Science.gov

Sample records for human foetal phenotype

  1. Effects of perinatal, late foetal, and early embryonic insults on the cardiovascular phenotype in experimental animal models and humans.

    PubMed

    Meister, Theo Arthur; Rexhaj, Emrush; Rimoldi, Stefano Flavio; Scherrer, Urs; Sartori, Claudio

    2016-11-01

    Cardiovascular diseases are the main cause of mortality and morbidity in Western countries, but the underlying mechanisms are still poorly understood. Genetic polymorphisms, once thought to represent a major determinant of cardiovascular risk, individually and collectively, only explain a tiny fraction of phenotypic variation and disease risk in humans. It is now clear that non-genetic factors, i.e., factors that modify gene activity without changing the DNA sequence and that are sensitive to the environment can cause important alterations of the cardiovascular phenotype in experimental animal models and humans. Here, we will review recent studies demonstrating that distinct pathological events during the perinatal (transient perinatal hypoxemia), late foetal (preeclampsia), and early embryonic (assisted reproductive technologies) periods induce profound alterations of the cardiovascular phenotype in humans and experimental animals. Moreover, we will provide evidence that epigenetic modifications are contributing importantly to this problem and are conferring the potential for its transmission to subsequent generations.

  2. Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture

    PubMed Central

    Angelini, Francesco; Ionta, Vittoria; Rossi, Fabrizio; Miraldi, Fabio; Messina, Elisa; Giacomello, Alessandro

    2016-01-01

    Introduction: Cardiac progenitor cells (CPCs) represent a powerful tool in cardiac regenerative medicine. Pre-clinical studies suggest that most of the beneficial effects promoted by the injected cells are due to their paracrine activity exerted on endogenous cells and tissue. Exosomes are candidate mediators of this paracrine effects. According to their potential, many researchers have focused on characterizing exosomes derived from specific cell types, but, up until now, only few studies have analyzed the possible in vitro effects of bovine serum-derived exosomes on cell proliferation or differentiation. Methods: The aim of this study was to analyse, from a qualitative and quantitative point of view, the in vitro effects of bovine serum exosomes on human CPCs cultured either as cardiospheres or as monolayers of cardiosphere-forming cells. Results: Effects on proliferation, yield and molecular patterning were detected. We show, for the first time, that exogenous bovine exosomes support the proliferation and migration of human cardiosphere-forming cells, and that their depletion affects cardiospheres formation, in terms of size, yield and extra-cellular matrix production. Conclusion: These results stress the importance of considering differential biological effects of exogenous cell culture supplements on the final phenotype of primary human cell cultures. PMID:27340620

  3. Foetal exposure to food and environmental carcinogens in human beings.

    PubMed

    Myöhänen, Kirsi; Vähäkangas, Kirsi

    2012-02-01

    Exposure to many different chemicals during pregnancy through maternal circulation is possible. Transplacental transfer of xenobiotics can be demonstrated using human placental perfusion. Also, placental perfusion can give information about the placental kinetics as well as metabolism and accumulation in the placenta because it retains the tissue structure and function. Although human placental perfusion has been used extensively to study the transplacental transfer of drugs, the information on food and environmental carcinogens is much more limited. This review deals with the foetal exposure to food and environmental carcinogens in human beings. In particular, human transplacental transfer of the food carcinogens such as acrylamide, glycidamide and nitrosodimethylamine are in focus. Because these carcinogens are genotoxic, the functional capacity of human placenta to induce DNA adduct formation or metabolize these above mentioned CYP2E1 substrates is of interest in this context.

  4. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells.

    PubMed

    van den Berg, Cathelijne W; Okawa, Satoshi; Chuva de Sousa Lopes, Susana M; van Iperen, Liesbeth; Passier, Robert; Braam, Stefan R; Tertoolen, Leon G; del Sol, Antonio; Davis, Richard P; Mummery, Christine L

    2015-09-15

    Differentiated derivatives of human pluripotent stem cells (hPSCs) are often considered immature because they resemble foetal cells more than adult, with hPSC-derived cardiomyocytes (hPSC-CMs) being no exception. Many functional features of these cardiomyocytes, such as their cell morphology, electrophysiological characteristics, sarcomere organization and contraction force, are underdeveloped compared with adult cardiomyocytes. However, relatively little is known about how their gene expression profiles compare with the human foetal heart, in part because of the paucity of data on the human foetal heart at different stages of development. Here, we collected samples of matched ventricles and atria from human foetuses during the first and second trimester of development. This presented a rare opportunity to perform gene expression analysis on the individual chambers of the heart at various stages of development, allowing us to identify not only genes involved in the formation of the heart, but also specific genes upregulated in each of the four chambers and at different stages of development. The data showed that hPSC-CMs had a gene expression profile similar to first trimester foetal heart, but after culture in conditions shown previously to induce maturation, they cluster closer to the second trimester foetal heart samples. In summary, we demonstrate how the gene expression profiles of human foetal heart samples can be used for benchmarking hPSC-CMs and also contribute to determining their equivalent stage of development.

  5. Immunoreactivity of thymosin beta 4 in human foetal and adult genitourinary tract

    PubMed Central

    Nemolato, S.; Cabras, T.; Fanari, M.U.; Cau, F.; Fanni, D.; Gerosa, C.; Manconi, B.; Messana, I.; Castagnola, M.; Faa, G.

    2010-01-01

    Thymosin beta 4 (Tβ4) is a member of the beta-thymosins family, a family of peptides playing essential roles in many cellular functions. Our recent studies suggested Tβ4 plays a key role in the development of human salivary glands and the gastrointestinal tract. The aim of this study was to analyse the presence of Tβ4 in the human adult and foetal genitourinary tract. Immunolocalization of Tβ4 was studied in autoptic samples of kidney, bladder, uterus, ovary, testicle and prostate obtained from four human foetuses and four adults. Presence of the peptide was observed in cells of different origin: in surface epithelium, in gland epithelial cells and in the interstitial cells. Tβ4 was mainly found in adult and foetal bladder in the transitional epithelial cells; in the adult endometrium, glands and stromal cells were immunoreactive for the peptide; Tβ4 was mainly localized in the glands of foetal prostate while, in the adults a weak Tβ4 reactivity was restricted to the stroma. In adult and foetal kidney, Tβ4 reactivity was restricted to ducts and tubules with completely spared glomeruli; a weak positivity was observed in adult and foetal oocytes; immunoreactivity was mainly localized in the interstitial cells of foetal and adult testis. In this study, we confirm that Tβ4 could play a relevant role during human development, even in the genitourinary tract, and reveal that immunoreactivity for this peptide may change during postnatal and adult life. PMID:21263742

  6. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets.

    PubMed

    Girolamo, Francesco; Dallatomasina, Alice; Rizzi, Marco; Errede, Mariella; Wälchli, Thomas; Mucignat, Maria Teresa; Frei, Karl; Roncali, Luisa; Perris, Roberto; Virgintino, Daniela

    2013-01-01

    NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating

  7. Biomechanics of foetal movement.

    PubMed

    Nowlan, N C

    2015-01-02

    Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing) and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering.

  8. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed

    Speirs, V; Ray, K P; Freshney, R I

    1991-10-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts.

  9. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    PubMed Central

    Speirs, V.; Ray, K. P.; Freshney, R. I.

    1991-01-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts. Images Figure 5 PMID:1654985

  10. Mathematical modelling of the human foetal cardiovascular system based on Doppler ultrasound data.

    PubMed

    Pennati, G; Bellotti, M; Fumero, R

    1997-06-01

    A lumped parameter model of the human foetal circulation primarily based on blood velocity data derived from the Doppler analysis was developed in this study. It consists of two major parts, the heart and the foetal vascular circulation. The heart model accounts for both ventricular and atrial contractility. The circulation was divided into 19 compliant vascular compartments in order to describe all of the clinically monitored sites. The model parameters refer to the final gestation period and were derived either from literature on foetal sheep circulation or from anatomical dimension monitoring of the human foetus. No control mechanism is incorporated into the model. The model was validated by comparing several index values of simulated velocity curves to those of the experimental Doppler waveforms. The mean and maximum percentual errors in the estimation of the experimental results by the model are 7.7% and 20.1%, respectively. Velocity and pressure tracings of the foetal circulation were investigated, as well as regional blood flow rate distribution.

  11. Characterization of human foetal intestinal alkaline phosphatase. Comparison with the isoenzymes from the adult intestine and human tumour cell lines.

    PubMed Central

    Behrens, C M; Enns, C A; Sussman, H H

    1983-01-01

    The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line. Images Fig. 1. PMID:6882358

  12. A comparative study of the spatial distribution of mast cells and microvessels in the foetal, adult human thymus and thymoma.

    PubMed

    Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico

    2010-02-01

    Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.

  13. Transient features of the thalamic reticular nucleus in the human foetal brain.

    PubMed

    Ulfig, N; Nickel, J; Bohl, J

    1998-12-01

    The architectonic organization and neuronal types of the human foetal reticular nucleus (RN)--with special reference to transient characteristics--have been investigated using antisera against calretinin, parvalbumin and neurofilament epitopes of somata and dendrites (SMI 311). The RN consists of four subdivisions (clearly distinguishable in the 6/7th gestational month): The main portion appears as a prominent structure on account of its extension and high packing density of neurons which coexpress calretinin and parvalbumin. These two calcium-binding proteins are also expressed by the perireticular nucleus forming a conspicuous grey within the internal capsule. Perireticular cells form clusters which are in continuity with the main portion, globus pallidus, ganglionic eminence and pregeniculate nucleus. In double-labellings, a medial subnucleus stands out distinctly as it only expresses calretinin. SMI 311-immunopreparations show neurons revealing a high degree of diversification and elaborated dendritic trees. Several transient characteristics become obvious: the perireticular nucleus, not visible in the adult, represents a distinct entity in the human foetal brain. The main portion and the pregeniculate nucleus appearing as prominent greys are dramatically reduced in size later on. The percentage of RN-neurons expressing calretinin, the diversity of neuronal types and elaborated dendritic trees are reduced. The transient features can be correlated with the RN's putative functional roles in development: early RN-afferents to the dorsal thalamus may represent pioneer fibres providing guiding cues for outgrowing axons from or into the thalamus. Moreover, the RN may serve as an intermediate target for growing axons which are sorted and directed towards different final targets.

  14. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation.

  15. Foetal pain?

    PubMed

    Derbyshire, Stuart W G

    2010-10-01

    The majority of commentary on foetal pain has looked at the maturation of neural pathways to decide a lower age limit for foetal pain. This approach is sensible because there must be a minimal necessary neural development that makes pain possible. Very broadly, it is generally agreed that the minimal necessary neural pathways for pain are in place by 24 weeks gestation. Arguments remain, however, as to the possibility of foetal pain before or after 24 weeks. Some argue that the foetus can feel pain earlier than 24 weeks because pain can be supported by subcortical structures. Others argue that the foetus cannot feel pain at any stage because it is maintained in a state of sedation in the womb and lacks further neural and conceptual development necessary for pain. Much of this argument rests on the definition of terms such as 'wakefulness' and 'pain'. If a behavioural and neural reaction to a noxious stimulus is considered sufficient for pain, then pain is possible from 24 weeks and probably much earlier. If a conceptual subjectivity is considered necessary for pain, however, then pain is not possible at any gestational age. Regardless of how pain is defined, it is clear that pain for conceptual beings is qualitatively different than pain for non-conceptual beings. It is therefore a mistake to draw an equivalence between foetal pain and pain in the older infant or adult.

  16. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts.

    PubMed

    De Amicis, Andrea; Sanctis, Stefania De; Cristofaro, Sara Di; Franchini, Valeria; Lista, Florigio; Regalbuto, Elisa; Giovenale, Emilio; Gallerano, Gian Piero; Nenzi, Paolo; Bei, Roberto; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Coluzzi, Elisa; Cicia, Cristina; Sgura, Antonella

    2015-11-01

    In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation.

  17. Purification of human adult and foetal intestinal alkaline phosphatases by monoclonal antibody immunoaffinity chromatography.

    PubMed Central

    Vockley, J; Harris, H

    1984-01-01

    We have used the technique of monoclonal antibody immunoaffinity chromatography to purify adult and foetal intestinal alkaline phosphatases. Pure adult intestinal enzyme was obtained from a crude tissue extract with a single immunoaffinity chromatographic step in yields exceeding 95%. An additional ion-exchange chromatographic step was necessary for purification of the foetal enzyme, but yields still exceeded 70%. Experiments to optimize the efficiency of the monoclonal antibody immunoaffinity chromatography procedure suggest that the relative strength of binding of an antibody to its antigen is the most important factor to consider when constructing such columns. A column made from an antibody of too low an avidity will not retain the enzyme, while one of too high an avidity will make elution of enzyme in the active state difficult. A scheme is suggested for the application of this technique to a general approach to enzyme purification. Images Fig. 2. PMID:6365087

  18. Regulation of cyclic AMP formation in cultures of human foetal astrocytes by beta 2-adrenergic and adenosine receptors.

    PubMed

    Woods, M D; Freshney, R I; Ball, S G; Vaughan, P F

    1989-09-01

    Two cell cultures, NEP2 and NEM2, isolated from human foetal brain have been maintained through several passages and found to express some properties of astrocytes. Both cell cultures contain adenylate cyclase stimulated by catecholamines with a potency order of isoprenaline greater than adrenaline greater than salbutamol much greater than noradrenaline, which is consistent with the presence of beta 2-adrenergic receptors. This study reports that the beta 2-adrenergic-selective antagonist ICI 118,551 is approximately 1,000 times more potent at inhibiting isoprenaline stimulation of cyclic AMP (cAMP) formation in both NEP2 and NEM2 than the beta 1-adrenergic-selective antagonist practolol. This observation confirms the presence of beta 2-adrenergic receptors in these cell cultures. The formation of cAMP in NEP2 is also stimulated by 5'-(N-ethylcarboxamido)adenosine (NECA) more potently than by either adenosine or N6-(L-phenylisopropyl)adenosine (L-PIA), which suggests that this foetal astrocyte expresses adenosine A2 receptors. Furthermore, L-PIA and NECA inhibit isoprenaline stimulation of cAMP formation, a result suggesting the presence of adenosine A1 receptors on NEP2. The presence of A1 receptors is confirmed by the observation that the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine reverses the inhibition of isoprenaline stimulation of cAMP formation by L-PIA and NECA. Additional evidence that NEP2 expresses adenosine receptors linked to the adenylate cyclase-inhibitory GTP-binding protein is provided by the finding that pretreatment of these cells with pertussis toxin reverses the adenosine inhibition of cAMP formation stimulated by either isoprenaline or forskolin.

  19. Distribution of LCA protein subspecies and the cellular adhesion molecules LFA-1, ICAM-1 and p150,95 within human foetal thymus.

    PubMed Central

    Harvey, J E; Jones, D B

    1990-01-01

    The distribution of leucocyte common antigen (LCA) protein subspecies and the cellular adhesion molecules LFA-1 (CD11a), ICAM-1 (CD54) and p150,95 (CD11c) has been established within frozen sections of human foetal thymus. Whereas over 95% of foetal cortical thymocytes and approximately 85% of medullary thymocytes were CD45RO positive, CD45RA was only expressed by approximately 29% of medullary thymocytes. The majority of foetal thymocytes also expressed CD11a, whereas CD54 was expressed by thymic epithelial and accessory cells and also apparently by some cortical thymocytes adjacent to epithelial cells. The distribution of CD54 and the major histocompatibility complex (MHC) class II molecule HLA-DR, demonstrated with a monoclonal antibody to a monomorphic determinant, was similar. The CD11c molecule was present on a population of dendritic-type accessory cells, but was absent from the large, scavenger, KiM8-positive macrophages occurring throughout the thymic cortex. Images Figure 1 Figure 2 PMID:1973681

  20. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  1. The Human Phenotype Ontology in 2017.

    PubMed

    Köhler, Sebastian; Vasilevsky, Nicole A; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M; Boerkoel, Cornelius F; Boycott, Kym M; Brudno, Michael; Buske, Orion J; Chinnery, Patrick F; Cipriani, Valentina; Connell, Laureen E; Dawkins, Hugh J S; DeMare, Laura E; Devereau, Andrew D; de Vries, Bert B A; Firth, Helen V; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A; James, Roger; Krause, Roland; F Laulederkind, Stanley J; Lochmüller, Hanns; Lyon, Gholson J; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H; Segal, Michael; Sergouniotis, Panagiotis I; Sever, Richard; Smith, Cynthia L; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W M; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O B; Groza, Tudor; Smedley, Damian; Mungall, Christopher J; Haendel, Melissa; Robinson, Peter N

    2017-01-04

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  2. Characterisation of the human embryonic and foetal epicardium during heart development.

    PubMed

    Risebro, Catherine A; Vieira, Joaquim Miguel; Klotz, Linda; Riley, Paul R

    2015-11-01

    The epicardium is essential for mammalian heart development. At present, our understanding of the timing and morphogenetic events leading to the formation of the human epicardium has essentially been extrapolated from model organisms. Here, we studied primary tissue samples to characterise human epicardium development. We reveal that the epicardium begins to envelop the myocardial surface at Carnegie stage (CS) 11 and this process is completed by CS15, earlier than previously inferred from avian studies. Contrary to prevailing dogma, the formed human epicardium is not a simple squamous epithelium and we reveal evidence of more complex structure, including novel spatial differences aligned to the developing chambers. Specifically, the ventricular, but not atrial, epicardium exhibited areas of expanded epithelium, preferential cell alignment and spindle-like morphology. Likewise, we reveal distinct properties ex vivo, such that ventricular cells spontaneously differentiate and lose epicardial identity, whereas atrial-derived cells remained 'epithelial-like'. These data provide insight into the developing human epicardium that may contribute to our understanding of congenital heart disease and have implications for the development of strategies for endogenous cell-based cardiac repair.

  3. Foetal blood sampling. Practical approach to management of foetal distress.

    PubMed

    Coltart, T M; Trickey, N R; Beard, R W

    1969-02-08

    The practical application of foetal blood sampling in the routine management of patients in labour has been reviewed in a six-month survey, during which time 1,668 patients were delivered at Queen Charlotte's Hospital.Foetal acidaemia (pH 7.25 or less) occurred in 45 of the 295 patients who showed clinical signs of foetal distress. Foetal tachycardia was the presenting sign in 33 of these 45 patients, underlining the importance of this physical sign. Foetal acidaemia in association with clinical foetal distress occurred twice as often in patients who had complications of pregnancy and who were therefore regarded as obstetrically "at risk" as it did in patients who were obstetrically "normal" No cases of acidaemia were detected in any of the foetal blood samples performed routinely on "at-risk" patients in the absence of clinical foetal distress.

  4. Antenatal foetal heart monitoring.

    PubMed

    Murray, Henry

    2017-01-01

    Antenatal foetal heart rate assessment was introduced into clinical medicine before clear evidence of any benefits had been reported. Ad hoc definitions were used to define normal and abnormal recordings resulting in a high false-positive rate for foetal compromise. The understanding of the foetal states resulted in an improved physiologically based assessment of the antenatal tracings and allowed their classification as (i) reactive - 2 accelerations in 10 min within a recording period of 120 min, (ii) unreactive - no accelerations seen in 120 min of tracing and (iii) decelerative - the presence of repetitive decelerations on an otherwise unreactive trace. This classification reduces the high rate of false-positive traces associated with recording times of less than 40 min. Traces performed on pregnancies before 32 weeks predict clinical outcome, but need to be interpreted in light of the fact the many foetuses will not show a mature reactive pattern.

  5. The homogeneous effect of calcium ionophore A23187 on potassium loss in human foetal red cell populations.

    PubMed

    Serrani, R E; Gioia, I A; Corchs, J L

    1995-01-01

    A "pulse like" increase of cytoplasmic calcium concentration, which is proportional to ionophore concentration, is induced in red cells by exposure to A23187. Different Ca2+ levels are attained depending on cellular calcium buffering power and/or primary active calcium transport activation. We examined the effect of A23187 concentration of potassium loss in neonatal (nRC) as well as in adult red cells (aRC). The increase in ionophore concentration produced an "all- or -none" recruitment in adult cells and a "gradual" one in neonatal red cells. The "gradual" response observed in nRC would suggest that the "all or none" character of the response is not present in red cells during the foetal stages of haematopoiesis.

  6. Anionic polymers and 10 nm Fe₃O₄@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties.

    PubMed

    Grumezescu, Alexandru Mihai; Holban, Alina Maria; Andronescu, Ecaterina; Mogoşanu, George Dan; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen; Lazar, Veronica; Andrei, Eugen; Constantinescu, Andrei; Maniu, Horia

    2014-03-25

    The aims of this study were the development, characterization and bioevaluation of a novel biocompatible, resorbable and bio-active wound dressing prototype, based on anionic polymers (sodium alginate--AlgNa, carboximethylcellulose--CMC) and magnetic nanoparticles loaded with usnic acid (Fe₃O₄@UA). The antimicrobial activity was tested against Staphylococcus aureus grown in biofilms. The biocompatibility testing model included an endothelial cell line from human umbilical vein and human foetal progenitor cells derived from the amniotic fluid, that express a wide spectrum of surface molecules involved in different vascular functions and inflammatory response, and may be used as skin regenerative support. The obtained results demonstrated that CMC/Fe₃O₄@UA and AlgNa/Fe₃O₄@UA are exhibiting structural and functional properties that recommend them for further applications in the biomedical field. They could be used alone or coated with different bio-active compounds, such as Fe₃O₄@UA, for the development of novel, multifunctional porous materials used in tissues regeneration, as antimicrobial substances releasing devices, providing also a mechanical support for the eukaryotic cells adhesion, and exhibiting the advantage of low cytotoxicity on human progenitor cells. The great antimicrobial properties exhibited by the newly synthesized nano-bioactive coatings are recommending them as successful candidates for improving the implanted devices surfaces used in regenerative medicine.

  7. Isolation of cardiac myosin light-chain isotypes by chromatofocusing. Comparison of human cardiac atrial light-chain 1 and foetal ventricular light-chain 1.

    PubMed

    Vincent, N D; Cummins, P

    1985-04-01

    Cardiac myosin light chain isotypes have been resolved using chromatofocusing, a new preparative column chromatographic technique. The method relies on production of narrow-range, shallow and stable pH gradients using ion-exchange resins and buffers with even buffering capacity over the required pH range. Light chains were resolved in order of decreasing isoelectric point in the pH range 5.2-4.5. Gradients of delta pH = 0.004-0.006/ml elution volume were achieved which were capable of resolving light chains with isoelectric point differences of only 0.03. Analytical isoelectric focusing of light chains in polyacrylamide gels could be used to predict the results of preparative chromatofocusing for method development. Chromatofocusing was capable of resolving human and bovine cardiac light chain 1 and 2 subunits, atrial (ALC) and ventricular (VLC) light chain isotypes and homologous VLC-2 and VLC-2* light chains. The technique was used to purify and resolve the human foetal ventricular light chain 1 (FLC-1) from adult ventricular light chain 1 (VLC-1) present in foetal ventricles and the atrial light chain 1 (ALC-1) in adult atria. Comparative peptide mapping studies and amino acid analyses were carried out on FLC-1 and ALC-1. No differences were detected between FLC-1 and ALC-1 using three different proteases and amino acid compositions were similar with the exception of glycine content. The studies indicate that FLC-1 and ALC-1 are homologous, and possibly identical, light chains. Comparison of human FLC-1/ALC-1 with VLC-1 suggested marked structural and chemical differences in these light chain isotypes, in particular in the contents of methionine, proline, lysine and alanine residues. Differences in the contents of these residues were also apparent in the corresponding bovine atrial and ventricular light chains [Wikman-Coffelt, J. & Srivastava, S. (1979) FEBS Lett. 106, 207-212]. The latter three residues are known to be rich in the N-termini of cardiac and

  8. The impact of trisomy 21 on foetal haematopoiesis.

    PubMed

    Roberts, Irene; O'Connor, David; Roy, Anindita; Cowan, Gillian; Vyas, Paresh

    2013-12-01

    The high frequency of a unique neonatal preleukaemic syndrome, transient abnormal myelopoiesis (TAM), and subsequent acute myeloid leukaemia in early childhood in patients with trisomy 21 (Down syndrome) points to a specific role for trisomy 21 in transforming foetal haematopoietic cells. N-terminal truncating mutations in the key haematopoietic transcription factor GATA1 are acquired during foetal life in virtually every case. These mutations are not leukaemogenic in the absence of trisomy 21. In mouse models, deregulated expression of chromosome 21-encoded genes is implicated in leukaemic transformation, but does not recapitulate the effects of trisomy 21 in a human context. Recent work using primary human foetal liver and bone marrow cells, human embryonic stem cells and iPS cells shows that prior to acquisition of GATA1 mutations, trisomy 21 itself alters human foetal haematopoietic stem cell and progenitor cell biology causing multiple abnormalities in myelopoiesis and B-lymphopoiesis. The molecular basis by which trisomy 21 exerts these effects is likely to be extremely complex, to be tissue-specific and lineage-specific and to be dependent on ontogeny-related characteristics of the foetal microenvironment.

  9. The impact of trisomy 21 on foetal haematopoiesis

    PubMed Central

    Roberts, Irene; O'Connor, David; Roy, Anindita; Cowan, Gillian; Vyas, Paresh

    2015-01-01

    The high frequency of a unique neonatal preleukaemic syndrome, Transient Abnormal Myelopoiesis (TAM), and subsequent acute myeloid leukaemia in early childhood in patients with trisomy 21 (Down syndrome) points to a specific role for trisomy 21 in transforming foetal haematopoietic cells. N-terminal truncating mutations in the key haematopoietic transcription factor GATA1 are acquired during foetal life in virtually every case. These mutations are not leukaemogenic in the absence of trisomy 21. In mouse models, deregulated expression of chromosome 21-encoded genes is implicated in leukaemic transformation, but does not recapitulate the effects of trisomy 21 in a human context. Recent work using primary human foetal liver and bone marrow cells, human embryonic stem cells and iPS cells cells shows that prior to acquistion of GATA1 mutations, trisomy 21 itself alters human foetal haematopoietic stem cell and progenitor cell biology causing multiple abnormalities in myelopoiesis and B-lymphopoiesis. The molecular basis by which trisomy 21 exerts these effects is likely to be extremely complex, to be tissue- and lineage-specific and to be dependent on ontogeny-related characteristics of the foetal microenvironment. PMID:23932236

  10. Probing genetic overlap among complex human phenotypes.

    PubMed

    Rzhetsky, Andrey; Wajngurt, David; Park, Naeun; Zheng, Tian

    2007-07-10

    Geneticists and epidemiologists often observe that certain hereditary disorders cooccur in individual patients significantly more (or significantly less) frequently than expected, suggesting there is a genetic variation that predisposes its bearer to multiple disorders, or that protects against some disorders while predisposing to others. We suggest that, by using a large number of phenotypic observations about multiple disorders and an appropriate statistical model, we can infer genetic overlaps between phenotypes. Our proof-of-concept analysis of 1.5 million patient records and 161 disorders indicates that disease phenotypes form a highly connected network of strong pairwise correlations. Our modeling approach, under appropriate assumptions, allows us to estimate from these correlations the size of putative genetic overlaps. For example, we suggest that autism, bipolar disorder, and schizophrenia share significant genetic overlaps. Our disease network hypothesis can be immediately exploited in the design of genetic mapping approaches that involve joint linkage or association analyses of multiple seemingly disparate phenotypes.

  11. Molecular identification of four phenotypes of human Demodex in China.

    PubMed

    Hu, Li; Zhao, Ya-E; Cheng, Juan; Ma, Jun-Xian

    2014-07-01

    Traditional classification of Demodex mites by hosts and phenotypic characteristics is defective because of environmental influences. In this study, we proposed molecular identification of four phenotypes of two human Demodex species based on mitochondrial cox1 fragments for the first time. Mites collected from sufferers' facial skin were classified into four phenotypes: phenotype A-C with finger-like terminus, and phenotype D with cone-like terminus. The results of molecular data showed that cox1 sequences were all 429 bp. Divergences, genetic distances and transition/transversion ratios among the three phenotypes with finger-like terminus were 0.0-3.0%, 0.000-0.031, and 6/3-5/0, respectively, in line with intraspecific differences. However, those measures between the phenotype with cone-like terminus and phenotypes with finger-like terminus were 19.6-20.5%, 0.256-0.271, and 0.58 (31/53)-0.66 (35/53), respectively, reaching interspecific level. Phylogenetic trees also showed that the three phenotypes with finger-like terminus clustered as one clade, and the phenotype with cone-like terminus formed another one. Therefore, we conclude that mitochondrial cox1 sequence is a good marker for identification of two human Demodex species. Molecular data indicate no subspecies differentiation. Terminus is an effective character for species identification. Mites with finger-like terminus are Demodex folliculorum, and those with cone-like terminus are Demodex brevis.

  12. Foetal Testosterone, Social Relationships, and Restricted Interests in Children

    ERIC Educational Resources Information Center

    Knickmeyer, Rebecca; Baron-Cohen, Simon; Raggatt, Peter; Taylor, Kevin

    2005-01-01

    Background: Sex-differences exist in some areas of human social behaviour. In animals, foetal testosterone (fT) plays a central role in organising the brain and in later social behaviour. fT has also been implicated in language development, eye-contact, and spatial ability in humans. Methods: Fifty-eight children (35 male and 23 female), whose fT…

  13. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data.

    PubMed

    Köhler, Sebastian; Doelken, Sandra C; Mungall, Christopher J; Bauer, Sebastian; Firth, Helen V; Bailleul-Forestier, Isabelle; Black, Graeme C M; Brown, Danielle L; Brudno, Michael; Campbell, Jennifer; FitzPatrick, David R; Eppig, Janan T; Jackson, Andrew P; Freson, Kathleen; Girdea, Marta; Helbig, Ingo; Hurst, Jane A; Jähn, Johanna; Jackson, Laird G; Kelly, Anne M; Ledbetter, David H; Mansour, Sahar; Martin, Christa L; Moss, Celia; Mumford, Andrew; Ouwehand, Willem H; Park, Soo-Mi; Riggs, Erin Rooney; Scott, Richard H; Sisodiya, Sanjay; Van Vooren, Steven; Wapner, Ronald J; Wilkie, Andrew O M; Wright, Caroline F; Vulto-van Silfhout, Anneke T; de Leeuw, Nicole; de Vries, Bert B A; Washingthon, Nicole L; Smith, Cynthia L; Westerfield, Monte; Schofield, Paul; Ruef, Barbara J; Gkoutos, Georgios V; Haendel, Melissa; Smedley, Damian; Lewis, Suzanna E; Robinson, Peter N

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.

  14. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    PubMed Central

    Köhler, Sebastian; Doelken, Sandra C.; Mungall, Christopher J.; Bauer, Sebastian; Firth, Helen V.; Bailleul-Forestier, Isabelle; Black, Graeme C. M.; Brown, Danielle L.; Brudno, Michael; Campbell, Jennifer; FitzPatrick, David R.; Eppig, Janan T.; Jackson, Andrew P.; Freson, Kathleen; Girdea, Marta; Helbig, Ingo; Hurst, Jane A.; Jähn, Johanna; Jackson, Laird G.; Kelly, Anne M.; Ledbetter, David H.; Mansour, Sahar; Martin, Christa L.; Moss, Celia; Mumford, Andrew; Ouwehand, Willem H.; Park, Soo-Mi; Riggs, Erin Rooney; Scott, Richard H.; Sisodiya, Sanjay; Vooren, Steven Van; Wapner, Ronald J.; Wilkie, Andrew O. M.; Wright, Caroline F.; Vulto-van Silfhout, Anneke T.; de Leeuw, Nicole; de Vries, Bert B. A.; Washingthon, Nicole L.; Smith, Cynthia L.; Westerfield, Monte; Schofield, Paul; Ruef, Barbara J.; Gkoutos, Georgios V.; Haendel, Melissa; Smedley, Damian; Lewis, Suzanna E.; Robinson, Peter N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online. PMID:24217912

  15. Human brain evolution: from gene discovery to phenotype discovery.

    PubMed

    Preuss, Todd M

    2012-06-26

    The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.

  16. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  17. Foetal and neonatal thyroid disorders.

    PubMed

    Radetti, G; Zavallone, A; Gentili, L; Beck-Peccoz, P; Bona, G

    2002-10-01

    Thyroid hormones have been shown to be absolutely necessary for early brain development. During pregnancy, both maternal and foetal thyroid hormones contribute to foetal brain development and maternal supply explains why most of the athyreotic newborns usually do not show any signs of hypothyroidism at birth. Foetal and/or neonatal hypothyroidism is a rare disorder. Its incidence, as indicated by neonatal screening, is about 1:4000. Abnormal thyroid development (i.e. agenesia, ectopic gland, hypoplasia) or inborn errors in thyroid hormone biosynthesis are the most common causes of permanent congenital hypothyroidism. Recent studies reported that mutations involving Thyroid Transcriptor Factors (TTF) such as TTF-1, TTF-2, PAX-8 play an important role in altered foetal thyroid development. Deficiency of transcriptor factor (Pit-1, Prop-1, LHX-3) both in mother and in the foetus represents another rare cause of foetal hypothyroidism. At birth clinical picture may be not always so obvious and typical signs appear only after several weeks but a delayed diagnosis could have severe consequences consisting of delayed physical and mental development. Even if substitutive therapy is promptly started some learning difficulties might still arise suggesting that intrauterine adequate levels of thyroid hormones are absolutely necessary for a normal neurological development. Placental transfer of maternal antithyroid antibodies inhibiting fetal thyroid function can cause transient hypothyroidism at birth. If the mother with thyroid autoimmune disease is also hypothyroid during pregnancy and she doesn't receive substitutive therapy, a worse neurological outcome may be expected for her foetus. Foetal and/or neonatal hyperthyroidism is a rare condition and its incidence has been estimated around 1:4000-40000, according to various authors. The most common causes are maternal thyroid autoimmune disorders, such as Graves' disease and Hashimoto's thyroiditis. Rarer non autoimmune causes

  18. Foetal therapy, what works? An overview.

    PubMed

    Mellander, Mats; Gardiner, Helena

    2014-10-01

    The update course in foetal cardiology held by the Fetal Working Group of the Association for European Paediatric and Congenital Cardiology in Istanbul in May 2012 included a session on foetal cardiac therapy. In the introductory overview to this symposium, we critically examine the level of evidence supporting or refuting proposed foetal cardiac therapies including transplacental treatment of foetal tachyarrhythmias, steroid treatment in foetal atrioventricular block, and foetal aortic valvuloplasty. In summary, the evidence for the efficiency and safety of currently available foetal cardiac therapies is low, with no therapy based on a randomised controlled trial. Transplacental treatment of foetal tachycardia is generally accepted as effective and safe, based on extensive and widespread clinical experience; however, there is no consensus on which drugs are the most effective in different electrophysiological situations. Randomised studies may be able to resolve this, but this is complicated because tachyarrhythmias are relatively rare conditions, the foetus is not accessible for direct treatment, and it is the healthy mother who accepts treatment she does not need on behalf of her foetus. The indications for steroid treatment in foetal atrioventricular block and for foetal valvuloplasty are even more controversial. Although randomised trials would be desirable, the practical issues of recruiting sufficient sample sizes and controlling for variation in practice across multiple sites is not to be underestimated. Multicentre registries, analysed free of bias, may be an alternative way to improve the evidence base of foetal cardiac therapy.

  19. Senescence-like Phenotypes in Human Nevi

    PubMed Central

    Joselow, Andrew; Lynn, Darren; Terzian, Tamara; Box, Neil F.

    2016-01-01

    Summary Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells have to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multi-nucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16INK4a may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma. PMID:27812879

  20. Hereditary deafness and phenotyping in humans.

    PubMed

    Bitner-Glindzicz, Maria

    2002-01-01

    Hereditary deafness has proved to be extremely heterogeneous genetically with more than 40 genes mapped or cloned for non-syndromic dominant deafness and 30 for autosomal recessive non-syndromic deafness. In spite of significant advances in the understanding of the molecular basis of hearing loss, identifying the precise genetic cause in an individual remains difficult. Consequently, it is important to exclude syndromic causes of deafness by clinical and special investigation and to use all available phenotypic clues for diagnosis. A clinical approach to the aetiological investigation of individuals with hearing loss is suggested, which includes ophthalmology review, renal ultrasound scan and neuro-imaging of petrous temporal bone. Molecular screening of the GJB2 (Connexin 26) gene should be undertaken in all cases of non-syndromic deafness where the cause cannot be identified, since it is a common cause of recessive hearing impairment, the screening is straightforward, and the phenotype unremarkable. By the same token, mitochondrial inheritance of hearing loss should be considered in all multigeneration families, particularly if there is a history of exposure to aminoglycoside antibiotics, since genetic testing of specific mitochondrial genes is technically feasible. Most forms of non-syndromic autosomal recessive hearing impairment cause a prelingual hearing loss, which is generally severe to profound and not associated with abnormal radiology. Exceptions to this include DFNB2 (MYO7A), DFNB8/10 (TMPRSS3) and DFNB16 (STRC) where age of onset may sometimes be later on in childhood, DFNB4 (SLC26A4) where there may be dilated vestibular aqueducts and endolymphatic sacs, and DFNB9 (OTOF) where there may also be an associated auditory neuropathy. Unusual phenotypes in autosomal dominant forms of deafness, include low frequency hearing loss in DFNA1 (HDIA1) and DFNA6/14/38 (WFS1), mid-frequency hearing loss in DFNA8/12 (TECTA), DFNA13 (COL11A2) and vestibular symptoms

  1. Loss of gene function and evolution of human phenotypes.

    PubMed

    Oh, Hye Ji; Choi, Dongjin; Goh, Chul Jun; Hahn, Yoonsoo

    2015-07-01

    Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.

  2. Loss of gene function and evolution of human phenotypes

    PubMed Central

    Oh, Hye Ji; Choi, Dongjin; Goh, Chul Jun; Hahn, Yoonsoo

    2015-01-01

    Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the “less-ismore” hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits. [BMB Reports 2015; 48(7): 373-379] PMID:25887751

  3. RNA Directed Modulation of Phenotypic Plasticity in Human Cells

    PubMed Central

    Burdach, Jon; Morris, Kevin V.

    2016-01-01

    Natural selective processes have been known to drive phenotypic plasticity, which is the emergence of different phenotypes from one genome following environmental stimulation. Long non-coding RNAs (lncRNAs) have been observed to modulate transcriptional and epigenetic states of genes in human cells. We surmised that lncRNAs are governors of phenotypic plasticity and drive natural selective processes through epigenetic modulation of gene expression. Using heat shocked human cells as a model we find several differentially expressed transcripts with the top candidates being lncRNAs derived from retro-elements. One particular retro-element derived transcripts, Retro-EIF2S2, was found to be abundantly over-expressed in heat shocked cells. Over-expression of Retro-EIF2S2 significantly enhanced cell viability and modulated a predisposition for an adherent cellular phenotype upon heat shock. Mechanistically, we find that this retro-element derived transcript interacts directly with a network of proteins including 40S ribosomal protein S30 (FAU), Eukaryotic translation initiation factor 5A (EIF5A), and Ubiquitin-60S ribosomal protein L40 (UBA52) to affect protein modulated cell adhesion pathways. We find one motif in Retro-EIF2S2 that exhibits binding to FAU and modulates phenotypic cell transitions from adherent to suspension states. The observations presented here suggest that retroviral derived transcripts actively modulate phenotypic plasticity in human cells in response to environmental selective pressures and suggest that natural selection may play out through the action of retro-elements in human cells. PMID:27082860

  4. RNA Directed Modulation of Phenotypic Plasticity in Human Cells.

    PubMed

    Trakman, Laura; Hewson, Chris; Burdach, Jon; Morris, Kevin V

    2016-01-01

    Natural selective processes have been known to drive phenotypic plasticity, which is the emergence of different phenotypes from one genome following environmental stimulation. Long non-coding RNAs (lncRNAs) have been observed to modulate transcriptional and epigenetic states of genes in human cells. We surmised that lncRNAs are governors of phenotypic plasticity and drive natural selective processes through epigenetic modulation of gene expression. Using heat shocked human cells as a model we find several differentially expressed transcripts with the top candidates being lncRNAs derived from retro-elements. One particular retro-element derived transcripts, Retro-EIF2S2, was found to be abundantly over-expressed in heat shocked cells. Over-expression of Retro-EIF2S2 significantly enhanced cell viability and modulated a predisposition for an adherent cellular phenotype upon heat shock. Mechanistically, we find that this retro-element derived transcript interacts directly with a network of proteins including 40S ribosomal protein S30 (FAU), Eukaryotic translation initiation factor 5A (EIF5A), and Ubiquitin-60S ribosomal protein L40 (UBA52) to affect protein modulated cell adhesion pathways. We find one motif in Retro-EIF2S2 that exhibits binding to FAU and modulates phenotypic cell transitions from adherent to suspension states. The observations presented here suggest that retroviral derived transcripts actively modulate phenotypic plasticity in human cells in response to environmental selective pressures and suggest that natural selection may play out through the action of retro-elements in human cells.

  5. Foetal and neonatal alloimmune thrombocytopaenia.

    PubMed

    Kaplan, Cecile

    2006-10-10

    Foetal/neonatal alloimmune thrombocytopaenia (NAIT) results from maternal alloimmunisation against foetal platelet antigens inherited from the father and different from those present in the mother, and usually presents as a severe isolated thrombocytopaenia in otherwise healthy newborns. The incidence has been estimated at 1/800 to 1/1000 live births. NAIT has been considered to be the platelet counterpart of Rh Haemolytic Disease of the Newborn (RHD). Unlike RHD, NAIT can occur during a first pregnancy. The spectrum of the disease may range from sub-clinical moderate thrombocytopaenia to life-threatening bleeding in the neonatal period. Mildly affected infants may be asymptomatic. In those with severe thrombocytopaenia, the most common presentations are petechiae, purpura or cephalohaematoma at birth, associated with major risk of intracranial haemorrhage (up to 20% of reported cases), which leads to death or neurological sequelae. Alloimmune thrombocytopaenia is more often unexpected and is usually diagnosed after birth. Once suspected, the diagnosis is confirmed by demonstration of maternal antiplatelet alloantibodies directed against a paternal antigen inherited by the foetus/neonate. Post-natal management involves transfusion of platelets devoid of this antigen, and should not be delayed by biological confirmation of the diagnosis (once the diagnosis is suspected), especially in case of severe thrombocytopaenia. Prompt diagnosis and treatment are essential to reduce the chances of death and disability due to haemorrhage. Due to the high rate of recurrence and increased severity of the foetal thrombocytopaenia in successive pregnancies, antenatal therapy should be offered. However, management of high-risk pregnancies is still a matter of discussion.

  6. Structural Modeling Insights into Human VKORC1 Phenotypes

    PubMed Central

    Czogalla, Katrin J.; Watzka, Matthias; Oldenburg, Johannes

    2015-01-01

    Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2) arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2. PMID:26287237

  7. Foetal supraventricular tachycardia and cerebral complications.

    PubMed

    Sonesson, S E; Winberg, P; Lidegran, M; Westgren, M

    1996-10-01

    We report on two newborn infants with foetal tachycardia and cerebral lesions. Using foetal echocardiography, the diagnosis of supraventricular tachycardia in a structurally normal heart was made at 28 and 37 weeks of gestation, respectively. One infant had a 3 week period of foetal tachycardia and hydrops before successful pharmacological cardioversion. Even several weeks after a term birth he remained hypotonic and needed gavage feeding. A computed tomography (CT) scan demonstrated cerebral lesions indicating a vascular origin. A possible thrombus was found in the heart. The other infant converted to sinus rhythm during birth by Caesarean section on the day after diagnosis. He had convulsions at the second day of life. On CT scan an infarction was found. The observations of this report suggest that cerebrovascular complications to foetal arrhythmias are more common than previously observed and should be considered when managing cases of foetal tachycardia.

  8. Do Thyroid Disrupting Chemicals Influence Foetal Development during Pregnancy?

    PubMed Central

    Hartoft-Nielsen, Marie-Louise; Boas, Malene; Bliddal, Sofie; Rasmussen, Åase Krogh; Main, Katharina; Feldt-Rasmussen, Ulla

    2011-01-01

    Maternal euthyroidism during pregnancy is crucial for normal development and, in particular, neurodevelopment of the foetus. Up to 3.5 percent of pregnant women suffer from hypothyroidism. Industrial use of various chemicals—endocrine disrupting chemicals (EDCs)—has been shown to cause almost constant exposure of humans with possible harmful influence on health and hormone regulation. EDCs may affect thyroid hormone homeostasis by different mechanisms, and though the effect of each chemical seems scarce, the added effects may cause inappropriate consequences on, for example, foetal neurodevelopment. This paper focuses on thyroid hormone influence on foetal development in relation to the chemicals suspected of thyroid disrupting properties with possible interactions with maternal thyroid homeostasis. Knowledge of the effects is expected to impact the general debate on the use of these chemicals. However, more studies are needed to elucidate the issue, since human studies are scarce. PMID:21918727

  9. Regulatory T cells, maternal-foetal immune tolerance and recurrent miscarriage: new therapeutic challenging opportunities.

    PubMed

    Alijotas-Reig, Jaume; Melnychuk, Taisiia; Gris, Josep Maria

    2015-03-15

    Because maternal alloreactive lymphocytes are not depleted during pregnancy, local and/or systemic mechanisms have to play a key role in altering the maternal immune response. Peripheral T regulatory cells (pTregs) at the maternal-foetal interface are necessary in situ to prevent early abortion, but only those pTregs that have been previously exposed to paternal alloantigens. It has been showed that pregnancy selectively stimulates the accumulation of maternal Foxp3(+)CD4(+)CD25(+) (Foxp3Tregs) cells with foetal specificity. Interestingly, after delivery, foetal-specific pTregs persist at elevated levels, maintain tolerance to pre-existing foetal antigen, and rapidly re-accumulate during subsequent pregnancy. pTreg up-regulation could be hypothesized as a possible future therapeutic strategy in humans.

  10. Phenotypic characterization of leukocytes in prenatal human dermis.

    PubMed

    Schuster, Christopher; Vaculik, Christine; Prior, Marion; Fiala, Christian; Mildner, Michael; Eppel, Wolfgang; Stingl, Georg; Elbe-Bürger, Adelheid

    2012-11-01

    The adult human skin harbors a variety of leukocytes providing immune surveillance and host defense, but knowledge about their ontogeny is scarce. In this study we investigated the number and phenotype of leukocytes in prenatal human skin (dermal dendritic cells (DDCs), macrophages, T cells (including FoxP3(+) regulatory T cells), and mast cells) to unravel their derivation and to get a clue as to their putative function in utero. By flow cytometry and immunofluorescence, we found a distinction between CD206(+)CD1c(+)CD11c(+) DDCs and CD206(+)CD209(+)CD1c(-) skin macrophages by 9 weeks estimated gestational age (EGA). T cells appear at the end of the first trimester, expressing CD3 intracytoplasmatically. During midgestation, CD3(+)FoxP3(-) and CD3(+)FoxP3(+) cells can exclusively be found in the dermis. Similarly, other leukocytes such as CD117(+) (c-kit) mast cells were not identified before 12-14 weeks EGA and only slowly acquire a mature phenotype during gestation. Our data show at which time point during gestation antigen-presenting cells, T cells, and mast cells populate the human dermis and provide a step forward to a better understanding of the development of the human skin immune system.

  11. Foetal programming by maternal thyroid disease.

    PubMed

    Andersen, Stine Linding; Olsen, Jørn; Laurberg, Peter

    2015-12-01

    Foetal programming is an emerging concept that links a wide range of exposures during foetal life to later development of disease. Thyroid disorders are common in women of reproductive age, and careful management of pregnant women suffering from thyroid disease is important considering the crucial role of thyroid hormones during early brain development. It is possible that maternal thyroid dysfunction in pregnancy may lead to structural and/or functional changes during foetal brain development. Such an effect could later predispose the offspring to an increased risk of neurologic or psychiatric disease. We recently observed that children born to mothers with thyroid dysfunction had an increased risk of developing seizure disorders, autism spectrum disorders, attention-deficit hyperactivity disorders and psychiatric disease in adolescence and young adulthood. In the review, we discuss the concept of potential foetal programming by maternal thyroid disease.

  12. Evolutionary change in physiological phenotypes along the human lineage

    PubMed Central

    Vining, Alexander Q.; Nunn, Charles L.

    2016-01-01

    Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376

  13. [Foetal akinesia-hypokinesia deformation sequence].

    PubMed

    Bayat, Allan; Petersen, Astrid; Møller, Margrethe; Andersen, Graziella; Ebbesen, Finn

    2010-05-10

    Foetal akinesia-hypokinesia deformation sequence (FADS) involves arthrogryposis, facial deformations, pulmonary hypoplasia, intrauterine growth retardation, polyhydramnios and short umbilical cord. FADS is caused by lack of foetal movements, most often due to neuromuscular diseases. FADS is associated with a high mortality rate, and the infants usually die due to pulmonary hypoplasia. Antenatal diagnosis by ultrasound is possible when the condition is pronounced, or by genetic investigation, on suspicion of a specific underlying disease with known genetics.

  14. Phenotype and functions of memory Tfh cells in human blood.

    PubMed

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  15. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells

    PubMed Central

    Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J.; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin

    2016-01-01

    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo. PMID:27973435

  16. The evolution of human genetic and phenotypic variation in Africa.

    PubMed

    Campbell, Michael C; Tishkoff, Sarah A

    2010-02-23

    Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations.

  17. Human cytotrophoblasts acquire aneuploidies as they differentiateto an invasive phenotype

    SciTech Connect

    Weier, Jingly F.; Weier, Heinz-Ulrich G.; Jung, Christine J.; Gormley, Matthew; Zhou, Yuan; Chu, Lisa W.; Genbacev, Olga; Wright, AlexiA.; Fisher, Susan J.

    2004-12-15

    Through an unusual differentiation process, human trophoblast progenitors (cytotrophoblasts) give rise to tumor-like cells that invade the uterus. By an unknown mechanism, invasive cytotrophoblasts exhibit permanent cell cycle withdrawal. Here we report molecular cytogenetic data showing that {approx} 20 to 60 percent of these interphase cells had acquired aneusomies involving chromosomes X, Y, o r16. The incidence positively correlated with gestational age and differentiation to an invasive phenotype. Scoring 12 chromosomes in flow-sorted cytotrophoblasts showed that more than 95 percent of the cells were hyperdiploid. Thus, aneuploidy appears to be an important component of normal placentation, perhaps limiting the proliferative and invasive potential of cytotrophoblasts within the uterus.

  18. Variable phenotypes associated with aromatase (CYP19) insufficiency in humans

    PubMed Central

    Lin, Lin; Ercan, Oya; Raza, Jamal; Burren, Christine P.; Creighton, Sarah M.; Auchus, Richard J.; Dattani, Mehul T.; Achermann, John C.

    2007-01-01

    Context The P450 enzyme aromatase (CYP19) plays a crucial role in the endocrine and paracrine biosynthesis of estrogens from androgens in many diverse estrogen-responsive tissues. Complete aromatase deficiency has been reported in a small number of 46,XX girls with genital ambiguity and absent pubertal development, but it is unknown whether non-classic phenotypes exist. Objective The objective of the study was to determine whether variant forms of aromatase insufficiency can occur in humans. Patients Four patients (46,XX) from three kindred with variable degrees of androgenization and pubertal failure. Methods Mutational analysis of CYP19 and assay of enzyme activity. Results Aromatase insufficiency resulting in genital ambiguity at birth, but with variable breast development at puberty (B2-B4), occurred in 46,XX patients from two kindred who harbored point mutations or single codon deletions (R435C, F234del). Absent puberty with minimal androgenization at birth was found in one girl with a deletion involving exon5 of CYP19 (exon5del), which would be predicted to lead to an in-frame deletion of 59 amino acids from the enzyme. Functional studies revealed low residual aromatase activity in the cases where breast development occurred. Conclusions These studies demonstrate that aromatase mutations can produce variable or “non-classic” phenotypes in humans. Low residual aromatase activity may be sufficient for breast and uterine development to occur at puberty, despite significant androgenization in utero. Such phenotypic variability may be influenced further by modifying factors, such as non-classic pathways of estrogen synthesis, variability in co-regulators, or differences in androgen responsiveness. PMID:17164303

  19. Foetal age determination and development in elephants

    PubMed Central

    Hildebrandt, Thomas; Drews, Barbara; Gaeth, Ann P; Goeritz, Frank; Hermes, Robert; Schmitt, Dennis; Gray, Charlie; Rich, Peter; Streich, Wolf Juergen; Short, Roger V; Renfree, Marilyn B

    2006-01-01

    Elephants have the longest pregnancy of all mammals, with an average gestation of around 660 days, so their embryonic and foetal development have always been of special interest. Hitherto, it has only been possible to estimate foetal ages from theoretical calculations based on foetal mass. The recent development of sophisticated ultrasound procedures for elephants has now made it possible to monitor the growth and development of foetuses of known gestational age conceived in captivity from natural matings or artificial insemination. We have studied the early stages of pregnancy in 10 captive Asian and 9 African elephants by transrectal ultrasound. Measurements of foetal crown–rump lengths have provided the first accurate growth curves, which differ significantly from the previous theoretical estimates based on the cube root of foetal mass. We have used these to age 22 African elephant foetuses collected during culling operations. Pregnancy can be first recognized ultrasonographically by day 50, the presumptive yolk sac by about day 75 and the zonary placenta by about day 85. The trunk is first recognizable by days 85–90 and is distinct by day 104, while the first heartbeats are evident from around day 80. By combining ultrasonography and morphology, we have been able to produce the first reliable criteria for estimating gestational age and ontological development of Asian and African elephant foetuses during the first third of gestation. PMID:17164195

  20. Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity

    PubMed Central

    Elliott, Louise A.; Doherty, Glen A.; Sheahan, Kieran; Ryan, Elizabeth J.

    2017-01-01

    Our current understanding of human tumor-resident myeloid cells is, for the most part, based on a large body of work in murine models or studies enumerating myeloid cells in patient tumor samples using immunohistochemistry (IHC). This has led to the establishment of the theory that, by and large, tumor-resident myeloid cells are either “protumor” M2 macrophages or myeloid-derived suppressor cells (MDSC). This concept has accelerated our understanding of myeloid cells in tumor progression and enabled the elucidation of many key regulatory mechanisms involved in cell recruitment, polarization, and activation. On the other hand, this paradigm does not embrace the complexity of the tumor-resident myeloid cell phenotype (IHC can only measure 1 or 2 markers per sample) and their possible divergent function in the hostile tumor microenvironment. Here, we examine the criteria that define human tumor-infiltrating myeloid cell subsets and provide a comprehensive and critical review of human myeloid cell nomenclature in cancer. We also highlight new evidence characterizing their contribution to cancer pathogenesis based on evidence derived from clinical studies drawing comparisons with murine studies where necessary. We then review the mechanisms in which myeloid cells are regulated by tumors in humans and how these are being targeted therapeutically. PMID:28220123

  1. Genetic and phenotypic consequences of introgression between humans and Neanderthals.

    PubMed

    Wills, Christopher

    2011-01-01

    Strong evidence for introgression of Neanderthal genes into parts of the modern human gene pool has recently emerged. The evidence indicates that some populations of modern humans have received infusions of genes from two different groups of Neanderthals. One of these Neanderthal groups lived in the Middle East and Central Europe and the other group (the Denisovans) is known to have lived in Central Asia and was probably more widespread. This review examines two questions. First, how were these introgressions detected and what does the genetic evidence tell us about their nature and extent? We will see that an unknown but possibly large fraction of the entire Neanderthal gene complement may have survived in modern humans. Even though each modern European and Asian carries only a few percent of genes that can be traced back to Neanderthals, different individuals carry different subgroups of these introgressed genes. Second, what is the likelihood that this Neanderthal genetic legacy has had phenotypic effects on modern humans? We examine evidence for and against the possibility that some of the surviving fragments of Neanderthal genomes have been preserved by natural selection, and we explore the ways in which more evidence bearing on this question will become available in the future.

  2. HPOSim: An R Package for Phenotypic Similarity Measure and Enrichment Analysis Based on the Human Phenotype Ontology

    PubMed Central

    Deng, Yue; Gao, Lin; Wang, Bingbo; Guo, Xingli

    2015-01-01

    Background Phenotypic features associated with genes and diseases play an important role in disease-related studies and most of the available methods focus solely on the Online Mendelian Inheritance in Man (OMIM) database without considering the controlled vocabulary. The Human Phenotype Ontology (HPO) provides a standardized and controlled vocabulary covering phenotypic abnormalities in human diseases, and becomes a comprehensive resource for computational analysis of human disease phenotypes. Most of the existing HPO-based software tools cannot be used offline and provide only few similarity measures. Therefore, there is a critical need for developing a comprehensive and offline software for phenotypic features similarity based on HPO. Results HPOSim is an R package for analyzing phenotypic similarity for genes and diseases based on HPO data. Seven commonly used semantic similarity measures are implemented in HPOSim. Enrichment analysis of gene sets and disease sets are also implemented, including hypergeometric enrichment analysis and network ontology analysis (NOA). Conclusions HPOSim can be used to predict disease genes and explore disease-related function of gene modules. HPOSim is open source and freely available at SourceForge (https://sourceforge.net/p/hposim/). PMID:25664462

  3. [Maternal and foetal prognostic during severe toxemia].

    PubMed

    Rachdi, Radhouane; Kaabi, Mehdi; Zayene, Houssine; Basly, Mohamed; Messaoudi, Fathi; Messaoudi, Lotfi; Chibani, Mounir

    2005-02-01

    Severe gravidic toxemia gives heavy maternal and foetal morbidity and mortality. The purpose of our study is to loosen the factors of bad maternal and foetal prognostic. It's a retrospective study about 100 cases of severe and complicated gravidic toxemia repertorieted in the maternity of Military Hospital of Tunis. Maternal morbidity is dominated by the complications of hypertension and a blood disorders. We raised 4 cases of eclampsia, 9 cases of retro placental hematome and 5 cases of HELLP syndrome. We don't deplore any maternal death. Perinatal mortality is 28.8%. The rate of delay intra-uterine growth was 43.8% and the prematurity 65.9%. More toxemia appears early during pregnancy more maternal and foetal prognostic is compromised.

  4. Foetal presentation of long QT syndrome.

    PubMed

    Theeuws, Chloe; Nuyens, Dieter; Gewillig, Marc

    2013-06-01

    Long-QT syndrome is a rare, inherited cardiac channelopathy that is characterized by arrhythmia, syncope and sudden cardiac death. Foetal symptoms are very rare and prenatal diagnosis is difficult. We report on a foetal presentation of long-QT syndrome with severe hydrops and a chaotic heart rhythm at 32 weeks of gestation. Postnatal electrocardiography showed runs of polymorphic ventricular tachycardia and an extremely prolonged-QT segment (QTc of 640 ms). The initial approach of overdrive pacing, followed by the combined therapy of a beta blocker, a sodium channel blocker (mexiletine) and potassium suppletion proved successful in maintaining a stable sinus rhythm. The girl was doing well at eight months of followup. In this patient a timely diagnosis and effective management after birth have been life-saving.The intrauterine manifestation of foetal atrioventricular dissociation and ventricular arrhythmia should raise suspicion of congenital long-QT syndrome.

  5. Foetal placental blood flow in the lamb

    PubMed Central

    Faber, J. Job; Green, Thomas J.

    1972-01-01

    1. Fifteen sheep foetuses of 1·5-5·2 kg body weight were prepared with indwelling arterial and venous catheters for experimentation one to six days later. 2. Unanaesthetized foetuses were found to have mean arterial and central venous blood pressures of 40 ± 1·5 (S.E. of mean) and 2·0 ± 0·3 (S.E. of mean) mm Hg respectively, compared to intra-uterine pressure. Intra-uterine pressure was 16 ± 0·8 (S.E. of mean) mm Hg with respect to atmospheric pressure at mid-uterine level. 3. Mean placental blood flow of the foetuses was 199 ± 20 (S.E. of mean) ml./(min.kg body wt.). Mean cardiac output in eleven of the foetuses was 658 ± 102 (S.E. of mean) ml./(min.kg). 4. Mean foetal and maternal colloid osmotic pressures were 17·5 ± 0·7 (S.E. of mean) and 20·5 ± 0·6 (S.E. of mean) mm Hg respectively at 38° C. 5. Intravenous infusions into six ewes of 1·8 mole of mannitol and 0·4 mole of NaCl resulted in significant increases in foetal plasma osmolarity, sodium, potassium, and haemoglobin concentrations, without detectable transfer of mannitol to the foetal circulation. 6. In the sheep placenta there is osmotic and hydrostatic equilibration of water. As a consequence, there should be an interaction between foetal placental blood flow and foetal water exchange with the maternal circulation. It was concluded that this interaction tends to stabilize foetal placental blood flow. PMID:5039279

  6. Reconstructing phylogenies and phenotypes: a molecular view of human evolution

    PubMed Central

    Bradley, Brenda J

    2008-01-01

    This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4–8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human–chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution

  7. Machine learning for the automatic localisation of foetal body parts in cine-MRI scans

    NASA Astrophysics Data System (ADS)

    Bowles, Christopher; Nowlan, Niamh C.; Hayat, Tayyib T. A.; Malamateniou, Christina; Rutherford, Mary; Hajnal, Joseph V.; Rueckert, Daniel; Kainz, Bernhard

    2015-03-01

    Being able to automate the location of individual foetal body parts has the potential to dramatically reduce the work required to analyse time resolved foetal Magnetic Resonance Imaging (cine-MRI) scans, for example, for use in the automatic evaluation of the foetal development. Currently, manual preprocessing of every scan is required to locate body parts before analysis can be performed, leading to a significant time overhead. With the volume of scans becoming available set to increase as cine-MRI scans become more prevalent in clinical practice, this stage of manual preprocessing is a bottleneck, limiting the data available for further analysis. Any tools which can automate this process will therefore save many hours of research time and increase the rate of new discoveries in what is a key area in understanding early human development. Here we present a series of techniques which can be applied to foetal cine-MRI scans in order to first locate and then differentiate between individual body parts. A novel approach to maternal movement suppression and segmentation using Fourier transforms is put forward as a preprocessing step, allowing for easy extraction of short movements of individual foetal body parts via the clustering of optical flow vector fields. These body part movements are compared to a labelled database and probabilistically classified before being spatially and temporally combined to give a final estimate for the location of each body part.

  8. Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: possible implications for foetal programming.

    PubMed

    Sarkar, P; Bergman, K; O'Connor, T G; Glover, V

    2008-04-01

    Both animal and human studies have shown that maternal stress or anxiety during pregnancy is associated with increased risk of disturbance in offspring neurodevelopment and behaviour. In animal models, increased foetal exposure to glucocorticoids has been found to be one mechanism for such foetal programming. Little is understood of the mediating mechanisms in humans, and one aim of our research programme is to investigate this further. This review presents a synopsis of some of our recent results. We aimed to test the hypothesis that maternal anxiety was associated with raised maternal cortisol, and that this in turn was related to increased foetal exposure to cortisol. We studied this by recruiting women at amniocentesis, obtained their Spielberger State Anxiety scores, and assessed maternal plasma cortisol and amniotic fluid cortisol. We also examined maternal plasma and amniotic fluid testosterone levels. Awaiting amniocentesis was in general anxiogenic, but with a wide range of anxiety scores. Maternal anxiety was significantly associated with plasma cortisol before 17 weeks, albeit of modest magnitude (r = 0.0.23), and not after 17 weeks of gestation. This is probably due to the known attenuation of the maternal hypothalamic-pituitary-adrenal axis with increasing gestation. We found a strong correlation between maternal plasma and amniotic fluid cortisol levels, which increased with gestation and became robust after 18 weeks. This correlation increased with maternal anxiety, suggesting a possible effect of maternal mood on placental function. There was a positive correlation between cortisol and testosterone in amniotic fluid, in both male and female foetuses independent of maternal anxiety, plasma testosterone, gestational age, and time of collection. Foetal stress may be associated with increased foetal exposure to testosterone. However, maternal anxiety did not predict amniotic fluid cortisol or testosterone level. Thus, the role of these hormones in

  9. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains.

    PubMed

    Walker, Douglas G; Lue, Lih-Fen

    2015-08-19

    Inflammatory responses in the brain, which can be demonstrated by changes in properties of microglia, the brain-resident macrophages, are a common feature of human neurodegenerative diseases. Different monocyte/macrophage phenotypes have been defined by changes in expression of cytokines, receptors and other markers as a response to different classes of stimuli. Monocytes, macrophages and microglia can have a range of phenotypes with associated properties depending on their microenvironment. Macrophage/microglia polarization states have been defined as classical activation (M1), alternative activation (M2a), type II alternative activation (M2b) or acquired deactivation (M2c). Available markers for identifying microglial phenotypes in human brains are still limited; those available provide incomplete information on the functions or polarization states of microglia observed in tissues from diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. The most widely used marker to describe activated microglia in human brains, particularly diseased brains, has been HLA-DR, the major histocompatibility complex II protein. HLA-DR-positive microglia can have a wide range of activation morphologies that are affected not only by disease pathology, but also by their differentiation states and brain regions. Two other widely used markers to identify microglia in human brains are ionized calcium binding adaptor molecule-1 and CD68. Although their expression changes in diseased brains, these markers do not show specificity for different phenotypes. Over the years there have been studies with additional markers that attempt to further define microglial properties, particularly in Alzheimer's disease brains. Most studies have employed immunohistochemical techniques to identify microglia in tissue sections, but recent advances in this field have allowed gene expression profiling of microglia upon immediate isolation from brains. We will review which markers

  10. The pregnant ferret as a model for studying the congenital effects of influenza virus infection in utero: infection of foetal tissues in organ culture and in vivo.

    PubMed

    Sweet, C; Toms, G L; Smith, H

    1977-04-01

    Organ cultures of ferret foetal tissues showed a similar pattern of susceptibility to influenza virus to that already observed for human foetal tissues (Rosztoczy et al., 1975); respiratory, alimentary and urogenital tissues supported the replication of influenza virus but nervous and lymphopoietic tissues (those which, in man, are associated with foetal or postnatal abnormalities) were insusceptible. In contrast to corresponding human tissues, ferret foetal placenta and amnion readily supported viral replication although both human and ferret umbilical cord were susceptible. In limited experiments, neither the membranes nor the susceptible foetal tissues became infected after intranasal inoculation of pregnant ferrets of various gestational ages. However, after intracardial inoculation of pregnant ferrets with high titre virus (ca 10(9) EBID50) virus was isolated from both foetal membranes and foetuses. The membranes became infected at early, middle and late gestation, but virus appeared to cross the placental barrier to infect foetal tissues only in late gestation. At this stage virus could be isolated not only from those foetal tissues (respiratory, alimentary and urogenital) susceptible in organ culture, but also in small amounts from tissues which were insusceptible in organ culture (heart, lymphopoietic and nervous tissue). Virus was also isolated from foetal membranes and foetuses of late gestation ferrets following intracardial inoculation with a one hundred-fold lower dose of virus which, unlike the higher dose, did not induce a maternal febrile response. The pregnant ferret appears to be a suitable model for investigating the effects on development of foetal infection with influenza virus but it may have disadvantages with regard to the nature and strength of the placental barrier.

  11. Phenotypic Characterization of Five Dendritic Cell Subsets in Human Tonsils

    PubMed Central

    Summers, Kelly L.; Hock, Barry D.; McKenzie, Judith L.; Hart, Derek N. J.

    2001-01-01

    Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin− HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets based on their relative expression of the HLA-DR, CD11c, CD13, and CD123 antigens. In situ localization identified four of these DC subsets as distinct interdigitating DC populations. These included three new interdigitating DC subsets defined as HLA-DRhi CD11c+ DCs, HLA-DRmod CD11c+ CD13+ DCs, and HLA-DRmod CD11c− CD123− DCs, as well as the plasmacytoid DCs (HLA-DRmod CD11c− CD123+). These subsets differed in their expression of DC-associated differentiation/activation antigens and co-stimulator molecules including CD83, CMRF-44, CMRF-56, 2-7, CD86, and 4-1BB ligand. The fifth HLA-DRmod CD11c+ DC subset was identified as germinal center DCs, but contrary to previous reports they are redefined as lacking the CD13 antigen. The definition and extensive phenotypic analysis of these five DC subsets in human tonsil extends our understanding of the complexity of DC biology. PMID:11438475

  12. Generating Phenotypical Erroneous Human Behavior to Evaluate Human-automation Interaction Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.

    2012-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914

  13. FATAL FOETAL ABNORMALITY, IRISH CONSTITUTIONAL LAW, AND MELLET v IRELAND.

    PubMed

    de Londras, Fiona

    2016-12-27

    Under the Irish Constitution abortion is allowed only where the life of the pregnant woman is at risk. The provision in question, Article 40.3.3 (or the 8th Amendment) has long been criticised for failing to respect women's autonomy, and in Mellet v Ireland, the UN Human Rights Committee found that Amanda Jane Mellet, who travelled to Liverpool to access abortion following a finding that her foetus suffered a fatal abnormality, had suffered a violation of her rights under the International Covenant on Civil and Political Rights (ICCPR). In this commentary I demonstrate the value of Mellet when compared to the possible legal findings in such circumstances under both the Constitution and the European Convention on Human Rights, and argue that the findings are not restricted to cases of fatal foetal abnormality. Rather, the Committee's decision illustrates the suffering that all women in Ireland who travel to access abortion experience, arguably constituting a violation of their right to be free from cruel, inhuman, and degrading treatment. On that reading, Mellet signifies the need to implement a comprehensive rethink of Irish abortion law including, but going beyond, access to abortion in cases of fatal foetal abnormality.

  14. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    PubMed

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  15. Foetal response to maternal coffee intake: role of habitual versus non-habitual caffeine consumption.

    PubMed

    Mulder, E J H; Tegaldo, L; Bruschettini, P; Visser, G H A

    2010-11-01

    Little is known about the effect on the human foetus of long-term and acute exposure to caffeine. We studied the organisation of foetal sleep-wake states in 13 healthy near-term foetuses over a wide range of maternal plasma caffeine concentrations (0-13 μg/mL) reflecting normal lifestyle conditions (day 0) and again following intake of two cups of regular coffee (~300 mg of caffeine) intermitted by 50 h of abstinence (day 2; acute effects). On either day, 2 h simultaneous recordings were made of foetal heart rate, general-, eye-, and breathing-movements. The recordings were analysed for the presence of each of four foetal behavioural states: quiet- and active-sleep, quiet- and active-wakefulness. There was a linear relationship between maternal caffeine content and the incidence of foetal general movements during active sleep on day 0 (R = 0.74; P < 0.02). After coffee loading on day 2, foetuses of non- or low-caffeine consumers showed increases in active wakefulness (P < 0.001), general movements (P < 0.05) and heart rate variation (P < 0.01) but lower basal heart rate (P < 0.01) compared with their day 0 values. The changes in foetal heart rate (variation) and behaviour occurred between 90 and 180 min post-consumption. In contrast, foetuses of habitual caffeine consumers remained unaffected suggestive of foetal tolerance to caffeine. The results indicate differential performance between foetuses regularly exposed to caffeine and those caffeine-naive, both under normal maternal lifestyle conditions and in response to maternal coffee ingestion.

  16. The composition of foetal and maternal blood during parturition in the ewe.

    PubMed

    Comline, R S; Silver, M

    1972-04-01

    1. Changes in the composition of foetal and maternal blood have been followed during the last 5-10 days of gestation and throughout parturition in the conscious sheep.2. Catheters were placed in the foetal inferior vena cava through a tarsal vein and in a maternal uterine vein in ten ewes under sodium pentobarbitone anaesthesia. In four of the foetuses blood pressure and heart rates were recorded before and during parturition from an arterial catheter.3. Foetal blood gas tensions, pH and PCV remained stable during the latter part of gestation and throughout labour until 15 min before delivery, when P(O) (2) and pH fell while PCV and P(CO) (2) rose in about 50% of the foetuses examined.4. Metabolite levels were also relatively stable at the end of gestation. Plasma glucose in both maternal and foetal blood rose during the hour before birth, while foetal plasma lactate was elevated as early as 4 hr before birth and was unrelated to any maternal changes. Foetal fructose levels were maintained until after delivery.5. Rises in foetal blood pressure before birth were associated with uterine contractions. Foetal heart rate changes during labour varied in different individuals. The heart rate either fell gradually before birth or there was little change until a sudden drop at delivery.6. The most striking changes in the lamb occurred at, or a few minutes after, birth; pH and P(O) (2) fell, P(CO) (2) and PCV rose, and bradycardia at delivery was succeeded by prolonged tachycardia. There were marked increases in plasma glucose and lactic acid at this time.7. P(O) (2) rose rapidly once respiration was established, while pH and P(CO) (2) levels were restored within (1/2)-1 hr. Plasma FFA levels rose rapidly in the lambs 10-30 min after birth and remained high, while plasma glucose, lactate and fructose concentrations declined slowly in the 1-2 hr after birth, although suckling raised the plasma glucose levels. Considerable individual variation in the metabolite levels was

  17. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus.

    PubMed

    Habert, René; Livera, Gabriel; Rouiller-Fabre, Virginie

    2014-01-01

    Phthalates provide one of the most documented example evidencing how much we must be cautious when using the traditional paradigm based on extrapolation of experimental data from rodent studies for human health risk assessment of endocrine disruptors (EDs). Since foetal testis is known as one of the most sensitive targets of EDs, phthalate risk assessment is routinely based on the capacity of such compounds to decrease testosterone production by the testis or to impair masculinization in the rat during foetal life. In this paper, the well-established inhibiting effects of phthalates of the foetal Leydig cells function in the rat are briefly reviewed. Then, data obtained in humans and other species are carefully analysed. Already in January 2009, using the organotypic culture system named Fetal Testis Assay (FeTA) that we developed, we reported that phthalates might not affect testosterone production in human foetal testes. Several recent experimental studies using xenografts confirm the absence of detectable anti-androgenic effect of phthalates in the human foetal testes. Epidemiological studies led to contradictory results. Altogether, these findings suggest that phthalates effects on foetal Leydig cells are largely species-specific. Consequently, the phthalate threshold doses that disturb foetal steroidogenesis in rat testes and that are presently used to define the acceptable daily intake levels for human health protection must be questioned. This does not mean that phthalates are safe because these compounds have many deleterious effects upon germ cell development that may be common to the different studied species including human. More generally, the identification of common molecular, cellular or/and phenotypic targets in rat and human testes should precede the choice of the toxicological endpoint in rat to accurately assess the safety threshold of any ED in humans.

  18. A new tool for foetal phonocardiography simulation.

    PubMed

    Romano, Maria; Bifulco, Paolo; Iuppariello, Luigi; Clemente, Fabrizio; D'Addio, Gianni; Cesarelli, Mario

    2015-01-01

    Among diagnostic techniques for foetal monitoring, phonocardiography is gaining more and more interest for its low cost, passive nature and capability to detect some cardiac diseases. In spite of these characteristics, its use in clinical routine is still limited due to different troubles; for example, signals recorded through maternal abdomen show generally a quite low signal-to-noise ratio, so that detection and analysis of foetal heart sounds result very difficult. In this scenario, the availability of artificial phonocardiographic signals, simulated with conditions resembling different foetal conditions, week of gestation and noise amount, to name someone, can be a very useful tool to train medical staff. In this paper a software for phonocardiography simulation, updated to take account also of the split is presented. The software is completed with a user interface which allow to modify in a simple way simulation parameters. It is worth highlighting that this software can be useful also for testing performances of other analysis software and mathematical tools for recognising of valves components in the heart sounds.

  19. Humoral immune responses in foetal sheep.

    PubMed Central

    Fahey, K J; Morris, B

    1978-01-01

    A total of fifty-two foetal sheep between 49 and 126 days gestation were injected with polymeric and monomeric flagellin, dinitrophenylated monomeric flagellin, chicken red blood cells, ovalbumin, ferritin, chicken gamma-globulin and the somatic antigens of Salmonella typhimurium in a variety of combinations. Immune responses were followed in these animals by taking serial blood samples from them through indwelling vascular cannulae and measuring the circulating titres of antibody. Of the antigens tested, ferritin induced immune responses in the youngest foetuses. A short time later in gestation, the majority of foetuses responded to chicken red blood cells, polymeric flagellin, monomeric flagellin and dinitrophenylated monomeric flagellin. Only older foetuses responded regularly to chicken gamma-globulin and ovalbumin. However, antibodies to all these antigens were first detected over the relatively short period of development between 64 and 82 days gestation and this made it difficult to define any precise order in the development of immune responsiveness. Of the antigens tested only the somatic antigens of S. typhimurium failed to induce a primary antibody response during foetal life. The character and magnitude of the antibody responses in foetuses changed throughout in utero development. Both the total amount of antibody produced and the duration of the response increased with foetal age. Foetuses younger than 87 days gestation did not synthesize 2-mercaptoethanol resistant antibodies or IgG1 immunoglobulin to any of the antigens tested, whereas most foetuses older than this regularly did so. PMID:711249

  20. Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays.

    PubMed

    Bikfalvi, A; Cramer, E M; Tenza, D; Tobelem, G

    1991-01-01

    Different angiogenic assays in vitro have helped to define various events underlying angiogenesis. In this report we have compared the phenotypic modifications of human umbilical vein endothelial cells (HUVE cells) and human dermal fibroblasts using Matrigel and collagen gels. Both HUVE cells and human dermal fibroblasts form a network of anastomosing cords that apparently resemble blood capillaries when grown on Matrigel. The whole network was formed by several cellular aggregates joined to each other by cellular cords. Lumen formation was not observed in this angiogenic system. In opposite, considerable differences between HUVE cells and human dermal fibroblasts were observed in the three-dimensional angiogenic assay on collagen gels described by Montesano et al [14]. These results indicate that data obtained with angiogenic systems using Matrigel must be interpreted with caution and that the assay described by Montesano et al [14], is more reliable to describe angiogenesis.

  1. The human gene map for performance and health-related fitness phenotypes: the 2005 update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in...

  2. Reversal of foetal hydrops and foetal tachyarrhythmia associated with maternal diabetic coma.

    PubMed

    Greco, P; Vimercati, A; Giorgino, F; Loverro, G; Selvaggi, L

    2000-11-01

    Foetal hydrops is always a challenge for the clinician. We report a case of tachycardia associated with hydrops and hydramnios in a pregnancy complicated with diabetic coma at 28 weeks gestation. Normal foetal heart rate was recorded immediately after correction of maternal acidotic status and hydrops eventually disappeared. The woman was delivered at 32 weeks and the baby had an uncomplicated postnatal course. We hypothesise that maternal ketoacidosis has been the precipitating factor of tachycardia and congestive heart failure and that this case is conceptually similar to the "late death" phenomenon, reported in cases of poorly controlled maternal diabetes.

  3. Behavioral phenotypes in genetic syndromes: genetic clues to human behavior.

    PubMed

    Cassidy, Suzanne B; Morris, Colleen A

    2002-01-01

    A behavioral phenotype is the characteristic cognitive, personality, behavioral, and psychiatric pattern that typifies a disorder. A number of genetic syndromes have been identified as having this type of distinctive and consistent behavior pattern. It may act as an important diagnostic sign, like a malformation or characteristic facial appearance. Such patterns are also useful for the physician's anticipatory guidance from an educational, rehabilitative, and parenting perspective. In addition, because they are the consequences of known genetic alterations, behavioral phenotypes can be potentially highly valuable clues to the identification of genes in the population that are important to determination of cognitive skills or deficits, personality determinants, behavioral abnormalities, or psychiatric disorders. The nature of a behavioral phenotype and its potential for genetic insight can be appreciated through the examples of Williams syndrome, Prader-Willi syndrome, and Angelman syndrome. The cognitive and behavioral characteristics of these disorders are distinctive. Williams syndrome is known for its association with remarkable conversational verbal abilities and excessive empathy, whereas Prader-Willi syndrome is known for temper tantrums and obsessive-compulsive features, and Angelman syndrome is associated with a constantly happy affect and hyperactivity. The genetic basis for each of these disorders is known, and the pathophysiology and genotype-phenotype correlations are beginning to provide insight into genes responsible for personality characteristics and behavioral abnormalities.

  4. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    PubMed

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  5. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    NASA Astrophysics Data System (ADS)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  6. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    PubMed

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance.

  7. Computer analysis of foetal monitoring signals.

    PubMed

    Nunes, Inês; Ayres-de-Campos, Diogo

    2016-01-01

    Five systems for computer analysis of foetal monitoring signals are currently available, incorporating the evaluation of cardiotocographic (CTG) or combined CTG with electrocardiographic ST data. All systems have been integrated with central monitoring stations, allowing the simultaneous monitoring of several tracings on the same computer screen in multiple hospital locations. Computer analysis elicits real-time visual and sound alerts for health care professionals when abnormal patterns are detected, with the aim of prompting a re-evaluation and subsequent clinical action, if considered necessary. Comparison between the CTG analyses provided by the computer and clinical experts has been carried out in all systems, and in three of them, the accuracy of computer alerts in predicting newborn outcomes was evaluated. Comparisons between these studies are hampered by the differences in selection criteria and outcomes. Two of these systems have just completed multicentre randomised clinical trials comparing them with conventional CTG monitoring, and their results are awaited shortly. For the time being, there is limited evidence regarding the impact of computer analysis of foetal monitoring signals on perinatal indicators and on health care professionals' behaviour.

  8. Effects of di(n-butyl) phthalate exposure on foetal rat germ-cell number and differentiation: identification of age-specific windows of vulnerability

    PubMed Central

    Jobling, M S; Hutchison, G R; van den Driesche, S; Sharpe, R M

    2011-01-01

    Environmental factors are implicated in increased incidence of human testicular germ-cell cancer (TGCC). TGCC has foetal origins and may be one component of a testicular dysgenesis syndrome (TDS). Certain phthalates induce TDS in rats, including effects on foetal germ cells (GC). As humans are widely exposed to phthalates, study of the effects of phthalates on foetal rat GC could provide an insight into the vulnerability of foetal GC to disruption by environmental factors, and thus to origins of TGCC. This study has therefore characterized foetal GC development in rats after in utero exposure to di(n-butyl) phthalate (DBP) with emphasis on GC numbers/proliferation, differentiation and time course for inducing effects. Pregnant rats were treated orally from embryonic day 13.5 (e13.5) with 500 mg/kg/day DBP for varying periods. GC number, proliferation, apoptosis, differentiation (loss of OCT4, DMRT1 expression, DMRT1 re-expression, GC migration) and aggregation were evaluated at various foetal and postnatal ages. DBP exposure reduced foetal GC number by ∼60% by e15.5 and prolonged GC proliferation, OCT4 and DMRT1 immunoexpression; these effects were induced in the period immediately after testis differentiation (e13.5–e15.5). In contrast, DBP-induced GC aggregation stemmed from late gestation effects (beyond e19.5). Foetal DBP exposure delayed postnatal resumption of GC proliferation, leading to bigger deficits in numbers, and delayed re-expression of DMRT1 and radial GC migration. Therefore, DBP differentially affects foetal GC in rats according to stage of gestation, effects that may be relevant to the human because of their nature (OCT4, DMRT1 effects) or because similar effects are demonstrable in vitro on human foetal testes (GC number). Identification of the mechanisms underlying these effects could give a new insight into environment-sensitive mechanisms in early foetal GC development that could potentially be relevant to TGCC origins. PMID:21332505

  9. Influence of age, irradiation and humanization on NSG mouse phenotypes

    PubMed Central

    Knibbe-Hollinger, Jaclyn S.; Fields, Natasha R.; Chaudoin, Tammy R; Epstein, Adrian A.; Makarov, Edward; Akhter, Sidra P.; Gorantla, Santhi; Bonasera, Stephen J.; Gendelman, Howard E.; Poluektova, Larisa Y.

    2015-01-01

    ABSTRACT Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization. PMID:26353862

  10. Influence of age, irradiation and humanization on NSG mouse phenotypes.

    PubMed

    Knibbe-Hollinger, Jaclyn S; Fields, Natasha R; Chaudoin, Tammy R; Epstein, Adrian A; Makarov, Edward; Akhter, Sidra P; Gorantla, Santhi; Bonasera, Stephen J; Gendelman, Howard E; Poluektova, Larisa Y

    2015-09-09

    Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.

  11. Phenotypic impact of genomic structural variation: insights from and for human disease.

    PubMed

    Weischenfeldt, Joachim; Symmons, Orsolya; Spitz, François; Korbel, Jan O

    2013-02-01

    Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.

  12. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview

    PubMed Central

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms. PMID:27064559

  13. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview.

    PubMed

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K(+)) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K(+) channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K(+) channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K(+) channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K(+) channels in monogenic forms.

  14. Cardiopulmonary phenotype associated with human PHD2 mutation.

    PubMed

    Talbot, Nick P; Smith, Thomas G; Balanos, George M; Dorrington, Keith L; Maxwell, Patrick H; Robbins, Peter A

    2017-04-01

    Oxygen-dependent regulation of the erythropoietin gene is mediated by the hypoxia-inducible factor (HIF) family of transcription factors. When oxygen is plentiful, HIF undergoes hydroxylation by a family of oxygen-dependent prolyl hydroxylase domain (PHD) proteins, promoting its association with the von Hippel-Lindau (VHL) ubiquitin E3 ligase and subsequent proteosomal degradation. When oxygen is scarce, the PHD enzymes are inactivated, leading to HIF accumulation and upregulation not only of erythropoietin expression, but also the expression of hundreds of other genes, including those coordinating cardiovascular and ventilatory adaptation to hypoxia. Nevertheless, despite the identification of over 50 mutations in the PHD-HIF-VHL pathway in patients with previously unexplained congenital erythrocytosis, there are very few reports of associated cardiopulmonary abnormalities. We now report exaggerated pulmonary vascular and ventilatory responses to acute hypoxia in a 35-year-old man with erythrocytosis secondary to heterozygous mutation in PHD2, the most abundant of the PHD isoforms. We compare this phenotype with that reported in patients with the archetypal disorder of cellular oxygen sensing, Chuvash polycythemia, and discuss the possible clinical implications of our findings, particularly in the light of the emerging role for small molecule PHD inhibitors in clinical practice.

  15. The Cohesive Metastasis Phenotype in Human Prostate Cancer.

    PubMed

    Harryman, William L; Hinton, James P; Rubenstein, Cynthia P; Singh, Parminder; Nagle, Raymond B; Parker, Sarah J; Knudsen, Beatrice S; Cress, Anne E

    2016-12-01

    A critical barrier for the successful prevention and treatment of recurrent prostate cancer is detection and eradication of metastatic and therapy-resistant disease. Despite the fall in diagnoses and mortality, the reported incidence of metastatic disease has increased 72% since 2004. Prostate cancer arises in cohesive groups as intraepithelial neoplasia, migrates through muscle and leaves the gland via perineural invasion for hematogenous dissemination. Current technological advances have shown cohesive-clusters of tumor (also known as microemboli) within the circulation. Circulating tumor cell (CTC) profiles are indicative of disseminated prostate cancer, and disseminated tumor cells (DTC) are found in cohesive-clusters, a phenotypic characteristic of both radiation- and drug-resistant tumors. Recent reports in cell biology and informatics, coupled with mass spectrometry, indicate that the integrin adhesome network provides an explanation for the biophysical ability of cohesive-clusters of tumor cells to invade thorough muscle and nerve microenvironments while maintaining adhesion-dependent therapeutic resistance. Targeting cohesive-clusters takes advantage of the known ability of extracellular matrix (ECM) adhesion to promote tumor cell survival and represents an approach that has the potential to avoid the progression to drug- and radiotherapy-resistance. In the following review we will examine the evidence for development and dissemination of cohesive-clusters in metastatic prostate cancer.

  16. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources

    PubMed Central

    Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa

    2015-01-01

    The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data. PMID:26834980

  17. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages.

    PubMed

    Tarique, Abdullah A; Logan, Jayden; Thomas, Emma; Holt, Patrick G; Sly, Peter D; Fantino, Emmanuelle

    2015-11-01

    Macrophages are dynamic cells that mature under the influence of signals from the local microenvironment into either classically (M1) or alternatively (M2) activated macrophages with specific functional and phenotypic properties. Although the phenotypic identification of M1 and M2 macrophages is well established in mice, this is less clear for human macrophages. In addition, the persistence and reversibility of polarized human phenotypes is not well established. Human peripheral blood monocytes were differentiated into uncommitted macrophages (M0) and then polarized to M1 and M2 phenotypes using LPS/IFN-γ and IL-4/IL-13, respectively. M1 and M2 were identified as CD64(+)CD80(+) and CD11b(+)CD209(+), respectively, by flow cytometry. Polarized M1 cells secreted IP-10, IFN-γ, IL-8, TNF-α, IL-1β, and RANTES, whereas M2 cells secreted IL-13, CCL17, and CCL18. Functionally, M2 cells were highly endocytic. In cytokine-deficient medium, the polarized macrophages reverted back to the M0 state within 12 days. If previously polarized macrophages were given the alternative polarizing stimulus after 6 days of resting in cytokine-deficient medium, a switch in polarization was seen (i.e., M1 macrophages switched to M2 and expressed CD11b(+)CD209(+) and vice versa). In summary, we report phenotypic identification of human M1 and M2 macrophages, their functional characteristics, and their ability to be reprogrammed given the appropriate stimuli.

  18. Retained foetal bones: an intrauterine cause of chronic pelvic pain.

    PubMed

    Kalu, Emmanuel; Richardson, Robert

    2009-02-01

    Intrauterine retention of foetal bones is an uncommon but recognised complication of late termination of pregnancy. Secondary subfertility, abnormal uterine bleeding and vaginal discharge are the usual presenting complaints. We report a case of prolonged retention of foetal bones for 14 years in a woman who presented with chronic pelvic pain. Hysteroscopic examination was diagnostic and therapeutic. Retained foetal bones are an uncommon intrauterine cause of chronic pelvic pain that should be considered particularly when a woman with a history of late termination presents with pelvic pain. Hysteroscopic evacuation is curative.

  19. Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency

    PubMed Central

    Bone, William P.; Washington, Nicole L.; Buske, Orion J.; Adams, David R.; Davis, Joie; Draper, David; Flynn, Elise D.; Girdea, Marta; Godfrey, Rena; Golas, Gretchen; Groden, Catherine; Jacobsen, Julius; Köhler, Sebastian; Lee, Elizabeth M. J.; Links, Amanda E.; Markello, Thomas C.; Mungall, Christopher J.; Nehrebecky, Michele; Robinson, Peter N.; Sincan, Murat; Soldatos, Ariane G.; Tifft, Cynthia J.; Toro, Camilo; Trang, Heather; Valkanas, Elise; Vasilevsky, Nicole; Wahl, Colleen; Wolfe, Lynne A.; Boerkoel, Cornelius F.; Brudno, Michael; Haendel, Melissa A.; Gahl, William A.; Smedley, Damian

    2016-01-01

    Purpose: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Genet Med 18 6, 608–617. Methods: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors. Genet Med 18 6, 608–617. Results: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Genet Med 18 6, 608–617. Conclusion: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders. Genet Med 18 6, 608–617. PMID:26562225

  20. Phenotypic and functional characteristics of human newborns' B lymphocytes.

    PubMed

    Durandy, A; Thuillier, L; Forveille, M; Fischer, A

    1990-01-01

    It has been demonstrated two major facts concerning human newborns' B lymphocytes: 1) they differentiate poorly into Ig-producing cells and 2) they express CD5 and CD1c membrane proteins. We have further analyzed human newborns' B cell characteristics and found that approximately half of them express activation Ag, i.e., 4F2 and IL-2R, both associated in significant proportions with CD23 and Bac-1. These membrane Ag were found both on CD5(+) and CD5(-) B cells. Newborns' B cells do not exhibit other activation markers because they express surface IgD, and because their size, RNA, and DNA contents do not differ from those of adults' B cells, indicating that they are in the G0/G1 cell cycle phase. Newborns' B cell proliferation can be induced by rIL-2, rIL-4, low m.w. B cell growth factor, and by Staphylococcus aureus protein A. It is presently difficult to build a hypothesis accounting for all the specific findings made on newborns' B cells. It is not known for instance whether CD5(+) and (-) B cells belong to distinct subsets as suggested by the fluorescence intensity curve obtained with an anti-CD5 antibody or to distinct stages in a unique pattern of B cell maturation during fetal and newborn life. This may indicate that partially activated B cells actually produce natural polyspecific autoantibodies of the IgM isotype found in newborns' human serum.

  1. Metabolic Phenotyping Guidelines: studying eating behaviour in humans.

    PubMed

    Gibbons, Catherine; Finlayson, Graham; Dalton, Michelle; Caudwell, Phillipa; Blundell, John E

    2014-08-01

    The study of human appetite and eating behaviour has become increasingly important in recent years due to the rise in body weight dysregulation through both obesity and eating disorders. Adequate control over appetite is paramount for the control of body weight and in order to understand appetite, it is necessary to measure eating behaviour accurately. So far, research in this field has revealed that no single experimental design can answer all research questions. Each research question posed will require a specific study design that will limit the findings of that study to those particular conditions. For example, choices will be made among the use of laboratory or free-living studies, time period for examination, specific measurement techniques and investigative methodologies employed. It is important that these represent informed decisions about what design and which methodology will provide the most meaningful outcomes. This review will examine some of the 'gold standard' study designs and methodologies currently employed in the study of human appetite and eating behaviour.

  2. Intra-uterine foetal death: an avoidable diagnostic pitfall.

    PubMed

    Divers, M J

    1991-01-01

    A case is presented where maternal tachycardia was misinterpreted as foetal heart activity on cardiography in a case of IUFD. Diagnostic implications and the use of real line ultrasound scanning are discussed.

  3. Tracking modern human population history from linguistic and cranial phenotype.

    PubMed

    Reyes-Centeno, Hugo; Harvati, Katerina; Jäger, Gerhard

    2016-11-11

    Languages and genes arguably follow parallel evolutionary trajectories, descending from a common source and subsequently differentiating. However, although common ancestry is established within language families, it remains controversial whether language preserves a deep historical signal. To address this question, we evaluate the association between linguistic and geographic distances across 265 language families, as well as between linguistic, geographic, and cranial distances among eleven populations from Africa, Asia, and Australia. We take advantage of differential population history signals reflected by human cranial anatomy, where temporal bone shape reliably tracks deep population history and neutral genetic changes, while facial shape is more strongly associated with recent environmental effects. We show that linguistic distances are strongly geographically patterned, even within widely dispersed groups. However, they are correlated predominantly with facial, rather than temporal bone, morphology, suggesting that variation in vocabulary likely tracks relatively recent events and possibly population contact.

  4. An Organismal CNV Mutator Phenotype Restricted to Early Human Development.

    PubMed

    Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B; Wuster, Arthur; Walter, Klaudia; Zhang, Ling; Gambin, Tomasz; Chong, Zechen; Campbell, Ian M; Coban Akdemir, Zeynep; Gelowani, Violet; Writzl, Karin; Bacino, Carlos A; Lindsay, Sarah J; Withers, Marjorie; Gonzaga-Jauregui, Claudia; Wiszniewska, Joanna; Scull, Jennifer; Stankiewicz, Paweł; Jhangiani, Shalini N; Muzny, Donna M; Zhang, Feng; Chen, Ken; Gibbs, Richard A; Rautenstrauss, Bernd; Cheung, Sau Wai; Smith, Janice; Breman, Amy; Shaw, Chad A; Patel, Ankita; Hurles, Matthew E; Lupski, James R

    2017-02-23

    De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.

  5. Data sources for in vivo molecular profiling of human phenotypes.

    PubMed

    Cardozo, Timothy; Gupta, Priyanka; Ni, Eric; Young, Lauren M; Tivon, Doreen; Felsovalyi, Klara

    2016-11-01

    Molecular profiling of human diseases has been approached at the genetic (DNA), expression (RNA), and proteomic (protein) levels. An important goal of these efforts is to map observed molecular patterns to specific, mechanistic organic entities, such as loci in the genome, individual RNA molecules or defined proteins or protein assemblies. Importantly, such maps have been historically approached in the more intuitive context of a theoretical individual cell, but diseases are better described in reality using an in vivo framework, namely a library of several tissue-specific maps. In this article, we review the existing data atlases that can be used for this purpose and identify critical gaps that could move the field forward from cellular to in vivo dimensions. WIREs Syst Biol Med 2016, 8:472-484. doi: 10.1002/wsbm.1354 For further resources related to this article, please visit the WIREs website.

  6. Tracking modern human population history from linguistic and cranial phenotype

    PubMed Central

    Reyes-Centeno, Hugo; Harvati, Katerina; Jäger, Gerhard

    2016-01-01

    Languages and genes arguably follow parallel evolutionary trajectories, descending from a common source and subsequently differentiating. However, although common ancestry is established within language families, it remains controversial whether language preserves a deep historical signal. To address this question, we evaluate the association between linguistic and geographic distances across 265 language families, as well as between linguistic, geographic, and cranial distances among eleven populations from Africa, Asia, and Australia. We take advantage of differential population history signals reflected by human cranial anatomy, where temporal bone shape reliably tracks deep population history and neutral genetic changes, while facial shape is more strongly associated with recent environmental effects. We show that linguistic distances are strongly geographically patterned, even within widely dispersed groups. However, they are correlated predominantly with facial, rather than temporal bone, morphology, suggesting that variation in vocabulary likely tracks relatively recent events and possibly population contact. PMID:27833101

  7. Phenotypic and functional features of human Th17 cells

    PubMed Central

    Annunziato, Francesco; Cosmi, Lorenzo; Santarlasci, Veronica; Maggi, Laura; Liotta, Francesco; Mazzinghi, Benedetta; Parente, Eliana; Filì, Lucia; Ferri, Simona; Frosali, Francesca; Giudici, Francesco; Romagnani, Paola; Parronchi, Paola; Tonelli, Francesco; Maggi, Enrico; Romagnani, Sergio

    2007-01-01

    T helper (Th) 17 cells represent a novel subset of CD4+ T cells that are protective against extracellular microbes, but are responsible for autoimmune disorders in mice. However, their properties in humans are only partially known. We demonstrate the presence of Th17 cells, some of which produce both interleukin (IL)-17 and interferon (IFN)-γ (Th17/Th1), in the gut of patients with Crohn's disease. Both Th17 and Th17/Th1 clones showed selective expression of IL-23R, CCR6, and the transcription factor RORγt, and they exhibited similar functional features, such as the ability to help B cells, low cytotoxicity, and poor susceptibility to regulation by autologous regulatory T cells. Interestingly, these subsets also expressed the Th1-transcription factor T-bet, and stimulation of these cells in the presence of IL-12 down-regulated the expression of RORγt and the production of IL-17, but induced IFN-γ. These effects were partially inhibited in presence of IL-23. Similar receptor expression and functional capabilities were observed in freshly derived IL-17–producing peripheral blood and tonsillar CD4+ T cells. The demonstration of selective markers for human Th17 cells may help us to understand their pathogenic role. Moreover, the identification of a subset of cells sharing features of both Th1 and Th17, which can arise from the modulation of Th17 cells by IL-12, may raise new issues concerning developmental and/or functional relationships between Th17 and Th1. PMID:17635957

  8. The mouse genome database: genotypes, phenotypes, and models of human disease.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2013-01-01

    The laboratory mouse is the premier animal model for studying human biology because all life stages can be accessed experimentally, a completely sequenced reference genome is publicly available and there exists a myriad of genomic tools for comparative and experimental research. In the current era of genome scale, data-driven biomedical research, the integration of genetic, genomic and biological data are essential for realizing the full potential of the mouse as an experimental model. The Mouse Genome Database (MGD; http://www.informatics.jax.org), the community model organism database for the laboratory mouse, is designed to facilitate the use of the laboratory mouse as a model system for understanding human biology and disease. To achieve this goal, MGD integrates genetic and genomic data related to the functional and phenotypic characterization of mouse genes and alleles and serves as a comprehensive catalog for mouse models of human disease. Recent enhancements to MGD include the addition of human ortholog details to mouse Gene Detail pages, the inclusion of microRNA knockouts to MGD's catalog of alleles and phenotypes, the addition of video clips to phenotype images, providing access to genotype and phenotype data associated with quantitative trait loci (QTL) and improvements to the layout and display of Gene Ontology annotations.

  9. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile.

    PubMed

    Retamal, Patricio; Fresno, Marcela; Dougnac, Catherine; Gutierrez, Sindy; Gornall, Vanessa; Vidal, Roberto; Vernal, Rolando; Pujol, Myriam; Barreto, Marlen; González-Acuña, Daniel; Abalos, Pedro

    2015-01-01

    Salmonella enterica serotype Enteritidis is a worldwide zoonotic agent that has been recognized as a very important food-borne bacterial pathogen, mainly associated with consumption of poultry products. The aim of this work was to determine genotypic and phenotypic evidence of S. Enteritidis transmission among seabirds, poultry and humans in Chile. Genotyping was performed using PCR-based virulotyping, pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Pathogenicity-associated phenotypes were determined with survival to free radicals, acidic pH, starvation, antimicrobial resistance, and survival within human dendritic cells. As result of PCR and PFGE assays, some isolates from the three hosts showed identical genotypic patterns, and through MLST it was determined that all of them belong to sequence type 11. Phenotypic assays show diversity of bacterial responses among isolates. When results were analyzed according to bacterial host, statistical differences were identified in starvation and dendritic cells survival assays. In addition, isolates from seabirds showed the highest rates of resistance to gentamycin, tetracycline, and ampicillin. Overall, the very close genetic and phenotypic traits shown by isolates from humans, poultry, and seabirds suggest the inter-species transmission of S. Enteritidis bacteria between hosts, likely through anthropogenic environmental contamination that determines infection of seabirds with bacteria that are potentially pathogenic for other susceptible organism, including humans.

  10. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile

    PubMed Central

    Retamal, Patricio; Fresno, Marcela; Dougnac, Catherine; Gutierrez, Sindy; Gornall, Vanessa; Vidal, Roberto; Vernal, Rolando; Pujol, Myriam; Barreto, Marlen; González-Acuña, Daniel; Abalos, Pedro

    2015-01-01

    Salmonella enterica serotype Enteritidis is a worldwide zoonotic agent that has been recognized as a very important food-borne bacterial pathogen, mainly associated with consumption of poultry products. The aim of this work was to determine genotypic and phenotypic evidence of S. Enteritidis transmission among seabirds, poultry and humans in Chile. Genotyping was performed using PCR-based virulotyping, pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Pathogenicity-associated phenotypes were determined with survival to free radicals, acidic pH, starvation, antimicrobial resistance, and survival within human dendritic cells. As result of PCR and PFGE assays, some isolates from the three hosts showed identical genotypic patterns, and through MLST it was determined that all of them belong to sequence type 11. Phenotypic assays show diversity of bacterial responses among isolates. When results were analyzed according to bacterial host, statistical differences were identified in starvation and dendritic cells survival assays. In addition, isolates from seabirds showed the highest rates of resistance to gentamycin, tetracycline, and ampicillin. Overall, the very close genetic and phenotypic traits shown by isolates from humans, poultry, and seabirds suggest the inter-species transmission of S. Enteritidis bacteria between hosts, likely through anthropogenic environmental contamination that determines infection of seabirds with bacteria that are potentially pathogenic for other susceptible organism, including humans. PMID:26029196

  11. Phenotypic Characterization Analysis of Human Hepatocarcinoma by Urine Metabolomics Approach

    PubMed Central

    Liang, Qun; Liu, Han; Wang, Cong; Li, Binbing

    2016-01-01

    Hepatocarcinoma (HCC) is one of the deadliest cancers in the world and represents a significant disease burden. Better biomarkers are needed for early detection of HCC. Metabolomics was applied to urine samples obtained from HCC patients to discover noninvasive and reliable biomarkers for rapid diagnosis of HCC. Metabolic profiling was performed by LC-Q-TOF-MS in conjunction with multivariate data analysis, machine learning approaches, ingenuity pathway analysis and receiver-operating characteristic curves were used to select the metabolites which were used for the noninvasive diagnosis of HCC. Fifteen differential metabolites contributing to the complete separation of HCC patients from matched healthy controls were identified involving several key metabolic pathways. More importantly, five marker metabolites were effective for the diagnosis of human HCC, achieved a sensitivity of 96.5% and specificity of 83% respectively, could significantly increase the diagnostic performance of the metabolic biomarkers. Overall, these results illustrate the power of the metabolomics technology which has the potential as a non-invasive strategies and promising screening tool to evaluate the potential of the metabolites in the early diagnosis of HCC patients at high risk and provides new insight into pathophysiologic mechanisms. PMID:26805550

  12. An enzyme linked immunosorbent assay (ELISA) for the determination of the human haptoglobin phenotype

    PubMed Central

    Levy, Nina S.; Vardi, Moshe; Blum, Shany; Miller-Lotan, Rachel; Afinbinder, Yefim; Cleary, Patricia A.; Paterson, Andrew D.; Bharaj, Bhupinder; Snell-Bergeon, Janet K.; Rewers, Marian J.; Lache, Orit; Levy, Andrew P.

    2013-01-01

    Background Haptoglobin (Hp) is an abundant serum protein which binds extracorpuscular hemoglobin (Hb). Two alleles exist in humans for the Hp gene, denoted 1 and 2. Diabetic individuals with the Hp 2-2 genotype are at increased risk of developing vascular complications including heart attack, stroke, and kidney disease. Recent evidence shows that treatment with vitamin E can reduce the risk of diabetic vascular complications by as much as 50% in Hp 2-2 individuals. We sought to develop a rapid and accurate test for Hp phenotype (which is 100% concordant with the three major Hp genotypes) to facilitate widespread diagnostic testing as well as prospective clinical trials. Methods A monoclonal antibody raised against human Hp was shown to distinguish between the three Hp phenotypes in an enzyme linked immunosorbent assay (ELISA). Hp phenotypes obtained in over 8000 patient samples using this ELISA method were compared with those obtained by polyacrylamide gel electrophoresis or the TaqMan PCR method. Results Our analysis showed that the sensitivity and specificity of the ELISA test for Hp 2-2 phenotype is 99.0% and 98.1%, respectively. The positive predictive value and the negative predictive value for Hp 2-2 phenotype is 97.5% and 99.3%, respectively. Similar results were obtained for Hp 2-1 and Hp 1-1 phenotypes. In addition, the ELISA was determined to be more sensitive and specific than the TaqMan method. Conclusions The Hp ELISA represents a user-friendly, rapid and highly accurate diagnostic tool for determining Hp phenotypes. This test will greatly facilitate the typing of thousands of samples in ongoing clinical studies. PMID:23492570

  13. Dynamic cyclic compression modulates the chondrogenic phenotype in human chondrocytes from late stage osteoarthritis.

    PubMed

    Diao, Hua Jia; Fung, Hon Sing; Yeung, Pan; Lam, K L; Yan, Chun Hoi; Chan, Barbara Pui

    2017-02-16

    Human osteoarthritic chondrocytes (hOACs) are characterized by their "dedifferentiated" and catabolic phenotype and lack the ability for restoring their inherent functions by themselves. Here we investigated whether extrinsically supplemented mechanical signal via compression loading would affect the phenotype of hOACs. Specifically, we applied cyclic compression loading on cultured hOACs-collagen constructs and measured the expression of the major chondrogenic factors, cell-matrix interaction molecules and matrix degradation enzymes. Dynamic compression loading stimulates the expression and nuclear localization of sox9 in hOACs and reduces the catabolic events via downregulated expression of collagenases. These results contribute to better understanding towards mechanoregulation of hOACs.

  14. The development of a phantom to determine foetal organ doses from 131I in the foetal thyroid

    NASA Astrophysics Data System (ADS)

    O'Hare, N.; Murphy, D.; Malone, J. F.

    2000-09-01

    Iodine can accumulate in the foetal thyroid from the twelfth week of gestation onwards. If the iodine taken up by the foetal thyroid is in the form of 131I then the thyroid and its proximal tissues and organs will be irradiated. Several mathematical models exist in the literature on foetal/maternal iodine kinetics. However, very few studies have been performed where the foetal thyroid had been physically modelled thus allowing the determination of foetal organ dosimetry from 131I in the foetal thyroid. Here, the development of such a physical model or phantom is described and dosimetry results obtained from the phantom are discussed. The phantom is of Perspex construction, the dimensions of which are sufficient to incorporate models of the foetus at 16, 24 and 36 weeks' gestational age. The dosimetry of two organs is presented, that of the brain and the thymus. The results show that the measured absorbed dose is comparable with that calculated using modified MIRD dosimetry and traditional methods. The results also show that the dose to the thymus is greater than that of the brain by a factor of almost 30 for 16 weeks' gestational age.

  15. Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood.

    PubMed

    MacParland, Sonya A; Tsoi, Kim M; Ouyang, Ben; Ma, Xue-Zhong; Manuel, Justin; Fawaz, Ali; Ostrowski, Mario A; Alman, Benjamin A; Zilman, Anton; Chan, Warren C W; McGilvray, Ian D

    2017-01-17

    A significant challenge to delivering therapeutic doses of nanoparticles to targeted disease sites is the fact that most nanoparticles become trapped in the liver. Liver-resident macrophages, or Kupffer cells, are key cells in the hepatic sequestration of nanoparticles. However, the precise role that the macrophage phenotype plays in nanoparticle uptake is unknown. Here, we show that the human macrophage phenotype modulates hard nanoparticle uptake. Using gold nanoparticles, we examined uptake by human monocyte-derived macrophages that had been driven to a "regulatory" M2 phenotype or an "inflammatory" M1 phenotype and found that M2-type macrophages preferentially take up nanoparticles, with a clear hierarchy among the subtypes (M2c > M2 > M2a > M2b > M1). We also found that stimuli such as LPS/IFN-γ rather than with more "regulatory" stimuli such as TGF-β/IL-10 reduce per cell macrophage nanoparticle uptake by an average of 40%. Primary human Kupffer cells were found to display heterogeneous expression of M1 and M2 markers, and Kupffer cells expressing higher levels of M2 markers (CD163) take up significantly more nanoparticles than Kupffer cells expressing lower levels of surface CD163. Our results demonstrate that hepatic inflammatory microenvironments should be considered when studying liver sequestration of nanoparticles, and that modifying the hepatic microenvironment might offer a tool for enhancing or decreasing this sequestration. Our findings also suggest that models examining the nanoparticle/macrophage interaction should include studies with primary tissue macrophages.

  16. Autozygome Sequencing Expands the Horizon of Human Knockout Research and Provides Novel Insights into Human Phenotypic Variation

    PubMed Central

    Anazi, Shamsa; Alshamekh, Shomoukh; Alkuraya, Fowzan S.

    2013-01-01

    The use of autozygosity as a mapping tool in the search for autosomal recessive disease genes is well established. We hypothesized that autozygosity not only unmasks the recessiveness of disease causing variants, but can also reveal natural knockouts of genes with less obvious phenotypic consequences. To test this hypothesis, we exome sequenced 77 well phenotyped individuals born to first cousin parents in search of genes that are biallelically inactivated. Using a very conservative estimate, we show that each of these individuals carries biallelic inactivation of 22.8 genes on average. For many of the 169 genes that appear to be biallelically inactivated, available data support involvement in modulating metabolism, immunity, perception, external appearance and other phenotypic aspects, and appear therefore to contribute to human phenotypic variation. Other genes with biallelic inactivation may contribute in yet unknown mechanisms or may be on their way to conversion into pseudogenes due to true recent dispensability. We conclude that sequencing the autozygome is an efficient way to map the contribution of genes to human phenotypic variation that goes beyond the classical definition of disease. PMID:24367280

  17. Evaluation of the foetal time to death in mice after application of direct and indirect euthanasia methods.

    PubMed

    Muñoz-Mediavilla, C; Cámara, J A; Salazar, S; Segui, B; Sanguino, D; Mulero, F; de la Cueva, E; Blanco, I

    2016-04-01

    Directive 2010/63/EU on the protection of animals used for scientific purposes requires that the killing of mammal foetuses during the last third of their gestational period should be accomplished through effective and humane methods. The fact that murine foetuses are resistant to hypoxia-mediated euthanasia renders the current euthanasia methods ineffective or humane for the foetuses when these methods are applied to pregnant female mice. We have assessed the time to death of foetuses after performing either indirect (dam euthanasia) or direct (via intraplacental injection--a new approach to euthanasia) euthanasia methods in order to determine a euthanasia method that is appropriate, ethical and efficient for the killing of mouse foetuses. The respective times to death of foetuses after performing the three most commonly used euthanasia methods (namely cervical dislocation, CO2inhalation and intraperitoneal sodium pentobarbital administration) were recorded. Absence of foetal heartbeat was monitored via ultrasound. We consider that the most effective and humane method of foetal euthanasia was the one able to achieve foetal death within the shortest possible period of time. Among the indirect euthanasia methods assessed, the administration of a sodium pentobarbital overdose to pregnant female mice was found to be the fastest for foetuses, with an average post-treatment foetal death of approximately 29.8 min. As for the direct euthanasia method assessed, foetal time to death after intraplacental injection of sodium pentobarbital was approximately 14 min. Significant differences among the different mouse strains employed were found. Based on the results obtained in our study, we consider that the administration of a sodium pentobarbital overdose by intraplacental injection to be an effective euthanasia method for murine foetuses.

  18. The multiscale backbone of the human phenotype network based on biological pathways

    PubMed Central

    2014-01-01

    Background Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. Results The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. Conclusions We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases’ common biology, and in the elaboration of diagnosis and treatments. PMID:24460644

  19. Regulatory mechanism of human vascular smooth muscle cell phenotypic transformation induced by NELIN

    PubMed Central

    PEI, CHANGAN; QIN, SHIYONG; WANG, MINGHAI; ZHANG, SHUGUANG

    2015-01-01

    Vascular disorders, including hypertension, atherosclerosis and restenosis, arise from dysregulation of vascular smooth muscle cell (VSMC) differentiation, which can be controlled by regulatory factors. The present study investigated the regulatory mechanism of the phenotypic transformation of human VSMCs by NELIN in order to evaluate its potential as a preventive and therapeutic of vascular disorders. An in vitro model of NELIN-overexpressing VSMCs was prepared by transfection with a lentiviral (LV) vector (NELIN-VSMCs) and NELIN was slienced using an a lentiviral vector with small interfering (si)RNA in another group (LV-NELIN-siRNA-VSMCs). The effects of NELIN overexpression or knockdown on the phenotypic transformation of human VSMCs were observed, and its regulatory mechanism was studied. Compared with the control group, cells in the NELIN-VSMCs group presented a contractile phenotype with a significant increase of NELIN mRNA, NELIN protein, smooth muscle (SM)α-actin and total Ras homolog gene family member A (RhoA) protein expression. The intra-nuclear translocation of SMα-actin-serum response factor (SMα-actin-SRF) occurred in these cells simultaneously. Following exposure to Rho kinsase inhibitor Y-27632, SRF and SMα-actin expression decreased. However, cells in the LV-NELIN-siRNA-VSMCs group presented a synthetic phenotype, and the expression of NELIN mRNA, NELIN protein, SMα-actin protein and total RhoA protein was decreased. The occurrence of SRF extra-nuclear translocation was observed. In conclusion, the present study suggested that NELIN was able to activate regulatory factors of SMα-actin, RhoA and SRF successively in human VSMCs cultured in vitro. Furthermore, NELIN-induced phenotypic transformation of human VSMCs was regulated via the RhoA/SRF signaling pathway. The results of the present study provide a foundation for the use of NELIN in preventive and therapeutic treatment of vascular remodeling diseases, including varicosity and

  20. Foetal supraventricular tachycardia treated with sotalol.

    PubMed

    Sonesson, S E; Fouron, J C; Wesslen-Eriksson, E; Jaeggi, E; Winberg, P

    1998-05-01

    This retrospective study (1991-95) presents our experience with sotalol in the treatment of 14 foetuses with supraventricular tachycardia (SVT). SVT was diagnosed in a structurally normal heart at a gestational age of 24-35 (median 28) weeks. In eight foetuses, hydrops was evident at presentation. In all patients pharmacological conversion with digoxin was tried before sotalol treatment was started. Sotalol was given orally to the mothers in a dose of 80-160 mg x 2. Cardioversion was obtained in 10 foetuses. In seven of these patients re-entry tachycardia and in five pre-excitation could be documented after birth. In two foetuses not responding to sotalol a long RP tachycardia was demonstrated; even when using digoxin, sotalol, flecainide and/or propafenone in different combinations after birth complete suppression of the arrhythmia was not obtained. Two severely hydropic foetuses died 1 and 10 d, respectively, after starting with sotalol. The 12 surviving infants were doing well except for one infant, with a cerebral lesion probably related to the arrhythmia. These findings demonstrate that sotalol can be useful in the treatment of foetal SVT.

  1. Integrating the human phenotype ontology into HeTOP terminology-ontology server.

    PubMed

    Grosjean, Julien; Merabti, Tayeb; Soualmia, Lina F; Letord, Catherine; Charlet, Jean; Robinson, Peter N; Darmoni, Stéfan J

    2013-01-01

    The Human Phenotype Ontology (HPO) is a controlled vocabulary which provides phenotype data related to genes or diseases. The Health Terminology/Ontology Portal (HeTOP) is a tool dedicated to both human beings and computers to access and browse biomedical terminologies or ontologies (T/O). The objective of this work was to integrate the HPO into HeTOP in order to enhance both works. This integration is a success and allows users to search and browse the HPO with a dedicated interface. Furthermore, the HPO has been enhanced with the addition of content such as new synonyms, translations, mappings. Integrating T/O such as the HPO into HeTOP is a benefit to vocabularies because it allows enrichment of them and it is also a benefit for HeTOP which provides a better service to both humans and machines.

  2. Phenotypes of Myopathy-Related Beta-Tropomyosin Mutants in Human and Mouse Tissue Cultures

    PubMed Central

    Abdul-Hussein, Saba; Rahl, Karin; Moslemi, Ali-Reza; Tajsharghi, Homa

    2013-01-01

    Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TMEGFP mutant showed perinuclear aggregates. The G53ins-β-TMEGFP mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TMEGFP and E122K-β-TMEGFP mutants induced the formation of rod-like structures in human cells. The N202K-β-TMEGFP mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TMEGFP in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein. PMID:24039757

  3. The Role of DNA Insertions in Phenotypic Differentiation between Humans and Other Primates

    PubMed Central

    Hellen, Elizabeth H.B.; Kern, Andrew D.

    2015-01-01

    What makes us human is one of the most interesting and enduring questions in evolutionary biology. To assist in answering this question, we have identified insertions in the human genome which cannot be found in five comparison primate species: Chimpanzee, gorilla, orangutan, gibbon, and macaque. A total of 21,269 nonpolymorphic human-specific insertions were identified, of which only 372 were found in exons. Any function conferred by the remaining 20,897 is likely to be regulatory. Many of these insertions are likely to have been fitness neutral; however, a small number has been identified in genes showing signs of positive selection. Insertions found within positively selected genes show associations to neural phenotypes, which were also enriched in the whole data set. Other phenotypes that are found to be enriched in the data set include dental and sensory perception-related phenotypes, features which are known to differ between humans and other apes. The analysis provides several likely candidates, either genes or regulatory regions, which may be involved in the processes that differentiate humans from other apes. PMID:25635043

  4. The pregnant guinea-pig as a model for studying influenza virus infection in utero: infection of foetal tissues in organ culture and in vivo.

    PubMed

    Sweet, C; Collie, M H; Toms, G L; Smith, H

    1977-04-01

    Organ cultures of guinea-pig foetal tissues showed a similar pattern of susceptibility to influenza virus to that already observed for human (Rosztoczy et al., 1975) and ferret (Sweet, Toms and Smith, 1977) foetal tissues. Respiratory, alimentary and urogenital tract tissues were susceptible whereas neural and lymphopoietic tissues were insusceptible. However, of the foetal membranes (amnion, chorion, umbilical cord and placenta) only the chorion was susceptible, in contrast to the corresponding ferret tissues, all of which were susceptible. The insusceptibility of the placenta paralleled that of human placenta which is similarly haemomonochorial in structure. Following intracardial inoculation of high titre virus (ca 10(9-4) EBID50) into pregnant guinea-pigs virus was isolated from all foetal membranes (amnion, chorion, umbilical cord and placenta), but in low titre. Although sporadic isolations were made from foetal tissues (intestine, kidney, heart, liver and spleen) there was no evidence for viral replication in these tissues. These results are discussed in relation to possible infection of the human foetus in utero with influenza virus.

  5. The effect of maternal Inflammation on foetal programming of metabolic disease.

    PubMed

    Ingvorsen, C; Brix, S; Ozanne, S E; Hellgren, L I

    2015-08-01

    Maternal obesity during pregnancy increases the child's risk of developing obesity and obesity-related diseases later in life. Key components in foetal programming of metabolic risk remain to be identified; however, chronic low-grade inflammation associated with obesity might be responsible for metabolic imprinting in the offspring. We have therefore surveyed the literature to evaluate the role of maternal obesity-induced inflammation in foetal programming of obesity and related diseases. The literature on this topic is limited, so this review also includes animal models where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS). An LPS challenge results in an immunological response that resembles the obesity-induced immune profile, although LPS injections provoke a stronger response than the subclinical obesity-associated response. Maternal LPS or cytokine exposures result in increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. The cytokine levels might be specifically important for the metabolic imprinting, as cytokines are both transferable from maternal to foetal circulation and have the capability to modulate placental nutrient transfer. However, the immune response associated with obesity is moderate and therefore potentially weakened by the pregnancy-driven immune modulation, dominated by anti-inflammatory Treg and Th2 cells. We know from other low-grade inflammatory diseases, such as rheumatoid arthritis, that pregnancy can improve disease state. If pregnancy is also capable of suppressing the obesity-associated inflammation, the immunological markers might be less likely to affect metabolic programming in the developing foetus than otherwise implied.

  6. Automatic concept recognition using the human phenotype ontology reference and test suite corpora.

    PubMed

    Groza, Tudor; Köhler, Sebastian; Doelken, Sandra; Collier, Nigel; Oellrich, Anika; Smedley, Damian; Couto, Francisco M; Baynam, Gareth; Zankl, Andreas; Robinson, Peter N

    2015-01-01

    Concept recognition tools rely on the availability of textual corpora to assess their performance and enable the identification of areas for improvement. Typically, corpora are developed for specific purposes, such as gene name recognition. Gene and protein name identification are longstanding goals of biomedical text mining, and therefore a number of different corpora exist. However, phenotypes only recently became an entity of interest for specialized concept recognition systems, and hardly any annotated text is available for performance testing and training. Here, we present a unique corpus, capturing text spans from 228 abstracts manually annotated with Human Phenotype Ontology (HPO) concepts and harmonized by three curators, which can be used as a reference standard for free text annotation of human phenotypes. Furthermore, we developed a test suite for standardized concept recognition error analysis, incorporating 32 different types of test cases corresponding to 2164 HPO concepts. Finally, three established phenotype concept recognizers (NCBO Annotator, OBO Annotator and Bio-LarK CR) were comprehensively evaluated, and results are reported against both the text corpus and the test suites. The gold standard and test suites corpora are available from http://bio-lark.org/hpo_res.html. Database URL: http://bio-lark.org/hpo_res.html.

  7. Automatic concept recognition using the Human Phenotype Ontology reference and test suite corpora

    PubMed Central

    Groza, Tudor; Köhler, Sebastian; Doelken, Sandra; Collier, Nigel; Oellrich, Anika; Smedley, Damian; Couto, Francisco M; Baynam, Gareth; Zankl, Andreas; Robinson, Peter N.

    2015-01-01

    Concept recognition tools rely on the availability of textual corpora to assess their performance and enable the identification of areas for improvement. Typically, corpora are developed for specific purposes, such as gene name recognition. Gene and protein name identification are longstanding goals of biomedical text mining, and therefore a number of different corpora exist. However, phenotypes only recently became an entity of interest for specialized concept recognition systems, and hardly any annotated text is available for performance testing and training. Here, we present a unique corpus, capturing text spans from 228 abstracts manually annotated with Human Phenotype Ontology (HPO) concepts and harmonized by three curators, which can be used as a reference standard for free text annotation of human phenotypes. Furthermore, we developed a test suite for standardized concept recognition error analysis, incorporating 32 different types of test cases corresponding to 2164 HPO concepts. Finally, three established phenotype concept recognizers (NCBO Annotator, OBO Annotator and Bio-LarK CR) were comprehensively evaluated, and results are reported against both the text corpus and the test suites. The gold standard and test suites corpora are available from http://bio-lark.org/hpo_res.html. Database URL: http://bio-lark.org/hpo_res.html PMID:25725061

  8. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    SciTech Connect

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-08-26

    Highlights: {yields} Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. {yields} The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. {yields} Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  9. Mitochondrial development in liver of foetal and newborn rats

    PubMed Central

    Jakovcic, S.; Haddock, J.; Getz, G. S.; Rabinowitz, M.; Swift, H.

    1971-01-01

    The development of the inner mitochondrial membrane in foetal and neonatal rat liver was studied by following three parameters: (1) the activity of several respiratory enzymes in homogenates and purified mitochondria, (2) the spectrophotometric determination of cytochrome content in the mitochondria and (3) the cardiolipin content in both homogenates and purified mitochondria. Respiratory-enzyme activities of homogenates of foetal liver were one-quarter to one-twentieth of those of homogenates of adult liver, and the enzyme specific activities in purified mitochondria from foetal liver were one-half to one-eighth of those in mitochondria from adult liver. The cardiolipin content of liver homogenates increased approximately twofold during the development period, but there was no significant change in the cardiolipin content of purified mitochondria. It is concluded that cell mitochondrial content approximately doubles in the immediate postnatal period. There was no evidence for an increase in the relative amount of cristae protein in mitochondria during this period to account for increases in mitochondrial enzyme specific activity, since cardiolipin and cytochrome concentrations remained unchanged and electron micrographs revealed no differences. The cause of the lower respiratory-enzyme specific activity in foetal liver mitochondria is unclear. Qualitative differences in respiratory units in foetal and mature animals are suggested. ImagesPLATE 1PLATE 2 PMID:4330092

  10. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes.

    PubMed

    Pei, Ying; Reins, Rose Y; McDermott, Alison M

    2006-11-01

    Transparency is essential for normal corneal function. Recent studies suggest that corneal cells express high levels of so-called corneal crystallins, such as aldehyde dehydrogenase (ALDH) and transketolase (TKT) that contribute to maintaining cellular transparency. Stromal injury leads to the appearance of repair phenotype keratocytes, the corneal fibroblast and myofibroblast. Previous studies on keratocytes from species such as bovine and rabbit indicate that the transformation from the normal to repair phenotype is accompanied by a loss of corneal crystallin expression, which may be associated with loss of cellular transparency. Here we investigated if a similar loss occurs with human keratocyte repair phenotypes. Human corneal epithelial cells were collected by scraping and keratocytes were isolated by collagenase digestion from cadaveric corneas. The cells were either processed immediately (freshly isolated keratocytes) or were cultured in the presence of 10% fetal bovine serum or transforming growth factor-beta to induce transformation to the corneal fibroblast and myofibroblast phenotypes, respectively. RT-PCR, western blotting and immunolabeling were used to detect mRNA and protein expression of ALDH isozymes and TKT. ALDH enzyme activity was also quantitated and immunolabeling was performed to determine the expression of ALDH3A1 in human corneal tissue sections from normal and diseased corneas. Human corneal keratocytes isolated from three donors expressed ALDH1A1 and ALDH3A1 mRNA, and one donor also expressed ALDH2 and TKT. Corneal epithelial cells expressed ALDH1A1, ALDH2, ALDH3A1 and TKT. Compared to normal keratocytes, corneal fibroblast expression of ALDH3A1 mRNA was reduced by 27% (n=5). ALDH3A1 protein expression as detected by western blotting was markedly reduced in passage zero fibroblasts and undetectable in higher passages (n=3). TKT protein expression was reduced in fibroblasts compared to keratocytes (n=2). ALDH3A1 enzyme activity was not

  11. Developmental transitions in the myosin heavy chain phenotype of human respiratory muscle.

    PubMed

    Lloyd, J S; Brozanski, B S; Daood, M; Watchko, J F

    1996-01-01

    We studied the expression of myosin heavy chain (MHC) isoforms in the costal diaphragm (DIA) and the genioglossus (GG) muscles from 16 to 42 weeks gestation in the human using Western blotting techniques. Embryonic/neonatal MHC (MHCemb/neo) was the predominant isoform expressed in the DIA and GG at 16-24 weeks gestation. Subsequently, MHCemb/neo expression declined and the expression of MHCslow and MHC2A increased. At term, the DIA MHC phenotype was a composite of MHCemb/neo (15% of the total MHC complement), MHCslow (32%), MHC2A (47%), and MHC2B (6%); whereas, the GG was largely comprised of MHC2A (74%). We conclude that human DIA and GG demonstrate temporally dependent changes in MHC expression during gestation- and muscle-specific MHC phenotypes as they approach term.

  12. Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis.

    PubMed

    Barbour, Elie K; Hajj, Zahi G; Hamadeh, Shadi; Shaib, Houssam A; Farran, Mohamad T; Araj, George; Faroon, Obaid; Barbour, Kamil E; Jirjis, Faris; Azhar, Esam; Kumosani, Taha; Harakeh, Steve

    2012-10-01

    The objective of this work is to compare the phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. The bacterial examination of 50 livers of individual broilers, marketed by four major outlets, revealed a high recovery of P. mirabilis (66%), and a low recovery frequency of Salmonella spp. (4%), Serratia odorifera (2%), Citrobacter brakii (2%), and Providencia stuartii (2%). The phenotypic biochemical characterization of the recovered 33 chicken isolates of P. mirabilis were compared to 30 human isolates (23 urinary and six respiratory isolates). The comparison revealed significant differences in the presence of gelatinase enzyme (100% presence in chicken isolates versus 91.3 and 83.3% presence in human urinary and respiratory isolates, respectively, P,0.05). The H(2)S production occurred in 100% of chicken isolates versus 95.6 and 66.7% presence in human urinary and respiratory isolates, respectively, P,0.05). The other 17 biochemical characteristics did not differ significantly among the three groups of isolates (P.0.05). Two virulence genes, the mrpA and FliL, were having a typical 100% presence in randomly selected isolates of P. mirabilis recovered from chicken livers (N510) versus isolates recovered from urinary (N55) and respiratory specimens of humans (N55) (P.0.05). The average percentage similarity of mrpA gene nucleotide sequence of poultry isolates to human urinary and respiratory isolates was 93.2 and 97.5-%, respectively. The high similarity in phenotypic characteristics, associated with typical frequency of presence of two virulence genes, and high similarity in sequences of mrpA gene among poultry versus human P. mirabilis isolates justifies future investigations targeting the evaluation of adaptable pathogenicity of avian Proteus mirabilis isolates to mammalian hosts.

  13. Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis

    PubMed Central

    Barbour, Elie K; Hajj, Zahi G; Hamadeh, Shadi; Shaib, Houssam A; Farran, Mohamad T; Araj, George; Faroon, Obaid; Barbour, Kamil E; Jirjis, Faris; Azhar, Esam; Kumosani, Taha; Harakeh, Steve

    2012-01-01

    The objective of this work is to compare the phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. The bacterial examination of 50 livers of individual broilers, marketed by four major outlets, revealed a high recovery of P. mirabilis (66%), and a low recovery frequency of Salmonella spp. (4%), Serratia odorifera (2%), Citrobacter brakii (2%), and Providencia stuartii (2%). The phenotypic biochemical characterization of the recovered 33 chicken isolates of P. mirabilis were compared to 30 human isolates (23 urinary and six respiratory isolates). The comparison revealed significant differences in the presence of gelatinase enzyme (100% presence in chicken isolates versus 91.3 and 83.3% presence in human urinary and respiratory isolates, respectively, P<0.05). The H2S production occurred in 100% of chicken isolates versus 95.6 and 66.7% presence in human urinary and respiratory isolates, respectively, P<0.05). The other 17 biochemical characteristics did not differ significantly among the three groups of isolates (P>0.05). Two virulence genes, the mrpA and FliL, were having a typical 100% presence in randomly selected isolates of P. mirabilis recovered from chicken livers (N = 10) versus isolates recovered from urinary (N = 5) and respiratory specimens of humans (N = 5) (P>0.05). The average percentage similarity of mrpA gene nucleotide sequence of poultry isolates to human urinary and respiratory isolates was 93.2 and 97.5-%, respectively. The high similarity in phenotypic characteristics, associated with typical frequency of presence of two virulence genes, and high similarity in sequences of mrpA gene among poultry versus human P. mirabilis isolates justifies future investigations targeting the evaluation of adaptable pathogenicity of avian Proteus mirabilis isolates to mammalian hosts. PMID:23182140

  14. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

    PubMed Central

    Benraiss, Abdellatif; Wang, Su; Herrlinger, Stephanie; Li, Xiaojie; Chandler-Militello, Devin; Mauceri, Joseph; Burm, Hayley B.; Toner, Michael; Osipovitch, Mikhail; Jim Xu, Qiwu; Ding, Fengfei; Wang, Fushun; Kang, Ning; Kang, Jian; Curtin, Paul C.; Brunner, Daniela; Windrem, Martha S.; Munoz-Sanjuan, Ignacio; Nedergaard, Maiken; Goldman, Steven A.

    2016-01-01

    The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells (hGPCs), derived from either human embryonic stem cells or mHTT-transduced fetal hGPCs. Here we show that mHTT glia can impart disease phenotype to normal mice, since mice engrafted intrastriatally with mHTT hGPCs exhibit worse motor performance than controls, and striatal neurons in mHTT glial chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends survival in R6/2 HD mice. These observations suggest a causal role for glia in HD, and further suggest a cell-based strategy for disease amelioration in this disorder. PMID:27273432

  15. Genotypic and phenotypic diversity of the noncapsulated Haemophilus influenzae: adaptation and pathogenesis in the human airways.

    PubMed

    Garmendia, Junkal; Martí-Lliteras, Pau; Moleres, Javier; Puig, Carmen; Bengoechea, José A

    2012-12-01

    The human respiratory tract contains a highly adapted microbiota including commensal and opportunistic pathogens. Noncapsulated or nontypable Haemophilus influenzae (NTHi) is a human-restricted member of the normal airway microbiota in healthy carriers and an opportunistic pathogen in immunocompromised individuals. The duality of NTHi as a colonizer and as a symptomatic infectious agent is closely related to its adaptation to the host, which in turn greatly relies on the genetic plasticity of the bacterium and is facilitated by its condition as a natural competent. The variable genotype of NTHi accounts for its heterogeneous gene expression and variable phenotype, leading to differential host-pathogen interplay among isolates. Here we review our current knowledge of NTHi diversity in terms of genotype, gene expression, antigenic variation, and the phenotypes associated with colonization and pathogenesis. The potential benefits of NTHi diversity studies discussed herein include the unraveling of pathogenicity clues, the generation of tools to predict virulence from genomic data, and the exploitation of a unique natural system for the continuous monitoring of long-term bacterial evolution in human airways exposed to noxious agents. Finally, we highlight the challenge of monitoring both the pathogen and the host in longitudinal studies, and of applying comparative genomics to clarify the meaning of the vast NTHi genetic diversity and its translation to virulence phenotypes.

  16. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee.

    PubMed

    Advani, Alexander S; Chen, Annie Y; Babbitt, Courtney C

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors.

  17. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee

    PubMed Central

    Advani, Alexander S.; Chen, Annie Y.; Babbitt, Courtney C.

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. PMID:26971204

  18. Tissue Metabonomic Phenotyping for Diagnosis and Prognosis of Human Colorectal Cancer

    PubMed Central

    Tian, Yuan; Xu, Tangpeng; Huang, Jia; Zhang, Limin; Xu, Shan; Xiong, Bin; Wang, Yulan; Tang, Huiru

    2016-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide and prognosis based on the conventional histological grading method for CRC remains poor. To better the situation, we analyzed the metabonomic signatures of 50 human CRC tissues and their adjacent non-involved tissues (ANIT) using high-resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy together with the fatty acid compositions of these tissues using GC-FID/MS. We showed that tissue metabolic phenotypes not only discriminated CRC tissues from ANIT, but also distinguished low-grade tumor tissues (stages I-II) from the high-grade ones (stages III-IV) with high sensitivity and specificity in both cases. Metabonomic phenotypes of CRC tissues differed significantly from that of ANIT in energy metabolism, membrane biosynthesis and degradations, osmotic regulations together with the metabolism of proteins and nucleotides. Amongst all CRC tissues, the stage I tumors exhibited largest differentiations from ANIT. The combination of the differentiating metabolites showed outstanding collective power for differentiating cancer from ANIT and for distinguishing CRC tissues at different stages. These findings revealed details in the typical metabonomic phenotypes associated with CRC tissues nondestructively and demonstrated tissue metabonomic phenotyping as an important molecular pathology tool for diagnosis and prognosis of cancerous solid tumors. PMID:26876567

  19. Tissue Metabonomic Phenotyping for Diagnosis and Prognosis of Human Colorectal Cancer.

    PubMed

    Tian, Yuan; Xu, Tangpeng; Huang, Jia; Zhang, Limin; Xu, Shan; Xiong, Bin; Wang, Yulan; Tang, Huiru

    2016-02-15

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide and prognosis based on the conventional histological grading method for CRC remains poor. To better the situation, we analyzed the metabonomic signatures of 50 human CRC tissues and their adjacent non-involved tissues (ANIT) using high-resolution magic-angle spinning (HRMAS) (1)H NMR spectroscopy together with the fatty acid compositions of these tissues using GC-FID/MS. We showed that tissue metabolic phenotypes not only discriminated CRC tissues from ANIT, but also distinguished low-grade tumor tissues (stages I-II) from the high-grade ones (stages III-IV) with high sensitivity and specificity in both cases. Metabonomic phenotypes of CRC tissues differed significantly from that of ANIT in energy metabolism, membrane biosynthesis and degradations, osmotic regulations together with the metabolism of proteins and nucleotides. Amongst all CRC tissues, the stage I tumors exhibited largest differentiations from ANIT. The combination of the differentiating metabolites showed outstanding collective power for differentiating cancer from ANIT and for distinguishing CRC tissues at different stages. These findings revealed details in the typical metabonomic phenotypes associated with CRC tissues nondestructively and demonstrated tissue metabonomic phenotyping as an important molecular pathology tool for diagnosis and prognosis of cancerous solid tumors.

  20. Urban particle-induced apoptosis and phenotype shifts in human alveolar macrophages.

    PubMed Central

    Holian, A; Hamilton, R F; Morandi, M T; Brown, S D; Li, L

    1998-01-01

    Epidemiological studies report a small but positive association between short-term increases in airborne particulate matter and small increases in morbidity and mortality from respiratory and cardiovascular disease in urban areas. However, the lack of a mechanistic explanation to link particle exposure and human health effects makes it difficult to validate the human health effects. The present study tested the hypothesis that urban particles could cause apoptosis of human alveolar macrophages(AM) and a shift of their phenotypes to a higher immune active state, which would provide a mechanism to explain an inflammatory response. Freshly isolated human AM were incubated for 24 hr with urban particles (#1648 and #1649), Mount Saint Helen's ash (MSH), and residual oil fly ash (ROFA).Cell viability was assessed by trypan blue exclusion and apoptosis was demonstrated by morphology, cell death ELISA, and DNA ladder formation. Additionally, AM were characterized according to RFD1(+) (immune stimulatory macrophages) and RFD1(+)7(+) (suppressor macrophages) phenotypes by flow cytometry. ROFA particles caused AM necrosis at concentrations as low as 10 microg/ml, urban particles had no effect except at 200 microg/ml, and MSH had no effect at 200 microg/ml. ROFA (25 microg/ml) and particles #1648 or #1649 (100 microg/ml) caused apoptosis of AM by all three criteria, but 200 microg/ml MSH had no effect. Finally, 25 microg/ml ROFA and 100 microg/ml particles #1648 or #1649 up regulated the expression of the RFD1(+) AM phenotype, while only ROFA decreased the RFD1(+)7(+) phenotype. Consequently, ROFA and urban particles can induce apoptosis of human AM and increase the ratio of AM phenotypes toward a higher immune active state (i.e., increased RFD1(+):RFD1(+)7(+) ratio). Ifurban particles cause similar changes in vivo, this could result in lung inflammation and possible increased pulmonary and cardiovascular disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID

  1. Human Peripheral Clocks: Applications for Studying Circadian Phenotypes in Physiology and Pathophysiology

    PubMed Central

    Saini, Camille; Brown, Steven A.; Dibner, Charna

    2015-01-01

    Most light-sensitive organisms on earth have acquired an internal system of circadian clocks allowing the anticipation of light or darkness. In humans, the circadian system governs nearly all aspects of physiology and behavior. Circadian phenotypes, including chronotype, vary dramatically among individuals and over individual lifespan. Recent studies have revealed that the characteristics of human skin fibroblast clocks correlate with donor chronotype. Given the complexity of circadian phenotype assessment in humans, the opportunity to study oscillator properties by using cultured primary cells has the potential to uncover molecular details difficult to assess directly in humans. Since altered properties of the circadian oscillator have been associated with many diseases including metabolic disorders and cancer, clock characteristics assessed in additional primary cell types using similar technologies might represent an important tool for exploring the connection between chronotype and disease, and for diagnostic purposes. Here, we review implications of this approach for gathering insights into human circadian rhythms and their function in health and disease. PMID:26029154

  2. Foetal alcohol syndrome: a cephalometric analysis of patients and controls.

    PubMed

    Naidoo, Sudeshni; Harris, Angela; Swanevelder, Sonja; Lombard, Carl

    2006-06-01

    Foetal alcohol syndrome (FAS) consists of multi-system abnormalities and is caused by the excessive intake of alcohol during pregnancy. The teratogenic effect of alcohol on the human foetus has now been established beyond reasonable doubt and FAS is the most important human teratogenic condition known today. The purpose of this study was to analyse the craniofacial parameters of children with FAS and compare them with matched controls. Ninety children diagnosed with FAS (45 males, 45 females) and 90 controls were matched for age, gender, and social class. The mean age of the FAS children was 8.9 years with the controls slightly older at 9.1 years. This age difference was not significant (P = 0.34). A standard lateral cephalometric radiograph of each subject was taken. The radiographs were digitized for 20 linear and 17 angular measurements. These 37 variables were formulated to assess the size, shape, and relative position of three craniofacial complexes: (1) the cranial base, (2) midface, and (3) mandible. In addition, nine variables were computed to compare the soft tissue profiles. The study showed that measurements related to face height and mandibular size appear to be the most important features when distinguishing FAS children. Overall, the FAS children in the present study presented with vertically and horizontally underdeveloped maxillae, together with features of long face syndrome with large gonial angles and a short ramus in relation to total face height. There was also a tendency for the development of an anterior open bite, which appears to be compensated for by an increase in the vertical dimension of the anterior alveolar process to bring the incisor teeth into occlusion. The latter adaptation occurred mainly in the mandible.

  3. The human gene map for performance and health-related fitness phenotypes: The 2006-2007 update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses...

  4. Enteroaggregative Escherichia coli from humans and animals differ in major phenotypical traits and virulence genes.

    PubMed

    Uber, Ana Paula; Trabulsi, Luiz R; Irino, Kinue; Beutin, Lothar; Ghilardi, Angela C R; Gomes, Tânia A T; Liberatore, Ana Maria A; de Castro, Antônio F P; Elias, Waldir P

    2006-03-01

    Enteroaggregative Escherichia coli (EAEC) is characterized by the expression of the aggregative adherence pattern to cultured epithelial cells. In this study, we determined the phenotypic and genotypic relationships among 86 EAEC strains of human and animal (calves, piglets and horses) feces. Serotypes and the presence of EAEC virulence markers were determined, and these results were associated with ribotyping. Strains harboring aggR (typical EAEC) of human origin were found carrying several of the searched markers, while atypical EAEC harbored none or a few markers. The strains of animal origin were classified as atypical EAEC (strains lacking aggR) and harbored only irp2 or shf. Strains from humans and animals belonged to several different serotypes, although none of them prevailed. Sixteen ribotypes were determined, and there was no association with virulence genes profiles or serotypes. Relationship was not found among the strains of this study, and the assessed animals may not represent a reservoir of human pathogenic typical EAEC.

  5. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes.

    PubMed

    Song, Ning; Kou, Liang; Lu, Xiao-Wen; Sugawara, Atsunori; Shimizu, Yutaka; Wu, Min-Ke; Du, Li; Wang, Hang; Sato, Soh; Shen, Jie-Fei

    2015-02-13

    Derived from mature adipocytes, dedifferentiated fat (DFAT) cells represent a special group of multipotent cells. However, their phenotype and cellular nature remain unclear. Our study found that human DFAT cells adopted perivascular characteristics and behaviors. Flow cytometry and immunofluorescent staining revealed that human DFAT cells positively expressed markers highly related to perivascular cell lineages, such as CD140b, NG2 and desmin, but were negative for common endothelial markers, including CD31, CD34, and CD309. Furthermore, DFAT cells displayed vascular network formation ability in Matrigel, and they noticeably promoted and stabilized the vessel structures formed by human umbilical vascular endothelial cells (HUVECs) in vitro. These results provide novel evidence on the pericyte nature of human DFAT cells, further supporting the recent model for the perivascular origin of adult stem cells, in which tissue-specific progenitor cells in mesenchymal tissues associate with blood vessels, exhibiting perivascular characteristics and functions.

  6. Insights into genotype-phenotype correlation in pachyonychia congenita from the human intermediate filament mutation database.

    PubMed

    McLean, W H Irwin; Smith, Frances J D; Cassidy, Andrew J

    2005-10-01

    Keratins are the intermediate filament proteins specifically expressed by epithelial cells. The Human Genome Project has uncovered a total of 54 functional keratin genes that are differentially expressed in specific epithelial structures of the body, many of which involve the epidermis and its appendages. Pachyonychia congenita (PC) is a group of autosomal dominant genodermatoses affecting the nails, thick skin and other ectodermal structures, according to specific sub-type. The major clinical variants of the disorder (PC-1 and PC-2) are known to be caused by dominant-negative mutations in one of four differentiation-specific keratins: K6a, K6b, K16, and K17. A total of 20 human keratin genes are currently linked to single-gene disorders or are predisposing factors in complex traits. In addition, a further six intermediate filament genes have been linked to other non-epithelial genetic disorders. We have established a comprehensive mutation database that catalogs all published independent occurrences of intermediate filament mutations (http://www.interfil.org), with details of phenotypes, published papers, patient support groups and other information. Here, we review the genotype-phenotype trends emerging from the spectrum of mutations in these genes and apply these correlations to make predictions about PC phenotypes based on the site of mutation and keratin pair involved.

  7. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    PubMed Central

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H.; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R.; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E.; Kayser, Manfred

    2017-01-01

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing. PMID:28240252

  8. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour.

    PubMed

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E; Kayser, Manfred

    2017-02-27

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.

  9. Le syndrome d’alcoolisme foetal

    PubMed Central

    2002-01-01

    L’alcool est un tératogène physique et comportemental. Le syndrome d’alcoolisme foetal (SAF) est un trouble courant mais encore sous-diagnostiqué découlant de la consommation d’alcool par la mère pendant la grossesse. Bien qu’il puisse être prévenu, le SAF est également invalidant. Même si le SAF est présent dans tous les groupes socioéconomiques du Canada, sa prévalence est élevée dans certaines communautés inuites et des Premières nations du Canada. Le présent énoncé porte sur la prévention, le diagnostic, le dépistage précoce et la prise en charge du SAF par les professionnels de la santé. La prévention du SAF doit s’effectuer à deux échelons. La prévention primaire consiste à éliminer le SAF par une formation en classe ou dans la collectivité et à inciter les femmes à éviter de consommer de l’alcool avant la conception et pendant la grossesse. La prévention secondaire consiste à repérer les femmes qui boivent pendant leur grossesse et à réduire leur consommation. Le présent énoncé décrit plusieurs stratégies de dépistage, dont la stratégie T-ACE (tolérance-agacement, réduction, éveil). Les dispensateurs de soins devraient recommander l’abstinence dès la première visite prénatale. Un envoi rapide en consultation en vue de traiter l’alcoolisme est recommandé pour les femmes enceintes incapables d’arrêter de boire. Le présent énoncé décrit le diagnostic de SAF, de SAF partiel ou atypique, d’anomalies congénitales et de troubles neurodéveloppementaux reliés à l’alcool. En cas d’exposition à l’alcool in utero, un diagnostic de SAF devrait être envisagé en présence d’un retard de croissance courant ou antérieur, de certaines anomalies faciales touchant la lèvre supérieure et les yeux et d’anomalies neurodéveloppementales. Ces caractéristiques sont mieux quantifiées au moyen d’une méthode diagnostique à quatre chiffres. Des stratégies de dépistage précoce des

  10. Phenotypic and genotypic profile of human tympanic membrane derived cultured cells.

    PubMed

    Redmond, Sharon L; Levin, Brett; Heel, Kathryn A; Atlas, Marcus D; Marano, Robert J

    2011-02-01

    The human tympanic membrane (hTM), known more commonly as the eardrum, is a thin, multi-layered membrane that is unique in the body as it is suspended in air. When perforated, the hTM's primary function of sound-pressure transmission is compromised. For the purposes of TM reconstruction, we investigated the phenotype and genotype of cultured primary cells derived from hTM tissue explants, compared to epithelial (HaCaT cells) and mesenchymal (human dermal fibroblasts (HDF)) reference cells. Epithelium-specific ets-1 (ESE-1), E-cadherin, keratinocyte growth factor-1 (KGF-1/FGF-7), keratinocyte growth factor-2 (KGF-2/FGF10), fibroblast growth factor receptor 1 (FGFR1), variants of fibroblast growth factor receptor 2 (FGFR2), fibroblast surface protein (FSP), and vimentin proteins were used to assess the phenotypes of all cultured cells. Wholemount and paraffin-embedded hTM tissues were stained with ESE-1 and E-cadherin proteins to establish normal epithelial-specific expression patterns within the epithelial layers. Immunofluorescent (IF) cell staining of hTM epithelial cells (hTMk) demonstrated co-expression of both epithelial- and mesenchymal-specific proteins. Flow cytometry (FCM) analysis further demonstrated co-expression of these epithelial and mesenchymal-specific proteins, indicating the subcultured hTMk cells possessed a transitional phenotype. Gene transcript analysis of hTMk cells by reverse transcriptase polymerase chain reaction (RT-PCR) revealed a down regulation of ESE-1, E-cadherin, FGFR2, variant 1 and variant 2 (FGFR2v1 and FGFR2v2) between low and high passages, and up-regulation of KGF-1, KGF-2, and FGFR1. All results indicate a gradual shift in cell phenotype of hTMk-derived cells from epithelial to mesenchymal.

  11. Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-β and elongated cell shape.

    PubMed

    Wang, Wenbo; Li, Jie; Wang, Keyun; Zhang, Zhiyong; Zhang, Wenjie; Zhou, Guangdong; Cao, Yilin; Ye, Mingliang; Zou, Hanfa; Liu, Wei

    2016-03-01

    Micropattern topography is widely investigated for its role in mediating stem cell differentiation, but remains unexplored for phenotype switch between mature cell types. This study investigated the potential of inducing tenogenic phenotype in human dermal fibroblasts (hDFs) by artificial elongation of cultured cells. Our results showed that a parallel microgrooved topography could convert spread hDFs into an elongated shape and induce a predominant tenogenic phenotype as the expression of biomarkers was significantly enhanced, such as scleraxis, tenomodulin, collagens I, III, VI, and decorin. It also enhanced the expression of transforming growth factor (TGF)-β1, but not α-smooth muscle actin. Elongated hDFs failed to induce other phenotypes, such as adiopogenic, chondrogenic, neurogenic, and myogenic lineages. By contrast, no tenogenic phenotype could be induced in elongated human chondrocytes, although chondrogenic phenotype was inhibited. Exogenous TGF-β1 could enhance the tenogenic phenotype in elongated hDFs at low dose (2 ng/ml), but promoted myofibroblast transdifferentiation of hDFs at high dose (10 ng/ml), regardless of cell shape. Elongated shape also resulted in decreased RhoA activity and increased Rho-associated protein kinase (ROCK) activity. Antagonizing TGF-β or inhibiting ROCK activity with Y27632 or depolymerizing actin with cytochalasin D could all significantly inhibit tenogenic phenotype induction, particularly in elongated hDFs. In conclusion, elongation of cultured dermal fibroblasts can induce a predominant tenogenic phenotype likely via synergistic effect of TGF-β and cytoskeletal signaling.

  12. Blue eyes in lemurs and humans: same phenotype, different genetic mechanism.

    PubMed

    Bradley, Brenda J; Pedersen, Anja; Mundy, Nicholas I

    2009-06-01

    Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding to and flanking the human eye-color-associated region in these lemurs, as well as other primates (human, chimpanzee, orangutan, macaque, ring-tailed lemur, mouse lemur). Aligned sequences indicated that this region is strongly conserved in both Eulemur macaco subspecies as well as the other primates (except blue-eyed humans). Therefore, it is unlikely that this regulatory segment plays a major role in eye color differences among lemurs as it does in humans. Although convergent phenotypes can sometimes come about via the same or similar genetic changes occurring independently, this does not seem to be the case here, as we have shown that the genetic basis of blue eyes in lemurs differs from that of humans.

  13. Shaping the Future for Children with Foetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Blackburn, Carolyn; Carpenter, Barry; Egerton, Jo

    2010-01-01

    This article describes work undertaken in connection with an ongoing research project funded by the Training and Development Agency for Schools. It illustrates the educational implications of foetal alcohol spectrum disorders (FASD) and its implications for the educational workforce in seeking to meet the needs of those children who are affected.

  14. Isolation, in vitro cultivation and characterisation of foetal liver cells.

    PubMed

    Wu, Yue; Shatapathy, Chetan C; Minger, Stephen L

    2009-01-01

    Hepatocyte transplantation has recently become an efficient clinical method in the treatment of patients with metabolic liver diseases. The shortage of donor cells remains an obstacle to treat more patients. Foetal liver tissues may therefore be useful as an alternative source of generating functional hepatocytes after in vitro culture and maturation.

  15. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells.

    PubMed

    Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R

    2013-01-01

    Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.

  16. Humans display a reduced set of consistent behavioral phenotypes in dyadic games.

    PubMed

    Poncela-Casasnovas, Julia; Gutiérrez-Roig, Mario; Gracia-Lázaro, Carlos; Vicens, Julian; Gómez-Gardeñes, Jesús; Perelló, Josep; Moreno, Yamir; Duch, Jordi; Sánchez, Angel

    2016-08-01

    Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals' behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals' actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications.

  17. Humans display a reduced set of consistent behavioral phenotypes in dyadic games

    PubMed Central

    Poncela-Casasnovas, Julia; Gutiérrez-Roig, Mario; Gracia-Lázaro, Carlos; Vicens, Julian; Gómez-Gardeñes, Jesús; Perelló, Josep; Moreno, Yamir; Duch, Jordi; Sánchez, Angel

    2016-01-01

    Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals’ behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals’ actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications. PMID:27532047

  18. UVA radiation impairs phenotypic and functional maturation of human dermal dendritic cells.

    PubMed

    Furio, Laetitia; Berthier-Vergnes, Odile; Ducarre, Blandine; Schmitt, Daniel; Peguet-Navarro, Josette

    2005-11-01

    There is now strong evidence that the ultraviolet A (UVA) part of the solar spectrum contributes to the development of skin cancers. Its effect on the skin immune system, however, has not been fully investigated. Here, we analyzed the effects of UVA radiation on dermal dendritic cells (DDC), which, in addition, provided further characterization of these cells. Dermal sheets were obtained from normal human skin and irradiated, or not, with UVA at 2 or 12 J per cm2. After a 2 d incubation, the phenotype of emigrant cells was analyzed by double immunostaining and flow cytometry. Results showed that migratory DDC were best characterized by CD1c expression and that only few cells co-expressed the Langerhans cell marker Langerin. Whereas the DC extracted from the dermis displayed an immature phenotype, emigrant DDC showed increased expression of HLA-DR and acquired co-stimulation and maturation markers. We showed here that UVA significantly decreased the number of viable emigrant DDC, a process related to increased apoptosis. Furthermore, UVA irradiation impaired the phenotypic and functional maturation of migrating DDC into potent antigen-presenting cells, in a concentration-dependent manner. The results provide further evidence that UVA are immunosuppressive and suggest an additional mechanism by which solar radiation impairs immune response.

  19. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction

    PubMed Central

    Thearle, Marie S.; Ibrahim, Mostafa; Hohenadel, Maximilian G.; Bogardus, Clifton; Krakoff, Jonathan; Votruba, Susanne B.

    2015-01-01

    Successful weight loss is variable for reasons not fully elucidated. Whether effective weight loss results from smaller reductions in energy expenditure during caloric restriction is not known. We analyzed whether obese individuals with a “thrifty” phenotype, that is, greater reductions in 24-h energy expenditure during fasting and smaller increases with overfeeding, lose less weight during caloric restriction than those with a “spendthrift” phenotype. During a weight-maintaining period, 24-h energy expenditure responses to fasting and 200% overfeeding were measured in a whole-room indirect calorimeter. Volunteers then underwent 6 weeks of 50% caloric restriction. We calculated the daily energy deficit (kilocalories per day) during caloric restriction, incorporating energy intake and waste, energy expenditure, and daily activity. We found that a smaller reduction in 24-h energy expenditure during fasting and a larger response to overfeeding predicted more weight loss over 6 weeks, even after accounting for age, sex, race, and baseline weight, as well as a greater rate of energy deficit accumulation. The success of dietary weight loss efforts is influenced by the energy expenditure response to caloric restriction. Greater decreases in energy expenditure during caloric restriction predict less weight loss, indicating the presence of thrifty and spendthrift phenotypes in obese humans. PMID:25964395

  20. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction.

    PubMed

    Reinhardt, Martin; Thearle, Marie S; Ibrahim, Mostafa; Hohenadel, Maximilian G; Bogardus, Clifton; Krakoff, Jonathan; Votruba, Susanne B

    2015-08-01

    Successful weight loss is variable for reasons not fully elucidated. Whether effective weight loss results from smaller reductions in energy expenditure during caloric restriction is not known. We analyzed whether obese individuals with a "thrifty" phenotype, that is, greater reductions in 24-h energy expenditure during fasting and smaller increases with overfeeding, lose less weight during caloric restriction than those with a "spendthrift" phenotype. During a weight-maintaining period, 24-h energy expenditure responses to fasting and 200% overfeeding were measured in a whole-room indirect calorimeter. Volunteers then underwent 6 weeks of 50% caloric restriction. We calculated the daily energy deficit (kilocalories per day) during caloric restriction, incorporating energy intake and waste, energy expenditure, and daily activity. We found that a smaller reduction in 24-h energy expenditure during fasting and a larger response to overfeeding predicted more weight loss over 6 weeks, even after accounting for age, sex, race, and baseline weight, as well as a greater rate of energy deficit accumulation. The success of dietary weight loss efforts is influenced by the energy expenditure response to caloric restriction. Greater decreases in energy expenditure during caloric restriction predict less weight loss, indicating the presence of thrifty and spendthrift phenotypes in obese humans.

  1. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells.

    PubMed

    Muñoz, Eva; Hernández-Morales, Miriam; Sobradillo, Diego; Rocher, Asunción; Núñez, Lucía; Villalobos, Carlos

    2013-11-01

    Vascular smooth muscle cells undergo phenotypic switches after damage which may contribute to proliferative disorders of the vessel wall. This process has been related to remodeling of Ca(2+) channels. We have tested the ability of cultured human coronary artery smooth muscle cells (hCASMCs) to return from a proliferative to a quiescent behavior and the contribution of intracellular Ca(2+) remodeling to the process. We found that cultured, early passage hCASMCs showed a high proliferation rate, sustained increases in cytosolic [Ca(2+)] in response to angiotensin II, residual voltage-operated Ca(2+) entry, increased Stim1 and enhanced store-operated currents. Non-steroidal anti-inflammatory drugs inhibited store-operated Ca(2+) entry and abolished cell proliferation in a mitochondria-dependent manner. After a few passages, hCASMCs turned to a quiescent phenotype characterized by lack of proliferation, oscillatory Ca(2+) response to angiotensin II, increased Ca(2+) store content, enhanced voltage-operated Ca(2+) entry and Cav1.2 expression, and decreases in Stim1, store-operated current and store-operated Ca(2+) entry. We conclude that proliferating hCASMCs return to quiescence and this switch is associated to a remodeling of Ca(2+) channels and their control by subcellular organelles, thus providing a window of opportunity for targeting phenotype-specific Ca(2+) channels involved in proliferation.

  2. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    PubMed

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns.

  3. Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Classification of Demodex mites has long depended on hosts and morphological characteristics. However, the fact that two species coexist in the same host and phenotype is easily influenced by environment causes difficulty and indeterminacy in traditional classification. Genotype, which directly reflects the molecular structure characteristics, is relatively stable. In this study, species identification of four phenotypes of human Demodex mites was conducted. Mites were morphologically classified into four phenotypes: long- and short-bodied Demodex folliculorum with finger-like terminus and Demodex brevis with finger- or cone-like terminus. The mitochondrial 16S ribosomal DNA (rDNA) fragment of individual mite was amplified, cloned, sequenced, and aligned. Sequence divergences, genetic distances, transition/transversion rates, and phylogenetic trees were analyzed. The results demonstrated that the 16S rDNA sequence of three phenotypes with finger-like terminus was 337 bp, and that of phenotype with cone-like terminus was 342 bp. The divergences, genetic distances, and transition/transversion rates among the three phenotypes with finger-like terminus were 0.0-2.7%, 0.000-0.029, and 5.0-7/0 (5/1-7/0), respectively, indicating an intraspecific variation. Yet, those between these three phenotypes and the one with cone-like terminus were 21.6-22.8%, 2.510-2.589, and 0.47-0.59 (22/47-27/46), respectively, suggesting an interspecific variation. The five phylogenetic trees showed that the three phenotypes with finger-like terminus clustered into one branch, while the phenotype with cone-like terminus clustered into another. In conclusion, terminus is a major morphological characteristic for the identification of human Demodex species. The three phenotypes with finger-like terminus belong to D. folliculorum, while the phenotype with cone-like terminus belongs to D. brevis. Molecular identification can verify and replenish morphological identification.

  4. Isolation, culture and phenotypic characterization of human sweat gland epithelial cells.

    PubMed

    Gao, Yunhe; Li, Meiying; Zhang, Xueyan; Bai, Tingting; Chi, Guanfan; Liu, Jin Yu; Li, Yulin

    2014-10-01

    Sweat gland epithelial cells (SGECs) have been identified as essential for the regeneration of sweat glands and for the construction of skin substitutes containing skin appendages. Consequently, the isolation, culture and phenotypic characterization of SGECs are of paramount importance. In the present study study, human sweat glands were isolated by pipetting under a phase contrast microscope following digestion with collagenase type I. Subsequently, a microscopic organ culture technique was used for the primary culture of human SGECs, and the culture conditions were modified in order to achieve optimal cell growth status. Primary SGECs were identified based on their expression of markers specific for sweat glands, including carcinoembryonic antigen (CEA), CK7, CK8, CK14, CK15, CK18 and CK19. We explored the possible presence of stem cells in human sweat glands by detecting their expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5). Primary SGECs achieved a good growth state when cultured under serum-free conditions. After one passage, the cells cultured in keratinocyte serum-free medium with 1% fetal bovine serum (FBS) still showed a prominent proliferative activity. Phenotypic analysis by immunofluorescence microscopy, reverse transcription-polymerase chain reaction (RT-PCR), and western blot analysis demonstrated the expression of sweat gland-specific markers, including CEA, CK7, CK8, CK14, CK15, CK18 and CK19. In addition, RT-PCR and immunochemistry detected the expression of LGR5. In comparison with traditional serum-containing conditions, serum-free culture provides the preferred culture conditions for human SGECs. LGR5 is a novel marker that identifies human sweat gland-derived stem cells.

  5. Chinese moral perspectives on abortion and foetal life: an historical account.

    PubMed

    Nie, Jing-Bao

    2002-10-01

    It is accepted wisdom that, at the present time as well as historically, the typical Chinese attitude toward abortion is very permissive or 'liberal'. It has been widely perceived that Chinese people usually do not consider abortion morally problematic and that they think a human life starts at birth. As part of a bigger research project on Chinese views and experiences of abortion, this article represents a revisionist historical account of Chinese moral perspectives on abortion and foetal life. By presenting Buddhist and Confucian views of abortion, traditional Chinese medical understandings of foetal life, the possible moral foundation of a 'conservative' Confucian position, and some historical features of abortion laws and policies in twentieth-century China, this paper shows that blanket assumptions that the Chinese view of abortion has always been permissive are historically unfounded. As in the present, there existed different and opposing views about abortion in history, and many Chinese, not only Buddhists but also Confucians, believed that deliberately terminating pregnancy is to destroy a human life which starts far earlier than at birth. The current dominant and official line on the subject does not necessarily accord with historical Chinese values and practices.

  6. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc.

  7. Resolvin D1 Polarizes Primary Human Macrophages toward a Proresolution Phenotype through GPR32.

    PubMed

    Schmid, Mattia; Gemperle, Claudio; Rimann, Nicole; Hersberger, Martin

    2016-04-15

    Resolvin D1 (RvD1) was shown to be a potent anti-inflammatory and proresolution lipid mediator in several animal models of inflammation, but its mechanism of action in humans is not clear. We show that the RvD1 receptor GPR32 is present on resting, proinflammatory M(LPS) and alternatively activated primary human M(IL-4) macrophages, whereas TGF-β and IL-6 reduce its membrane expression. Accordingly, stimulation of resting primary human macrophages with 10 nM RvD1 for 48 h maximally reduced the secretion of the proinflammatory cytokines IL-1β and IL-8; abolished chemotaxis to several chemoattractants like chemerin, fMLF, and MCP-1; and doubled the phagocytic activity of these macrophages toward microbial particles. In contrast, these functional changes were not accompanied by surface expression of markers specific for alternatively activated M(IL-4) macrophages. Similar proresolution effects of RvD1 were observed when proinflammatory M(LPS) macrophages were treated with RvD1. In addition, we show that these RvD1-mediated effects are GPR32 dependent because reduction of GPR32 expression by small interfering RNA, TGF-β, and IL-6 treatment ablated these proresolution effects in primary human macrophages. Taken together, our results indicate that in humans RvD1 triggers GPR32 to polarize and repolarize macrophages toward a proresolution phenotype, supporting the role of this mediator in the resolution of inflammation in humans.

  8. Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2

    PubMed Central

    Yang, Shenglan; Gong, Wei; Wang, Yan; Cianflone, Katherine; Tang, Jiarong; Wang, Dao Wen

    2012-01-01

    Background MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3′ untranslated region (3′UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. Methods and Results Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3′UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. Conclusions Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes. PMID:22761738

  9. Arsenic Exposure Transforms Human Epithelial Stem/Progenitor Cells into a Cancer Stem-like Phenotype

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2010-01-01

    Background Inorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available. Methods We continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype. Results WPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired. Conclusions Arsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population. PMID:20056578

  10. Early influences on human energy regulation: thrifty genotypes and thrifty phenotypes.

    PubMed

    Prentice, Andrew M

    2005-12-15

    Early influences on human ingestive behavior and other aspects of energy homeostasis can be defined according to two very different time scales: the evolutionary time frame responsible for selection of behavioral and metabolic traits embedded within the genome; and the life-course time frame responsible for setting the phenotype. Evolutionary influences: Famine has been a constant threat to human survival leading to the selection of thrifty genes. Thriftiness can take many forms: metabolic (an 'energy-sparing' super-efficient metabolism); adipogenic (a propensity to rapid fat gain); physiologic (an ability to switch off non-essential processes); gluttony (a tendency to gorge when food is available); sloth (a tendency to conserve energy through inactivity); or behavioral (hoarding, meanness, theft, etc). Life-course influences: The nutritional environment of the early embryo can have a major impact on its survival, and its immediate and later physiology. Subsequently, the fetus is sensitive to its nutrient supply that in turn is affected by maternal fuel supply and by the constraints of the utero-placental unit. Adaptive plasticity also continues through infancy. Ingestive behavior in terms of appetite and satiety could theoretically be affected by some of these metabolic adaptations. This paper will describe the key elements of the thrifty genotype and phenotype and review the evidence base relating these early effects to differences in ingestive behavior.

  11. Human Tuberculosis II. M. tuberculosis Mechanisms of Genetic and Phenotypic Resistance to Anti-Tuberculosis Drugs.

    PubMed

    Sgaragli, Giampietro; Frosini, Maria

    2016-01-01

    The great progress of knowledge of both M. tuberculosis physiology and how human host and bacilli interact has provided fertile ground for improving diagnosis and cure of TB infection. Once M. tuberculosis has infected humans, it elaborates strategies for evading the risk to killing by the cells of the host immune system and by the anti-tuberculosis (anti-TB) agents employed to cure infection. These strategies give rise to a bacterial multidrug resistance (MDR) status. This stems firstly from genetic mutations targeting a constellation of drug-processing mechanisms that still need full identification, as drug efflux pumps and drug activating/ inactivating enzymes (genetic resistance). Secondly, from the bacterial adaptation to stressful environmental conditions by adopting a temporary dormancy state lasting for decades and characterized by indifference to anti-TB drugs (phenotypic resistance or tolerance). The clarification of the strategies elaborated for surviving by M. tuberculosis has brought to the identification in the last few years of a number of mycobacterial molecular targets worth to exploitation for the development of novel and powerful anti-TB drugs. These targets include drug-efflux pump systems, considered partly responsible for genetic multi-drug resistance, and several enzymes and pump systems, as well, that sustain the metabolic adaptations of M. tuberculosis in the host and give rise to its phenotypic drug resistance.

  12. A phenotypic in vitro model for the main determinants of human whole heart function

    PubMed Central

    Stancescu, Maria; Molnar, Peter; McAleer, Christopher W.; McLamb, William; Long, Christopher J.; Oleaga, Carlota; Prot, Jean-Matthieu; Hickman, James J.

    2015-01-01

    This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model featured a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems. PMID:25978005

  13. A phenotypic in vitro model for the main determinants of human whole heart function.

    PubMed

    Stancescu, Maria; Molnar, Peter; McAleer, Christopher W; McLamb, William; Long, Christopher J; Oleaga, Carlota; Prot, Jean-Matthieu; Hickman, James J

    2015-08-01

    This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.

  14. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    SciTech Connect

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Krynetskiy, Evgeny

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  15. Phenotypic and molecular characterization of Staphylococcus aureus strains of veterinary, dairy and human origin.

    PubMed

    Gonano, M; Hein, I; Zangerl, P; Rammelmayr, A; Wagner, M

    2009-05-01

    Austrian veterinary (n=91), dairy (n=86), and human strains (n=48) of Staphylococcus aureus were tested for various phenotypic properties including clumping factor, egg-yolk reaction, production of thermonuclease and susceptibility to 14 antibiotics. In addition the expression of enterotoxins (A-E), and the presence of enterotoxin genes sea to sej and tst was determined. Significant differences in antimicrobial susceptibility were found with 84.6% of veterinary, 57.0% of dairy, and 20.8% of human strains susceptible to all antibiotics tested (P<0.0005). More human strains produced enterotoxins (41.7%) than veterinary (9.9%) and dairy strains (12.6%) while 40.7% and 38.5% of veterinary, 47.7% and 52.3% of dairy, and 77.1% and 87.5% of human strains were se- and tst-positive, respectively. AFLP analysis revealed nine clusters with over- or under-representation of strains with specific characteristics. Strains clustered according to origin (veterinary, dairy, and human) and/or presence of toxin genes and antimicrobial resistance.

  16. The phenotype of human placental macrophages and its variation with gestational age.

    PubMed Central

    Goldstein, J.; Braverman, M.; Salafia, C.; Buckley, P.

    1988-01-01

    The antigenic phenotype of human villous stromal macrophages (M phi s) from first and third trimester placentas was analyzed using a large number of monoclonal antibodies (MAbs) to monocyte (Mo)/M phi-associated cell membrane determinants. The purpose of this study was to investigate M phi phenotypic heterogeneity to create a database for the correlation of M phi phenotype with specific immunologic functions. The results showed that villous stromal mononuclear cells express many cell surface antigens found on Mo and M phi s and that they are morphologically diverse, ranging in appearance from classic Hofbauer cells to spindle-shaped cells with long cytoplasmic processes. Villous stromal M phi s were the numerically dominant cell type in this structure and exhibited some major phenotypic differences from M phi s in other tissues. Comparison of first- and third-trimester placentas revealed variation in antigen expression with increasing gestational age, in particular of class II major histocompatibility complex (MHC) determinants: HLA-DR and HLA-DP antigen density was low on first-trimester villous M phi s and much higher on third-trimester M phi s while HLA-DQ was undetectable in the first trimester but present on cells in third trimester placentas. The CD1 (T6) antigen, found on Langerhans (LH) cells and cortical thymocytes, was detected on villous M phi s by two thirds of the MAbs directed against different epitopes on this determinant. Furthermore, comparison with similar studies of lymphoid tissues showed that villous M phi s and dendritic cells share the expression of a number of other cell surface antigens. Finally, it was shown that M phi s in first- and third-trimester villi exhibit strong reactivity with MAbs (Leu 3a,b) to the CD4 antigen that serves as the receptor for the human immunodeficiency virus (HIV), suggesting that these cells may be a portal of entry or reservoir for this virus in the fetuses of pregnant, HIV+ women. Images Figure 1 Figure 1 PMID

  17. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages

    PubMed Central

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Background Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Methods Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. Results ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1

  18. Network Modules of the Cross-Species Genotype-Phenotype Map Reflect the Clinical Severity of Human Diseases

    PubMed Central

    Han, Seong Kyu; Kim, Inhae; Hwang, Jihye; Kim, Sanguk

    2015-01-01

    Recent advances in genome sequencing techniques have improved our understanding of the genotype-phenotype relationship between genetic variants and human diseases. However, genetic variations uncovered from patient populations do not provide enough information to understand the mechanisms underlying the progression and clinical severity of human diseases. Moreover, building a high-resolution genotype-phenotype map is difficult due to the diverse genetic backgrounds of the human population. We built a cross-species genotype-phenotype map to explain the clinical severity of human genetic diseases. We developed a data-integrative framework to investigate network modules composed of human diseases mapped with gene essentiality measured from a model organism. Essential and nonessential genes connect diseases of different types which form clusters in the human disease network. In a large patient population study, we found that disease classes enriched with essential genes tended to show a higher mortality rate than disease classes enriched with nonessential genes. Moreover, high disease mortality rates are explained by the multiple comorbid relationships and the high pleiotropy of disease genes found in the essential gene-enriched diseases. Our results reveal that the genotype-phenotype map of a model organism can facilitate the identification of human disease-gene associations and predict human disease progression. PMID:26301634

  19. RNAi prevents and reverses phenotypes induced by mutant human ataxin‐1

    PubMed Central

    Keiser, Megan S.; Monteys, Alejandro Mas; Corbau, Romuald; Gonzalez‐Alegre, Pedro

    2016-01-01

    Objective Spinocerebellar ataxia type 1 is an autosomal dominant fatal neurodegenerative disease caused by a polyglutamine expansion in the coding region of ATXN1. We showed previously that partial suppression of mutant ataxin‐1 (ATXN1) expression, using virally expressed RNAi triggers, could prevent disease symptoms in a transgenic mouse model and a knockin mouse model of the disease, using a single dose of virus. Here, we set out to test whether RNAi triggers targeting ATXN1 could not only prevent, but also reverse disease readouts when delivered after symptom onset. Methods We administered recombinant adeno‐associated virus (rAAV) expressing miS1, an artificial miRNA targeting human ATXN1 mRNA (rAAV.miS1), to a mouse model of spinocerebellar ataxia type 1 (SCA1; B05 mice). Viruses were delivered prior to or after symptom onset at multiple doses. Control B05 mice were treated with rAAVs expressing a control artificial miRNA, or with saline. Animal behavior, molecular phenotypes, neuropathology, and magnetic resonance spectroscopy were done on all groups, and data were compared to wild‐type littermates. Results We found that SCA1 phenotypes could be reversed by partial suppression of human mutant ATXN1 mRNA by rAAV.miS1 when delivered after symptom onset. We also identified the therapeutic range of rAAV.miS1 that could prevent or reverse disease readouts. Interpretation SCA1 disease may be reversible by RNAi therapy, and the doses required for advancing this therapy to humans are delineated. Ann Neurol 2016;80:754–765 PMID:27686464

  20. Optimizing human hepatocyte models for metabolic phenotype and function: effects of treatment with dimethyl sulfoxide (DMSO).

    PubMed

    Nikolaou, Nikolaos; Green, Charlotte J; Gunn, Pippa J; Hodson, Leanne; Tomlinson, Jeremy W

    2016-11-01

    Primary human hepatocytes are considered to be the "gold standard" cellular model for studying hepatic fatty acid and glucose metabolism; however, they come with limitations. Although the HepG2 cell line retains many of the primary hepatocyte metabolic functions they have a malignant origin and low rates of triglyceride secretion. The aim of this study was to investigate whether dimethyl sulfoxide supplementation in the media of HepG2 cells would enhance metabolic functionality leading to the development of an improved in vitro cell model that closely recapitulates primary human hepatocyte metabolism. HepG2 cells were cultured in media containing 1% dimethyl sulfoxide for 2, 4, 7, 14, and 21 days. Gene expression, protein levels, intracellular triglyceride, and media concentrations of triglyceride, urea, and 3-hydroxybutyrate concentrations were measured. Dimethyl sulfoxide treatment altered the expression of genes involved in lipid (FAS, ACC1, ACC2, DGAT1, DGAT2, SCD) and glucose (PEPCK, G6Pase) metabolism as well as liver functionality (albumin, alpha-1-antitrypsin, AFP). mRNA changes were paralleled by alterations at the protein level. DMSO treatment decreased intracellular triglyceride content and lactate production and increased triglyceride and 3-hydroxybutyrate concentrations in the media in a time-dependent manner. We have demonstrated that the addition of 1% dimethyl sulfoxide to culture media changes the metabolic phenotype of HepG2 cells toward a more primary human hepatocyte phenotype. This will enhance the currently available in vitro model systems for the study of hepatocyte biology related to pathological processes that contribute to disease and their response to specific therapeutic interventions.

  1. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride.

    PubMed Central

    Miller, A C; Blakely, W F; Livengood, D; Whittaker, T; Xu, J; Ejnik, J W; Hamilton, M M; Parlette, E; John, T S; Gerstenberg, H M; Hsu, H

    1998-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation based on measured intracellular and extracellular uranium levels, showed that few (0.0014%) cell nuclei were hit by alpha particles. We report the ability of DU-uranyl chloride to transform immortalized human osteoblastic cells (HOS) to the tumorigenic phenotype. DU-uranyl chloride-transformants are characterized by anchorage-independent growth, tumor formation in nude mice, expression of high levels of the k-ras oncogene, reduced production of the Rb tumor-suppressor protein, and elevated levels of sister chromatid exchanges per cell. DU-uranyl chloride treatment resulted in a 9.6 (+/- 2.8)-fold increase in transformation frequency compared to untreated cells. In comparison, nickel sulfate resulted in a 7.1 (+/- 2.1)-fold increase in transformation frequency. This is the first report showing that a DU compound caused human cell transformation to the neoplastic phenotype. Although additional studies are needed to determine if protracted DU exposure produces tumors in vivo, the implication from these in vitro results is that the risk of cancer induction from internalized DU exposure may be comparable to other biologically reactive and carcinogenic heavy-metal compounds (e.g., nickel). Images Figure 1 Figure 2 Figure 3 PMID:9681973

  2. Phenotypic analysis of circulating dendritic cells during the second half of human gestation.

    PubMed

    Holloway, Judith A; Thornton, Catherine A; Diaper, Norma D; Howe, David T; Warner, John O

    2009-03-01

    Dendritic cells (DCs) have been characterized as having an immature phenotype in infants when compared with adults; but it is unclear whether the phenotype or function of these populations changes during human intrauterine development. Three-colour flow cytometry was used to phenotype fetal/neonatal circulating DCs during the second half (>20-wk gestation) of pregnancy, (n = 34) and adults (n = 9). DCs were identified from peripheral blood mononuclear cells (PBMCs) or cord blood mononuclear cells (CBMCs) as staining brightly for HLA-DR but negative for T cell, B cell, monocyte, and NK cell lineage markers. The surface molecule of interest was detected in a third colour. During gestation CD34, a marker of immaturity was significantly higher, and CD4, a differentiation marker, was significantly lower than adult levels. The percentage of CD11c+ cells did not differ significantly at any age, although a trend to reduced intensity of expression at earlier stages of gestation was observed. Significantly fewer DCs expressed the IgG receptors CD32 and CD64 at all gestations. The percentage of HLA-DR+/lin- cells expressing CD40 was lowest at 20-23 wks and was always significantly lower on DCs from cord blood vs. adult blood. Similarly, the percentage of CD86+ and CD54+ DCs was significantly lower than adults throughout gestation. Thus, immaturity of cord blood DCs is likely to arise as a consequence of decreased ability to take up antigen (at least via IgG-mediated mechanisms) and reduced provision of co-stimulation.

  3. Basic fibroblast growth factor autocrine loop controls human osteosarcoma phenotyping and differentiation.

    PubMed Central

    Bodo, Maria; Lilli, Cinzia; Bellucci, Catia; Carinci, Paolo; Calvitti, Mario; Pezzetti, Furio; Stabellini, Giordano; Bellocchio, Silvia; Balducci, Chiara; Carinci, Francesco; Baroni, Tiziano

    2002-01-01

    BACKGROUND: We focused on the phenotype of non-mineralizing MG 63 and mineralizing TE 85 human osteosarcoma cells and investigated the role of bFGF in modulating their differentiative responses. Basic FGF expression and bFGF effects on osteocalcin, runt-related transcription factor-2 (RUNX2), matrix molecular production and bFGF receptors, were evaluated. MATERIALS AND METHODS: Osteocalcin and RUNX2 gene expression were studied by RT-PCR analysis. We evaluated cell proliferation by DNA content and performed differentiation studies on glycosaminoglican (GAG), collagen and proteoglican (PG) synthesis by using radiolabelled precursors and Northern blotting. BFGF receptors were quantified by bFGF receptor binding assay. RESULTS: Osteocalcin is expressed in MG63 and TE65. RUNX2 RNA is differentially spliced in the two cell lines. BFGF elicits the effects of differentially splicing RUNX2. Proliferation, GAG synthesis, bFGF and proteoglycan mRNA expression, high and low affinity bFGF receptors, were more marked in MG 63 and differently affected by bFGF. Procollagen expression and alkaline phosphatase activity were significantly reduced. BFGF increased TE 85 cell proliferation and reduced TE 85 procollagen and osteocalcin production. CONCLUSIONS: The different splice variants in RUNX2 gene in the two cell lines might be related to their different phenotypes. The less differentiated stage of MG63 could also be related to bFGF over-production and more bFGF receptors. The consequent increase in bFGF-bFGF receptor binding could explain the bFGF differentiative effects on MG 63. We suggest an autocrine role of bFGF endogenous release in controlling the different osteosarcoma phenotypes. PMID:12393937

  4. Effect of maternal iron deficiency anaemia on foetal outcome.

    PubMed

    Rusia, U; Madan, N; Agarwal, N; Sikka, M; Sood, S K

    1995-07-01

    One hundred and two pregnant women and their neonates were examined to evaluate the effect of maternal haemoglobin concentration (Hb. conc) and iron deficiency anaemia on the placental weight and the foetal outcome. Haematological and serum ferritin values were determined. It was observed that 34.3% of the pregnant women were anaemic. Maternal Hb conc. and serum ferritin showed a highly significant correlation (r = 0.40, p < 0.001) indicating that iron deficiency was the most important cause of anaemia amongst them. The maternal Hb conc. showed a significant correlation with placental weight (p < 0.05), birth weight (p < 0.01), Apgar score (p < 0.001) and birth asphyxia. Maternal serum ferritin also correlated positively with cord ferritin (p < 0.001). The study did not reveal any association between high Hb and adverse foetal outcome.

  5. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    SciTech Connect

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu . E-mail: xiguchen1516@yahoo.com.cn

    2007-06-15

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.

  6. Human spleen contains phenotypic subsets of macrophages and dendritic cells that occupy discrete microanatomic locations.

    PubMed Central

    Buckley, P. J.; Smith, M. R.; Braverman, M. F.; Dickson, S. A.

    1987-01-01

    Macrophages (M phi s) are an important component of the immune response and mediate numerous other functions. Phenotypic and functional subsets of circulating monocytes have been described, but few similar studies have analyzed M phi s in human tissues. By use of immunohistochemical techniques and a large number of monoclonal antibodies, the presence and distribution of phenotypic subpopulations of M phi s and dendritic cells in human spleen were assessed. The results of this study show that different subsets of M phi s and dendritic cells are present in the spleen and that some of these occupy discrete microanatomic locations. In the red pulp (RP) certain groups of antigens are expressed by different proportions of uniformly distributed M phi s in the cords. On the other hand, some antigens are present on M phi s that form clusters of variable size within the red pulp. M phi s in the splenic marginal zone (MZ) share some antigens with red pulp M phi s, but in addition express CR3, Mo-2, 61D3, and 63D3. These antigens are found on only a few RP M phi s. MZ cells expressing one antigen shared with RP M phi s (Leu-3a,b) and one present largely on the MZ cells (63D3) form clusters around small vessels; these structures resemble the so-called splenic ellipsoids that may play a role in the trapping of circulating antigens. Phagocytic M phi s (tingible body M phi s) of the white pulp follicular germinal centers were also shown to differ from RP and MZ cels with respect to the expression of the antigens detected by anti-FcR, Leu-M3, Mo-2, 25F9, and anti-CR3. The unique topographical and surface antigenic features of dendritic cells were confirmed by this study. Furthermore, these cells were found to share a number of antigens with RP, MZ, and white pulp M phi s, which suggests that they may be derived from a common progenitor. The presence of phenotypic subpopulations and variation in distribution among human splenic phagocytic cells and dendritic cells may be indicative

  7. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status.

    PubMed

    Mittag, Diana; Proietto, Anna I; Loudovaris, Thomas; Mannering, Stuart I; Vremec, David; Shortman, Ken; Wu, Li; Harrison, Leonard C

    2011-06-01

    Mouse dendritic cells (DC) have been extensively studied in various tissues, especially spleen, and they comprise subsets with distinct developmental origins, surface phenotypes, and functions. Considerably less is known about human DC due to their rarity in blood and inaccessibility of other human tissues. The study of DC in human blood has revealed four subsets distinct in phenotype and function. In this study, we describe four equivalent DC subsets in human spleen obtained from deceased organ donors. We identify three conventional DC subsets characterized by surface expression of CD1b/c, CD141, and CD16, and one plasmacytoid DC subset characterized by CD304 expression. Human DC subsets in spleen were very similar to those in human blood with respect to surface phenotype, TLR and transcription factor expression, capacity to stimulate T cells, cytokine secretion, and cross-presentation of exogenous Ag. However, organ donor health status, in particular treatment with corticosteroid methylprednisolone and brain death, may affect DC phenotype and function. DC T cell stimulatory capacity was reduced but DC were qualitatively unchanged in methylprednisolone-treated deceased organ donor spleen compared with healthy donor blood. Overall, our findings indicate that human blood DC closely resemble human spleen DC. Furthermore, we confirm parallels between human and mouse DC subsets in phenotype and function, but also identify differences in transcription factor and TLR expression as well as functional properties. In particular, the hallmark functions of mouse CD8α(+) DC subsets, that is, IL-12p70 secretion and cross-presentation, are not confined to the equivalent human CD141(+) DC but are shared by CD1b/c(+) and CD16(+) DC subsets.

  8. Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells

    PubMed Central

    Suzuki, Tetsuya; Yasui, Manabu

    2016-01-01

    Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS. PMID:27601585

  9. Morphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside

    SciTech Connect

    Ponzoni, M.; Lanciotti, M.; Melodia, A.; Casalaro, A.; Cornaglia-Ferraris, P. )

    1989-03-01

    The effects of cytosine-arabinoside (ARA-C) on the growth and phenotypic expression of a new human neuroblastoma (NB) cell line (GI-ME-N) have been extensively tested. Low doses of ARA-C allowing more than 90% cell viability induce morphological differentiation and growth inhibition. Differentiated cells were larger and flattened with elongated dendritic processes; such cells appeared within 48 hours after a dose of ARA-C as low as 0.1 {mu}g/ml. The new morphological aspect reached the maximum expression after 5-6 days of culture being independent from the addition of extra drug to the culture. A decrease in ({sup 3}H)thymidine incorporation was also observed within 24 hours and the cell growth was completely inhibited on the sixth day. Moreover, ARA-C strongly inhibited anchorage-independent growth in soft agar assay. Membrane immunofluorescence showed several dramatic changes in NB-specific antigen expression after 5 days of treatment with ARA-C. At the same time ARA-C also modulated cytoskeletal proteins and slightly increased catecholamine expression. These findings suggest that noncytotoxic doses of ARA-C do promote the differentiation of GI-ME-N neuroblastoma cells associated with reduced expression of the malignant phenotype.

  10. Human T helper type 1 dichotomy: origin, phenotype and biological activities

    PubMed Central

    Annunziato, Francesco; Cosmi, Lorenzo; Liotta, Francesco; Maggi, Enrico; Romagnani, Sergio

    2015-01-01

    The great variety of pathogens present in the environment has obliged the immune system to evolve different mechanisms for tailored and maximally protective responses. Initially, two major types of CD4+ T helper (Th) effector cells were identified, and named as type 1 (Th1) and type 2 (Th2) cells because of the different cytokines they produce. More recently, a third type of CD4+ Th effectors has been identified and named as Th17 cells. Th17 cells, however, have been found to exhibit high plasticity because they rapidly shift into the Th1 phenotype in the inflammatory sites. Therefore, in these sites there is usually a dichotomous mixture of classic and non-classic (Th17-derived) Th1 cells. In humans, non-classic Th1 cells express CD161, as well as the retinoic acid orphan receptor C, interleukin-17 receptor E (IL-17RE), IL-1RI, CCR6, and IL-4-induced gene 1 and Tob-1, which are all virtually absent from classic Th1 cells. The possibility to distinguish between these two cell subsets may allow the opportunity to better establish their respective pathogenic role in different chronic inflammatory disorders. In this review, we discuss the different origin, the distinctive phenotypic features and the major biological activities of classic and non-classic Th1 cells. PMID:25284714

  11. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods.

    PubMed Central

    Seifert, H; Dijkshoorn, L; Gerner-Smidt, P; Pelzer, N; Tjernberg, I; Vaneechoutte, M

    1997-01-01

    At least 19 genomic species are recognized as constituting the genus Acinetobacter. However, little is known about the natural reservoirs of the various members of the genus. An epidemiological study was therefore performed to investigate the colonization with Acinetobacter spp. of the skin and mucous membranes of 40 patients hospitalized in a cardiology ward and 40 healthy controls. Single samples were obtained once from each of nine different body sites, i.e., forehead, ear, nose, throat, axilla, hand, groin, perineum, and toe web. Identification of Acinetobacter isolates was achieved by using phenotypic properties and was compared to identification by amplified ribosomal DNA restriction analysis. Selected isolates were further investigated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, ribotyping, and DNA-DNA hybridization. Plasmid profile analysis was used for epidemiological typing. Thirty patients (75%) and 17 controls (42.5%) were found to be colonized with Acinetobacter spp., and the colonization rates of patients increased during their hospital stay. The most frequently isolated species were Acinetobacter lwoffii (47%), A. johnsonii (21%), A. radioresistens (12%), and DNA group 3 (11%). In contrast, A. baumannii and DNA group 13TU, the most important nosocomial Acinetobacter spp., were found only rarely on human skin (0.5 and 1%, respectively) and their natural habitat remains to be defined. A good correlation between phenotypic and genotypic methods for identification of Acinetobacter spp. was observed, and only two isolates could not be assigned to any of the known DNA groups. PMID:9350741

  12. Assessment of the Number and Phenotype of Macrophages in the Human BMB Samples of CML

    PubMed Central

    2016-01-01

    Macrophages have emerged as a key player in tumor biology. However, their number and phenotype in human bone marrow of biopsy (BMB) samples of chronic myeloid leukemia (CML) and their association with disease progression from an initial chronic phase (CP) to accelerated phase (AP) to advanced blast phase (BP) are still unclear. BMB samples from 127 CML patients and 30 patients with iron-deficiency anemia (IDA) as control group were analyzed by immunohistochemistry. The expression levels of CD68, CD163, and CD206 in BMB samples of CML patients were significantly higher than those in the patients of control group (P < 0.01), and we observed that their positive expression was gradually elevated during the transformation of CML-CP to AP to BP (P < 0.01). However, the expressions of CD68, CD163, and CD206 in released group were downregulated and contrasted to these in control group; there exists statistical significance (P < 0.01). The percentage ratio of CD163 and CD206 to CD68 was pronounced to be increasing from CML-CP to AP to BP (P < 0.01). Hence, the higher proportion of CD68+, CD163+ and CD206+ macrophages in BMB samples can be considered a key factor for disease progression of CML patients. Targeting macrophages, especially the M2 phenotype may help in designing therapeutic strategies for CML. PMID:27999815

  13. Sexual and somatic determinants of the human Y chromosome: studies in a 46,XYp- phenotypic female.

    PubMed Central

    Rosenfeld, R G; Luzzatti, L; Hintz, R L; Miller, O J; Koo, G C; Wachtel, S S

    1979-01-01

    A case of a 46,XYp- phenotypic female provided an opportunity to evaluate both sexual and somatic determinants for the Y chromosome. The patient had multiple stigmata of Turner syndrome, but normal stature. Laparotomy revealed a normal uterus and tubes, with 1.5 cm undifferentiated gonads. Serological tests for H-Y antigen (ostensibly the product of Y-chromosomal testis-determining genes) indicated absence of the H-Y+ phenotype normally associated with the intact Y chromosome. We conclude that genes exist on the short arm of the human Y chromosome which both suppress some of the somatic stigmata of Turner syndrome and determine normal expression of H-Y antigen and testicular differentiation of the primitive gonad. Our data are consistent with the view that H-Y genes comprise a family of testis-determinants, and that loss of a critical moiety is inconsistent with normal development of the male gonad. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:573550

  14. Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density.

    PubMed

    DeFilippis, Rosa Anna; Fordyce, Colleen; Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D

    2014-09-15

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal nontumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared with epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g., activin A and CD36) to prevent breast cancer.

  15. Lactate Activates HIF-1 in Oxidative but Not in Warburg-Phenotype Human Tumor Cells

    PubMed Central

    De Saedeleer, Christophe J.; Copetti, Tamara; Porporato, Paolo E.; Verrax, Julien

    2012-01-01

    Cancer can be envisioned as a metabolic disease driven by pressure selection and intercellular cooperativeness. Together with anaerobic glycolysis, the Warburg effect, formally corresponding to uncoupling glycolysis from oxidative phosphorylation, directly participates in cancer aggressiveness, supporting both tumor progression and dissemination. The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key contributor to glycolysis. It stimulates the expression of glycolytic transporters and enzymes supporting high rate of glycolysis. In this study, we addressed the reverse possibility of a metabolic control of HIF-1 in tumor cells. We report that lactate, the end-product of glycolysis, inhibits prolylhydroxylase 2 activity and activates HIF-1 in normoxic oxidative tumor cells but not in Warburg-phenotype tumor cells which also expressed lower basal levels of HIF-1α. These data were confirmed using genotypically matched oxidative and mitochondria-depleted glycolytic tumor cells as well as several different wild-type human tumor cell lines of either metabolic phenotype. Lactate activates HIF-1 and triggers tumor angiogenesis and tumor growth in vivo, an activity that we found to be under the specific upstream control of the lactate transporter monocarboxylate transporter 1 (MCT1) expressed in tumor cells. Because MCT1 also gates lactate-fueled tumor cell respiration and mediates pro-angiogenic lactate signaling in endothelial cells, MCT1 inhibition is confirmed as an attractive anticancer strategy in which a single drug may target multiple tumor-promoting pathways. PMID:23082126

  16. Galactomannan from Caesalpinia spinosa induces phenotypic and functional maturation of human dendritic cells.

    PubMed

    Santander, S P; Aoki, M; Hernandez, J F; Pombo, M; Moins-Teisserenc, H; Mooney, N; Fiorentino, S

    2011-06-01

    Plant polysaccharides present an interesting potential as immunomodulators, particularly in the induction of antitumoral responses, principally because of their molecular complexity and low in vivo toxicity. Activation of dendritic cells (DCs) could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. Herein, we investigated the immunomodulatory activity of a neutral plant polysaccharide Galactomannan on human monocyte-derived DCs (MDDC). MDDCs were stimulated with Galactomannan (GLM) from Caesalpinia spinosa and both phenotypic and functional activities were assessed by flow cytometry and real-time PCR. The phagocytic ability of MDDCs was determined by using E-coli pHrodo particles and induction of T-lymphocyte allostimulation was determined after T-cell staining with carboxyfluorescein succinimidyl ester (CFSE). In MDDCs, purified Galactomannan induced phenotypic maturation revealed by increased expression of CD83, CD86, CD206, and HLA-DR. Functional experiments showed the loss of particulate antigen uptake in Galactomannan-stimulated DCs and increased alloantigen presentation capacity. Finally, Galactomannan increased protein and mRNA levels of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, IL-12p70, and TNF-α. These data reveal that Galactomannan obtained from Caesalpinia spinosa promotes effective activation of MDDCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting.

  17. Phenotypic differentiation does not affect tumorigenicity of primary human colon cancer initiating cells.

    PubMed

    Dubash, Taronish D; Hoffmann, Christopher M; Oppel, Felix; Giessler, Klara M; Weber, Sarah; Dieter, Sebastian M; Hüllein, Jennifer; Zenz, Thorsten; Herbst, Friederike; Scholl, Claudia; Weichert, Wilko; Werft, Wiebke; Benner, Axel; Schmidt, Manfred; Schneider, Martin; Glimm, Hanno; Ball, Claudia R

    2016-02-28

    Within primary colorectal cancer (CRC) a subfraction of all tumor-initiating cells (TIC) drives long-term progression in serial xenotransplantation. It has been postulated that efficient maintenance of TIC activity in vitro requires serum-free spheroid culture conditions that support a stem-like state of CRC cells. To address whether tumorigenicity is indeed tightly linked to such a stem-like state in spheroids, we transferred TIC-enriched spheroid cultures to serum-containing adherent conditions that should favor their differentiation. Under these conditions, primary CRC cells did no longer grow as spheroids but formed an adherent cell layer, up-regulated colon epithelial differentiation markers, and down-regulated TIC-associated markers. Strikingly, upon xenotransplantation cells cultured under either condition equally efficient formed serially transplantable tumors. Clonal analyses of individual lentivirally marked TIC clones cultured under either culture condition revealed no systematic differences in contributing clone numbers, indicating that phenotypic differentiation does not select for few individual clones adapted to unfavorable culture conditions. Our results reveal that CRC TIC can be propagated under conditions previously thought to induce their elimination. This phenotypic plasticity allows addressing primary human CRC TIC properties in experimental settings based on adherent cell growth.

  18. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    PubMed Central

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 infection induces the maturation of DCs. In addition, the antigen capture capacity of DCs was found to decrease following infection with HHV-6. In contrast to up-regulation of mature-DC-associated surface molecules on HHV-6-infected DCs, their capacity for presentation of alloantigens and exogenous virus antigens to T lymphocytes decreased significantly from that of uninfected DCs. In contrast, there appeared to be no reduction in the capacity for presentation of an HLA class II-binding peptide to the peptide-specific CD4+ T lymphocytes. These data indicate that HHV-6 infection induces phenotypic alterations and impairs the antigen presentation capacity of DCs. The present data also suggest that the dysfunction of HHV-6-infected DCs is attributable mainly to impairment of the antigen capture and intracellular antigen-processing pathways. PMID:12239310

  19. Stress Signaling from Human Mammary Epithelial Cells Contributes to Phenotypes of Mammographic Density

    PubMed Central

    Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V.; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D.

    2014-01-01

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal non-tumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared to epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g. activin A, CD36) to prevent breast cancer. PMID:25172842

  20. Polyamine degradation in foetal and adult bovine serum.

    PubMed Central

    Gahl, W A; Pitot, H C

    1982-01-01

    1. Using protein-separative chromatographic procedures and assays specific for putrescine oxidase and spermidine oxidase, adult bovine serum was found to contain a single polyamine-degrading enzyme with substrate preferences for spermidine and spermine. Apparent Km values for these substrates were approx. 40 microM. The apparent Km for putrescine was 2 mM. With spermidine as substrate, the Ki values for aminoguanidine (AM) and methylglyoxal bis(guanylhydrazone) (MGBG) were 70 microM and 20 microM respectively. 2. Bovine serum spermidine oxidase degraded spermine to spermidine to putrescine and N8-acetylspermidine to N-acetylputrescine. Acrolein was produced in all these reactions and recovered in quantities equivalent to H2O2 recovery. 3. Spermidine oxidase activity was present in foetal bovine serum, but increased markedly after birth to levels in adult serum that were almost 100 times the activity in foetal bovine serum. 4. Putrescine oxidase, shown to be a separate enzyme from bovine serum spermidine oxidase, was present in foetal bovine serum but absent from bovine serum after birth. This enzyme displayed an apparent Km for putrescine of 2.6 microM. The enzyme was inhibited by AM and MGBG with Ki values of 20 nM. Putrescine, cadaverine and 1,3-diaminopropane proved excellent substrates for the enzyme compared with spermidine and spermine, and N-acetylputrescine was a superior substrate to N1- or N8-acetylspermidine. PMID:7092834

  1. Implementation of foetal e-health monitoring system through biotelemetry.

    PubMed

    Chourasia, Vijay S; Tiwari, Anil Kumar

    2012-01-01

    Continuous foetal monitoring of physiological signals is of particular importance for early detection of complexities related to the foetus or the mother's health. The available conventional methods of monitoring mostly perform off-line analysis and restrict the mobility of subjects within a hospital or a room. Hence, the aim of this paper is to develop a foetal e-health monitoring system using mobile phones and wireless sensors for providing advanced healthcare services in the home environment. The system is tested by recording the real-time Foetal Phonocardiography (fPCG) signals from 15 subjects with different gestational periods. The performance of the developed system is compared with the existing ultrasound based Doppler shift technique, ensuring an overall accuracy of 98% of the developed system. The developed framework is non-invasive, cost-effective and simple enough to be used in home care application. It offers advanced healthcare facilities even to the pregnant women living in rural areas and avoids their unnecessary visits at the healthcare centres.

  2. MTO1-Deficient Mouse Model Mirrors the Human Phenotype Showing Complex I Defect and Cardiomyopathy

    PubMed Central

    Becker, Lore; Kling, Eva; Schiller, Evelyn; Zeh, Ramona; Schrewe, Anja; Hölter, Sabine M.; Mossbrugger, Ilona; Calzada-Wack, Julia; Strecker, Valentina; Wittig, Ilka; Dumitru, Iulia; Wenz, Tina; Bender, Andreas; Aichler, Michaela; Janik, Dirk; Neff, Frauke; Walch, Axel; Quintanilla-Fend, Leticia; Floss, Thomas; Bekeredjian, Raffi; Gailus-Durner, Valérie; Fuchs, Helmut; Wurst, Wolfgang; Meitinger, Thomas; Prokisch, Holger; de Angelis, Martin Hrabě; Klopstock, Thomas

    2014-01-01

    Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients. PMID:25506927

  3. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations.

    PubMed Central

    Delaney, S J; Alton, E W; Smith, S N; Lunn, D P; Farley, R; Lovelock, P K; Thomson, S A; Hume, D A; Lamb, D; Porteous, D J; Dorin, J R; Wainwright, B J

    1996-01-01

    We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations. Images PMID:8605891

  4. The complete local genotype–phenotype landscape for the alternative splicing of a human exon

    PubMed Central

    Julien, Philippe; Miñana, Belén; Baeza-Centurion, Pablo; Valcárcel, Juan; Lehner, Ben

    2016-01-01

    The properties of genotype–phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function—the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection. Moreover, the extensive epistasis in the landscape predicts that exonic regulatory sequences may diverge between species even when exon inclusion levels are functionally important and conserved by selection. PMID:27161764

  5. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    PubMed Central

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  6. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells

    PubMed Central

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  7. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain.

    PubMed

    Gingras, Jacinthe; Smith, Sarah; Matson, David J; Johnson, Danielle; Nye, Kim; Couture, Lauren; Feric, Elma; Yin, Ruoyuan; Moyer, Bryan D; Peterson, Matthew L; Rottman, James B; Beiler, Rudolph J; Malmberg, Annika B; McDonough, Stefan I

    2014-01-01

    Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP): compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund's adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain.

  8. Bayesian Network Inference Enables Unbiased Phenotypic Anchoring of Transcriptomic Responses to Cigarette Smoke in Humans.

    PubMed

    Jennen, Danyel G J; van Leeuwen, Danitsja M; Hendrickx, Diana M; Gottschalk, Ralph W H; van Delft, Joost H M; Kleinjans, Jos C S

    2015-10-19

    Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.

  9. Global Nav1.7 Knockout Mice Recapitulate the Phenotype of Human Congenital Indifference to Pain

    PubMed Central

    Gingras, Jacinthe; Smith, Sarah; Matson, David J.; Johnson, Danielle; Nye, Kim; Couture, Lauren; Feric, Elma; Yin, Ruoyuan; Moyer, Bryan D.; Peterson, Matthew L.; Rottman, James B.; Beiler, Rudolph J.; Malmberg, Annika B.; McDonough, Stefan I.

    2014-01-01

    Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP): compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund’s adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain. PMID:25188265

  10. Morphological, genetic and phenotypic comparison between human articular chondrocytes and cultured chondrocytes.

    PubMed

    Mata-Miranda, Mónica Maribel; Martinez-Martinez, Claudia María; Noriega-Gonzalez, Jesús Emmanuel; Paredes-Gonzalez, Luis Enrique; Vázquez-Zapién, Gustavo Jesús

    2016-08-01

    Articular cartilage is an avascular and aneural tissue with limited capacity for regeneration. On large articular lesions, it is recommended to use regenerative medicine strategies, like autologous chondrocyte implantation. There is a concern about morphological changes that chondrocytes suffer once they have been isolated and cultured. Due to the fact that there is little evidence that compares articular cartilage chondrocytes with cultured chondrocytes, in this research we proposed to obtain chondrocytes from human articular cartilage, compare them with themselves once they have been cultured and characterize them through genetic, phenotypic and morphological analysis. Knee articular cartilage samples of 10 mm were obtained, and each sample was divided into two fragments; a portion was used to determine gene expression, and from the other portion, chondrocytes were obtained by enzymatic disaggregation, in order to be cultured and expanded in vitro. Subsequently, morphological, genetic and phenotypic characteristics were compared between in situ (articular cartilage) and cultured chondrocytes. Obtained cultured chondrocytes were rounded in shape, possessing a large nucleus with condensed chromatin and a clear cytoplasm; histological appearance was quite similar to typical chondrocyte. The expression levels of COL2A1 and COL10A1 genes were higher in cultured chondrocytes than in situ chondrocytes; moreover, the expression of COL1A1 was almost undetectable on cultured chondrocytes; likewise, COL2 and SOX9 proteins were detected by immunofluorescence. We concluded that chondrocytes derived from adult human cartilage cultured for 21 days do not tend to dedifferentiate, maintaining their capacity to produce matrix and also retaining their synthesis capacity and morphology.

  11. TLR7 and TLR9 responsive human B cells share phenotypic and genetic characteristics

    PubMed Central

    Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-01-01

    B cells activated by nucleic-acid sensing Toll-like receptor 7 and TLR9 proliferate and secrete immune globulins. Memory B cells are presumably more responsive due to higher TLR expression levels, but selectivity and differential outcomes remain largely unknown. In this study, peripheral blood human B cells were stimulated by TLR7 or TLR9 ligands, with or without IFNα, and compared to activators CD40L plus IL-21, to identify differentially responsive cell populations, defined phenotypically and by BCR characteristics. While all activators induced differentiation and antibody secretion, TLR stimulation expanded IgM+ memory and plasma cell lineage committed populations and favored secretion of IgM, unlike CD40L/IL-21 which drove IgM and IgG more evenly. Patterns of proliferation similarly differed, with CD40L/IL-21 inducing proliferation of most memory and naïve B cells, in contrast to TLRs which induced robust proliferation in a subset of these cells. On deep sequencing of the IgH locus, TLR responsive B cells shared patterns of IgHV and IgHJ usage, clustering apart from CD40L/IL-21 and control conditions. TLR activators, but not CD40L/IL-21, similarly promoted increased sharing of CDR3 sequences. TLR responsive B cells were characterized by more somatic hypermutation, shorter CDR3 segments, and less negative charges. TLR activation also induced long positively charged CDR3 segments, suggestive of autoreactive antibodies. Testing this, culture supernatants from TLR stimulated B cells were found to bind HEp-2 cells, while those from CD40L/IL-21 stimulated cells did not. Human B cells possess selective sensitivity to TLR stimulation, with distinctive phenotypic and genetic signatures. PMID:25740945

  12. Phenotypic characterization of human and animal biotypes within the species Porphyromonas gingivalis.

    PubMed

    Fournier, D; Mouton, C

    1993-01-01

    Ninety-nine strains of Gram-negative black-pigmented anaerobic rods, grown on Todd-Hewitt blood agar plates, were identified and characterized according to a typing scheme including UV fluorescence, catalase, trypsin-like and haemagglutinating activities, biochemical tests with the ATB 32A kit, and gas-liquid chromatography. To determine the taxonomic position of the Porphyromonas gingivalis biotypes, 68 strains (31 of human origin and 37 of animal origin) were compared to 31 strains of closely related species or of uncertain generic status. Most animal strains were isolated in our laboratory by subculturing samples from the oral cavity of five mammalian species (bear, cat, coyote, dog and wolf). Those strains differed from human P. gingivalis strains in that they were positive for catalase, beta-galactosidase and glutamyl-glutamic acid arylamidase; from Bacteroides macacae by more rapid pigmentation, positive haemagglutination, failure to produce propionic acid, and negative alpha-galactosidase; and from Bacteroides salivosus by more rapid pigmentation, positive haemagglutination and failure to produce propionic acid. These data demonstrate that phenotypic heterogeneity within the taxon P. gingivalis can be resolved into two biotypes, each corresponding to a human source or an animal source.

  13. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment

    PubMed Central

    Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells. PMID:28068409

  14. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment.

    PubMed

    Zhou, Shufeng; Abdouh, Mohamed; Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells.

  15. Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart.

    PubMed

    Guéant, Jean-Louis; Elakoum, Rania; Ziegler, Olivier; Coelho, David; Feigerlova, Eva; Daval, Jean-Luc; Guéant-Rodriguez, Rosa-Maria

    2014-05-01

    Barker's concept of 'foetal programming' proposes that intrauterine growth restriction (IUGR) predicts complex metabolic diseases through relationships that may be further modified by the postnatal environment. Dietary restriction and deficit in methyl donors, folate, vitamin B12, and choline are used as experimental conditions of foetal programming as they lead to IUGR and decreased birth weight. Overfeeding and deficit in methyl donors increase central fat mass and lead to a dramatic increase of plasma free fatty acids (FFA) in offspring. Conversely, supplementing the mothers under protein restriction with folic acid reverses metabolic and epigenomic phenotypes of offspring. High-fat diet or methyl donor deficiency (MDD) during pregnancy and lactation produce liver steatosis and myocardium hypertrophy that result from increased import of FFA and impaired fatty acid β-oxidation, respectively. The underlying molecular mechanisms show dysregulations related with similar decreased expression and activity of sirtuin 1 (SIRT1) and hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). High-fat diet and overfeeding impair AMPK-dependent phosphorylation of PGC-1α, while MDD decreases PGC-1α methylation through decreased expression of PRMT1 and cellular level of S-adenosyl methionine. The visceral manifestations of metabolic syndrome are under the influence of endoplasmic reticulum (ER) stress in overnourished animal models. These mechanisms should also deserve attention in the foetal programming effects of MDD since vitamin B12 influences ER stress through impaired SIRT1 deacetylation of HSF1. Taken together, similarities and synergies of high-fat diet and MDD suggest, therefore, considering their consecutive or contemporary influence in the mechanisms of complex metabolic diseases.

  16. Tracing the sources of human salmonellosis: a multi-model comparison of phenotyping and genotyping methods.

    PubMed

    Mughini-Gras, Lapo; Smid, Joost; Enserink, Remko; Franz, Eelco; Schouls, Leo; Heck, Max; van Pelt, Wilfrid

    2014-12-01

    Salmonella source attribution is usually performed using frequency-matched models, such as the (modified) Dutch and Hald models, based on phenotyping data, i.e. serotyping, phage typing, and antimicrobial resistance profiling. However, for practical and economic reasons, genotyping methods such as Multi-locus Variable Number of Tandem Repeats Analysis (MLVA) are gradually replacing traditional phenotyping of salmonellas beyond the serovar level. As MLVA-based source attribution of human salmonellosis using frequency-matched models is problematic due to the high variability of the genetic targets investigated, other models need to be explored. Using a comprehensive data set from the Netherlands in 2005-2013, this study aimed at attributing sporadic and domestic cases of Salmonella Typhimurium/4,[5],12:i:- and Salmonella Enteritidis to four putative food-producing animal sources (pigs, cattle, broilers, and layers/eggs) using the modified Dutch and Hald models (based on sero/phage typing data) in comparison with a widely applied population genetics model - the asymmetric island model (AIM) - supplied with MLVA data. This allowed us to compare model outcomes and to corroborate whether MLVA-based Salmonella source attribution using the AIM is able to provide sound, comparable results. All three models provided very similar results, confirming once more that most S. Typhimurium/4,[5],12:i:- and S. Enteritidis cases are attributable to pigs and layers/eggs, respectively. We concluded that MLVA-based source attribution using the AIM is a feasible option, at least for S. Typhimurium/4,[5],12:i:- and S. Enteritidis. Enough information seems to be contained in the MLVA profiles to trace the sources of human salmonellosis even in presence of imperfect temporal overlap between human and source isolates. Besides Salmonella, the AIM might also be applicable to other pathogens that do not always comply to clonal models. This would add further value to current surveillance

  17. High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress

    PubMed Central

    Malik, Nasir; Shah, Sonia; Zhao, Jean; Class, Bradley; Aguisanda, Francis; Southall, Noel; Xia, Menghang; McKew, John C.; Rao, Mahendra

    2016-01-01

    Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. Significance Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell

  18. Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes

    PubMed Central

    Adesida, Adetola B.; Mulet-Sierra, Aillette; Laouar, Leila; Jomha, Nadr M.

    2012-01-01

    Background Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC) can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. Methodology/Principal Findings MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2) mediated cell expansion in monolayer culture under normoxia (21%O2) or hypoxia (3%O2). Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs) were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001) of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05). However, both constructs had the same capacity to produce a glycosaminoglycan (GAG) –specific extracellular matrix. Conclusions Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue formation

  19. Motile and non-motile cilia in human pathology: from function to phenotypes.

    PubMed

    Mitchison, Hannah M; Valente, Enza Maria

    2017-01-01

    Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction that form an important and rapidly expanding disease category. Ciliopathies are complex conditions to diagnose, being multisystem disorders characterized by extensive genetic heterogeneity and clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, and clinical management, in addition to posing an on-going task to develop the most appropriate family counselling. The impact of next-generation sequencing and high-throughput technologies in the last decade has significantly improved our understanding of the biological basis of ciliopathy disorders, enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms and genetic aetiologies. Here, we review the diverse functions of cilia in human health and disease and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a more functional categorization. This approach arises from our improved understanding of this unique organelle, revealed through new genetic and cell biological insights into the discrete functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport, motility). Mutations affecting these distinct ciliary protein modules can confer different genetic diseases and new clinical classifications are possible to define, according to the nature and extent of organ involvement. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. JAGGED1 expression in human embryos: correlation with the Alagille syndrome phenotype

    PubMed Central

    Jones, E; Clement-Jones, M; Wilson, D

    2000-01-01

    Alagille syndrome (AGS, MIM 118450) is an autosomal dominant disorder with a variable phenotype characterised by hepatic, eye, cardiac, and skeletal malformations and a characteristic facial appearance. Mutations within the gene JAGGED1 (JAG1), which encodes a ligand for NOTCH receptor(s), has been shown to cause Alagille syndrome. Interactions of NOTCH receptors and their ligands influence cell fate decisions in several developmental pathways. We report the tissue expression of JAG1 in human embryos.
We have performed tissue in situ hybridisation on human embryos aged 32-52 days using 35S labelled riboprobes for JAG1. JAG1 is expressed in the distal cardiac outflow tract and pulmonary artery, major arteries, portal vein, optic vesicle, otocyst, branchial arches, metanephros, pancreas, mesocardium, around the major bronchial branches, and in the neural tube. We conclude that JAG1 is expressed in the structures affected in Alagille syndrome, such as the pulmonary artery, anterior chamber of the eye, and face.


Keywords: Alagille syndrome; arteriohepatic dysplasia; JAGGED1; NOTCH signalling PMID:10978356

  1. Mouse Models for the p53 R72P Polymorphism Mimic Human Phenotypes

    PubMed Central

    Zhu, Feng; Dollé, Martijn E.T.; Berton, Thomas R.; Kuiper, Raoul V.; Capps, Carrie; Espejo, Alexsandra; McArthur, Mark J.; Bedford, Mark T.; van Steeg, Harry; de Vries, Annemieke; Johnson, David G.

    2010-01-01

    The p53 tumor suppressor gene contains a common single nucleotide polymorphism (SNP) that results in either an arginine or proline at position 72 of the p53 protein. This polymorphism affects the apoptotic activity of p53 but the mechanistic basis and physiological relevance of this phenotypic difference remain unclear. Here we describe the development of mouse models for the p53 R72P SNP using two different approaches. In both sets of models the human or humanized p53 proteins are functional as evidenced by the transcriptional induction of p53 target genes in response to DNA damage and the suppression of early lymphomagenesis. Consistent with in vitro studies, mice expressing the 72R variant protein (p53R) have a greater apoptotic response to several stimuli compared to mice expressing the p53P variant. Molecular studies suggest that both transcriptional and non-transcriptional mechanisms may contribute to the differential abilities of the p53 variants to induce apoptosis. Despite a difference in the acute response to ultraviolet (UV) radiation, no difference in the tumorigenic response to chronic UV exposure was observed between the polymorphic mouse models. These findings suggest that under at least some conditions, the modulation of apoptosis by the R72P polymorphism does not impact the process of carcinogenesis. PMID:20587514

  2. Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells.

    PubMed

    Fong, Helen; Wang, Chengzhong; Knoferle, Johanna; Walker, David; Balestra, Maureen E; Tong, Leslie M; Leung, Laura; Ring, Karen L; Seeley, William W; Karydas, Anna; Kshirsagar, Mihir A; Boxer, Adam L; Kosik, Kenneth S; Miller, Bruce L; Huang, Yadong

    2013-01-01

    Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains. We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation. Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygous mutation. These isogenic TAU-iPSC lines represent a critical advancement toward the accurate modeling and mechanistic study of tauopathies with human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.

  3. Lack of prolidase causes a bone phenotype both in human and in mouse.

    PubMed

    Besio, Roberta; Maruelli, Silvia; Gioia, Roberta; Villa, Isabella; Grabowski, Peter; Gallagher, Orla; Bishop, Nicholas J; Foster, Sarah; De Lorenzi, Ersilia; Colombo, Raffaella; Diaz, Josè Luis Dapena; Moore-Barton, Haether; Deshpande, Charu; Aydin, Halil Ibrahim; Tokatli, Aysegul; Kwiek, Bartlomiej; Kasapkara, Cigdem Seher; Adisen, Esra Ozsoy; Gurer, Mehmet Ali; Di Rocco, Maja; Phang, James M; Gunn, Teresa M; Tenni, Ruggero; Rossi, Antonio; Forlino, Antonella

    2015-03-01

    The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and μCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1 month being the most parameters normalized by 2 months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest.

  4. Transcriptome Analysis of Human Injured Meniscus Reveals a Distinct Phenotype of Meniscus Degeneration with Aging

    PubMed Central

    Rai, Muhammad Farooq; Patra, Debabrata; Sandell, Linda J.; Brophy, Robert H.

    2013-01-01

    Objective Meniscus tears are associated with a heightened risk for osteoarthritis. We aimed to advance our understanding of the metabolic state of human injured meniscus at the time of arthroscopic partial meniscectomy through transcriptome-wide analysis of gene expression in relation to patient age and degree of cartilage chondrosis. Methods The degree of chondrosis of knee cartilage was recorded at the time of meniscectomy in symptomatic patients without radiographic osteoarthritis. RNA preparations from resected menisci (N=12) were subjected to transcriptome-wide microarray and QuantiGene Plex analyses. The relative changes in gene expression variation with age and chondrosis were analyzed and integrated biological processes were investigated computationally. Results We identified a set of genes in torn meniscus that were differentially expressed with age and chondrosis. There were 866 genes differentially regulated (≥1.5-fold; P<0.05) with age and 49 with chondrosis. In older patients, genes associated with cartilage and skeletal development and extracellular matrix synthesis were repressed while those involved in immune response, inflammation, cell cycle, and cellular proliferation were stimulated. With chondrosis, genes representing cell catabolism (cAMP catabolic process) and tissue and endothelial cell development were repressed and those involved in T cell differentiation and apoptosis were elevated. Conclusion Differences in age-related gene expression suggest that in older adults, meniscal cells might de-differentiate and initiate a proliferative phenotype. Conversely, meniscal cells in younger patients appear to respond to injury, but maintain the differentiated phenotype. Definitive molecular signatures identified in damaged meniscus could be segregated largely with age and, to a lesser extent, with chondrosis. PMID:23658108

  5. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease.

    PubMed

    Brownjohn, Philip W; Smith, James; Portelius, Erik; Serneels, Lutgarde; Kvartsberg, Hlin; De Strooper, Bart; Blennow, Kaj; Zetterberg, Henrik; Livesey, Frederick J

    2017-03-06

    Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP) processing and the accumulation of APP-derived amyloid β (Aβ) peptides are key processes in Alzheimer's disease (AD). We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation.

  6. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching.

    PubMed

    Howe, Douglas G; Bradford, Yvonne M; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-04

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, 'Fish' records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search.

  7. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    PubMed Central

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  8. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins.

  9. Dilute passage promotes expression of genetic and phenotypic variants of human immunodeficiency virus type 1 in cell culture.

    PubMed Central

    Sánchez-Palomino, S; Rojas, J M; Martínez, M A; Fenyö, E M; Nájera, R; Domingo, E; López-Galíndez, C

    1993-01-01

    We have studied the extent of genetic and phenotypic diversification of human immunodeficiency virus type 1 (HIV-1) upon 15 serial passages of clonal viral populations in MT-4 cell cultures. Several genetic and phenotypic modifications previously noted during evolution of HIV-1 in infected humans were also observed upon passages of the virus in cell culture. Notably, the transition from non-syncytium-inducing to syncytium-inducing phenotype (previously observed during disease progression) and fixation of amino acid substitutions at the main antigenic loop V3 of gp120 were observed in the course of replication of the virus in MT-4 cell cultures in the absence of immune selection. Interestingly, most genetic and phenotypic alterations occurred upon passage of the virus at a low multiplicity of infection (0.001 infectious particles per cell) rather than at a higher multiplicity of infection (0.1 infectious particles per cell). The degree of genetic diversification attained by HIV-1, estimated by the RNase A mismatch cleavage method and by nucleotide sequencing, is of about 0.03% of genomic sites mutated after 15 serial passages. This value is not significantly different from previous estimates for foot-and-mouth disease virus when subjected to a similar process and analysis. We conclude that several genetic and phenotypic modifications of HIV-1 previously observed in vivo occur also in the constant environment provided by a cell culture system. Dilute passage promotes in a highly significant way the expression of deviant HIV-1 genomes. Images PMID:8474182

  10. Evaluation of anaesthesia methods in caesarean section for foetal distress.

    PubMed

    Wahjoeningsih, Sri; Witjaksono, Widowati

    2007-07-01

    The purpose of this study was to evaluate the anaesthetic technique for Caesarean section which was appropriate for the clinical situation. This retrospective study was conducted on 240 patients undergoing Caesarean section with indications of foetal distress during a 3-year period (2002-2004). The data were reviewed from the patient's medical record of the Department of Anesthesiology, Dr Soetomo Hospital, Surabaya. The patients were divided into three groups, according to the criteria of foetal heart rates. The success of the anaesthesia methods was determined by assessing the Apgar scores of the newborn baby. The results were analyse using Kruskal-Wallis and Chi-Square test. P ≤0.05 was considered as statistically significant. 1- and 5-minute Apgar score of the normal range group was significantly higher than that of the bradycardia group (p<0.05), but no significant differences was found between the normal range and the tachycardia group (p>0.05). One- and five- minute Apgar scores of the sub-arachnoid block group were significantly higher than those of the general anesthesia group (p<0.05). One-minute Apgar score of the ketamine group was significantly higher than that of the thiopental group (p<0.05), but no significant differences in 5-minute Apgar score was found between the ketamine and the thiopental groups (p>0.05). We conclude that subarachnoid block is the choice of anaesthesia for patients undergoing Caesarean section for foetal distress's diagnosed at PS 1 and 2 patients. General anaesthesia with ketamine Apgar score at one minute better than that of the thiopental.

  11. Developmental changes in microheterogeneity of foetal plasma glycoproteins of mice

    PubMed Central

    Gustine, David L.; Zimmerman, Ernest F.

    1973-01-01

    Changes in microheterogeneity of foetal plasma glycoproteins during development of mouse embryos were investigated. Analysis of foetal plasma by polyacrylamide-gel electrophoresis indicated three major zones of proteins: (1) transferrins, (2) α-foetoproteins and (3) albumin. Three transferrins (Tr1, Tr2, Tr3) and five α-foetoproteins (Fp1, Fp2, Fp3, Fp4, Fp5) were resolved. Evidence for the presence of transferrins was the binding of 59Fe to the three electrophoretic variants. By day 15.5 of gestation, there was a marked increase in the more-acidic components (Tr3, Fp4, Fp5) and a decrease in the less-acidic ones (Tr1, Tr2, Fp1, Fp2, Fp3). Treatment of foetal plasma with neuraminidase at this time of development converted the more acidic components into Tr1 and Tr2 and Fp1, Fp2 and Fp3. Furthermore, it was shown that early in development (day 12.5) only the less-acidic components of transferrin and α-foetoprotein were synthesized; at the later time in development (day 14.5) new synthesis of the acidic components of both groups occurred. That these more-acidic components of α-foetoprotein (Fp4, Fp5) were in fact electrophoretic variants of the less-acidic α-foetoproteins was shown by the immunoprecipitation of labelled Fp4 and Fp5 with anti-Fp1, anti-Fp2 and anti-Fp3. From these results it is postulated that the plasma glycoproteins that are synthesized later in development contain increased amounts of sialic acid and that the observed changes in microheterogeneity of these proteins represent regulation of glycoprotein biosynthesis at the level of carbohydrate attachment. PMID:4353382

  12. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells

    PubMed Central

    Tian, Lipeng; Deshmukh, Abhijeet; Prasad, Neha; Jang, Yoon-Young

    2016-01-01

    Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults. PMID:27570479

  13. Communication Profile of Primary School-Aged Children with Foetal Growth Restriction

    ERIC Educational Resources Information Center

    Partanen, Lea Aulikki; Olsén, Päivi; Mäkikallio, Kaarin; Korkalainen, Noora; Heikkinen, Hanna; Heikkinen, Minna; Yliherva, Anneli

    2017-01-01

    Foetal growth restriction is associated with problems in neurocognitive development. In the present study, prospectively collected cohorts of foetal growth restricted (FGR) and appropriate for gestational age grown (AGA) children were examined at early school-age by using the Children's Communication Checklist-2 (CCC-2) to test the hypothesis that…

  14. Foetal Antiepileptic Drug Exposure and Verbal versus Non-Verbal Abilities at Three Years of Age

    ERIC Educational Resources Information Center

    Meador, Kimford J.; Baker, Gus A.; Browning, Nancy; Cohen, Morris J.; Clayton-Smith, Jill; Kalayjian, Laura A.; Kanner, Andres; Liporace, Joyce D.; Pennell, Page B.; Privitera, Michael; Loring, David W.

    2011-01-01

    We previously reported that foetal valproate exposure impairs intelligence quotient. In this follow-up investigation, we examined dose-related effects of foetal antiepileptic drug exposure on verbal and non-verbal cognitive measures. This investigation is an ongoing prospective observational multi-centre study in the USA and UK, which has enrolled…

  15. Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype

    PubMed Central

    Audí, Laura; Mullis, Primus E.; Moreno, Francisca; González Casado, Isabel; López-Siguero, Juan Pedro; Corripio, Raquel; Bermúdez de la Vega, José Antonio; Blanco, José Antonio; Flück, Christa E.

    2015-01-01

    MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life. PMID:26580071

  16. Phenotyping of human complement component C4, a class-III HLA antigen.

    PubMed Central

    Sim, E; Cross, S J

    1986-01-01

    The plasma complement protein C4 is encoded at two highly polymorphic loci, A and B, within the class-III region of the major histocompatibility complex. At least 34 different polymorphic variants of human C4 have been identified, including non-expressed or 'null' alleles. The main method of identification of C4 polymorphic allotypes is separation on the basis of charge by agarose-gel electrophoresis of plasma. On staining by immunofixation with anti-C4 antibodies, each C4 type gives three major bands, but, since individuals can have up to five allotypes, the overlapping banding pattern is difficult to interpret. We show that digestion of plasma samples with carboxypeptidase B, which removes C-terminal basic amino acids, before electrophoresis, produces a single, sharp, distinct band for each allotype and allows identification of the biochemical basis of the multiple banding pattern previously observed in C4 phenotype determination. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3103606

  17. Mutations in collagen 18A1 and their relevance to the human phenotype.

    PubMed

    Passos-Bueno, Maria Rita; Suzuki, Oscar T; Armelin-Correa, Lucia M; Sertié, Andréa L; Errera, Flavia I V; Bagatini, Kelly; Kok, Fernando; Leite, Katia R M

    2006-03-01

    Collagen XVIII, a proteoglycan, is a component of basement membranes (BMs). There are three distinct isoforms that differ only by their N-terminal, but with a specific pattern of tissue and developmental expression. Cleavage of its C-terminal produces endostatin, an inhibitor of angiogenesis. In its N-terminal, there is a frizzled motif which seems to be involved in Wnt signaling. Mutations in this gene cause Knobloch syndrome KS), an autosomal recessive disorder characterized by vitreoretinal and macular degeneration and occipital encephalocele. This review discusses the effect of both rare and polymorphic alleles in the human phenotype, showing that deficiency of one of the collagen XVIII isoforms is sufficient to cause KS and that null alleles causing deficiency of all collagen XVIII isoforms are associated with a more severe ocular defect. This review besides illustrating the functional importance of collagen XVIII in eye development and its structure maintenance throughout life, it also shows its role in other tissues and organs, such as nervous system and kidney.

  18. TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells

    PubMed Central

    D’Angelo, Rosemarie Chirco; Liu, Xu-Wen; Najy, Abdo J.; Jung, Young Suk; Won, Joshua; Chai, Karl X.; Fridman, Rafael; Kim, Hyeong-Reh Choi

    2014-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1 overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1 mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the MMP-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. PMID:24895412

  19. Mutant Huntingtin Does Not Affect the Intrinsic Phenotype of Human Huntington's Disease T Lymphocytes.

    PubMed

    Miller, James R C; Träger, Ulrike; Andre, Ralph; Tabrizi, Sarah J

    2015-01-01

    Huntington's disease is a fatal neurodegenerative condition caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system is dysregulated in Huntington's disease and may contribute to its pathogenesis. However, it is not clear whether or to what extent the adaptive immune system is also involved. Here, we carry out the first comprehensive investigation of human ex vivo T lymphocytes in Huntington's disease, focusing on the frequency of a range of T lymphocyte subsets, as well as analysis of proliferation, cytokine production and gene transcription. In contrast to the innate immune system, the intrinsic phenotype of T lymphocytes does not appear to be affected by the presence of mutant huntingtin, with Huntington's disease T lymphocytes exhibiting no significant functional differences compared to control cells. The transcriptional profile of T lymphocytes also does not appear to be significantly affected, suggesting that peripheral immune dysfunction in Huntington's disease is likely to be mediated primarily by the innate rather than the adaptive immune system. This study increases our understanding of the effects of Huntington's disease on peripheral tissues, while further demonstrating the differential effects of the mutant protein on different but related cell types. Finally, this study suggests that the potential use of novel therapeutics aimed at modulating the Huntington's disease innate immune system should not be extended to include the adaptive immune system.

  20. Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype.

    PubMed

    Cabras, Stefano; Saba, Francesca; Reali, Camilla; Scorciapino, Maria Laura; Sirigu, Annarita; Talani, Giuseppe; Biggio, Giovanni; Sogos, Valeria

    2010-06-01

    Several recent studies have expanded our conception of the role of astrocytes in neurogenesis, proposing that these cells may contribute to this phenomenon not only as a source of trophic substances, but also as stem cells themselves. We recently observed in vitro that human mature astrocytes can be induced to differentiate into cells with a neuronal phenotype. Antidepressant drugs have been shown to increase neurogenesis in the adult rodent hippocampus. In order to better understand the role of astroglia in antidepressant-induced neurogenesis, primary astrocyte cultures were treated with the antidepressant imipramine. Cell morphology was rapidly modified by treatment. In fact, whereas untreated astrocytes showed large, flat morphology, after a few hours of treatment cells exhibited a round-shaped cell body with long, thin processes. The expression of neuronal markers was analysed by immunocytochemistry, Western Blot and RT-PCR at different treatment times. Results showed an increase in neuronal markers such as neurofilament and neuron-specific enolase (NSE), whereas glial fibrillary acidic protein (GFAP) and nestin expression were not significantly modified by treatment. Similar results were obtained with fluoxetine and venlafaxine. Hes1 mRNA significantly increased after 2 h of treatment, suggesting involvement of this transcription factor in this process. These results confirm the role of astrocytes in neurogenesis and suggest that these cells may represent one of the targets of antidepressants.

  1. Aberrant phenotype in human endothelial cells of diabetic origin: implications for saphenous vein graft failure?

    PubMed

    Roberts, Anna C; Gohil, Jai; Hudson, Laura; Connolly, Kyle; Warburton, Philip; Suman, Rakesh; O'Toole, Peter; O'Regan, David J; Turner, Neil A; Riches, Kirsten; Porter, Karen E

    2015-01-01

    Type 2 diabetes (T2DM) confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC) cultured from T2DM and nondiabetic (ND) patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV-) EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate) to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30%) and angiogenesis (~40%) compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp.), effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  2. Human pulmonary artery endothelial cells in the model of mucopolysaccharidosis VI present a prohypertensive phenotype

    PubMed Central

    Golda, Adam; Jurecka, Agnieszka; Gajda, Karolina; Tylki-Szymańska, Anna; Lalik, Anna

    2015-01-01

    Background Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by a deficient activity of N-acetylgalactosamine-4-sulfatase (ARSB). Pulmonary hypertension (PH) occurs in MPS VI patients and is a marker of bad prognosis. Malfunction of endothelium, which regulates vascular tonus and stimulates angiogenesis, can contribute to the occurrence of PH in MPS VI. Aim The aim of the study was to establish a human MPS VI cellular model of pulmonary artery endothelial cells (HPAECs) and evaluate how it affects factors that may trigger PH such as proliferation, apoptosis, expression of endothelial nitric oxide synthase (eNOS), natriuretic peptide type C (NPPC), and vascular endothelial growth factor A (VEGFA). Results Increasing concentrations of dermatan sulfate (DS) reduce the viability of the cells in both ARSB deficiency and controls, but hardly influence apoptosis. The expression of eNOS in HPAECs is reduced up to two thirds in the presence of DS. NPPC shows a biphasic expression reaction with an increase at 50 μg/mL DS and reduction at 0 and 100 μg/mL DS. The expression of VEGFA decreases with increasing DS concentrations and absence of elastin, and increases with increasing DS in the presence of elastin. Conclusion Our data suggest that MPS VI endothelium presents a prohypertensive phenotype due to the reduction of endothelium's proliferation ability and expression of vasorelaxing factors. PMID:26937388

  3. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation.

    PubMed

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta

    2017-01-15

    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  4. Cladistic structure within the human Lipoprotein lipase gene and its implications for phenotypic association studies.

    PubMed Central

    Templeton, A R; Weiss, K M; Nickerson, D A; Boerwinkle, E; Sing, C F

    2000-01-01

    Haplotype variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase (LPL) gene was scored in three populations: African-Americans from Jackson, Mississippi (24 individuals), Finns from North Karelia, Finland (24), and non-Hispanic whites from Rochester, Minnesota (23). Earlier analyses had indicated that recombination was common but concentrated into a hotspot and that recurrent mutations at multiple sites may have occurred. We show that much evolutionary structure exists in the haplotype variation on either side of the recombinational hotspot. By peeling off significant recombination events from a tree estimated under the null hypothesis of no recombination, we also reveal some cladistic structure not disrupted by recombination during the time to coalescence of this variation. Additional cladistic structure is estimated to have emerged after recombination. Many apparent multiple mutational events at sites still remain after removing the effects of the detected recombination/gene conversion events. These apparent multiple events are found primarily at sites identified as highly mutable by previous studies, strengthening the conclusion that they are true multiple events. This analysis portrays the complexity of the interplay among many recombinational and mutational events that would be needed to explain the patterns of haplotype diversity in this gene. The cladistic structure in this region is used to identify four to six single-nucleotide polymorphisms (SNPs) that would provide disequilibrium coverage over much of this region. These sites may be useful in identifying phenotypic associations with variable sites in this gene. Evolutionary considerations also imply that the SNPs in the 3' region should have general utility in most human populations, but the 5' SNPs may be more population specific. Choosing SNPs at random would generally not provide adequate disequilibrium coverage of the sequenced region. PMID:11063700

  5. STR typing of formalin-fixed paraffin embedded (FFPE) aborted foetal tissue in criminal paternity cases.

    PubMed

    Reshef, Ayeleth; Barash, Mark; Voskoboinik, Lev; Brauner, Paul; Gafny, Roni

    2011-03-01

    Sexual assault or rape cases occasionally result in unwanted pregnancies. In almost all such cases the foetus is aborted. A forensic laboratory may receive the foetus, the placenta, or paraffin embedded abortion material for paternity testing. Obtaining a foetal profile DNA from a foetus or placenta may not be successful due to the age or condition of the tissue. Moreover, maternal contamination of placental material will invariably result in a mixed DNA profile. However, the use of properly screened abortion material from paraffin blocks will almost always result in obtaining a foetal DNA profile. Furthermore, foetal tissue fixed in paraffin blocks does not require special conditions for submission and storage as required to preserve fresh foetal or placental tissue. As hospitals routinely prepare foetal tissue in paraffin blocks, which should be readily obtainable by forensic laboratories, these samples would appear to be the preferred choice for paternity testing.

  6. [Treatment of foetal supraventricular tachycardia with antiarrhythmic medication administered through the umbilical vein].

    PubMed

    Roest, A A W; Vandenbussche, F P H A; Klumper, F J C M; Oepkes, D; Rijlaarsdam, M E B; Blom, N A

    2008-02-16

    Foetal supraventricular tachycardia (SVT) with hydrops foetalis is associated with a high morbidity and mortality rate. If SVT with hydrops foetalis persists despite transplacental therapy, direct foetal treatment can be initiated. One foetus was found to have SVT with hydrops foetalis during the 29th week of pregnancy, and the condition persisted despite transplacental treatment. Amiodarone was administered directly via the umbilical vein, and the SVT resolved. A second foetus was found to have SVT with hydrops foetalis during the 28th week of pregnancy. The condition persisted despite maternal antiarrhythmic medication. Direct treatment of the foetus with amiodarone was successful. Amiodarone is the treatment of choice for direct foetal therapy for SVT, and can be administered safely via the umbilical vein. Direct foetal therapy should be considered for the treatment of foetal SVT with hydrops foetalis that occurs in the first 31 weeks of pregnancy and persists despite adequate transplacental therapy.

  7. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours.

    PubMed

    Garrido, F; Ruiz-Cabello, F; Cabrera, T; Pérez-Villar, J J; López-Botet, M; Duggan-Keen, M; Stern, P L

    1997-02-01

    HLA class I downregulation is a frequent event associated with tumour invasion and development. Altered HLA class I tumour phenotypes can have profound effects on T-cell and natural killer (NK)-cell antitumour responses. Here, Federico Garrido and colleagues analyse these altered tumour phenotypes in detail, indicating their potential relevance for implementation of immunotherapeutic protocols and strategies to overcome tumour escape mechanisms.

  8. Individual variation in behavioural responsiveness to humans leads to differences in breeding success and long-term population phenotypic changes.

    PubMed

    Arroyo, Beatriz; Mougeot, François; Bretagnolle, Vincent

    2017-03-01

    Whether human disturbance can lead to directional selection and phenotypic change in behaviour in species with limited behavioural plasticity is poorly understood in wild animal populations. Using a 19-year study on Montagu's harrier, we report a long-term increase in boldness towards humans during nest visits. The probability of females fleeing or being passive during nest visits decreased, while defence intensity steadily increased over the study period. These behavioural responses towards humans were significantly repeatable. The phenotypic composition of the breeding population changed throughout the study period (4-5 harrier generations), with a gradual disappearance of shy individuals, leading to a greater proportion of bolder ones and a more behaviourally homogeneous population. We further show that nest visit frequency increased nest failure probability and reduced productivity of shy females, but not of bold ones. Long-term research or conservation programmes needing nest visits can therefore lead to subtle but relevant population compositional changes that require further attention.

  9. A mixture model for bovine abortion and foetal survival.

    PubMed

    Hanson, Timothy; Bedrick, Edward J; Johnson, Wesley O; Thurmond, Mark C

    2003-05-30

    The effect of spontaneous abortion on the dairy industry is substantial, costing the industry on the order of US dollars 200 million per year in California alone. We analyse data from a cohort study of nine dairy herds in Central California. A key feature of the analysis is the observation that only a relatively small proportion of cows will abort (around 10;15 per cent), so that it is inappropriate to analyse the time-to-abortion (TTA) data as if it were standard censored survival data, with cows that fail to abort by the end of the study treated as censored observations. We thus broaden the scope to consider the analysis of foetal lifetime distribution (FLD) data for the cows, with the dual goals of characterizing the effects of various risk factors on (i). the likelihood of abortion and, conditional on abortion status, on (ii). the risk of early versus late abortion. A single model is developed to accomplish both goals with two sets of specific herd effects modelled as random effects. Because multimodal foetal hazard functions are expected for the TTA data, both a parametric mixture model and a non-parametric model are developed. Furthermore, the two sets of analyses are linked because of anticipated dependence between the random herd effects. All modelling and inferences are accomplished using modern Bayesian methods.

  10. Paracetamol (acetaminophen), aspirin (acetylsalicylic acid) and indomethacin are anti-androgenic in the rat foetal testis.

    PubMed

    Kristensen, D M; Lesné, L; Le Fol, V; Desdoits-Lethimonier, C; Dejucq-Rainsford, N; Leffers, H; Jégou, B

    2012-06-01

    More than half the pregnant women in the Western world report taking mild analgesics. These pharmaceutical compounds have been associated with congenital cryptorchidism in humans, the best-known risk factor for low semen quality and testicular germ cell cancer. Furthermore, some of these mild analgesics exert potent anti-androgenic effects in the male rat and several endocrine-disrupting compounds, known to alter masculinization, have also been shown to be potent inhibitors of prostaglandin (PG) synthesis similar to mild analgesics. Using a 3-day ex vivo organotypic model system based on gestational day 14.5 rat testes, we herein show that testosterone production was inhibited by paracetamol, at doses of 0.1 μm to 100 μm. Similar results were obtained for aspirin (1-100 μm) and indomethacin (10 μm). The production of the other Leydig cell hormone, Insl3, was not disrupted by exposure to paracetamol. Investigations of the gross anatomy of the testis as well as Leydig cells number and rate of gonocyte apoptosis after the 3 days of ex vivo differentiation showed no significant effect of the analgesics tested compared with controls. These data indicate therefore that mild analgesics specifically inhibit testosterone production in rat foetal testes in vitro and that these compounds had no effect on gonocyte survival. Parallel determinations of prostaglandin D2 (PGD2) production indicated that the effects of paracetamol and aspirin on PGD2 and testosterone were not connected, whereas the effects of indomethacin were correlated. We conclude that mild analgesics exert direct and specific anti-androgenic effects in rat foetal testis in our experimental setup and that the mechanism of action is probably uncoupled from the inhibition of PG synthesis.

  11. Core Concepts in Human Genetics: Understanding the Complex Phenotype of Sport Performance and Susceptibility to Sport Injury.

    PubMed

    Gibson, William T

    2016-01-01

    High-throughput sequencing of multiple human exomes and genomes is rapidly identifying rare genetic variants that cause or contribute to disease. Microarray-based methodologies have also shed light onto the genes that contribute to common, non-disease human traits such as hair and eye colour. Sport scientists should keep in mind several things when interpreting the literature, and when designing their own genetic studies. First of all, most genetic association methods are more powerful for detecting disease phenotypes (such as susceptibility to injury) than they are for detecting healthy phenotypes (such as sport performance). This is because there are likely to be many more biological factors contributing to the latter, and the effect size of most of these biological factors is likely to be small. Second, implicating a particular gene in a human phenotype like athletic performance or injury susceptibility requires an unbiased population data set. Third, new types of non-coding biological variability continue to be uncovered in the human genome (e.g. epigenetic modifications, microRNAs, etc.). These other types of variability may contribute significantly to differences in athletic performance.

  12. Establishing Phenotypic Features Associated with Morbidity in Human T-Cell Lymphotropic Virus Type 1 Infection

    PubMed Central

    Brito-Melo, G. E. A.; Souza, J. G.; Barbosa-Stancioli, E. F.; Carneiro-Proietti, A. B. F.; Catalan-Soares, B.; Ribas, J. G.; Thorum, G. W.; Rocha, R. D. R.; Martins-Filho, O. A.

    2004-01-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HT). Although it is widely believed that virus infection and host immune response are involved in the pathogenic mechanisms, the role of the immune system in the development and/or maintenance of HT remains unknown. We performed an analysis of the peripheral blood leukocyte phenotype for two different subcohorts of HTLV-1-infected individuals to verify the existence of similar immunological alterations, possible laboratory markers for HT. The leukocyte population balance, the activation status of the T lymphocytes, and the cellular migratory potential of T lymphocytes, monocytes, and neutrophils were evaluated in the peripheral blood of HTLV-1-infected individuals classified as asymptomatic individuals, oligosymptomatic individuals, and individuals with HT. Data analysis demonstrated that a decreased percentage of B cells, resulting in an increased T cell/B cell ratio and an increase in the CD8+ HLA-DR+ T lymphocytes, exclusively in the HT group could be identified in both subcohorts, suggesting its possible use as a potential immunological marker for HT for use in the laboratory. Moreover, analysis of likelihood ratios showed that if an HTLV-1-infected individual demonstrated B-cell percentages lower than 7.0%, a T cell/B cell ratio higher than 11, or a percentage of CD8+ HLA-DR+ T lymphocytes higher than 70.0%, this individual would have, respectively, a 12-, 13-, or 22-times-greater chance of belonging to the HT group. Based on these data, we propose that the T cell/B cell ratios and percentages of circulating B cells and activated CD8+ T lymphocytes in HTLV-1-infected patients are important immunological indicators which could help clinicians monitor HTLV-1 infection and differentiate the HT group from the asymptomatic and oligosymptomatic groups. PMID:15539514

  13. Neuronal cell sheet of cortical motor neuron phenotype derived from human iPS cells.

    PubMed

    Suzuki, Noboru; Arimitsu, Nagisa; Shimizu, Jun; Takai, Kenji; Hirotsu, Chieko; Takada, Erika; Ueda, Yuji; Wakisaka, Sueshige; Fujiwara, Naruyoshi; Suzuki, Tomoko

    2017-03-17

    Transplantation of stem cells which differentiate into more mature neural cells brings about functional improvement in pre-clinical studies of stroke. Previous transplant approaches in diseased brain have utilized injection of the cells in a cell suspension. In addition, neural stem cells were preferentially used as graft. However, these cells had no specific relationship to the damaged tissue of stroke patients and brain injury. The injection of cells in a suspension destroyed the cell-cell interactions that are suggested to be important for promoting functional integrity as cortical motor neurons.

    In order to obtain suitable cell types for grafting patients with stroke and brain damage, we have modified a protocol for differentiating human iPS cells to cells phenotypically related to cortical motor neurons. Moreover, we applied cell sheet technology to neural cell transplantation due to the idea in which keeping cell-cell communications was regarded as important for the repair of host brain architecture.

    Accordingly, we developed neuronal cell sheets being positive for FEZ family zinc finger 2 (Fezf2), COUP-TF-interacting protein 2 (CTIP2), insulin-like growth factor-binding protein 4 (Igfbp4), cysteine-rich motor neuron 1 protein precursor (CRIM1) and forkhead box p2 (Foxp2). These markers are associated with cortical motoneuron which is appropriate for the transplant location in the lesions. The sheets allowed preservation of cell-cell interactions shown by synapsin1 staining after transplantation to damaged mouse brain. The sheet transplantation brought about structural restoration partly and improvement of motor functions in hemiplegic mice.

    Collectively, the cell sheets were transplanted to damaged motor cortex in a way of a novel neuronal cell sheet that maintained cell-cell interactions and improved motor functions of the hemiplegic model mice. The motoneuron cell sheets are possibly applicable for stroke patients and patients with

  14. Study of the Aminoglycoside Subsistence Phenotype of Bacteria Residing in the Gut of Humans and Zoo Animals

    PubMed Central

    Bello González, Teresita de J.; Zuidema, Tina; Bor, Gerrit; Smidt, Hauke; van Passel, Mark W. J.

    2016-01-01

    Recent studies indicate that next to antibiotic resistance, bacteria are able to subsist on antibiotics as a carbon source. Here we evaluated the potential of gut bacteria from healthy human volunteers and zoo animals to subsist on antibiotics. Nine gut isolates of Escherichia coli and Cellulosimicrobium sp. displayed increases in colony forming units (CFU) during incubations in minimal medium with only antibiotics added, i.e., the antibiotic subsistence phenotype. Furthermore, laboratory strains of E. coli and Pseudomonas putida equipped with the aminoglycoside 3′ phosphotransferase II gene also displayed the subsistence phenotype on aminoglycosides. In order to address which endogenous genes could be involved in these subsistence phenotypes, the broad-range glycosyl-hydrolase inhibiting iminosugar deoxynojirimycin (DNJ) was used. Addition of DNJ to minimal medium containing glucose showed initial growth retardation of resistant E. coli, which was rapidly recovered to normal growth. In contrast, addition of DNJ to minimal medium containing kanamycin arrested resistant E. coli growth, suggesting that glycosyl-hydrolases were involved in the subsistence phenotype. However, antibiotic degradation experiments showed no reduction in kanamycin, even though the number of CFUs increased. Although antibiotic subsistence phenotypes are readily observed in bacterial species, and are even found in susceptible laboratory strains carrying standard resistance genes, we conclude there is a discrepancy between the observed antibiotic subsistence phenotype and actual antibiotic degradation. Based on these results we can hypothesize that aminoglycoside modifying enzymes might first inactivate the antibiotic (i.e., by acetylation of amino groups, modification of hydroxyl groups by adenylation and phosphorylation respectively), before the subsequent action of catabolic enzymes. Even though we do not dispute that antibiotics could be used as a single carbon source, our observations

  15. Human gingival fibroblasts display a non-fibrotic phenotype distinct from skin fibroblasts in three-dimensional cultures.

    PubMed

    Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Cheung, Godwin; Kim, Ben; Larjava, Hannu; Häkkinen, Lari

    2014-01-01

    Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype.

  16. Human placental glucose dehydrogenase: IEF polymorphism in two Italian populations and enzyme activity in the six common phenotypes.

    PubMed

    Scacchi, R; Corbo, R M; Calzolari, E; Laconi, G; Palmarino, R; Lucarelli, P

    1985-01-01

    Glucose dehydrogenase (hexose-6-phosphate dehydrogenase) has been assayed qualitatively and quantitatively in more than 600 human placentae collected in two Italian populations. The gene frequencies for GDH1, GDH2 and GDH3 were, respectively, 0.66, 0.21 and 0.12 in Continental Italy and 0.65, 0.23 and 0.12 in Sardinia. Among the six common phenotypes there was no difference in catalytic activity.

  17. Laterality of foetal self-touch in relation to maternal stress.

    PubMed

    Reissland, Nadja; Aydin, Ezra; Francis, Brian; Exley, Kendra

    2015-01-01

    This longitudinal observational study investigated whether foetuses change their hand preference with gestational age, and also examined the effects of maternal stress on lateralized foetal self-touch. Following ethical approval, fifteen healthy foetuses (eight girls and seven boys) were scanned four times from 24 to 36 weeks gestation. Self-touch behaviours which resulted in a touch of the foetal face/head were coded in 60 scans for 10 min and analysed in terms of frequency of the foetuses using left and right hands to touch their face. The joint effects of foetal age, stress and sex on laterality were assessed. We modelled the proportion of right self-touches for each foetal scan using a generalized linear mixed model, taking account of the repeated measures design. There was substantial variability in hand preference between foetuses. However, there was no significant increase in the proportion of right-handed touches with foetal age. No sex differences in handedness were identified. However, maternally reported stress level was significantly positively related to foetal left-handed self-touches (odds ratio 0.915; p < .0001). This longitudinal study provides important new insights into the effect of recent maternal stress on foetal predominant hand use during self-touch.

  18. Phenotype and function of tumor-associated neutrophils and their subsets in early-stage human lung cancer.

    PubMed

    Eruslanov, Evgeniy B

    2017-03-10

    Neutrophils accumulate in many types of human and murine tumors and represent a significant portion of tumor-infiltrating myeloid cells. Our current understanding of the role of neutrophils in tumor development has depended primarily on murine models of cancer. However, there are crucial species differences in the evolution of tumors, genetic diversity, immune and inflammatory responses, and intrinsic biology of neutrophils that might have a profound impact on the tumor development and function of neutrophils in mouse versus human tumors. To date, the majority of experimental approaches to study neutrophils in cancer patients have been limited to the examination of circulating blood neutrophils. The phenotype and function of tumor-associated neutrophils (TANs) in humans, particularly in the early stages of tumor development, have not been extensively investigated. Thus, the long-term goal of our work has been to characterize human TANs and determine their specific role in tumor development. Here, we summarize our findings on human TANs obtained from human early stage lung cancer patients. We will describe the phenotypes of different TAN subsets identified in early stage lung tumors, as well as their functional dialog with T cells.

  19. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John

    2005-05-01

    Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.

  20. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    NASA Astrophysics Data System (ADS)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  1. Foetal Fentanyl Exposure and Ion Trapping after Intravenous and Transdermal Administration to the Ewe.

    PubMed

    Heikkinen, Emma M; Kokki, Hannu; Heikkinen, Aki; Ranta, Veli-Pekka; Räsänen, Juha; Voipio, Hanna-Marja; Kokki, Merja

    2017-02-01

    Opioids given to pregnant and parturient women are relatively freely transferred across the placenta. Spinal, epidural and intravenous fentanyl has been studied in pregnant women and neonates, but foetal safety of fentanyl dosing with transdermal patch during pregnancy and labour is not sufficiently studied. Foetal pH is physiologically lower than maternal pH, and thus, opioids, which are weak bases, are ionized and may cumulate to foetus. Foetal asphyxia may further worsen acidosis, and ion trapping induced by low pH is assumed to increase the foetal exposure to opioids. Here, we show that no correlation between foetal acidosis and ion trapping of fentanyl could be found. In three experiments, 29 pregnant sheep were administered fentanyl with 2 μg/kg/h patch supplemented with IV boluses/infusion. Foetal exposure to fentanyl was extensive, median 0.34 ng/ml (quartiles 0.21, 0.42), yet drug accumulation to foetus was not observed, and median of foetal/maternal concentration (F/M) ratio was 0.63 (0.43, 0.75) during the first hours after the fentanyl administration. Low foetal pH and pH difference between ewe and the foetus did not correlate with fentanyl concentration in the foetus or F/M ratio. At steady-state during the second patch worn, foetal plasma fentanyl was low, 0.13 ng/ml, and the median of F/M ratio was 0.69. Our results demonstrate that drug accumulation to foetus caused by ion trapping seen with some weak base opioids may not be that significant with fentanyl. These results have a clinical relevance when fentanyl is dosed to pregnant woman and the foetus is acidemic.

  2. Pathophysiology of foetal oxygenation and cell damage during labour.

    PubMed

    Yli, Branka M; Kjellmer, Ingemar

    2016-01-01

    A foetus exposed to oxygenation compromise is capable of several adaptive responses, which can be categorised into those affecting metabolism and those affecting oxygen transport. However, both the extent and duration of the impairment in oxygenation will have a bearing on these adaptive responses. Although intrapartum events may account for no more than one-third of cases with an adverse neurological outcome, they are important because they can be influenced successfully. This review describes the mechanisms underlying foetal hypoxia during labour, acid-base balance and gas exchange, and the current scientific understanding of the role of intrauterine asphyxia in the pathophysiology of neonatal encephalopathy and cerebral palsy. Although the mechanisms involved include similar initiating events, principally ischaemia and excitotoxicity, and similar final common pathways to cell death, there are certain unique maturational factors that influence the type and pattern of cellular injury.

  3. Partial foetal retention following aglepristone treatment in a bitch.

    PubMed

    Rigau, T; Rodríguez-Gil, J-E; García, F; del Alamo, M M Rivera

    2011-08-01

    This short communication describes the case of partial foetal retention in an 18-month-old female French bulldog following induction of abortion owing to an undesired mating. Abortion was induced with aglepristone administered in two consecutive protocols of a dual injection 1 day apart. After failure of the first treatment to achieve abortion, 15 days later, a second treatment was administered. Delivering of aborted foetus occurred 2 days after the last administration. Five weeks after the abortion, the female showed a weak haemorrhagic vaginal discharge. On ultrasound examination, the presence of uterine wall distension as well as a puppy skull inside the uterus was observed. This clinical case makes clear that although aglepristone is a very reliable drug, follow-up of the female during treatment and in the immediate post-partum is necessary to ensure a good outcome.

  4. The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans.

    PubMed

    Mitteroecker, Philipp; Bookstein, Fred

    2009-03-01

    Many classic quantitative genetic theories assume the covariance structure among adult phenotypic traits to be relatively static during evolution. But the cross-sectional covariance matrix arises from the joint variation of a large range of developmental processes and hence is not constant over the period during which a population of developing organisms is actually exposed to selection. To examine how development shapes the phenotypic covariance structure, we ordinate the age-specific covariance matrices of shape coordinates for craniofacial growth in rats and humans. The metric that we use for this purpose is given by the square root of the summed squared log relative eigenvalues. This is the natural metric on the space of positive-definite symmetric matrices, which we introduce and justify in a biometric context. In both species, the covariance matrices appear to change continually throughout the full period of postnatal development. The resulting ontogenetic trajectories alter their direction at major changes of the developmental programs whereas they are fairly straight in between. Consequently, phenotypic covariance matrices--and thus also response to selection--should be expected to vary both over ontogenetic and phylogenetic time scales as different phenotypes are necessarily produced by different developmental pathways.

  5. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes

    PubMed Central

    Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M. Shawkat; Nabeshima, Yo-ichi

    2014-01-01

    Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis. PMID:25080854

  6. Identification of a frameshift mutation responsible for the silent phenotype of human serum cholinesterase, Gly 117 (GGT----GGAG).

    PubMed Central

    Nogueira, C P; McGuire, M C; Graeser, C; Bartels, C F; Arpagaus, M; Van der Spek, A F; Lightstone, H; Lockridge, O; La Du, B N

    1990-01-01

    A frameshift mutation that causes a silent phenotype for human serum cholinesterase was identified in the DNA of seven individuals of two unrelated families. The mutation, identified using the polymerase chain reaction, causes a shift in the reading frame from Gly 117, where GGT (Gly)----GGAG (Gly+ 1 base) to a new stop codon created at position 129. This alteration is upstream of the active site (Ser 198), and, if any protein were made, it would represent only 22% of the mature enzyme found in normal serum. Results of analysis of the enzymatic activities in serum agreed with the genotypes inferred from the nucleotide sequence. Rocket immunoelectrophoresis using alpha-naphthyl acetate to detect enzymatic activity showed an absence of cross-reactive material, as expected. One additional individual with a silent phenotype did not show the same frameshift mutation. This was not unexpected, since there must be considerable molecular heterogeneity involved in causes for the silent cholinesterase phenotype. This is the first report of a molecular mechanism underlying the silent phenotype for serum cholinesterase. The analytical approach used was similar to the one we recently employed to identify the mutation that causes the atypical cholinesterase variant. Images Figure 3 Figure 5 Figure 6 PMID:2339692

  7. Susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents: in vitro phenotypic and genotypic analyses.

    PubMed Central

    Descamps, D; Collin, G; Letourneur, F; Apetrei, C; Damond, F; Loussert-Ajaka, I; Simon, F; Saragosti, S; Brun-Vézinet, F

    1997-01-01

    We investigated the phenotypic and genotypic susceptibility of 11 human immunodeficiency virus type 1 (HIV-1) group O strains to nucleoside and nonnucleoside reverse transcriptase (RT) inhibitors and protease inhibitors in vitro. Phenotypic susceptibility was determined by using a standardized in vitro assay of RT inhibition, taking into account the replication kinetics of each strain. HIV-1 group M and HIV-2 isolates were used as references. DNA from cocultured peripheral blood mononuclear cells was amplified by using pol-specific group O primers and cloned for sequencing. Group O isolates were highly sensitive to nucleoside inhibitors, but six isolates were naturally highly resistant to all of the nonnucleoside RT inhibitors tested. Phylogenetic analysis of the pol gene showed that these isolates formed a separate cluster within group O, and genotypic analysis revealed a tyrosine-to-cysteine substitution at residue 181. Differences in susceptibility to saquinavir and ritonavir (RTV) were not significant between group O and group M isolates, although the 50% inhibitory concentration of RTV for group O isolates was higher than that for the HIV-1 subtype B strains. The study of HIV-1 group O susceptibility to antiretroviral drugs revealed that the viruses tested had specific phenotypic characteristics contrasting with the group M phenotypic expression. PMID:9343254

  8. Foetal growth and duration of gestation relative to water chlorination

    PubMed Central

    Jaakkola, J; Magnus, P; Skrondal, A; Hwang, B; Becher, G; Dybing, E

    2001-01-01

    OBJECTIVE—To assess the effect of exposure to chlorination byproducts during pregnancy on foetal growth and duration of pregnancy.
METHODS—A population based study was conducted of 137 145 Norwegian children born alive in 1993-5. Information was obtained from the Norwegian medical birth registry, waterwork registry, and social science data service. The outcomes of interest were birth weight, low birth weight (<2500 g), small for gestational age, and preterm delivery (gestational age <37 weeks). The exposure assessment was based on quality of drinking water in the municipality where the mother lived during pregnancy. Municipal exposure was calculated with information on chlorination and the amount of natural organic matter in raw water measured as colour in mg precipitate/l. The main exposure category was high colour and chlorination, which was contrasted with the reference category of low colour and no chlorination.
RESULTS—In logistic regression analysis adjusting for confounding, the risks of low birth weight (odds ratio (OR) 0.97, 95% confidence interval (95% CI) 0.89 to 1.06) and small for gestational age (OR 1.00, 95% CI 0.91 to 1.10) were not related to exposure. Contrary to the hypothesis, the risk of preterm delivery was slightly lower among the exposed than the reference category (OR 0.91, 95% CI 0.84 to 0.99). The risks of the studied outcomes were similar in newborn infants exposed to high colour drinking water without chlorination and chlorinated drinking water with low colour compared with the reference category.
CONCLUSIONS—The present study did not provide evidence that prenatal exposure to chlorination byproducts at the relatively low concentrations encountered in Norwegian drinking water increases the risk of the studied outcomes.


Keywords: water chlorination; foetal growth; gestational age PMID:11404447

  9. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy.

    PubMed

    Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun

    2013-03-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  10. The PLIN4 variant rs8887 modulates obesity related phenotypes in humans through creation of a novel miR-522 seed site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLIN4 is a member of the PAT family of lipid storage droplet (LSD) proteins. Associations between seven single nucleotide polymorphisms (SNPs) at human PLIN4 with obesity related phenotypes were investigated using meta-analysis followed by a determination if these phenotypes are modulated by intera...

  11. Human lung-derived mature mast cells cultured alone or with mouse 3T3 fibroblasts maintain an ultrastructural phenotype different from that of human mast cells that develop from human cord blood cells cultured with 3T3 fibroblasts.

    PubMed Central

    Dvorak, A. M.; Furitsu, T.; Estrella, P.; Ishizaka, T.

    1991-01-01

    Culture systems designed to maintain or develop human mast cells have proved difficult, yet these systems would provide valuable resources for future investigations of human mast cell biology. Cocultures of either isolated mature human lung mast cells (Levi-Schaffer et al., J Immunol 1987, 139:494-500) or human cord blood mononuclear cells (Furitsu, Proc Natl Acad Sci USA 1989, 86:10039-10043) with 3T3 embryonic mouse skin fibroblasts have implicated fibroblasts as an important factor in the successful maintenance and development of human mast cells in vitro. The authors cultured isolated, mature human lung mast cells either with or without 3T3 cells for 1 month and examined their ultrastructural phenotype. Mast cell viability in each circumstance was equivalent, but mast cell yield was improved in the presence of 3T3 cells. The ultrastructural phenotype was identical in both culture systems. Mast cells were shown to maintain the phenotype of their in vivo lung counterparts (ie, scroll granules predominanted, and numerous lipid bodies were present). This ultrastructural phenotype differs from that of mast cells that develop in cocultures of human cord blood cells and 3T3 cells, where developing mast cells with crystalline granules and few lipid bodies prevail, a phenotype much like that of human skin mast cells in vivo (Furitsu, Proc Natl Acad Sci USA 1989, 86:10039-10043). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1750506

  12. Human memory T cells with a naïve phenotype accumulate with aging and respond to persistent viruses

    PubMed Central

    Pulko, Vesna; Davies, John S.; Martinez, Carmine; Lanteri, Marion C.; Busch, Michael P.; Diamond, Michael S.; Knox, Kenneth; Busch, Erin S.; Sims, Peter A.; Sinari, Shripad; Billheimer, Dean; Haddad, Elias K.; Murray, Kristy O.; Wertheimer, Anne M.; Nikolich-Žugich, Janko

    2016-01-01

    The numbers of naive T cells decrease, and the susceptibility to new microbial infections increases with age. Here, we describe a new subset of phenotypically naive human CD8+T cells that rapidly secrete multiple cytokines in response to persistent viral antigens but differ transcriptionally from memory and effector T cells. The frequency of these CD8+T cells, named T memory cells with naïve phenotype (TMNP) increased with age and following severe acute infection and inversely correlated with the residual immune capacity to respond to new infections with age. CD8+TMNP cells represent a new potential target for immunotherapy of persistent infections, and should be accounted for and subtracted from the naive pool if truly naive T cells are needed to respond to antigens. PMID:27270402

  13. Macrophage-Specific Expression of Human Lysosomal Acid Lipase Corrects Inflammation and Pathogenic Phenotypes in lal−/− Mice

    PubMed Central

    Yan, Cong; Lian, Xuemei; Li, Yuan; Dai, Ying; White, Amanda; Qin, Yulin; Li, Huimin; Hume, David A.; Du, Hong

    2006-01-01

    Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macrophages and lal−/− pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal−/− genetic background under control of the 7.2-kb c-fms promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis. PMID:16936266

  14. [EXIT procedure in the management of severe foetal airway obstruction. the paediatric otolaryngologist's perspective].

    PubMed

    Pellicer, Marc; Pumarola, Félix; Peiró, José Luis; Martínez Ibáñez, Vicente; García Vaquero, Juan Antono; Carreras, Elena; Manrique, Susana; Vinzo, Joan; Perelló, Enrique

    2007-12-01

    The ex-utero intrapartum treatment (EXIT) procedure is a technique designed to allow partial foetal delivery via caesarean section with establishment of a safe foetal airway by either intubation, bronchoscopy, or tracheostomy while foetal oxygenation is maintained through utero-placental circulation. The most common indication for the EXIT procedure is the presence of foetal airway obstruction, which is usually caused by a prenatal diagnosed neck mass. We report three cases of head and neck tumours with airway obstruction treated by means of EXIT and with different solutions in the management of the airway. With the involvement of Paediatric Otolaryngologists in EXIT, new indications and select variations from the standard EXIT protocol should be considered.

  15. Phthalate-Induced Pathology in the Foetal Testis Involves More Than Decreased Testosterone Production

    EPA Science Inventory

    Foetal exposure to phthalates is known to adversely impact male reproductive development and function. Developmental anomalies of reproductive tract have been attributed to impaired testosterone synthesis. However, species differences in the ability to produce testosterone have...

  16. NON-INVASIVE MONITORING OF FOETAL ANAEMIA IN KELL SENSITIZED PREGNANCY.

    PubMed

    Memon, Zaibunnisa; Sheikh, Sana Sadiq

    2015-01-01

    We report a case of Kell sensitized pregnancy with good neonatal outcome. Anti-K antibodies were detected in maternal serum in early pregnancy as a part of routine antibody screening test. The middle cerebral artery doppler monitoring and serial titers were carried out to screen for foetal anaemia. Despite of rising antibody titers, serial middle cerebral artery doppler was normal and did not showed foetal anaemia. The pregnancy was carried out till term and patient delivered at 37 weeks of pregnancy with no evidence of foetal anaemia. This case underlines the need of general screening on rare antibodies in all pregnant women and that non-invasive monitoring of foetal anaemia can be done with anti-k titers and middle cerebral artery Doppler.

  17. Estrogen receptor alpha inhibits senescence-like phenotype and facilitates transformation induced by oncogenic ras in human mammary epithelial cells

    PubMed Central

    Liu, Zhao; Wang, Long; Yang, Junhua; Bandyopadhyay, Abhik; Kaklamani, Virginia; Wang, Shui; Sun, Lu-Zhe

    2016-01-01

    Exposure to estrogen has long been associated with an increased risk of developing breast cancer. However, how estrogen signaling promotes breast carcinogenesis remains elusive. Senescence is known as an important protective response to oncogenic events. We aimed to elucidate the role of estrogen receptor alpha (ERα) on senescence in transformed human mammary epithelial cells and breast cancer cells. Our results show that ectopic expression of oncoprotein H-ras-V12 in immortalized human mammary epithelial cells (HMEC) significantly inhibited the phosphorylation of the retinoblastoma protein (Rb) and increased the activity of the senescence-associated beta-galactosidase (SA-β-Gal). These senescence-like phenotypes were reversed by ectopic expression of ERα. Similar inhibition of the H-ras-V12-induced SA-β-Gal activity by ERα was also observed in the human mammary epithelial MCF-10A cells. Co-expression of ERα and H-ras-V12 resulted in HMEC anchorage-independent growth in vitro and tumor formation in vivo. Furthermore, inhibition of ERα expression induced senescence-like phenotypes in ERα positive human breast cancer cells such as increased activity of SA-β-Gal, decreased phosphorylation of RB, and loss of mitogenic activity. Thus, the suppression of cellular senescence induced by oncogenic signals may be a major mechanism by which ERα promotes breast carcinogenesis. PMID:27259243

  18. Major histocompatibility complex-unrestricted cytolytic activity of human T cells: analysis of precursor frequency and effector phenotype

    SciTech Connect

    Patel, S.S.; Thiele, D.L.; Lipsky, P.E.

    1987-12-01

    The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. All of the 198 clones generated by this method were T cells (CD2/sup +/, CD3/sup +/, CD4/sup +/ or CD2/sup +/, CD3/sup +/, CD8/sup +/) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis, measured by /sup 51/Cr release, was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur of K562 was not mediated by a soluble factor secreted by the clones. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD 16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype.

  19. Visceral Adipose MicroRNA 223 Is Upregulated in Human and Murine Obesity and Modulates the Inflammatory Phenotype of Macrophages

    PubMed Central

    Syed, Rafay; Duggineni, Dheeraj; Rutsky, Jessica; Rengasamy, Palanivel; Zhang, Jie; Huang, Kun; Needleman, Bradley; Mikami, Dean; Perry, Kyle; Hazey, Jeffrey; Rajagopalan, Sanjay

    2016-01-01

    Obesity in humans and mice is typified by an activated macrophage phenotype in the visceral adipose tissue (VAT) leading to increased macrophage-mediated inflammation. microRNAs (miRNAs) play an important role in regulating inflammatory pathways in macrophages, and in this study we compared miRNA expression in the VAT of insulin resistant morbidly obese humans to a non-obese cohort with normal glucose tolerance. miR-223-3p was found to be significantly upregulated in the whole omental tissue RNA of 12 human subjects, as were 8 additional miRNAs. We then confirmed that miR-223 upregulation was specific to the stromal vascular cells of human VAT, and found that miR-223 levels were unchanged in adipocytes and circulating monocytes of the non-obese and obese. miR-223 ablation increased basal / unstimulated TLR4 and STAT3 expression and LPS-stimulated TLR4, STAT3, and NOS2 expression in primary macrophages. Conversely, miR-223 mimics decreased TLR4 expression in primary macrophage, at the same time it negatively regulated FBXW7 expression, a well described suppressor of Toll-like receptor 4 (TLR4) signaling. We concluded that the abundance of miR-223 in macrophages significantly modulates macrophage phenotype / activation state and response to stimuli via effects on the TLR4/FBXW7 axis. PMID:27812198

  20. Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms

    PubMed Central

    Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J

    2017-01-01

    FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human. DOI: http://dx.doi.org/10.7554/eLife.20898.001 PMID:28092268

  1. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure.

    PubMed

    Kosten, Ilona J; Spiekstra, Sander W; de Gruijl, Tanja D; Gibbs, Susan

    2015-08-15

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a(+) MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a(-)/CD14(+)/CD68(+) which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets.

  2. Two-dimensional culture of human pancreatic adenocarcinoma cells results in an irreversible transition from epithelial to mesenchymal phenotype.

    PubMed

    Kang, Ya'an; Zhang, Ran; Suzuki, Rei; Li, Shao-qiang; Roife, David; Truty, Mark J; Chatterjee, Deyali; Thomas, Ryan M; Cardwell, James; Wang, Yu; Wang, Huamin; Katz, Matthew H; Fleming, Jason B

    2015-02-01

    Many commercially available cell lines have been in culture for ages, acquiring phenotypes that differ from the original cancers from which these cell lines were derived. Therefore, research on new cell lines could improve the success rates of translational research in cancer. We have developed methods for the isolation and culture of human pancreatic ductal adenocarcinoma (PDAC) cells from murine xenografts of human PDAC. We hypothesize that phenotypes of PDAC cells are modified by in vitro culture conditions over time and by in vivo implantation. Patient-derived xenografts were created in immunodeficient mice using surgically resected tumor specimens. These murine xenografts were then used to establish human PDAC cell lines in culture. Earlier (<5) passage and later (>20) passage cell lines were evaluated separately regarding proliferation, cell cycle, genetic mutations, invasiveness, chemosensitivity, tumorigenesis, epithelial-mesenchymal transition (EMT) status, and proteomics. Later passage cells accelerated their doubling time and colony formation, and were more concentrated in the G0/G1 phase and less in the G2/M checkpoint phase. Later passage cells were more sensitive to gemcitabine and 5-fluorouracil than earlier passage cells, but all four new cell lines were more chemo-resistant compared with commercial ATCC cell lines. EMT induction was observed when establishing and passaging cell lines in vitro and furthermore by growing them as subcutaneous tumors in vivo. This study demonstrates a novel approach to the establishment of PDAC cell lines and observes a process by which newly established cell lines undergo phenotypic changes during in vitro culture and in vivo tumorigenesis. This may help explain differences of treatment effects often observed between experiments conducted in vitro, in vivo, and in human clinical trials.

  3. A Novel Multiplexed, Image-Based Approach to Detect Phenotypes That Underlie Chromosome Instability in Human Cells

    PubMed Central

    Thompson, Laura L.; McManus, Kirk J.

    2015-01-01

    Chromosome instability (CIN) is characterized by a progressive change in chromosome numbers. It is a characteristic common to virtually all tumor types, and is commonly observed in highly aggressive and drug resistant tumors. Despite this information, the majority of human CIN genes have yet to be elucidated. In this study, we developed and validated a multiplexed, image-based screen capable of detecting three different phenotypes associated with CIN. Large-scale chromosome content changes were detected by quantifying changes in nuclear volumes following RNAi-based gene silencing. Using a DsRED-LacI reporter system to fluorescently label chromosome 11 within a human fibrosarcoma cell line, we were able to detect deviations from the expected number of two foci per nucleus (one focus/labelled chromosome) that occurred following CIN gene silencing. Finally, micronucleus enumeration was performed, as an increase in micronucleus formation is a classic hallmark of CIN. To validate the ability of each assay to detect phenotypes that underlie CIN, we silenced the established CIN gene, SMC1A. Following SMC1A silencing we detected an increase in nuclear volumes, a decrease in the number of nuclei harboring two DsRED-LacI foci, and an increase in micronucleus formation relative to controls (untreated and siGAPDH). Similar results were obtained in an unrelated human fibroblast cell line. The results of this study indicate that each assay is capable of detecting CIN-associated phenotypes, and can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. PMID:25893404

  4. Respiratory movements and rapid eye movement sleep in the foetal lamb

    PubMed Central

    Dawes, G. S.; Fox, H. E.; Leduc, B. M.; Liggins, G. C.; Richards, R. T.

    1972-01-01

    1. In foetal lambs from 40 days gestation (0·27 of term) onwards delivered into a warm saline bath, apparently spontaneous breathing movements were present intermittently. They became deeper and more rapid with increasing age. 2. In foetal lambs (from 0·66 of term) in which observations were made for many days after chronic implantation of tracheal, carotid and amniotic catheters, rapid irregular respiratory movements were present up to 40% of the time, and brief gasps also were seen. 3. The presence of these movements was unrelated to the foetal carotid blood gas values over a wide range of spontaneous variation. 4. These foetal breathing movements were accompanied by comparatively small alterations of pulmonary volume recorded from a tracheal flowmeter, insufficient to clear the tracheal dead space. Occasionally a more prolonged expiration led to the outward flow of fluid. 5. A description is given of sleep and wakefulness in foetal lambs from 0·78 of term. 6. Rapid irregular breathing was associated with rapid eye movement sleep as seen in a warm saline bath or, in utero, as inferred from records of eye movements and electrocortical activity. 7. Respiratory movements were often associated with relatively large variations in foetal heart rate, blood pressure and descending aortic blood flow. 8. Rapid irregular foetal breathing was unaffected by section or blockade of the cervical vagi, but was abolished by general anaesthesia. 9. It is concluded that respiratory movements are normally but intermittently present in the foetal lamb over the greater part of gestation. ImagesFig. 2Fig. 4Fig. 8Fig. 10Fig. 11Fig. 13 PMID:4333826

  5. Expression of connexin 43 in the porcine foetal gonads during development.

    PubMed

    Knapczyk-Stwora, K; Durlej-Grzesiak, M; Duda, M; Slomczynska, M

    2013-04-01

    This study was designed to reveal connexin 43 (Cx43) mRNA and protein expression in porcine foetal gonads using RT-PCR, immunohistochemistry and Western blot analysis. Expression of Cx43 was investigated in porcine foetal ovaries and testes on days 50, 70 and 90 post coitum (p.c.). RT-PCR results indicated that Cx43 mRNA was expressed in both foetal ovaries and testes at all gestational ages examined. Cx43 protein was found in the foetal ovary but its distribution varied across ovarian compartments and changed during development. In foetal ovaries, Cx43 was localized between the interstitial cells surrounding egg nests on all investigated days of prenatal period. Moreover, Cx43 expression was observed between germ cells on day 50 p.c. as well as between pre-granulosa and granulosa cells of primordial and primary follicles on days 70 and 90 p.c. In the foetal testes, Cx43 protein was detected between neighbouring Leydig cells on all examined days of prenatal period and between adjacent Sertoli cells exclusively on day 90 p.c. The presence of Cx43 protein in all investigated foetal gonads was confirmed by Western blot analysis. Cx43 protein detection between pre-granulosa cells of primordial follicles suggests its role in regulation of the initial stages of follicle development. The Cx43 immunoexpression between neighbouring Leydig and between Sertoli cells indicates its involvement in controlling their functions. We propose that Cx43-mediated gap junctional communication is involved in the regulation of porcine foetal gonadal development.

  6. Foetal programming by methyl donor deficiency produces steato-hepatitis in rats exposed to high fat diet.

    PubMed

    Bison, Anaïs; Marchal-Bressenot, Aude; Li, Zhen; Elamouri, Ilef; Feigerlova, Eva; Peng, Lu; Houlgatte, Remi; Beck, Bernard; Pourié, Gregory; Alberto, Jean-Marc; Umoret, Remy; Conroy, Guillaume; Bronowicki, Jean-Pierre; Guéant, Jean-Louis; Guéant-Rodriguez, Rosa-Maria

    2016-11-17

    Non-alcoholic steatohepatitis (NASH) is a manifestation of metabolic syndrome, which emerges as a major public health problem. Deficiency in methyl donors (folate and vitamin B12) during gestation and lactation is frequent in humans and produces foetal programming effects of metabolic syndrome, with small birth weight and liver steatosis at day 21 (d21), in rat pups. We investigated the effects of fetal programming on liver of rats born from deficient mothers (iMDD) and subsequently subjected to normal diet after d21 and high fat diet (HF) after d50. We observed increased abdominal fat, ASAT/ALAT ratio and angiotensin blood level, but no histological liver abnormality in d50 iMDD rats. In contrast, d185 iMDD/HF animals had hallmarks of steato-hepatitis, with increased markers of inflammation and fibrosis (caspase1, cleaved IL-1β, α1(I) and α2(I) collagens and α-SMA), insulin resistance (HOMA-IR and Glut 2) and expression of genes involved in stellate cell stimulation and remodelling and key genes triggering NASH pathomechanisms (transforming growth factor beta super family, angiotensin and angiotensin receptor type 1). Our data showed a foetal programming effect of MDD on liver inflammation and fibrosis, which suggests investigating whether MDD during pregnancy is a risk factor of NASH in populations subsequently exposed to HF diet.

  7. Foetal programming by methyl donor deficiency produces steato-hepatitis in rats exposed to high fat diet

    PubMed Central

    Bison, Anaïs; Marchal-Bressenot, Aude; Li, Zhen; Elamouri, Ilef; Feigerlova, Eva; Peng, Lu; Houlgatte, Remi; Beck, Bernard; Pourié, Gregory; Alberto, Jean-Marc; Umoret, Remy; Conroy, Guillaume; Bronowicki, Jean-Pierre; Guéant, Jean-Louis; Guéant-Rodriguez, Rosa-Maria

    2016-01-01

    Non-alcoholic steatohepatitis (NASH) is a manifestation of metabolic syndrome, which emerges as a major public health problem. Deficiency in methyl donors (folate and vitamin B12) during gestation and lactation is frequent in humans and produces foetal programming effects of metabolic syndrome, with small birth weight and liver steatosis at day 21 (d21), in rat pups. We investigated the effects of fetal programming on liver of rats born from deficient mothers (iMDD) and subsequently subjected to normal diet after d21 and high fat diet (HF) after d50. We observed increased abdominal fat, ASAT/ALAT ratio and angiotensin blood level, but no histological liver abnormality in d50 iMDD rats. In contrast, d185 iMDD/HF animals had hallmarks of steato-hepatitis, with increased markers of inflammation and fibrosis (caspase1, cleaved IL-1β, α1(I) and α2(I) collagens and α-SMA), insulin resistance (HOMA-IR and Glut 2) and expression of genes involved in stellate cell stimulation and remodelling and key genes triggering NASH pathomechanisms (transforming growth factor beta super family, angiotensin and angiotensin receptor type 1). Our data showed a foetal programming effect of MDD on liver inflammation and fibrosis, which suggests investigating whether MDD during pregnancy is a risk factor of NASH in populations subsequently exposed to HF diet. PMID:27853271

  8. [Routine investigation of foetal eyes--in what way and what for?].

    PubMed

    Herwig, M C; Löffler, K U

    2014-07-01

    The investigation of foetal eyes not only allows for the observation of ocular development. It is supportive and sometimes even mandatory for the diagnosis of systemic and ocular syndromes. This review gives an overview about the investigation of foetal eyes, their assignment to developmental stages, challenges related to the investigation of foetal eyes, clinically relevant syndromes, and academic questions. The morphological development of the eye has been investigated since the 19th century and will not be covered in this article. The investigation of foetal eyes that have been collected during the routine paediatric autopsy, is complicated by artifacts. Artifacts are the result of autolysis, fixation, and mechanical manipulation. They have to be distinguished from genuine findings. Besides the search for findings such as coloboma or cataract, the morphological classification of the foetal eye is of importance. The anterior-posterior diameter allows for the diagnosis of microphthalmia. The case reports comprise Goldenhar's syndrome, MIDAS syndrome and others. In conclusion, the investigation of foetal eyes is often helpful and critical for paediatric diagnostics and should be performed with great care.

  9. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  10. Human Breath Analysis May Support the Existence of Individual Metabolic Phenotypes

    PubMed Central

    Martinez-Lozano Sinues, Pablo; Kohler, Malcolm; Zenobi, Renato

    2013-01-01

    The metabolic phenotype varies widely due to external factors such as diet and gut microbiome composition, among others. Despite these temporal fluctuations, urine metabolite profiling studies have suggested that there are highly individual phenotypes that persist over extended periods of time. This hypothesis was tested by analyzing the exhaled breath of a group of subjects during nine days by mass spectrometry. Consistent with previous metabolomic studies based on urine, we conclude that individual signatures of breath composition exist. The confirmation of the existence of stable and specific breathprints may contribute to strengthen the inclusion of breath as a biofluid of choice in metabolomic studies. In addition, the fact that the method is rapid and totally non-invasive, yet individualized profiles can be tracked, makes it an appealing approach. PMID:23573221

  11. Genome-wide analysis of alternative splicing during human heart development

    NASA Astrophysics Data System (ADS)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  12. Phenotypic flexibility as key factor in the human nutrition and health relationship.

    PubMed

    van Ommen, Ben; van der Greef, Jan; Ordovas, Jose Maria; Daniel, Hannelore

    2014-09-01

    Metabolic adaptation to a disturbance of homeostasis is determined by a series of interconnected physiological processes and molecular mechanisms that can be followed in space (i.e., different organs or organelles) and in time. The amplitudes of these responses of this "systems flexibility network" determine to what extent the individual can adequately react to external challenges of varying nature and thus determine the individual's health status and disease predisposition. Connected pathways and regulatory networks act as "adaptive response systems" with metabolic and inflammatory processes as a core-but embedded into psycho-neuro-endocrine control mechanisms that in their totality define the phenotypic flexibility in an individual. Optimal metabolic health is thus the orchestration of all mechanisms and processes that maintain this flexibility in an organism as a phenotype. Consequently, onset of many chronic metabolic diseases results from impairment or even loss of flexibility in parts of the system. This also means that metabolic diseases need to be diagnosed and treated from a systems perspective referring to a "systems medicine" approach. This requires a far better understanding of the mechanisms involved in maintaining, optimizing and restoring phenotypic flexibility. Although a loss of flexibility in a specific part of the network may promote pathologies, this not necessarily takes place in the same part because the system compensates. Diagnosis at systems level therefore needs the quantification of the response reactions of all relevant parts of the phenotypic flexibility system. This can be achieved by disturbing the homeostatic system by any challenge from extended fasting, to intensive exercise or a caloric overload.

  13. Arylesterase Phenotype-Specific Positive Association Between Arylesterase Activity and Cholinesterase Specific Activity in Human Serum

    PubMed Central

    Aoki, Yutaka; Helzlsouer, Kathy J.; Strickland, Paul T.

    2014-01-01

    Context: Cholinesterase (ChE) specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking) with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose. PMID:24473115

  14. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients.

    PubMed

    Nakayama, Takuya; Fisher, Marilyn; Nakajima, Keisuke; Odeleye, Akinleye O; Zimmerman, Keith B; Fish, Margaret B; Yaoita, Yoshio; Chojnowski, Jena L; Lauderdale, James D; Netland, Peter A; Grainger, Robert M

    2015-12-15

    Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans.

  15. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    PubMed Central

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  16. Non-ABO blood group systems phenotyping in non-human primates for blood banking laboratory and xenotransplantation.

    PubMed

    Ramis, G; Martínez-Alarcon, L; Quereda, J J; Mrowiec, A; Funes, C; Ríos, A; Ramírez, P; Muñoz, A; Majado, M J

    2013-04-01

    Some biomedical research procedures, such as organ xenotransplantation, usually require intensive hemotherapy. Knowledge of the whole phenotype of blood donor and graft could be useful in the field of xenotransplantation. Human and simian-type categories of blood groups have been established and they can be tested by standard methods used for human blood grouping. The aim of this work was to study the incidence of non-ABO blood group systems in different species of non-human primates, which are employed in biomedical research. The phenotype of Rh, Lewis, Kidd, Kell, MNSs, Lutheran, P and Duffy antigens was investigated in olive baboon (n = 48), chacma baboon (n = 9), Guinea baboon (n = 14), Rhesus macaque (n = 38) and squirrel monkey (n = 30) by using commercial microtyping cards. Kell, Lutheran, Kidd and Duffy antigens have been detected in all species, Rh in squirrel monkey, MNSs in rhesus macaque and squirrel monkey, and Lewis in baboon and rhesus macaque. There were differences in frequency and haemagglutination scores between species regardless of their gender and age. The main differences were found in squirrel monkey when compared with baboons and macaques. This typing system provides a tool to assess the presence of antigens in animals used for experimental procedures, such as xenotransplantation and xenotransfusion.

  17. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury.

    PubMed

    Wise, Andrea F; Williams, Timothy M; Kiewiet, Mensiena B G; Payne, Natalie L; Siatskas, Christopher; Samuel, Chrishan S; Ricardo, Sharon D

    2014-05-15

    Mesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced their homing patterns following administration to mice with ischemia-reperfusion (IR) injury using whole body bioluminescence imaging. The effect of MSCs on macrophage phenotype following direct and indirect coculture was assessed using qPCR. Human cytokine production was measured using multiplex arrays. After IR, MSCs homed to injured kidneys where they afforded protection indicated by decreased proximal tubule kidney injury molecule-1 expression, blood urea nitrogen, and serum creatinine levels. SDS-PAGE and immunofluorescence labeling revealed MSCs reduced collagen α1(I) and IV by day 7 post-IR. Gelatin zymography confirmed that MSC treatment significantly increased matrix metalloproteinase-9 activity in IR kidneys, which contributed to a reduction in total collagen. Following direct and indirect coculture, macrophages expressed genes indicative of an anti-inflammatory "M2" phenotype. MSC-derived human GM-CSF, EGF, CXCL1, IL-6, IL-8, MCP-1, PDGF-AA, and CCL5 were identified in culture supernatants. In conclusion, MSCs home to injured kidneys and promote repair, which may be mediated by their ability to promote M2 macrophage polarization.

  18. A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen

    PubMed Central

    Coppé, Jean-Philippe; Krtolica, Ana; Beauséjour, Christian M.; Parrinello, Simona; Hodgson, J. Graeme; Chin, Koei; Desprez, Pierre-Yves; Campisi, Judith

    2010-01-01

    Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP), which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that “senescent” mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen), do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3%) oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-α. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP. PMID:20169192

  19. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells.

    PubMed

    Ponce-Regalado, María Dolores; Ortuño-Sahagún, Daniel; Zarate, Carlos Beas; Gudiño-Cabrera, Graciela

    2012-06-01

    Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.

  20. Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function.

    PubMed

    Veluchamy, John P; Delso-Vallejo, María; Kok, Nina; Bohme, Fenna; Seggewiss-Bernhardt, Ruth; van der Vliet, Hans J; de Gruijl, Tanja D; Huppert, Volker; Spanholtz, Jan

    2017-03-10

    Advancements in multi-colour fluorescence activated cell sorting (FACS) panel warrant harmonized procedures to obtain comparable data between various laboratories. The intensifying clinical exploration of Natural Killer (NK) cell-based immunotherapy demands standardized and harmonized NK cell FACS panels and acquisition protocols. Eight colour FACS panels were designed to study human NK cell phenotype and function within peripheral blood mononuclear cells (PBMC). The panels were designed around fixed backbone markers and channels, covering antigens for non-NK lineage exclusion (CD3, TCRγδ, CD19, CD14, SYTOX(®) Blue) and NK cell selection (CD45, CD56, CD16), complemented with variable drop-in markers/channels to study NK cell phenotype (NKG2A, NKG2C, NKG2D and KIR2D) or NK cell function and activation (CD25, NKp44 and CD107a). Harmonized FACS set-up and data analysis for three different flow cytometers has been established, leading to highly comparable and reproducible data sets using the same PBMC reference samples (n = 6). Further studies of NK cells in fresh or cryopreserved PBMC samples (n = 12) confirmed that freezing and thawing of PBMC samples did not significantly affect NK phenotype or function. In conclusion, our data demonstrate that cryopreserved PBMC samples analysed by standardized FACS panels and harmonized analysis protocols will generate highly reliable data sets for multi-center clinical trials under validated conditions.

  1. Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function

    PubMed Central

    Veluchamy, John P.; Delso-Vallejo, María; Kok, Nina; Bohme, Fenna; Seggewiss-Bernhardt, Ruth; van der Vliet, Hans J.; de Gruijl, Tanja D.; Huppert, Volker; Spanholtz, Jan

    2017-01-01

    Advancements in multi-colour fluorescence activated cell sorting (FACS) panel warrant harmonized procedures to obtain comparable data between various laboratories. The intensifying clinical exploration of Natural Killer (NK) cell-based immunotherapy demands standardized and harmonized NK cell FACS panels and acquisition protocols. Eight colour FACS panels were designed to study human NK cell phenotype and function within peripheral blood mononuclear cells (PBMC). The panels were designed around fixed backbone markers and channels, covering antigens for non-NK lineage exclusion (CD3, TCRγδ, CD19, CD14, SYTOX® Blue) and NK cell selection (CD45, CD56, CD16), complemented with variable drop-in markers/channels to study NK cell phenotype (NKG2A, NKG2C, NKG2D and KIR2D) or NK cell function and activation (CD25, NKp44 and CD107a). Harmonized FACS set-up and data analysis for three different flow cytometers has been established, leading to highly comparable and reproducible data sets using the same PBMC reference samples (n = 6). Further studies of NK cells in fresh or cryopreserved PBMC samples (n = 12) confirmed that freezing and thawing of PBMC samples did not significantly affect NK phenotype or function. In conclusion, our data demonstrate that cryopreserved PBMC samples analysed by standardized FACS panels and harmonized analysis protocols will generate highly reliable data sets for multi-center clinical trials under validated conditions. PMID:28281564

  2. Genotypic and Phenotypic Markers of Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC9 in Humans

    PubMed Central

    Ye, Xiaohua; Wang, Xiaolin; Fan, Yanping; Peng, Yang; Li, Ling; Li, Shunming; Huang, Jingya; Yao, Zhenjiang

    2016-01-01

    ABSTRACT Use of antimicrobials in industrial food animal production is associated with the presence of multidrug-resistant Staphylococcus aureus among animals and humans. The livestock-associated (LA) methicillin-resistant S. aureus (MRSA) clonal complex 9 (CC9) is associated with animals and related workers in Asia. This study aimed to explore the genotypic and phenotypic markers of LA-MRSA CC9 in humans. We conducted a cross-sectional study of livestock workers and controls in Guangdong, China. The study participants responded to a questionnaire and provided a nasal swab for S. aureus analysis. The resulting isolates were assessed for antibiotic susceptibility, multilocus sequence type, and immune evasion cluster (IEC) genes. Livestock workers had significantly higher rates of S. aureus CC9 (odds ratio [OR] = 30.98; 95% confidence interval [CI], 4.06 to 236.39) and tetracycline-resistant S. aureus (OR = 3.26; 95% CI, 2.12 to 5.00) carriage than controls. All 19 S. aureus CC9 isolates from livestock workers were MRSA isolates and also exhibited the characteristics of resistance to several classes of antibiotics and absence of the IEC genes. Notably, the interaction analyses indicated phenotype-phenotype (OR = 525.7; 95% CI, 60.0 to 4,602.1) and gene-environment (OR = 232.3; 95% CI, 28.7 to 1,876.7) interactions associated with increased risk for livestock-associated S. aureus CC9 carriage. These findings suggest that livestock-associated S. aureus and MRSA (CC9, IEC negative, and tetracycline resistant) in humans are associated with occupational livestock contact, raising questions about the potential for occupational exposure to opportunistic S. aureus. IMPORTANCE This study adds to existing knowledge by giving insight into the genotypic and phenotypic markers of LA-MRSA. Our findings suggest that livestock-associated S. aureus and MRSA (CC9, IEC negative, and tetracycline resistant) in humans are associated with occupational livestock contact. Future studies

  3. Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype.

    PubMed

    Grimes, E A; Noake, P J; Dixon, L; Urquhart, A

    2001-11-01

    We describe a minisequencing protocol for screening DNA samples for the presence of 12 mutations in the human melanocortin 1 receptor gene (MC1R), eight of which are associated with the red hair phenotype. A minisequencing profile which shows homozygosity for one of these mutations or the presence of two different mutations would strongly indicate that the sample donor is red haired. The absence of any red hair causing mutations would indicate that the sample donor does not have red hair. We report the frequencies of MC1R variants in the British red haired population.

  4. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status.

    PubMed

    Tomás-Barberán, Francisco A; García-Villalba, Rocío; González-Sarrías, Antonio; Selma, María V; Espín, Juan C

    2014-07-16

    Three phenotypes for urolithin production after ellagitannin and ellagic acid intake are consistently observed in different human intervention trials. Subjects can be stratified into three urolithin-producing groups. "Phenotype A" produced only urolithin A conjugates, which included between 25 and 80% of the volunteers in the different trials. "Phenotype B" produced isourolithin A and/or urolithin B in addition to urolithin A, this being the second relevant group (10-50%). "Phenotype 0" (5-25%) was that in which these urolithins were not detected. The three phenotypes were observed independently of the volunteers' health status and demographic characteristics (age, gender, body mass index (BMI)) and of the amount or type of ellagitannin food source ingested (walnuts and other nuts, strawberries, raspberries, and other berries or pomegranates). Interestingly, a higher percentage of phenotype B was observed in those volunteers with chronic illness (metabolic syndrome or colorectal cancer) associated with gut microbial imbalance (dysbiosis). These urolithin phenotypes could show differences in the human gut microbiota and should be considered in intervention trials dealing with health benefits of ellagitannins or ellagic acid. Whether this phenotypic variation could be a biomarker related to differential health benefits or illness predisposition deserves further research.

  5. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  6. Ovine intestinal adenocarcinomas: histologic and phenotypic comparison with human colon cancer.

    PubMed

    Munday, John S; Brennan, Moira M; Jaber, Azhar M; Kiupel, Matti

    2006-04-01

    Approximately 7% of old, unthrifty sheep (Ovis aries) in New Zealand have intestinal adenocarcinomas. To investigate whether these sheep might be used as a model of human colonic neoplasia, the biologic behavior and histologic appearance of ovine intestinal adenocarcinomas were compared with those reported for human colonic adenocarcinomas. We collected 50 intestinal tracts with grossly visible intestinal neoplasia from slaughtered sheep. Neoplasms were assessed using World Health Organization guidelines for assessment of human colonic adenocarcinomas. All ovine adenocarcinomas developed in the small intestine. In contrast, only 4% of human intestinal tumors develop at this location, whereas the majority develop in the colon. A visible polyp is present within 89% of human colonic adenocarcinomas, whereas polyps were present in only 46% of the ovine neoplasms. Intestinal wall infiltration by the neoplastic cells and rates of lymph node (84% in sheep; 61% in humans) and distant (52% in sheep; 17% in humans) metastases were comparable between ovine and human adenocarcinomas. However, ovine adenocarcinomas developed more peritoneal and fewer hepatic metastases than human adenocarcinomas. Histologic grading of ovine tumors revealed cell differentiation similar to that reported within human colonic adenocarcinomas. In conclusion, ovine intestinal adenocarcinomas, like human colonic adenocarcinomas, typically arise spontaneously and consistently develop widespread metastases. In addition, tumors appear histologically similar between these species. Therefore, sheep may provide a model of advanced human colonic cancer, possibly allowing evaluation of novel therapeutics and surgical procedures.

  7. Relationship between lipogenesis and glycogen synthesis in maternal and foetal tissues during late gestation in the rat. Effect of dexamethasone.

    PubMed Central

    Benito, M; Lorenzo, M; Medina, J M

    1982-01-01

    Treatment with dexamethasone enhanced 3H2O incorporation into liver and blood lipid, and also increased plasma glucose, insulin, non-esterified fatty acid and triacylglycerol concentrations during late gestation in the mother rat. An inverse relationship between glycogen and lipid synthesis in foetal liver and lung was observed in control rats. This relationship was also observed in foetal liver, but not in foetal lung, after treatment with dexamethasone. PMID:6751319

  8. Phenotypic and genotypic characterization of a new fish-virulent Vibrio vulnificus serovar that lacks potential to infect humans.

    PubMed

    Fouz, Belén; Roig, Francisco J; Amaro, Carmen

    2007-06-01

    Vibrio vulnificus is a bacterial species that is virulent for humans and fish. Human isolates are classified into biotypes 1 and 3 (BT1 and BT3) and fish isolates into biotype 2 (BT2). However, a few human infections caused by BT2 isolates have been reported worldwide (zoonosis). These BT2 human isolates belong to serovar E (SerE), which is also present in diseased fish. The aim of the present work was to characterize a new BT2 serovar [serovar A (SerA)], which emerged in the European fish-farming industry in 2000, by means of phenotypic, serological and genetic [plasmid profiling, ribotyping and random amplified polymorphic DNA (RAPD)] methodologies. The results confirmed that SerA constitutes a homogeneous O-serogroup within the species that shares plasmidic information with SerE. Like SerE, this new serogroup was resistant to fresh fish serum, as well as being highly virulent for fish. In contrast, it was sensitive to human serum and avirulent for mice, even after pretreatment with iron. The two serovars presented different biochemical profiles as well as specific patterns by ribotyping and RAPD analysis. In conclusion, SerA seems to constitute a different clonal group that has recently emerged within the species V. vulnificus, with pathogenic potential for fish but not for humans.

  9. Significant association between body composition phenotypes and the osteocalcin genomic region in normative human population.

    PubMed

    Korostishevsky, Michael; Malkin, Ida; Trofimov, Svetlana; Pei, Yufang; Deng, Hong-Wen; Livshits, Gregory

    2012-10-01

    Osteocalcin, a major inorganic component of bone matrix and marker of bone formation, is also involved in regulation of glucose and fat mass metabolism. However, much uncertainty remains about whether the above effect on fat mass has a genetic component. Our main aim was to test whether a variation of body composition phenotypes is associated with BGLAP genomic region variants. To achieve this aim, we used an ethnically homogeneous discovery sample of 230 families consisting of 1112 apparently healthy individuals (561 males and 551 females) of European origin. We conducted association analysis between six SNPs and five obesity-related phenotypes: plasma levels of leptin, anthropometrical fat mass (FM), principal component scores of eight skinfold (SK_PC) and nine circumference (CR_PC) measurements, and body mass index (BMI). Two powerful and robust tools were applied: the pedigree disequilibrium test and variance component models, taking into account both familial and genetic effects. Significant association results were observed for all phenotypes. The most significant results were observed between the haplotype composed of three SNPs (rs2758605-rs1543294-rs2241106) and BMI (p=8.07(-7)), and CR_PC (p=5.29(-5)). The association with BMI was tested and confirmed in our replication study, including 2244 unrelated adult US Caucasians, who were previously assessed for whole genome SNP data. In addition, we obtained an evidence of potential non-additive interactions between the above three SNPs concerning their association with BMI. Bioinformatics sources suggest that the aforementioned interaction could originate from different genetic loci in this region; however, ascertaining the exact circumstances requires a detailed molecular-genetic study.

  10. Retinol and Retinyl Palmitate in Foetal Lung Mice: Sexual Dimorphism

    PubMed Central

    Carvalho, Olga; Gonçalves, Carlos

    2013-01-01

    In this work, we evaluate the lung retinoids content to study the possible difference between male and female mice during prenatal development and to comprehend if the vitamin A metabolism is similar in both genders. The study occurred between developmental days E15 and E19, and the retinol and retinyl palmitate lung contents were determined by HPLC analysis. We established two main groups: the control, consisting of foetuses obtained from pregnant females without any manipulation, and vitamin A, composed of foetuses from pregnant females submitted to vitamin A administration on developmental day E14. Each of these groups was subdivided by gender, establishing the four final groups. In the lung of control group, retinol was undetected in both genders and retinyl palmitate levels exhibited a sexual dimorphism. In the vitamin A group, we detected retinol and retinyl palmitate in both genders, and we observed a more evident sexual dimorphism for both retinoids. Our study also indicates that, from developmental day E15 to E19, there is an increase in the retinoids content in foetal lung and a gender difference in the retinoids metabolism. In conclusion, there is a sexual dimorphism in the lung retinoids content and in its metabolism during mice development. PMID:23365730

  11. Maternal Geophagy of Calabash Chalk on Foetal Cerebral Cortex Histomorphology

    PubMed Central

    EKANEM, Theresa Bassey; EKONG, Moses Bassey; ELUWA, Mokutima Amarachi; IGIRI, Anozeng Oyono; OSIM, Eme Efiom

    2015-01-01

    Background: Calabash chalk, a kaolin-base substance is a common geophagic material mostly consumed by pregnant women. This study investigated its effect on the histomorphology of the foetal cerebral cortex. Methods: Twelve gestating Wistar rats were divided equally into groups 1 and 2. On pregnancy day seven (PD7), group 2 animals were administered 200 mg/kg body weight of calabash chalk suspension, while group 1 animals served as the control and received 1 ml of distilled water, by oral gavages and for 14 days (PD7-PD20). On PD21, the dams were sacrificed, and the foetuses removed, examined for gross malformations, weighed and culled to two foetuses per mother. Their whole brains were excised, weighed and preserved using 10% buffered formalin, and routinely processed by haematoxylin and eosin, and Luxol fast blue methods. Results: The foetuses showed no morphological change, but their mean body weights was higher (p=0.0001). Histomorphological sections of the cerebral cortex showed hypertrophy and hyperplasia of cells in all the cortical layers, with less demonstrated Nissl and higher (p=0.001) cellular population compared with the control group. Conclusion: Calabash chalk cause body weight increase and histomorphological changes in the cerebral cortex of foetuses. PMID:26715904

  12. Foetal presentation of cartilage hair hypoplasia with extensive granulomatous inflammation.

    PubMed

    Crahes, Marie; Saugier-Veber, Pascale; Patrier, Sophie; Aziz, Moutaz; Pirot, Nathalie; Brasseur-Daudruy, Marie; Layet, Valérie; Frébourg, Thierry; Laquerrière, Annie

    2013-07-01

    Cartilage-hair-hypoplasia is a rare autosomal recessive metaphyseal dysplasia due to RMRP (the RNA component of the RNase MRP ribonuclease mitochondrial RNA processing complex) gene mutations. So far, about 100 mutations have been reported in the promoter and the transcribed regions. Clinical characteristics include short-limbed short stature, sparse hair and defective cell-mediated immunity. We report herein the antenatal presentation of a female foetus, in whom CHH was suspected from 23 weeks' gestation, leading to a medical termination of the pregnancy at 34 weeks gestation, and thereafter confirmed by morphological and molecular studies. Post-mortem examination confirmed short stature and limbs, and revealed thymic hypoplasia associated with severe CD4 T-cell immunodeficiency along with extensive non caseating epithelioid granulomas in almost all organs, which to our knowledge has been described only in five cases. Molecular studies evidenced on one allele the most frequently reported founder mutation NR_003051: g.70A>G, which is present in 92% of Finnish patients with Cartilage Hair Hypoplasia. On the second allele, a novel mutation consisting of a 10 nucleotide insertion at position -18 of the promoter region of the RMRP gene (M29916.1:g.726_727insCTCACTACTC) was detected. The founder mutation was inherited from the father, and the novel mutation from the mother. To our knowledge, this case report represents the first detailed foetal analysis described in the literature.

  13. ZIKA VIRUS INFECTION; VERTICAL TRANSMISSION AND FOETAL CONGENITAL ANOMALIES.

    PubMed

    Abbasi, Aziz-un-Nisa

    2016-01-01

    Zika virus (ZIKV) is an arbovirus belonging to flaviviridae family that includes Dengue, West Nile, and Yellow Fever among others. Zika virus was first discovered in 1947 in Zika forest of Uganda. It is a vector borne disease, which has been sporadically reported mostly from Africa, Pacific islands and Southeast Asia since its discovery. ZIKV infection presents as a mild illness with symptoms lasting for several days to a week after the bite of an infected mosquito. Majority of the patients have low grade fever, rash, headaches, joints pain, myalgia, and flu like symptoms. Pregnant women are more vulnerable to ZIKV infection and serious congenital anomalies can occur in foetus through trans-placental transmission. The gestation at which infection is acquired is important. Zika virus infection acquired in early pregnancy poses greater risk. There is no evidence so far about transmission through breast milk. Foetal microcephaly, Gillian Barre syndrome and other neurological and autoimmune syndromes have been reported in areas where Zika outbreaks have occurred. As infection is usually very mild no specific treatment is required. Pregnant women may be advised to take rest, get plenty of fluids. For fever and pain they can take antipyretics like paracetamol. So far no specific drugs or vaccines are available against Zika Virus Infection so prevention is the mainstay against this diseases. As ZIKV infection is a vector borne disease, prevention can be a multi-pronged strategy. These entail vector control interventions, personal protection, environmental sanitation and health education among others.

  14. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes.

    PubMed

    Recha-Sancho, Lourdes; Semino, Carlos E

    2016-07-01

    The use of chondrocytes in cell-based therapies for cartilage lesions are limited by quantity and, therefore, require an in vitro expansion. As monolayer culture leads to de-differentiation, different culture techniques are currently under development to recover chondrocyte phenotype after cell expansion. In the present work, we studied the capacity of the bimolecular heparin-based self-assembling peptide scaffold (RAD16-I) as a three-dimensional (3D) culture system to foster reestablishment of chondrogenic phenotype of de-differentiated human Articular Chondrocytes (AC). The culture was performed in a serum-free medium under control and chondrogenic induction and good viability results were observed after 4 weeks of culture in both conditions. Cells changed their morphology to a more elongated shape and established a cellular network that induced the condensation of the constructs in the case of chondrogenic medium, leading to a compacted structure with improved mechanical properties. Specific extracellular matrix (ECM) proteins of mature cartilage, such as collagen type II and aggrecan were up-regulated under chondrogenic medium and significantly enhanced with the presence of heparin in the scaffold. 3D constructs became highly stained with toluidine blue dye after 4 weeks of culture, indicating the presence of synthetized proteoglycans (PGs) by the cells. Interestingly, the full viscoelastic behavior was closely related to that found in chicken native cartilage. Altogether, the results suggest that the 3D culture model described can help de-differentiated human chondrocytes to recover its cartilage phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1694-1706, 2016.

  15. A (p)ppGpp-null mutant of Haemophilus ducreyi is partially attenuated in humans due to multiple conflicting phenotypes.

    PubMed

    Holley, Concerta; Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2014-08-01

    (p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.

  16. Elucidating the genotype-phenotype relationships and network perturbations of human shared and specific disease genes from an evolutionary perspective.

    PubMed

    Begum, Tina; Ghosh, Tapash Chandra

    2014-10-05

    To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes.

  17. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    SciTech Connect

    Kaisho, Yoshihiko . E-mail: Kaisho_Yoshihiko@takeda.co.jp; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-05-13

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.

  18. Phenotypic profiling of Scedosporium aurantiacum, an opportunistic pathogen colonizing human lungs.

    PubMed

    Kaur, Jashanpreet; Duan, Shu Yao; Vaas, Lea A I; Penesyan, Anahit; Meyer, Wieland; Paulsen, Ian T; Nevalainen, Helena

    2015-01-01

    Genotyping studies of Australian Scedosporium isolates have revealed the strong prevalence of a recently described species: Scedosporium aurantiacum. In addition to occurring in the environment, this fungus is also known to colonise the respiratory tracts of cystic fibrosis (CF) patients. A high throughput Phenotype Microarray (PM) analysis using 94 assorted substrates (sugars, amino acids, hexose-acids and carboxylic acids) was carried out for four isolates exhibiting different levels of virulence, determined using a Galleria mellonella infection model. A significant difference was observed in the substrate utilisation patterns of strains displaying differential virulence. For example, certain sugars such as sucrose (saccharose) were utilised only by low virulence strains whereas some sugar derivatives such as D-turanose promoted respiration only in the more virulent strains. Strains with a higher level of virulence also displayed flexibility and metabolic adaptability at two different temperature conditions tested (28 and 37°C). Phenotype microarray data were integrated with the whole-genome sequence data of S. aurantiacum to reconstruct a pathway map for the metabolism of selected substrates to further elucidate differences between the strains.

  19. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    PubMed Central

    CORRÊA, NATÁSSIA C.R.; KUASNE, HELLEN; FARIA, JERUSA A.Q.A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; NONOGAKI, SUELY; ROCHA, RAFAEL M.; SILVA, GERLUZA APARECIDA BORGES; GOBBI, HELENICE; ROGATTO, SILVIA R.; GOES, ALFREDO M.; GOMES, DAWIDSON A.

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an ‘establishment’ phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. PMID:23404580

  20. Testing foetal-maternal heart rate synchronization via model-based analyses.

    PubMed

    Riedl, Maik; van Leeuwen, Peter; Suhrbier, Alexander; Malberg, Hagen; Grönemeyer, Dietrich; Kurths, Jürgen; Wessel, Niels

    2009-04-13

    The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization.

  1. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    PubMed Central

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may underlie preaxial polydactyly in both mice and humans. We have used deletion chromosomes to demonstrate that the dominant mouse and human limb defects arise from gain-of-function mutations and not from haploinsufficiency. Furthermore, we created a loss-of-function mutation in the mouse Lmbr1 gene that causes digit number reduction (oligodactyly) on its own and in trans to a deletion chromosome. The loss of digits that we observed in mice with reduced Lmbr1 activity is in contrast to the gain of digits observed in Hx mice and human polydactyly patients. Our results suggest that the Lmbr1 gene is required for limb formation and that reciprocal changes in levels of Lmbr1 activity can lead to either increases or decreases in the number of digits in the vertebrate limb. PMID:11606546

  2. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure

    SciTech Connect

    Kosten, Ilona J.; Spiekstra, Sander W.; Gruijl, Tanja D. de; Gibbs, Susan

    2015-08-15

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a{sup +} MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a{sup −}/CD14{sup +}/CD68{sup +} which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets. - Highlights: • MUTZ-3 derived Langerhans cells integrated into skin equivalents are fully functional. • Anti-CXCL12 blocks allergen-induced MUTZ-LC migration.

  3. A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols.

    PubMed

    Frame, L T; Ozawa, S; Nowell, S A; Chou, H C; DeLongchamp, R R; Doerge, D R; Lang, N P; Kadlubar, F F

    2000-09-01

    A thermostable phenol sulfotransferase, SULT1A1, has been implicated in numerous detoxification and bioactivation pathways; however, little is known regarding its endogenous function or its putative role in mediating risk for human environmental disease. A simple endpoint colorimetric assay is described that can be used for rapid phenotyping of SULT1A1 activity in human populations. The assay utilizes a microtiter-plate format and relatively small amounts of platelet cytosol-derived enzyme. The enzyme catalyzes the synthesis of 2-naphthylsulfate from 2-naphthol and 5'-phosphoadenosine 3'-phosphosulfate (PAPS), whereas addition of p-nitrophenyl sulfate to the assay contributes to an effective PAPS-regenerating system. In contrast to other sulfotransferase assay methods, 3'-phosphoadenosine 5'-phosphate (PAP) does not accumulate during the incubation to interfere with enzyme activity, but instead serves as a cofactor to cause the removal of sulfate from p-nitrophenyl sulfate to regenerate PAPS. This reaction concomitantly results in generation of p-nitrophenol that can be quantified colorimetrically at 405 nm (epsilon = 18,200 M(-1)) to give an indirect measure of sulfotransferase activity. Using platelet enzyme preparations from adult human subjects, sulfation rates of two prototypical thermostable phenol sulfotransferase substrates (2-naphthol and p-nitrophenol) and one thermolabile phenol sulfotransferase substrate (dopamine) were determined using standard radiochemical protocols. These data were then compared with results from the colorimetric assay using 2-naphthol as substrate. There was a good correlation between the phenotyping assay and radiochemical assays for both 2-naphthol sulfotransferase and p-nitrophenol sulfotransferase activity (r = 0.85 and 0.69, respectively). However, SULT1A1 activity was approximately 10 to 20 times higher with the colorimetric determination. As anticipated, there was no correlation between SULT1A1 activity and dopamine

  4. Transcriptome-scale similarities between mouse and human skeletal muscles with normal and myopathic phenotypes

    PubMed Central

    Kho, Alvin T; Kang, Peter B; Kohane, Isaac S; Kunkel, Louis M

    2006-01-01

    Background Mouse and human skeletal muscle transcriptome profiles vary by muscle type, raising the question of which mouse muscle groups have the greatest molecular similarities to human skeletal muscle. Methods Orthologous (whole, sub-) transcriptome profiles were compared among four mouse-human transcriptome datasets: (M) six muscle groups obtained from three mouse strains (wildtype, mdx, mdx5cv); (H1) biopsied human quadriceps from controls and Duchenne muscular dystrophy patients; (H2) four different control human muscle types obtained at autopsy; and (H3) 12 different control human tissues (ten non-muscle). Results Of the six mouse muscles examined, mouse soleus bore the greatest molecular similarities to human skeletal muscles, independent of the latters' anatomic location/muscle type, disease state, age and sampling method (autopsy versus biopsy). Significant similarity to any one mouse muscle group was not observed for non-muscle human tissues (dataset H3), indicating this finding to be muscle specific. Conclusion This observation may be partly explained by the higher type I fiber content of soleus relative to the other mouse muscles sampled. PMID:16522209

  5. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    PubMed

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  6. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype.

    PubMed

    Al-Sharea, Annas; Lee, Man Kit Sam; Moore, Xiao-Lei; Fang, Lu; Sviridov, Dmitri; Chin-Dusting, Jaye; Andrews, Karen L; Murphy, Andrew J

    2016-04-01

    Recruitment of monocytes in atherosclerosis is dependent upon increased levels of plasma lipoproteins which accumulate in the blood vessel wall. The extracellular milieu can influence the phenotype of monocyte subsets (classical: CD14++CD16-, intermediate: CD14+CD16+ and non-classical: CD14dimCD16++) and macrophages (M1 or M2) and consequently the initiation, progression and/or regression of atherosclerosis. However, it is not known what effect lipoproteins, in particular native low-density lipoproteins (nLDL), have on the polarisation of monocyte-derived macrophages. Monocytes were differentiated into macrophages in the presence of nLDL. nLDL increased gene expression of the inflammatory cytokines TNFα and IL-6 in macrophages polarised towards the M1 phenotype while decreasing the M2 surface markers, CD206 and CD200R and the anti-inflammatory cytokines TGFβ and IL-10. Compared to the classical and intermediate subsets, the non-classical subset-derived macrophages had a reduced ability to respond to M1 stimuli (LPS and IFNγ). nLDL enhanced the TNFα and IL-6 gene expression in macrophages from all monocyte subsets, indicating an inflammatory effect of nLDL. Further, the classical and intermediate subsets both responded to M2 stimuli (IL-4) with upregulation of TGFβ and SR-B1 mRNA; an effect, which was reduced by nLDL. In contrast, the non-classical subset failed to respond to IL-4 or nLDL, suggesting it may be unable to polarise into M2 macrophages. Our data suggests that monocyte interaction with nLDL significantly affects macrophage polarisation and that this interaction appears to be subset dependent.

  7. Smoking, physical exercise, BMI and late foetal death: a study within the Danish National Birth Cohort.

    PubMed

    Morales-Suárez-Varela, Maria; Nohr, Ellen A; Bech, Bodil H; Wu, Chunsen; Olsen, Jørn

    2016-10-01

    The aim of this paper was to estimate the effect of maternal and paternal smoking on foetal death (miscarriage and stillbirth) and to estimate potential interactions with physical exercise and pre-pregnancy body mass index. We selected 87,930 pregnancies from the population-based Danish National Birth Cohort. Information about lifestyle, occupational, medical and obstetric factors was obtained from a telephone interview and data on pregnancy outcomes came from the Danish population based registries. Cox regression was used to estimate the hazard ratios (adjusted for potential confounders) for predominantly late foetal death (miscarriage and stillbirth). An interaction contrast ratio was used to assess potential effect measure modification of smoking by physical exercise and body mass index. The adjusted hazard ratio of foetal death was 1.22 (95 % CI 1.02-1.46) for couples where both parents smoked compared to non-smoking parents (miscarriage: 1.18, 95 % CI 0.96-1.44; stillbirth: 1.32, 95 % CI 0.93-1.89). On the additive scale, we detected a small positive interaction for stillbirth between smoking and body mass index (overweight women). In conclusion, smoking during pregnancy was associated with a slightly higher hazard ratio for foetal death if both parents smoked. This study suggests that smoking may increase the negative effect of a high BMI on foetal death, but results were not statistically significant for the interaction between smoking and physical exercise.

  8. Effects of calcium channel-blocker tokolysis on the foetal circulation.

    PubMed

    Vojcek, L; Princzkel, E; Lampé, L G; Turnbull, A C; Kovács, T

    1988-01-01

    The Ca++-antagonist nifedipine has been successfully employed in the treatment of non-gravid hypertension, and was found to inhibit uterine contractions in the perimenstrual period, as well as during premature labour in animal models. The use of antihypertensive drugs in pregnancy introduces the possibility of iatrogenic foetal distress. It has been established that nifedipine crosses the placental barrier in the sheep and causes a fall in mean arterial pressure and tachycardia in both the ewe and the foetus. This paper examines the effects of nifedipine on the foetus when administered to the pregnant ewe. Catheters and electrodes were implanted by surgical procedures in 15 ewes and foetal lambs between days 118 and 122 of gestation. The redistribution of foetal blood flow was measured by the radioactive microsphere injection technique. The infusion of nifedipine caused a 9% increase in the combined ventricular output (CVO) from 446 to 509 ml/min/kg in the foetus. Foetal lung blood flow increased from 29 +/- 6 to 69 +/- 14 ml/min/kg while figures for the skeletal muscle flow were 109 +/- 34 and 141 +/- 41.6 ml/min/kg. Heart and brain blood flow, expressed as percentages of CVO showed variations of 4.3 and 5.6 per cent, respectively. Blood flow in the gut, placental membranes, skin, kidney and spleen was reduced. The present results show that nifedipine, in addition to its known effects causes a redistribution of the foetal circulation.

  9. Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice

    PubMed Central

    Drgonova, Jana; Walther, Donna; Hartstein, G Luke; Bukhari, Mohammad O; Baumann, Michael H; Katz, Jonathan; Hall, F Scott; Arnold, Elizabeth R; Flax, Shaun; Riley, Anthony; Rivero, Olga; Lesch, Klaus-Peter; Troncoso, Juan; Ranscht, Barbara; Uhl, George R

    2016-01-01

    The cadherin 13 (CDH13) gene encodes a cell adhesion molecule likely to influence development and connections of brain circuits that modulate addiction, locomotion and cognition, including those that involve midbrain dopamine neurons. Human CDH13 mRNA expression differs by more than 80% in postmortem cerebral cortical samples from individuals with different CDH13 genotypes, supporting examination of mice with altered CDH13 expression as models for common human variation at this locus. Constitutive CDH13 knockout mice display evidence for changed cocaine reward: shifted dose response relationship in tests of cocaine-conditioned place preference using doses that do not alter cocaine-conditioned taste aversion. Reduced adult CDH13 expression in conditional knockouts also alters cocaine reward in ways that correlate with individual differences in cortical CDH13 mRNA levels. In control and comparison behavioral assessments, knockout mice display modestly quicker acquisition of rotarod and water maze tasks, with a trend toward faster acquisition of 5-choice serial reaction time tasks that otherwise displayed no genotype-related differences. They display significant differences in locomotion in some settings, with larger effects in males. In assessments of brain changes that might contribute to these behavioral differences, there are selective alterations of dopamine levels, dopamine/metabolite ratios, dopaminergic fiber densities and mRNA encoding the activity dependent transcription factor npas4 in cerebral cortex of knockout mice. These novel data and previously reported human associations of CDH13 variants with addiction, individual differences in responses to stimulant administration and attention deficit hyperactivity disorder (ADHD) phenotypes suggest that levels of CDH13 expression, through mechanisms likely to include effects on mesocortical dopamine, influence stimulant reward and may contribute modestly to cognitive and locomotor phenotypes relevant to ADHD

  10. Cosmetics as a Feature of the Extended Human Phenotype: Modulation of the Perception of Biologically Important Facial Signals

    PubMed Central

    Etcoff, Nancy L.; Stock, Shannon; Haley, Lauren E.; Vickery, Sarah A.; House, David M.

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  11. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients.

    PubMed

    Liu, Meng-Lu; Zang, Tong; Zhang, Chun-Li

    2016-01-05

    Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  12. Expression cloning of multiple human cDNAs that complement the phenotypic defects of ataxia-telangiectasia group D fibroblasts.

    PubMed Central

    Meyn, M S; Lu-Kuo, J M; Herzing, L B

    1993-01-01

    Ataxia-telangiectasia (A-T) is an inherited human disease of unknown etiology associated with neurologic degeneration, immune dysfunction, cancer risk, and genetic instability. A-T cells are sensitive to ionizing radiation and radiomimetic drugs, offering the possibility of cloning A-T genes by phenotypic complementation. We have used this sensitivity to isolate the first human cDNAs reported to complement A-T cells in culture. Complementation group D A-T fibroblasts were transfected with an episomal vector-based human cDNA library, approximately 610,000 resultant transformants were treated with the radiomimetic drug streptonigrin-resistant, and nine unrelated cDNAs were recovered from 29 surviving streptonigrin-resistant clones. Five cDNAs were mapped, but none localized to 11q23, the site of A-T complementation group A and C loci. Four of the mapped cDNAs conferred mutagen resistance to A-T D fibroblasts on secondary transfection. One cDNA was identified as a fragment of dek, a gene involved in acute myeloid leukemia. The dek cDNA fragment and pCAT4.5, a 4.5-kb cDNA that mapped to 17p11, independently complemented three different phenotypic abnormalities of A-T D fibroblasts (mutagen sensitivity, hyper-recombination, and radio-resistant DNA synthesis). The pCAT4.5 cDNA did not complement the mutagen sensitivity of an A-T group C fibroblast line, suggesting that it represents a candidate disease gene for group D A-T. Our results indicate that phenotypic complementation alone is insufficient evidence to prove that a candidate cDNA is an A-T disease gene. The complementing cDNAs may represent previously uncharacterized genes that function in the same pathway as does the A-T gene product(s) in the regulation of cellular responses to DNA damage. Images Figure 2 PMID:7504406

  13. Subepithelial B cells in the human palatine tonsil. I. Morphologic, cytochemical and phenotypic characterization.

    PubMed

    Dono, M; Burgio, V L; Tacchetti, C; Favre, A; Augliera, A; Zupo, S; Taborelli, G; Chiorazzi, N; Grossi, C E; Ferrarini, M

    1996-09-01

    This study describes the purification of a subset of tonsillar B cells which share phenotypic, morphologic and cytochemical features with subepithelial (SE) B cells. These cells, which represented the 5-10% of the total tonsillar B cells, were found in the Percoll gradient fraction of highest density, together with resting follicular mantle (FM) B cells. The latter B cells, however, expressed surface CD5 and could be removed by an immune rosetting procedure. The remaining small CD5- B cells had a surface phenotype (IgM+, IgD+, CD23-, CD38+/-, CD10-, CD44+) that was different from that of FM (IgM+, IgD+, CD23+, CD39+, CD38-, CD10-, CD44+2) and of germinal center (GC) (CD23-, CD39-, CD38+, CD10+, CD44+/-, IgG+) B cells isolated from the same cell suspensions. Furthermore, the absence of surface activation markers (CD71 and CD69) and of surface IgG allowed us to distinguish small CD5- B cells from activated and memory cells migrating within Percoll fractions of lower density. In situ immunohistochemical studies revealed that B cells with an identical phenotype as that of small CD5- B cells could be detected predominantly in the SE region (lamina propria) of the tonsil, and also within the epithelium lining the cryptae. This area was also comprised of a relatively minor proportion of activated B cells, not found in the small CD5- B cell fraction owing to the separation procedure used. Consistent with the notion that the SE area could be a site of B cell activation was also the presence of activated macrophages and of plasma cells. Thirty to forty percent of small CD5- B cells isolated in suspension were positive for the endogeneous alkaline phosphatase (ALP) activity. In contrast, only a few FM B cells were ALP+, while GC cells were consistently ALP-. In situ studies also demonstrated a prevalent expression of ALP activity by the B cells in the SE area. At the ultrastructural level, small CD5- B cells were clearly different from both FM and GC B cells. They displayed a

  14. Characterization of cervical cancer stem cell-like cells: phenotyping, stemness, and human papilloma virus co-receptor expression.

    PubMed

    Ortiz-Sánchez, Elizabeth; Santiago-López, Luz; Cruz-Domínguez, Verónica B; Toledo-Guzmán, Mariel E; Hernández-Cueto, Daniel; Muñiz-Hernández, Saé; Garrido, Efraín; Cantú De León, David; García-Carrancá, Alejandro

    2016-05-31

    Cancer stem cells (CSC) exhibit high tumorigenic capacity in several tumor models. We have now determined an extended phenotype for cervical cancer stem cells. Our results showed increased CK-17, p63+, AII+, CD49f+ expression in these cells, together with higher Aldehyde dehydrogenase (ALDHbright)activity in Cervical CSC (CCSC) enriched in cervospheres. An increase in stem cell markers, represented by OCT-4, Nanog, and β-catenin proteins, was also observed, indicating that under our culture conditions, CCSC are enriched in cervospheres, as compared to monolayer cultures. In addition, we were able to show that an increased ALDHbright activity correlated with higher tumorigenic activity. Flow cytometry and immunflorescence assays demonstrated that CCSC in cervosphere cultures contain a sub-population of cells that contain Annexin II, a Human papillomavirus (HPV) co-receptor. Taken together, under our conditions there is an increase in the number of CCSC in cervosphere cultures which exhibit the following phenotype: CK-17, p63+, AII+, CD49f+ and high ALDH activity, which in turn correlates with higher tumorigenicity. The presence of Annexin II and CD49f in CCSC opens the possibility that normal cervical stem cells could be the initial target of infection by high risk HPV.

  15. The effects of self-assembling peptide RADA16 hydrogel on malignant phenotype of human hepatocellular carcinoma cell

    PubMed Central

    Song, Hong; Han, Yun-Zhu; Cai, Guo-Hui; Tang, Fu-Shan; Yang, Ze-Hong; Ao, Di-Shu; Zhou, An

    2015-01-01

    The aim of this study will provide a self-assembling peptide (RADA16-I) -derived hydrogel as a tool for investigation the malignant phenotype of human hepatocellular carcinoma cell. Characteristic analysis indicated that the peptide consists of a well-defined secondary structure and self-assembly property. Our results showed that these cells cultured in RADA16-I hydrogels showed a spindle-shaped phenotype with irregular and radial nuclei. Immunohistochemical results showed that the expression of fibronectin in hepatocellular carcinoma cells is positive cultured in RADA16-I hydrogels, and the expression levels of laminin are weakly positive. DNA contents cultured in RADA16-I hydrogel gradually increased up to Day 9. The expression levels of VEGFA, EGF and FGF2 in three hydrogels showed no statistically significant differences (P > 0.05), and the expression levels of IGF-1 in RADA16-I and collagen-I were significantly lower than those of in the Matrigel hydrogel (P ≤ 0.05). These findings suggested that the RADA16-I will help to provide a better physiological substrate for hepatocellular carcinoma cell culture, may serve as an ideal model for cancer biology research of tumorigenesis, growth, local invasion, and metastasis. PMID:26628972

  16. Characterization of cervical cancer stem cell-like cells: phenotyping, stemness, and human papilloma virus co-receptor expression

    PubMed Central

    Ortiz-Sánchez, Elizabeth; Santiago-López, Luz; Cruz-Domínguez, Verónica B.; Toledo-Guzmán, Mariel E.; Hernández-Cueto, Daniel; Muñiz-Hernández, Saé; Garrido, Efraín; De León, David Cantú; García-Carrancá, Alejandro

    2016-01-01

    Cancer stem cells (CSC) exhibit high tumorigenic capacity in several tumor models. We have now determined an extended phenotype for cervical cancer stem cells. Our results showed increased CK-17, p63+, AII+, CD49f+ expression in these cells, together with higher Aldehyde dehydrogenase (ALDHbright)activity in Cervical CSC (CCSC) enriched in cervospheres. An increase in stem cell markers, represented by OCT-4, Nanog, and β-catenin proteins, was also observed, indicating that under our culture conditions, CCSC are enriched in cervospheres, as compared to monolayer cultures. In addition, we were able to show that an increased ALDHbright activity correlated with higher tumorigenic activity. Flow cytometry and immunflorescence assays demonstrated that CCSC in cervosphere cultures contain a sub-population of cells that contain Annexin II, a Human papillomavirus (HPV) co-receptor. Taken together, under our conditions there is an increase in the number of CCSC in cervosphere cultures which exhibit the following phenotype: CK-17, p63+, AII+, CD49f+ and high ALDH activity, which in turn correlates with higher tumorigenicity. The presence of Annexin II and CD49f in CCSC opens the possibility that normal cervical stem cells could be the initial target of infection by high risk HPV. PMID:27008711

  17. Endogenously Expressed IL-4Rα Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo.

    PubMed

    Traub, Benno; Sun, Lie; Ma, Yongsu; Xu, Pengfei; Lemke, Johannes; Paschke, Stephan; Henne-Bruns, Doris; Knippschild, Uwe; Kornmann, Marko

    2017-03-28

    Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 cells stably expressing shRNA targeting IL-4Rα. The malignant phenotype was characterized by assessing growth properties, directional and non-directional cell movement in vitro and tumor growth in vivo. Signaling pathways were analyzed upon IL-4 and IL-13 stimulation of wildtype (WT) and control-transfected cells compared to IL-4Rα-knockdown cells. Silencing of IL-4Rα resulted in reduced anchorage-dependent cell growth (p < 0.05) and reduced anchorage-independent colony size (p < 0.001) in vitro. Moreover, cell movement and migration was inhibited. IL-4 and IL-13 stimulation of Capan-1-WT cells induced activation of similar pathways like stimulation with Insulin-like growth factor (IGF)-I. This activation was reduced after IL-4Rα downregulation while IGF-I signaling seemed to be enhanced in knockdown-clones. Importantly, IL-4Rα silencing also significantly suppressed tumor growth in vivo. The present study indicates that endogenously expressed IL-4 and IL-4Rα contribute to the malignant phenotype of pancreatic cancer cells by activating diverse pro-oncogenic signaling pathways. Addressing these pathways may contribute to the treatment of the disease.

  18. Truncated human LMP-1 triggers differentiation of C2C12 cells to an osteoblastic phenotype in vitro.

    PubMed

    Fei, Qinming; Boden, Scott D; Sangadala, Sreedhara; Viggeswarapu, Manjula; Liu, Yunshan; Titus, Louisa

    2007-09-01

    LIM mineralization protein-1 (LMP-1) is a novel intracellular osteoinductive protein that has been shown to induce bone formation both in vitro and in vivo. LMP-1 contains an N-terminal PDZ domain and three C-terminal LIM domains. In this study, we investigated whether a truncated form of human LMP-1 (hLMP-1[t]), lacking the three C-terminal LIM domains, triggers the differentiation of pluripotent myoblastic C(2)C(12) cells to the osteoblast lineage. C(2)C(12) cells were transiently transduced with Ad5-hLMP-1(t)-green fluorescent protein or viral vector control. The expression of hLMP-1(t) RNA and the truncated protein were examined. The results showed that hLMP-1(t) blocked myotube formation in C(2)C(12) cultures and significantly enhanced the alkaline phosphatase (ALP) activity. In addition, the expressions of ALP, osteocalcin, and bone morphogenetic protein (BMP)-2 and BMP-7 genes were also increased. The induction of these key osteogenic markers suggests that hLMP-1(t) can trigger the pluripotent myoblastic C2C12 cells to differentiate into osteoblastic lineage, thus extending our previous observation that LMP-1 and LMP-1(t) enhances the osteoblastic phenotype in cultures of cells already committed to the osteoblastic lineage. Therefore, C(2)C(12) cells are an appropriate model system for the examination of LMP-1 induction of the osteoblastic phenotype and the study of mechanisms of LMP-1 action.

  19. Shared alterations in NK cell frequency, phenotype, and function in chronic human immunodeficiency virus and hepatitis C virus infections.

    PubMed

    Meier, Ute-Christiane; Owen, Rachel E; Taylor, Elizabeth; Worth, Andrew; Naoumov, Nikolai; Willberg, Christian; Tang, Kwok; Newton, Phillipa; Pellegrino, Pierre; Williams, Ian; Klenerman, Paul; Borrow, Persephone

    2005-10-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) cause clinically important persistent infections. The effects of virus persistence on innate immunity, including NK cell responses, and the underlying mechanisms are not fully understood. We examined the frequency, phenotype, and function of peripheral blood CD3- CD56+ NK subsets in HIV+ and HCV+ patients and identified significantly reduced numbers of total NK cells and a striking shift in NK subsets, with a marked decrease in the CD56(dim) cell fraction compared to CD56(bright) cells, in both infections. This shift influenced the phenotype and functional capacity (gamma interferon production, killing) of the total NK pool. In addition, abnormalities in the functional capacity of the CD56(dim) NK subset were observed in HIV+ patients. The shared NK alterations were found to be associated with a significant reduction in serum levels of the innate cytokine interleukin 15 (IL-15). In vitro stimulation with IL-15 rescued NK cells of HIV+ and HCV+ patients from apoptosis and enhanced proliferation and functional activity. We hypothesize that the reduced levels of IL-15 present in the serum during HIV and HCV infections might impact NK cell homeostasis, contributing to the common alterations of the NK pool observed in these unrelated infections.

  20. Human Adult Stem Cells Maintain a Constant Phenotype Profile Irrespective of Their Origin, Basal Media, and Long Term Cultures

    PubMed Central

    Somasundaram, Indumathi; Mishra, Rashmi; Radhakrishnan, Harikrishnan; Sankaran, Rajkumar; Garikipati, Venkata Naga Srikanth

    2015-01-01

    The study aims to identify the phenotypic marker expressions of different human adult stem cells derived from, namely, bone marrow, subcutaneous fat, and omentum fat, cultured in different media, namely, DMEM-Low Glucose, Alpha-MEM, DMEM-F12 and DMEM-KO and under long term culture conditions (>P20). We characterized immunophenotype by using various hematopoietic, mesenchymal, endothelial markers, and cell adhesion molecules in the long term cultures (Passages-P1, P3, P5, P9, P12, P15, and P20.) Interestingly, data revealed similar marker expression profiles irrespective of source, basal media, and extensive culturing. This demonstrates that all adult stem cell sources mentioned in this study share similar phenotypic marker and all media seem appropriate for culturing these sources. However, a disparity was observed in the markers such as CD49d, CD54, CD117, CD29, and CD106, thereby warranting further research on these markers. Besides the aforesaid objective, it is understood from the study that immunophenotyping acts as a valuable tool to identify inherent property of each cell, thereby leading to a valuable cell based therapy. PMID:25688272

  1. The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice.

    PubMed

    Wang, Qing; Gong, Xiuli; Gong, Zhijuan; Ren, Xiaoyie; Ren, Zhaorui; Huang, Shuzhen; Zeng, Yitao

    2013-12-20

    Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.

  2. A base substitution in the promoter associated with the human haptoglobin 2-1 modified phenotype decreases transcriptional activity and responsiveness to interleukin-6 in human hepatoma cells

    SciTech Connect

    Grant, D.J.; Maeda, N. )

    1993-05-01

    An A-to-C base substitution at nucleotide position -61 in the promoter region of the human haptoglobin gene (Hp) has been shown to be strongly associated with the haptoglobin 2-1 modified (Hp2-1mod) phenotype. In order to investigate whether this base substitution is the cause of reduced expression of the Hp[sup 2] allele relative to the Hp[sup 1] allele in individuals with the Hp2-1mod phenotype, the authors used the chloramphenicol acetyl transferase (CAT) expression system to evaluate promoter function. In HepG2 cells, which normally express their endogenous haptoglobin genes, CAT plasmid constructs with the -61C base change in the promoter had about 10-fold-lower transcriptional activity after transfection than did the Hp control construct. The -61C substitution also rendered the construct unresponsive to treatment by interleukin-6 after transfection into Hep3B2 cells, which normally do not express haptoglobin but do so in response to stimulation by acute-phase reactants. In addition, two base substitutions, T to A and A to G, at positions -104 and -55G, respectively, in the promoter region of the Hp[sup 1] allele, are also associated with the Hp2-1mod phenotype. CAT constructs with both substitutions (-104A-55G) and with one substitution (-55G) showed activity similar to that in the Hp control when transfected into both HepG2 and Hep3B2 cells, although interleukin-6 induction was less than with the Hp control construct. These results further support the hypothesis that the Hp2-1mod phenotype results, in part, from the -61C mutation in the promoter region of the Hp[sup 2] gene.

  3. Effects of human T-lymphotropic virus type II on human immunodeficiency virus type 1 phenotypic evolution.

    PubMed

    Guenthner, P C; Hershow, R C; Lal, R B; Dezzutti, C S

    2001-08-01

    Phenotypic change and broader coreceptor usage by HIV-1 have been associated with disease progression. HIV-1 coreceptor usage by primary isolates obtained from HIV-1-infected and HIV-1/HTLV-II-coinfected individuals was determined. HIV-1 was isolated from 15 of 20 HIV-1-infected and 17 of 24 HIV-1/HTLV-II-coinfected individuals. None of the isolates from either the HIV-1-infected or the coinfected group infected CCR5delta32 PBMCs, suggesting that they all were R5-tropic. Further, both spontaneous and PHA-stimulated production of MIP-1beta and RANTES were similar in HIV-1-infected and coinfected individuals. These data indicate that coinfection with HTLV-II has no effect on HIV-1 coreceptor usage or ex vivo beta-chemokine production.

  4. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data.

    PubMed

    Dewey, Frederick E; Grove, Megan E; Priest, James R; Waggott, Daryl; Batra, Prag; Miller, Clint L; Wheeler, Matthew; Zia, Amin; Pan, Cuiping; Karzcewski, Konrad J; Miyake, Christina; Whirl-Carrillo, Michelle; Klein, Teri E; Datta, Somalee; Altman, Russ B; Snyder, Michael; Quertermous, Thomas; Ashley, Euan A

    2015-10-01

    High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.

  5. Gene therapy for retinitis pigmentosa caused by MFRP mutations: human phenotype and preliminary proof of concept.

    PubMed

    Dinculescu, Astra; Estreicher, Jackie; Zenteno, Juan C; Aleman, Tomas S; Schwartz, Sharon B; Huang, Wei Chieh; Roman, Alejandro J; Sumaroka, Alexander; Li, Qiuhong; Deng, Wen-Tao; Min, Seok-Hong; Chiodo, Vince A; Neeley, Andy; Liu, Xuan; Shu, Xinhua; Matias-Florentino, Margarita; Buentello-Volante, Beatriz; Boye, Sanford L; Cideciyan, Artur V; Hauswirth, William W; Jacobson, Samuel G

    2012-04-01

    Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy.

  6. Gene Therapy for Retinitis Pigmentosa Caused by MFRP Mutations: Human Phenotype and Preliminary Proof of Concept

    PubMed Central

    Dinculescu, Astra; Estreicher, Jackie; Zenteno, Juan C.; Aleman, Tomas S.; Schwartz, Sharon B.; Huang, Wei Chieh; Roman, Alejandro J.; Sumaroka, Alexander; Li, Qiuhong; Deng, Wen-Tao; Min, Seok-Hong; Chiodo, Vince A.; Neeley, Andy; Liu, Xuan; Shu, Xinhua; Matias-Florentino, Margarita; Buentello-Volante, Beatriz; Boye, Sanford L.; Cideciyan, Artur V.

    2011-01-01

    Abstract Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy. PMID:22142163

  7. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data

    PubMed Central

    Dewey, Frederick E.; Grove, Megan E.; Priest, James R.; Waggott, Daryl; Batra, Prag; Miller, Clint L.; Wheeler, Matthew; Zia, Amin; Pan, Cuiping; Karzcewski, Konrad J.; Miyake, Christina; Whirl-Carrillo, Michelle; Klein, Teri E.; Datta, Somalee; Altman, Russ B.; Snyder, Michael; Quertermous, Thomas; Ashley, Euan A.

    2015-01-01

    Abstract High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework. PMID:26448358

  8. Persistent foetal tachycardia as an early marker of chorion-amnionitis. Description of a clinical case.

    PubMed

    Paternoster, D M; Laureti, E

    1996-09-01

    Intra-amniotic infection (IAI) is uncommon in pregnancy (0.5-1%) and is rarely responsible for maternal mortality, but it does lead to a high rate of maternal and foetal morbidity, e.g. sepsis, septic shock, post-partum endometritis and neonatal sepsis. The diagnosis of IAI is immediate in the case of premature rupture of the membranes, whereas it is far more difficult to reach a correct and timely diagnosis when the amniotic sac is intact, as the mother's clinical symptoms are often scarce and non-specific. Foetal and maternal prognosis in IAI depends on the timely implementation of antibiotic treatment and induction of delivery in order to drain off the infected amniotic fluid. The clinical case described here not only illustrates the difficulty in diagnosing IAI, but also confirms that timely antibiotic therapy can prevent the onset of severe maternal and foetal complications.

  9. A rare and unexpected case of retained foetal bone after an unsafe abortion.

    PubMed

    Demirtas, Omer; Terzi, Hasan; Kale, Ahmet; Sanibrahim, Bahar; Guler, Omer Tolga

    2015-10-01

    Unsafe abortion is one of the most neglected healthcare problems in developing countries. One of the rare complications of unsafe abortion is retained foetal bone. Prevalence of disease is around 0.15% among patients undergoing diagnostic hysteroscopy. Patients have no specific symptoms. Case reports have focused on subfertility, abnormal uterine bleeding, lower abdominal pain, abnormal vaginal discharge, dyspareunia, dysmenorrhoea and spontaneous passage of bony fragments. Retained foetal bone fragments may cause acute pelvic inflammatory disease in rare cases regardless of the time interval after abortion. This condition can also present as recurrent vagitinis or endometritis refractory to ampirical antimicrobial treatment. In such cases, foreign body in uterine cavity should be kept in mind. Such patients should primarily be evaluated by ultrasonography which has substantial clinical importance in differential diagnosis of these cases. We present a case of misdiagnosed retained foetal bone complicated with recurrent vaginal discharge and acute pelvic inflammatory disease.

  10. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health.

    PubMed

    Selle, Kurt; Klaenhammer, Todd R

    2013-11-01

    Certain lactic acid bacteria (LAB) have the capacity to occupy mucosal niches of humans, including the oral cavity, gastrointestinal tract, and vagina. Among commensal, LAB are species of the acidophilus complex, which have proven to be a substantial reservoir for microorganisms with probiotic attributes. Specifically, Lactobacillus gasseri is an autochthonous microorganism which has been evaluated for probiotic activity based on the availability of genome sequence and species-specific adaptation to the human mucosa. Niche-related characteristics of L. gasseri contributing to indigenous colonization include tolerance of low pH environments, resistance to bile salts, and adhesion to the host epithelium. In humans, L. gasseri elicits various health benefits through its antimicrobial activity, bacteriocin production, and immunomodulation of the innate and adaptive systems. The genomic and empirical evidence supporting use of L. gasseri in probiotic applications is substantiated by clinical trial data displaying maintenance of vaginal homeostasis, mitigation of Helicobacter pylori infection, and amelioration of diarrhea.

  11. An analysis of myeloma plasma cell phenotype using antibodies defined at the IIIrd International Workshop on Human Leucocyte Differentiation Antigens.

    PubMed Central

    Jackson, N; Ling, N R; Ball, J; Bromidge, E; Nathan, P D; Franklin, I M

    1988-01-01

    Fresh bone marrow from 43 cases of myeloma and three cases of plasma cell leukaemia has been phenotyped both by indirect immune-rosetting and, on fixed cytospin preparations, by indirect immunofluorescence. Both clustered and unclustered B cell associated antibodies from the IIIrd International Workshop on Human Leucocyte Differentiation Antigens were used. The results confirm the lack of many pan-B antigens on the surface of myeloma plasma cells, i.e. CD19-23, 37, 39, w40. Strong surface reactivity is seen with CD38 antibodies and with one CD24 antibody (HB8). Weak reactions are sometimes obtained with CD9, 10 and 45R. On cytospin preparations CD37, 39 and w40 are sometimes weakly positive, and anti-rough endoplasmic reticulum antibodies are always strongly positive. Specific and surface-reacting antiplasma cell antibodies are still lacking. PMID:3048803

  12. Human Glioma–Initiating Cells Show a Distinct Immature Phenotype Resembling but Not Identical to NG2 Glia

    PubMed Central

    Barrantes-Freer, Alonso; Kim, Ella; Bielanska, Joanna; Giese, Alf; Mortensen, Lena Sünke; Schulz-Schaeffer, Walter J.; Stadelmann, Christine; Brück, Wolfgang

    2013-01-01

    Abstract Glioma-initiating cells (GICs) represent a potential important therapeutic target because they are likely to account for the frequent recurrence of malignant gliomas; however, their identity remains unsolved. Here, we characterized the cellular lineage fingerprint of GICs through a combination of electrophysiology, lineage marker expression, and differentiation assays of 5 human patient-derived primary GIC lines. Most GICs coexpressed nestin, NG2 proteoglycan, platelet-derived growth factor receptor-α, and glial fibrillary acidic protein. Glioma-initiating cells could be partially differentiated into astrocytic but not oligodendroglial or neural lineages. We also demonstrate that GICs have a characteristic electrophysiologic profile distinct from that of well-characterized tumor bulk cells. Together, our results suggest that GICs represent a unique type of cells reminiscent of an immature phenotype that closely resembles but is not identical to NG2 glia with respect to marker expression and functional membrane properties. PMID:23481707

  13. Sex Differences in the Association between Foetal Growth and Child Attention at Age Four: Specific Vulnerability of Girls

    ERIC Educational Resources Information Center

    Murray, Elizabeth; Matijasevich, Alicia; Santos, Iná S.; Barros, Aluísio J. D.; Anselmi, Luciana; Barros, Fernando C.; Stein, Alan

    2015-01-01

    Background: Recent evidence suggests that impaired foetal growth may provide an early indication of increased risk of child attention problems. However, despite both foetal growth and child attention problems differing by sex, few studies have examined sex differences in this association. Furthermore, no studies have been conducted in low- and…

  14. Detection of foetal cells in maternal blood and prenatal sex determination by in situ hybridization. Procedure verification.

    PubMed

    Chiesa, J; Ferrer, C; Hoffet, M; Mares, P; Bureau, J P

    1999-04-01

    We describe an enrichment of foetal cells from maternal blood with a combination of double density gradient and Magnetic Activated Cell Sorting (MACS) of CD71, glycophorin A (GPA), CD34 and CD36 antibodies labeled cells followed by fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes for determination of foetal sex.

  15. Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine.

    PubMed

    Martín-Villa, J M; Ferre-López, S; López-Suárez, J C; Corell, A; Pérez-Blas, M; Arnaiz-Villena, A

    1997-12-01

    Epithelial cells of the intestine seem to act as antigen-presenting cells to surrounding lymphoid tissue and may be crucial to maintain the pool of peripheral T lymphocytes. The scope of this study was to carry out an immunophenotypic and ultramicroscopic analysis of purified human enterocytes to elucidate their role as antigen-presenting cells, in the immune responses in the gut-associated lymphoid tissue. A method has been developed to obtain purified and viable human enterocyte populations, later labeled with relevant monoclonal antibodies directed to leukocyte antigens and subjected to cytofluorometric analysis. Phenotypic analysis revealed the presence of markers common to "classical" antigen-presenting cells (CD14, CD35, CD39, CD43, CD63 and CD64), reinforcing the idea that enterocytes may act as such. Moreover, several integrins (CD11b, CD11c, CD18, CD41a, CD61 and CD29) were also found. CD25 (IL-2 receptor alpha chain) and CD28, characteristic of T cells, were detected on the surface of these cells; this latter finding rises the possibility that enterocytes could be activated by IL-2 and/or via CD28 through binding to its ligands CD80 or CD86. Finally, the presence of CD21, CD32, CD35 and CD64 that may bind immune complexes via Fc or C3, suggests their participation in the metabolism of immune complexes. Furthermore, the finding of a Birbeck's-like granule in the cytoplasm of the cells, shows that enterocytes contain an ultramicroscopic feature previously thought to be characteristic of Langerhans' cells, an antigen-presenting cell. The phenotype detected on the surface of enterocytes, along with their ultramicroscopic characteristics, suggests that they may play an important role in the immune responses elicited in the gut, presenting antigens to surrounding lymphoid cells, and establishing cognate interactions with them.

  16. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype.

    PubMed

    Gomez-Eerland, Raquel; Nuijen, Bastiaan; Heemskerk, Bianca; van Rooij, Nienke; van den Berg, Joost H; Beijnen, Jos H; Uckert, Wolfgang; Kvistborg, Pia; Schumacher, Ton N; Haanen, John B A G; Jorritsma, Annelies

    2014-10-01

    Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.

  17. Manufacture of Gene-Modified Human T-Cells with a Memory Stem/Central Memory Phenotype

    PubMed Central

    Gomez-Eerland, Raquel; Nuijen, Bastiaan; Heemskerk, Bianca; van Rooij, Nienke; van den Berg, Joost H.; Beijnen, Jos H.; Uckert, Wolfgang; Kvistborg, Pia; Schumacher, Ton N.; Jorritsma, Annelies

    2014-01-01

    Abstract Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products. PMID:25143008

  18. Human cytomegalovirus interleukin-10 polarizes monocytes toward a deactivated M2c phenotype to repress host immune responses.

    PubMed

    Avdic, Selmir; Cao, John Z; McSharry, Brian P; Clancy, Leighton E; Brown, Rebecca; Steain, Megan; Gottlieb, David J; Abendroth, Allison; Slobedman, Barry

    2013-09-01

    Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14(+) monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1β, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4(+) T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4(+) T cell responses at sites of infection.

  19. Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study

    PubMed Central

    Moore, Joanna K.; Mackinnon, Alison C.; Wojtacha, Dvina; Pope, Caroline; Fraser, Alasdair R.; Burgoyne, Paul; Bailey, Laura; Pass, Chloe; Atkinson, Anne; Mcgowan, Neil W.A.; Manson, Lynn; Turner, Mark L.; Campbell, John D.M.; Forbes, Stuart J.

    2015-01-01

    Background aims Macrophages have complex roles in the liver. The aim of this study was to compare profiles of human monocyte-derived macrophages between controls and cirrhotic patients, to determine whether chronic inflammation affects precursor number or the phenotype, with the eventual aim to develop a cell therapy for cirrhosis. Methods Infusion of human macrophages in a murine liver fibrosis model demonstrated a decrease in markers of liver injury (alanine transaminase, bilirubin, aspartate transaminase) and fibrosis (transforming growth factor-β, α-smooth muscle actin, phosphatidylserine receptor) and an increase in markers of liver regeneration (matrix metalloproteinases [MMP]-9, MMP-12 and TNF-related weak inducer of apoptosis). CD14+ monocytes were then isolated from controls. Monocytes were matured into macrophages for 7 days using a Good Manufacturing Practice–compatible technique. Results There was no significant difference between the mean number of CD14+ monocytes isolated from cirrhotic patients (n = 9) and controls (n = 10); 2.8 ± SEM 0.54 × 108 and 2.5 ± 0.56 × 108, respectively. The mean yield of mature macrophages cultured was also not significantly different between cirrhotic patients and controls (0.9 × 108 ± 0.38 × 108, with more than 90% viability and 0.65 × 108 ± 0.16 × 108, respectively. Maturation to macrophages resulted in up-regulation of a number of genes (MMP-9, CCL2, interleukin [IL]-10 and TNF-related weak inducer of apoptosis). A cytokine and chemokine polymerase chain reaction array, comparing the control and cirrhotic macrophages, revealed no statistically significant differences. Conclusions Macrophages can be differentiated from cirrhotic patients' apheresis-derived CD14 monocytes and develop the same pro-resolution phenotype as control macrophages, indicating their suitability for clinical therapy. PMID:26342993

  20. Genotyping approach for non-invasive foetal RHD detection in an admixed population

    PubMed Central

    Boggione, Carolina Trucco; Luján Brajovich, Melina E.; Mattaloni, Stella M.; Di Mónaco, René A.; García Borrás, Silvia E.; Biondi, Claudia S.; Cotorruelo, Carlos M.

    2017-01-01

    Background Non-invasive foetal RHD genotyping can predict haemolytic disease of the foetus and the newborn in pregnancies with anti-D alloantibodies and also avoid antenatal anti-D prophylaxis in pregnant women carrying an RHD negative foetus. Considering that the Argentine genetic background is the result of generations of intermixing between several ethnic groups, we evaluated the diagnostic performance of a non-invasive foetal RHD determination strategy to guide targeted antenatal RhD immunoprophylaxis. This algorithm is based on the analysis of four regions of the RHD gene in cell-free foetal DNA in maternal plasma and maternal and paternal RHD genotyping. Materials and methods DNA from 298 serologically D negative pregnant women between 19–28 weeks gestation were RHD genotyped. Foetal RHD status was determined by real-time PCR in 296 maternal plasma samples. In particular cases, RHDΨ and RHD-CE-Ds alleles were investigated in paternal DNA. Umbilical cord blood was collected at birth, and serological and molecular studies were performed. Results Of the 298 maternal samples, 288 were D−/RHD− and 10 D−/RHD+ (2 RHD*DAR; 5 RHD-CE-Ds; 3 RHDΨ). Plasma from RHD*DAR carriers was not analysed. Real-time PCR showed 210 RHD+ and 78 RHD− foetuses and 8 inconclusive results. In this latter group, paternal molecular studies were useful to report a RHD negative status in 5 foetuses while only 3 remained inconclusive. All the results, except one false positive due to a silent allele (RHD[581insG]), agreed with the neonatal typing performed in cord blood. Discussion The protocol used for non-invasive prenatal RHD genotyping proved to be suitable to determine foetal RHD status in our admixed population. The knowledge of the genetic background of the population under study and maternal and paternal molecular analysis can reduce the number of inconclusive results when investigating foetal RHD status. PMID:27136427

  1. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep.

    PubMed

    Boddy, K; Dawes, G S; Fisher, R; Pinter, S; Robinson, J S

    1974-12-01

    1. Foetal breathing movements, electrocortical activity, arterial pressure and heart rate were recorded continuously in chronically catheterized sheep, 97-145 days pregnant.2. With increasing gestational age there was a fall in heart rate of 0.67 beats/day and a rise in arterial pressure of 0.46 mmHg/day.3. Hypoxaemia in the foetus was induced by allowing the ewe to breathe low oxygen mixtures, 9% O(2) with 3% CO(2) in N(2). In the younger foetuses there was an initial rise in heart rate whereas in the older foetuses there was a fall. After the end of hypoxia there was a persistent tachycardia in both groups. In the older foetuses there was a rise of arterial pressure.4. Two vagotomized older foetuses showed cardiovascular responses similar to those of the younger foetuses.5. Foetal breathing movements were abolished by hypoxaemia in twenty-two of twenty-five experiments. In the three exceptional experiments there was a small rise in P(a, CO2).6. The proportion of time occupied by low voltage electrocortical activity in the foetus was reduced by hypoxaemia.7. Hypercapnia was induced by giving the ewe 4-6% CO(2) with 18% O(2) in N(2) to breathe. After an initial slight fall the foetal heart rate increased and there was a small rise in foetal arterial pressure.8. The proportion of time occupied by low voltage electrocortical activity and breathing movements was increased by hypercapnia.9. Maternal hyperoxia, induced by giving 50% O(2) in N(2), did not significantly increase foetal breathing movements unless the ewe was in labour. In labour the foetuses had lower P(a, O2) values initially and a reduced incidence of foetal breathing, both of which were increased by maternal hyperoxia.

  2. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype.

    PubMed

    Schwartz, Michael P; Rogers, Robert E; Singh, Samir P; Lee, Justin Y; Loveland, Samuel G; Koepsel, Justin T; Witze, Eric S; Montanez-Sauri, Sara I; Sung, Kyung E; Tokuda, Emi Y; Sharma, Yasha; Everhart, Lydia M; Nguyen, Eric H; Zaman, Muhammad H; Beebe, David J; Ahn, Natalie G; Murphy, William L; Anseth, Kristi S

    2013-01-01

    Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels ("synthetic extracellular matrix" or "synthetic ECM"). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we

  3. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  4. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.

    PubMed

    Kamei, Ken-Ichiro; Koyama, Yoshie; Tokunaga, Yumie; Mashimo, Yasumasa; Yoshioka, Momoko; Fockenberg, Christopher; Mosbergen, Rowland; Korn, Othmar; Wells, Christine; Chen, Yong

    2016-11-01

    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.

  5. Non-human primate models of alcohol-related phenotypes: the influence of genetic and environmental factors.

    PubMed

    Barr, Christina S

    2013-01-01

    Because of their complex social structures, behaviors, and genetic similarities to humans, nonhuman primates are useful for studying how genetic factors influence alcohol consumption. The neurobiological systems that influence addiction vulnerability may do so by acting on alcohol response, reward pathways, behavioral dyscontrol, and vulnerability to stress and anxiety. Rhesus macaques show individual differences in alcohol response and temperament, and such differences are influenced by genetic variants that are similar functionally to those present in humans. Genes at which variation moderates these phenotypes include those encoding monoamine oxidase A (MAOA-LPR), the serotonin transporter (HTTLPR), corticotropin releasing hormone (CRH-248C/T and -2232 C/G), Neuropeptide Y (NPY-1002 T/G), and the μ-opioid receptor (OPRM1 C77G). These provide opportunities for modeling how genetic and environmental factors (i.e., stress, individual's sex, or alcohol exposure) interact to influence alcohol consumption. Studies in primates may also reveal selective factors have driven maintenance or fixation of alleles that increase risk for alcohol use disorders in modern humans.

  6. Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells.

    PubMed

    Valent, Peter; Cerny-Reiterer, Sabine; Herrmann, Harald; Mirkina, Irina; George, Tracy I; Sotlar, Karl; Sperr, Wolfgang R; Horny, Hans-Peter

    2010-09-01

    Mast cells (MC) are specialized immune cells that play a key role in anaphylactic reactions. Growth, differentiation, and function of these cells are regulated by a complex network of cytokines, surface receptors, signaling molecules, the microenvironment, and the genetic background. A number of previous and more recent data suggest that MC are heterogeneous in terms of cytokine-regulation, expression of cytoplasmic and cell surface antigens, and response to ligands. MC heterogeneity is often organ-specific and is considered to be related to MC plasticity, disease-associated factors, and the maturation stage of the cells. The stem cell factor (SCF) receptor KIT (CD117) is expressed on all types of MC independent of maturation and activation-status. In systemic mastocytosis (SM), KIT is often expressed in MC in a mutated and constitutively activated form. In these patients, MC aberrantly display CD2 and CD25, diagnostic markers of neoplastic MC in all SM variants. In advanced SM, MC co-express substantial amounts of CD30, whereas CD2 expression on MC may be decreased compared to indolent SM. Other surface molecules, such as CD63 or CD203c, are overexpressed on neoplastic MC in SM, and are further upregulated upon cross-linking of the IgE receptor. Some of the cell surface antigens expressed on MC or their progenitors may serve as therapeutic targets in the future. These targets include CD25, CD30, CD33, CD44, and CD117/KIT. The current article provides an overview on cell surface antigens and target receptors expressed by MC in physiologic and reactive tissues, and in patients with SM, with special reference to phenotypic heterogeneity and clinical implications.

  7. Phenotype of NK-Like CD8(+) T Cells with Innate Features in Humans and Their Relevance in Cancer Diseases

    PubMed Central

    Barbarin, Alice; Cayssials, Emilie; Jacomet, Florence; Nunez, Nicolas Gonzalo; Basbous, Sara; Lefèvre, Lucie; Abdallah, Myriam; Piccirilli, Nathalie; Morin, Benjamin; Lavoue, Vincent; Catros, Véronique; Piaggio, Eliane; Herbelin, André; Gombert, Jean-Marc

    2017-01-01

    Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T

  8. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes.

    PubMed

    Kou, Liang; Lu, Xiao-Wen; Wu, Min-Ke; Wang, Hang; Zhang, Yu-Jiao; Sato, Soh; Shen, Jie-Fei

    2014-02-21

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.

  9. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme

    PubMed Central

    Caval, Vincent; Bouzidi, Mohamed S.; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-01-01

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity. PMID:26384561

  10. The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells

    PubMed Central

    Perli, Elena; Giordano, Carla; Pisano, Annalinda; Montanari, Arianna; Campese, Antonio F; Reyes, Aurelio; Ghezzi, Daniele; Nasca, Alessia; Tuppen, Helen A; Orlandi, Maurizia; Di Micco, Patrizio; Poser, Elena; Taylor, Robert W; Colotti, Gianni; Francisci, Silvia; Morea, Veronica; Frontali, Laura; Zeviani, Massimo; d'Amati, Giulia

    2014-01-01

    Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl-tRNA syntethases, namely leucyl-, valyl-, and isoleucyl-tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt-tRNAIle gene. Importantly, we further demonstrate that the carboxy-terminal domain of human mt leucyl-tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these “mild” mutations or with the “severe” m.3243A>G mutation in the mt-tRNALeu(UUR) gene. Furthermore, we provide evidence that this small, non-catalytic domain is able to directly and specifically interact in vitro with human mt-tRNALeu(UUR) with high affinity and stability and, with lower affinity, with mt-tRNAIle. Taken together, our results sustain the hypothesis that the carboxy-terminal domain of human mt leucyl-tRNA synthetase can be used to correct mt dysfunctions caused by mt-tRNA mutations. PMID:24413190

  11. Clinical Classification of Cancer Cachexia: Phenotypic Correlates in Human Skeletal Muscle

    PubMed Central

    Johns, Neil; Hatakeyama, Shinji; Stephens, Nathan A.; Degen, Martin; Degen, Simone; Frieauff, Wilfried; Lambert, Christian; Ross, James A.; Roubenoff, Ronenn; Glass, David J.

    2014-01-01

    Background Cachexia affects the majority of patients with advanced cancer and is associated with a reduction in treatment tolerance, response to therapy, and duration of survival. One impediment towards the effective treatment of cachexia is a validated classification system. Methods 41 patients with resectable upper gastrointestinal (GI) or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL) and/or low muscularity (LM). Four diagnostic criteria were used >5%WL, >10%WL, LM, and LM+>2%WL. All patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, Western blots for markers of autophagy, SMAD signalling, and inflammation. Findings Compared with non-cachectic cancer patients, patients with LM or LM+>2%WL, mean muscle fibre diameter was reduced by about 25% (p = 0.02 and p = 0.001 respectively). No significant difference in fibre diameter was observed if patients had WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased in patients with either >5%WL or LM+>2%WL. Compared with non-cachectic patients, SMAD3 protein levels were increased in patients with >5%WL (p = 0.022) and with >10%WL, beclin (p = 0.05) and ATG5 (p = 0.01) protein levels were increased. There were no differences in phospho-NFkB or phospho-STAT3 levels across any of the groups. Conclusion Muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the diagnostic criteria for cachexia are based on weight loss alone, a measure of low muscularity alone or a combination of the two. For intervention trials where the primary end-point is a change in muscle mass or function, use of combined diagnostic criteria may allow identification of a more homogeneous patient

  12. Leishmania infantum Amastigotes Trigger a Subpopulation of Human B Cells with an Immunoregulatory Phenotype

    PubMed Central

    Andreani, Guadalupe; Ouellet, Michel; Menasria, Rym; Gomez, Alejandro Martin; Barat, Corinne; Tremblay, Michel J.

    2015-01-01

    Visceral leishmaniasis is caused by the protozoan parasites Leishmania infantum and Leishmania donovani. This infection is characterized by an uncontrolled parasitization of internal organs which, when left untreated, leads to death. Disease progression is linked with the type of immune response generated and a strong correlation was found between disease progression and serum levels of the immunosuppressive cytokine IL-10. Other studies have suggested a role for B cells in the pathology of this parasitic infection and the recent identification of a B-cell population in humans with regulatory functions, which secretes large amounts of IL-10 following activation, have sparked our interest in the context of visceral leishmaniasis. We report here that incubation of human B cells with Leishmania infantum amastigotes resulted in upregulation of multiple cell surface activation markers and a dose-dependent secretion of IL-10. Conditioned media from B cells incubated with Leishmania infantum amastigotes were shown to strongly inhibit CD4+ T-cell activation, proliferation and function (i.e. as monitored by TNF and IFNγ secretion). Blockade of IL-10 activity using a soluble IL-10 receptor restored only partially TNF and IFNγ production to control levels. The parasite-mediated IL-10 secretion was shown to rely on the activity of Syk, phosphatidylinositol-3 kinase and p38, as well as to require intracellular calcium mobilization. Cell sorting experiments allowed us to identify the IL-10-secreting B-cell subset (i.e. CD19+CD24+CD27-). In summary, exposure of human B cells to Leishmania infantum amastigotes triggers B cells with regulatory activities mediated in part by IL-10, which could favor parasite dissemination in the organism. PMID:25710789

  13. Cellular and molecular phenotypes of proliferating stromal cells from human carcinomas

    PubMed Central

    Kopantzev, E P; Vayshlya, N A; Kopantseva, M R; Egorov, V I; Pikunov, M; Zinovyeva, M V; Vinogradova, T V; Zborovskaya, I B; Sverdlov, E D

    2010-01-01

    Background: Stromal cells are a functionally important component of human carcinomas. The aim of this study was to obtain and characterise primary cultures of stromal cells from human carcinomas and the corresponding surrounding normal tissue. Methods: Primary stromal cell cultures from tumours of lung, oesophagus and pancreas were obtained using a mild tissue dissociation method and a medium for culturing mesenchymal cells. Immunofluorescence staining and western blotting were used to analyse the expression of differentiation markers and selected known oncoproteins in the cell cultures obtained. Results: A panel of stromal primary cultures was prepared from different human tumours and from matched normal cancer-free tissues. The in vitro proliferative potential of tumour-associated fibroblasts was shown to be higher than that of matched normal stromal cells. A mutational analysis of the TP53 and KRAS2 genes in a number of stromal cultures did not reveal known mutations in most cells of the cultures studied. Western blot analysis showed that stromal cells of lung tumours were characterised by a statistically significantly lower expression level of the p16 protein as compared with that in normal lung stromal cells. An important finding of our study was that, according to immunofluorescence assay, a fraction of fibroblast-like vimentin-positive cells in some tumour and normal stromal cell cultures expressed an epithelial marker – cytokeratins. Conclusions: Proliferating stromal cells from the carcinomas studied proved to be genetically normal cells with altered expression profiles of some genes involved in carcinogenesis, as compared with normal stromal cells. Epithelial-mesenchymal transition may lead to the emergence of transdifferentiated fibroblast-like cells in tumour stroma and in the tumour-surrounding tissue. PMID:20407446

  14. Regional and phenotype heterogeneity of cellular prion proteins in the human brain.

    PubMed

    Kuczius, Thorsten; Koch, Richard; Keyvani, Kathy; Karch, Helge; Grassi, Jacques; Groschup, Martin H

    2007-05-01

    Transmissible spongiform encephalopathies (TSEs) are neurological disorders that include genetic, infectious and sporadic forms of human Creutzfeldt-Jakob disease (CJD). The pathogenic agent is the prion protein that is composed of an abnormal isoform (PrP(Sc)) of a host-encoded protein (PrP(C)). Analysis of the relative amounts of PrP(Sc) glycoforms has been used to discriminate between various agents involved in TSE. The distribution and efficiency of conversion to PrP(Sc) can be influenced by differences in the expression of PrP(C). However, little attention has been given so far to the banding patterns of PrP(C). Using four different antibodies recognizing amino- and carboxyl-terminal PrP sequences we analysed the glycoforms of PrP(C) in seven regions of the human brain using brains obtained from six subjects. For determination of the staining intensities, signals were quantified by densitometry and reproducible patterns were accomplished by many repeated immunoblot analyses. When amino-terminal binding antibodies were used for detection, PrP(C) in the frontal neocortex, nucleus lentiformis, thalamus, hippocampus and cerebellum displayed a glycotype with high staining of the diglycosylated isoforms. This was different from patterns in the pons and medulla oblongata, which showed a high intensity of the nonglycosylated isoform, and PrP(C) proteins, approximately 27 kDa in size, exhibited high staining using the carboxyl-terminal binding antibodies. This intense staining followed from an overlay of full-length and truncated PrP(C) isoforms. Furthermore, we found marked differences in the expression of PrP(C). Variations in the processing of PrP(C) may lead to interregional differences in the glycoform composition of PrP(Sc) in human brains.

  15. Long-term neural and physiological phenotyping of a single human

    PubMed Central

    Poldrack, Russell A.; Laumann, Timothy O.; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J.; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L.; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M.; Gordon, Evan; Snyder, Abraham Z.; Adeyemo, Babatunde; Petersen, Steven E.; Glahn, David C.; Reese Mckay, D.; Curran, Joanne E.; Göring, Harald H. H.; Carless, Melanie A.; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A.; Frick, Laurie; Marcotte, Edward M.; Mumford, Jeanette A.

    2015-01-01

    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders. PMID:26648521

  16. Cyclooxygenase-2 is associated with malignant phenotypes in human lung cancer

    PubMed Central

    Li, Weiying; Yue, Wentao; Wang, Hui; Lai, Baitang; Yang, Xuehui; Zhang, Chunyan; Wang, Yue; Gu, Meng

    2016-01-01

    The objective of the present study was to investigate whether cyclooxygenase-2 (COX-2) is associated with malignancy, and to investigate its molecular mechanisms in human lung cancer tumor malignancy. The present study used RNA interference (RNAi) methodology and celecoxib, a COX-2 inhibitor, to investigate the effect of COX-2 knockdown on the proliferation and invasion abilities of lung cancer cells and the molecular mechanisms involved. Human lung adenocarcinoma A549-si10 and LTEP-A2 cells transfected with a specific small interfering RNA (A549-si10 and LTEP-A2-si10, respectively) grew more slowly compared with parental cell lines and cells transfected with pU6. The colony formation of A549-si10 and LTEP-A2-si10 cells was also reduced. In addition, A549-si10 and LTEP-A2-si10 cells were characterized by decreased metastatic and invasive abilities. The proliferation and invasive potential of parental A549 and LTEP-A2 cells was inhibited following treatment with celecoxib. In vivo, a COX-2 knockdown resulted in a decrease of proliferation and reduction of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and endothelial growth factor receptor (EGFR) expression in A549 xenografts. In conclusion, the present study revealed that COX-2 plays a extremely important role in tumor growth, infiltration and metastasis via the regulation of VEGF, MMP-2 and EGRF expression. Therefore, COX-2 is a potential therapeutic target for lung cancer. PMID:27895738

  17. Phenomics Research on Coronary Heart Disease Based on Human Phenotype Ontology

    PubMed Central

    Shi, Qi; Gao, Kuo; Zhao, Huihui; Wang, Juan; Zhai, Xing; Chen, Jianxin; Wang, Wei

    2014-01-01

    The characteristics of holistic, dynamics, complexity, and spatial and temporal features enable “Omics” and theories of TCM to interlink with each other. HPO, namely, “characterization,” can be understood as a sorting and generalization of the manifestations shown by people with diseases on the basis of the phenomics. Syndrome is the overall “manifestation” of human body pathological and physiological changes expressed by four diagnostic methods' information. The four diagnostic methods' data could be the most objective and direct manifestations of human body under morbid conditions. In this aspect, it is consistent with the connation of “characterization.” Meanwhile, the four diagnostic methods' data also equip us with features of characterization in HPO. In our study, we compared 107 pieces of four diagnostic methods' information with the “characterization database” to further analyze data of four diagnostic methods' characterization in accordance with the common characteristics of four diagnostic methods' information and characterization and integrated 107 pieces of four diagnostic methods' data to relevant items in HPO and finished the expansion of characterization information in HPO. PMID:25610858

  18. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts

    PubMed Central

    Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi

    2015-01-01

    Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848

  19. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    PubMed Central

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  20. A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenograft (PDX) Models

    PubMed Central

    Zhang, Xiaomei; Claerhout, Sofie; Pratt, Aleix; Dobrolecki, Lacey E.; Petrovic, Ivana; Lai, Qing; Landis, Melissa D.; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W.; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C.; Froehlich, Amber M.; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G.; Chen, Edward S.; Zuloaga, Pavel; Shaw, Chad A.; Rimawi, Mothaffar F.; Perou, Charles M.; Mills, Gordon B.; Chang, Jenny C.; Lewis, Michael T.

    2013-01-01

    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

  1. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization.

    PubMed Central

    Lenz, A; Heine, M; Schuler, G; Romani, N

    1993-01-01

    Dendritic cells (DC) comprise a system of cells in lymphoid and nonlymphoid organs that are specialized to present antigens and to initiate primary T cell responses. The Langerhans cell of the epidermis is used as a prototype for studies of DC in the skin. We have characterized a population of DC in human dermis, one of the first examples of these cells in nonlymphoid organs other than epidermis. To identify their distinct functions and phenotype, we relied upon the preparation of enriched populations that emigrate from organ explants of dermis. The dermal cells have the following key features of mature DC: (a) sheet-like processes, or veils, that are constantly moving; (b) very high levels of surface MHC products; (c) absence of markers for macrophages, lymphocytes, and endothelium; (d) substantial expression of adhesion/costimulatory molecules such as CD11/CD18, CD54 (ICAM-1), B7/BB1, CD40; and (e) powerful stimulatory function for resting T cells. Dermal DC are fully comparable to epidermis-derived DC, except for the lack of Birbeck granules, lower levels of CD1a, and higher levels of CD36. DC were also detected in explants of mouse dermis. We conclude that cutaneous DC include both epidermal and dermal components, and suggest that other human nonlymphoid tissues may also serve as sources of typical immunostimulatory DC. Images PMID:8254016

  2. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    PubMed Central

    Li, Kairong; Turner, Ashley N.; Chen, Min; Brosius, Stephanie N.; Schoeb, Trenton R.; Messiaen, Ludwine M.; Bedwell, David M.; Zinn, Kurt R.; Anastasaki, Corina; Gutmann, David H.; Korf, Bruce R.

    2016-01-01

    ABSTRACT Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  3. TAK1 is a key modulator of the profibrogenic phenotype of human ileal myofibroblasts in Crohn's disease.

    PubMed

    Grillo, Alessia Rosaria; Scarpa, Melania; D'Incà, Renata; Brun, Paola; Scarpa, Marco; Porzionato, Andrea; De Caro, Raffaele; Martines, Diego; Buda, Andrea; Angriman, Imerio; Palù, Giorgio; Sturniolo, Giacomo Carlo; Castagliuolo, Ignazio

    2015-09-15

    Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) signaling can mediate inflammatory responses as well as tissue remodeling. Intestinal mucosal myofibroblast (IMF) activation drives gut fibrosis in Crohn's disease (CD); however, the molecular pathways involved are largely unknown. Thus we investigated the yet-unknown expression and function of TAK1 in human CD-associated fibrosis. Ileal surgical specimens, ileal biopsies, and IMF isolated from controls and CD patients were analyzed for TAK1 and its active phosphorylated form (pTAK1) by Western blotting, immunohistochemistry, and real-time quantitative PCR. TAK1 pharmacological inhibition and silencing were used to assess its role in collagen and inflammatory cytokine synthesis in IMF. TAK1 and pTAK1 levels increased in ileum specimens from CD patients compared with controls and correlated to tissue fibrosis. Similarly, TAK1 mRNA in ileal biopsies of CD patients correlated with fibrogenic marker expression but not inflammatory cytokines. CD-derived IMF showed higher TAK1 and pTAK1 expression associated with increased collagen1(α)1 mRNA levels compared with control IMF. TGF-β1 promoted pTAK1 nuclear translocation and collagen synthesis. TAK1 inhibition or silencing significantly reduced TGF-β1-stimulated collagen production and normalized the profibrogenic phenotype of CD-derived IMF. Taken together, these data suggest that TAK1 activation and nuclear translocation induce and maintain a fibrogenic phenotype in the IMF. Thus the TAK1 signaling pathway may represent a suitable target to design new, antifibrotic therapies.

  4. MitoLSDB: A Comprehensive Resource to Study Genotype to Phenotype Correlations in Human Mitochondrial DNA Variations

    PubMed Central

    K, Shamnamole; Jalali, Saakshi; Scaria, Vinod; Bhardwaj, Anshu

    2013-01-01

    Human mitochondrial DNA (mtDNA) encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease association studies on mtDNA (http://mitolsdb.igib.res.in). The main goal of MitoLSDB is to provide a central platform for direct submissions of novel variants that can be curated by the Mitochondrial Research Community. MitoLSDB provides access to standardized and annotated data from literature and databases encompassing information from 5231 individuals, 675 populations and 27 phenotypes. This platform is developed using the Leiden Open (source) Variation Database (LOVD) software. MitoLSDB houses information on all 37 genes in each population amounting to 132397 variants, 5147 unique variants. For each variant its genomic location as per the Revised Cambridge Reference Sequence, codon and amino acid change for variations in protein-coding regions, frequency, disease/phenotype, population, reference and remarks are also listed. MitoLSDB curators have also reported errors documented in literature which includes 94 phantom mutations, 10 NUMTs, six documentation errors and one artefactual recombination. MitoLSDB is the largest repository of mtDNA variants systematically standardized and presented using the LOVD platform. We believe that this is a good starting resource to curate mtDNA variants and will facilitate direct submissions enhancing data coverage, annotation in context of pathogenesis and quality control by ensuring non-redundancy in reporting novel disease associated variants. PMID:23585830

  5. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I.

    PubMed

    Li, Kairong; Turner, Ashley N; Chen, Min; Brosius, Stephanie N; Schoeb, Trenton R; Messiaen, Ludwine M; Bedwell, David M; Zinn, Kurt R; Anastasaki, Corina; Gutmann, David H; Korf, Bruce R; Kesterson, Robert A

    2016-07-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  6. A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice

    PubMed Central

    Fantauzzo, Katherine A.; Tadin-Strapps, Marija; You, Yun; Mentzer, Sarah E.; Baumeister, Friedrich A.M.; Cianfarani, Stefano; Van Maldergem, Lionel; Warburton, Dorothy; Sundberg, John P.; Christiano, Angela M.

    2008-01-01

    Ambras syndrome (AS) is a rare form of congenital hypertrichosis with excessive hair on the shoulders, face and ears. Cytogenetic studies have previously implicated an association with rearrangements of chromosome 8. Here we define an 11.5 Mb candidate interval for AS on chromosome 8q based on cytogenetic breakpoints in three patients. TRPS1, a gene within this interval, was deleted in a patient with an 8q23 chromosomal rearrangement, while its expression was significantly downregulated in another patient with an inversion breakpoint 7.3 Mb downstream of TRPS1. Here, we describe the first potential long-range position effect on the expression of TRPS1. To gain insight into the mechanisms by which Trps1 affects the hair follicle, we performed a detailed analysis of the hair abnormalities in Koa mice, a mouse model of hypertrichosis. We found that the proximal breakpoint of the Koa inversion is located 791 kb upstream of Trps1. Quantitative real-time polymerase chain reaction, in situ hybridization and immunofluorescence analysis revealed that Trps1 expression levels are reduced in Koa mutant mice at the sites of pathology for the phenotype. We determined that the Koa inversion creates a new Sp1 binding site and translocates additional Sp1 binding sites within a highly conserved stretch spanning the proximal breakpoint, providing a potential mechanism for the position effect. Collectively, these results describe a position effect that downregulates TRPS1 expression as the probable cause of hypertrichosis in AS in humans and the Koa phenotype in mice. PMID:18713754

  7. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    SciTech Connect

    Eldadah, Z.A.; Dietz, H.C.; Brenn, T.

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  8. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells.

    PubMed

    Vert, Anna; Castro, Jessica; Ribó, Marc; Benito, Antoni; Vilanova, Maria

    2016-04-05

    Ribonucleases represent a new class of antitumor RNA-damaging drugs. However, many wild-type members of the vertebrate secreted ribonuclease family are not cytotoxic because they are not able to evade the cytosolic ribonuclease inhibitor. We previously engineered the human pancreatic ribonuclease to direct it to the cell nucleus where the inhibitor is not present. The best characterized variant is PE5 that kills cancer cells through apoptosis mediated by the p21(WAF1/CIP1) induction and the inactivation of JNK. Here, we have used microarray-derived transcriptional profiling to identify PE5 regulated genes on the NCI/ADR-RES ovarian cancer cell line. RT-qPCR analyses have confirmed the expression microarray findings. The results show that PE5 cause pleiotropic effects. Among them, it is remarkable the down-regulation of multiple genes that code for enzymes involved in deregulated metabolic pathways in cancer cells.

  9. Identification of two different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase

    SciTech Connect

    Nogueira, C.P.; McGuire, M.C.; Adkins, S.; Van Der Spek, A.F.L.; La Du, B.N. ); Bartels, C.F.; Lockridge, O. Eppley Institute, Univ. of Nebraska Medical Center, Omaha, NE ); Lubrano, T.; Rubinstein, H.M. Loyola Univ. Stritch School of Medicine, Maywood, IL ); Lightstone, H. )

    1992-10-01

    The fluoride variant of human butyrylcholinesterase owes its name to the observation that it is resistant to inhibition by 0.050 mM sodium fluoride in the in vitro assay. Individuals who are heterozygous for the fluoride and atypical alleles experience about 30 min of apnea, rather than the usual 3-5 min, after receiving succinyldicholine. Earlier the authors reported that the atypical variant has a nucleotide substitution which changes Asp 70 to Gly. In the present work they have identified two different point mutations associated with the fluoride-resistant phentotype. Fluoride-1 has a nucleotide substitution which changes Thr 243 to Met (ACG to ATG). Fluoride-2 has a substitution which changes Gly 390 to Val (GGT to GTT). These results were obtained by DNA sequence analysis of the butyrylcholinesterase gene after amplification by PCR. The subjects for these analyses were 4 patients and 21 family members. 36 refs., 8 figs.

  10. Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype

    PubMed Central

    Chan, Aubrey C.; Li, Dean Y.; Berg, Michel J.; Whitehead, Kevin J.

    2010-01-01

    Cerebral cavernous malformations are common vascular lesions of the central nervous system that predispose to seizures, focal neurologic deficits and potentially fatal hemorrhagic stroke. Human genetic studies have identified three genes associated with the disease and biochemical studies of these proteins have identified interaction partners and possible signaling pathways. A variety of animal models of CCM have been described to help translate the cellular and biochemical insights into a better understanding of disease mechanism. In this minireview, we discuss the contributions of animal models to our growing understanding of the biology of cavernous malformations, including the elucidation of the cellular context of CCM protein actions and the in vivo confirmation of abnormal endothelial cell–cell interactions. Challenges and progress towards developing a faithful model of CCM biology are reviewed. PMID:20096037

  11. Secondary Lymphoid Organ Homing Phenotype of Human Myeloid Dendritic Cells Disrupted by an Intracellular Oral Pathogen

    PubMed Central

    Miles, Brodie; Zakhary, Ibrahim; El-Awady, Ahmed; Scisci, Elizabeth; Carrion, Julio; O'Neill, John C.; Rawlings, Aaron; Stern, J. Kobi; Susin, Cristiano

    2014-01-01

    Several intracellular pathogens, including a key etiological agent of chronic periodontitis, Porphyromonas gingivalis, infect blood myeloid dendritic cells (mDCs). This infection results in pathogen dissemination to distant inflammatory sites (i.e., pathogen trafficking). The alteration in chemokine-chemokine receptor expression that contributes to this pathogen trafficking function, particularly toward sites of neovascularization in humans, is unclear. To investigate this, we utilized human monocyte-derived DCs (MoDCs) and primary endothelial cells in vitro, combined with ex vivo-isolated blood mDCs and serum from chronic periodontitis subjects and healthy controls. Our results, using conditional fimbria mutants of P. gingivalis, show that P. gingivalis infection of MoDCs induces an angiogenic migratory profile. This profile is enhanced by expression of DC-SIGN on MoDCs and minor mfa-1 fimbriae on P. gingivalis and is evidenced by robust upregulation of CXCR4, but not secondary lymphoid organ (SLO)-homing CCR7. This disruption of SLO-homing capacity in response to respective chemokines closely matches surface expression of CXCR4 and CCR7 and is consistent with directed MoDC migration through an endothelial monolayer. Ex vivo-isolated mDCs from the blood of chronic periodontitis subjects, but not healthy controls, expressed a similar migratory profile; moreover, sera from chronic periodontitis subjects expressed elevated levels of CXCL12. Overall, we conclude that P. gingivalis actively “commandeers” DCs by reprogramming the chemokine receptor profile, thus disrupting SLO homing, while driving migration toward inflammatory vascular sites. PMID:24126519

  12. Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow*

    PubMed Central

    Ferreira, Elisabeth; Porter, Ryan M.; Wehling, Nathalie; O'Sullivan, Regina P.; Liu, Fangjun; Boskey, Adele; Estok, Daniel M.; Harris, Mitchell B.; Vrahas, Mark S.; Evans, Christopher H.; Wells, James W.

    2013-01-01

    Bone marrow contains mesenchymal stem cells (MSCs) that can differentiate along multiple mesenchymal lineages. In this capacity they are thought to be important in the intrinsic turnover and repair of connective tissues while also serving as a basis for tissue engineering and regenerative medicine. However, little is known of the biological responses of human MSCs to inflammatory conditions. When cultured with IL-1β, marrow-derived MSCs from 8 of 10 human subjects deposited copious hydroxyapatite, in which authenticity was confirmed by Fourier transform infrared spectroscopy. Transmission electron microscopy revealed the production of fine needles of hydroxyapatite in conjunction with matrix vesicles. Alkaline phosphatase activity did not increase in response to inflammatory mediators, but PPi production fell, reflecting lower ectonucleotide pyrophosphatase activity in cells and matrix vesicles. Because PPi is the major physiological inhibitor of mineralization, its decline generated permissive conditions for hydroxyapatite formation. This is in contrast to MSCs treated with dexamethasone, where PPi levels did not fall and mineralization was fuelled by a large and rapid increase in alkaline phosphatase activity. Bone sialoprotein was the only osteoblast marker strongly induced by IL-1β; thus these cells do not become osteoblasts despite depositing abundant mineral. RT-PCR did not detect transcripts indicative of alternative mesenchymal lineages, including chondrocytes, myoblasts, adipocytes, ligament, tendon, or vascular smooth muscle cells. IL-1β phosphorylated multiple MAPKs and activated nuclear factor-κB (NF-κB). Certain inhibitors of MAPK and PI3K, but not NF-κB, prevented mineralization. The findings are of importance to soft tissue mineralization, tissue engineering, and regenerative medicine. PMID:23970554

  13. Validated High Resolution Mass Spectrometry-Based Approach for Metabolomic Fingerprinting of the Human Gut Phenotype.

    PubMed

    Vanden Bussche, Julie; Marzorati, Massimo; Laukens, Debby; Vanhaecke, Lynn

    2015-11-03

    Fecal samples are an obvious choice for metabolomic approaches, since they can be obtained noninvasively and allow one to study the interactions between the gut microbiota and the host. The use of ultrahigh performance liquid chromatography hyphenated to Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap HRMS) in this field is unique. Hence, this study relied on Orbitrap HRMS to develop and validate a metabolic fingerprinting workflow for human feces and in vitro digestive fluids. After chemometric sample extraction optimization, an aqueous dilution appeared necessary to comply to the dynamic range of the MS. The method was proven "fit-for-purpose" through a validation procedure that monitored endogenous metabolites in quality control samples, which displayed in both matrices an excellent linearity (R(2) > 0.990), recoveries ranging from 93% to 105%, and precision with coefficients of variation (CVs) < 15%. Finally, feces from 10 healthy individuals and 13 patients diagnosed with inflammatory bowel disease were subjected to metabolomic fingerprinting. 9553 ions were detected, as well as differentiating profiles between Crohn's disease and ulcerative colitis by means of (orthogonal) partial least-square analysis ((O)PLS)-DA (discriminate analysis) models. Additionally, samples from the dynamic gastrointestinal tract simulator (SHIME (Simulator of the Human Intestinal Microbial Ecosystem) platform) were analyzed resulting in 6446 and 5010 ions for the proximal and distal colonic samples, respectively. Supplementing SHIME feed with antibiotics resulted in a significant shift (P < 0.05) of 27.7% of the metabolites from the proximal data set and 34.3% for the distal one. As a result, the presented fingerprinting approach provided predictive modeling of the gastrointestinal metabolome in vivo and in vitro, offering a window to reveal disease related biomarkers and potential insight into the mechanisms behind pathologies.

  14. Demographic and Phenotypic Effects of Human Mediated Trophic Subsidy on a Large Australian Lizard (Varanus varius): Meal Ticket or Last Supper?

    PubMed Central

    Jessop, Tim S.; Smissen, Peter; Scheelings, Franciscus; Dempster, Tim

    2012-01-01

    Humans are increasingly subsidizing and altering natural food webs via changes to nutrient cycling and productivity. Where human trophic subsidies are concentrated and persistent within natural environments, their consumption could have complex consequences for wild animals through altering habitat preferences, phenotypes and fitness attributes that influence population dynamics. Human trophic subsidies conceptually create both costs and benefits for animals that receive increased calorific and altered nutritional inputs. Here, we evaluated the effects of a common terrestrial human trophic subsidies, human food refuse, on population and phenotypic (comprising morphological and physiological health indices) parameters of a large predatory lizard (∼2 m length), the lace monitor (Varanus varius), in southern Australia by comparison with individuals not receiving human trophic subsidies. At human trophic subsidies sites, lizards were significantly more abundant and their sex ratio highly male biased compared to control sites in natural forest. Human trophic subsidies recipient lizards were significantly longer, heavier and in much greater body condition. Blood parasites were significantly lower in human trophic subsidies lizards. Collectively, our results imply that human trophic subsidized sites were especially attractive to adult male lace monitors and had large phenotypic effects. However, we cannot rule out that the male-biased aggregations of large monitors at human trophic subsidized sites could lead to reductions in reproductive fitness, through mate competition and offspring survival, and through greater exposure of eggs and juveniles to predation. These possibilities could have negative population consequences. Aggregations of these large predators may also have flow on effects to surrounding food web dynamics through elevated predation levels. Given that flux of energy and nutrients into food webs is central to the regulation of populations and their

  15. Caregiver Perceptions of the Community Integration of Adults with Foetal Alcohol Spectrum Disorder in British Columbia

    ERIC Educational Resources Information Center

    Clark, Erica; Minnes, Patricia; Lutke, Jan; Ouellette-Kuntz, Helene

    2008-01-01

    Background: Adults with foetal alcohol spectrum disorder (FASD) require support to be part of the community; however, most have few supports other than family and friends. The purpose of this study was to assess caregiver perceptions of community integration of adults with FASD living in British Columbia. Method: The Assimilation, Integration,…

  16. Frequency and Time Domain Analysis of Foetal Heart Rate Variability with Traditional Indexes: A Critical Survey

    PubMed Central

    Romano, Maria; Iuppariello, Luigi; Ponsiglione, Alfonso Maria; Improta, Giovanni; Bifulco, Paolo; Cesarelli, Mario

    2016-01-01

    Monitoring of foetal heart rate and its variability (FHRV) covers an important role in assessing health of foetus. Many analysis methods have been used to get quantitative measures of FHRV. FHRV has been studied in time and in frequency domain and interesting clinical results have been obtained. Nevertheless, a standardized definition of FHRV and a precise methodology to be used for its evaluation are lacking. We carried out a literature overview about both frequency domain analysis (FDA) and time domain analysis (TDA). Then, by using simulated FHR signals, we defined the methodology for FDA. Further, employing more than 400 real FHR signals, we analysed some of the most common indexes, Short Term Variability for TDA and power content of the spectrum bands and sympathovagal balance for FDA, and evaluated their ranges of values, which in many cases are a novelty. Finally, we verified the relationship between these indexes and two important parameters: week of gestation, indicator of foetal growth, and foetal state, classified as active or at rest. Our results indicate that, according to literature, it is necessary to standardize the procedure for FHRV evaluation and to consider week of gestation and foetal state before FHR analysis. PMID:27195018

  17. Effects of oxytocin on GABA signalling in the foetal brain during delivery.

    PubMed

    Khazipov, Rustem; Tyzio, Roman; Ben-Ari, Yehezkel

    2008-01-01

    Oxytocin (OXT) exerts multiple effects in the adult central nervous system. However, little is known about the effects of OXT on foetal neurons during delivery, at the time when a surge of OXT occurs. In a recent study, the effects of OXT on gamma-aminobutyric acid (GABA) signalling have been reported in foetal and newborn rats. In the immature rat hippocampal and neocortical neurons at birth, endogenous OXT induced a switch in the action of GABA from excitatory to inhibitory. This excitatory-to-inhibitory switch was caused by a switch in the polarity of the GABAergic responses from depolarizing to hyperpolarizing, reflecting a decrease in the intracellular chloride concentration. The effects of OXT were mimicked and occluded by bumetanide, a selective blocker of the chloride co-transporter NKCC1, suggesting that the effects of OXT involve inhibition of NKCC1. Neuronal death caused by anoxic-aglycaemic episodes was substantially delayed in the foetal hippocampus by endogenous OXT. These findings suggest that OXT plays important role in the preparation of the foetal brain to delivery.

  18. Successful treatment of complex traumatic and surgical wounds with a foetal bovine dermal matrix.

    PubMed

    Hayn, Ernesto

    2014-12-01

    A foetal bovine dermal repair scaffold (PriMatrix, TEI Biosciences) was used to treat complex surgical or traumatic wounds where the clinical need was to avoid skin flaps and to build new tissue in the wound that could be reepithelialised from the wound margins or closed with a subsequent application of a split-thickness skin graft (STSG). Forty-three consecutive cases were reviewed having an average size of 79·3 cm(2) , 50% of which had exposed tendon and/or bone. In a subset of wounds (44·7%), the implantation of the foetal dermal collagen scaffold was also augmented with negative pressure wound therapy (NPWT). Complete wound healing was documented in over 80% of the wounds treated, whether the wound was treated with the foetal bovine dermal scaffold alone (95·2%) or when supplemented with NPWT (82·4%). The scaffold successfully incorporated into wounds with exposed tendon and/or bone to build vascularised, dermal-like tissue. The new tissue in the wound supported STSGs however, in the majority of the cases (88·3%); wound closure was achieved through reepithelialisation of the incorporated dermal scaffold by endogenous wound keratinocytes. The foetal bovine dermal repair scaffold was found to offer an effective alternative treatment strategy for definitive closure of challenging traumatic or surgical wounds on patients who were not suitable candidates for tissue flaps.

  19. Foetal scalp blood sampling during labour for pH and lactate measurements.

    PubMed

    Carbonne, Bruno; Pons, Kelly; Maisonneuve, Emeline

    2016-01-01

    Second-line methods of foetal monitoring have been developed in an attempt to reduce unnecessary interventions due to continuous cardiotocography (CTG), and to better identify foetuses that are at risk of intrapartum asphyxia. Very few studies directly compared CTG with foetal scalp blood (FBS) and CTG only. Only one randomised controlled trial (RCT) was published in the 1970s and had limited power to assess neonatal outcome. Direct and indirect comparisons conclude that FBS could reduce the number of caesarean deliveries associated with the use of continuous CTG. The main drawbacks of FBS are its invasive and discontinuous nature and the need for a sufficient volume of foetal blood for analysis, especially for pH measurement, resulting in failure rates reaching 10%. FBS for lactate measurement became popular with the design of test-strip devices, requiring <0.5 mL of foetal blood. RCTs showed similar outcomes with the use of FBS for lactates compared with pH in terms of obstetrical interventions and neonatal outcomes. In conclusion, there is some evidence that FBS reduces the need for operative deliveries. However, the evidence is limited with regard to actual standards, and large RCTs, directly comparing CTG only with CTG with FBS, are still needed.

  20. Pedagogically Bereft! Improving Learning Outcomes for Children with Foetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Carpenter, Barry

    2011-01-01

    Foetal alcohol spectrum disorder (FASD) is the most common non-genetic cause of learning disability, affecting around 1% of live births in Europe, and costing an estimated $2.9 million per individual across their lifespan. In adulthood, non-reversible brain damage is often compounded by secondary disabilities in adulthood, such as mental health…

  1. "One More for My Baby": Foetal Alcohol Syndrome and Its Implications for Social Workers

    ERIC Educational Resources Information Center

    Cousins, Wendy; Wells, Karen

    2005-01-01

    Foetal alcohol syndrome has been described as the commonest preventable cause of mental retardation in the Western world. It refers to a pattern of malformations, growth retardation and central nervous system impairments found in children of mothers who drink large amounts of alcohol while they are pregnant. This paper describes the nature of…

  2. Foetal magnetocardiography with a multi-channel HTS rf SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wolters, N.; Lomparski, D.; Zander, W.; Banzet, M.; Schubert, J.; Krause, H.-J.; Geue, D.; van Leeuwen, P.

    2006-05-01

    Foetal magnetocardiography (fMCG) is a promising technique for prenatal cardiac diagnosis. In this paper, we discuss the special requirements of a system for fMCG measurements. A SQUID system incorporating five HTS rf SQUID magnetometers has been developed and constructed. Four magnetometers are arranged at the bottom of the cryostat in a 4 cm × 4 cm square configuration. One reference magnetometer is located 20 cm above the plane to form four first-order axial gradiometers with the four bottom magnetometers. The magnetometer with a 18 mm diameter flux focuser, which reaches a field sensitivity of 20-30 fT Hz-1/2, proved sufficient for recording foetal magnetocardiograms in a magnetically shielded room. The cardiac activities of two foetuses (31st and 33rd weeks of gestation) were recorded in 90 Hz bandwidth. The foetal QRS peak signals ranged from 4 to 7 pT and could easily be identified in the real-time gradiometer outputs with a signal-to-noise ratio of up to five. Furthermore, the averaged fMCG data enabled the determination of de- and repolarization time intervals. Overall, the fMCG signals proved of sufficient quality to perform foetal heart diagnostics.

  3. Scourge of intra-partum foetal death in Sub-Saharan Africa

    PubMed Central

    Adekanbi, Adesina OA; Olayemi, Oladapo O; Fawole, Adeniran O; Afolabi, Kayode A

    2015-01-01

    Intra-partum foetal death has been variously defined. However, a definition adopted at a technical consultation in 2006 is employed in this review. The quality of intra-partum care is a crucial factor for pregnancy outcome for both mothers and new-borns. Intra-partum stillbirth is defined as late foetal death during labour, which clinically presents as fresh stillbirth. The largest proportion of the world’s stillbirths occurs in the late preterm, term and intra-partum periods. The Western Pacific region has the greatest reduction in stillbirth with a 3.8% annual decline between 1995 and 2009; however, the annual decline in the African region is less than 1%. Caesarean delivery is still uncommon, especially in rural areas: 1% of births in rural Sub-Saharan Africa and 5% in rural South Asia are by caesarean delivery; 62% of stillbirths occurred during the intra-partum period; 61.4% of stillbirths are attributable to obstetrical complications. Preventive measures aimed at reducing the incidence of intra-partum foetal death entail all measures aimed at improving quality antenatal care and preventing intra-partum asphyxia. This review discusses intra-partum foetal deaths from a Sub-Saharan African perspective. It explores the contribution of research within the region to identifying its impact on new-born health and potential cost-effective policy interventions. PMID:26244155

  4. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer

    PubMed Central

    Weber, Günther; Chamorro, Clara Ibel; Granath, Fredrik; Liljegren, Annelie; Zreika, Sami; Saidak, Zuzana; Sandstedt, Bengt; Rotstein, Samuel; Mentaverri, Romuald; Sánchez, Fabio; Pivarcsi, Andor; Ståhle, Mona

    2009-01-01

    Introduction Human cathelicidin antimicrobial protein, hCAP18, and its C-terminal peptide LL-37 is a multifunctional protein. In addition to being important in antimicrobial defense, it induces chemotaxis, stimulates angiogenesis and promotes tissue repair. We previously showed that human breast cancer cells express high amounts of hCAP18, and hypothesised that hCAP18/LL-37 may be involved in tumour progression. Methods hCAP18 mRNA was quantified in 109 primary breast cancers and compared with clinical findings and ERBB2 mRNA expression. Effects of exogenous LL-37 and transgenic overexpression of hCAP18 on ErbB2 signalling were investigated by immunoblotting using extracts from breast cancer cell lines ZR75-1 and derivatives of MCF7. We further analysed the impact of hCAP18/LL-37 on the morphology of breast cancer cells grown in soft agar, on cell migration and on tumour development in severe combined immunodeficiency (SCID) mice. Results The expression of hCAP18 correlated closely with that of ERBB2 and with the presence of lymph node metastases in oestrogen receptor-positive tumours. hCAP18/LL-37 amplified Heregulin-induced mitogen-activated protein kinase (MAPK) signalling through ErbB2, identifying a functional association between hCAP18/LL-37 and ErbB2 in breast cancer. Treatment with LL-37 peptide significantly stimulated the migration of breast cancer cells and their colonies acquired a dispersed morphology indicative of increased metastatic potential. A truncated version of LL-37 competitively inhibited LL-37 induced MAPK phosphorylation and significantly reduced the number of altered cancer cell colonies induced by LL-37 as well as suppressed their migration. Transgenic overexpression of hCAP18 in a low malignant breast cancer cell line promoted the development of metastases in SCID mice, and analysis of hCAP18 transgenic tumours showed enhanced activation of MAPK signalling. Conclusions Our results provide evidence that hCAP18/LL-37 contributes to breast

  5. Human Hp1-1 and Hp2-2 Phenotype-Specific Haptoglobin Therapeutics Are Both Effective In Vitro and in Guinea Pigs to Attenuate Hemoglobin Toxicity

    PubMed Central

    Lipiski, Miriam; Deuel, Jeremy W.; Baek, Jin Hyen; Engelsberger, Wolfgang R.

    2013-01-01

    Abstract Aims: Infusion of purified haptoglobin (Hp) functions as an effective hemoglobin (Hb) scavenging therapeutic in animal models of hemolysis to prevent cardiovascular and renal injury. Epidemiologic studies demonstrate the phenotype heterogeneity of human Hp proteins and suggest differing vascular protective potential imparted by the dimeric Hp1-1 and the polymeric Hp2-2. Results: In vitro experiments and in vivo studies in guinea pigs were performed to evaluate phenotype-specific differences in Hp therapeutics. We found no differences between the two phenotypes in Hb binding and intravascular compartmentalization of Hb in vivo. Both Hp1-1 and Hp2-2 attenuate Hb-induced blood pressure response and renal iron deposition. These findings were consistent with equal prevention of Hb endothelial translocation. The modulation of oxidative Hb reactions by the two Hp phenotypes was not found to be different. Both phenotypes stabilize the ferryl (Fe4+) Hb transition state, provide heme retention within the complex, and prevent Hb-driven low-density lipoprotein (LDL) peroxidation. Hb-mediated peroxidation of LDL resulted in endothelial toxicity, which was equally blocked by the addition of Hp1-1 and Hp2-2. Innovation and Conclusion: The present data do not provide support for the concept that phenotype-specific Hp therapeutics offer differential efficacy in mitigating acute Hb toxicity. Antioxid. Redox Signal. 19, 1619–1633. PMID:23418677

  6. Phenotypic and Genotypic Characterization of Pediococcus Strains Isolated from Human Clinical Sources

    PubMed Central

    Barros, Rosana R.; Carvalho, Maria Da Glória S.; Peralta, José Mauro; Facklam, Richard R.; Teixeira, Lúcia M.

    2001-01-01

    Seventy-two strains of pediococci isolated from human clinical sources were characterized by conventional physiological tests, chromogenic enzymatic tests, analysis of whole-cell protein profiles (WCPP) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and analysis of chromosomal DNA restriction profiles by pulsed-field gel electrophoresis (PFGE). Conventional tests allowed identification of 67 isolates: 52 strains were identified as Pediococcus acidilactici, 15 strains were identified as Pediococcus pentosaceus, and 5 strains were not identified because of atypical reactions. Analysis of WCPP identified all isolates since each species had a unique WCPP. By the WCPP method, the atypical strains were identified as P. acidilactici (two strains) and P. pentosaceus (three strains). The chromogenic substrate test with o-nitrophenyl-β-d-glucopyranoside differentiated all 54 strains of P. acidilactici (negative reactions) and 13 (72%) of 18 strains of P. pentosaceus (positive reactions). Isolates of both species were shown to be nonclonal as revealed by the genetic diversity when chromosomal DNA was analyzed by PFGE. Using WCPP as the definitive identification procedure, P. acidilactici (28 of 54 strains; 51.8%) was more likely than P. pentosaceus (4 of 18 strains; 22.3%) to be isolated from blood cultures. PMID:11283035

  7. Specific phenotype and function of CD56-expressing innate immune cell subsets in human thymus.

    PubMed

    Gerstner, Stephanie; Köhler, Wolfgang; Heidkamp, Gordon; Purbojo, Ariawan; Uchida, Shizuka; Ekici, Arif B; Heger, Lukas; Luetke-Eversloh, Merlin; Schubert, Ralf; Bader, Peter; Klingebiel, Thomas; Koehl, Ulrike; Mackensen, Andreas; Romagnani, Chiara; Cesnjevar, Robert; Dudziak, Diana; Ullrich, Evelyn

    2016-12-01

    Whereas innate immune cells, such as NK and innate lymphoid cells (ILCs), have been characterized in different human tissues, knowledge on the thymic CD56-expressing cell subsets is limited. In this study, the rare subpopulations of thymic CD56(+)CD3(-) cells from samples of >100 patients have been successfully analyzed. The results revealed fundamental differences between thymic and peripheral blood (PB) CD56(+)CD3(-) cells. Thymic tissues lacked immunoregulatory CD56(high)CD16(dim) NK cells but showed two Eomes(+)CD56(dim) subsets on which common NK cell markers were significantly altered. CD56(dim)CD16(high) cells expressed high amounts of NKG2A, NKG2D, and CD27 with low CD57. Conversely, CD56(dim)CD16(dim) cells displayed high CD127 but low expression of KIR, NKG2D, and natural cytotoxicity receptors (NCRs). Thymic CD56(+)CD3(-) cells were able to gain cytotoxicity but were especially immunoregulatory cells, producing a broad range of cytokines. Finally, one population of thymic CD56(+) cells resembled conventional NK cells, whereas the other represented a novel, noncanonical NK subset.

  8. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy.

    PubMed

    Hunter, Chris; Smith, Raffaella; Cahill, Daniel P; Stephens, Philip; Stevens, Claire; Teague, Jon; Greenman, Chris; Edkins, Sarah; Bignell, Graham; Davies, Helen; O'Meara, Sarah; Parker, Adrian; Avis, Tim; Barthorpe, Syd; Brackenbury, Lisa; Buck, Gemma; Butler, Adam; Clements, Jody; Cole, Jennifer; Dicks, Ed; Forbes, Simon; Gorton, Matthew; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jenkinson, Andy; Jones, David; Kosmidou, Vivienne; Laman, Ross; Lugg, Richard; Menzies, Andrew; Perry, Janet; Petty, Robert; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Solomon, Helen; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Easton, Douglas F; Riggins, Gregory; Roy, Jennifer E; Levine, Kymberly K; Mueller, Wolf; Batchelor, Tracy T; Louis, David N; Stratton, Michael R; Futreal, P Andrew; Wooster, Richard

    2006-04-15

    Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.

  9. Human Term Placental Cells: Phenotype, Properties and New Avenues in Regenerative Medicine

    PubMed Central

    Caruso, Maddalena; Evangelista, Marco; Parolini, Ornella

    2012-01-01

    The human placenta has long been the subject of scientific interest due to the important roles which it performs during pregnancy in sustaining the fetus and maintaining fetomaternal tolerance. More recently, however, researchers have begun to investigate the possibility that the placenta’s utility may extend beyond fetal development to act as a source of cells with clinically relevant properties. Indeed, several groups have reported the isolation of cells from different placental regions which display both multilineage differentiation potential and immunomodulatory properties in vitro. Furthermore, these cells have also been shown to secrete soluble factors involved in pathophysiological processes that may aid tissue repair. Cells with such features will clearly find application in the field of regenerative medicine for the repair/regeneration of damaged or diseased tissues or organs. In line with these promising findings, several preclinical and clinical studies conducted to date argue in strong favor of the therapeutic utility of placenta-derived cells for the treatment of several diseases. Although much work remains to be conducted in order to fully understand the properties of placental cells and the mechanisms which underlie their beneficial effects in vivo, data reported to date nonetheless provide compelling evidence in support of the placenta as a cell source for use in regenerative medicine. PMID:24551761

  10. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster

    PubMed Central

    Cordonier, Elizabeth L.; Adjam, Riem; Camara Teixeira, Daniel; Onur, Simone; Zbasnik, Richard; Read, Paul E.; Döring, Frank; Schlegel, Vicki L.; Zempleni, Janos

    2015-01-01

    Holocarboxylase synthetase (HLCS) is the sole protein-biotin ligase in the human proteome. HLCS has key regulatory functions in intermediary metabolism, including fatty acid metabolism, and in gene repression through epigenetic mechanisms. The objective of this study was to identify foodborne inhibitors of HLCS that alter HLCS-dependent pathways in metabolism and gene regulation. When libraries of extracts from natural products and chemically pure compounds were screened for HLCS inhibitor activity, resveratrol compounds in grape materials caused an HLCS inhibition of >98% in vitro. The potency of these compounds was piceatannol > resveratrol > piceid. Grape-borne compounds other than resveratrol metabolites also contributed toward HLCS inhibition, e.g., p-coumaric acid and cyanidin chloride. HLCS inhibitors had meaningful effects on body fat mass. When Drosophila melanogaster brummer mutants, which are genetically predisposed to storing excess amounts of lipids, were fed diets enriched with grape leaf extracts and piceid, body fat mass decreased by more than 30% in males and females. However, Drosophila responded to inhibitor treatment with an increase in the expression of HLCS, which elicited an increase in the abundance of biotinylated carboxylases in vivo. We conclude that mechanisms other than inhibition of HLCS cause body fat loss in flies. We propose that the primary candidate is the inhibition of the insulin receptor/Akt signaling pathway. PMID:26303405

  11. Advances in Pemphigus and its Endemic Pemphigus Foliaceus (Fogo Selvagem) Phenotype: A Paradigm of Human Autoimmunity

    PubMed Central

    Culton, Donna A.; Qian, Ye; Li, Ning; Rubenstein, David; Aoki, Valeria; Filhio, Gunter Hans; Rivitti, Evandro A.; Diaz, Luis A.

    2009-01-01

    Pemphigus encompasses a group of organ specific, antibody mediated autoimmune diseases of the skin characterized by keratinocyte detachment that leads to the development of blisters and erosions, which can become life-threatening. The pathogenic autoantibodies recognize desmogleins, which are members of the desmosomal cadherin family of cell adhesion molecules. Desmoglein 3 is targeted in pemphigus vulgaris while desmoglein 1 is targeted in pemphigus foliaceus and its endemic form, fogo selvagem. This review will briefly define the salient features of pemphigus and the proposed steps in pathogenesis. We will then summarize the most recent advances in three important areas of investigation: (i) epidemiologic, genetic, and immunologic features of fogo selvagem, (ii) molecular mechanisms of injury to the epidermis, and (iii) novel therapeutic strategies targeting specific steps in disease pathogenesis. The advances in each of these three seemingly separate areas contribute to the overall understanding of the pemphigus disease model. These recent advancements also underscore the dynamic interplay between the treatment of patients in a clinical setting and basic science research, which has led to an integrative understanding disease pathogenesis and treatment and allow pemphigus to serve as a paradigm of human autoimmunity. PMID:18838249

  12. Crosstalk Between PKA and Epac Regulates the Phenotypic Maturation and Function of Human Dendritic Cells1

    PubMed Central

    Garay, Jone; D’Angelo, June A.; Park, YongKeun; Summa, Christopher M.; Aiken, Martha L.; Morales, Eric; Badizadegan, Kamran; Fiebiger, Edda; Dickinson, Bonny L.

    2010-01-01

    The cAMP-dependent signaling pathways that orchestrate dendritic cell (DC) maturation remain to be defined in detail. While cAMP was previously thought to signal exclusively through PKA, it is now clear that cAMP also activates Epac, a second major cAMP effector. Whether cAMP signaling via PKA is sufficient to drive DC maturation or whether Epac plays a role has not been examined. Here, we used cAMP analogs to selectively activate PKA or Epac in human monocyte-derived DCs and examined the effect of these signaling pathways on several hallmarks of DC maturation. We show that PKA activation induces DC maturation as evident by the increased cell surface expression of MHC class II, co-stimulatory molecules and the maturation marker CD83. PKA activation also reduces DC endocytosis and stimulates chemotaxis to the lymph node-associated chemokines CXCL12 and CCL21. Although PKA signaling largely suppresses cytokine production, the net effect of PKA activation translates to enhanced DC activation of allogeneic T cells. In contrast to the stimulatory effects of PKA, Epac signaling has no effect on DC maturation or function. Rather, Epac suppresses the effects of PKA when both pathways are activated simultaneously. These data reveal a previously unrecognized crosstalk between the PKA and Epac signaling pathways in DCs and raise the possibility that therapeutics targeting PKA may generate immunogenic DCs while those that activate Epac may produce tolerogenic DCs capable of attenuating allergic or autoimmune disease. PMID:20729327

  13. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes

    PubMed Central

    Rodriguez-Palacios, Alex; Kodani, Tomohiro; Kaydo, Lindsey; Pietropaoli, Davide; Corridoni, Daniele; Howell, Scott; Katz, Jeffry; Xin, Wei; Pizarro, Theresa T.; Cominelli, Fabio

    2015-01-01

    Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes (‘cobblestones' versus ‘villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals ‘liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD. PMID:26154811

  14. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene

    SciTech Connect

    Flejter, W.L.; McDaniel, L.D.; Johns, D.; Schultz, R.A. ); Friedberg, E.C. )

    1992-01-01

    Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2) gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.

  15. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes.

    PubMed

    Hof-Nahor, Irit; Leshansky, Lucy; Shivtiel, Shoham; Eldor, Liron; Aberdam, Daniel; Itskovitz-Eldor, Joseph; Berrih-Aknin, Sonia

    2012-10-01

    The mechanisms underlying the immunomodulatory effects of mesenchymal stem cells (MSCs) have been investigated under extreme conditions of strong T cell activation, which induces the rapid death of activated lymphocytes. The objective of this study was to investigate these mechanisms in the absence of additional polyclonal activation. In co-cultures of peripheral mononuclear blood cells with human MSCs (hereafter referred to as hMSCs), we observed a striking decrease in the level of CD8 expression on CD8+ cells, together with decreased expression of CD28 and CD44, and impaired production of IFN-gamma and Granzyme B. This effect was specific to hMSCs, because it was not observed with several other cell lines. Downregulation of CD8 expression required CD14+ monocytes to be in direct contact with the CD8+ cells, whereas the effects of hMSCs on the CD14+ cells were essentially mediated by soluble factors. The CD14+ monocytes exhibited a tolerogenic pattern when co-cultured with hMSCs, with a clear decrease in CD80 and CD86 co-stimulatory molecules, and an increase in the inhibitory receptors ILT-3 and ILT-4. CD8+ cells that were preconditioned by MSCs had similar effects on monocytes and were able to inhibit lymphocyte proliferation. Injection of hMSCs in humanized NSG mice showed similar trends, in particular decreased levels of CD44 and CD28 in human immune cells. Our study demonstrates a new immunomodulation mechanism of action of hMSCs through the modulation of CD8+ cells towards a non-cytotoxic and/or suppressive phenotype. This mechanism of action has to be taken into account in clinical trials, where it should be beneficial in grafts and autoimmune diseases, but potentially detrimental in malignant diseases.

  16. Human embryonic epidermis contains a diverse Langerhans cell precursor pool.

    PubMed

    Schuster, Christopher; Mildner, Michael; Mairhofer, Mario; Bauer, Wolfgang; Fiala, Christian; Prior, Marion; Eppel, Wolfgang; Kolbus, Andrea; Tschachler, Erwin; Stingl, Georg; Elbe-Bürger, Adelheid

    2014-02-01

    Despite intense efforts, the exact phenotype of the epidermal Langerhans cell (LC) precursors during human ontogeny has not been determined yet. These elusive precursors are believed to migrate into the embryonic skin and to express primitive surface markers, including CD36, but not typical LC markers such as CD1a, CD1c and CD207. The aim of this study was to further characterize the phenotype of LC precursors in human embryonic epidermis and to compare it with that of LCs in healthy adult skin. We found that epidermal leukocytes in first trimester human skin are negative for CD34 and heterogeneous with regard to the expression of CD1c, CD14 and CD36, thus contrasting the phenotypic uniformity of epidermal LCs in adult skin. These data indicate that LC precursors colonize the developing epidermis in an undifferentiated state, where they acquire the definitive LC marker profile with time. Using a human three-dimensional full-thickness skin model to mimic in vivo LC development, we found that FACS-sorted, CD207(-) cord blood-derived haematopoietic precursor cells resembling foetal LC precursors but not CD14(+)CD16(-) blood monocytes integrate into skin equivalents, and without additional exogenous cytokines give rise to cells that morphologically and phenotypically resemble LCs. Overall, it appears that CD14(-) haematopoietic precursors possess a much higher differentiation potential than CD14(+) precursor cells.

  17. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    SciTech Connect

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa . E-mail: ninio@chups.jussieu.fr

    2006-08-04

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation.

  18. Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Duarte, Joao; Bottiglieri, Teodoro; Sinton, Christopher M.; Heilig, Charles W.; Pascual, Juan M.

    2012-01-01

    Brain glucose supplies most of the carbon required for acetyl-coenzyme A (acetyl-CoA) generation (an important step for myelin synthesis) and for neurotransmitter production via further metabolism of acetyl-CoA in the tricarboxylic acid (TCA) cycle. However, it is not known whether reduced brain glucose transporter type I (GLUT-1) activity, the hallmark of the GLUT-1 deficiency (G1D) syndrome, leads to acetyl-CoA, TCA or neurotransmitter depletion. This question is relevant because, in its most common form in man, G1D is associated with cerebral hypomyelination (manifested as microcephaly) and epilepsy, suggestive of acetyl-CoA depletion and neurotransmitter dysfunction, respectively. Yet, brain metabolism in G1D remains underexplored both theoretically and experimentally, partly because computational models of limited brain glucose transport are subordinate to metabolic assumptions and partly because current hemizygous G1D mouse models manifest a mild phenotype not easily amenable to investigation. In contrast, adult antisense G1D mice replicate the human phenotype of spontaneous epilepsy associated with robust thalamocortical electrical oscillations. Additionally, and in consonance with human metabolic imaging observations, thalamus and cerebral cortex display the lowest GLUT-1 expression and glucose uptake in the mutant mouse. This depletion of brain glucose is associated with diminished plasma fatty acids and elevated ketone body levels, and with decreased brain acetyl-CoA and fatty acid contents, consistent with brain ketone body consumption and with stimulation of brain beta-oxidation and/or diminished cerebral lipid synthesis. In contrast with other epilepsies, astrocyte glutamine synthetase expression, cerebral TCA cycle intermediates, amino acid and amine neurotransmitter contents are also intact in G1D. The data suggest that the TCA cycle is preserved in G1D because reduced glycolysis and acetyl-CoA formation can be balanced by enhanced ketone body

  19. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis.

    PubMed

    Arend, Peter

    2016-01-01

    The formation of a histo (blood) group) ABO phenotype and the exclusion of an autoreactive IgM or isoagglutinin activity arise apparently in identical glycosylation of complementary domains on cell surfaces and plasma proteins. The fundamental O-glycan emptiness of the circulating IgM, which during the neonatal amino acid sequencing of the variable regions is exerting germline-specific O-GalNAc glycan-reactive serine/threonine residues that in the plasma of the adult human blood group O individuals apparently remain associated with the open glycosidic sites on the ABOH convertible red cell surface, must raise suggestions on a transient expression of developmental glycans, which have been "lost" over the course of maturation. In fact, while the mammalian non-somatic, embryogenic stem cell (ESC)- germ cell (GC) transformation is characterized by a transient and genetically as-yet-undefined trans-species-functional O-GalNAc glycan expression, in the C57BL/10 mouse such expression was potentially identified in growth-dependent, blood group A-like GalNAc glycan-bearing, ovarian glycolipids complementary with the syngeneic anti-A reactive IgM, which does not appear in early ovariectomized animals. This non-somatically encoded, polyreactive, ancestral IgM molecule has not undergone clonal selection and does primarily not differentiate between self and non-self and might, due to amino acid hydroxyl groups, highly suggest substrate competition with subsequent O-glycosylations in ongoing ESC-GC transformations and affecting GC maturation. However, the membrane-bound somatic N/O-glycotransferases, which initiate, after formation of the zygote, the complex construction of the human ABO phenotypes in the trans cisternae of the Golgi apparatus, are associated and/or completed with soluble enzyme versions exerting identical specificities in plasma and likely competing vice versa by glycosylation of neonatal IgM amino acids, where they suggest to accomplish the clearance of anti

  20. Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice

    PubMed Central

    Alvarado, David M.; McCall, Kevin; Aferol, Hyuliya; Silva, Matthew J.; Garbow, Joel R.; Spees, William M.; Patel, Tarpit; Siegel, Marilyn; Dobbs, Matthew B.; Gurnett, Christina A.

    2011-01-01

    Clubfoot affects 1 in 1000 live births, although little is known about its genetic or developmental basis. We recently identified a missense mutation in the PITX1 bicoid homeodomain transcription factor in a family with a spectrum of lower extremity abnormalities, including clubfoot. Because the E130K mutation reduced PITX1 activity, we hypothesized that PITX1 haploinsufficiency could also cause clubfoot. Using copy number analysis, we identified a 241 kb chromosome 5q31 microdeletion involving PITX1 in a patient with isolated familial clubfoot. The PITX1 deletion segregated with autosomal dominant clubfoot over three generations. To study the role of PITX1 haploinsufficiency in clubfoot pathogenesis, we began to breed Pitx1 knockout mice. Although Pitx1+/− mice were previously reported to be normal, clubfoot was observed in 20 of 225 Pitx1+/− mice, resulting in an 8.9% penetrance. Clubfoot was unilateral in 16 of the 20 affected Pitx1+/− mice, with the right and left limbs equally affected, in contrast to right-sided predominant hindlimb abnormalities previously noted with complete loss of Pitx1. Peroneal artery hypoplasia occurred in the clubfoot limb and corresponded spatially with small lateral muscle compartments. Tibial and fibular bone volumes were also reduced. Skeletal muscle gene expression was significantly reduced in Pitx1−/− E12.5 hindlimb buds compared with the wild-type, suggesting that muscle hypoplasia was due to abnormal early muscle development and not disuse atrophy. Our morphological data suggest that PITX1 haploinsufficiency may cause a developmental field defect preferentially affecting the lateral lower leg, a theory that accounts for similar findings in human clubfoot. PMID:21775501

  1. Effects of Activin A on the phenotypic properties of human periodontal ligament cells.

    PubMed

    Sugii, Hideki; Maeda, Hidefumi; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Koori, Katsuaki; Hasegawa, Daigaku; Hamano, Sayuri; Yuda, Asuka; Monnouchi, Satoshi; Akamine, Akifumi

    2014-09-01

    Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction.

  2. Serotonergic modulation of ‘waiting impulsivity' is mediated by the impulsivity phenotype in humans

    PubMed Central

    Neufang, S; Akhrif, A; Herrmann, C G; Drepper, C; Homola, G A; Nowak, J; Waider, J; Schmitt, A G; Lesch, K-P; Romanos, M

    2016-01-01

    In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies. PMID:27824354

  3. Phenotypic Features of Circulating Leukocytes from Non-human Primates Naturally Infected with Trypanosoma cruzi Resemble the Major Immunological Findings Observed in Human Chagas Disease

    PubMed Central

    Mattoso-Barbosa, Armanda Moreira; Perdigão-de-Oliveira, Marcelo; Costa, Ronaldo Peres; Elói-Santos, Silvana Maria; Gomes, Matheus de Souza; do Amaral, Laurence Rodrigues; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Dick, Edward J.; Hubbard, Gene B.; VandeBerg, Jane F.; VandeBerg, John L.

    2016-01-01

    Background Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations. Methods and Findings Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI). Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications. Conclusions Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease. PMID:26808481

  4. Gambiense human african trypanosomiasis and immunological memory: effect on phenotypic lymphocyte profiles and humoral immunity.

    PubMed

    Lejon, Veerle; Mumba Ngoyi, Dieudonné; Kestens, Luc; Boel, Luc; Barbé, Barbara; Kande Betu, Victor; van Griensven, Johan; Bottieau, Emmanuel; Muyembe Tamfum, Jean-Jacques; Jacobs, Jan; Büscher, Philippe

    2014-03-01

    In mice, experimental infection with Trypanosoma brucei causes decreased bone marrow B-cell development, abolished splenic B-cell maturation and loss of antibody mediated protection including vaccine induced memory responses. Nothing is known about this phenomenon in human African trypanosomiasis (HAT), but if occurring, it would imply the need of revaccination of HAT patients after therapy and abolish hope for a HAT vaccine. The effect of gambiense HAT on peripheral blood memory T- and B-cells and on innate and vaccine induced antibody levels was examined. The percentage of memory B- and T-cells was quantified in peripheral blood, prospectively collected in DR Congo from 117 Trypanosoma brucei gambiense infected HAT patients before and six months after treatment and 117 controls at the same time points. Antibodies against carbohydrate antigens on red blood cells and against measles were quantified. Before treatment, significantly higher percentages of memory B-cells, mainly T-independent memory B-cells, were observed in HAT patients compared to controls (CD20+CD27+IgM+, 13.0% versus 2.0%, p<0.001). The percentage of memory T-cells, mainly early effector/memory T-cells, was higher in HAT (CD3+CD45RO+CD27+, 19.4% versus 16.7%, p = 0.003). After treatment, the percentage of memory T-cells normalized, the percentage of memory B-cells did not. The median anti-red blood cell carbohydrate IgM level was one titer lower in HAT patients than in controls (p<0.004), and partially normalized after treatment. Anti-measles antibody concentrations were lower in HAT patients than in controls (medians of 1500 versus 2250 mIU/ml, p = 0.02), and remained so after treatment, but were above the cut-off level assumed to provide protection in 94.8% of HAT patients, before and after treatment (versus 98.3% of controls, p = 0.3). Although functionality of the B-cells was not verified, the results suggest that immunity was conserved in T.b. gambiense infected HAT patients and

  5. Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties

    PubMed Central

    2014-01-01

    Introduction Adipose tissue has the unique property of expanding throughout adult life, and angiogenesis is required for its growth. However, endothelial progenitor cells contribute minimally to neovascularization. Because myeloid cells have proven to be angiogenic, and monocytes accumulate in expanding adipose tissue, they might contribute to vascularization. Methods The stromal vascular fraction (SVF) cells from human adipose tissue were magnetically separated according to CD45 or CD14 expression. Adipose-derived mesenchymal stromal cells (MSCs) were obtained from SVF CD45- cells. CD14+ monocytes were isolated from peripheral blood (PB) mononuclear cells and then cultured with SVF-derived MSCs. Freshly isolated or cultured cells were characterized with flow cytometry; the conditioned media were analyzed for the angiogenic growth factors, angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF) with Luminex Technology; their angiogenic capacity was determined in an in vivo gelatinous protein mixture (Matrigel) plug angiogenesis assay. Results CD45+ hematopoietic cells within the SVF contain CD14+ cells that co-express the CD34 progenitor marker and the endothelial cell antigens VEGF receptor 2 (VEGFR2/KDR), VEGFR1/Flt1, and Tie2. Co-culture experiments showed that SVF-derived MSCs promoted the acquisition of KDR and Tie-2 in PB monocytes. MSCs secreted significant amounts of Ang-2 and HGF, but minimal amounts of bFGF, G-CSF, or GM-CSF, whereas the opposite was observed for SVF CD14+ cells. Additionally, SVF CD14+ cells secreted significantly higher levels of VEGF and bFGF than did MSCs. Culture supernatants of PB monocytes cultured with MSCs contained significantly higher concentrations of VEGF, HGF, G-CSF, and GM-CSF than did the supernatants from cultures without MSCs

  6. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    PubMed Central

    Foltz, Jennifer A.; Somanchi, Srinivas S.; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E.; Lee, Dean A.

    2016-01-01

    Canines spontaneously develop many cancers similar to humans – including osteosarcoma, leukemia, and lymphoma – offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3−/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3−/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3−/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3−/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3−/CD21−/CD14−/NKp46−) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3−/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46− subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy. PMID:27933061

  7. Aberrant Cytokeratin Expression During Arsenic-induced Acquired Malignant Phenotype in Human HaCaT Keratinocytes Consistent with Epidermal Carcinogenesis

    PubMed Central

    Sun, Yang; Pi, Jingbo; Wang, Xueqian; Tokar, Erik J.; Liu, Jie; Waalkes, Michael P.

    2009-01-01

    Inorganic arsenic is a known human skin carcinogen. Chronic arsenic exposure results in various human skin lesions, including hyperkeratosis and squamous cell carcinoma (SCC), both characterized by distorted cytokeratin (CK) production. Prior work shows the human skin keratinocyte HaCaT cell line, when exposed chronically for >25 weeks to a low level of inorganic arsenite (100 nM) results in cells able to produce aggressive SCC upon inoculation into nude mice. In the present study, CK expression analysis was performed in arsenic-exposed HaCaT cells during the progressive acquisition of this malignant phenotype (0 to 20 weeks) to further validate this model as relevant to epidermal carcinogenesis induced by arsenic in humans. Indeed, we observed clear evidence of acquired cancer phenotype by 20 weeks of arsenite exposure including the formation of giant cells, a >4-fold increase in colony formation in soft agar and a ∼2.5-fold increase in matrix metalloproteinase-9 secretion, an enzyme often secreted by cancer cells to help invade through the local extra-cellular matrix. During this acquired malignant phenotype, various CK genes showed markedly altered expression at the transcript and protein levels in a time-dependent manner. For example, CK1, a marker of hyperkeratosis, increased up to 34-fold during arsenic-induced transformation, while CK13, a marker for dermal cancer progression, increased up to 45-fold. The stem cell marker, CK15, increased up to 7-fold, particularly during the later stages of arsenic exposure, indicating a potential emergence of cancer stem-like cells with arsenic-induced acquired malignant phenotype. The expression of involucrin and loricrin, markers for keratinocyte differentiation, increased up to 9-fold. Thus, during arsenic-induced acquired cancer phenotype in human keratinocytes, dramatic and dynamic alterations in CK expression occur which are consistent with the process of epidermal carcinogenesis helping validate this as an

  8. Aberrant cytokeratin expression during arsenic-induced acquired malignant phenotype in human HaCaT keratinocytes consistent with epidermal carcinogenesis.

    PubMed

    Sun, Yang; Pi, Jingbo; Wang, Xueqian; Tokar, Erik J; Liu, Jie; Waalkes, Michael P

    2009-08-03

    Inorganic arsenic is a known human skin carcinogen. Chronic arsenic exposure results in various human skin lesions, including hyperkeratosis and squamous cell carcinoma (SCC), both characterized by distorted cytokeratin (CK) production. Prior work shows the human skin keratinocyte HaCaT cell line, when exposed chronically for >25 weeks to a low level of inorganic arsenite (100nM) results in cells able to produce aggressive SCC upon inoculation into nude mice. In the present study, CK expression analysis was performed in arsenic-exposed HaCaT cells during the progressive acquisition of this malignant phenotype (0-20 weeks) to further validate this model as relevant to epidermal carcinogenesis induced by arsenic in humans. Indeed, we observed clear evidence of acquired cancer phenotype by 20 weeks of arsenite exposure including the formation of giant cells, a >4-fold increase in colony formation in soft agar and a approximately 2.5-fold increase in matrix metalloproteinase-9 secretion, an enzyme often secreted by cancer cells to help invade through the local extra-cellular matrix. During this acquired malignant phenotype, various CK genes showed markedly altered expression at the transcript and protein levels in a time-dependent manner. For example, CK1, a marker of hyperkeratosis, increased up to 34-fold during arsenic-induced transformation, while CK13, a marker for dermal cancer progression, increased up to 45-fold. The stem cell marker, CK15, increased up to 7-fold, particularly during the later stages of arsenic exposure, indicating a potential emergence of cancer stem-like cells with arsenic-induced acquired malignant phenotype. The expression of involucrin and loricrin, markers for keratinocyte differentiation, increased up to 9-fold. Thus, during arsenic-induced acquired cancer phenotype in human keratinocytes, dramatic and dynamic alterations in CK expression occur which are consistent with the process of epidermal carcinogenesis helping validate this as an

  9. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    PubMed

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  10. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes

    PubMed Central

    Raja, Waseem K.; Mungenast, Alison E.; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer’s disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  11. Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages

    PubMed Central

    Allavena, P.; Chieppa, M.; Bianchi, G.; Solinas, G.; Fabbri, M.; Laskarin, G.; Mantovani, A.

    2010-01-01

    Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype. PMID:21331365

  12. IL-1beta induces thymic stromal lymphopoietin and an atopic dermatitis-like phenotype in reconstructed healthy human epidermis.

    PubMed

    Bernard, Marine; Carrasco, Cédric; Laoubi, Léo; Guiraud, Béatrice; Rozières, Aurore; Goujon, Catherine; Duplan, Hélène; Bessou-Touya, Sandrine; Nicolas, Jean-François; Vocanson, Marc; Galliano, Marie-Florence

    2017-02-13

    Atopic dermatitis (AD) is a common skin inflammatory disease characterized by the production of thymic stromal lymphopoietin (TSLP) and a marked TH 2 polarization. Recent studies suggest that IL-1β contributes to the development of AD skin inflammation. Here, we have investigated the impact of IL-1β signalling on the epidermal homeostasis of both healthy subjects and AD patient [with functional filaggrin (FLG) alleles] with particular attention to TSLP production and keratinocyte differentiation. In healthy reconstructed human epidermis (RHE), IL-1β promoted: (i) a robust secretion of TSLP in an NFkB-dependant manner and (ii) a significant decrease in the expression of filaggrin and other proteins of the epidermal differentiation complex. These effects were prevented by treatment of RHE with the anti-IL-1β mAb canakinumab and by the IL-1 receptor antagonist anakinra. Interestingly, RHE generated from AD donors behaved like that of healthy individuals and showed comparable responses to IL-1β signals. Collectively, our results suggest that IL-1β may be an early key mediator for the acquisition of an AD phenotype through induction of TSLP and alteration of the epidermal homeostasis.

  13. Stimulators of Mineralization Limit the Invasive Phenotype of Human Osteosarcoma Cells by a Mechanism Involving Impaired Invadopodia Formation

    PubMed Central

    Cmoch, Anna; Podszywalow-Bartnicka, Paulina; Palczewska, Malgorzata; Piwocka, Katarzyna; Groves, Patrick; Pikula, Slawomir

    2014-01-01

    Background Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). Results In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. Conclusions Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma. PMID:25314307

  14. Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells

    SciTech Connect

    Schildknecht, Stefan; Poeltl, Dominik; Nagel, Daniel M.; Matt, Florian; Scholz, Diana; Lotharius, Julie; Schmieg, Nathalie; Salvo-Vargas, Alberto; Leist, Marcel

    2009-11-15

    LUHMES cells are conditionally-immortalized non-transformed human fetal cells that can be differentiated to acquire a dopaminergic neuron-like phenotype under appropriate growth conditions. After differentiation by GDNF and cyclic adenosine monophosphate, LUHMES were sensitive to 1-methyl-4-phenylpyridinium (MPP{sup +}) toxicity at <= 5 muM, but resistant to the parental compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The high homogeneity and purity of the cultures allowed the detection of metabolic changes during the degeneration. Cellular ATP dropped in two phases after 24 and 48 h; cellular glutathione (GSH) decreased continuously, paralleled by an increase in lipid peroxidation. These events were accompanied by a time-dependent degeneration of neurites. Block of the dopamine transporter by GBR 12909 or mazindol completely abrogated MPP{sup +} toxicity. Inhibition of de novo dopamine synthesis by alpha-methyl-L-tyrosine or 3-iodo-L-tyrosine attenuated toxicity, but did not reduce the initial drop in ATP. Inhibition of mixed lineage kinases by CEP1347 completely prevented the MPP{sup +}-induced loss of viability and intracellular GSH, but failed to attenuate the initial drop of ATP. For the quantitative assessment of neurite degeneration, an automated imaging-based high content screening approach was applied and confirmed the findings made by pharmacological interventions in this study. Our data indicate that inhibition of mitochondrial ATP synthesis is not sufficient to trigger cell death in MPP{sup +}-treated LUHMES.

  15. Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches.

    PubMed

    Nizzardo, Monica; Simone, Chiara; Dametti, Sara; Salani, Sabrina; Ulzi, Gianna; Pagliarani, Serena; Rizzo, Federica; Frattini, Emanuele; Pagani, Franco; Bresolin, Nereo; Comi, Giacomo; Corti, Stefania

    2015-06-30

    Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders.

  16. Genomic Features of the Human Dopamine Transporter Gene and Its Potential Epigenetic States: Implications for Phenotypic Diversity

    SciTech Connect

    Shumay, E.; Shumay, E.; Fowler, J.S.; Volkow, N.D.

    2010-06-01

    Human dopamine transporter gene (DAT1 or SLC6A3) has been associated with various brain-related diseases and behavioral traits and, as such, has been investigated intensely in experimental- and clinical-settings. However, the abundance of research data has not clarified the biological mechanism of DAT regulation; similarly, studies of DAT genotype-phenotype associations yielded inconsistent results. Hence, our understanding of the control of the DAT protein product is incomplete; having this knowledge is critical, since DAT plays the major role in the brain's dopaminergic circuitry. Accordingly, we reevaluated the genomic attributes of the SLC6A3 gene that might confer sensitivity to regulation, hypothesizing that its unique genomic characteristics might facilitate highly dynamic, region-specific DAT expression, so enabling multiple regulatory modes. Our comprehensive bioinformatic analyzes revealed very distinctive genomic characteristics of the SLC6A3, including high inter-individual variability of its sequence (897 SNPs, about 90 repeats and several CNVs spell out all abbreviations in abstract) and pronounced sensitivity to regulation by epigenetic mechanisms, as evident from the GC-bias composition (0.55) of the SLC6A3, and numerous intragenic CpG islands (27 CGIs). We propose that this unique combination of the genomic features and the regulatory attributes enables the differential expression of the DAT1 gene and fulfills seemingly contradictory demands to its regulation; that is, robustness of region-specific expression and functional dynamics.

  17. Phenotypic markers in human skin fibroblasts as possible diagnostic indices of hereditary adenomatosis of the colon and rectum.

    PubMed

    Kopelovich, L

    1977-11-01

    Hereditary adenomatosis of the colon and rectum (ACR) and its Gardner's syndrome variant, an autosomal dominant trait, indicate a propensity for neoplasia. The present study describes the growth abnormalities of cultured human skin fibroblasts derived from normal-appearing cutaneous biopsies of ACR genotypes and a portion of the clinically asymptomatic ACR progeny, first filial generation, and their differential susceptibility to transformation by Kirsten murine sarcoma virus. These skin f