regeneration, providing new hope for future treatments for heart disease. Although we still have an incomplete picture of the mechanisms controlling development of the mammalian heart, our current knowledge has important implications for embryology and better understanding of human heart disease.

  17. gamma. sub 2 -MSH immunoreactivity in the human heart

    SciTech Connect

    Ekman, R.; Bjartell, A.; Lisander, J.; Edvinsson, L. )

    1989-01-01

    In patients undergoing aorto-coronary by-pass surgery, we found a 26% arterial-venous difference of immunoreactive {gamma}{sub 2}-melanocytostimulating hormone (MSH), a proopiomelanocortin (POMC) derived peptide known to possess profound hemodynamic effects. These results prompted an investigation of the presence of {gamma}{sub 2}-MSH in the human heart. Using a two-step extraction procedure, regions of human hearts were examined by sensitive and specific radioimmunoassays to determine their {gamma}{sub 2}-MSH content. Mean ({plus minus} SEM) concentrations of 0.14 {plus minus} 0.023 pmol/g and 0.12 {plus minus} 0.017 were found in right atrium and right ventricle, respectively. High performance liquid chromatography indicated that 80-90 % of the total immunoreactivity eluted in a single sharp peak in a position identical to that of synthetic {gamma}{sub 2}-MSH.

  18. Fetal assessment for anesthesiologists: are you evaluating the other patient?

    PubMed

    Moaveni, Daria M; Birnbach, David J; Ranasinghe, J Sudharma; Yasin, Salih Y

    2013-06-01

    Suboptimal communication between anesthesiologists and obstetricians can be associated with unintended poor maternal and neonatal outcomes, especially for emergency cesarean deliveries. Obstetricians use the results of antepartum and intrapartum fetal assessments to assess fetal well-being and to make decisions about the timing and method of delivery. Because abnormal results may lead to the need for urgent or emergency cesarean deliveries, these decisions may directly impact anesthetic care. Lack of familiarity with fetal assessments and the significance of the results may thus hinder the communication necessary for optimal patient care. In this review article, we discuss the current antepartum and intrapartum fetal assessment modalities, including the nonstress test, biophysical profile, Doppler velocimetry, electronic fetal heart rate monitoring, fetal electrocardiogram (STAN-ST waveform analysis), and fetal pulse oximetry. The physiologic basis behind these modalities and the available evidence regarding their utility in clinical practice are also reviewed. The 2008 National Institute of Child Health and Human Development workshop report on electronic fetal monitoring categories, which are incorporated into the American College of Obstetricians and Gynecologists guidelines for intrapartum care, is examined. The implications of test interpretation to the practice of obstetric anesthesiology is also discussed. Anesthesia provider understanding of fetal assessment modalities is essential in improving communication with obstetricians and improving the planning of cesarean deliveries for high-risk obstetric patients.

  19. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  20. Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero.

    PubMed Central

    Zanjani, E D; Pallavicini, M G; Ascensao, J L; Flake, A W; Langlois, R G; Reitsma, M; MacKintosh, F R; Stutes, D; Harrison, M R; Tavassoli, M

    1992-01-01

    Hemopoietic stem cells from human fetal liver were transplanted in utero into preimmune fetal sheep (48-54 days of gestation). The fate of donor cells was followed using karyotype analysis, by immunofluorescence labeling with anti-CD antibodies, and by fluorescent in situ hybridization using human-specific DNA probes. Engraftment occurred in 13 of 33 recipients. Of five live born sheep that exhibited chimerism, all expressed human cells in the marrow, whereas three expressed them in blood as well. Engraftment was multilineage (erythroid, myeloid, and lymphoid) and human hemopoietic progenitors (multipotent colony-forming units, colony-forming units-granulocyte, macrophage, and erythroid burst-forming units) capable of forming colonies in vitro were detected in all five lambs for greater than 2 yr. These progenitors responded to human-specific growth factors both in vitro and in vivo. Thus the administration of recombinant human IL-3 and granulocyte macrophage-colony-stimulating factor to chimeric sheep resulted in a 2.1-3.4-fold increase in the relative expression of donor (human) cells. These results demonstrate that the permissive environment of the preimmune fetal sheep provides suitable conditions for the engraftment and long-term multilineage expression of human hemopoietic stem cells in a large animal model. In this model, donor human cells appear to retain certain phenotypic and functional characteristics that can be used to manipulate the size of donor cell pool. PMID:1348253

  1. Fetal electrocardiograph

    NASA Astrophysics Data System (ADS)

    Rios, Heriberto; Andrade, Armando; Puente, Ernestina; Lizana, Pablo R.; Mendoza, Diego

    2002-11-01

    The high intra-uterine death rate is due to failure in appropriately diagnosing some problems in the cardiobreathing system of the fetus during pregnancy. The electrocardiograph is one apparatus which might detect problems at an early stage. With electrodes located near the womb and uterus, in a way similar to the normal technique, the detection of so-called biopotential differences, caused by concentrations of ions, can be achieved. The fetal electrocardiograph is based on an ultrasound technique aimed at detecting intrauterine problems in pregnant women, because it is a noninvasive technique due to the very low level of ultrasound power used. With this system, the following tests can be done: Heart movements from the ninth week onwards; Rapid and safe diagnosis of intrauterine fetal death; Location and size of the placenta. The construction of the fetal electrocardiograph requires instrument level components directly mounted on the printed circuit board, in order to avoid stray capacitance in the cabling which prevents the detection of the E.C.G. activity. The low cost of the system makes it affordable to low budget institutions; in contrast, available commercial systems are priced in U.S. Dollars. (To be presented in Spanish.)

  2. Neuroblast long-term cell cultures from human fetal olfactory epithelium respond to odors.

    PubMed

    Vannelli, G B; Ensoli, F; Zonefrati, R; Kubota, Y; Arcangeli, A; Becchetti, A; Camici, G; Barni, T; Thiele, C J; Balboni, G C

    1995-06-01

    Primary cell cultures from human fetal olfactory neuroepithelium have been isolated, cloned, and propagated in continuous in vitro culture for approximately 1 year. The two clones we report here synthesize both neuronal proteins and olfactory-specific markers as well as the putative olfactory neurotransmitter, carnosine. In addition, patchclamp experiments reveal that these cells are electrically excitable. Following exposure to a panel of aromatic chemicals one of the cell cultures shows a specific increase in intracellular cAMP, indicating that some degree of functional maturity is expressed in vitro. The results suggest that these cells originate from the "stem cell" compartment that gives rise to mature olfactory receptor neurons. These long-term cell cultures represent models that will be useful in studying the mechanism(s) of olfaction and the regulation of olfactory neurogenesis and differentiation.

  3. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo.

    PubMed

    Herrmann, Julia E; Heale, Jason; Bieraugel, Mike; Ramos, Meg; Fisher, Robyn L; Vickers, Alison E M

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24h. In this in vivo rat study (0.5mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices.

  4. Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA.

    PubMed

    Lui, Kathy O; Zangi, Lior; Silva, Eduardo A; Bu, Lei; Sahara, Makoto; Li, Ronald A; Mooney, David J; Chien, Kenneth R

    2013-10-01

    Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.

  5. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells.

    PubMed

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang; Jin, Min; Li, Jun-wen

    2015-06-01

    Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.

  6. miRNA Expression in Control and FSHD Fetal Human Muscle Biopsies

    PubMed Central

    Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie

    2015-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Methods Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. Results During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. Conclusions This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated. PMID:25692472

  7. Identification of a common T/natural killer cell progenitor in human fetal thymus

    PubMed Central

    1994-01-01

    The phenotypic similarities between natural killer (NK) and T cells have led to the hypothesis that these distinctive lymphocyte subsets may be developmentally related and thus may share a common progenitor (Lanier, L. L., H. Spits, and J. H. Phillips, 1992. Immunol. Today. 13:392; Rodewald, H.-R., P. Moingeon, J. L. Lurich, C. Dosiou, P. Lopez, and E. L. Reinherz. 1992. Cell. 69:139). In this report, we have investigated the potential of human CD34+ triple negative thymocytes ([TN] CD3-, CD4-, CD8-) to generate both T cells and NK cells in murine fetal thymic organ cultures (mFTOC) and in vitro clonogenic assays. CD34+ TN thymocytes, the majority of which express prominent cytoplasmic CD3 epsilon (cytoCD3 epsilon) protein, can be divided into high (CD34Bright) and low (CD34Dim) surface expressing populations. CD34Bright TN thymocytes were capable of differentiating into T and NK cells when transferred into mFTOC, and demonstrated high NK cell clonogenic capabilities when cultured in interleukin (IL)-2, IL-7, and stem cell factor (SCF). Likewise, CD34Bright TN thymocyte clones after 5 d in culture were capable of generating NK and T cells when transferred into mFTOC but demonstrated clonogenic NK cell differentiation capabilities when maintained in culture with IL-2. CD34Dim TN thymocytes, however, possessed only T cell differentiation capabilities in mFTOC but were not expandable in clonogenic conditions containing IL-2, IL-7, and SCF. No significant differentiation of other cell lineage was detected in either mFTOC or in clonogenic assays from CD34+ TN thymocytes. These results represent the first definitive evidence of a common T/NK cell progenitor in the human fetal thymus and delineate the point in thymocyte differentiation where T and NK cells diverge. PMID:7519241

  8. The control of steroidogenesis by human fetal adrenal cells in tissue culture. IV. The effect of exposure to placental steroids.

    PubMed

    Fujieda, K; Faiman, C; Feyes, F I; Winter, J S

    1982-01-01

    The effect upon steroidogenesis of adding various steroids produced by the placenta was studied in short term cultures of human fetal adrenal cells. The addition of high concentrations (10(3) ng/ml) of estrone or estriol inhibited the production of cortisol, but only the former elicited a parallel increase in dehydroepiandrosterone (DHA) production. Estradiol was effective in inhibiting delta-4-3-ketosteroid production at concentrations of 10-100 ng/ml, levels which approach those found in the fetal circulation, while DHA production was increased at concentrations of 1 microgram/ml. The addition of progesterone (4 microgram/ml) to the medium caused increased production of cortisol and corticosterone, but had no effect on DHA production. Pregnenolone (4 microgram/ml) increased the basal production of DHA and slightly impaired both basal and ACTH-stimulated aldosterone production, but had no effect on cortisol production. The data demonstrate that the many fetal and placental factors which have been studied to date, only ACTH and estrogens can interact to produce the characteristic fetal pattern of steroidogenesis. Preliminary studies indicate that this effect-stimulated aldosterone production, but had no effect on cortisol production. The data demonstrate that the many fetal and placental factors which have been studied to date, only ACTH and estrogens can interact to produce the characteristic fetal pattern of steroidogenesis. Preliminary studies indicate that this effect-stimulated aldosterone production, but had no effect on cortisol production. The data demonstrate that the many fetal and placental factors which have been studied to date, only ACTH and estrogens can interact to produce the characteristic fetal pattern of steroidogenesis. Preliminary studies indicate that this effect of estrogen is not influenced by other peptide hormones such as hCG, human prl, beta-lipotropin, corticotropin-like intermediate lobe peptide, or beta-endorphin. A revised model of

  9. Antibodies to human fetal erythroid cells from a nonimmune phage antibody library

    PubMed Central

    Huie, Michael A.; Cheung, Mei-Chi; Muench, Marcus O.; Becerril, Baltazar; Kan, Yuet W.; Marks, James D.

    2001-01-01

    The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia. PMID:11226299

  10. Human fetal keratocytes have multipotent characteristics in the developing avian embryo.

    PubMed

    Chao, Jennifer R; Bronner, Marianne E; Lwigale, Peter Y

    2013-08-01

    The human cornea contains stem cells that can be induced to express markers consistent with multipotency in cell culture; however, there have been no studies demonstrating that human corneal keratocytes are multipotent. The objective of this study is to examine the potential of human fetal keratocytes (HFKs) to differentiate into neural crest-derived tissues when challenged in an embryonic environment. HFKs were injected bilaterally into the cranial mesenchyme adjacent to the neural tube and the periocular mesenchyme in chick embryos at embryonic days 1.5 and 3, respectively. The injected keratocytes were detected by immunofluorescence using the human cell-specific marker, HuNu. HuNu-positive keratocytes injected along the neural crest pathway were localized adjacent to HNK-1-positive migratory host neural crest cells and in the cardiac cushion mesenchyme. The HuNu-positive cells transformed into neural crest derivatives such as smooth muscle in cranial blood vessels, stromal keratocytes, and corneal endothelium. However, they failed to form neurons despite their presence in the condensing trigeminal ganglion. These results show that HFKs retain the ability to differentiate into some neural crest-derived tissues. Their ability to respond to embryonic cues and generate corneal endothelium and stromal keratocytes provides a basis for understanding the feasibility of creating specialized cells for possible use in regenerative medicine.

  11. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  12. Human fetal hepatic progenitor cells are distinct from, but closely related to, hematopoietic stem/progenitor cells.

    PubMed

    Chen, Qingfeng; Khoury, Maroun; Limmon, Gino; Choolani, Mahesh; Chan, Jerry K Y; Chen, Jianzhu

    2013-06-01

    Much controversy surrounds the identity and origin of human hepatic stem and progenitor cells in part because of a lack of small animal models in which the developmental potential of isolated candidate cell populations can be functionally evaluated. We show here that adoptive transfer of CD34(+) cells from human fetal liver into sublethally irradiated NOD-SCID Il2rg(-/-) (NSG) mice leads to an efficient development of not only human hematopoietic cells but also human hepatocyte-like cells in the liver of the recipient mice. Using this simple in vivo assay in combination with cell fractionation, we show that CD34(+) fetal liver cells can be separated into three distinct subpopulations: CD34(hi) CD133(hi), CD34(lo) CD133(lo), and CD34(hi) CD133(neg). The CD34(hi) CD133(hi) population contains hematopoietic stem/progenitor cells (HSPCs) as they give rise to T cells, B cells, NK cells, dendritic cells, and monocytes/macrophages in NSG mice and colony-forming unit (CFU)-GEMM cells in vitro. The CD34(lo) CD133(lo) population does not give rise to hematopoietic cells, but reproducibly generates hepatocyte-like cells in NSG mice and in vitro. The CD34(hi) CD133(neg) population only gives rise to CFU-GM and burst-forming unit-erythroid in vitro. Furthermore, we show that the CD34(lo) CD133(lo) cells express hematopoietic, hepatic, and mesenchymal markers, including CD34, CD133, CD117, epithelial cell adhesion molecule, CD73, albumin, α-fetal protein, and vimentin and transcriptionally are more closely related to HSPCs than to mature hepatocytes. These results show that CD34(lo) CD133(lo) fetal liver cells possess the hepatic progenitor cell properties and that human hepatic and hematopoietic progenitor cells are distinct, although they may originate from the same precursors in the fetal liver.

  13. An Investigation of the Endocrine-Disruptive Effects of Bisphenol A in Human and Rat Fetal Testes

    PubMed Central

    Maamar, Millissia Ben; Lesné, Laurianne; Desdoits-Lethimonier, Christèle; Coiffec, Isabelle; Lassurguère, Julie; Lavoué, Vincent; Deceuninck, Yoann; Antignac, Jean-Philippe; Le Bizec, Bruno; Perdu, Elisabeth; Zalko, Daniel; Pineau, Charles; Chevrier, Cécile; Dejucq-Rainsford, Nathalie; Mazaud-Guittot, Séverine; Jégou, Bernard

    2015-01-01

    Few studies have been undertaken to assess the possible effects of bisphenol A (BPA) on the reproductive hormone balance in animals or humans with often contradictory results. We investigated possible direct endocrine disruption by BPA of the fetal testes of 2 rat strains (14.5–17.5 days post-coitum) and humans (8–12 gestational weeks) and under different culture conditions. BPA concentrations of 10-8M and 10-5M for 72h reduced testosterone production by the Sprague-Dawley fetal rat testes, while only 10-5M suppressed it in the Wistar strain. The suppressive effects at 10-5M were seen as early as 24h and 48h in both strains. BPA at 10-7-10-5M for 72h suppressed the levels of fetal rat Leydig cell insulin-like factor 3 (INSL3). BPA exposure at 10-8M, 10-7M, and 10-5M for 72h inhibited testosterone production in fetal human testes. For the lowest doses, the effects observed occurred only when no gonadotrophin was added to the culture media and were associated with a poorly preserved testicular morphology. We concluded that (i) BPA can display anti-androgenic effects both in rat and human fetal testes; (ii) it is essential to ascertain that the divergent effects of endocrine disruptors between species in vitro do not result from the culture conditions used, and/or the rodent strain selected; (iii) the optimization of each in vitro assay for a given species should be a major objective rather than the search of an hypothetical trans-species consensual model-system, as the organization of the testis is intrinsically different between mammalian species; (iv) due to the uncertainty existing on the internal exposure of the human fetal testis to BPA, and the insufficient number of epidemiological studies on the endocrine disruptive effects of BPA, caution should be taken in the extrapolation of our present results to the human reproductive health after fetal exposure to BPA. PMID:25706302

  14. Human Mesenchymal Stem Cells Reendothelialize Porcine Heart Valve Scaffolds: Novel Perspectives in Heart Valve Tissue Engineering

    PubMed Central

    Lanuti, Paola; Serafini, Francesco; Pierdomenico, Laura; Simeone, Pasquale; Bologna, Giuseppina; Ercolino, Eva; Di Silvestre, Sara; Guarnieri, Simone; Canosa, Carlo; Impicciatore, Gianna Gabriella; Chiarini, Stella; Magnacca, Francesco; Mariggiò, Maria Addolorata; Pandolfi, Assunta; Marchisio, Marco; Di Giammarco, Gabriele; Miscia, Sebastiano

    2015-01-01

    Abstract Heart valve diseases are usually treated by surgical intervention addressed for the replacement of the damaged valve with a biosynthetic or mechanical prosthesis. Although this approach guarantees a good quality of life for patients, it is not free from drawbacks (structural deterioration, nonstructural dysfunction, and reintervention). To overcome these limitations, the heart valve tissue engineering (HVTE) is developing new strategies to synthesize novel types of valve substitutes, by identifying efficient sources of both ideal scaffolds and cells. In particular, a natural matrix, able to interact with cellular components, appears to be a suitable solution. On the other hand, the well-known Wharton's jelly mesenchymal stem cells (WJ-MSCs) plasticity, regenerative abilities, and their immunomodulatory capacities make them highly promising for HVTE applications. In the present study, we investigated the possibility to use porcine valve matrix to regenerate in vitro the valve endothelium by WJ-MSCs differentiated along the endothelial lineage, paralleled with human umbilical vein endothelial cells (HUVECs), used as positive control. Here, we were able to successfully decellularize porcine heart valves, which were then recellularized with both differentiated-WJ-MSCs and HUVECs. Data demonstrated that both cell types were able to reconstitute a cellular monolayer. Cells were able to positively interact with the natural matrix and demonstrated the surface expression of typical endothelial markers. Altogether, these data suggest that the interaction between a biological scaffold and WJ-MSCs allows the regeneration of a morphologically well-structured endothelium, opening new perspectives in the field of HVTE. PMID:26309804

  15. Fetal cardiac arrhythmia detection and in utero therapy

    PubMed Central

    Strasburger, Janette F.; Wakai, Ronald T.

    2010-01-01

    The human fetal heart develops arrhythmias and conduction disturbances in response to ischemia, inflammation, electrolyte disturbances, altered load states, structural defects, inherited genetic conditions, and many other causes. Yet sinus rhythm is present without altered rate or rhythm in some of the most serious electrophysiological diseases, which makes detection of diseases of the fetal conduction system challenging in the absence of magnetocardiographic or electrocardiographic recording techniques. Life-threatening changes in QRS or QT intervals can be completely unrecognized if heart rate is the only feature to be altered. For many fetal arrhythmias, echocardiography alone can assess important clinical parameters for diagnosis. Appropriate treatment of the fetus requires awareness of arrhythmia characteristics, mechanisms, and potential associations. Criteria to define fetal bradycardia specific to gestational age are now available and may allow detection of ion channelopathies, which are associated with fetal and neonatal bradycardia. Ectopic beats, once thought to be entirely benign, are now recognized to have important pathologic associations. Fetal tachyarrhythmias can now be defined precisely for mechanism-specific therapy and for subsequent monitoring of response. This article reviews the current and future diagnostic techniques and pharmacologic treatments for fetal arrhythmia. PMID:20418904

  16. Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo.

    PubMed

    Monni, Emanuela; Cusulin, Carlo; Cavallaro, Maurizio; Lindvall, Olle; Kokaia, Zaal

    2014-01-01

    Clonogenic neural stem (NS) cell lines grown in adherent cultures have previously been established from embryonic stem cells and fetal and adult CNS in rodents and from human fetal brain and spinal cord. Here we describe the isolation of a new cell line from human fetal striatum (hNS cells). These cells showed properties of NS cells in vitro such as monolayer growth, high proliferation rate and expression of radial glia markers. The hNS cells expressed an early neuronal marker while being in the proliferative state. Under appropriate conditions, the hNS cells were efficiently differentiated to neurons, and after 4 weeks about 50% of the cells were βIII tubulin positive. They also expressed the mature neuronal marker NeuN and markers of neuronal subtypes, GABA, calbindin, and DARPP32. After intrastriatal implantation into newborn rats, the hNS cells survived and many of them migrated outside the transplant core into the surrounding tissue. A high percentage of cells in the grafts expressed the neuroblast marker DCX, indicating their neurogenic potential, and some of the cells differentiated to NeuN+ mature neurons. The human fetal striatum-derived NS cell line described here should be a useful tool for studies on cell replacement strategies in models of the striatal neuronal loss occurring in Huntington's disease and stroke.

  17. Monocytic cells derived from human embryonic stem cells and fetal liver share common differentiation pathways and homeostatic functions.

    PubMed

    Klimchenko, Olena; Di Stefano, Antonio; Geoerger, Birgit; Hamidi, Sofiane; Opolon, Paule; Robert, Thomas; Routhier, Mélanie; El-Benna, Jamel; Delezoide, Anne-Lise; Boukour, Siham; Lescure, Bernadette; Solary, Eric; Vainchenker, William; Norol, Françoise

    2011-03-17

    The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14(low)CD16(-) precursor to form CD14(high)CD16(+) cells without producing the CD14(high)CD16(-) cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.

  18. Indices and Detectors for Fetal MCG Actography

    PubMed Central

    Lutter, William J.

    2011-01-01

    Several recent studies have demonstrated the usefulness of fetal magnetocardiogram (fMCG) actography, a relatively new method of detecting fetal movement that can be performed in conjunction with fMCG assessment of fetal heart rate and rhythm. In this work, we formulate indices of fetal activity that incorporate information from all channels to achieve improved sensitivity. We also utilize statistical detection to provide an objective means of inferring significant fetal activity. PMID:21427015

  19. Indices and detectors for fetal MCG actography.

    PubMed

    Lutter, William J; Wakai, Ronald T

    2011-06-01

    Several recent studies have demonstrated the usefulness of fetal magnetocardiogram (fMCG) actography, a relatively new method of detecting fetal movement that can be performed in conjunction with fMCG assessment of fetal heart rate and rhythm. In this study, we formulate indices of fetal activity that incorporate information from all channels to achieve improved sensitivity. We also utilize statistical detection to provide an objective means of inferring significant fetal activity.

  20. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  1. Validation of In utero Tractography of Human Fetal Commissural and Internal Capsule Fibers with Histological Structure Tensor Analysis

    PubMed Central

    Mitter, Christian; Jakab, András; Brugger, Peter C.; Ricken, Gerda; Gruber, Gerlinde M.; Bettelheim, Dieter; Scharrer, Anke; Langs, Georg; Hainfellner, Johannes A.; Prayer, Daniela; Kasprian, Gregor

    2015-01-01

    Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic

  2. Immune Modulatory Effects of Human Chorionic Gonadotropin on Dendritic Cells Supporting Fetal Survival in Murine Pregnancy

    PubMed Central

    Dauven, Dominique; Ehrentraut, Stefanie; Langwisch, Stefanie; Zenclussen, Ana Claudia; Schumacher, Anne

    2016-01-01

    Dendritic cells (DCs) are critically involved in the determination of immunity vs. tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during pregnancy. Here, we studied whether the pregnancy hormone human chorionic gonadotropin (hCG) is involved in DC regulation. In vitro, bone marrow-derived DCs (BMDCs) were stimulated in the presence or absence of urine-purified or recombinant hCG (rhCG) preparations. Subsequently, BMDC maturation was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17, or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number, and local cytokine expression was evaluated after adoptive transfer in a murine abortion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did neither alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2, or TH17 differentiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell population. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival. PMID:27895621

  3. Arrhythmogenic remodelling of activation and repolarization in the failing human heart.

    PubMed

    Holzem, Katherine M; Efimov, Igor R

    2012-11-01

    Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics-2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated with heart failure is a leading cause of disease mortality and has been a major investigational focus examined using many animal models of heart failure. While these studies have provided an important foundation for understanding the arrhythmogenic pathophysiology of heart failure, the need for corroborating studies conducted on human heart tissue has been increasingly recognized. Many human heart studies of conduction and repolarization remodelling have now been published and shed some light on important, potentially arrhythmogenic, changes in human heart failure. These studies are being conducted at multiple experimental scales from isolated cells to whole-tissue preparations and have provided insight into regulatory mechanisms such as decreased protein expression, alternative mRNA splicing of ion channel genes, and defective cellular trafficking. Further investigations of heart failure in the human myocardium will be essential for determining possible therapeutic targets to prevent arrhythmia in heart failure and for facilitating the translation of basic research findings to the clinical realm.

  4. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    PubMed

    He, Jing; Stewart, Kayleigh; Kinnell, Hazel L; Anderson, Richard A; Childs, Andrew J

    2013-01-01

    The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but not male (XY) human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/-) mouse as a model for understanding BOLL function during human oogenesis.

  5. Expression of P450c17 in the human fetal nervous system.

    PubMed

    Schonemann, Marcus D; Muench, Marcus O; Tee, Meng Kian; Miller, Walter L; Mellon, Synthia H

    2012-05-01

    P450c17 catalyzes steroid 17α-hydroxylase and 17,20 lyase activities. P450c17 is expressed in human fetal and postnatal adrenals and gonads and in the developing mouse nervous system, but little is known about its expression in the human nervous system. We obtained portions of 9-, 10-, and 11-wk gestation human fetuses and delineated the pattern of expression of P450c17 in their peripheral nervous systems by immunocytochemistry using the P450c17 antiserum previously used to characterize P450c17 in the mouse brain. P450c17 was readily detected in the dorsal root ganglia (DRG) and spinal cord. Neural structures were identified with antisera to the cytoskeletal protein neural cell adhesion molecule; DRG were identified with antisera to the neuronal transcription factor BRN3A and neurotrophin receptor tropomyosin-receptor-kinase B. The identification of P450c17 was confirmed using commercial antisera directed against different domains of P450c17 and by using antisera immunodepleted with authentic human P450c17. We also found expression of the P450 cholesterol side-chain cleavage enzyme (P450scc) in the spinal cord and DRG. Expression of P450scc is limited to cell bodies; unlike P450c17, we never detected P450scc in fiber tracts. Catalysis by P450c17 requires electron donation from P450 oxidoreductase (POR). Dual-label immunohistochemistry detected P450c17 and POR colocalized in DRG bundles, but some fibers containing P450c17 lacked POR. These data suggest that neurosteroids synthesized via these two enzymes may act in the developing human nervous system. The expression of P450c17 in structures lacking POR means that P450c17 may not be steroidogenic in those locations, suggesting that P450c17 may have additional functions that do not require POR.

  6. Hyperpolarized 13C Metabolic MRI of the Human Heart

    PubMed Central

    Lau, Justin Y.C.; Chen, Albert P.; Geraghty, Benjamin J.; Perks, William J.; Roifman, Idan; Wright, Graham A.; Connelly, Kim A.

    2016-01-01

    Rationale: Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. Objective: To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. Methods and Results: Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. Conclusions: These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. PMID:27635086

  7. Development of the human fetal hippocampal formation during early second trimester

    PubMed Central

    Ge, Xinting; Shi, Yonggang; Li, Junning; Zhang, Zhonghe; Lin, Xiangtao; Zhan, Jinfeng; Ge, Haitao; Xu, Junhai; Yu, Qiaowen; Leng, Yuan; Teng, Gaojun; Feng, Lei; Meng, Haiwei; Tang, Yuchun; Zang, Fengchao; Toga, Arthur W.; Liu, Shuwei

    2015-01-01

    Development of the fetal hippocampal formation has been difficult to fully describe because of rapid changes in its shape during the fetal period. The aims of this study were to: (1) segment the fetal hippocampal formation using 7.0 T MR images from 41 specimens with gestational ages ranging from 14 to 22 weeks and (2) reveal the developmental course of the fetal hippocampal formation using volume and shape analyses. Differences in hemispheric volume were observed, with the right hippocampi being larger than the left. Absolute volume changes showed a linear increase, while relative volume changes demonstrated an inverted-U shape trend during this period. Together these exhibited a variable developmental rate among different regions of the fetal brain. Different sub-regional growth of the fetal hippocampal formation was specifically observed using shape analysis. The fetal hippocampal formation possessed a prominent medial–lateral bidirectional shape growth pattern during its rotation process. Our results provide additional insight into 3D hippocampal morphology in the assessment of fetal brain development and can be used as a reference for future hippocampal studies. PMID:26123377

  8. Derivation and characterization of goat fetal fibroblast cells induced with human telomerase reverse transcriptase.

    PubMed

    Xie, Ying; Zhao, Xiaoe; Jia, Hongxiang; Ma, Baohua

    2013-01-01

    Fetal fibroblast cells (FFCs) are often used as donor cells for somatic cell nuclear transfer (SCNT) because they are easy to culture and suitable for genetic manipulation. However, through genetic modification process, which required FFCs to be cultured in vitro for several passages, cells tended to age very rapidly and became inappropriate for SCNT. Human telomerase reverse transcriptase (hTERT) possessed the activity of human telomerase and maintains telomere in dividing cells; therefore, hTERT can be transfected into somatic cells to extend their lifespan. In this study, we transfected a Xinong Saanen Dairy Goat FFC line with hTERT. Then, we tested several characteristics of transfected cells, including growth curve, expression and activity of hTERT, tumorigenicity, and expression of oct4 and nanog. The result showed that hTERT could significantly extend the lifespan of transfected cells in vitro. hTERT mRNA was expressed in hTERT-transfected cells. Moreover, hTERT-transfected cells presented enhanced telomerase activity and longer telomere than untransfected cells at the same passage. On the other hand, hTERT-transfected cells can maintain normal karyotype even after several times of subculture in vitro. After inoculation of hTERT-transfected cells in nude mouse, none of them developed tumors on the vaccination site. Interestingly, transfection of hTERT can improve expression of nanog and oct4 in Xinong Saanen Dairy Goat FFCs, especially in low generation after transfection, but with increasing subculture, this effect gradually weakened.

  9. Clonal Human Fetal Ventral Mesencephalic Dopaminergic Neuron Precursors for Cell Therapy Research

    PubMed Central

    Ramos-Moreno, Tania; Lendínez, Javier G.; Pino-Barrio, María José; del Arco, Araceli; Martínez-Serrano, Alberto

    2012-01-01

    A major challenge for further development of drug screening procedures, cell replacement therapies and developmental studies is the identification of expandable human stem cells able to generate the cell types needed. We have previously reported the generation of an immortalized polyclonal neural stem cell (NSC) line derived from the human fetal ventral mesencephalon (hVM1). This line has been biochemically, genetically, immunocytochemically and electrophysiologically characterized to document its usefulness as a model system for the generation of A9 dopaminergic neurons (DAn). Long-term in vivo transplantation studies in parkinsonian rats showed that the grafts do not mature evenly. We reasoned that diverse clones in the hVM1 line might have different abilities to differentiate. In the present study, we have analyzed 9 hVM1 clones selected on the basis of their TH generation potential and, based on the number of v-myc copies, v-myc down-regulation after in vitro differentiation, in vivo cell cycle exit, TH+ neuron generation and expression of a neuronal mature marker (hNSE), we selected two clones for further in vivo PD cell replacement studies. The conclusion is that homogeneity and clonality of characterized NSCs allow transplantation of cells with controlled properties, which should help in the design of long-term in vivo experiments. PMID:23300748

  10. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene.

    PubMed

    Kalbacova, Marie; Broz, Antonin; Kalbac, Martin

    2012-11-01

    The influence of single-layer graphene produced by chemical vapor deposition on human osteoblast cells under different conditions was studied. Measurements probed the ability of cells to adhere and proliferate on graphene compared with SiO(2)/Si substrates and standard tissue culture plastic when cells were incubated for the first 2 h in the presence or the absence of fetal bovine serum (FBS), thus influencing the initial, direct interaction of cells with the substrate. It was found that after 48 h of human osteoblast incubation on graphene films, there were a comparable number of cells of a similar size irrespective of the presence or the absence of serum proteins. On the other hand, a strong initial influence through the presence of FBS proteins on cell number and cell size was observed in the case of the SiO(2)/Si substrate and control plastic. Thus, our study showed that the initial presence/absence of FBS in the medium does not determine cell fate in the case of a graphene substrate, which is very unusual and different from the behavior of cells on other materials.

  11. THERP and HEART integrated methodology for human error assessment

    NASA Astrophysics Data System (ADS)

    Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio

    2015-11-01

    THERP and HEART integrated methodology is proposed to investigate accident scenarios that involve operator errors during high-dose-rate (HDR) treatments. The new approach has been modified on the basis of fuzzy set concept with the aim of prioritizing an exhaustive list of erroneous tasks that can lead to patient radiological overexposures. The results allow for the identification of human errors that are necessary to achieve a better understanding of health hazards in the radiotherapy treatment process, so that it can be properly monitored and appropriately managed.

  12. The human fetal lymphocyte lineage: identification by CD27 and LIN28B expression in B cell progenitors

    PubMed Central

    McWilliams, Laurie; Su, Kuei-Ying; Liang, Xiaoe; Liao, Dongmei; Floyd, Serina; Amos, Joshua; Moody, M. Anthony; Kelsoe, Garnett; Kuraoka, Masayuki

    2013-01-01

    CD27, a member of the TNFR superfamily, is used to identify human memory B cells. Nonetheless, CD27+ B cells are present in patients with HIGM1 syndrome who are unable to generate GCs or memory B cells. CD27+IgD+ fetal B cells are present in umbilical cord blood, and CD27 may also be a marker of the human B1-like B cells. To define the origin of naïve CD27+IgD+ human B cells, we studied B cell development in both fetal and adult tissues. In human FL, most CD19+ cells coexpressed CD10, a marker of human developing B cells. Some CD19+CD10+ B cells expressed CD27, and these fetal CD27+ cells were present in the pro-B, pre-B, and immature/transitional B cell compartments. Lower frequencies of phenotypically identical cells were also identified in adult BM. CD27+ pro-B, pre-B, and immature/transitional B cells expressed recombination activating gene-1, terminal deoxynucleotidyl transferase and Vpre-B mRNA comparably to their CD27− counterparts. CD27+ and CD27− developing B cells showed similar Ig heavy chain gene usage with low levels of mutations, suggesting that CD27+ developing B cells are distinct from mutated memory B cells. Despite these similarities, CD27+ developing B cells differed from CD27− developing B cells by their increased expression of LIN28B, a transcription factor associated with the fetal lymphoid lineages of mice. Furthermore, CD27+ pro-B cells efficiently generated IgM+IgD+ immature/transitional B cells in vitro. Our observations suggest that CD27 expression during B cell development identifies a physiologic state or lineage for human B cell development distinct from the memory B cell compartment. PMID:23901121

  13. Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts

    PubMed Central

    Chong, James J.H.; Yang, Xiulan; Don, Creighton W.; Minami, Elina; Liu, Yen-Wen; Weyers, Jill J; Mahoney, William M.; Van Biber, Benjamin; Cook, Savannah M.; Palpant, Nathan J; Gantz, Jay; Fugate, James A.; Muskheli, Veronica; Gough, G. Michael; Vogel, Keith W.; Astley, Cliff A.; Hotchkiss, Charlotte E.; Baldessari, Audrey; Pabon, Lil; Reinecke, Hans; Gill, Edward A.; Nelson, Veronica; Kiem, Hans-Peter; Laflamme, Michael A.; Murry, Charles E.

    2014-01-01

    Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure 1 by providing human cardiomyocytes to support heart regeneration 2. Studies of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in small animal models have shown favorable effects of this treatment 3–7. It remains unknown, however, whether clinical scale hESC-CMs transplantation is feasible, safe or can provide large-scale myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (>1 billion cells/batch) and cryopreserved with good viability. Using a non-human primate (NHP) model of myocardial ischemia-reperfusion, we show that that cryopreservation and intra-myocardial delivery of 1 billion hESC-CMs generates significant remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a three-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small animal models 7, non-fatal ventricular arrhythmias were observed in hESC-CM engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome. PMID:24776797

  14. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts.

    PubMed

    Chong, James J H; Yang, Xiulan; Don, Creighton W; Minami, Elina; Liu, Yen-Wen; Weyers, Jill J; Mahoney, William M; Van Biber, Benjamin; Cook, Savannah M; Palpant, Nathan J; Gantz, Jay A; Fugate, James A; Muskheli, Veronica; Gough, G Michael; Vogel, Keith W; Astley, Cliff A; Hotchkiss, Charlotte E; Baldessari, Audrey; Pabon, Lil; Reinecke, Hans; Gill, Edward A; Nelson, Veronica; Kiem, Hans-Peter; Laflamme, Michael A; Murry, Charles E

    2014-06-12

    Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure by providing human cardiomyocytes to support heart regeneration. Studies of human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) in small-animal models have shown favourable effects of this treatment. However, it remains unknown whether clinical-scale hESC-CM transplantation is feasible, safe or can provide sufficient myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (more than one billion cells per batch) and cryopreserved with good viability. Using a non-human primate model of myocardial ischaemia followed by reperfusion, we show that cryopreservation and intra-myocardial delivery of one billion hESC-CMs generates extensive remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a 3-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small-animal models, non-fatal ventricular arrhythmias were observed in hESC-CM-engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome.

  15. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    SciTech Connect

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z. . E-mail: Zaal.Kokaia@med.lu.se

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.

  16. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    PubMed

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

  17. Antenatal architecture and activity of the human heart

    PubMed Central

    Pervolaraki, Eleftheria; Anderson, Richard A.; Benson, Alan P.; Hayes-Gill, Barrie; Holden, Arun V.; Moore, Benjamin J. R.; Paley, Martyn N.; Zhang, Henggui

    2013-01-01

    We construct the components for a family of computational models of the electrophysiology of the human foetal heart from 60 days gestational age (DGA) to full term. This requires both cell excitation models that reconstruct the myocyte action potentials, and datasets of cardiac geometry and architecture. Fast low-angle shot and diffusion tensor magnetic resonance imaging (DT-MRI) of foetal hearts provides cardiac geometry with voxel resolution of approximately 100 µm. DT-MRI measures the relative diffusion of protons and provides a measure of the average intravoxel myocyte orientation, and the orientation of any higher order orthotropic organization of the tissue. Such orthotropic organization in the adult mammalian heart has been identified with myocardial sheets and cleavage planes between them. During gestation, the architecture of the human ventricular wall changes from being irregular and isotropic at 100 DGA to an anisotropic and orthotropic architecture by 140 DGA, when it has the smooth, approximately 120° transmural change in myocyte orientation that is characteristic of the adult mammalian ventricle. The DT obtained from DT-MRI provides the conductivity tensor that determines the spread of potential within computational models of cardiac tissue electrophysiology. The foetal electrocardiogram (fECG) can be recorded from approximately 60 DGA, and RR, PR and QT intervals between the P, R, Q and T waves of the fECG can be extracted by averaging from approximately 90 DGA. The RR intervals provide a measure of the pacemaker rate, the QT intervals an index of ventricular action potential duration, and its rate-dependence, and so these intervals constrain and inform models of cell electrophysiology. The parameters of models of adult human sinostrial node and ventricular cells that are based on adult cell electrophysiology and tissue molecular mapping have been modified to construct preliminary models of foetal cell electrophysiology, which reproduce these

  18. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction—a phase I pilot clinical trial: study protocol

    PubMed Central

    Alers, Nicole O; Jenkin, Graham; Miller, Suzanne L; Wallace, Euan M

    2013-01-01

    Background Fetal growth restriction complicates about 5% of pregnancies and is commonly caused by placental dysfunction. It is associated with increased risks of perinatal mortality and short-term and long-term morbidity, such as cerebral palsy. Chronic in utero hypoxaemia, inflammation and oxidative stress are likely culprits contributing to the long-term neurological sequelae of fetal growth restriction. In this regard, we propose that melatonin, a powerful antioxidant, might mitigate morbidity and/or mortality associated with fetal growth restriction. Melatonin has an excellent biosafety profile and crosses the placenta and blood–brain barrier. We present the protocol for a phase I clinical trial to investigate the efficacy of maternal oral melatonin administration in women with a pregnancy complicated by fetal growth restriction. Methods and analysis The proposed trial is a single-arm, open-label clinical trial involving 12 women. Severe, early onset fetal growth restriction will be diagnosed by an estimated fetal weight ≤10th centile in combination with abnormal fetoplacental Doppler studies, occurring before 34 weeks of pregnancy. Baseline measurements of maternal and fetal well-being, levels of oxidative stress and ultrasound and Doppler measurements will be obtained at the time of diagnosis of fetal growth restriction. Women will then start melatonin treatment (4 mg) twice daily until birth. The primary outcomes are the levels of oxidative stress in the maternal and fetal circulation and placenta. Secondary outcomes are fetoplacental Doppler studies (uterine artery, umbilical artery middle cerebral artery and ductus venosus), fetal biometry, fetal biophysical profile and a composite determination of neonatal outcome. A historical cohort of gestational-matched fetal growth restriction and a healthy pregnancy cohort will be used as comparators. Ethics and dissemination Ethical approval has been obtained from Monash Health Human Research Ethics

  19. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development.

    PubMed

    Handwerger, S; Freemark, M

    2000-04-01

    The human growth hormone (hGH)/human placental lactogen (hPL) gene family, which consists of two GH and three PL genes, is important in the regulation of maternal and fetal metabolism and the growth and development of the fetus. During pregnancy, pituitary GH (hGH-N) expression in the mother is suppressed; and hGH-V, a GH variant expressed by the placenta, becomes the predominant GH in the mother. hPL, which is the product of the hPL-A and hPL-B genes, is secreted into both the maternal and fetal circulations after the sixth week of pregnancy. hGH-V and hPL act in concert in the mother to stimulate insulin-like growth factor (IGF) production and modulate intermediary metabolism, resulting in an increase in the availability of glucose and amino acids to the fetus. In the fetus, hPL acts via lactogenic receptors and possibly a unique PL receptor to modulate embryonic development, regulate intermediary metabolism and stimulate the production of IGFs, insulin, adrenocortical hormones and pulmonary surfactant. hGH-N, which is expressed by the fetal pituitary, has little or no physiological actions in the fetus until late in pregnancy due to the lack of functional GH receptors on fetal tissues. hGH-V, which is also a potent somatogenic hormone, is not released into the fetus. Taken together, studies of the hGH/hPL gene family during pregnancy reveal a complex interaction of the hormones with one another and with other growth factors. Additional investigations are necessary to clarify the relative roles of the family members in the regulation of fetal growth and development and the factors that modulate the expression of the genes.

  20. Forkhead Protein FoxO1 Acts as a Repressor to Inhibit Cell Differentiation in Human Fetal Pancreatic Progenitor Cells

    PubMed Central

    Jiang, Zongzhe; Tian, Jingjing; Zhang, Wenjian; Yan, Hao; Liu, Liping; Huang, Zhenhe; Lou, Jinning

    2017-01-01

    Our colleagues have reported previously that human pancreatic progenitor cells can readily differentiate into insulin-containing cells. Particularly, transplantation of these cell clusters upon in vitro induction for 3-4 w partially restores hyperglycemia in diabetic nude mice. In this study, we used human fetal pancreatic progenitor cells to identify the forkhead protein FoxO1 as the key regulator for cell differentiation. Thus, induction of human fetal pancreatic progenitor cells for 1 week led to increase of the pancreatic β cell markers such as Ngn3, but decrease of stem cell markers including Oct4, Nanog, and CK19. Of note, FoxO1 knockdown or FoxO1 inhibitor significantly upregulated Ngn3 and insulin as well as the markers such as Glut2, Kir6.2, SUR1, and VDCC, which are designated for mature β cells. On the contrary, overexpression of FoxO1 suppressed the induction and reduced expression of these β cell markers. Taken together, these results suggest that FoxO1 may act as a repressor to inhibit cell differentiation in human fetal pancreatic progenitor cells. PMID:28349071

  1. The cardiac glycoside-receptor system in the human heart.

    PubMed

    Erdmann, E; Brown, L

    1983-01-01

    Specific binding sites have been demonstrated to exist in the heart for several drugs and hormones such as beta-blocking agents, cardiac glycosides, catecholamines, insulin, glucagon and acetylcholine. The specific binding sites for cardiac glycosides in the human heart have certain properties which make it likely that they are the pharmacological receptors for the therapeutic and toxic actions of digitalis glycosides: they are located in the cell membrane and bind cardioactive steroids reversibly with high affinity: half-maximal receptor binding occurs at approximately 2 nM (approximately 1.5 ng/ml) for digoxin; potassium decreases receptor affinity, calcium increases it; specific binding of ouabain, digoxin or digitoxin is related to inhibition of (Na+ + K+)-ATPase activity--which is supposed to be the receptor enzyme for cardiac glycosides. Human left ventricle contains approximately 1.5 x 10(14) binding sites/g wet weight, right ventricle approximately 0.9 x 10(14). In disease the number of receptors may decrease (hypothyroid states, myocardial infarction) or increase (hyperthyroidism, chronic hypokalaemia). Certain drugs (such as phenytoin) or different temperatures or pH changes cause a change in digitalis-receptor affinity. Thus, the number of receptors and possibly their properties are subject to regulation in clinically relevant situations. Further investigations will probably reveal those pathophysiological states, which allow the explanation of toxicity or digitalis refractoriness.

  2. Perfluoroalkyl chemicals and human fetal development: an epidemiologic review with clinical and toxicological perspectives.

    PubMed

    Olsen, Geary W; Butenhoff, John L; Zobel, Larry R

    2009-06-01

    Epidemiologists began to focus on human developmental outcomes with perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) as a consequence of dose-dependent developmental toxicological studies that reported effects of lowered birth weight, increased postnatal mortality, and decreased postnatal growth in surviving rats and mice. Contributing to the epidemiologic interest was the widespread presence of PFOS and PFOA in the general population, lengthy serum elimination half-lives in humans, and the placental transfer of PFOS and PFOA in humans that was established via measurement of paired maternal and umbilical cord blood samples. The purpose of this paper is to qualitatively review the published epidemiologic literature as it pertains to the potential association of exposure to PFOS and PFOA with human fetal development. The published research has focused on birth weight and other measurements that reflect human fetal development. A total of eight epidemiologic studies were reviewed that focused on six general (non-occupational) and two occupational populations. Of the six general population studies, five examined associations between birth weight and other anthropometric measurements in relation to maternal blood and/or umbilical cord concentrations of PFOS and PFOA. In the sixth study, three geographical areas in Washington County, Ohio, were categorized by their public drinking water sources that contained PFOA that had resulted in higher serum concentrations than observed in other general population studies. The occupational studies focused on a perfluorochemical manufacturing site (Decatur, AL) with exposure categorized from work history and biomonitoring data. There were inconsistent associations reported for several different birth outcomes, including birth weight, birth length, head circumference, and ponderal index, among the five general population studies that measured PFOS and PFOA in the study subjects. No association with birth weight or

  3. Intramyocardial transplantation and tracking of human mesenchymal stem cells in a novel intra-uterine pre-immune fetal sheep myocardial infarction model: a proof of concept study.

    PubMed

    Emmert, Maximilian Y; Weber, Benedikt; Wolint, Petra; Frauenfelder, Thomas; Zeisberger, Steffen M; Behr, Luc; Sammut, Sebastien; Scherman, Jacques; Brokopp, Chad E; Schwartländer, Ruth; Vogel, Viola; Vogt, Peter; Grünenfelder, Jürg; Alkadhi, Hatem; Falk, Volkmar; Boss, Andreas; Hoerstrup, Simon P

    2013-01-01

    -Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intra-peritoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy.

  4. [Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum].

    PubMed

    Ding, Yan; Lu, Zhiyong; Yuan, Yahong; Wang, Xiaoli; Li, Dongsheng; Zeng, Yi

    2013-12-01

    To investigate whether human umbilical cord plasma (HUP) can be used to culture human cord blood mesenchymal stem cells (HUCMSCs), we collected 20 surplus HUP. After being treated with salting out and diasysis, the HUP were used to culture HUCMSCs as 10% volume, and compared with fetal bovine serum (FBS). Morphological characteristics, growth curve and reproductive activity of HUCMSCs cells were observed. The concentration of bFGF and noggin secreted by HUCMSCs cultured with HUP and FBS medium were detected by ELISA. It was found that compared to FBS, the morphology, reproductive activity and characteristic of HUCMSCs cell cultured with HUP were not distinctively different from FBS. The concentration of bFGF in HUP group was significantly higher than that of FBS group, and the concentration of noggin was also different in the two groups. So we concluded that HUP could be used to culture HUCMSCs for a long-time, and the HUP mediumcoild could be more suitable for the culture of human embryonic stem cell (hESC).

  5. Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases

    PubMed Central

    Bjurström, Carmen F; Mojadidi, Michelle; Phillips, John; Kuo, Caroline; Lai, Stephen; Lill, Georgia R; Cooper, Aaron; Kaufman, Michael; Urbinati, Fabrizia; Wang, Xiaoyan; Hollis, Roger P; Kohn, Donald B

    2016-01-01

    We examined the efficiency, specificity, and mutational signatures of zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 systems designed to target the gene encoding the transcriptional repressor BCL11A, in human K562 cells and human CD34+ progenitor cells. ZFNs and TALENs were delivered as in vitro transcribed mRNA through electroporation; CRISPR/Cas9 was codelivered by Cas9 mRNA with plasmid-encoded guideRNA (gRNA) (pU6.g1) or in vitro transcribed gRNA (gR.1). Analyses of efficacy revealed that for these specific reagents and the delivery methods used, the ZFNs gave rise to more allelic disruption in the targeted locus compared to the TALENs and CRISPR/Cas9, which was associated with increased levels of fetal hemoglobin in erythroid cells produced in vitro from nuclease-treated CD34+ cells. Genome-wide analysis to evaluate the specificity of the nucleases revealed high specificity of this specific ZFN to the target site, while specific TALENs and CRISPRs evaluated showed off-target cleavage activity. ZFN gene-edited CD34+ cells had the capacity to engraft in NOD-PrkdcSCID-IL2Rγnull mice, while retaining multi-lineage potential, in contrast to TALEN gene-edited CD34+ cells. CRISPR engraftment levels mirrored the increased relative plasmid-mediated toxicity of pU6.g1/Cas9 in hematopoietic stem/progenitor cells (HSPCs), highlighting the value for the further improvements of CRISPR/Cas9 delivery in primary human HSPCs. PMID:28131278

  6. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    PubMed

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  7. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures.

    PubMed

    Gonzales, Veronica K; de Mulder, Eric L W; de Boer, Trix; Hannink, Gerjon; van Tienen, Tony G; van Heerde, Waander L; Buma, Pieter

    2013-11-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three healthy adult donors. Human meniscal fibrochondrocytes (MFCs) were isolated from resected tissue after a partial meniscectomy on a young patient. Passage-4 MFCs were cultured in monolayer for 24 h, and 3 and 7 days. Six different culture media were used containing different amounts of either PRP or PPP and compared to a medium containing 10% FBS. dsDNA was quantified, and gene expression levels of collagen types I and II and aggrecan were measured at different time points with quantitative polymerase chain reaction in the cultured MFCs. After 7 days, the dsDNA quantity was significantly higher in MFCs cultured in 10% and 20% PRP compared to the other PRP and PPP conditions, but equal to 10% FBS. Collagen type I expression was lower in MFCs cultured with medium containing 5% PRP, 10% and 20% PPP compared to FBS. When medium with 10% PRP or 20% PRP was used, expressions were not significantly different from medium containing 10% FBS. Collagen type II expression was absent in all medium conditions. Aggrecan expression did not show differences between the different media used. However, after 7 days a higher aggrecan expression was measured in most culture conditions, except for 5% PRP, which was similar compared to FBS. Statistical significance was found between donors at various time points in DNA quantification and gene expression, but the same donors were not statistically different in all conditions. At 7 days cell cultured with 10% PRP and 20% PRP showed a higher density, with large areas of clusters, compared to other conditions. In an MFC culture medium, FBS can be replaced by 10% PRP or 20% PRP without altering proliferation and gene expression of human MFCs.

  8. Telocytes and putative stem cells in ageing human heart.

    PubMed

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days-1 year), children (6-17 years) and adults (34-60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm(2) ) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52-62%; vascular smooth muscle cells and pericytes 22-28%, Schwann cells with nerve endings 6-7%, fibroblasts 3-10%, macrophages 1-8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).

  9. A Spatio-Temporal Atlas of the Human Fetal Brain with Application to Tissue Segmentation

    PubMed Central

    Habas, Piotr A.; Kim, Kio; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2012-01-01

    Modeling and analysis of MR images of the early developing human brain is a challenge because of the transient nature of different tissue classes during brain growth. To address this issue, a statistical model that can capture the spatial variation of structures over time is needed. Here, we present an approach to building a spatio-temporal model of tissue distribution in the developing brain which can incorporate both developed tissues as well as transient tissue classes such as the germinal matrix by using constrained higher order polynomial models. This spatio-temporal model is created from a set of manual segmentations through groupwise registration and voxelwise non-linear modeling of tissue class membership, that allows us to represent the appearance as well as disappearance of the transient brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific tissue probability maps and use them to initialize an EM segmentation of the fetal brain tissues. The approach is evaluated using clinical MR images of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Results indicate improvement in performance of atlas-based EM segmentation provided by higher order temporal models that capture the variation of tissue occurrence over time. PMID:20425999

  10. Differential Expression of CXCL12 and CXCR4 During Human Fetal Neural Progenitor Cell Differentiation

    PubMed Central

    Peng, Hui; Kolb, Ryan; Kennedy, J. E.

    2007-01-01

    Stromal cell-derived factor 1 alpha (SDF-1α, CXCL12) and its receptor CXCR4 play an important role in the central nervous system (CNS) development and adulthood by mediating cell migration, enhancing precursor cell proliferation, assisting in neuronal circuit formation, and possibly regulating migration during repair. The expression pattern of CXCR4 and CXCL12 during neurogenesis has not been thoroughly elucidated. In this study, we investigated the expression of CXCL12 and CXCR4 during neural progenitor cells (NPC) differentiation by microarray analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) using human fetal NPC as a model system. The production of CXCL12 was measured by enzyme-linked immunosorbent assay (ELISA). CXCR4 expression was determined by florescence-activated cell sorting (FACS) analysis, immunocytochemical staining, and CXCR4-mediated inhibition of cyclic AMP (cAMP) accumulation. Our data demonstrated that CXCR4 expression is significantly upregulated when NPC are differentiated into neuronal precursors, whereas CXCL12 is upregulated when differentiated into astrocytes. We also provide evidence that CXCR4 localization changes as neurons mature. In neuronal precursors, CXCR4 is localized in both neuronal processes and the cell body, whereas in mature neurons, it is primarily expressed on axons and dendrites. This differential expression of CXCR4 and CXCL12 may be important for the temporal regulation of neuronal migration and circuit formation during development and possibly in adult neurogenesis and repair. PMID:18040858

  11. Expression of hyaluronan (hyaluronic acid) in the developing laminar architecture of the human fetal brain.

    PubMed

    Shibata, Shunichi; Cho, Kwang Ho; Kim, Ji Hyun; Abe, Hiroshi; Murakami, Gen; Cho, Baik Hwan

    2013-10-01

    Hyaluronan (also called hyaluronic acid or HA) plays a key role in the morphogenesis of the brain, but little is known about its expression in the human fetal neocortex. Using immunohistochemical methods, we assayed the expression of HA, glial fibrillary acidic protein, vimentin, nestin, and proliferating cell nuclear antigen in paraffin-embedded histologic sections of 8 mid-term fetuses (estimated gestational age, 12-16 weeks; crown-rump length, 75-120mm). At 12-13 weeks, HA was expressed strongly along the membranes of many cells in the cortical plate and the layer 1 or marginal zone, but showed weak, spotty expression in a fiber-rich layer adjacent to the cortical plate, called the cortical stratified transitional field-1 (STF-1 or a primitive form of the subplate). At 15-16 weeks, HA was expressed in the layer 1 and in the early subplate or presubplate, but less strongly in cells of the possible STF-5 near the subventricular zone. However, the positive observation in STF-5 was probably a result of individual difference in development. The developing cortical plate seemed to produce HA in the presubplate to harbor axonal plexus of various afferent systems, while Cajal-Retzius cells were likely to accumulate HA in the layer 1. The HA-rich zones, those sandwiched the cortical plate, might avoid further migration of cortical cells.

  12. Embryonic and early fetal period development and morphogenesis of human craniovertebral junction.

    PubMed

    Hita-Contreras, Fidel; Roda, Olga; Martínez-Amat, Antonio; Cruz-Díaz, David; Mérida-Velasco, Juan A; Sánchez-Montesinos, Indalecio

    2014-04-01

    Several studies have focused on the cartilaginous, articular, and ligamentous development of the craniovertebral joint (CVJ), but there are no unifying criteria regarding the origin and morphogenetic timetable of the structures that make up the CVJ. In our study, serial sections of 53 human embryonic (n = 27) and fetal (n = 26) specimens from O'Rahilly stages 17-23 and 9-13 weeks, respectively, have been analyzed. Our results demonstrate that the chondrification of the pars basioccipitalis and exoccipitalis becomes observable at stage 19, and all future bones in the CVJ are in their cartilaginous form except for the future odontoid process. In addition, two chondrification centers appear for the body of the axis. From stage 21, the apical, alar, and transverse atlantal ligaments begin to acquire a ligamentous structure and the odontoid process initiates its chondrogenic phase. Stage 22 witnesses the first signs of the articular cavities of the atlanto-occipital joint, and by stage 23 all joints have cavities except for the transverse-odontoid joint, which will wait until week 9. In week 10, the ossification of the basilar part of the occipital bone begins, followed by the rest of the structures except for the odontoid process, which will start at week 13, thus completing the osteogenesis of all bones in the CVJ. The results of this study could help in establishing the anatomical basis of the normally functioning CVJ and for detecting its related pathologies, abnormalities, and malformations.

  13. Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide.

    PubMed

    Rivera-Denizard, Omayra; Diffoot-Carlo, Nannette; Navas, Vivian; Sundaram, Paul A

    2008-01-01

    Ti-48Al-2Cr-2Nb (at. %) (gammaTiAl), a gamma titanium aluminide alloy originally designed for aerospace applications, appears to have excellent potential for bone repair and replacement. The biological response to gammaTiAl implant is expected to be similar to other titanium-based biomaterials. Human fetal osteoblast cells were cultured on the surface of gammaTiAl and Ti-6Al-4V disks with variable surface roughness for both SEM and immunofluorescent analysis to detect the presence of collagen type I and osteonectin, proteins of the bone extracellular matrix. Qualitative results show that cell growth and attachment on gammaTiAl was normal compared to that of Ti-6Al-4V, suggesting that gammaTiAl is not toxic to osteoblasts. The presence of collagen type I and osteonectin was observed on both gammaTiAl and Ti-6Al-4V. The results obtained suggest gammaTiAl is biocompatible with the osteoblast cells.

  14. [Successful outcome of a pregnancy with an extremely low fetal heart rate (34 bpm) due to isolated complete heart block--case report].

    PubMed

    Hamela-Olkowska, Anita; Dangel, Joanna; Miszczak-Knecht, Maria

    2009-09-01

    Isolated complete congenital heart block (CHB) in the majority of cases is associated with the presence of autoantibodies to SSA (Ro) and SSB (La) antigens in the maternal serum. The prognosis is less favorable in fetuses with a ventricular rate < 55bpm. We have reported a case of a fetus with an isolated non-autoimmune CHB with an extremely low ventricular rate (34bpm) in which the outcome was favorable. In the neonate the non-compaction of the myocardium was diagnosed.

  15. Restrictive dermopathy and fetal behaviour.

    PubMed

    Mulder, E J; Beemer, F A; Stoutenbeek, P

    2001-07-01

    We report three siblings from consecutive pregnancies affected with restrictive dermopathy (RD). During the second pregnancy, fetal behavioural development and growth were studied extensively using ultrasound at 1-4 week intervals. Dramatic and sudden changes occurred in fetal body movements and growth but not until the end of the second trimester of pregnancy. Prominent at that time were prolonged periods of fetal quiescence and very low heart rate variability, together with abnormally executed body movements of short duration. Retarded femoral development and jerky abrupt fetal body movements (abnormal movement quality) were already present in the early second trimester of pregnancy. Facial anomalies emerged despite the presence of fetal mouth movements. The clinical features of RD were only partly explained by present knowledge of skin development and the fetal akinesia deformation sequence hypothesis. Quantitative assessment of fetal movements proved to be a poor early marker for antenatal diagnosis of this disorder.

  16. A three-dimensional study of human fetal endocervix with special reference to its epithelium.

    PubMed

    Barberini, F; Makabe, S; Motta, P M

    1998-07-01

    The development of human fetal cervix has been systematically studied by SEM, obtaining a detailed map of its fine structure, particularly concerning the differentiation and maturation of the endocervical epithelium, including its "eversion" and "squamous metaplasia", normally occurring in postnatal life, but not yet observed in detail by electron microscopy in the fetus. Cervices from spontaneous abortion at 12, 15, 18, 20, 21 and 22 weeks and from intrauterine fetal death (hydrocephalus) at 31 weeks of development have been examined. At 12-15 weeks, as the canalization of the cervix proceeded, the endocervical epithelium consisted of high polyhedral cells, with regularly flattened or concave apices exhibiting scarce microvilli and often single primary cilia. Some narrow intercellular infoldings probably corresponded to primordial tubular glands. At the 18th week the epithelium was made up of a mosaic of flat or slightly raised polygonal cells, whose apical surface showed thin microplicae. At the 20th week a pseudostratified epithelium with many apically convex cells lined the cervical canal and the tubular glands. At 21 and 22 weeks "plicae palmatae" developed, covered by cells, often showing a smooth central area surrounded by microvilli, provided with a primary cilium and swollen by secretory material. This also formed rounded masses on the epithelium. In the lower part of the endocervix some very elongated cells showed short microplicae resulting from fusion of microvilli. At the 31st week secretion increased and its products spreading from the bottom of the glands contacted isolated ciliated cells at their openings and diffusely covered the surface epithelium. Most of the ectocervix exhibited squamous elements, with well-developed labyrinthine microplicae. These cells could overlap each other and also desquamate. The zone of the portio vaginalis around the os of the cervical canal appeared infolded and hypertrophic. Here, an indented squamo-columnar junction

  17. CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development.

    PubMed

    Schneider, Eberhard; Dittrich, Marcus; Böck, Julia; Nanda, Indrajit; Müller, Tobias; Seidmann, Larissa; Tralau, Tim; Galetzka, Danuta; El Hajj, Nady; Haaf, Thomas

    2016-10-30

    Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.

  18. Hierarchical Structure of Heart Rate Variability in Humans

    NASA Astrophysics Data System (ADS)

    Gao, X. Z.; Ching, E. S. C.; Lin, D. C.

    2004-03-01

    We show a hierarchical structure (HS) of the She-Leveque form in the beat-to-beat RR intervals of heart rate variability (HRV) in humans. This structure, first found as an empirical law in turbulent fluid flows, implies further details in the HRV multifractal scaling. We tested HS using daytime RRi data from healthy subjects and heart diseased patients with congestive heart failure and found a universal law C(b) where b characterizes the multifractality of HRV and C is related to a co-dimension parameter of the most violent events in the fluctuation. The potential of diagnosis is discussed based on the characteristics of this finding. To model the HRV phenomenology, we propose a local-feedback-global-cascade (LFGC) model based on the She-Waymire (SW) cascade solution to the HS in fluid turbulence. This model extends from the previous work in that it integrates additive law multiplicatively into the cascade structure. It is an attempt to relate to the cardiovascular physiology which consists of numerous feedback controls that function primarily on the principle of additive law. In particular, the model is based on the same philosophy as the SW cascade that its multifractal dynamics consists of a singular and a modulating component. In the LFGC model, we introduce local feedback to model the dynamics of the modulating effect. The novelty of our model is to incorporate the cascade structure in the scheduling for the feedback control. This model also represents an alternative solution to the HS. We will present the simulation results by the LFGC model and discuss its implication in physiology terms.

  19. [A pilot study on establishment of human/pig hematopoietic chimera model in fetal and neonatal pigs].

    PubMed

    Tan, Ying-Xia; Wang, Jie-Xi; Li, Ming; Zhang, Yang-Pei

    2005-08-01

    This study was aimed to explore the feasibility of transplanting human cord blood stem cells (HSC) into pre-immune fetal and neonatal pigs, and to investigate the self-renewal of HSC in the recipient pigs. The fetus and neonate were manipulated in sterile separated room and human donor cells were injected into fetus via fetus muscle or umbilical vein (dissectted womb) or into neonate via umbilical vein before cutting it. Human CD45(+) cells s were detected by labeling with human anti-CD45 antibody and analyzed by fluorescence activated cell sorting (FACS). The results showed that tested pigs developed as well as control and a definite proportion of human cells existed in peripheral blood of chimeric pig on day 60 after transplantation. In conclusion, the fetus and neonate pigs can tolerate a definite proportion of human antigens, and to establish the human/pig model of hematopoietic chimerism is possible.

  20. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains.

    PubMed

    Miyazaki, Yuta; Song, Jae W; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  1. Human fetal chromaffin cells: a potential tool for cell pain therapy.

    PubMed

    Jozan, Suzanne; Aziza, Jacqueline; Châtelin, Sophie; Evra, Corinne; Courtade-Saïdi, Monique; Parant, Olivier; Sol, Jean Christophe; Zhou, Huafang; Lazorthes, Yves

    2007-06-01

    Transplantation of adrenal medulla cells has been proposed in the treatment of various conditions. Indeed, these cells possess a bipotentiality: neural and neuroendocrine, which could be exploited for brain repair or pain therapy. In a previous study, we characterized these human cells in vitro over 7-10 gestational weeks (GW) [Zhou, H., Aziza, J., Sol, J.C., Courtade-Saidi, M., Chatelin, S., Evra, C., Parant, O., Lazorthes, Y., and Jozan, S., 2006. Cell therapy of pain: Characterization of human fetal chromaffin cells at early adrenal medulla development. Exp. Neurol. 198, 370-381]. We report here our results on the extension to 23 GW. This developmental period can be split into three stages. During the first stage (7-10 GW), we observed in situ that extra-adrenal surrounding cells display the same morphology and phenotype as the intra-adrenal chromaffin cells. We also found that the intra-adrenal chromaffin cells could be committed in vitro towards an adrenergic phenotype using differentiating agents. During the second stage (11 to 15-16 GW), two types of cells (Type 1 and Type 2 cells) were identified morphologically both inside and outside the gland. Interestingly, we noted that the Type 2 cells stem from the Type 1 cells. However, during this developmental period only the intra-adrenal Type 2 cells will evolve towards an adrenergic phenotype. In the third stage (17-23 GW), we observed the ultimate location of the medulla gland. Both the in situ results and the in vitro experiments indicate that particular procedures need to be implemented prior transplantation of chromaffin cells. First, in order to obtain a large number of immature chromaffin cells, they must be isolated from the intra and extra-adrenal gland and should then be committed towards an adrenergic phenotype in vitro for subsequent use in pain therapy. This strategy is under investigation in our laboratory.

  2. Fetal Research

    NASA Astrophysics Data System (ADS)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  3. Evolution of fetal ultrasonography.

    PubMed

    Avni, F E; Cos, T; Cassart, M; Massez, A; Donner, C; Ismaili, K; Hall, M

    2007-02-01

    The authors wish to highlight the evolution that has occurred in fetal ultrasound in recent years. A first significant evolution lies in the increasing contribution of first trimester ultrasound for the detection of fetal anomalies. Malformations of several organs and systems have been diagnosed during the first trimester. Furthermore the systematic measurement of the fetal neck translucency has led to increasing rate of detection of aneuploidies and heart malformations. For several years now, three-dimensional (3D) and 4D ultrasound (US) have been used as a complementary tool to 2D US for the evaluation of fetal morphology. This brings an improved morphologic assessment of the fetus. Applications of the techniques are increasing, especially for the fetal face, heart and extremities. The third field where fetal US is continuously providing important information is the knowledge of the natural history of diseases. This has brought significant improvement in the postnatal management of several diseases, especially urinary tract dilatation and broncho-pulmonary malformation.

  4. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    SciTech Connect

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C. . E-mail: roco@soton.ac.uk

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.

  5. Statistical Properties of the Interbeat Interval Cascade in Human Hearts

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Peinke, J.; Reza Rahimi Tabar, M.; Sahimi, Muhammad

    Statistical properties of interbeat intervals cascade in human hearts are evaluated by considering the joint probability distribution P (Δx2, τ2 Δx1, τ1) for two interbeat increments Δx1 and Δx2 of different time scales τ1 and τ2. We present evidence that the conditional probability distribution P (Δx2, τ2 | Δx1, τ1) may be described by a Chapman-Kolmogorov equation. The corresponding Kramers-Moyal (KM) coefficients are evaluated. The analysis indicates that while the first and second KM coefficients take on well-defined and significant values, the higher-order coefficients in the KM expansion are small. As a result, the joint probability distributions of the increments in the interbeat intervals are described by a Fokker-Planck equation, with the first two KM coefficients acting as the drift and diffusion coefficients. The method provides a novel technique for distinguishing two classes of subjects, namely, healthy ones and those with congestive heart failure, in terms of the drift and diffusion coefficients which behave differently for two classes of the subjects.

  6. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  7. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements.

    PubMed

    Bieback, Karen; Ha, Viet Anh-Thu; Hecker, Andrea; Grassl, Melanie; Kinzebach, Sven; Solz, Hermann; Sticht, Carsten; Klüter, Harald; Bugert, Peter

    2010-11-01

    Mesenchymal stromal cells (MSCs) are promising candidates for innovative cell therapeutic applications. For clinical scale manufacturing regulatory agencies recommend to replace fetal bovine serum (FBS) commonly used in MSC expansion media as soon as equivalent alternative supplements are available. We already demonstrated that pooled blood group AB human serum (HS) and thrombin-activated platelet releasate plasma (tPRP) support the expansion of multipotent adipose tissue-derived MSCs (ASCs). Slight differences in size, growth pattern and adhesion prompted us to investigate the level of equivalence by compiling the transcriptional profiles of ASCs cultivated in these supplements. A whole genome gene expression analysis was performed and data verified by polymerase chain reaction and protein analyses. Microarray-based screening of 34,039 genes revealed 102 genes differentially expressed in ASCs cultured with FBS compared to HS or tPRP supplements. A significantly higher expression in FBS cultures was found for 90 genes (fold change ≥2). Only 12 of the 102 genes showed a lower expression in FBS compared to HS or tPRP cultures (fold change ≤0.5). Differences between cells cultivated in HS and tPRP were hardly evident. Supporting previous observations of reduced adhesion of cells cultivated in the human alternatives we detected a number of adhesion and extracellular matrix-associated molecules expressed at lower levels in ASCs cultivated with human supplements. Confirmative assays analyzing transcript or protein expression with selected genes supported these results. Likewise a number of mesodermal differentiation-associated genes were higher expressed in cells grown in FBS. Quantifying adipogenic and osteogenic differentiation lacked to demonstrate a clear correlation to the supplement due to donor-specific variances. Our results emphasize the necessity of comparability studies as they indicate that FBS induces a culture adaptation exceeding that of ex vivo

  8. Disabled-1 Alternative Splicing in Human Fetal Retina and Neural Tumors

    PubMed Central

    Katyal, Sachin; Glubrecht, Darryl D.; Li, Lei; Gao, Zhihua; Godbout, Roseline

    2011-01-01

    Background The Reelin-Dab1 signaling pathway plays a critical role in the positioning of migrating neurons, dendrite formation and lamination in the developing central nervous system. We have previously identified two alternatively spliced forms of Dab1 in the developing chick retina: an early form, Dab1-E, expressed in retinal progenitor cells, and a late form, Dab1 or Dab1-L, expressed in amacrine and ganglion cells. Compared to Dab1-L, Dab1-E lacks two exons that encode two Src family kinase (SFK) phosphorylation sites. Principal Findings Both Dab1-L and Dab1-E-like transcripts were identified in human fetal retina. Expression of human Dab1-L in primary chick retinal cultures resulted in Reelin-mediated induction of SFK phosphorylation and formation of neurite-like processes. In contrast, human Dab1-E-expressing cells retained an undifferentiated morphology. The human Dab1 gene is located within a common fragile site, and it has been postulated that it may function as a tumor suppressor. Analysis of Dab1 splice forms in retinoblastoma and neuroblastoma tumor cells revealed relative enrichment of Dab1-L-like (includes exons 7 and 8) and Dab1-E-like (excludes exons 7 and 8) transcripts in retinoblastoma and neuroblastoma, respectively. Treatment of retinoblastoma cell line RB522A with Reelin resulted in increased tyrosine phosphorylation of Dab1. As Nova2 has previously been implicated in the exclusion of exons 9B and 9C in Dab1, we examined the expression of this splicing factor in neuroblastoma and retinoblastoma cell lines. Nova2 was only detected in neuroblastoma cells, suggesting a correlation between Nova2 expression and increased levels of Dab1-E-like splice forms in neuroblastoma. Conclusions These results indicate that alternative splicing of Dab1 is conserved in avian and mammalian species, with Dab1-L driving SFK phosphorylation in both species. Dab1-E- and Dab-L-like isoforms are also expressed in childhood neural tumors, with preferential enrichment

  9. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile.

    PubMed

    Lissauer, David; Eldershaw, Suzy A; Inman, Charlotte F; Coomarasamy, Aravinthan; Moss, Paul A H; Kilby, Mark D

    2015-10-01

    Progesterone is a steroid hormone essential for the maintenance of human pregnancy, and its actions are thought to include promoting maternal immune tolerance of the semiallogenic fetus. We report that exposure of maternal T cells to progesterone at physiological doses induced a unique skewing of the cytokine production profile of CD4(+) and CD8(+) T cells, with reductions not only in potentially deleterious IFN-γ and TNF-α production but also in IL-10 and IL-5. Conversely, production of IL-4 was increased. Maternal T cells also became less polyfunctional, focussing cytokine production toward profiles including IL-4. This was accompanied by reduced T-cell proliferation. Using fetal and viral antigen-specific CD8(+) T-cell clones, we confirmed that this as a direct, nonantigen-specific effect. Yet human T cells lacked conventional nuclear progesterone receptors, implicating a membrane progesterone receptor. CD4(+) and CD8(+) T cells responded to progesterone in a dose-dependent manner, with subtle effects at concentrations comparable to those in maternal blood, but profound effects at concentrations similar to those at the maternal-fetal interface. This characterization of how progesterone modulates T-cell function is important in understanding the normal biology of pregnancy and informing the rational use of progesterone therapy in pregnancies at risk of fetal loss.

  10. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development

    NASA Astrophysics Data System (ADS)

    Leeansyah, Edwin; Loh, Liyen; Nixon, Douglas F.; Sandberg, Johan K.

    2014-01-01

    Innate-like, evolutionarily conserved MR1-restricted mucosa-associated invariant T (MAIT) cells represent a large antimicrobial T-cell subset in humans. Here, we investigate the development of these cells in second trimester human fetal tissues. MAIT cells are rare and immature in the fetal thymus, spleen and mesenteric lymph nodes. In contrast, mature IL-18Rα+ CD8αα MAIT cells are enriched in the fetal small intestine, liver and lung. Independently of localization, MAIT cells express CD127 and Ki67 in vivo and readily proliferate in response to Escherichia coli in vitro. Maturation is accompanied by the gradual post-thymic acquisition of the PLZF transcription factor and the ability to produce IFNγ and IL-22 in response to bacteria in mucosa. Thus, MAIT cells acquire innate-like antimicrobial responsiveness in mucosa before exposure to environmental microbes and the commensal microflora. Establishment of this arm of immunity before birth may help protect the newborn from a range of pathogenic microbes.

  11. [Anomalies in the development of the sinus venosus as a probable cause of heart rhythm disorders and fetal hydrops].

    PubMed

    Dudorkinová, D; Povýsilová, V; Skovránek, J

    1993-09-01

    Prenatal ultrasonic examination during the 28th week of gestation revealed a transient disorder of the cardiac rhythm in the foetus. Subsequently repeated echocardiographic examinations confirmed foetal hydrops which together with signs of EP gestosis of the mother was an indication to terminate pregnancy during the 29th week by Caesarean section. In the severely hydropic male foetus in the enlarged anterior wall of the right atrium an atypical vascular canal was found which was in the close vicinity of the sinoatrial node. The latter most probably caused intermittent intrauterine supraventricular tachycardia in a heart with a normal configuration in other respects.

  12. Characterization of the fetal diaphragmatic magnetomyogram and the effect of breathing movements on cardiac metrics of rate and variability.

    PubMed

    Gustafson, Kathleen M; Allen, John J B; Yeh, Hung-Wen; May, Linda E

    2011-07-01

    Breathing movements are one of the earliest fetal motor behaviors to emerge and are a hallmark of fetal well-being. Fetal respiratory sinus arrhythmia (RSA) has been documented but efforts to quantify the influence of breathing on heart rate (HR) and heart rate variability (HRV) are difficult due to the episodic nature of fetal breathing activity. We used a dedicated fetal biomagnetometer to acquire the magnetocardiogram (MCG) between 36 and 38 weeks gestational age (GA). We identified and characterized a waveform observed in the raw data and independent component decomposition that we attribute to fetal diaphragmatic movements during breathing episodes. RSA and increased high frequency power in a time-frequency analysis of the IBI time-series was observed during fetal breathing periods. Using the diaphragmatic magnetomyogram (dMMG) as a marker, we compared time and frequency domain metrics of heart rate and heart rate variability between breathing and non-breathing epochs. Fetal breathing activity resulted in significantly lower HR, increased high frequency power, greater sympathovagal balance, increased short-term HRV and greater parasympathetic input relative to non-breathing episodes confirming the specificity of fetal breathing movements on parasympathetic cardiac influence. No significant differences between breathing and non-breathing epochs were found in two metrics reflecting total HRV or very low, low and intermediate frequency bands. Using the fetal dMMG as a marker, biomagnetometry can help to elucidate the electrophysiologic mechanisms associated with diaphragmatic motor function and may be used to study the longitudinal development of human fetal cardiac autonomic control and breathing activity.

  13. Transient HEXA expression in a transformed human fetal Tay-Sachs disease neuroglial cell line

    SciTech Connect

    Fernandes, M.J.; Hechtman, P.; Kaplan, F.

    1994-09-01

    Tay-Sachs disease (TSD) is a severe neurodegenerative disorder characterized by the accumulation of GM{sub 2} ganglioside in the neurons of the central cortex. The recessively inherited disorder results from deficiency of hexosaminidase A (Hex A), a heterodimer of an {alpha} and {beta} subunit encoded by the HEXA and HEXB genes. Expression of HEXA mutations in COS cells has several disadvantages including high endogenous hexosaminidase activity. We report a new transient expression system with very low endogenous Hex A activity. An SV40-transformed fetal TSD neuroglial cell line was assessed for transient expression of the HEXA gene. pCMV{alpha}, a vector incorporating the cytomegalovirus promoter with the human {alpha}-subunit cDNA insert, proved to be the most efficient expression vector. Transfection of 4x10{sup 6} cells with 5-20 {mu}g of plasmid resulted in 100 to 500-fold Hex A activity (4MUGS hydrolysis) relative to mock-transfected cells. Use of pCMV{beta}-Gal as a control for transfection efficiency indicated that 10-20% of cells were transfected. Hex A specific activity increased for at least 72 h post-transfection. This new transient expression system should greatly improve the characterization of mutations in which low levels of HEXA expression result in milder clinical phenotypes and permit studies on enzymatic properties of mutant forms of Hex A. Since the cells used are of CNS origin and synthesize gangliosides, it should also be possible to study, in culture, the metabolic phenotype associated with TSD.

  14. Fetal development of the elastic-fiber-mediated enthesis in the human middle ear.

    PubMed

    Takanashi, Yoshitaka; Shibata, Shunichi; Katori, Yukio; Murakami, Gen; Abe, Shinichi; Rodríguez-Vázquez, Jose Francisco; Kawase, Tetsuaki

    2013-10-01

    In the human middle ear, the annular ligament of the incudostapedial joint and the insertions of the tensor tympani and stapedius muscles contain abundant elastic fibers; i.e., the elastic-fiber-mediated entheses. Hyaluronan also coexists with the elastic fibers. In the present study using immunohistochemistry, we demonstrated the distribution of elastin not only in the incudostapedial joint but also in the other two joints of the middle ear in adults and fetuses. In adults, the expression of elastin did not extend out of the annular ligament composed of mature elastic fibers but clearly overlapped with it. Electron microscopic observations of the annular ligament demonstrated a few microfibrils along the elastic fibers. Thus, in contrast to the vocal cord, the middle ear entheses seemed not to contain elaunin and oxytalan fibers. In mid-term fetuses (at approximately 15-16 weeks of gestation) before opening of the external acoustic meatus, the incudostapedial joint showed abundant elastic fibers, but the incudomalleolar and stapediovestibular joints did not. At this stage, hyaluronan was not colocalized, but distributed diffusely in loose mesenchymal tissues surrounding the ear ossicles. Therefore, fetal development of elastin and elastic fibers in the middle ear entheses is unlikely to require acoustic oscillation. In late-stage fetuses (25-30 weeks), whose ear ossicles were almost the same size as those in adults, we observed bundling and branching of elastic fibers. However, hyaluronan expression was not as strong as in adults. Colocalization between elastic fibers and hyaluronan appeared to be a result of postnatal maturation of the entheses.

  15. Parent bisphenol A accumulation in the human maternal-fetal-placental unit.

    PubMed Central

    Schönfelder, Gilbert; Wittfoht, Werner; Hopp, Hartmut; Talsness, Chris E; Paul, Martin; Chahoud, Ibrahim

    2002-01-01

    Bisphenol A (BPA), an endocrine disruptor, is employed in the manufacture of a wide range of consumer products. The suggestion that BPA, at amounts to which we are exposed, alters the reproductive organs of developing rodents has caused concern. At present, no information exists concerning the exposure of human pregnant women and their fetuses to BPA. We therefore investigated blood samples from mothers (n = 37) between weeks 32 and 41 of gestation. Afer the births, we also analyzed placental tissue and umbilical cord blood from the same subjects. We developed a novel chemical derivatization-gas chromatography/mass spectrometry method to analyze parent BPA at concentrations < 1 micro g/mL in plasma and tissues. Concentrations of BPA ranged from 0.3 to 18.9 ng/mL (median = 3.1 ng/mL) in maternal plasma, from 0.2 to 9.2 ng/mL (median = 2.3 ng/mL) in fetal plasma, and from 1.0 to 104.9 ng/g (median = 12.7 ng/g) in placental tissue. BPA blood concentrations were higher in male than in female fetuses. Here we demonstrate parent BPA in pregnant women and their fetuses. Exposure levels of parent BPA were found within a range typical of those used in recent animal studies and were shown to be toxic to reproductive organs of male and female offspring. We suggest that the range of BPA concentrations we measured may be related to sex differences in metabolization of parent BPA or variable maternal use of consumer products leaching BPA. PMID:12417499

  16. Psychological and psychophysiological considerations regarding the maternal-fetal relationship

    PubMed Central

    DiPietro, Janet A.

    2009-01-01

    The earliest relationship does not begin with birth. Pregnant women construct mental representations of the fetus, and feelings of affiliation or “maternal-fetal attachment” generally increase over the course of gestation. While there is a fairly substantial literature on the development and moderation of psychological features of the maternal-fetal relationship, including the role of ultrasound imaging, relatively little is known about the manner in which maternal psychological functioning influences the fetus. Dispositional levels of maternal stress and anxiety are modestly associated with aspects of fetal heart rate and motor activity. Both induced maternal arousal and relaxation generate fairly immediate alterations to fetal neurobehaviors; the most consistently observed fetal response to changes in maternal psychological state involves suppression of motor activity. These effects may be mediated, in part, by an orienting response of the fetus to changes in the intrauterine environment. Conversely, there is evidence that fetal behaviors elicit maternal physiological responses. Integration of this finding into a more dynamic model of the maternal-fetal dyad, and implications for the postnatal relationship are discussed. Research on the period before birth affords tremendous opportunity for developmental scientists to advance understanding of the origins of human attachment. PMID:20228872

  17. The use of human fetal tissue: scientific, ethical, and policy concerns (January 1990)

    PubMed

    Vawter, Dorothy E; Kearney, Warren; Gervais, Karen G; Caplan, Arthur L; Garry, Daniel; Tauer, Carol

    1991-01-01

    The use of fetal tissue in transplants for treating illnesses such as Parkinson's disease and juvenile diabetes has raised the hopes of patients, their families, and the biomedical community. But, this practice has created considerable controversy. Concerns arise because tissue is usually obtained from electively aborted fetuses. Despite the controversy, there has been little systematic and sustained examination of the ethical and policy issues posed by the use of fetal tissue in biomedicine. The lack of information and analysis hampers serious discussion. In the Spring of 1988, the Center for Biomedical Ethics began an interdisciplinary research project on the scientific, ethical, and policy issues raised by the use of fetal tissue in biomedicine. Twenty-five scholars, drawn mainly, but not exclusively, from the faculty of the University of Minnesota, met to undertake the study. The members of this research group included experts in neonatology, pediatrics, neurology, neurosurgery, organ transplantation, tissue procurement, cell biology, immunology, epidemiology, law, philosophy, moral theology, and the behavioral sciences. The group met every three weeks over a period of ten months to collect and review information about the use of fetal tissue -- with special attention to transplantation -- the potential sources of fetal tissue, and the relevant laws and guidelines in the U.S. and other nations. Six members of the research group had primary responsibility for writing this report.

  18. De novo expression of fetal ED-A(+) fibronectin and B (+) tenascin-C splicing variants in human cardiac allografts: potential impact for targeted therapy of rejection.

    PubMed

    Franz, Marcus; Matusiak-Brückner, Monika; Richter, Petra; Grün, Katja; Ziffels, Barbara; Neri, Dario; Maschek, Hansjörg; Schulz, Uwe; Pfeil, Alexander; Jung, Christian; Figulla, Hans R; Gummert, Jan; Berndt, Alexander; Renner, André

    2014-10-01

    Management of acute and especially chronic rejection after human cardiac transplantation is still challenging. Chronic rejection, represented by allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) is known to cause severe long-term complications. Rejection associated tissue-remodelling entails the reoccurrence of fetal variants of Fibronectin (Fn) and Tenascin-C (Tn-C), which are virtually absent in adult human organs. In a rat model, an extensive re-expression could be demonstrated for ED-A(+) Fn with spatial association to CAV and CIF. Thus, it is of great interest to investigate the cardiac tissue expression and distribution in human samples. From 48 heart transplanted patients, 64 tissue specimens derived from right ventricular biopsies were available. Histopathological analysis was performed according to the International Society for Heart and Lung Transplantation (ISHLT) guidelines for the detection of acute rejection. By immunohistochemistry, protein expression of ED-A(+) Fn, B(+) Tn-C, alpha-smooth muscle actin, CD31 and CD45 was assessed and analysed semiquantitatively. Co-localisation studies were performed by means of immunofluorescence double labelling. Histopathological analysis of the 64 samples revealed different ISHLT grades (0R in 36 cases, 1R in 20 cases and 2R in 8 cases). There was a distinct and quantitatively relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C in most samples. Semi-quantitative evaluation did not show any correlation to the acute rejection grade for all markers. Interestingly, significant correlations to the extent of inflammation could be shown for ED-A(+) Fn (r = 0.442, p = 0.000) and B(+) Tn-C (r = 0.408, p = 0.001) as well as between both proteins (r = 0.663, p = 0.000). A spatial association of ED-A(+) Fn and B(+) Tn-C to CAV and CIF could be demonstrated. A relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C following human heart transplantation could be demonstrated with spatial association to

  19. A Simple Dissection Method for the Conduction System of the Human Heart

    ERIC Educational Resources Information Center

    Yanagawa, Nariaki; Nakajima, Yuji

    2009-01-01

    A simple dissection guide for the conduction system of the human heart is shown. The atrioventricular (AV) node, AV bundle, and right bundle branch were identified in a formaldehyde-fixed human heart. The sinu-atrial (SA) node could not be found, but the region in which SA node was contained was identified using the SA nodal artery. Gross…

  20. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  1. Congenital heart disease

    MedlinePlus

    ... defect - heartbeat Patent ductus arteriosis (PDA) - series References Fraser CD, Carberry KE. Congenital heart disease. In: Townsend ... ASD) Coarctation of the aorta Ellis-van Creveld syndrome Fetal alcohol syndrome Hypoplastic left heart syndrome Marfan ...

  2. Partial white and grey matter protection with prolonged infusion of recombinant human erythropoietin after asphyxia in preterm fetal sheep.

    PubMed

    Wassink, Guido; Davidson, Joanne O; Dhillon, Simerdeep K; Fraser, Mhoyra; Galinsky, Robert; Bennet, Laura; Gunn, Alistair J

    2017-03-01

    Perinatal asphyxia in preterm infants remains a significant contributor to abnormal long-term neurodevelopmental outcomes. Recombinant human erythropoietin has potent non-haematopoietic neuroprotective properties, but there is limited evidence for protection in the preterm brain. Preterm (0.7 gestation) fetal sheep received sham asphyxia (sham occlusion) or asphyxia induced by umbilical cord occlusion for 25 min, followed by an intravenous infusion of vehicle (occlusion-vehicle) or recombinant human erythropoietin (occlusion-Epo, 5000 international units by slow push, then 832.5 IU/h), starting 30 min after asphyxia and continued until 72 h. Recombinant human erythropoietin reduced neuronal loss and numbers of caspase-3-positive cells in the striatal caudate nucleus, CA3 and dentate gyrus of the hippocampus, and thalamic medial nucleus ( P < 0.05 vs. occlusion-vehicle). In the white matter tracts, recombinant human erythropoietin increased total, but not immature/mature oligodendrocytes ( P < 0.05 vs. occlusion-vehicle), with increased cell proliferation and reduced induction of activated caspase-3, microglia and astrocytes ( P < 0.05). Finally, occlusion-Epo reduced seizure burden, with more rapid recovery of electroencephalogram power, spectral edge frequency, and carotid blood flow. In summary, prolonged infusion of recombinant human erythropoietin after severe asphyxia in preterm fetal sheep was partially neuroprotective and improved electrophysiological and cerebrovascular recovery, in association with reduced apoptosis and inflammation.

  3. Coupling Diffusion Imaging with Histological and Gene Expression Analysis to Examine the Dynamics of Cortical Areas across the Fetal Period of Human Brain Development

    PubMed Central

    Huang, Hao; Jeon, Tina; Sedmak, Goran; Pletikos, Mihovil; Vasung, Lana; Xu, Xuming; Yarowsky, Paul; Richards, Linda J.; Kostović, Ivica; Šestan, Nenad; Mori, Susumu

    2013-01-01

    As a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks. Eleven regions of interest for each layer in the entire cerebral wall were included. Distinctive time courses of microstructural changes were revealed for 11 regions of the neocortical plate. A histological analysis was also integrated to elucidate the relationship between DTI fractional anisotropy (FA) and histology. High FA values correlated with organized radial architecture in histological image. Expression levels of 17565 genes were quantified for each of 11 regions of human fetal neocortex from 13 to 21 gestational weeks to identify transcripts showing significant correlation with FA change. These correlations suggest that the heterogeneous and regionally specific microstructural changes of the human neocortex are related to different gene expression patterns. PMID:22933464

  4. The role and interaction of imprinted genes in human fetal growth.

    PubMed

    Moore, Gudrun E; Ishida, Miho; Demetriou, Charalambos; Al-Olabi, Lara; Leon, Lydia J; Thomas, Anna C; Abu-Amero, Sayeda; Frost, Jennifer M; Stafford, Jaime L; Chaoqun, Yao; Duncan, Andrew J; Baigel, Rachel; Brimioulle, Marina; Iglesias-Platas, Isabel; Apostolidou, Sophia; Aggarwal, Reena; Whittaker, John C; Syngelaki, Argyro; Nicolaides, Kypros H; Regan, Lesley; Monk, David; Stanier, Philip

    2015-03-05

    Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it

  5. Fetal akinesia.

    PubMed

    Hammond, E; Donnenfeld, A E

    1995-03-01

    Normal fetal growth and development during pregnancy is highly dependent upon adequate fetal movement. Limitation of movement, regardless of the underlying cause, can result in a particular pattern of abnormal fetal morphogenesis. This phenotype is termed the fetal akinesia deformation sequence (FADS). The etiology of fetal akinesia may be generally classified into one of five categories: neuropathy, myopathy, restrictive dermopathy, teratogen exposure, or restricted movement due to intrauterine constraint. In this article, the differential diagnosis of fetal akinesia is systematically reviewed and information regarding prenatal diagnosis, prognosis, perinatal management, and recurrence risks are discussed.

  6. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York.

    PubMed

    Pycke, Benny F G; Geer, Laura A; Dalloul, Mudar; Abulafia, Ovadia; Jenck, Alizee M; Halden, Rolf U

    2014-01-01

    Triclosan (TCS) and triclocarban (TCC) are antimicrobial agents formulated in a wide variety of consumer products (including soaps, toothpaste, medical devices, plastics, and fabrics) that are regulated by the U.S. Food and Drug Administration (FDA) and U.S. Environmental Protection Agency. In late 2014, the FDA will consider regulating the use of both chemicals, which are under scrutiny regarding lack of effectiveness, potential for endocrine disruption, and potential contribution to bacterial resistance to antibiotics. Here, we report on body burdens of TCS and TCC resulting from real-world exposures during pregnancy. Using liquid chromatography tandem mass spectrometry, we determined the concentrations of TCS, TCC, and its human metabolites (2'-hydroxy-TCC and 3'-hydroxy-TCC) as well as the manufacturing byproduct (3'-chloro-TCC) as total concentrations (Σ-) after conjugate hydrolysis in maternal urine and cord blood plasma from a cohort of 181 expecting mother/infant pairs in an urban multiethnic population from Brooklyn, NY recruited in 2007-09. TCS was detected in 100% of urine and 51% of cord blood samples after conjugate hydrolysis. The interquartile range (IQR) of detected TCS concentrations in urine was highly similar to the IQR reported previously for the age-matched population of the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2004, but typically higher than the IQR reported previously for the general population (detection frequency = 74.6%). Urinary levels of TCC are reported here for the first time from real-world exposures during pregnancy, showing a median concentration of 0.21 μg/L. Urinary concentrations of TCC correlated well with its phase-I metabolite ∑-2'-hydroxy-TCC (r = 0.49) and the manufacturing byproduct ∑-3'-chloro-TCC C (r = 0.79), and ∑-2'-hydroxy-TCC correlated strongly with ∑-3'-hydroxy-TCC (r = 0.99). This human biomonitoring study presents the first body burden data for TCC fr