Sample records for human gene database

  1. Human Ageing Genomic Resources: new and updated databases

    PubMed Central

    Tacutu, Robi; Thornton, Daniel; Johnson, Emily; Budovsky, Arie; Barardo, Diogo; Craig, Thomas; Diana, Eugene; Lehmann, Gilad; Toren, Dmitri; Wang, Jingwei; Fraifeld, Vadim E

    2018-01-01

    Abstract In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/). PMID:29121237

  2. Genic insights from integrated human proteomics in GeneCards.

    PubMed

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.

  3. The "GeneTrustee": a universal identification system that ensures privacy and confidentiality for human genetic databases.

    PubMed

    Burnett, Leslie; Barlow-Stewart, Kris; Proos, Anné L; Aizenberg, Harry

    2003-05-01

    This article describes a generic model for access to samples and information in human genetic databases. The model utilises a "GeneTrustee", a third-party intermediary independent of the subjects and of the investigators or database custodians. The GeneTrustee model has been implemented successfully in various community genetics screening programs and has facilitated research access to genetic databases while protecting the privacy and confidentiality of research subjects. The GeneTrustee model could also be applied to various types of non-conventional genetic databases, including neonatal screening Guthrie card collections, and to forensic DNA samples.

  4. BGDB: a database of bivalent genes.

    PubMed

    Li, Qingyan; Lian, Shuabin; Dai, Zhiming; Xiang, Qian; Dai, Xianhua

    2013-01-01

    Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL: http://dailab.sysu.edu.cn/bgdb/

  5. HEDD: Human Enhancer Disease Database

    PubMed Central

    Wang, Zhen; Zhang, Quanwei; Zhang, Wen; Lin, Jhih-Rong; Cai, Ying; Mitra, Joydeep

    2018-01-01

    Abstract Enhancers, as specialized genomic cis-regulatory elements, activate transcription of their target genes and play an important role in pathogenesis of many human complex diseases. Despite recent systematic identification of them in the human genome, currently there is an urgent need for comprehensive annotation databases of human enhancers with a focus on their disease connections. In response, we built the Human Enhancer Disease Database (HEDD) to facilitate studies of enhancers and their potential roles in human complex diseases. HEDD currently provides comprehensive genomic information for ∼2.8 million human enhancers identified by ENCODE, FANTOM5 and RoadMap with disease association scores based on enhancer–gene and gene–disease connections. It also provides Web-based analytical tools to visualize enhancer networks and score enhancers given a set of selected genes in a specific gene network. HEDD is freely accessible at http://zdzlab.einstein.yu.edu/1/hedd.php. PMID:29077884

  6. The complex genetics of human insulin-like growth factor 2 are not reflected in public databases.

    PubMed

    Rotwein, Peter

    2018-03-23

    Recent advances in genetics present unique opportunities for enhancing knowledge about human physiology and disease susceptibility. Understanding this information at the individual gene level is challenging and requires extracting, collating, and interpreting data from a variety of public gene repositories. Here, I illustrate this challenge by analyzing the gene for human insulin-like growth factor 2 ( IGF2 ) through the lens of several databases. IGF2, a 67-amino acid secreted peptide, is essential for normal prenatal growth and is involved in other physiological and pathophysiological processes in humans. Surprisingly, none of the genetic databases accurately described or completely delineated human IGF2 gene structure or transcript expression, even though all relevant information could be found in the published literature. Although IGF2 shares multiple features with the mouse Igf2 gene, it has several unique properties, including transcription from five promoters. Both genes undergo parental imprinting, with IGF2 / Igf2 being expressed primarily from the paternal chromosome and the adjacent H19 gene from the maternal chromosome. Unlike mouse Igf2 , whose expression declines after birth, human IGF2 remains active throughout life. This characteristic has been attributed to a unique human gene promoter that escapes imprinting, but as shown here, it involves several different promoters with distinct tissue-specific expression patterns. Because new testable hypotheses could lead to critical insights into IGF2 actions in human physiology and disease, it is incumbent that our fundamental understanding is accurate. Similar challenges affecting knowledge of other human genes should promote attempts to critically evaluate, interpret, and correct human genetic data in publicly available databases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    PubMed

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    PubMed

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. BGDB: a database of bivalent genes

    PubMed Central

    Li, Qingyan; Lian, Shuabin; Dai, Zhiming; Xiang, Qian; Dai, Xianhua

    2013-01-01

    Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL: http://dailab.sysu.edu.cn/bgdb/ PMID:23894186

  10. Literature and patent analysis of the cloning and identification of human functional genes in China.

    PubMed

    Xia, Yan; Tang, LiSha; Yao, Lei; Wan, Bo; Yang, XianMei; Yu, Long

    2012-03-01

    The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.

  11. HOWDY: an integrated database system for human genome research

    PubMed Central

    Hirakawa, Mika

    2002-01-01

    HOWDY is an integrated database system for accessing and analyzing human genomic information (http://www-alis.tokyo.jst.go.jp/HOWDY/). HOWDY stores information about relationships between genetic objects and the data extracted from a number of databases. HOWDY consists of an Internet accessible user interface that allows thorough searching of the human genomic databases using the gene symbols and their aliases. It also permits flexible editing of the sequence data. The database can be searched using simple words and the search can be restricted to a specific cytogenetic location. Linear maps displaying markers and genes on contig sequences are available, from which an object can be chosen. Any search starting point identifies all the information matching the query. HOWDY provides a convenient search environment of human genomic data for scientists unsure which database is most appropriate for their search. PMID:11752279

  12. The Chinchilla Research Resource Database: resource for an otolaryngology disease model

    PubMed Central

    Shimoyama, Mary; Smith, Jennifer R.; De Pons, Jeff; Tutaj, Marek; Khampang, Pawjai; Hong, Wenzhou; Erbe, Christy B.; Ehrlich, Garth D.; Bakaletz, Lauren O.; Kerschner, Joseph E.

    2016-01-01

    The long-tailed chinchilla (Chinchilla lanigera) is an established animal model for diseases of the inner and middle ear, among others. In particular, chinchilla is commonly used to study diseases involving viral and bacterial pathogens and polymicrobial infections of the upper respiratory tract and the ear, such as otitis media. The value of the chinchilla as a model for human diseases prompted the sequencing of its genome in 2012 and the more recent development of the Chinchilla Research Resource Database (http://crrd.mcw.edu) to provide investigators with easy access to relevant datasets and software tools to enhance their research. The Chinchilla Research Resource Database contains a complete catalog of genes for chinchilla and, for comparative purposes, human. Chinchilla genes can be viewed in the context of their genomic scaffold positions using the JBrowse genome browser. In contrast to the corresponding records at NCBI, individual gene reports at CRRD include functional annotations for Disease, Gene Ontology (GO) Biological Process, GO Molecular Function, GO Cellular Component and Pathway assigned to chinchilla genes based on annotations from the corresponding human orthologs. Data can be retrieved via keyword and gene-specific searches. Lists of genes with similar functional attributes can be assembled by leveraging the hierarchical structure of the Disease, GO and Pathway vocabularies through the Ontology Search and Browser tool. Such lists can then be further analyzed for commonalities using the Gene Annotator (GA) Tool. All data in the Chinchilla Research Resource Database is freely accessible and downloadable via the CRRD FTP site or using the download functions available in the search and analysis tools. The Chinchilla Research Resource Database is a rich resource for researchers using, or considering the use of, chinchilla as a model for human disease. Database URL: http://crrd.mcw.edu PMID:27173523

  13. WormQTLHD--a web database for linking human disease to natural variation data in C. elegans.

    PubMed

    van der Velde, K Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L Basten; Kammenga, Jan E; Jansen, Ritsert C; Swertz, Morris A; Li, Yang

    2014-01-01

    Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism-Caenorhabditis elegans-has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTL(HD) (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene-disease associations in man. WormQTL(HD), available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene-disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench.

  14. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation

    PubMed Central

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches. PMID:26881263

  15. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation.

    PubMed

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches.

  16. Novel LOVD databases for hereditary breast cancer and colorectal cancer genes in the Chinese population.

    PubMed

    Pan, Min; Cong, Peikuan; Wang, Yue; Lin, Changsong; Yuan, Ying; Dong, Jian; Banerjee, Santasree; Zhang, Tao; Chen, Yanling; Zhang, Ting; Chen, Mingqing; Hu, Peter; Zheng, Shu; Zhang, Jin; Qi, Ming

    2011-12-01

    The Human Variome Project (HVP) is an international consortium of clinicians, geneticists, and researchers from over 30 countries, aiming to facilitate the establishment and maintenance of standards, systems, and infrastructure for the worldwide collection and sharing of all genetic variations effecting human disease. The HVP-China Node will build new and supplement existing databases of genetic diseases. As the first effort, we have created a novel variant database of BRCA1 and BRCA2, mismatch repair genes (MMR), and APC genes for breast cancer, Lynch syndrome, and familial adenomatous polyposis (FAP), respectively, in the Chinese population using the Leiden Open Variation Database (LOVD) format. We searched PubMed and some Chinese search engines to collect all the variants of these genes in the Chinese population that have already been detected and reported. There are some differences in the gene variants between the Chinese population and that of other ethnicities. The database is available online at http://www.genomed.org/LOVD/. Our database will appear to users who survey other LOVD databases (e.g., by Google search, or by NCBI GeneTests search). Remote submissions are accepted, and the information is updated monthly. © 2011 Wiley Periodicals, Inc.

  17. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    NASA Astrophysics Data System (ADS)

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A. A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-12-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool.

  18. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    PubMed Central

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A.A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-01-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool. PMID:27995928

  19. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  20. Database resources of the National Center for Biotechnology Information: 2002 update

    PubMed Central

    Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.

    2002-01-01

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, Human¡VMouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:11752242

  1. LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.

    PubMed

    Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun

    2012-01-01

    Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene ontology (GO) annotation, promoter identification, gene expression (co-expression), and evolutionary analysis. This database not only provides a way to define lineage-specific and species-specific gene clusters but also facilitates future studies on gene co-regulation, epigenetic control of gene expression (DNA methylation and histone marks), and chromosomal structures in a context of gene clusters and species evolution. LCGbase is freely available at http://lcgbase.big.ac.cn/LCGbase.

  2. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse

    PubMed Central

    Liu, Zhi-Ping; Wu, Canglin; Miao, Hongyu; Wu, Hulin

    2015-01-01

    Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named ‘RegNetwork’, of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org PMID:26424082

  3. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    PubMed Central

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  4. Human Variome Project Quality Assessment Criteria for Variation Databases.

    PubMed

    Vihinen, Mauno; Hancock, John M; Maglott, Donna R; Landrum, Melissa J; Schaafsma, Gerard C P; Taschner, Peter

    2016-06-01

    Numerous databases containing information about DNA, RNA, and protein variations are available. Gene-specific variant databases (locus-specific variation databases, LSDBs) are typically curated and maintained for single genes or groups of genes for a certain disease(s). These databases are widely considered as the most reliable information source for a particular gene/protein/disease, but it should also be made clear they may have widely varying contents, infrastructure, and quality. Quality is very important to evaluate because these databases may affect health decision-making, research, and clinical practice. The Human Variome Project (HVP) established a Working Group for Variant Database Quality Assessment. The basic principle was to develop a simple system that nevertheless provides a good overview of the quality of a database. The HVP quality evaluation criteria that resulted are divided into four main components: data quality, technical quality, accessibility, and timeliness. This report elaborates on the developed quality criteria and how implementation of the quality scheme can be achieved. Examples are provided for the current status of the quality items in two different databases, BTKbase, an LSDB, and ClinVar, a central archive of submissions about variants and their clinical significance. © 2016 WILEY PERIODICALS, INC.

  5. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown. PMID:16685651

  6. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    PubMed

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  7. WormQTLHD—a web database for linking human disease to natural variation data in C. elegans

    PubMed Central

    van der Velde, K. Joeri; de Haan, Mark; Zych, Konrad; Arends, Danny; Snoek, L. Basten; Kammenga, Jan E.; Jansen, Ritsert C.; Swertz, Morris A.; Li, Yang

    2014-01-01

    Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism—Caenorhabditis elegans—has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTLHD (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene–disease associations in man. WormQTLHD, available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene–disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench. PMID:24217915

  8. Mining biological databases for candidate disease genes

    NASA Astrophysics Data System (ADS)

    Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.

    2001-07-01

    The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).

  9. HuMiChip: Development of a Functional Gene Array for the Study of Human Microbiomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Q.; Deng, Ye; Lin, Lu

    Microbiomes play very important roles in terms of nutrition, health and disease by interacting with their hosts. Based on sequence data currently available in public domains, we have developed a functional gene array to monitor both organismal and functional gene profiles of normal microbiota in human and mouse hosts, and such an array is called human and mouse microbiota array, HMM-Chip. First, seed sequences were identified from KEGG databases, and used to construct a seed database (seedDB) containing 136 gene families in 19 metabolic pathways closely related to human and mouse microbiomes. Second, a mother database (motherDB) was constructed withmore » 81 genomes of bacterial strains with 54 from gut and 27 from oral environments, and 16 metagenomes, and used for selection of genes and probe design. Gene prediction was performed by Glimmer3 for bacterial genomes, and by the Metagene program for metagenomes. In total, 228,240 and 801,599 genes were identified for bacterial genomes and metagenomes, respectively. Then the motherDB was searched against the seedDB using the HMMer program, and gene sequences in the motherDB that were highly homologous with seed sequences in the seedDB were used for probe design by the CommOligo software. Different degrees of specific probes, including gene-specific, inclusive and exclusive group-specific probes were selected. All candidate probes were checked against the motherDB and NCBI databases for specificity. Finally, 7,763 probes covering 91.2percent (12,601 out of 13,814) HMMer confirmed sequences from 75 bacterial genomes and 16 metagenomes were selected. This developed HMM-Chip is able to detect the diversity and abundance of functional genes, the gene expression of microbial communities, and potentially, the interactions of microorganisms and their hosts.« less

  10. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    PubMed

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  11. The Human Ageing Genomic Resources: online databases and tools for biogerontologists

    PubMed Central

    de Magalhães, João Pedro; Budovsky, Arie; Lehmann, Gilad; Costa, Joana; Li, Yang; Fraifeld, Vadim; Church, George M.

    2009-01-01

    Summary Ageing is a complex, challenging phenomenon that will require multiple, interdisciplinary approaches to unravel its puzzles. To assist basic research on ageing, we developed the Human Ageing Genomic Resources (HAGR). This work provides an overview of the databases and tools in HAGR and describes how the gerontology research community can employ them. Several recent changes and improvements to HAGR are also presented. The two centrepieces in HAGR are GenAge and AnAge. GenAge is a gene database featuring genes associated with ageing and longevity in model organisms, a curated database of genes potentially associated with human ageing, and a list of genes tested for their association with human longevity. A myriad of biological data and information is included for hundreds of genes, making GenAge a reference for research that reflects our current understanding of the genetic basis of ageing. GenAge can also serve as a platform for the systems biology of ageing, and tools for the visualization of protein-protein interactions are also included. AnAge is a database of ageing in animals, featuring over 4,000 species, primarily assembled as a resource for comparative and evolutionary studies of ageing. Longevity records, developmental and reproductive traits, taxonomic information, basic metabolic characteristics, and key observations related to ageing are included in AnAge. Software is also available to aid researchers in the form of Perl modules to automate numerous tasks and as an SPSS script to analyse demographic mortality data. The Human Ageing Genomic Resources are available online at http://genomics.senescence.info. PMID:18986374

  12. DBGC: A Database of Human Gastric Cancer

    PubMed Central

    Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan

    2015-01-01

    The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do PMID:26566288

  13. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.

    2001-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap’99, Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheri­tance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:11125038

  14. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  15. Mutation databases for inherited renal disease: are they complete, accurate, clinically relevant, and freely available?

    PubMed

    Savige, Judy; Dagher, Hayat; Povey, Sue

    2014-07-01

    This study examined whether gene-specific DNA variant databases for inherited diseases of the kidney fulfilled the Human Variome Project recommendations of being complete, accurate, clinically relevant and freely available. A recent review identified 60 inherited renal diseases caused by mutations in 132 genes. The disease name, MIM number, gene name, together with "mutation" or "database," were used to identify web-based databases. Fifty-nine diseases (98%) due to mutations in 128 genes had a variant database. Altogether there were 349 databases (a median of 3 per gene, range 0-6), but no gene had two databases with the same number of variants, and 165 (50%) databases included fewer than 10 variants. About half the databases (180, 54%) had been updated in the previous year. Few (77, 23%) were curated by "experts" but these included nine of the 11 with the most variants. Even fewer databases (41, 12%) included clinical features apart from the name of the associated disease. Most (223, 67%) could be accessed without charge, including those for 50 genes (40%) with the maximum number of variants. Future efforts should focus on encouraging experts to collaborate on a single database for each gene affected in inherited renal disease, including both unpublished variants, and clinical phenotypes. © 2014 WILEY PERIODICALS, INC.

  16. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    PubMed

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna; Bocchini, Carol; Valle, David; McKusick, Victor A

    2002-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support research and education in human genomics and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (www.ncbi.nlm.nih.gov/omim) is now distributed electronically by the National Center for Biotechnology Information (NCBI), where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, approved gene nomenclature, and the highly detailed mapviewer, as well as patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  17. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

    PubMed Central

    Chen, Tsute; Yu, Wen-Han; Izard, Jacques; Baranova, Oxana V.; Lakshmanan, Abirami; Dewhirst, Floyd E.

    2010-01-01

    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org PMID:20624719

  18. APADB: a database for alternative polyadenylation and microRNA regulation events

    PubMed Central

    Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M.; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn

    2014-01-01

    Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/ PMID:25052703

  19. pseudoMap: an innovative and comprehensive resource for identification of siRNA-mediated mechanisms in human transcribed pseudogenes.

    PubMed

    Chan, Wen-Ling; Yang, Wen-Kuang; Huang, Hsien-Da; Chang, Jan-Gowth

    2013-01-01

    RNA interference (RNAi) is a gene silencing process within living cells, which is controlled by the RNA-induced silencing complex with a sequence-specific manner. In flies and mice, the pseudogene transcripts can be processed into short interfering RNAs (siRNAs) that regulate protein-coding genes through the RNAi pathway. Following these findings, we construct an innovative and comprehensive database to elucidate siRNA-mediated mechanism in human transcribed pseudogenes (TPGs). To investigate TPG producing siRNAs that regulate protein-coding genes, we mapped the TPGs to small RNAs (sRNAs) that were supported by publicly deep sequencing data from various sRNA libraries and constructed the TPG-derived siRNA-target interactions. In addition, we also presented that TPGs can act as a target for miRNAs that actually regulate the parental gene. To enable the systematic compilation and updating of these results and additional information, we have developed a database, pseudoMap, capturing various types of information, including sequence data, TPG and cognate annotation, deep sequencing data, RNA-folding structure, gene expression profiles, miRNA annotation and target prediction. As our knowledge, pseudoMap is the first database to demonstrate two mechanisms of human TPGs: encoding siRNAs and decoying miRNAs that target the parental gene. pseudoMap is freely accessible at http://pseudomap.mbc.nctu.edu.tw/. Database URL: http://pseudomap.mbc.nctu.edu.tw/

  20. Recommendations for Locus-Specific Databases and Their Curation

    PubMed Central

    Cotton, R.G.H.; Auerbach, A.D.; Beckmann, J.S.; Blumenfeld, O.O.; Brookes, A.J.; Brown, A.F.; Carrera, P.; Cox, D.W.; Gottlieb, B.; Greenblatt, M.S.; Hilbert, P.; Lehvaslaiho, H.; Liang, P.; Marsh, S.; Nebert, D.W.; Povey, S.; Rossetti, S.; Scriver, C.R.; Summar, M.; Tolan, D.R.; Verma, I.C.; Vihinen, M.; den Dunnen, J.T.

    2009-01-01

    Expert curation and complete collection of mutations in genes that affect human health is essential for proper genetic healthcare and research. Expert curation is given by the curators of gene-specific mutation databases or locus-specific databases (LSDBs). While there are over 700 such databases, they vary in their content, completeness, time available for curation, and the expertise of the curator. Curation and LSDBs have been discussed, written about, and protocols have been provided for over 10 years, but there have been no formal recommendations for the ideal form of these entities. This work initiates a discussion on this topic to assist future efforts in human genetics. Further discussion is welcome. PMID:18157828

  1. Recommendations for locus-specific databases and their curation.

    PubMed

    Cotton, R G H; Auerbach, A D; Beckmann, J S; Blumenfeld, O O; Brookes, A J; Brown, A F; Carrera, P; Cox, D W; Gottlieb, B; Greenblatt, M S; Hilbert, P; Lehvaslaiho, H; Liang, P; Marsh, S; Nebert, D W; Povey, S; Rossetti, S; Scriver, C R; Summar, M; Tolan, D R; Verma, I C; Vihinen, M; den Dunnen, J T

    2008-01-01

    Expert curation and complete collection of mutations in genes that affect human health is essential for proper genetic healthcare and research. Expert curation is given by the curators of gene-specific mutation databases or locus-specific databases (LSDBs). While there are over 700 such databases, they vary in their content, completeness, time available for curation, and the expertise of the curator. Curation and LSDBs have been discussed, written about, and protocols have been provided for over 10 years, but there have been no formal recommendations for the ideal form of these entities. This work initiates a discussion on this topic to assist future efforts in human genetics. Further discussion is welcome. (c) 2007 Wiley-Liss, Inc.

  2. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  3. A literature search tool for intelligent extraction of disease-associated genes.

    PubMed

    Jung, Jae-Yoon; DeLuca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2014-01-01

    To extract disorder-associated genes from the scientific literature in PubMed with greater sensitivity for literature-based support than existing methods. We developed a PubMed query to retrieve disorder-related, original research articles. Then we applied a rule-based text-mining algorithm with keyword matching to extract target disorders, genes with significant results, and the type of study described by the article. We compared our resulting candidate disorder genes and supporting references with existing databases. We demonstrated that our candidate gene set covers nearly all genes in manually curated databases, and that the references supporting the disorder-gene link are more extensive and accurate than other general purpose gene-to-disorder association databases. We implemented a novel publication search tool to find target articles, specifically focused on links between disorders and genotypes. Through comparison against gold-standard manually updated gene-disorder databases and comparison with automated databases of similar functionality we show that our tool can search through the entirety of PubMed to extract the main gene findings for human diseases rapidly and accurately.

  4. RPG: the Ribosomal Protein Gene database.

    PubMed

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.

  5. RPG: the Ribosomal Protein Gene database

    PubMed Central

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes. PMID:14681386

  6. [Genetic mutation databases: stakes and perspectives for orphan genetic diseases].

    PubMed

    Humbertclaude, V; Tuffery-Giraud, S; Bareil, C; Thèze, C; Paulet, D; Desmet, F-O; Hamroun, D; Baux, D; Girardet, A; Collod-Béroud, G; Khau Van Kien, P; Roux, A-F; des Georges, M; Béroud, C; Claustres, M

    2010-10-01

    New technologies, which constantly become available for mutation detection and gene analysis, have contributed to an exponential rate of discovery of disease genes and variation in the human genome. The task of collecting and documenting this enormous amount of data in genetic databases represents a major challenge for the future of biological and medical science. The Locus Specific Databases (LSDBs) are so far the most efficient mutation databases. This review presents the main types of databases available for the analysis of mutations responsible for genetic disorders, as well as open perspectives for new therapeutic research or challenges for future medicine. Accurate and exhaustive collection of variations in human genomes will be crucial for research and personalized delivery of healthcare. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  7. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing

    PubMed Central

    Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro

    2013-01-01

    The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293

  8. dbCPG: A web resource for cancer predisposition genes.

    PubMed

    Wei, Ran; Yao, Yao; Yang, Wu; Zheng, Chun-Hou; Zhao, Min; Xia, Junfeng

    2016-06-21

    Cancer predisposition genes (CPGs) are genes in which inherited mutations confer highly or moderately increased risks of developing cancer. Identification of these genes and understanding the biological mechanisms that underlie them is crucial for the prevention, early diagnosis, and optimized management of cancer. Over the past decades, great efforts have been made to identify CPGs through multiple strategies. However, information on these CPGs and their molecular functions is scattered. To address this issue and provide a comprehensive resource for researchers, we developed the Cancer Predisposition Gene Database (dbCPG, Database URL: http://bioinfo.ahu.edu.cn:8080/dbCPG/index.jsp), the first literature-based gene resource for exploring human CPGs. It contains 827 human (724 protein-coding, 23 non-coding, and 80 unknown type genes), 637 rats, and 658 mouse CPGs. Furthermore, data mining was performed to gain insights into the understanding of the CPGs data, including functional annotation, gene prioritization, network analysis of prioritized genes and overlap analysis across multiple cancer types. A user-friendly web interface with multiple browse, search, and upload functions was also developed to facilitate access to the latest information on CPGs. Taken together, the dbCPG database provides a comprehensive data resource for further studies of cancer predisposition genes.

  9. MalaCards: an integrated compendium for diseases and their annotation

    PubMed Central

    Rappaport, Noa; Nativ, Noam; Stelzer, Gil; Twik, Michal; Guan-Golan, Yaron; Iny Stein, Tsippi; Bahir, Iris; Belinky, Frida; Morrey, C. Paul; Safran, Marilyn; Lancet, Doron

    2013-01-01

    Comprehensive disease classification, integration and annotation are crucial for biomedical discovery. At present, disease compilation is incomplete, heterogeneous and often lacking systematic inquiry mechanisms. We introduce MalaCards, an integrated database of human maladies and their annotations, modeled on the architecture and strategy of the GeneCards database of human genes. MalaCards mines and merges 44 data sources to generate a computerized card for each of 16 919 human diseases. Each MalaCard contains disease-specific prioritized annotations, as well as inter-disease connections, empowered by the GeneCards relational database, its searches and GeneDecks set analyses. First, we generate a disease list from 15 ranked sources, using disease-name unification heuristics. Next, we use four schemes to populate MalaCards sections: (i) directly interrogating disease resources, to establish integrated disease names, synonyms, summaries, drugs/therapeutics, clinical features, genetic tests and anatomical context; (ii) searching GeneCards for related publications, and for associated genes with corresponding relevance scores; (iii) analyzing disease-associated gene sets in GeneDecks to yield affiliated pathways, phenotypes, compounds and GO terms, sorted by a composite relevance score and presented with GeneCards links; and (iv) searching within MalaCards itself, e.g. for additional related diseases and anatomical context. The latter forms the basis for the construction of a disease network, based on shared MalaCards annotations, embodying associations based on etiology, clinical features and clinical conditions. This broadly disposed network has a power-law degree distribution, suggesting that this might be an inherent property of such networks. Work in progress includes hierarchical malady classification, ontological mapping and disease set analyses, striving to make MalaCards an even more effective tool for biomedical research. Database URL: http://www.malacards.org/ PMID:23584832

  10. GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes

    PubMed Central

    Kim, Mara; Cooper, Brian A.; Venkat, Rohit; Phillips, Julie B.; Eidem, Haley R.; Hirbo, Jibril; Nutakki, Sashank; Williams, Scott M.; Muglia, Louis J.; Capra, J. Anthony; Petren, Kenneth; Abbot, Patrick; Rokas, Antonis; McGary, Kriston L.

    2016-01-01

    Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy. PMID:26567549

  11. Human Disease Insight: An integrated knowledge-based platform for disease-gene-drug information.

    PubMed

    Tasleem, Munazzah; Ishrat, Romana; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    The scope of the Human Disease Insight (HDI) database is not limited to researchers or physicians as it also provides basic information to non-professionals and creates disease awareness, thereby reducing the chances of patient suffering due to ignorance. HDI is a knowledge-based resource providing information on human diseases to both scientists and the general public. Here, our mission is to provide a comprehensive human disease database containing most of the available useful information, with extensive cross-referencing. HDI is a knowledge management system that acts as a central hub to access information about human diseases and associated drugs and genes. In addition, HDI contains well-classified bioinformatics tools with helpful descriptions. These integrated bioinformatics tools enable researchers to annotate disease-specific genes and perform protein analysis, search for biomarkers and identify potential vaccine candidates. Eventually, these tools will facilitate the analysis of disease-associated data. The HDI provides two types of search capabilities and includes provisions for downloading, uploading and searching disease/gene/drug-related information. The logistical design of the HDI allows for regular updating. The database is designed to work best with Mozilla Firefox and Google Chrome and is freely accessible at http://humandiseaseinsight.com. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  12. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  13. Epistasis-list.org: A Curated Database of Gene-Gene and Gene-Environment Interactions in Human Epidemiology

    EPA Science Inventory

    The field of human genetics has experienced a paradigm shift in that common diseases are now thought to be due to the complex interactions among numerous genetic and environmental factors. This paradigm shift has prompted the development of myriad novel methods to detect such int...

  14. Antibiotic resistance genes across a wide variety of metagenomes.

    PubMed

    Fitzpatrick, David; Walsh, Fiona

    2016-02-01

    The distribution of potential clinically relevant antibiotic resistance (AR) genes across soil, water, animal, plant and human microbiomes is not well understood. We aimed to investigate if there were differences in the distribution and relative abundances of resistance genes across a variety of ecological niches. All sequence reads (human, animal, water, soil, plant and insect metagenomes) from the MG-RAST database were downloaded and assembled into a local sequence database. We show that there are many reservoirs of the basic form of resistance genes e.g. blaTEM, but the human and mammalian gut microbiomes contain the widest diversity of clinically relevant resistance genes using metagenomic analysis. The human microbiomes contained a high relative abundance of resistance genes, while the relative abundances varied greatly in the marine and soil metagenomes, when datasets with greater than one million genes were compared. While these results reflect a bias in the distribution of AR genes across the metagenomes, we note this interpretation with caution. Metagenomics analysis includes limits in terms of detection and identification of AR genes in complex and diverse microbiome population. Therefore, if we do not detect the AR gene is it in fact not there or just below the limits of our techniques? © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data.

    PubMed

    Ben-Ari Fuchs, Shani; Lieder, Iris; Stelzer, Gil; Mazor, Yaron; Buzhor, Ella; Kaplan, Sergey; Bogoch, Yoel; Plaschkes, Inbar; Shitrit, Alina; Rappaport, Noa; Kohn, Asher; Edgar, Ron; Shenhav, Liraz; Safran, Marilyn; Lancet, Doron; Guan-Golan, Yaron; Warshawsky, David; Shtrichman, Ronit

    2016-03-01

    Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.

  16. CardioTF, a database of deconstructing transcriptional circuits in the heart system

    PubMed Central

    2016-01-01

    Background: Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. Methods: The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Results: Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. Discussion: The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Availability and Implementation: Database URL: http://www.cardiosignal.org/database/cardiotf.html. PMID:27635320

  17. CardioTF, a database of deconstructing transcriptional circuits in the heart system.

    PubMed

    Zhen, Yisong

    2016-01-01

    Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Database URL: http://www.cardiosignal.org/database/cardiotf.html.

  18. dbCPG: A web resource for cancer predisposition genes

    PubMed Central

    Wei, Ran; Yao, Yao; Yang, Wu; Zheng, Chun-Hou; Zhao, Min; Xia, Junfeng

    2016-01-01

    Cancer predisposition genes (CPGs) are genes in which inherited mutations confer highly or moderately increased risks of developing cancer. Identification of these genes and understanding the biological mechanisms that underlie them is crucial for the prevention, early diagnosis, and optimized management of cancer. Over the past decades, great efforts have been made to identify CPGs through multiple strategies. However, information on these CPGs and their molecular functions is scattered. To address this issue and provide a comprehensive resource for researchers, we developed the Cancer Predisposition Gene Database (dbCPG, Database URL: http://bioinfo.ahu.edu.cn:8080/dbCPG/index.jsp), the first literature-based gene resource for exploring human CPGs. It contains 827 human (724 protein-coding, 23 non-coding, and 80 unknown type genes), 637 rats, and 658 mouse CPGs. Furthermore, data mining was performed to gain insights into the understanding of the CPGs data, including functional annotation, gene prioritization, network analysis of prioritized genes and overlap analysis across multiple cancer types. A user-friendly web interface with multiple browse, search, and upload functions was also developed to facilitate access to the latest information on CPGs. Taken together, the dbCPG database provides a comprehensive data resource for further studies of cancer predisposition genes. PMID:27192119

  19. Saccharomyces genome database informs human biology

    PubMed Central

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Karra, Kalpana; Binkley, Gail; Simison, Matt; Miyasato, Stuart R

    2018-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and to provide this wealth of information to advance, in many ways, research on other organisms, even those as evolutionarily distant as humans. To build such a bridge between biological kingdoms, SGD is curating data regarding yeast-human complementation, in which a human gene can successfully replace the function of a yeast gene, and/or vice versa. These data are manually curated from published literature, made available for download, and incorporated into a variety of analysis tools provided by SGD. PMID:29140510

  20. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:25398906

  1. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2016-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:26615191

  2. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server.

    PubMed

    Hardison, Ross C; Chui, David H K; Giardine, Belinda; Riemer, Cathy; Patrinos, George P; Anagnou, Nicholas; Miller, Webb; Wajcman, Henri

    2002-03-01

    We have constructed a relational database of hemoglobin variants and thalassemia mutations, called HbVar, which can be accessed on the web at http://globin.cse.psu.edu. Extensive information is recorded for each variant and mutation, including a description of the variant and associated pathology, hematology, electrophoretic mobility, methods of isolation, stability information, ethnic occurrence, structure studies, functional studies, and references. The initial information was derived from books by Dr. Titus Huisman and colleagues [Huisman et al., 1996, 1997, 1998]. The current database is updated regularly with the addition of new data and corrections to previous data. Queries can be formulated based on fields in the database. Tables of common categories of variants, such as all those involving the alpha1-globin gene (HBA1) or all those that result in high oxygen affinity, are maintained by automated queries on the database. Users can formulate more precise queries, such as identifying "all beta-globin variants associated with instability and found in Scottish populations." This new database should be useful for clinical diagnosis as well as in fundamental studies of hemoglobin biochemistry, globin gene regulation, and human sequence variation at these loci. Copyright 2002 Wiley-Liss, Inc.

  3. PGMapper: a web-based tool linking phenotype to genes.

    PubMed

    Xiong, Qing; Qiu, Yuhui; Gu, Weikuan

    2008-04-01

    With the availability of whole genome sequence in many species, linkage analysis, positional cloning and microarray are gradually becoming powerful tools for investigating the links between phenotype and genotype or genes. However, in these methods, causative genes underlying a quantitative trait locus, or a disease, are usually located within a large genomic region or a large set of genes. Examining the function of every gene is very time consuming and needs to retrieve and integrate the information from multiple databases or genome resources. PGMapper is a software tool for automatically matching phenotype to genes from a defined genome region or a group of given genes by combining the mapping information from the Ensembl database and gene function information from the OMIM and PubMed databases. PGMapper is currently available for candidate gene search of human, mouse, rat, zebrafish and 12 other species. Available online at http://www.genediscovery.org/pgmapper/index.jsp.

  4. ZikaBase: An integrated ZIKV- Human Interactome Map database.

    PubMed

    Gurumayum, Sanathoi; Brahma, Rahul; Naorem, Leimarembi Devi; Muthaiyan, Mathavan; Gopal, Jeyakodi; Venkatesan, Amouda

    2018-01-15

    Re-emergence of ZIKV has caused infections in more than 1.5 million people. The molecular mechanism and pathogenesis of ZIKV is not well explored due to unavailability of adequate model and lack of publically accessible resources to provide information of ZIKV-Human protein interactome map till today. This study made an attempt to curate the ZIKV-Human interaction proteins from published literatures and RNA-Seq data. 11 direct interaction, 12 associated genes are retrieved from literatures and 3742 Differentially Expressed Genes (DEGs) are obtained from RNA-Seq analysis. The genes have been analyzed to construct the ZIKV-Human Interactome Map. The importance of the study has been illustrated by the enrichment analysis and observed that direct interaction and associated genes are enriched in viral entry into host cell. Also, ZIKV infection modulates 32% signal and 27% immune system pathways. The integrated database, ZikaBase has been developed to help the virology research community and accessible at https://test5.bicpu.edu.in. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes.

    PubMed

    Dweep, Harsh; Sticht, Carsten; Pandey, Priyanka; Gretz, Norbert

    2011-10-01

    MicroRNAs are small, non-coding RNA molecules that can complementarily bind to the mRNA 3'-UTR region to regulate the gene expression by transcriptional repression or induction of mRNA degradation. Increasing evidence suggests a new mechanism by which miRNAs may regulate target gene expression by binding in promoter and amino acid coding regions. Most of the existing databases on miRNAs are restricted to mRNA 3'-UTR region. To address this issue, we present miRWalk, a comprehensive database on miRNAs, which hosts predicted as well as validated miRNA binding sites, information on all known genes of human, mouse and rat. All mRNAs, mitochondrial genes and 10 kb upstream flanking regions of all known genes of human, mouse and rat were analyzed by using a newly developed algorithm named 'miRWalk' as well as with eight already established programs for putative miRNA binding sites. An automated and extensive text-mining search was performed on PubMed database to extract validated information on miRNAs. Combined information was put into a MySQL database. miRWalk presents predicted and validated information on miRNA-target interaction. Such a resource enables researchers to validate new targets of miRNA not only on 3'-UTR, but also on the other regions of all known genes. The 'Validated Target module' is updated every month and the 'Predicted Target module' is updated every 6 months. miRWalk is freely available at http://mirwalk.uni-hd.de/. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  7. DGEM--a microarray gene expression database for primary human disease tissues.

    PubMed

    Xia, Yuni; Campen, Andrew; Rigsby, Dan; Guo, Ying; Feng, Xingdong; Su, Eric W; Palakal, Mathew; Li, Shuyu

    2007-01-01

    Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.

  8. ImmunemiR - A Database of Prioritized Immune miRNA Disease Associations and its Interactome.

    PubMed

    Prabahar, Archana; Natarajan, Jeyakumar

    2017-01-01

    MicroRNAs are the key regulators of gene expression and their abnormal expression in the immune system may be associated with several human diseases such as inflammation, cancer and autoimmune diseases. Elucidation of miRNA disease association through the interactome will deepen the understanding of its disease mechanisms. A specialized database for immune miRNAs is highly desirable to demonstrate the immune miRNA disease associations in the interactome. miRNAs specific to immune related diseases were retrieved from curated databases such as HMDD, miR2disease and PubMed literature based on MeSH classification of immune system diseases. The additional data such as miRNA target genes, genes coding protein-protein interaction information were compiled from related resources. Further, miRNAs were prioritized to specific immune diseases using random walk ranking algorithm. In total 245 immune miRNAs associated with 92 OMIM disease categories were identified from external databases. The resultant data were compiled as ImmunemiR, a database of prioritized immune miRNA disease associations. This database provides both text based annotation information and network visualization of its interactome. To our knowledge, ImmunemiR is the first available database to provide a comprehensive repository of human immune disease associated miRNAs with network visualization options of its target genes, protein-protein interactions (PPI) and its disease associations. It is freely available at http://www.biominingbu.org/immunemir/. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.

    PubMed

    Thomas, Paul D; Kejariwal, Anish; Campbell, Michael J; Mi, Huaiyu; Diemer, Karen; Guo, Nan; Ladunga, Istvan; Ulitsky-Lazareva, Betty; Muruganujan, Anushya; Rabkin, Steven; Vandergriff, Jody A; Doremieux, Olivier

    2003-01-01

    The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.

  10. MGDB: a comprehensive database of genes involved in melanoma.

    PubMed

    Zhang, Di; Zhu, Rongrong; Zhang, Hanqian; Zheng, Chun-Hou; Xia, Junfeng

    2015-01-01

    The Melanoma Gene Database (MGDB) is a manually curated catalog of molecular genetic data relating to genes involved in melanoma. The main purpose of this database is to establish a network of melanoma related genes and to facilitate the mechanistic study of melanoma tumorigenesis. The entries describing the relationships between melanoma and genes in the current release were manually extracted from PubMed abstracts, which contains cumulative to date 527 human melanoma genes (422 protein-coding and 105 non-coding genes). Each melanoma gene was annotated in seven different aspects (General Information, Expression, Methylation, Mutation, Interaction, Pathway and Drug). In addition, manually curated literature references have also been provided to support the inclusion of the gene in MGDB and establish its association with melanoma. MGDB has a user-friendly web interface with multiple browse and search functions. We hoped MGDB will enrich our knowledge about melanoma genetics and serve as a useful complement to the existing public resources. Database URL: http://bioinfo.ahu.edu.cn:8080/Melanoma/index.jsp. © The Author(s) 2015. Published by Oxford University Press.

  11. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach.

    PubMed

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R; Peterson, Kenneth R; Philipsen, Sjaak; Maglott, Donna; Singleton, Belinda K; Anstee, David J; Basak, A Nazli; Clark, Barnaby; Costa, Flavia C; Faustino, Paula; Fedosyuk, Halyna; Felice, Alex E; Francina, Alain; Galanello, Renzo; Gallivan, Monica V E; Georgitsi, Marianthi; Gibbons, Richard J; Giordano, Piero C; Harteveld, Cornelis L; Hoyer, James D; Jarvis, Martin; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N; Papadopoulos, Petros; Pavlovic, Sonja; Perseu, Lucia; Radmilovic, Milena; Riemer, Cathy; Satta, Stefania; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John S; Wiemann, Claudia; Zukic, Branka; Chui, David H K; Wajcman, Henri; Hardison, Ross C; Patrinos, George P

    2011-03-20

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.

  12. DR-GAS: a database of functional genetic variants and their phosphorylation states in human DNA repair systems.

    PubMed

    Sehgal, Manika; Singh, Tiratha Raj

    2014-04-01

    We present DR-GAS(1), a unique, consolidated and comprehensive DNA repair genetic association studies database of human DNA repair system. It presents information on repair genes, assorted mechanisms of DNA repair, linkage disequilibrium, haplotype blocks, nsSNPs, phosphorylation sites, associated diseases, and pathways involved in repair systems. DNA repair is an intricate process which plays an essential role in maintaining the integrity of the genome by eradicating the damaging effect of internal and external changes in the genome. Hence, it is crucial to extensively understand the intact process of DNA repair, genes involved, non-synonymous SNPs which perhaps affect the function, phosphorylated residues and other related genetic parameters. All the corresponding entries for DNA repair genes, such as proteins, OMIM IDs, literature references and pathways are cross-referenced to their respective primary databases. DNA repair genes and their associated parameters are either represented in tabular or in graphical form through images elucidated by computational and statistical analyses. It is believed that the database will assist molecular biologists, biotechnologists, therapeutic developers and other scientific community to encounter biologically meaningful information, and meticulous contribution of genetic level information towards treacherous diseases in human DNA repair systems. DR-GAS is freely available for academic and research purposes at: http://www.bioinfoindia.org/drgas. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. PAGER 2.0: an update to the pathway, annotated-list and gene-signature electronic repository for Human Network Biology

    PubMed Central

    Yue, Zongliang; Zheng, Qi; Neylon, Michael T; Yoo, Minjae; Shin, Jimin; Zhao, Zhiying; Tan, Aik Choon

    2018-01-01

    Abstract Integrative Gene-set, Network and Pathway Analysis (GNPA) is a powerful data analysis approach developed to help interpret high-throughput omics data. In PAGER 1.0, we demonstrated that researchers can gain unbiased and reproducible biological insights with the introduction of PAGs (Pathways, Annotated-lists and Gene-signatures) as the basic data representation elements. In PAGER 2.0, we improve the utility of integrative GNPA by significantly expanding the coverage of PAGs and PAG-to-PAG relationships in the database, defining a new metric to quantify PAG data qualities, and developing new software features to simplify online integrative GNPA. Specifically, we included 84 282 PAGs spanning 24 different data sources that cover human diseases, published gene-expression signatures, drug–gene, miRNA–gene interactions, pathways and tissue-specific gene expressions. We introduced a new normalized Cohesion Coefficient (nCoCo) score to assess the biological relevance of genes inside a PAG, and RP-score to rank genes and assign gene-specific weights inside a PAG. The companion web interface contains numerous features to help users query and navigate the database content. The database content can be freely downloaded and is compatible with third-party Gene Set Enrichment Analysis tools. We expect PAGER 2.0 to become a major resource in integrative GNPA. PAGER 2.0 is available at http://discovery.informatics.uab.edu/PAGER/. PMID:29126216

  14. Entamoeba histolytica: construction and applications of subgenomic databases.

    PubMed

    Hofer, Margit; Duchêne, Michael

    2005-07-01

    Knowledge about the influence of environmental stress such as the action of chemotherapeutic agents on gene expression in Entamoeba histolytica is limited. We plan to use oligonucleotide microarray hybridization to approach these questions. As the basis for our array, sequence data from the genome project carried out by the Institute for Genomic Research (TIGR) and the Sanger Institute were used to annotate parts of the parasite genome. Three subgenomic databases containing enzymes, cytoskeleton genes, and stress genes were compiled with the help of the ExPASy proteomics website and the BLAST servers at the two genome project sites. The known sequences from reference species, mostly human and Escherichia coli, were searched against TIGR and Sanger E. histolytica sequence contigs and the homologs were copied into a Microsoft Access database. In a similar way, two additional databases of cytoskeletal genes and stress genes were generated. Metabolic pathways could be assembled from our enzyme database, but sometimes they were incomplete as is the case for the sterol biosynthesis pathway. The raw databases contained a significant number of duplicate entries which were merged to obtain curated non-redundant databases. This procedure revealed that some E. histolytica genes may have several putative functions. Representative examples such as the case of the delta-aminolevulinate synthase/serine palmitoyltransferase are discussed.

  15. iMETHYL: an integrative database of human DNA methylation, gene expression, and genomic variation.

    PubMed

    Komaki, Shohei; Shiwa, Yuh; Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Otomo, Ryo; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Sasaki, Makoto; Shimizu, Atsushi

    2018-01-01

    We launched an integrative multi-omics database, iMETHYL (http://imethyl.iwate-megabank.org). iMETHYL provides whole-DNA methylation (~24 million autosomal CpG sites), whole-genome (~9 million single-nucleotide variants), and whole-transcriptome (>14 000 genes) data for CD4 + T-lymphocytes, monocytes, and neutrophils collected from approximately 100 subjects. These data were obtained from whole-genome bisulfite sequencing, whole-genome sequencing, and whole-transcriptome sequencing, making iMETHYL a comprehensive database.

  16. Transactional Database Transformation and Its Application in Prioritizing Human Disease Genes

    PubMed Central

    Xiang, Yang; Payne, Philip R.O.; Huang, Kun

    2013-01-01

    Binary (0,1) matrices, commonly known as transactional databases, can represent many application data, including gene-phenotype data where “1” represents a confirmed gene-phenotype relation and “0” represents an unknown relation. It is natural to ask what information is hidden behind these “0”s and “1”s. Unfortunately, recent matrix completion methods, though very effective in many cases, are less likely to infer something interesting from these (0,1)-matrices. To answer this challenge, we propose IndEvi, a very succinct and effective algorithm to perform independent-evidence-based transactional database transformation. Each entry of a (0,1)-matrix is evaluated by “independent evidence” (maximal supporting patterns) extracted from the whole matrix for this entry. The value of an entry, regardless of its value as 0 or 1, has completely no effect for its independent evidence. The experiment on a gene-phenotype database shows that our method is highly promising in ranking candidate genes and predicting unknown disease genes. PMID:21422495

  17. IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data.

    PubMed

    Mallik, Saurav; Sen, Sagnik; Maulik, Ujjwal

    2016-07-15

    Involvement of intrinsically disordered proteins (IDPs) with various dreadful diseases like cancer is an interesting research topic. In order to gain novel insights into the regulation of IDPs, in this article, we perform a transcriptomic analysis of mRNAs (genes) for transcripts encoding IDPs on a human multi-omics prostate carcinoma dataset having both gene expression and methylation data. In this regard, firstly the genes that consist of both the expression and methylation data, and that are corresponding to the cancer-related prostate-tissue-specific disordered proteins of MobiDb database, are selected. We apply standard t-test for determining differentially expressed genes as well as differentially methylated genes. A network having these genes and their targeter miRNAs from Diana Tarbase v7.0 database and corresponding Transcription Factors from TRANSFAC and ITFP databases, is then built. Thereafter, we perform literature search, and KEGG pathway and Gene Ontology analyses using DAVID database. Finally, we report several significant potential gene-markers (with the corresponding IDPs) that have inverse relationship between differential expression and methylation patterns, and that are hub genes of the TF-miRNA-gene network. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. GeneStoryTeller: a mobile app for quick and comprehensive information retrieval of human genes

    PubMed Central

    Eleftheriou, Stergiani V.; Bourdakou, Marilena M.; Athanasiadis, Emmanouil I.; Spyrou, George M.

    2015-01-01

    In the last few years, mobile devices such as smartphones and tablets have become an integral part of everyday life, due to their software/hardware rapid development, as well as the increased portability they offer. Nevertheless, up to now, only few Apps have been developed in the field of bioinformatics, capable to perform fast and robust access to services. We have developed the GeneStoryTeller, a mobile application for Android platforms, where users are able to instantly retrieve information regarding any recorded human gene, derived from eight publicly available databases, as a summary story. Complementary information regarding gene–drugs interactions, functional annotation and disease associations for each selected gene is also provided in the gene story. The most challenging part during the development of the GeneStoryTeller was to keep balance between storing data locally within the app and obtaining the updated content dynamically via a network connection. This was accomplished with the implementation of an administrative site where data are curated and synchronized with the application requiring a minimum human intervention. Database URL: http://bioserver-3.bioacademy.gr/Bioserver/GeneStoryTeller/. PMID:26055097

  19. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER)

    PubMed Central

    Munfus, Delicia L; Haga, Christopher L; Burrows, Peter D; Cooper, Max D

    2007-01-01

    Background In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER). The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR), a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules. PMID:17854505

  20. A Novel Paramyxovirus?

    PubMed Central

    García-Sastre, Adolfo; Palese, Peter

    2005-01-01

    In public databases, we identified sequences reported as human genes expressed in kidney mesangial cells. The similarity of these genes to paramyxovirus matrix, fusion, and phosphoprotein genes suggests that they are derived from a novel paramyxovirus. These genes are sufficiently unique to suggest the existence of a novel paramyxovirus genus. PMID:15705331

  1. LOVD: easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box" approach.

    PubMed

    Fokkema, Ivo F A C; den Dunnen, Johan T; Taschner, Peter E M

    2005-08-01

    The completion of the human genome project has initiated, as well as provided the basis for, the collection and study of all sequence variation between individuals. Direct access to up-to-date information on sequence variation is currently provided most efficiently through web-based, gene-centered, locus-specific databases (LSDBs). We have developed the Leiden Open (source) Variation Database (LOVD) software approaching the "LSDB-in-a-Box" idea for the easy creation and maintenance of a fully web-based gene sequence variation database. LOVD is platform-independent and uses PHP and MySQL open source software only. The basic gene-centered and modular design of the database follows the recommendations of the Human Genome Variation Society (HGVS) and focuses on the collection and display of DNA sequence variations. With minimal effort, the LOVD platform is extendable with clinical data. The open set-up should both facilitate and promote functional extension with scripts written by the community. The LOVD software is freely available from the Leiden Muscular Dystrophy pages (www.DMD.nl/LOVD/). To promote the use of LOVD, we currently offer curators the possibility to set up an LSDB on our Leiden server. (c) 2005 Wiley-Liss, Inc.

  2. The porcine translational research database: A manually curated, genomics and proteomics-based research resource

    USDA-ARS?s Scientific Manuscript database

    The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are...

  3. GEAR: A database of Genomic Elements Associated with drug Resistance.

    PubMed

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-03-15

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org.

  4. GEAR: A database of Genomic Elements Associated with drug Resistance

    PubMed Central

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  5. Saccharomyces genome database informs human biology.

    PubMed

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2018-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and to provide this wealth of information to advance, in many ways, research on other organisms, even those as evolutionarily distant as humans. To build such a bridge between biological kingdoms, SGD is curating data regarding yeast-human complementation, in which a human gene can successfully replace the function of a yeast gene, and/or vice versa. These data are manually curated from published literature, made available for download, and incorporated into a variety of analysis tools provided by SGD. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases

    PubMed Central

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia

    2018-01-01

    Abstract The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3′-UTRs, collectively called ‘miRSNPs’, represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. PMID:29106642

  7. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases.

    PubMed

    Yue, Ming; Zhou, Dianshuang; Zhi, Hui; Wang, Peng; Zhang, Yan; Gao, Yue; Guo, Maoni; Li, Xin; Wang, Yanxia; Zhang, Yunpeng; Ning, Shangwei; Li, Xia

    2018-01-04

    The MiRNA SNP Disease Database (MSDD, http://www.bio-bigdata.com/msdd/) is a manually curated database that provides comprehensive experimentally supported associations among microRNAs (miRNAs), single nucleotide polymorphisms (SNPs) and human diseases. SNPs in miRNA-related functional regions such as mature miRNAs, promoter regions, pri-miRNAs, pre-miRNAs and target gene 3'-UTRs, collectively called 'miRSNPs', represent a novel category of functional molecules. miRSNPs can lead to miRNA and its target gene dysregulation, and resulting in susceptibility to or onset of human diseases. A curated collection and summary of miRSNP-associated diseases is essential for a thorough understanding of the mechanisms and functions of miRSNPs. Here, we describe MSDD, which currently documents 525 associations among 182 human miRNAs, 197 SNPs, 153 genes and 164 human diseases through a review of more than 2000 published papers. Each association incorporates information on the miRNAs, SNPs, miRNA target genes and disease names, SNP locations and alleles, the miRNA dysfunctional pattern, experimental techniques, a brief functional description, the original reference and additional annotation. MSDD provides a user-friendly interface to conveniently browse, retrieve, download and submit novel data. MSDD will significantly improve our understanding of miRNA dysfunction in disease, and thus, MSDD has the potential to serve as a timely and valuable resource. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    PubMed Central

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  9. Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.

    PubMed

    Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A

    2006-06-01

    To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.

  10. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes

    PubMed Central

    An, Omer; Pendino, Vera; D’Antonio, Matteo; Ratti, Emanuele; Gentilini, Marco; Ciccarelli, Francesca D.

    2014-01-01

    NCG 4.0 is the latest update of the Network of Cancer Genes, a web-based repository of systems-level properties of cancer genes. In its current version, the database collects information on 537 known (i.e. experimentally supported) and 1463 candidate (i.e. inferred using statistical methods) cancer genes. Candidate cancer genes derive from the manual revision of 67 original publications describing the mutational screening of 3460 human exomes and genomes in 23 different cancer types. For all 2000 cancer genes, duplicability, evolutionary origin, expression, functional annotation, interaction network with other human proteins and with microRNAs are reported. In addition to providing a substantial update of cancer-related information, NCG 4.0 also introduces two new features. The first is the annotation of possible false-positive cancer drivers, defined as candidate cancer genes inferred from large-scale screenings whose association with cancer is likely to be spurious. The second is the description of the systems-level properties of 64 human microRNAs that are causally involved in cancer progression (oncomiRs). Owing to the manual revision of all information, NCG 4.0 constitutes a complete and reliable resource on human coding and non-coding genes whose deregulation drives cancer onset and/or progression. NCG 4.0 can also be downloaded as a free application for Android smart phones. Database URL: http://bio.ieo.eu/ncg/ PMID:24608173

  11. An integrated database-pipeline system for studying single nucleotide polymorphisms and diseases.

    PubMed

    Yang, Jin Ok; Hwang, Sohyun; Oh, Jeongsu; Bhak, Jong; Sohn, Tae-Kwon

    2008-12-12

    Studies on the relationship between disease and genetic variations such as single nucleotide polymorphisms (SNPs) are important. Genetic variations can cause disease by influencing important biological regulation processes. Despite the needs for analyzing SNP and disease correlation, most existing databases provide information only on functional variants at specific locations on the genome, or deal with only a few genes associated with disease. There is no combined resource to widely support gene-, SNP-, and disease-related information, and to capture relationships among such data. Therefore, we developed an integrated database-pipeline system for studying SNPs and diseases. To implement the pipeline system for the integrated database, we first unified complicated and redundant disease terms and gene names using the Unified Medical Language System (UMLS) for classification and noun modification, and the HUGO Gene Nomenclature Committee (HGNC) and NCBI gene databases. Next, we collected and integrated representative databases for three categories of information. For genes and proteins, we examined the NCBI mRNA, UniProt, UCSC Table Track and MitoDat databases. For genetic variants we used the dbSNP, JSNP, ALFRED, and HGVbase databases. For disease, we employed OMIM, GAD, and HGMD databases. The database-pipeline system provides a disease thesaurus, including genes and SNPs associated with disease. The search results for these categories are available on the web page http://diseasome.kobic.re.kr/, and a genome browser is also available to highlight findings, as well as to permit the convenient review of potentially deleterious SNPs among genes strongly associated with specific diseases and clinical phenotypes. Our system is designed to capture the relationships between SNPs associated with disease and disease-causing genes. The integrated database-pipeline provides a list of candidate genes and SNP markers for evaluation in both epidemiological and molecular biological approaches to diseases-gene association studies. Furthermore, researchers then can decide semi-automatically the data set for association studies while considering the relationships between genetic variation and diseases. The database can also be economical for disease-association studies, as well as to facilitate an understanding of the processes which cause disease. Currently, the database contains 14,674 SNP records and 109,715 gene records associated with human diseases and it is updated at regular intervals.

  12. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Kenton, David L.; Khovayko, Oleg; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Schriml, Lynn M.; Sequeira, Edwin; Sherry, Stephen T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Suzek, Tugba O.; Tatusov, Roman; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene

    2006-01-01

    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Retroviral Genotyping Tools, HIV-1, Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at: . PMID:16381840

  13. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; Dicuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  14. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Acland, Abigail; Agarwala, Richa; Barrett, Tanya; Beck, Jeff; Benson, Dennis A.; Bollin, Colleen; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Church, Deanna M.; Clark, Karen; DiCuccio, Michael; Dondoshansky, Ilya; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Gorelenkov, Viatcheslav; Hoeppner, Marilu; Johnson, Mark; Kelly, Christopher; Khotomlianski, Viatcheslav; Kimchi, Avi; Kimelman, Michael; Kitts, Paul; Krasnov, Sergey; Kuznetsov, Anatoliy; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Karsch-Mizrachi, Ilene; Murphy, Terence; Ostell, James; O'Sullivan, Christopher; Panchenko, Anna; Phan, Lon; Pruitt, Don Preussm Kim D.; Rubinstein, Wendy; Sayers, Eric W.; Schneider, Valerie; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Siyan, Karanjit; Slotta, Douglas; Soboleva, Alexandra; Soussov, Vladimir; Starchenko, Grigory; Tatusova, Tatiana A.; Trawick, Bart W.; Vakatov, Denis; Wang, Yanli; Ward, Minghong; John Wilbur, W.; Yaschenko, Eugene; Zbicz, Kerry

    2014-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, PubReader, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Primer-BLAST, COBALT, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, ClinVar, MedGen, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page. PMID:24259429

  15. MethHC: a database of DNA methylation and gene expression in human cancer.

    PubMed

    Huang, Wei-Yun; Hsu, Sheng-Da; Huang, Hsi-Yuan; Sun, Yi-Ming; Chou, Chih-Hung; Weng, Shun-Long; Huang, Hsien-Da

    2015-01-01

    We present MethHC (http://MethHC.mbc.nctu.edu.tw), a database comprising a systematic integration of a large collection of DNA methylation data and mRNA/microRNA expression profiles in human cancer. DNA methylation is an important epigenetic regulator of gene transcription, and genes with high levels of DNA methylation in their promoter regions are transcriptionally silent. Increasing numbers of DNA methylation and mRNA/microRNA expression profiles are being published in different public repositories. These data can help researchers to identify epigenetic patterns that are important for carcinogenesis. MethHC integrates data such as DNA methylation, mRNA expression, DNA methylation of microRNA gene and microRNA expression to identify correlations between DNA methylation and mRNA/microRNA expression from TCGA (The Cancer Genome Atlas), which includes 18 human cancers in more than 6000 samples, 6548 microarrays and 12 567 RNA sequencing data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase

    PubMed Central

    Ienasescu, Hans; Li, Kang; Andersson, Robin; Vitezic, Morana; Rennie, Sarah; Chen, Yun; Vitting-Seerup, Kristoffer; Lagoni, Emil; Boyd, Mette; Bornholdt, Jette; de Hoon, Michiel J. L.; Kawaji, Hideya; Lassmann, Timo; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Carninci, Piero; Sandelin, Albin

    2016-01-01

    Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present SlideBase, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human Protein Atlas and BioGPS. Database URL: http://slidebase.binf.ku.dk PMID:28025337

  17. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    PubMed Central

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID:26992093

  18. Patome: a database server for biological sequence annotation and analysis in issued patents and published patent applications.

    PubMed

    Lee, Byungwook; Kim, Taehyung; Kim, Seon-Kyu; Lee, Kwang H; Lee, Doheon

    2007-01-01

    With the advent of automated and high-throughput techniques, the number of patent applications containing biological sequences has been increasing rapidly. However, they have attracted relatively little attention compared to other sequence resources. We have built a database server called Patome, which contains biological sequence data disclosed in patents and published applications, as well as their analysis information. The analysis is divided into two steps. The first is an annotation step in which the disclosed sequences were annotated with RefSeq database. The second is an association step where the sequences were linked to Entrez Gene, OMIM and GO databases, and their results were saved as a gene-patent table. From the analysis, we found that 55% of human genes were associated with patenting. The gene-patent table can be used to identify whether a particular gene or disease is related to patenting. Patome is available at http://www.patome.org/; the information is updated bimonthly.

  19. Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    PubMed Central

    Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O; Barrero, Roberto A; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K; Brookes, Anthony J; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba, Rie; Shimizu, Nobuyoshi; Shimoyama, Mary; Simpson, Andrew J; Soares, Bento; Steward, Charles; Suwa, Makiko; Suzuki, Mami; Takahashi, Aiko; Tamiya, Gen; Tanaka, Hiroshi; Taylor, Todd; Terwilliger, Joseph D; Unneberg, Per; Veeramachaneni, Vamsi; Watanabe, Shinya; Wilming, Laurens; Yasuda, Norikazu; Yoo, Hyang-Sook; Stodolsky, Marvin; Makalowski, Wojciech; Go, Mitiko; Nakai, Kenta; Takagi, Toshihisa; Kanehisa, Minoru; Sakaki, Yoshiyuki; Quackenbush, John; Okazaki, Yasushi; Hayashizaki, Yoshihide; Hide, Winston; Chakraborty, Ranajit; Nishikawa, Ken; Sugawara, Hideaki; Tateno, Yoshio; Chen, Zhu; Oishi, Michio; Tonellato, Peter; Apweiler, Rolf; Okubo, Kousaku; Wagner, Lukas; Wiemann, Stefan; Strausberg, Robert L; Isogai, Takao; Auffray, Charles; Nomura, Nobuo; Sugano, Sumio

    2004-01-01

    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology. PMID:15103394

  20. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  1. Oral cancer databases: A comprehensive review.

    PubMed

    Sarode, Gargi S; Sarode, Sachin C; Maniyar, Nikunj; Anand, Rahul; Patil, Shankargouda

    2017-11-29

    Cancer database is a systematic collection and analysis of information on various human cancers at genomic and molecular level that can be utilized to understand various steps in carcinogenesis and for therapeutic advancement in cancer field. Oral cancer is one of the leading causes of morbidity and mortality all over the world. The current research efforts in this field are aimed at cancer etiology and therapy. Advanced genomic technologies including microarrays, proteomics, transcrpitomics, and gene sequencing development have culminated in generation of extensive data and subjection of several genes and microRNAs that are distinctively expressed and this information is stored in the form of various databases. Extensive data from various resources have brought the need for collaboration and data sharing to make effective use of this new knowledge. The current review provides comprehensive information of various publicly accessible databases that contain information pertinent to oral squamous cell carcinoma (OSCC) and databases designed exclusively for OSCC. The databases discussed in this paper are Protein-Coding Gene Databases and microRNA Databases. This paper also describes gene overlap in various databases, which will help researchers to reduce redundancy and focus on only those genes, which are common to more than one databases. We hope such introduction will promote awareness and facilitate the usage of these resources in the cancer research community, and researchers can explore the molecular mechanisms involved in the development of cancer, which can help in subsequent crafting of therapeutic strategies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. STOPGAP: a database for systematic target opportunity assessment by genetic association predictions.

    PubMed

    Shen, Judong; Song, Kijoung; Slater, Andrew J; Ferrero, Enrico; Nelson, Matthew R

    2017-09-01

    We developed the STOPGAP (Systematic Target OPportunity assessment by Genetic Association Predictions) database, an extensive catalog of human genetic associations mapped to effector gene candidates. STOPGAP draws on a variety of publicly available GWAS associations, linkage disequilibrium (LD) measures, functional genomic and variant annotation sources. Algorithms were developed to merge the association data, partition associations into non-overlapping LD clusters, map variants to genes and produce a variant-to-gene score used to rank the relative confidence among potential effector genes. This database can be used for a multitude of investigations into the genes and genetic mechanisms underlying inter-individual variation in human traits, as well as supporting drug discovery applications. Shell, R, Perl and Python scripts and STOPGAP R data files (version 2.5.1 at publication) are available at https://github.com/StatGenPRD/STOPGAP . Some of the most useful STOPGAP fields can be queried through an R Shiny web application at http://stopgapwebapp.com . matthew.r.nelson@gsk.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Miller, Vadim; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Shumway, Martin; Sequeira, Edwin; Sherry, Steven T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L.; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene

    2008-01-01

    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:18045790

  5. Database resources of the National Center for Biotechnology Information.

    PubMed

    2016-01-04

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Database resources of the National Center for Biotechnology Information.

    PubMed

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Epididymal genomics and the search for a male contraceptive.

    PubMed

    Turner, T T; Johnston, D S; Jelinsky, S A

    2006-05-16

    This report represents the joint efforts of three laboratories, one with a primary interest in understanding regulatory processes in the epididymal epithelium (TTT) and two with a primary interest in identifying and characterizing new contraceptive targets (DSJ and SAJ). We have developed a highly refined mouse epididymal transcriptome and have used it as a starting point for determining genes in the human epididymis, which may serve as targets for male contraceptives. Our database represents gene expression information for approximately 39,000 transcripts, of which over 17,000 are significantly expressed in at least one segment of the mouse epididymis. Over 2000 of these transcripts are up- or down-regulated by at least four-fold between at least two segments. In addition, human databases have been queried to determine expression of orthologs in the human epididymis and the specificity of their expression in the epididymis. Genes highly regulated in the human epididymis and showing high tissue specificity are potential targets for male contraceptives.

  8. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    PubMed Central

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other known databases and two case studies: 1) in liver cancer and 2) in breast cancer. Conclusions The SASD provides the scientific community with an efficient means to identify, analyze, and characterize novel Exon Skipping and Intron Retention protein isoforms from mass spectrometry and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. PMID:24267658

  9. Homophila: human disease gene cognates in Drosophila

    PubMed Central

    Chien, Samson; Reiter, Lawrence T.; Bier, Ethan; Gribskov, Michael

    2002-01-01

    Although many human genes have been associated with genetic diseases, knowing which mutations result in disease phenotypes often does not explain the etiology of a specific disease. Drosophila melanogaster provides a powerful system in which to use genetic and molecular approaches to investigate human genetic diseases. Homophila is an intergenomic resource linking the human and fly genomes in order to stimulate functional genomic investigations in Drosophila that address questions about genetic disease in humans. Homophila provides a comprehensive linkage between the disease genes compiled in Online Mendelian Inheritance in Man (OMIM) and the complete Drosophila genomic sequence. Homophila is a relational database that allows searching based on human disease descriptions, OMIM number, human or fly gene names, and sequence similarity, and can be accessed at http://homophila.sdsc.edu. PMID:11752278

  10. Development of a gene expression database and related analysis programs for evaluation of anticancer compounds.

    PubMed

    Ushijima, Masaru; Mashima, Tetsuo; Tomida, Akihiro; Dan, Shingo; Saito, Sakae; Furuno, Aki; Tsukahara, Satomi; Seimiya, Hiroyuki; Yamori, Takao; Matsuura, Masaaki

    2013-03-01

    Genome-wide transcriptional expression analysis is a powerful strategy for characterizing the biological activity of anticancer compounds. It is often instructive to identify gene sets involved in the activity of a given drug compound for comparison with different compounds. Currently, however, there is no comprehensive gene expression database and related application system that is; (i) specialized in anticancer agents; (ii) easy to use; and (iii) open to the public. To develop a public gene expression database of antitumor agents, we first examined gene expression profiles in human cancer cells after exposure to 35 compounds including 25 clinically used anticancer agents. Gene signatures were extracted that were classified as upregulated or downregulated after exposure to the drug. Hierarchical clustering showed that drugs with similar mechanisms of action, such as genotoxic drugs, were clustered. Connectivity map analysis further revealed that our gene signature data reflected modes of action of the respective agents. Together with the database, we developed analysis programs that calculate scores for ranking changes in gene expression and for searching statistically significant pathways from the Kyoto Encyclopedia of Genes and Genomes database in order to analyze the datasets more easily. Our database and the analysis programs are available online at our website (http://scads.jfcr.or.jp/db/cs/). Using these systems, we successfully showed that proteasome inhibitors are selectively classified as endoplasmic reticulum stress inducers and induce atypical endoplasmic reticulum stress. Thus, our public access database and related analysis programs constitute a set of efficient tools to evaluate the mode of action of novel compounds and identify promising anticancer lead compounds. © 2012 Japanese Cancer Association.

  11. Analysis of 10,000 ESTs from lymphocytes of the cynomolgus monkey to improve our understanding of its immune system

    PubMed Central

    Chen, Wei-Hua; Wang, Xue-Xia; Lin, Wei; He, Xiao-Wei; Wu, Zhen-Qiang; Lin, Ying; Hu, Song-Nian; Wang, Xiao-Ning

    2006-01-01

    Background The cynomolgus monkey (Macaca fascicularis) is one of the most widely used surrogate animal models for an increasing number of human diseases and vaccines, especially immune-system-related ones. Towards a better understanding of the gene expression background upon its immunogenetics, we constructed a cDNA library from Epstein-Barr virus (EBV)-transformed B lymphocytes of a cynomolgus monkey and sequenced 10,000 randomly picked clones. Results After processing, 8,312 high-quality expressed sequence tags (ESTs) were generated and assembled into 3,728 unigenes. Annotations of these uniquely expressed transcripts demonstrated that out of the 2,524 open reading frame (ORF) positive unigenes (mitochondrial and ribosomal sequences were not included), 98.8% shared significant similarities (E-value less than 1e-10) with the NCBI nucleotide (nt) database, while only 67.7% (E-value less than 1e-5) did so with the NCBI non-redundant protein (nr) database. Further analysis revealed that 90.0% of the unigenes that shared no similarities to the nr database could be assigned to human chromosomes, in which 75 did not match significantly to any cynomolgus monkey and human ESTs. The mapping regions to known human genes on the human genome were described in detail. The protein family and domain analysis revealed that the first, second and fourth of the most abundantly expressed protein families were all assigned to immunoglobulin and major histocompatibility complex (MHC)-related proteins. The expression profiles of these genes were compared with that of homologous genes in human blood, lymph nodes and a RAMOS cell line, which demonstrated expression changes after transformation with EBV. The degree of sequence similarity of the MHC class I and II genes to the human reference sequences was evaluated. The results indicated that class I molecules showed weak amino acid identities (<90%), while class II showed slightly higher ones. Conclusion These results indicated that the genes expressed in the cynomolgus monkey could be used to identify novel protein-coding genes and revise those incomplete or incorrect annotations in the human genome by comparative methods, since the old world monkeys and humans share high similarities at the molecular level, especially within coding regions. The identification of multiple genes involved in the immune response, their sequence variations to the human homologues, and their responses to EBV infection could provide useful information to improve our understanding of the cynomolgus monkey immune system. PMID:16618371

  12. RatMap--rat genome tools and data.

    PubMed

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.

  13. RatMap—rat genome tools and data

    PubMed Central

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M.; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB–Genetics at Göteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided. PMID:15608244

  14. dbDSM: a manually curated database for deleterious synonymous mutations.

    PubMed

    Wen, Pengbo; Xiao, Peng; Xia, Junfeng

    2016-06-15

    Synonymous mutations (SMs), which changed the sequence of a gene without directly altering the amino acid sequence of the encoded protein, were thought to have no functional consequences for a long time. They are often assumed to be neutral in models of mutation and selection and were completely ignored in many studies. However, accumulating experimental evidence has demonstrated that these mutations exert their impact on gene functions via splicing accuracy, mRNA stability, translation fidelity, protein folding and expression, and some of these mutations are implicated in human diseases. To the best of our knowledge, there is still no database specially focusing on disease-related SMs. We have developed a new database called dbDSM (database of Deleterious Synonymous Mutation), a continually updated database that collects, curates and manages available human disease-related SM data obtained from published literature. In the current release, dbDSM collects 1936 SM-disease association entries, including 1289 SMs and 443 human diseases from ClinVar, GRASP, GWAS Catalog, GWASdb, PolymiRTS database, PubMed database and Web of Knowledge. Additionally, we provided users a link to download all the data in the dbDSM and a link to submit novel data into the database. We hope dbDSM will be a useful resource for investigating the roles of SMs in human disease. dbDSM is freely available online at http://bioinfo.ahu.edu.cn:8080/dbDSM/index.jsp with all major browser supported. jfxia@ahu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis

    PubMed Central

    Bagger, Frederik Otzen; Sasivarevic, Damir; Sohi, Sina Hadi; Laursen, Linea Gøricke; Pundhir, Sachin; Sønderby, Casper Kaae; Winther, Ole; Rapin, Nicolas; Porse, Bo T.

    2016-01-01

    Research on human and murine haematopoiesis has resulted in a vast number of gene-expression data sets that can potentially answer questions regarding normal and aberrant blood formation. To researchers and clinicians with limited bioinformatics experience, these data have remained available, yet largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan–Meier analysis and a hierarchical tree depicting the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from six independent studies on acute myeloid leukemia. Furthermore, we have devised a robust sample integration procedure that allows for sensitive comparison of user-supplied patient samples in a well-defined haematopoietic cellular space. PMID:26507857

  16. The 24th annual Nucleic Acids Research database issue: a look back and upcoming changes

    PubMed Central

    Rigden, Daniel J

    2017-01-01

    Abstract This year's Database Issue of Nucleic Acids Research contains 152 papers that include descriptions of 54 new databases and update papers on 98 databases, of which 16 have not been previously featured in NAR. As always, these databases cover a broad range of molecular biology subjects, including genome structure, gene expression and its regulation, proteins, protein domains, and protein–protein interactions. Following the recent trend, an increasing number of new and established databases deal with the issues of human health, from cancer-causing mutations to drugs and drug targets. In accordance with this trend, three recently compiled databases that have been selected by NAR reviewers and editors as ‘breakthrough’ contributions, denovo-db, the Monarch Initiative, and Open Targets, cover human de novo gene variants, disease-related phenotypes in model organisms, and a bioinformatics platform for therapeutic target identification and validation, respectively. We expect these databases to attract the attention of numerous researchers working in various areas of genetics and genomics. Looking back at the past 12 years, we present here the ‘golden set’ of databases that have consistently served as authoritative, comprehensive, and convenient data resources widely used by the entire community and offer some lessons on what makes a successful database. The Database Issue is freely available online at the https://academic.oup.com/nar web site. An updated version of the NAR Molecular Biology Database Collection is available at http://www.oxfordjournals.org/nar/database/a/. PMID:28053160

  17. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Sayers, Eric W.; Barrett, Tanya; Benson, Dennis A.; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M.; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D.; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A.; Wagner, Lukas; Wang, Yanli; Wilbur, W. John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:22140104

  18. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2013-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page. PMID:23193264

  19. Database resources of the National Center for Biotechnology Information.

    PubMed

    Wheeler, David L; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Ostell, James; Miller, Vadim; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Steven T; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene

    2007-01-01

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link(BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace and Assembly Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Viral Genotyping Tools, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  20. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene; Ye, Jian

    2009-01-01

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  1. The prevalence of chromosomal deletions relating to developmental delay and/or intellectual disability in human euploid blastocysts.

    PubMed

    He, Wenyin; Sun, Xiaofang; Liu, Lian; Li, Man; Jin, Hua; Wang, Wei-Hua

    2014-01-01

    Chromosomal anomalies in human embryos produced by in vitro fertilization are very common, which include numerical (aneuploidy) and structural (deletion, duplication or others) anomalies. Our previous study indicated that chromosomal deletion(s) is the most common structural anomaly accounting for approximately 8% of euploid blastocysts. It is still unknown if these deletions in human euploid blastocysts have clinical significance. In this study, we analyzed 15 previously diagnosed euploid blastocysts that had chromosomal deletion(s) using Agilent oligonucleotide DNA microarray platform and localized the gene location in each deletion. Then, we used OMIM gene map and phenotype database to investigate if these deletions are related with some important genes that cause genetic diseases, especially developmental delay or intellectual disability. As results, we found that the detectable chromosomal deletion size with Agilent microarray is above 2.38 Mb, while the deletions observed in human blastocysts are between 11.6 to 103 Mb. With OMIM gene map and phenotype database information, we found that deletions can result in loss of 81-464 genes. Out of these genes, 34-149 genes are related with known genetic problems. Furthermore, we found that 5 out of 15 samples lost genes in the deleted region, which were related to developmental delay and/or intellectual disability. In conclusion, our data indicates that all human euploid blastocysts with chromosomal deletion(s) are abnormal and transfer of these embryos may cause birth defects and/or developmental and intellectual disabilities. Therefore, the embryos with chromosomal deletion revealed by DNA microarray should not be transferred to the patients, or further gene map and/or phenotype seeking is necessary before making a final decision.

  2. Using the NCBI Genome Databases to Compare the Genes for Human & Chimpanzee Beta Hemoglobin

    ERIC Educational Resources Information Center

    Offner, Susan

    2010-01-01

    The beta hemoglobin protein is identical in humans and chimpanzees. In this tutorial, students see that even though the proteins are identical, the genes that code for them are not. There are many more differences in the introns than in the exons, which indicates that coding regions of DNA are more highly conserved than non-coding regions.

  3. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    PubMed

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. © The Author(s) 2016. Published by Oxford University Press.

  4. Marfan Database (second edition): software and database for the analysis of mutations in the human FBN1 gene.

    PubMed Central

    Collod-Béroud, G; Béroud, C; Adès, L; Black, C; Boxer, M; Brock, D J; Godfrey, M; Hayward, C; Karttunen, L; Milewicz, D; Peltonen, L; Richards, R I; Wang, M; Junien, C; Boileau, C

    1997-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS. These mutations are private, essentially missense, generally non-recurrent and widely distributed throughout the gene. To date no clear genotype/phenotype relationship has been observed excepted for the localization of neonatal mutations in a cluster between exons 24 and 32. The second version of the computerized Marfan database contains 89 entries. The software has been modified to accomodate new functions and routines. PMID:9016526

  5. Exploring Genetic, Genomic, and Phenotypic Data at the Rat Genome Database

    PubMed Central

    Laulederkind, Stanley J. F.; Hayman, G. Thomas; Wang, Shur-Jen; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Dwinell, Melinda R.; Jacob, Howard J.; Shimoyama, Mary

    2013-01-01

    The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, http://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat. PMID:23255149

  6. Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain

    PubMed Central

    Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María

    2014-01-01

    Background: The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. Objective: To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. Methods: There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Results: Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. Conclusion: The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition. PMID:25767303

  7. Software and database for the analysis of mutations in the human FBN1 gene.

    PubMed Central

    Collod, G; Béroud, C; Soussi, T; Junien, C; Boileau, C

    1996-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created. PMID:8594563

  8. Wikidata as a semantic framework for the Gene Wiki initiative.

    PubMed

    Burgstaller-Muehlbacher, Sebastian; Waagmeester, Andra; Mitraka, Elvira; Turner, Julia; Putman, Tim; Leong, Justin; Naik, Chinmay; Pavlidis, Paul; Schriml, Lynn; Good, Benjamin M; Su, Andrew I

    2016-01-01

    Open biological data are distributed over many resources making them challenging to integrate, to update and to disseminate quickly. Wikidata is a growing, open community database which can serve this purpose and also provides tight integration with Wikipedia. In order to improve the state of biological data, facilitate data management and dissemination, we imported all human and mouse genes, and all human and mouse proteins into Wikidata. In total, 59,721 human genes and 73,355 mouse genes have been imported from NCBI and 27,306 human proteins and 16,728 mouse proteins have been imported from the Swissprot subset of UniProt. As Wikidata is open and can be edited by anybody, our corpus of imported data serves as the starting point for integration of further data by scientists, the Wikidata community and citizen scientists alike. The first use case for these data is to populate Wikipedia Gene Wiki infoboxes directly from Wikidata with the data integrated above. This enables immediate updates of the Gene Wiki infoboxes as soon as the data in Wikidata are modified. Although Gene Wiki pages are currently only on the English language version of Wikipedia, the multilingual nature of Wikidata allows for usage of the data we imported in all 280 different language Wikipedias. Apart from the Gene Wiki infobox use case, a SPARQL endpoint and exporting functionality to several standard formats (e.g. JSON, XML) enable use of the data by scientists. In summary, we created a fully open and extensible data resource for human and mouse molecular biology and biochemistry data. This resource enriches all the Wikipedias with structured information and serves as a new linking hub for the biological semantic web. Database URL: https://www.wikidata.org/. © The Author(s) 2016. Published by Oxford University Press.

  9. A compatible exon-exon junction database for the identification of exon skipping events using tandem mass spectrum data.

    PubMed

    Mo, Fan; Hong, Xu; Gao, Feng; Du, Lin; Wang, Jun; Omenn, Gilbert S; Lin, Biaoyang

    2008-12-16

    Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched. We wrote scripts in perl, Bioperl, mysql and Ensembl API and built a theoretical exon-exon junction protein database to account for all possible combinations of exons for a gene while keeping the frame of translation (i.e., keeping only in-phase exon-exon combinations) from the Ensembl Core Database. Using our liver cancer MS/MS dataset, we identified a total of 488 non-redundant peptides that represent putative exon skipping events. Our exon-exon junction database provides the scientific community with an efficient means to identify novel alternatively spliced (exon skipping) protein isoforms using mass spectrometry data. This database will be useful in annotating genome structures using rapidly accumulating proteomics data.

  10. Database resources of the National Center for Biotechnology

    PubMed Central

    Wheeler, David L.; Church, Deanna M.; Federhen, Scott; Lash, Alex E.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Sequeira, Edwin; Tatusova, Tatiana A.; Wagner, Lukas

    2003-01-01

    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, PubMed, PubMed Central (PMC), LocusLink, the NCBITaxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR (e-PCR), Open Reading Frame (ORF) Finder, References Sequence (RefSeq), UniGene, HomoloGene, ProtEST, Database of Single Nucleotide Polymorphisms (dbSNP), Human/Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker (MM), Evidence Viewer (EV), Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:12519941

  11. The National NeuroAIDS Tissue Consortium (NNTC) Database: an integrated database for HIV-related studies

    PubMed Central

    Cserhati, Matyas F.; Pandey, Sanjit; Beaudoin, James J.; Baccaglini, Lorena; Guda, Chittibabu; Fox, Howard S.

    2015-01-01

    We herein present the National NeuroAIDS Tissue Consortium-Data Coordinating Center (NNTC-DCC) database, which is the only available database for neuroAIDS studies that contains data in an integrated, standardized form. This database has been created in conjunction with the NNTC, which provides human tissue and biofluid samples to individual researchers to conduct studies focused on neuroAIDS. The database contains experimental datasets from 1206 subjects for the following categories (which are further broken down into subcategories): gene expression, genotype, proteins, endo-exo-chemicals, morphometrics and other (miscellaneous) data. The database also contains a wide variety of downloadable data and metadata for 95 HIV-related studies covering 170 assays from 61 principal investigators. The data represent 76 tissue types, 25 measurement types, and 38 technology types, and reaches a total of 33 017 407 data points. We used the ISA platform to create the database and develop a searchable web interface for querying the data. A gene search tool is also available, which searches for NCBI GEO datasets associated with selected genes. The database is manually curated with many user-friendly features, and is cross-linked to the NCBI, HUGO and PubMed databases. A free registration is required for qualified users to access the database. Database URL: http://nntc-dcc.unmc.edu PMID:26228431

  12. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis.

    PubMed

    Bagger, Frederik Otzen; Sasivarevic, Damir; Sohi, Sina Hadi; Laursen, Linea Gøricke; Pundhir, Sachin; Sønderby, Casper Kaae; Winther, Ole; Rapin, Nicolas; Porse, Bo T

    2016-01-04

    Research on human and murine haematopoiesis has resulted in a vast number of gene-expression data sets that can potentially answer questions regarding normal and aberrant blood formation. To researchers and clinicians with limited bioinformatics experience, these data have remained available, yet largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan-Meier analysis and a hierarchical tree depicting the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from six independent studies on acute myeloid leukemia. Furthermore, we have devised a robust sample integration procedure that allows for sensitive comparison of user-supplied patient samples in a well-defined haematopoietic cellular space. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in collaboration with domain disease experts. We elucidate the step-by-step guidelines used to critically prioritize studies from public archives and their metadata curation and discuss the key challenges encountered. Curated metadata for Alzheimer's disease gene expression studies are available for download. Database URL: www.scai.fraunhofer.de/NeuroTransDB.html. © The Author(s) 2015. Published by Oxford University Press.

  14. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases

    PubMed Central

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article’s supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in collaboration with domain disease experts. We elucidate the step-by-step guidelines used to critically prioritize studies from public archives and their metadata curation and discuss the key challenges encountered. Curated metadata for Alzheimer’s disease gene expression studies are available for download. Database URL: www.scai.fraunhofer.de/NeuroTransDB.html PMID:26475471

  15. 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration.

    PubMed

    Ran, Xia; Cai, Wei-Jun; Huang, Xiu-Feng; Liu, Qi; Lu, Fan; Qu, Jia; Wu, Jinyu; Jin, Zi-Bing

    2014-01-01

    Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, 'RetinoGenetics', which contains informative knowledge about all known IRD-related genes and mutations for IRD. 'RetinoGenetics' currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein-protein interaction, mutational annotations and gene-disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, 'RetinoGenetics' could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, 'RetinoGenetics' is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL: http://www.retinogenetics.org/. © The Author(s) 2014. Published by Oxford University Press.

  16. Comprehensive coverage of cardiovascular disease data in the disease portals at the Rat Genome Database.

    PubMed

    Wang, Shur-Jen; Laulederkind, Stanley J F; Hayman, G Thomas; Petri, Victoria; Smith, Jennifer R; Tutaj, Marek; Nigam, Rajni; Dwinell, Melinda R; Shimoyama, Mary

    2016-08-01

    Cardiovascular diseases are complex diseases caused by a combination of genetic and environmental factors. To facilitate progress in complex disease research, the Rat Genome Database (RGD) provides the community with a disease portal where genome objects and biological data related to cardiovascular diseases are systematically organized. The purpose of this study is to present biocuration at RGD, including disease, genetic, and pathway data. The RGD curation team uses controlled vocabularies/ontologies to organize data curated from the published literature or imported from disease and pathway databases. These organized annotations are associated with genes, strains, and quantitative trait loci (QTLs), thus linking functional annotations to genome objects. Screen shots from the web pages are used to demonstrate the organization of annotations at RGD. The human cardiovascular disease genes identified by annotations were grouped according to data sources and their annotation profiles were compared by in-house tools and other enrichment tools available to the public. The analysis results show that the imported cardiovascular disease genes from ClinVar and OMIM are functionally different from the RGD manually curated genes in terms of pathway and Gene Ontology annotations. The inclusion of disease genes from other databases enriches the collection of disease genes not only in quantity but also in quality. Copyright © 2016 the American Physiological Society.

  17. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  18. dbMDEGA: a database for meta-analysis of differentially expressed genes in autism spectrum disorder.

    PubMed

    Zhang, Shuyun; Deng, Libin; Jia, Qiyue; Huang, Shaoting; Gu, Junwang; Zhou, Fankun; Gao, Meng; Sun, Xinyi; Feng, Chang; Fan, Guangqin

    2017-11-16

    Autism spectrum disorders (ASD) are hereditary, heterogeneous and biologically complex neurodevelopmental disorders. Individual studies on gene expression in ASD cannot provide clear consensus conclusions. Therefore, a systematic review to synthesize the current findings from brain tissues and a search tool to share the meta-analysis results are urgently needed. Here, we conducted a meta-analysis of brain gene expression profiles in the current reported human ASD expression datasets (with 84 frozen male cortex samples, 17 female cortex samples, 32 cerebellum samples and 4 formalin fixed samples) and knock-out mouse ASD model expression datasets (with 80 collective brain samples). Then, we applied R language software and developed an interactive shared and updated database (dbMDEGA) displaying the results of meta-analysis of data from ASD studies regarding differentially expressed genes (DEGs) in the brain. This database, dbMDEGA ( https://dbmdega.shinyapps.io/dbMDEGA/ ), is a publicly available web-portal for manual annotation and visualization of DEGs in the brain from data from ASD studies. This database uniquely presents meta-analysis values and homologous forest plots of DEGs in brain tissues. Gene entries are annotated with meta-values, statistical values and forest plots of DEGs in brain samples. This database aims to provide searchable meta-analysis results based on the current reported brain gene expression datasets of ASD to help detect candidate genes underlying this disorder. This new analytical tool may provide valuable assistance in the discovery of DEGs and the elucidation of the molecular pathogenicity of ASD. This database model may be replicated to study other disorders.

  19. [Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match hadmore » already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.« less

  20. The Comparative Toxicogenomics Database (CTD): A Resource for Comparative Toxicological Studies

    PubMed Central

    CJ, Mattingly; MC, Rosenstein; GT, Colby; JN, Forrest; JL, Boyer

    2006-01-01

    The etiology of most chronic diseases involves interactions between environmental factors and genes that modulate important biological processes (Olden and Wilson, 2000). We are developing the publicly available Comparative Toxicogenomics Database (CTD) to promote understanding about the effects of environmental chemicals on human health. CTD identifies interactions between chemicals and genes and facilitates cross-species comparative studies of these genes. The use of diverse animal models and cross-species comparative sequence studies has been critical for understanding basic physiological mechanisms and gene and protein functions. Similarly, these approaches will be valuable for exploring the molecular mechanisms of action of environmental chemicals and the genetic basis of differential susceptibility. PMID:16902965

  1. Gene and protein nomenclature in public databases

    PubMed Central

    Fundel, Katrin; Zimmer, Ralf

    2006-01-01

    Background Frequently, several alternative names are in use for biological objects such as genes and proteins. Applications like manual literature search, automated text-mining, named entity identification, gene/protein annotation, and linking of knowledge from different information sources require the knowledge of all used names referring to a given gene or protein. Various organism-specific or general public databases aim at organizing knowledge about genes and proteins. These databases can be used for deriving gene and protein name dictionaries. So far, little is known about the differences between databases in terms of size, ambiguities and overlap. Results We compiled five gene and protein name dictionaries for each of the five model organisms (yeast, fly, mouse, rat, and human) from different organism-specific and general public databases. We analyzed the degree of ambiguity of gene and protein names within and between dictionaries, to a lexicon of common English words and domain-related non-gene terms, and we compared different data sources in terms of size of extracted dictionaries and overlap of synonyms between those. The study shows that the number of genes/proteins and synonyms covered in individual databases varies significantly for a given organism, and that the degree of ambiguity of synonyms varies significantly between different organisms. Furthermore, it shows that, despite considerable efforts of co-curation, the overlap of synonyms in different data sources is rather moderate and that the degree of ambiguity of gene names with common English words and domain-related non-gene terms varies depending on the considered organism. Conclusion In conclusion, these results indicate that the combination of data contained in different databases allows the generation of gene and protein name dictionaries that contain significantly more used names than dictionaries obtained from individual data sources. Furthermore, curation of combined dictionaries considerably increases size and decreases ambiguity. The entries of the curated synonym dictionary are available for manual querying, editing, and PubMed- or Google-search via the ProThesaurus-wiki. For automated querying via custom software, we offer a web service and an exemplary client application. PMID:16899134

  2. Androgen-responsive gene database: integrated knowledge on androgen-responsive genes.

    PubMed

    Jiang, Mei; Ma, Yunsheng; Chen, Congcong; Fu, Xuping; Yang, Shu; Li, Xia; Yu, Guohua; Mao, Yumin; Xie, Yi; Li, Yao

    2009-11-01

    Androgen signaling plays an important role in many biological processes. Androgen Responsive Gene Database (ARGDB) is devoted to providing integrated knowledge on androgen-controlled genes. Gene records were collected on the basis of PubMed literature collections. More than 6000 abstracts and 950 original publications were manually screened, leading to 1785 human genes, 993 mouse genes, and 583 rat genes finally included in the database. All the collected genes were experimentally proved to be regulated by androgen at the expression level or to contain androgen-responsive regions. For each gene important details of the androgen regulation experiments were collected from references, such as expression change, androgen-responsive sequence, response time, tissue/cell type, experimental method, ligand identity, and androgen amount, which will facilitate further evaluation by researchers. Furthermore, the database was integrated with multiple annotation resources, including National Center for Biotechnology Information, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway, to reveal the biological characteristics and significance of androgen-regulated genes. The ARGDB web site is mainly composed of the Browse, Search, Element Scan, and Submission modules. It is user friendly and freely accessible at http://argdb.fudan.edu.cn. Preliminary analysis of the collected data was performed. Many disease pathways, such as prostate carcinogenesis, were found to be enriched in androgen-regulated genes. The discovered androgen-response motifs were similar to those in previous reports. The analysis results are displayed in the web site. In conclusion, ARGDB provides a unified gateway to storage, retrieval, and update of information on androgen-regulated genes.

  3. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha

    2015-01-01

    Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405

  4. Dataset of potential targets for Mycobacterium tuberculosis H37Rv through comparative genome analysis.

    PubMed

    Asif, Siddiqui M; Asad, Amir; Faizan, Ahmad; Anjali, Malik S; Arvind, Arya; Neelesh, Kapoor; Hirdesh, Kumar; Sanjay, Kumar

    2009-12-31

    Mycobacterium tuberculosis is the causative agent of the disease, tuberculosis and H37Rv is the most studied clinical strain. We use comparative genome analysis of Mycobacterium tuberculosis H37Rv and human for the identification of potential targets dataset. We used DEG (Database of Essential Genes) to identify essential genes in the H37Rv strain. The analysis shows that 628 of the 3989 genes in Mycobacterium tuberculosis H37Rv were found to be essential of which 324 genes lack similarity to the human genome. Subsequently hypothetical proteins were removed through manual curation. This further resulted in a dataset of 135 proteins with essential function and no homology to human.

  5. CoReCG: a comprehensive database of genes associated with colon-rectal cancer

    PubMed Central

    Agarwal, Rahul; Kumar, Binayak; Jayadev, Msk; Raghav, Dhwani; Singh, Ashutosh

    2016-01-01

    Cancer of large intestine is commonly referred as colorectal cancer, which is also the third most frequently prevailing neoplasm across the globe. Though, much of work is being carried out to understand the mechanism of carcinogenesis and advancement of this disease but, fewer studies has been performed to collate the scattered information of alterations in tumorigenic cells like genes, mutations, expression changes, epigenetic alteration or post translation modification, genetic heterogeneity. Earlier findings were mostly focused on understanding etiology of colorectal carcinogenesis but less emphasis were given for the comprehensive review of the existing findings of individual studies which can provide better diagnostics based on the suggested markers in discrete studies. Colon Rectal Cancer Gene Database (CoReCG), contains 2056 colon-rectal cancer genes information involved in distinct colorectal cancer stages sourced from published literature with an effective knowledge based information retrieval system. Additionally, interactive web interface enriched with various browsing sections, augmented with advance search facility for querying the database is provided for user friendly browsing, online tools for sequence similarity searches and knowledge based schema ensures a researcher friendly information retrieval mechanism. Colorectal cancer gene database (CoReCG) is expected to be a single point source for identification of colorectal cancer-related genes, thereby helping with the improvement of classification, diagnosis and treatment of human cancers. Database URL: lms.snu.edu.in/corecg PMID:27114494

  6. BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells.

    PubMed

    Chacon, Diego; Beck, Dominik; Perera, Dilmi; Wong, Jason W H; Pimanda, John E

    2014-01-01

    The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF-gene and protein-protein networks and to evaluate the association of genes with cellular processes and tissue expression.

  7. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103

  8. The National NeuroAIDS Tissue Consortium (NNTC) Database: an integrated database for HIV-related studies.

    PubMed

    Cserhati, Matyas F; Pandey, Sanjit; Beaudoin, James J; Baccaglini, Lorena; Guda, Chittibabu; Fox, Howard S

    2015-01-01

    We herein present the National NeuroAIDS Tissue Consortium-Data Coordinating Center (NNTC-DCC) database, which is the only available database for neuroAIDS studies that contains data in an integrated, standardized form. This database has been created in conjunction with the NNTC, which provides human tissue and biofluid samples to individual researchers to conduct studies focused on neuroAIDS. The database contains experimental datasets from 1206 subjects for the following categories (which are further broken down into subcategories): gene expression, genotype, proteins, endo-exo-chemicals, morphometrics and other (miscellaneous) data. The database also contains a wide variety of downloadable data and metadata for 95 HIV-related studies covering 170 assays from 61 principal investigators. The data represent 76 tissue types, 25 measurement types, and 38 technology types, and reaches a total of 33,017,407 data points. We used the ISA platform to create the database and develop a searchable web interface for querying the data. A gene search tool is also available, which searches for NCBI GEO datasets associated with selected genes. The database is manually curated with many user-friendly features, and is cross-linked to the NCBI, HUGO and PubMed databases. A free registration is required for qualified users to access the database. © The Author(s) 2015. Published by Oxford University Press.

  9. Mouse Genome Database: From sequence to phenotypes and disease models

    PubMed Central

    Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326

  10. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2011-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  11. Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.

    PubMed

    Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K

    2011-01-01

    Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.

  12. GETPrime 2.0: gene- and transcript-specific qPCR primers for 13 species including polymorphisms

    PubMed Central

    David, Fabrice P.A.; Rougemont, Jacques; Deplancke, Bart

    2017-01-01

    GETPrime (http://bbcftools.epfl.ch/getprime) is a database with a web frontend providing gene- and transcript-specific, pre-computed qPCR primer pairs. The primers have been optimized for genome-wide specificity and for allowing the selective amplification of one or several splice variants of most known genes. To ease selection, primers have also been ranked according to defined criteria such as genome-wide specificity (with BLAST), amplicon size, and isoform coverage. Here, we report a major upgrade (2.0) of the database: eight new species (yeast, chicken, macaque, chimpanzee, rat, platypus, pufferfish, and Anolis carolinensis) now complement the five already included in the previous version (human, mouse, zebrafish, fly, and worm). Furthermore, the genomic reference has been updated to Ensembl v81 (while keeping earlier versions for backward compatibility) as a result of re-designing the back-end database and automating the import of relevant sections of the Ensembl database in species-independent fashion. This also allowed us to map known polymorphisms to the primers (on average three per primer for human), with the aim of reducing experimental error when targeting specific strains or individuals. Another consequence is that the inclusion of future Ensembl releases and other species has now become a relatively straightforward task. PMID:28053161

  13. Harmonizing the interpretation of genetic variants across the world: the Malaysian experience.

    PubMed

    Hassan, Nik Norliza Nik; Plazzer, John-Paul; Smith, Timothy D; Halim-Fikri, Hashim; Macrae, Finlay; Zubaidi, A A L; Zilfalil, Bin Alwi

    2016-02-26

    Databases for gene variants are very useful for sharing genetic data and to facilitate the understanding of the genetic basis of diseases. This report summarises the issues surrounding the development of the Malaysian Human Variome Project Country Node. The focus is on human germline variants. Somatic variants, mitochondrial variants and other types of genetic variation have corresponding databases which are not covered here, as they have specific issues that do not necessarily apply to germline variations. The ethical, legal, social issues, intellectual property, ownership of the data, information technology implementation, and efforts to improve the standards and systems used in data sharing are discussed. An overarching framework such as provided by the Human Variome Project to co-ordinate activities is invaluable. Country Nodes, such as MyHVP, enable human gene variation associated with human diseases to be collected, stored and shared by all disciplines (clinicians, molecular biologists, pathologists, bioinformaticians) for a consistent interpretation of genetic variants locally and across the world.

  14. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    PubMed

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene‑expression profile in the form of searchable database tables.

  15. DNetDB: The human disease network database based on dysfunctional regulation mechanism.

    PubMed

    Yang, Jing; Wu, Su-Juan; Yang, Shao-You; Peng, Jia-Wei; Wang, Shi-Nuo; Wang, Fu-Yan; Song, Yu-Xing; Qi, Ting; Li, Yi-Xue; Li, Yuan-Yuan

    2016-05-21

    Disease similarity study provides new insights into disease taxonomy, pathogenesis, which plays a guiding role in diagnosis and treatment. The early studies were limited to estimate disease similarities based on clinical manifestations, disease-related genes, medical vocabulary concepts or registry data, which were inevitably biased to well-studied diseases and offered small chance of discovering novel findings in disease relationships. In other words, genome-scale expression data give us another angle to address this problem since simultaneous measurement of the expression of thousands of genes allows for the exploration of gene transcriptional regulation, which is believed to be crucial to biological functions. Although differential expression analysis based methods have the potential to explore new disease relationships, it is difficult to unravel the upstream dysregulation mechanisms of diseases. We therefore estimated disease similarities based on gene expression data by using differential coexpression analysis, a recently emerging method, which has been proved to be more potential to capture dysfunctional regulation mechanisms than differential expression analysis. A total of 1,326 disease relationships among 108 diseases were identified, and the relevant information constituted the human disease network database (DNetDB). Benefiting from the use of differential coexpression analysis, the potential common dysfunctional regulation mechanisms shared by disease pairs (i.e. disease relationships) were extracted and presented. Statistical indicators, common disease-related genes and drugs shared by disease pairs were also included in DNetDB. In total, 1,326 disease relationships among 108 diseases, 5,598 pathways, 7,357 disease-related genes and 342 disease drugs are recorded in DNetDB, among which 3,762 genes and 148 drugs are shared by at least two diseases. DNetDB is the first database focusing on disease similarity from the viewpoint of gene regulation mechanism. It provides an easy-to-use web interface to search and browse the disease relationships and thus helps to systematically investigate etiology and pathogenesis, perform drug repositioning, and design novel therapeutic interventions.Database URL: http://app.scbit.org/DNetDB/ #.

  16. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database

    PubMed Central

    Mashiach, R.; Cohen, S.; Kedem, A.; Baron, A.; Zajicek, M.; Feldman, I.; Seidman, D.; Soriano, D.

    2018-01-01

    Endometriosis is a disease characterized by the development of endometrial tissue outside the uterus, but its cause remains largely unknown. Numerous genes have been studied and proposed to help explain its pathogenesis. However, the large number of these candidate genes has made functional validation through experimental methodologies nearly impossible. Computational methods could provide a useful alternative for prioritizing those most likely to be susceptibility genes. Using artificial intelligence applied to text mining, this study analyzed the genes involved in the pathogenesis, development, and progression of endometriosis. The data extraction by text mining of the endometriosis-related genes in the PubMed database was based on natural language processing, and the data were filtered to remove false positives. Using data from the text mining and gene network information as input for the web-based tool, 15,207 endometriosis-related genes were ranked according to their score in the database. Characterization of the filtered gene set through gene ontology, pathway, and network analysis provided information about the numerous mechanisms hypothesized to be responsible for the establishment of ectopic endometrial tissue, as well as the migration, implantation, survival, and proliferation of ectopic endometrial cells. Finally, the human genome was scanned through various databases using filtered genes as a seed to determine novel genes that might also be involved in the pathogenesis of endometriosis but which have not yet been characterized. These genes could be promising candidates to serve as useful diagnostic biomarkers and therapeutic targets in the management of endometriosis. PMID:29750165

  17. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database.

    PubMed

    Bouaziz, J; Mashiach, R; Cohen, S; Kedem, A; Baron, A; Zajicek, M; Feldman, I; Seidman, D; Soriano, D

    2018-01-01

    Endometriosis is a disease characterized by the development of endometrial tissue outside the uterus, but its cause remains largely unknown. Numerous genes have been studied and proposed to help explain its pathogenesis. However, the large number of these candidate genes has made functional validation through experimental methodologies nearly impossible. Computational methods could provide a useful alternative for prioritizing those most likely to be susceptibility genes. Using artificial intelligence applied to text mining, this study analyzed the genes involved in the pathogenesis, development, and progression of endometriosis. The data extraction by text mining of the endometriosis-related genes in the PubMed database was based on natural language processing, and the data were filtered to remove false positives. Using data from the text mining and gene network information as input for the web-based tool, 15,207 endometriosis-related genes were ranked according to their score in the database. Characterization of the filtered gene set through gene ontology, pathway, and network analysis provided information about the numerous mechanisms hypothesized to be responsible for the establishment of ectopic endometrial tissue, as well as the migration, implantation, survival, and proliferation of ectopic endometrial cells. Finally, the human genome was scanned through various databases using filtered genes as a seed to determine novel genes that might also be involved in the pathogenesis of endometriosis but which have not yet been characterized. These genes could be promising candidates to serve as useful diagnostic biomarkers and therapeutic targets in the management of endometriosis.

  18. NGS Catalog: A Database of Next Generation Sequencing Studies in Humans

    PubMed Central

    Xia, Junfeng; Wang, Qingguo; Jia, Peilin; Wang, Bing; Pao, William; Zhao, Zhongming

    2015-01-01

    Next generation sequencing (NGS) technologies have been rapidly applied in biomedical and biological research since its advent only a few years ago, and they are expected to advance at an unprecedented pace in the following years. To provide the research community with a comprehensive NGS resource, we have developed the database Next Generation Sequencing Catalog (NGS Catalog, http://bioinfo.mc.vanderbilt.edu/NGS/index.html), a continually updated database that collects, curates and manages available human NGS data obtained from published literature. NGS Catalog deposits publication information of NGS studies and their mutation characteristics (SNVs, small insertions/deletions, copy number variations, and structural variants), as well as mutated genes and gene fusions detected by NGS. Other functions include user data upload, NGS general analysis pipelines, and NGS software. NGS Catalog is particularly useful for investigators who are new to NGS but would like to take advantage of these powerful technologies for their own research. Finally, based on the data deposited in NGS Catalog, we summarized features and findings from whole exome sequencing, whole genome sequencing, and transcriptome sequencing studies for human diseases or traits. PMID:22517761

  19. The Clinical Next-Generation Sequencing Database: A Tool for the Unified Management of Clinical Information and Genetic Variants to Accelerate Variant Pathogenicity Classification.

    PubMed

    Nishio, Shin-Ya; Usami, Shin-Ichi

    2017-03-01

    Recent advances in next-generation sequencing (NGS) have given rise to new challenges due to the difficulties in variant pathogenicity interpretation and large dataset management, including many kinds of public population databases as well as public or commercial disease-specific databases. Here, we report a new database development tool, named the "Clinical NGS Database," for improving clinical NGS workflow through the unified management of variant information and clinical information. This database software offers a two-feature approach to variant pathogenicity classification. The first of these approaches is a phenotype similarity-based approach. This database allows the easy comparison of the detailed phenotype of each patient with the average phenotype of the same gene mutation at the variant or gene level. It is also possible to browse patients with the same gene mutation quickly. The other approach is a statistical approach to variant pathogenicity classification based on the use of the odds ratio for comparisons between the case and the control for each inheritance mode (families with apparently autosomal dominant inheritance vs. control, and families with apparently autosomal recessive inheritance vs. control). A number of case studies are also presented to illustrate the utility of this database. © 2016 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  20. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    PubMed

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Bayesian approach to transforming public gene expression repositories into disease diagnosis databases.

    PubMed

    Huang, Haiyan; Liu, Chun-Chi; Zhou, Xianghong Jasmine

    2010-04-13

    The rapid accumulation of gene expression data has offered unprecedented opportunities to study human diseases. The National Center for Biotechnology Information Gene Expression Omnibus is currently the largest database that systematically documents the genome-wide molecular basis of diseases. However, thus far, this resource has been far from fully utilized. This paper describes the first study to transform public gene expression repositories into an automated disease diagnosis database. Particularly, we have developed a systematic framework, including a two-stage Bayesian learning approach, to achieve the diagnosis of one or multiple diseases for a query expression profile along a hierarchical disease taxonomy. Our approach, including standardizing cross-platform gene expression data and heterogeneous disease annotations, allows analyzing both sources of information in a unified probabilistic system. A high level of overall diagnostic accuracy was shown by cross validation. It was also demonstrated that the power of our method can increase significantly with the continued growth of public gene expression repositories. Finally, we showed how our disease diagnosis system can be used to characterize complex phenotypes and to construct a disease-drug connectivity map.

  2. Genomic Approach to Understand the Association of DNA Repair with Longevity and Healthy Aging Using Genomic Databases of Oldest-Old Population

    PubMed Central

    Kim, Hyun Soo

    2018-01-01

    Aged population is increasing worldwide due to the aging process that is inevitable. Accordingly, longevity and healthy aging have been spotlighted to promote social contribution of aged population. Many studies in the past few decades have reported the process of aging and longevity, emphasizing the importance of maintaining genomic stability in exceptionally long-lived population. Underlying reason of longevity remains unclear due to its complexity involving multiple factors. With advances in sequencing technology and human genome-associated approaches, studies based on population-based genomic studies are increasing. In this review, we summarize recent longevity and healthy aging studies of human population focusing on DNA repair as a major factor in maintaining genome integrity. To keep pace with recent growth in genomic research, aging- and longevity-associated genomic databases are also briefly introduced. To suggest novel approaches to investigate longevity-associated genetic variants related to DNA repair using genomic databases, gene set analysis was conducted, focusing on DNA repair- and longevity-associated genes. Their biological networks were additionally analyzed to grasp major factors containing genetic variants of human longevity and healthy aging in DNA repair mechanisms. In summary, this review emphasizes DNA repair activity in human longevity and suggests approach to conduct DNA repair-associated genomic study on human healthy aging.

  3. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines.

    PubMed

    Chen, Wei-Hua; Lu, Guanting; Chen, Xiao; Zhao, Xing-Ming; Bork, Peer

    2017-01-04

    OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets according to their sources, and tagged those with variable essentiality statuses across data sets as conditionally essential genes, intending to highlight the complex interplay between gene functions and environments/experimental perturbations. Developments since the last public release include increased numbers of species and gene essentiality data sets, inclusion of non-coding essential sequences and genes with intermediate essentiality statuses. In addition, we included 16 essentiality data sets from cancer cell lines, corresponding to 9 human cancers; with OGEE, users can easily explore the shared and differentially essential genes within and between cancer types. These genes, especially those derived from cell lines that are similar to tumor samples, could reveal the oncogenic drivers, paralogous gene expression pattern and chromosomal structure of the corresponding cancer types, and can be further screened to identify targets for cancer therapy and/or new drug development. OGEE is freely available at http://ogee.medgenius.info. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SacconePhD, Scott F; Chesler, Elissa J; Bierut, Laura J

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well representedmore » by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.« less

  5. Comparative Analysis of Gene Expression for Convergent Evolution of Camera Eye Between Octopus and Human

    PubMed Central

    Ogura, Atsushi; Ikeo, Kazuho; Gojobori, Takashi

    2004-01-01

    Although the camera eye of the octopus is very similar to that of humans, phylogenetic and embryological analyses have suggested that their camera eyes have been acquired independently. It has been known as a typical example of convergent evolution. To study the molecular basis of convergent evolution of camera eyes, we conducted a comparative analysis of gene expression in octopus and human camera eyes. We sequenced 16,432 ESTs of the octopus eye, leading to 1052 nonredundant genes that have matches in the protein database. Comparing these 1052 genes with 13,303 already-known ESTs of the human eye, 729 (69.3%) genes were commonly expressed between the human and octopus eyes. On the contrary, when we compared octopus eye ESTs with human connective tissue ESTs, the expression similarity was quite low. To trace the evolutionary changes that are potentially responsible for camera eye formation, we also compared octopus-eye ESTs with the completed genome sequences of other organisms. We found that 1019 out of the 1052 genes had already existed at the common ancestor of bilateria, and 875 genes were conserved between humans and octopuses. It suggests that a larger number of conserved genes and their similar gene expression may be responsible for the convergent evolution of the camera eye. PMID:15289475

  6. Patome: a database server for biological sequence annotation and analysis in issued patents and published patent applications

    PubMed Central

    Lee, Byungwook; Kim, Taehyung; Kim, Seon-Kyu; Lee, Kwang H.; Lee, Doheon

    2007-01-01

    With the advent of automated and high-throughput techniques, the number of patent applications containing biological sequences has been increasing rapidly. However, they have attracted relatively little attention compared to other sequence resources. We have built a database server called Patome, which contains biological sequence data disclosed in patents and published applications, as well as their analysis information. The analysis is divided into two steps. The first is an annotation step in which the disclosed sequences were annotated with RefSeq database. The second is an association step where the sequences were linked to Entrez Gene, OMIM and GO databases, and their results were saved as a gene–patent table. From the analysis, we found that 55% of human genes were associated with patenting. The gene–patent table can be used to identify whether a particular gene or disease is related to patenting. Patome is available at ; the information is updated bimonthly. PMID:17085479

  7. The Degradome database: expanding roles of mammalian proteases in life and disease

    PubMed Central

    Pérez-Silva, José G.; Español, Yaiza; Velasco, Gloria; Quesada, Víctor

    2016-01-01

    Since the definition of the degradome as the complete repertoire of proteases in a given organism, the combined effort of numerous laboratories has greatly expanded our knowledge of its roles in biology and pathology. Once the genomic sequences of several important model organisms were made available, we presented the Degradome database containing the curated sets of known protease genes in human, chimpanzee, mouse and rat. Here, we describe the updated Degradome database, featuring 81 new protease genes and 7 new protease families. Notably, in this short time span, the number of known hereditary diseases caused by mutations in protease genes has increased from 77 to 119. This increase reflects the growing interest on the roles of the degradome in multiple diseases, including cancer and ageing. Finally, we have leveraged the widespread adoption of new webtools to provide interactive graphic views that show information about proteases in the global context of the degradome. The Degradome database can be accessed through its web interface at http://degradome.uniovi.es. PMID:26553809

  8. Genome Comparison of Human and Non-Human Malaria Parasites Reveals Species Subset-Specific Genes Potentially Linked to Human Disease

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2011-01-01

    Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human disease and thus promising leads for future laboratory research. PMID:22215999

  9. Competing endogenous RNA and interactome bioinformatic analyses on human telomerase.

    PubMed

    Arancio, Walter; Pizzolanti, Giuseppe; Genovese, Swonild Ilenia; Baiamonte, Concetta; Giordano, Carla

    2014-04-01

    We present a classic interactome bioinformatic analysis and a study on competing endogenous (ce) RNAs for hTERT. The hTERT gene codes for the catalytic subunit and limiting component of the human telomerase complex. Human telomerase reverse transcriptase (hTERT) is essential for the integrity of telomeres. Telomere dysfunctions have been widely reported to be involved in aging, cancer, and cellular senescence. The hTERT gene network has been analyzed using the BioGRID interaction database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA (http://genemania.org/). The network of interaction of hTERT transcripts has been further analyzed following the competing endogenous (ce) RNA hypotheses (messenger [m] RNAs cross-talk via micro [mi] RNAs) using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest a role for Akt, nuclear factor-κB (NF-κB), heat shock protein 90 (HSP90), p70/p80 autoantigen, 14-3-3 proteins, and dynein in telomere functions. Roles for histone acetylation/deacetylation and proteoglycan metabolism are also proposed.

  10. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.

    PubMed

    Pasquier, Jeremy; Cabau, Cédric; Nguyen, Thaovi; Jouanno, Elodie; Severac, Dany; Braasch, Ingo; Journot, Laurent; Pontarotti, Pierre; Klopp, Christophe; Postlethwait, John H; Guiguen, Yann; Bobe, Julien

    2016-05-18

    With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.

  11. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    PubMed

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The UMD-p53 database: new mutations and analysis tools.

    PubMed

    Béroud, Christophe; Soussi, Thierry

    2003-03-01

    The tumor suppressor gene TP53 (p53) is the most extensively studied gene involved in human cancers. More than 1,400 publications have reported mutations of this gene in 150 cancer types for a total of 14,971 mutations. To exploit this huge bulk of data, specific analytic tools were highly warranted. We therefore developed a locus-specific database software called UMD-p53. This database compiles all somatic and germline mutations as well as polymorphisms of the TP53 gene which have been reported in the published literature since 1989, or unpublished data submitted to the database curators. The database is available at www.umd.necker.fr or at http://p53.curie.fr/. In this paper, we describe recent developments of the UMD-p53 database. These developments include new fields and routines. For example, the analysis of putative acceptor or donor splice sites is now automated and gives new insight for the causal role of "silent mutations." Other routines have also been created such as the prescreening module, the UV module, and the cancer distribution module. These new improvements will help users not only for molecular epidemiology and pharmacogenetic studies but also for patient-based studies. To achieve theses purposes we have designed a procedure to check and validate data in order to reach the highest quality data. Copyright 2003 Wiley-Liss, Inc.

  13. Role for protein–protein interaction databases in human genetics

    PubMed Central

    Pattin, Kristine A; Moore, Jason H

    2010-01-01

    Proteomics and the study of protein–protein interactions are becoming increasingly important in our effort to understand human diseases on a system-wide level. Thanks to the development and curation of protein-interaction databases, up-to-date information on these interaction networks is accessible and publicly available to the scientific community. As our knowledge of protein–protein interactions increases, it is important to give thought to the different ways that these resources can impact biomedical research. In this article, we highlight the importance of protein–protein interactions in human genetics and genetic epidemiology. Since protein–protein interactions demonstrate one of the strongest functional relationships between genes, combining genomic data with available proteomic data may provide us with a more in-depth understanding of common human diseases. In this review, we will discuss some of the fundamentals of protein interactions, the databases that are publicly available and how information from these databases can be used to facilitate genome-wide genetic studies. PMID:19929610

  14. PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology

    PubMed Central

    Gioutlakis, Aris; Klapa, Maria I.

    2017-01-01

    It has been acknowledged that source databases recording experimentally supported human protein-protein interactions (PPIs) exhibit limited overlap. Thus, the reconstruction of a comprehensive PPI network requires appropriate integration of multiple heterogeneous primary datasets, presenting the PPIs at various genetic reference levels. Existing PPI meta-databases perform integration via normalization; namely, PPIs are merged after converted to a certain target level. Hence, the node set of the integrated network depends each time on the number and type of the combined datasets. Moreover, the irreversible a priori normalization process hinders the identification of normalization artifacts in the integrated network, which originate from the nonlinearity characterizing the genetic information flow. PICKLE (Protein InteraCtion KnowLedgebasE) 2.0 implements a new architecture for this recently introduced human PPI meta-database. Its main novel feature over the existing meta-databases is its approach to primary PPI dataset integration via genetic information ontology. Building upon the PICKLE principles of using the reviewed human complete proteome (RHCP) of UniProtKB/Swiss-Prot as the reference protein interactor set, and filtering out protein interactions with low probability of being direct based on the available evidence, PICKLE 2.0 first assembles the RHCP genetic information ontology network by connecting the corresponding genes, nucleotide sequences (mRNAs) and proteins (UniProt entries) and then integrates PPI datasets by superimposing them on the ontology network without any a priori transformations. Importantly, this process allows the resulting heterogeneous integrated network to be reversibly normalized to any level of genetic reference without loss of the original information, the latter being used for identification of normalization biases, and enables the appraisal of potential false positive interactions through PPI source database cross-checking. The PICKLE web-based interface (www.pickle.gr) allows for the simultaneous query of multiple entities and provides integrated human PPI networks at either the protein (UniProt) or the gene level, at three PPI filtering modes. PMID:29023571

  15. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more.

    PubMed

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-07-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized 'Given X, find all associated Ys' query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: 'Find all diseases associated with Bisphenol A'. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. IMGT, the international ImMunoGeneTics information system®

    PubMed Central

    Lefranc, Marie-Paule; Giudicelli, Véronique; Kaas, Quentin; Duprat, Elodie; Jabado-Michaloud, Joumana; Scaviner, Dominique; Ginestoux, Chantal; Clément, Oliver; Chaume, Denys; Lefranc, Gérard

    2005-01-01

    The international ImMunoGeneTics information system® (IMGT) (http://imgt.cines.fr), created in 1989, by the Laboratoire d'ImmunoGénétique Moléculaire LIGM (Université Montpellier II and CNRS) at Montpellier, France, is a high-quality integrated knowledge resource specializing in the immunoglobulins (IGs), T cell receptors (TRs), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune systems (RPI) that belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF). IMGT includes several sequence databases (IMGT/LIGM-DB, IMGT/PRIMER-DB, IMGT/PROTEIN-DB and IMGT/MHC-DB), one genome database (IMGT/GENE-DB) and one three-dimensional (3D) structure database (IMGT/3Dstructure-DB), Web resources comprising 8000 HTML pages (IMGT Marie-Paule page), and interactive tools. IMGT data are expertly annotated according to the rules of the IMGT Scientific chart, based on the IMGT-ONTOLOGY concepts. IMGT tools are particularly useful for the analysis of the IG and TR repertoires in normal physiological and pathological situations. IMGT is used in medical research (autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research, biotechnology related to antibody engineering (phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (clonalities, detection and follow up of residual diseases) and therapeutical approaches (graft, immunotherapy and vaccinology). IMGT is freely available at http://imgt.cines.fr. PMID:15608269

  17. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more

    PubMed Central

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-01-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized ‘Given X, find all associated Ys’ query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: ‘Find all diseases associated with Bisphenol A’. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. PMID:25925572

  18. Endo-beta-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol.

    PubMed

    Suzuki, Tadashi; Yano, Keiichi; Sugimoto, Seiji; Kitajima, Ken; Lennarz, William J; Inoue, Sadako; Inoue, Yasuo; Emori, Yasufumi

    2002-07-23

    Formation of oligosaccharides occurs both in the cytosol and in the lumen of the endoplasmic reticulum (ER). Luminal oligosaccharides are transported into the cytosol to ensure that they do not interfere with proper functioning of the glycan-dependent quality control machinery in the lumen of the ER for newly synthesized glycoproteins. Once in the cytosol, free oligosaccharides are catabolized, possibly to maximize the reutilization of the component sugars. An endo-beta-N-acetylglucosaminidase (ENGase) is a key enzyme involved in the processing of free oligosaccharides in the cytosol. This enzyme activity has been widely described in animal cells, but the gene encoding this enzyme activity has not been reported. Here, we report the identification of the gene encoding human cytosolic ENGase. After 11 steps, the enzyme was purified 150,000-fold to homogeneity from hen oviduct, and several internal amino acid sequences were analyzed. Based on the internal sequence and examination of expressed sequence tag (EST) databases, we identified the human orthologue of the purified protein. The human protein consists of 743 aa and has no apparent signal sequence, supporting the idea that this enzyme is localized in the cytosol. By expressing the cDNA of the putative human ENGase in COS-7 cells, the enzyme activity in the soluble fraction was enhanced 100-fold over the basal level, confirming that the human gene identified indeed encodes for ENGase. Careful gene database surveys revealed the occurrence of ENGase homologues in Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana, indicating the broad occurrence of ENGase in higher eukaryotes. This gene was expressed in a variety of human tissues, suggesting that this enzyme is involved in basic biological processes in eukaryotic cells.

  19. GETPrime 2.0: gene- and transcript-specific qPCR primers for 13 species including polymorphisms.

    PubMed

    David, Fabrice P A; Rougemont, Jacques; Deplancke, Bart

    2017-01-04

    GETPrime (http://bbcftools.epfl.ch/getprime) is a database with a web frontend providing gene- and transcript-specific, pre-computed qPCR primer pairs. The primers have been optimized for genome-wide specificity and for allowing the selective amplification of one or several splice variants of most known genes. To ease selection, primers have also been ranked according to defined criteria such as genome-wide specificity (with BLAST), amplicon size, and isoform coverage. Here, we report a major upgrade (2.0) of the database: eight new species (yeast, chicken, macaque, chimpanzee, rat, platypus, pufferfish, and Anolis carolinensis) now complement the five already included in the previous version (human, mouse, zebrafish, fly, and worm). Furthermore, the genomic reference has been updated to Ensembl v81 (while keeping earlier versions for backward compatibility) as a result of re-designing the back-end database and automating the import of relevant sections of the Ensembl database in species-independent fashion. This also allowed us to map known polymorphisms to the primers (on average three per primer for human), with the aim of reducing experimental error when targeting specific strains or individuals. Another consequence is that the inclusion of future Ensembl releases and other species has now become a relatively straightforward task. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Rapid in silico cloning of genes using expressed sequence tags (ESTs).

    PubMed

    Gill, R W; Sanseau, P

    2000-01-01

    Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.

  1. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. SpliceDisease database: linking RNA splicing and disease.

    PubMed

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  3. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

    PubMed

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.

  4. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR

    PubMed Central

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch. PMID:21917859

  5. Bridging Plant and Human Radiation Response and DNA Repair through an In Silico Approach

    PubMed Central

    Nikitaki, Zacharenia; Pavlopoulou, Athanasia; Holá, Marcela; Donà, Mattia; Michalopoulos, Ioannis; Balestrazzi, Alma; Angelis, Karel J.; Georgakilas, Alexandros G.

    2017-01-01

    The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR) pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries between animal and plant biology in order to expand the collection of biomarkers currently used for radiation exposure monitoring (REM) in environmental and biomedical settings. Genes implicated in trans-kingdom conserved DDR networks often triggered by ionizing radiation (IR) and UV light are deposited into biological databases. In this study, we have applied an innovative approach utilizing data pertinent to plant and human genes from publicly available databases towards the design of a ‘plant radiation biodosimeter’, that is, a plant and DDR gene-based platform that could serve as a REM reliable biomarker for assessing environmental radiation exposure and associated risk. From our analysis, in addition to REM biomarkers, a significant number of genes, both in human and Arabidopsis thaliana, not yet characterized as DDR, are suggested as possible DNA repair players. Last but not least, we provide an example on the applicability of an Arabidopsis thaliana—based plant system monitoring the role of cancer-related DNA repair genes BRCA1, BARD1 and PARP1 in processing DNA lesions. PMID:28587301

  6. Bridging Plant and Human Radiation Response and DNA Repair through an In Silico Approach.

    PubMed

    Nikitaki, Zacharenia; Pavlopoulou, Athanasia; Holá, Marcela; Donà, Mattia; Michalopoulos, Ioannis; Balestrazzi, Alma; Angelis, Karel J; Georgakilas, Alexandros G

    2017-06-06

    The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR) pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries between animal and plant biology in order to expand the collection of biomarkers currently used for radiation exposure monitoring (REM) in environmental and biomedical settings. Genes implicated in trans-kingdom conserved DDR networks often triggered by ionizing radiation (IR) and UV light are deposited into biological databases. In this study, we have applied an innovative approach utilizing data pertinent to plant and human genes from publicly available databases towards the design of a 'plant radiation biodosimeter', that is, a plant and DDR gene-based platform that could serve as a REM reliable biomarker for assessing environmental radiation exposure and associated risk. From our analysis, in addition to REM biomarkers, a significant number of genes, both in human and Arabidopsis thaliana, not yet characterized as DDR, are suggested as possible DNA repair players. Last but not least, we provide an example on the applicability of an Arabidopsis thaliana- based plant system monitoring the role of cancer-related DNA repair genes BRCA1 , BARD1 and PARP1 in processing DNA lesions.

  7. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database

    PubMed Central

    Drabkin, Harold J.; Blake, Judith A.

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as ‘GO’ or ‘homology’ or ‘phenotype’. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as ‘papers selected for GO that refer to genes with NO GO annotation’. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported with statements of evidence as well as access to source publications. PMID:23110975

  8. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.

    PubMed

    Drabkin, Harold J; Blake, Judith A

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported with statements of evidence as well as access to source publications.

  9. Differential gene expression analysis in glioblastoma cells and normal human brain cells based on GEO database.

    PubMed

    Wang, Anping; Zhang, Guibin

    2017-11-01

    The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in 'protein processing in endoplasmic reticulum', which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.

  10. HeLa Nucleic Acid Contamination in The Cancer Genome Atlas Leads to the Misidentification of Human Papillomavirus 18

    PubMed Central

    Cantalupo, Paul G.; Katz, Joshua P.

    2015-01-01

    ABSTRACT We searched The Cancer Genome Atlas (TCGA) database for viruses by comparing non-human reads present in transcriptome sequencing (RNA-Seq) and whole-exome sequencing (WXS) data to viral sequence databases. Human papillomavirus 18 (HPV18) is an etiologic agent of cervical cancer, and as expected, we found robust expression of HPV18 genes in cervical cancer samples. In agreement with previous studies, we also found HPV18 transcripts in non-cervical cancer samples, including those from the colon, rectum, and normal kidney. However, in each of these cases, HPV18 gene expression was low, and single-nucleotide variants and positions of genomic alignments matched the integrated portion of HPV18 present in HeLa cells. Chimeric reads that match a known virus-cell junction of HPV18 integrated in HeLa cells were also present in some samples. We hypothesize that HPV18 sequences in these non-cervical samples are due to nucleic acid contamination from HeLa cells. This finding highlights the problems that contamination presents in computational virus detection pipelines. IMPORTANCE Viruses associated with cancer can be detected by searching tumor sequence databases. Several studies involving searches of the TCGA database have reported the presence of HPV18, a known cause of cervical cancer, in a small number of additional cancers, including those of the rectum, kidney, and colon. We have determined that the sequences related to HPV18 in non-cervical samples are due to nucleic acid contamination from HeLa cells. To our knowledge, this is the first report of the misidentification of viruses in next-generation sequencing data of tumors due to contamination with a cancer cell line. These results raise awareness of the difficulty of accurately identifying viruses in human sequence databases. PMID:25631090

  11. HEROD: a human ethnic and regional specific omics database.

    PubMed

    Zeng, Xian; Tao, Lin; Zhang, Peng; Qin, Chu; Chen, Shangying; He, Weidong; Tan, Ying; Xia Liu, Hong; Yang, Sheng Yong; Chen, Zhe; Jiang, Yu Yang; Chen, Yu Zong

    2017-10-15

    Genetic and gene expression variations within and between populations and across geographical regions have substantial effects on the biological phenotypes, diseases, and therapeutic response. The development of precision medicines can be facilitated by the OMICS studies of the patients of specific ethnicity and geographic region. However, there is an inadequate facility for broadly and conveniently accessing the ethnic and regional specific OMICS data. Here, we introduced a new free database, HEROD, a human ethnic and regional specific OMICS database. Its first version contains the gene expression data of 53 070 patients of 169 diseases in seven ethnic populations from 193 cities/regions in 49 nations curated from the Gene Expression Omnibus (GEO), the ArrayExpress Archive of Functional Genomics Data (ArrayExpress), the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Geographic region information of curated patients was mainly manually extracted from referenced publications of each original study. These data can be accessed and downloaded via keyword search, World map search, and menu-bar search of disease name, the international classification of disease code, geographical region, location of sample collection, ethnic population, gender, age, sample source organ, patient type (patient or healthy), sample type (disease or normal tissue) and assay type on the web interface. The HEROD database is freely accessible at http://bidd2.nus.edu.sg/herod/index.php. The database and web interface are implemented in MySQL, PHP and HTML with all major browsers supported. phacyz@nus.edu.sg. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    PubMed

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks

    PubMed Central

    2018-01-01

    Abstract Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. PMID:29140525

  14. Online Mendelian Inheritance in Man (OMIM).

    PubMed

    Hamosh, A; Scott, A F; Amberger, J; Valle, D; McKusick, V A

    2000-01-01

    Online Mendelian Inheritance In Man (OMIM) is a public database of bibliographic information about human genes and genetic disorders. Begun by Dr. Victor McKusick as the authoritative reference Mendelian Inheritance in Man, it is now distributed electronically by the National Center for Biotechnology Information (NCBI). Material in OMIM is derived from the biomedical literature and is written by Dr. McKusick and his colleagues at Johns Hopkins University and elsewhere. Each OMIM entry has a full text summary of a genetic phenotype and/or gene and has copious links to other genetic resources such as DNA and protein sequence, PubMed references, mutation databases, approved gene nomenclature, and more. In addition, NCBI's neighboring feature allows users to identify related articles from PubMed selected on the basis of key words in the OMIM entry. Through its many features, OMIM is increasingly becoming a major gateway for clinicians, students, and basic researchers to the ever-growing literature and resources of human genetics. Copyright 2000 Wiley-Liss, Inc.

  15. Dataset of the human homologues and orthologues of lipid-metabolic genes identified as DAF-16 targets their roles in lipid and energy metabolism.

    PubMed

    Fan, Lavender Yuen-Nam; Saavedra-García, Paula; Lam, Eric Wing-Fai

    2017-04-01

    The data presented in this article are related to the review article entitled 'Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis' (Saavedra-Garcia et al., 2017) [24]. Here, we have matched the DAF-16/FOXO3 downstream genes with their respective human orthologues and reviewed the roles of these targeted genes in FA metabolism. The list of genes listed in this article are precisely selected from literature reviews based on their functions in mammalian FA metabolism. The nematode Caenorhabditis elegans gene orthologues of the genes are obtained from WormBase, the online biological database of C. elegans. This dataset has not been uploaded to a public repository yet.

  16. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  17. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    PubMed Central

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. Availability The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. PMID:21695124

  18. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    PubMed

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.

  19. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.

  20. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  1. SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments

    PubMed Central

    Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic

    2001-01-01

    Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202

  2. SAMMD: Staphylococcus aureus microarray meta-database.

    PubMed

    Nagarajan, Vijayaraj; Elasri, Mohamed O

    2007-10-02

    Staphylococcus aureus is an important human pathogen, causing a wide variety of diseases ranging from superficial skin infections to severe life threatening infections. S. aureus is one of the leading causes of nosocomial infections. Its ability to resist multiple antibiotics poses a growing public health problem. In order to understand the mechanism of pathogenesis of S. aureus, several global expression profiles have been developed. These transcriptional profiles included regulatory mutants of S. aureus and growth of wild type under different growth conditions. The abundance of these profiles has generated a large amount of data without a uniform annotation system to comprehensively examine them. We report the development of the Staphylococcus aureus Microarray meta-database (SAMMD) which includes data from all the published transcriptional profiles. SAMMD is a web-accessible database that helps users to perform a variety of analysis against and within the existing transcriptional profiles. SAMMD is a relational database that uses MySQL as the back end and PHP/JavaScript/DHTML as the front end. The database is normalized and consists of five tables, which holds information about gene annotations, regulated gene lists, experimental details, references, and other details. SAMMD data is collected from the peer-reviewed published articles. Data extraction and conversion was done using perl scripts while data entry was done through phpMyAdmin tool. The database is accessible via a web interface that contains several features such as a simple search by ORF ID, gene name, gene product name, advanced search using gene lists, comparing among datasets, browsing, downloading, statistics, and help. The database is licensed under General Public License (GPL). SAMMD is hosted and available at http://www.bioinformatics.org/sammd/. Currently there are over 9500 entries for regulated genes, from 67 microarray experiments. SAMMD will help staphylococcal scientists to analyze their expression data and understand it at global level. It will also allow scientists to compare and contrast their transcriptome to that of the other published transcriptomes.

  3. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites

    PubMed Central

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.

    2018-01-01

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly. PMID:29470400

  4. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    PubMed

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be checked multiple times a year and RaMP will be updated accordingly.

  5. SAMMD: Staphylococcus aureus Microarray Meta-Database

    PubMed Central

    Nagarajan, Vijayaraj; Elasri, Mohamed O

    2007-01-01

    Background Staphylococcus aureus is an important human pathogen, causing a wide variety of diseases ranging from superficial skin infections to severe life threatening infections. S. aureus is one of the leading causes of nosocomial infections. Its ability to resist multiple antibiotics poses a growing public health problem. In order to understand the mechanism of pathogenesis of S. aureus, several global expression profiles have been developed. These transcriptional profiles included regulatory mutants of S. aureus and growth of wild type under different growth conditions. The abundance of these profiles has generated a large amount of data without a uniform annotation system to comprehensively examine them. We report the development of the Staphylococcus aureus Microarray meta-database (SAMMD) which includes data from all the published transcriptional profiles. SAMMD is a web-accessible database that helps users to perform a variety of analysis against and within the existing transcriptional profiles. Description SAMMD is a relational database that uses MySQL as the back end and PHP/JavaScript/DHTML as the front end. The database is normalized and consists of five tables, which holds information about gene annotations, regulated gene lists, experimental details, references, and other details. SAMMD data is collected from the peer-reviewed published articles. Data extraction and conversion was done using perl scripts while data entry was done through phpMyAdmin tool. The database is accessible via a web interface that contains several features such as a simple search by ORF ID, gene name, gene product name, advanced search using gene lists, comparing among datasets, browsing, downloading, statistics, and help. The database is licensed under General Public License (GPL). Conclusion SAMMD is hosted and available at . Currently there are over 9500 entries for regulated genes, from 67 microarray experiments. SAMMD will help staphylococcal scientists to analyze their expression data and understand it at global level. It will also allow scientists to compare and contrast their transcriptome to that of the other published transcriptomes. PMID:17910768

  6. ChemiRs: a web application for microRNAs and chemicals.

    PubMed

    Su, Emily Chia-Yu; Chen, Yu-Sing; Tien, Yun-Cheng; Liu, Jeff; Ho, Bing-Ching; Yu, Sung-Liang; Singh, Sher

    2016-04-18

    MicroRNAs (miRNAs) are about 22 nucleotides, non-coding RNAs that affect various cellular functions, and play a regulatory role in different organisms including human. Until now, more than 2500 mature miRNAs in human have been discovered and registered, but still lack of information or algorithms to reveal the relations among miRNAs, environmental chemicals and human health. Chemicals in environment affect our health and daily life, and some of them can lead to diseases by inferring biological pathways. We develop a creditable online web server, ChemiRs, for predicting interactions and relations among miRNAs, chemicals and pathways. The database not only compares gene lists affected by chemicals and miRNAs, but also incorporates curated pathways to identify possible interactions. Here, we manually retrieved associations of miRNAs and chemicals from biomedical literature. We developed an online system, ChemiRs, which contains miRNAs, diseases, Medical Subject Heading (MeSH) terms, chemicals, genes, pathways and PubMed IDs. We connected each miRNA to miRBase, and every current gene symbol to HUGO Gene Nomenclature Committee (HGNC) for genome annotation. Human pathway information is also provided from KEGG and REACTOME databases. Information about Gene Ontology (GO) is queried from GO Online SQL Environment (GOOSE). With a user-friendly interface, the web application is easy to use. Multiple query results can be easily integrated and exported as report documents in PDF format. Association analysis of miRNAs and chemicals can help us understand the pathogenesis of chemical components. ChemiRs is freely available for public use at http://omics.biol.ntnu.edu.tw/ChemiRs .

  7. Identification of learning and memory genes in canine; promoter investigation and determining the selective pressure.

    PubMed

    Seifi Moroudi, Reihane; Masoudi, Ali Akbar; Vaez Torshizi, Rasoul; Zandi, Mohammad

    2014-12-01

    One of the important behaviors of dogs is trainability which is affected by learning and memory genes. These kinds of the genes have not yet been identified in dogs. In the current research, these genes were found in animal models by mining the biological data and scientific literatures. The proteins of these genes were obtained from the UniProt database in dogs and humans. Not all homologous proteins perform similar functions, thus comparison of these proteins was studied in terms of protein families, domains, biological processes, molecular functions, and cellular location of metabolic pathways in Interpro, KEGG, Quick Go and Psort databases. The results showed that some of these proteins have the same performance in the rat or mouse, dog, and human. It is anticipated that the protein of these genes may be effective in learning and memory in dogs. Then, the expression pattern of the recognized genes was investigated in the dog hippocampus using the existing information in the GEO profile. The results showed that BDNF, TAC1 and CCK genes are expressed in the dog hippocampus, therefore, these genes could be strong candidates associated with learning and memory in dogs. Subsequently, due to the importance of the promoter regions in gene function, this region was investigated in the above genes. Analysis of the promoter indicated that the HNF-4 site of BDNF gene and the transcription start site of CCK gene is exposed to methylation. Phylogenetic analysis of protein sequences of these genes showed high similarity in each of these three genes among the studied species. The dN/dS ratio for BDNF, TAC1 and CCK genes indicates a purifying selection during the evolution of the genes.

  8. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    PubMed

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  9. Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity

    PubMed Central

    Milanesi, Luciano; Petrillo, Mauro; Sepe, Leandra; Boccia, Angelo; D'Agostino, Nunzio; Passamano, Myriam; Di Nardo, Salvatore; Tasco, Gianluca; Casadio, Rita; Paolella, Giovanni

    2005-01-01

    Background Protein kinases are a well defined family of proteins, characterized by the presence of a common kinase catalytic domain and playing a significant role in many important cellular processes, such as proliferation, maintenance of cell shape, apoptosys. In many members of the family, additional non-kinase domains contribute further specialization, resulting in subcellular localization, protein binding and regulation of activity, among others. About 500 genes encode members of the kinase family in the human genome, and although many of them represent well known genes, a larger number of genes code for proteins of more recent identification, or for unknown proteins identified as kinase only after computational studies. Results A systematic in silico study performed on the human genome, led to the identification of 5 genes, on chromosome 1, 11, 13, 15 and 16 respectively, and 1 pseudogene on chromosome X; some of these genes are reported as kinases from NCBI but are absent in other databases, such as KinBase. Comparative analysis of 483 gene regions and subsequent computational analysis, aimed at identifying unannotated exons, indicates that a large number of kinase may code for alternately spliced forms or be incorrectly annotated. An InterProScan automated analysis was perfomed to study domain distribution and combination in the various families. At the same time, other structural features were also added to the annotation process, including the putative presence of transmembrane alpha helices, and the cystein propensity to participate into a disulfide bridge. Conclusion The predicted human kinome was extended by identifiying both additional genes and potential splice variants, resulting in a varied panorama where functionality may be searched at the gene and protein level. Structural analysis of kinase proteins domains as defined in multiple sources together with transmembrane alpha helices and signal peptide prediction provides hints to function assignment. The results of the human kinome analysis are collected in the KinWeb database, available for browsing and searching over the internet, where all results from the comparative analysis and the gene structure annotation are made available, alongside the domain information. Kinases may be searched by domain combinations and the relative genes may be viewed in a graphic browser at various level of magnification up to gene organization on the full chromosome set. PMID:16351747

  10. Human genetic factors in tuberculosis: an update.

    PubMed

    van Tong, Hoang; Velavan, Thirumalaisamy P; Thye, Thorsten; Meyer, Christian G

    2017-09-01

    Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB. © 2017 John Wiley & Sons Ltd.

  11. Biomine: predicting links between biological entities using network models of heterogeneous databases.

    PubMed

    Eronen, Lauri; Toivonen, Hannu

    2012-06-06

    Biological databases contain large amounts of data concerning the functions and associations of genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of previously unknown connections spanning multiple types of relationships and databases. Biomine is a system that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We consider and experiment with several such measures, and perform a parameter optimization procedure where different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of putative disease genes. The experimental results show that Biomine has strong potential for predicting links when a set of selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly outperform ones obtained using any single source of data alone, when different types of links are suitably weighted. In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show that under favorable conditions, Biomine can also perform well when no such information is available.The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations between them, with focus on human genetics. Some of its functionalities are available in a public query interface at http://biomine.cs.helsinki.fi, allowing searching for and visualizing connections between given biological entities.

  12. Characterization and distribution of repetitive elements in association with genes in the human genome.

    PubMed

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene-associated repetitive elements in the human genome. Our data showed distinct genes associated with different kinds of repetitive element and implied such combination may shape the function of these genes. Aside from the conventional view of these elements in genome evolution, results from this study offer a systemic review to facilitate exploitation of these elements in genome function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Critical assessment of human metabolic pathway databases: a stepping stone for future integration

    PubMed Central

    2011-01-01

    Background Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts. Results We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison. Conclusions Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison provides a stepping stone for such an endeavor. PMID:21999653

  14. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.

    PubMed

    Jayakodi, Murukarthick; Choi, Beom-Soon; Lee, Sang-Choon; Kim, Nam-Hoon; Park, Jee Young; Jang, Woojong; Lakshmanan, Meiyappan; Mohan, Shobhana V G; Lee, Dong-Yup; Yang, Tae-Jin

    2018-04-12

    The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawagoe, Kazuyoshi; Takeda, Junji; Kinoshita, Taroh

    Many membrane proteins are anchored to the cell membrane by glycosylphosphatidylinositol (GPI). The core structure and biosynthesis of the GPI anchor are well conserved in eukaryote cells. We previously cloned a human PIGA gene that participates in GPI anchor biosynthesis. We have now cloned complementary and genomic DNA of Pig-a, the murine homologue of PIGA, and compared its function and gene structure with those of PIGA. The deduced amino acid sequence of mouse PIG-A is 88% identical with that of human PIG-A. Transfection of Pig-a cDNA complemented the defects of both a PIG-A-deficient murine cell line and a PIG-A-deficient humanmore » cell line, demonstrating that functions of mouse and human PIG-A are conserved. Like human PIGA, the chromosomal Pig-a gene has six exons and spans approximately 16 kb. Moreover, Pig-a was mapped to X-F3/4, which is syntenic to human Xp22.1, where PIGA is located. Thus, murine Pig-a provides a good animal model to study paroxysmal nocturnal hemoglobinuria, a disease caused by a somatic mutation of PIGA. Database analysis demonstrated that a yeast gene, SPT14, is homologous to Pig-a and PIGA and that these genes are members of a glycosyltransferase gene family.« less

  16. GeneStoryTeller: a mobile app for quick and comprehensive information retrieval of human genes.

    PubMed

    Eleftheriou, Stergiani V; Bourdakou, Marilena M; Athanasiadis, Emmanouil I; Spyrou, George M

    2015-01-01

    In the last few years, mobile devices such as smartphones and tablets have become an integral part of everyday life, due to their software/hardware rapid development, as well as the increased portability they offer. Nevertheless, up to now, only few Apps have been developed in the field of bioinformatics, capable to perform fast and robust access to services. We have developed the GeneStoryTeller, a mobile application for Android platforms, where users are able to instantly retrieve information regarding any recorded human gene, derived from eight publicly available databases, as a summary story. Complementary information regarding gene-drugs interactions, functional annotation and disease associations for each selected gene is also provided in the gene story. The most challenging part during the development of the GeneStoryTeller was to keep balance between storing data locally within the app and obtaining the updated content dynamically via a network connection. This was accomplished with the implementation of an administrative site where data are curated and synchronized with the application requiring a minimum human intervention. © The Author(s) 2015. Published by Oxford University Press.

  17. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.

    PubMed

    Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi

    2007-10-04

    In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.

  18. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    PubMed

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.

  19. genenames.org: the HGNC resources in 2011

    PubMed Central

    Seal, Ruth L.; Gordon, Susan M.; Lush, Michael J.; Wright, Mathew W.; Bruford, Elspeth A.

    2011-01-01

    The HUGO Gene Nomenclature Committee (HGNC) aims to assign a unique gene symbol and name to every human gene. The HGNC database currently contains almost 30 000 approved gene symbols, over 19 000 of which represent protein-coding genes. The public website, www.genenames.org, displays all approved nomenclature within Symbol Reports that contain data curated by HGNC editors and links to related genomic, phenotypic and proteomic information. Here we describe improvements to our resources, including a new Quick Gene Search, a new List Search, an integrated HGNC BioMart and a new Statistics and Downloads facility. PMID:20929869

  20. FusionHub: A unified web platform for annotation and visualization of gene fusion events in human cancer.

    PubMed

    Panigrahi, Priyabrata; Jere, Abhay; Anamika, Krishanpal

    2018-01-01

    Gene fusion is a chromosomal rearrangement event which plays a significant role in cancer due to the oncogenic potential of the chimeric protein generated through fusions. At present many databases are available in public domain which provides detailed information about known gene fusion events and their functional role. Existing gene fusion detection tools, based on analysis of transcriptomics data usually report a large number of fusion genes as potential candidates, which could be either known or novel or false positives. Manual annotation of these putative genes is indeed time-consuming. We have developed a web platform FusionHub, which acts as integrated search engine interfacing various fusion gene databases and simplifies large scale annotation of fusion genes in a seamless way. In addition, FusionHub provides three ways of visualizing fusion events: circular view, domain architecture view and network view. Design of potential siRNA molecules through ensemble method is another utility integrated in FusionHub that could aid in siRNA-based targeted therapy. FusionHub is freely available at https://fusionhub.persistent.co.in.

  1. microPIR2: a comprehensive database for human–mouse comparative study of microRNA–promoter interactions

    PubMed Central

    Piriyapongsa, Jittima; Bootchai, Chaiwat; Ngamphiw, Chumpol; Tongsima, Sissades

    2014-01-01

    microRNA (miRNA)–promoter interaction resource (microPIR) is a public database containing over 15 million predicted miRNA target sites located within human promoter sequences. These predicted targets are presented along with their related genomic and experimental data, making the microPIR database the most comprehensive repository of miRNA promoter target sites. Here, we describe major updates of the microPIR database including new target predictions in the mouse genome and revised human target predictions. The updated database (microPIR2) now provides ∼80 million human and 40 million mouse predicted target sites. In addition to being a reference database, microPIR2 is a tool for comparative analysis of target sites on the promoters of human–mouse orthologous genes. In particular, this new feature was designed to identify potential miRNA–promoter interactions conserved between species that could be stronger candidates for further experimental validation. We also incorporated additional supporting information to microPIR2 such as nuclear and cytoplasmic localization of miRNAs and miRNA–disease association. Extra search features were also implemented to enable various investigations of targets of interest. Database URL: http://www4a.biotec.or.th/micropir2 PMID:25425035

  2. miRPathDB: a new dictionary on microRNAs and target pathways.

    PubMed

    Backes, Christina; Kehl, Tim; Stöckel, Daniel; Fehlmann, Tobias; Schneider, Lara; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-01-04

    In the last decade, miRNAs and their regulatory mechanisms have been intensively studied and many tools for the analysis of miRNAs and their targets have been developed. We previously presented a dictionary on single miRNAs and their putative target pathways. Since then, the number of miRNAs has tripled and the knowledge on miRNAs and targets has grown substantially. This, along with changes in pathway resources such as KEGG, leads to an improved understanding of miRNAs, their target genes and related pathways. Here, we introduce the miRNA Pathway Dictionary Database (miRPathDB), freely accessible at https://mpd.bioinf.uni-sb.de/ With the database we aim to complement available target pathway web-servers by providing researchers easy access to the information which pathways are regulated by a miRNA, which miRNAs target a pathway and how specific these regulations are. The database contains a large number of miRNAs (2595 human miRNAs), different miRNA target sets (14 773 experimentally validated target genes as well as 19 281 predicted targets genes) and a broad selection of functional biochemical categories (KEGG-, WikiPathways-, BioCarta-, SMPDB-, PID-, Reactome pathways, functional categories from gene ontology (GO), protein families from Pfam and chromosomal locations totaling 12 875 categories). In addition to Homo sapiens, also Mus musculus data are stored and can be compared to human target pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Xenbase: Core features, data acquisition, and data processing.

    PubMed

    James-Zorn, Christina; Ponferrada, Virgillio G; Burns, Kevin A; Fortriede, Joshua D; Lotay, Vaneet S; Liu, Yu; Brad Karpinka, J; Karimi, Kamran; Zorn, Aaron M; Vize, Peter D

    2015-08-01

    Xenbase, the Xenopus model organism database (www.xenbase.org), is a cloud-based, web-accessible resource that integrates the diverse genomic and biological data from Xenopus research. Xenopus frogs are one of the major vertebrate animal models used for biomedical research, and Xenbase is the central repository for the enormous amount of data generated using this model tetrapod. The goal of Xenbase is to accelerate discovery by enabling investigators to make novel connections between molecular pathways in Xenopus and human disease. Our relational database and user-friendly interface make these data easy to query and allows investigators to quickly interrogate and link different data types in ways that would otherwise be difficult, time consuming, or impossible. Xenbase also enhances the value of these data through high-quality gene expression curation and data integration, by providing bioinformatics tools optimized for Xenopus experiments, and by linking Xenopus data to other model organisms and to human data. Xenbase draws in data via pipelines that download data, parse the content, and save them into appropriate files and database tables. Furthermore, Xenbase makes these data accessible to the broader biomedical community by continually providing annotated data updates to organizations such as NCBI, UniProtKB, and Ensembl. Here, we describe our bioinformatics, genome-browsing tools, data acquisition and sharing, our community submitted and literature curation pipelines, text-mining support, gene page features, and the curation of gene nomenclature and gene models. © 2015 Wiley Periodicals, Inc.

  4. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.

    PubMed

    Tran, Trung T; Bollineni, Ravi C; Strozynski, Margarita; Koehler, Christian J; Thiede, Bernd

    2017-07-07

    Alternative splicing is a mechanism in eukaryotes by which different forms of mRNAs are generated from the same gene. Identification of alternative splice variants requires the identification of peptides specific for alternative splice forms. For this purpose, we generated a human database that contains only unique tryptic peptides specific for alternative splice forms from Swiss-Prot entries. Using this database allows an easy access to splice variant-specific peptide sequences that match to MS data. Furthermore, we combined this database without alternative splice variant-1-specific peptides with human Swiss-Prot. This combined database can be used as a general database for searching of LC-MS data. LC-MS data derived from in-solution digests of two different cell lines (LNCaP, HeLa) and phosphoproteomics studies were analyzed using these two databases. Several nonalternative splice variant-1-specific peptides were found in both cell lines, and some of them seemed to be cell-line-specific. Control and apoptotic phosphoproteomes from Jurkat T cells revealed several nonalternative splice variant-1-specific peptides, and some of them showed clear quantitative differences between the two states.

  5. The ABCs of membrane transporters in health and disease (SLC series): Introduction☆☆☆

    PubMed Central

    Hediger, Matthias A.; Clémençon, Benjamin; Burrier, Robert E.; Bruford, Elspeth A.

    2013-01-01

    The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and “non-SLC” transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives. PMID:23506860

  6. Mutation screening in the Greek population and evaluation of NLGN3 and NLGN4X genes causal factors for autism.

    PubMed

    Volaki, Konstantina; Pampanos, Andreas; Kitsiou-Tzeli, Sophia; Vrettou, Christina; Oikonomakis, Vasilis; Sofocleous, Christalena; Kanavakis, Emmanuel

    2013-10-01

    Molecular and neurobiological evidence for the involvement of neuroligins (particularly NLGN3 and NLGN4X genes) in autistic disorder is accumulating. However, previous mutation screening studies on these two genes have yielded controversial results. The present study explores, for the first time, the contribution of NLGN3 and NLGN4X genetic variants in Greek patients with autistic disorder. We analyzed the full exonic sequence of NLGN3 and NLGN4X genes in 40 patients strictly fulfilling the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria for autistic disorder. We identified nine nucleotide changes in NLGN4X--one probable causative mutation (p.K378R) previously reported by our research group, one novel variant (c.-206G>C), one nonvalidated single nucleotide polymorphism (SNP, rs111953947), and six known human SNPs reported in the SNP database--and one known human SNP in NLGN3 also reported in the SNP database. The variants identified are expected to be benign. However, they should be investigated in the context of variants in interacting cellular pathways to assess their contribution to the etiology of autism.

  7. ExpTreeDB: web-based query and visualization of manually annotated gene expression profiling experiments of human and mouse from GEO.

    PubMed

    Ni, Ming; Ye, Fuqiang; Zhu, Juanjuan; Li, Zongwei; Yang, Shuai; Yang, Bite; Han, Lu; Wu, Yongge; Chen, Ying; Li, Fei; Wang, Shengqi; Bo, Xiaochen

    2014-12-01

    Numerous public microarray datasets are valuable resources for the scientific communities. Several online tools have made great steps to use these data by querying related datasets with users' own gene signatures or expression profiles. However, dataset annotation and result exhibition still need to be improved. ExpTreeDB is a database that allows for queries on human and mouse microarray experiments from Gene Expression Omnibus with gene signatures or profiles. Compared with similar applications, ExpTreeDB pays more attention to dataset annotations and result visualization. We introduced a multiple-level annotation system to depict and organize original experiments. For example, a tamoxifen-treated cell line experiment is hierarchically annotated as 'agent→drug→estrogen receptor antagonist→tamoxifen'. Consequently, retrieved results are exhibited by an interactive tree-structured graphics, which provide an overview for related experiments and might enlighten users on key items of interest. The database is freely available at http://biotech.bmi.ac.cn/ExpTreeDB. Web site is implemented in Perl, PHP, R, MySQL and Apache. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Rational confederation of genes and diseases: NGS interpretation via GeneCards, MalaCards and VarElect.

    PubMed

    Rappaport, Noa; Fishilevich, Simon; Nudel, Ron; Twik, Michal; Belinky, Frida; Plaschkes, Inbar; Stein, Tsippi Iny; Cohen, Dana; Oz-Levi, Danit; Safran, Marilyn; Lancet, Doron

    2017-08-18

    A key challenge in the realm of human disease research is next generation sequencing (NGS) interpretation, whereby identified filtered variant-harboring genes are associated with a patient's disease phenotypes. This necessitates bioinformatics tools linked to comprehensive knowledgebases. The GeneCards suite databases, which include GeneCards (human genes), MalaCards (human diseases) and PathCards (human pathways) together with additional tools, are presented with the focus on MalaCards utility for NGS interpretation as well as for large scale bioinformatic analyses. VarElect, our NGS interpretation tool, leverages the broad information in the GeneCards suite databases. MalaCards algorithms unify disease-related terms and annotations from 69 sources. Further, MalaCards defines hierarchical relatedness-aliases, disease families, a related diseases network, categories and ontological classifications. GeneCards and MalaCards delineate and share a multi-tiered, scored gene-disease network, with stringency levels, including the definition of elite status-high quality gene-disease pairs, coming from manually curated trustworthy sources, that includes 4500 genes for 8000 diseases. This unique resource is key to NGS interpretation by VarElect. VarElect, a comprehensive search tool that helps infer both direct and indirect links between genes and user-supplied disease/phenotype terms, is robustly strengthened by the information found in MalaCards. The indirect mode benefits from GeneCards' diverse gene-to-gene relationships, including SuperPaths-integrated biological pathways from 12 information sources. We are currently adding an important information layer in the form of "disease SuperPaths", generated from the gene-disease matrix by an algorithm similar to that previously employed for biological pathway unification. This allows the discovery of novel gene-disease and disease-disease relationships. The advent of whole genome sequencing necessitates capacities to go beyond protein coding genes. GeneCards is highly useful in this respect, as it also addresses 101,976 non-protein-coding RNA genes. In a more recent development, we are currently adding an inclusive map of regulatory elements and their inferred target genes, generated by integration from 4 resources. MalaCards provides a rich big-data scaffold for in silico biomedical discovery within the gene-disease universe. VarElect, which depends significantly on both GeneCards and MalaCards power, is a potent tool for supporting the interpretation of wet-lab experiments, notably NGS analyses of disease. The GeneCards suite has thus transcended its 2-decade role in biomedical research, maturing into a key player in clinical investigation.

  9. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    PubMed Central

    Butler, Merlin G.; Rafi, Syed K.; Manzardo, Ann M.

    2015-01-01

    Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families. PMID:25803107

  10. Exploring human disease using the Rat Genome Database.

    PubMed

    Shimoyama, Mary; Laulederkind, Stanley J F; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R; Tutaj, Marek; Petri, Victoria; Hayman, G Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R

    2016-10-01

    Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers - within and beyond the rat community - who are particularly interested in leveraging rat-based insights to understand human diseases. © 2016. Published by The Company of Biologists Ltd.

  11. (abstract) Modeling Protein Families and Human Genes: Hidden Markov Models and a Little Beyond

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre

    1994-01-01

    We will first give a brief overview of Hidden Markov Models (HMMs) and their use in Computational Molecular Biology. In particular, we will describe a detailed application of HMMs to the G-Protein-Coupled-Receptor Superfamily. We will also describe a number of analytical results on HMMs that can be used in discrimination tests and database mining. We will then discuss the limitations of HMMs and some new directions of research. We will conclude with some recent results on the application of HMMs to human gene modeling and parsing.

  12. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  13. DoOP: Databases of Orthologous Promoters, collections of clusters of orthologous upstream sequences from chordates and plants

    PubMed Central

    Barta, Endre; Sebestyén, Endre; Pálfy, Tamás B.; Tóth, Gábor; Ortutay, Csaba P.; Patthy, László

    2005-01-01

    DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21 061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically. PMID:15608291

  14. DoOP: Databases of Orthologous Promoters, collections of clusters of orthologous upstream sequences from chordates and plants.

    PubMed

    Barta, Endre; Sebestyén, Endre; Pálfy, Tamás B; Tóth, Gábor; Ortutay, Csaba P; Patthy, László

    2005-01-01

    DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21,061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically.

  15. IMGT, the International ImMunoGeneTics database.

    PubMed Central

    Lefranc, M P; Giudicelli, V; Busin, C; Bodmer, J; Müller, W; Bontrop, R; Lemaitre, M; Malik, A; Chaume, D

    1998-01-01

    IMGT, the international ImMunoGeneTics database, is an integrated database specialising in Immunoglobulins (Ig), T cell Receptors (TcR) and Major Histocompatibility Complex (MHC) of all vertebrate species, created by Marie-Paule Lefranc, CNRS, Montpellier II University, Montpellier, France (lefranc@ligm.crbm.cnrs-mop.fr). IMGT includes three databases: LIGM-DB (for Ig and TcR), MHC/HLA-DB and PRIMER-DB (the last two in development). IMGT comprises expertly annotated sequences and alignment tables. LIGM-DB contains more than 23 000 Immunoglobulin and T cell Receptor sequences from 78 species. MHC/HLA-DB contains Class I and Class II Human Leucocyte Antigen alignment tables. An IMGT tool, DNAPLOT, developed for Ig, TcR and MHC sequence alignments, is also available. IMGT works in close collaboration with the EMBL database. IMGT goals are to establish a common data access to all immunogenetics data, including nucleotide and protein sequences, oligonucleotide primers, gene maps and other genetic data of Ig, TcR and MHC molecules, and to provide a graphical user friendly data access. IMGT has important implications in medical research (repertoire in autoimmune diseases, AIDS, leukemias, lymphomas), therapeutical approaches (antibody engineering), genome diversity and genome evolution studies. IMGT is freely available at http://imgt.cnusc.fr:8104 PMID:9399859

  16. HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    PubMed

    Forster, Samuel C; Browne, Hilary P; Kumar, Nitin; Hunt, Martin; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Lawley, Trevor D

    2016-01-04

    The Human Pan-Microbe Communities (HPMC) database (http://www.hpmcd.org/) provides a manually curated, searchable, metagenomic resource to facilitate investigation of human gastrointestinal microbiota. Over the past decade, the application of metagenome sequencing to elucidate the microbial composition and functional capacity present in the human microbiome has revolutionized many concepts in our basic biology. When sufficient high quality reference genomes are available, whole genome metagenomic sequencing can provide direct biological insights and high-resolution classification. The HPMC database provides species level, standardized phylogenetic classification of over 1800 human gastrointestinal metagenomic samples. This is achieved by combining a manually curated list of bacterial genomes from human faecal samples with over 21000 additional reference genomes representing bacteria, viruses, archaea and fungi with manually curated species classification and enhanced sample metadata annotation. A user-friendly, web-based interface provides the ability to search for (i) microbial groups associated with health or disease state, (ii) health or disease states and community structure associated with a microbial group, (iii) the enrichment of a microbial gene or sequence and (iv) enrichment of a functional annotation. The HPMC database enables detailed analysis of human microbial communities and supports research from basic microbiology and immunology to therapeutic development in human health and disease. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The Pathogen-Host Interactions database (PHI-base): additions and future developments.

    PubMed

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. 1-CMDb: A Curated Database of Genomic Variations of the One-Carbon Metabolism Pathway.

    PubMed

    Bhat, Manoj K; Gadekar, Veerendra P; Jain, Aditya; Paul, Bobby; Rai, Padmalatha S; Satyamoorthy, Kapaettu

    2017-01-01

    The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded. Hence, we designed the one-carbon metabolism database (1-CMDb) as a platform to interrogate its association with a host of human disorders. DNA sequence and network information of a total of 48 genes were extracted from a literature survey and KEGG pathway that are involved in the one-carbon folate-mediated pathway. The information generated, collected, and compiled for all these genes from the UCSC genome browser included the single nucleotide polymorphisms (SNPs), CpGs, copy number variations (CNVs), and miRNAs, and a comprehensive database was created. Furthermore, a significant correlation analysis was performed for SNPs in the pathway genes. Detailed data of SNPs, CNVs, CpG islands, and miRNAs for 48 folate pathway genes were compiled. The SNPs in CNVs (9670), CpGs (984), and miRNAs (14) were also compiled for all pathway genes. The SIFT score, the prediction and PolyPhen score, as well as the prediction for each of the SNPs were tabulated and represented for folate pathway genes. Also included in the database for folate pathway genes were the links to 124 various phenotypes and disease associations as reported in the literature and from publicly available information. A comprehensive database was generated consisting of genomic elements within and among SNPs, CNVs, CpGs, and miRNAs of one-carbon metabolism pathways to facilitate (a) single source of information and (b) integration into large-genome scale network analysis to be developed in the future by the scientific community. The database can be accessed at http://slsdb.manipal.edu/ocm/. © 2017 S. Karger AG, Basel.

  19. interPopula: a Python API to access the HapMap Project dataset

    PubMed Central

    2010-01-01

    Background The HapMap project is a publicly available catalogue of common genetic variants that occur in humans, currently including several million SNPs across 1115 individuals spanning 11 different populations. This important database does not provide any programmatic access to the dataset, furthermore no standard relational database interface is provided. Results interPopula is a Python API to access the HapMap dataset. interPopula provides integration facilities with both the Python ecology of software (e.g. Biopython and matplotlib) and other relevant human population datasets (e.g. Ensembl gene annotation and UCSC Known Genes). A set of guidelines and code examples to address possible inconsistencies across heterogeneous data sources is also provided. Conclusions interPopula is a straightforward and flexible Python API that facilitates the construction of scripts and applications that require access to the HapMap dataset. PMID:21210977

  20. ApoptoProteomics, an integrated database for analysis of proteomics data obtained from apoptotic cells.

    PubMed

    Arntzen, Magnus Ø; Thiede, Bernd

    2012-02-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.

  1. ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells*

    PubMed Central

    Arntzen, Magnus Ø.; Thiede, Bernd

    2012-01-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no. PMID:22067098

  2. Computation and application of tissue-specific gene set weights.

    PubMed

    Frost, H Robert

    2018-04-06

    Gene set testing, or pathway analysis, has become a critical tool for the analysis of highdimensional genomic data. Although the function and activity of many genes and higher-level processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashion, which impacts statistical power and the interpretation and replication of results. To address this challenge, we have developed a bioinformatics approach to compute tissuespecific weights for individual gene sets using information on tissue-specific gene activity from the Human Protein Atlas (HPA). We used this approach to create a public repository of tissue-specific gene set weights for 37 different human tissue types from the HPA and all collections in the Molecular Signatures Database (MSigDB). To demonstrate the validity and utility of these weights, we explored three different applications: the functional characterization of human tissues, multi-tissue analysis for systemic diseases and tissue-specific gene set testing. All data used in the reported analyses is publicly available. An R implementation of the method and tissue-specific weights for MSigDB gene set collections can be downloaded at http://www.dartmouth.edu/∼hrfrost/TissueSpecificGeneSets. rob.frost@dartmouth.edu.

  3. Combining Evidence of Preferential Gene-Tissue Relationships from Multiple Sources

    PubMed Central

    Guo, Jing; Hammar, Mårten; Öberg, Lisa; Padmanabhuni, Shanmukha S.; Bjäreland, Marcus; Dalevi, Daniel

    2013-01-01

    An important challenge in drug discovery and disease prognosis is to predict genes that are preferentially expressed in one or a few tissues, i.e. showing a considerably higher expression in one tissue(s) compared to the others. Although several data sources and methods have been published explicitly for this purpose, they often disagree and it is not evident how to retrieve these genes and how to distinguish true biological findings from those that are due to choice-of-method and/or experimental settings. In this work we have developed a computational approach that combines results from multiple methods and datasets with the aim to eliminate method/study-specific biases and to improve the predictability of preferentially expressed human genes. A rule-based score is used to merge and assign support to the results. Five sets of genes with known tissue specificity were used for parameter pruning and cross-validation. In total we identify 3434 tissue-specific genes. We compare the genes of highest scores with the public databases: PaGenBase (microarray), TiGER (EST) and HPA (protein expression data). The results have 85% overlap to PaGenBase, 71% to TiGER and only 28% to HPA. 99% of our predictions have support from at least one of these databases. Our approach also performs better than any of the databases on identifying drug targets and biomarkers with known tissue-specificity. PMID:23950964

  4. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    NASA Astrophysics Data System (ADS)

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-06-01

    Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.

  5. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    PubMed Central

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-01-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  6. The GENCODE exome: sequencing the complete human exome

    PubMed Central

    Coffey, Alison J; Kokocinski, Felix; Calafato, Maria S; Scott, Carol E; Palta, Priit; Drury, Eleanor; Joyce, Christopher J; LeProust, Emily M; Harrow, Jen; Hunt, Sarah; Lehesjoki, Anna-Elina; Turner, Daniel J; Hubbard, Tim J; Palotie, Aarno

    2011-01-01

    Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing. PMID:21364695

  7. A Uniform System For The Annotation Of Human microRNA Genes And The Evolution Of The Human microRNAome

    PubMed Central

    Fromm, Bastian; Billipp, Tyler; Peck, Liam E.; Johansen, Morten; Tarver, James E.; King, Benjamin L.; Newcomb, James M.; Sempere, Lorenzo F.; Flatmark, Kjersti; Hovig, Eivind; Peterson, Kevin J.

    2016-01-01

    Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that fewer than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation, and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database -- MirGeneDB (http://mirgenedb.org) -- to catalog this set of robustly supported miRNAs, which complements the efforts of miRBase, but differs from it by annotating the mature versus star products, and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire. PMID:26473382

  8. Norrie disease gene: characterization of deletions and possible function.

    PubMed

    Chen, Z Y; Battinelli, E M; Hendriks, R W; Powell, J F; Middleton-Price, H; Sims, K B; Breakefield, X O; Craig, I W

    1993-05-01

    Positional cloning experiments have resulted recently in the isolation of a candidate gene for Norrie disease (pseudoglioma; NDP), a severe X-linked neurodevelopmental disorder. Here we report the isolation and analysis of human genomic DNA clones encompassing the NDP gene. The gene spans 28 kb and consists of 3 exons, the first of which is entirely contained within the 5' untranslated region. Detailed analysis of genomic deletions in Norrie patients shows that they are heterogeneous, both in size and in position. By PCR analysis, we found that expression of the NDP gene was not confined to the eye or to the brain. An extensive DNA and protein sequence comparison between the human NDP gene and related genes from the database revealed homology with cysteine-rich protein-binding domains of immediate--early genes implicated in the regulation of cell proliferation. We propose that NDP is a molecule related in function to these genes and may be involved in a pathway that regulates neural cell differentiation and proliferation.

  9. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections.

    PubMed

    O'Donnell, Kerry; Sutton, Deanna A; Rinaldi, Michael G; Sarver, Brice A J; Balajee, S Arunmozhi; Schroers, Hans-Josef; Summerbell, Richard C; Robert, Vincent A R G; Crous, Pedro W; Zhang, Ning; Aoki, Takayuki; Jung, Kyongyong; Park, Jongsun; Lee, Yong-Hwan; Kang, Seogchan; Park, Bongsoo; Geiser, David M

    2010-10-01

    Because less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories. The database comprises partial sequences from three nuclear genes: translation elongation factor 1α (EF-1α), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2). These three gene fragments can be amplified by PCR and sequenced using primers that are conserved across the phylogenetic breadth of Fusarium. Phylogenetic analyses of the combined data set reveal that, with the exception of two monotypic lineages, all clinically relevant fusaria are nested in one of eight variously sized and strongly supported species complexes. The monophyletic lineages have been named informally to facilitate communication of an isolate's clade membership and genetic diversity. To identify isolates to the species included within the database, partial DNA sequence data from one or more of the three genes can be used as a BLAST query against the database which is Web accessible at FUSARIUM-ID (http://isolate.fusariumdb.org) and the Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Center (http://www.cbs.knaw.nl/fusarium). Alternatively, isolates can be identified via phylogenetic analysis by adding sequences of unknowns to the DNA sequence alignment, which can be downloaded from the two aforementioned websites. The utility of this database should increase significantly as members of the clinical microbiology community deposit in internationally accessible culture collections (e.g., CBS-KNAW or the Fusarium Research Center) cultures of novel mycosis-associated fusaria, along with associated, corrected sequence chromatograms and data, so that the sequence results can be verified and isolates are made available for future study.

  10. The Functional Human C-Terminome

    PubMed Central

    Hedden, Michael; Lyon, Kenneth F.; Brooks, Steven B.; David, Roxanne P.; Limtong, Justin; Newsome, Jacklyn M.; Novakovic, Nemanja; Rajasekaran, Sanguthevar; Thapar, Vishal; Williams, Sean R.; Schiller, Martin R.

    2016-01-01

    All translated proteins end with a carboxylic acid commonly called the C-terminus. Many short functional sequences (minimotifs) are located on or immediately proximal to the C-terminus. However, information about the function of protein C-termini has not been consolidated into a single source. Here, we built a new “C-terminome” database and web system focused on human proteins. Approximately 3,600 C-termini in the human proteome have a minimotif with an established molecular function. To help evaluate the function of the remaining C-termini in the human proteome, we inferred minimotifs identified by experimentation in rodent cells, predicted minimotifs based upon consensus sequence matches, and predicted novel highly repetitive sequences in C-termini. Predictions can be ranked by enrichment scores or Gene Evolutionary Rate Profiling (GERP) scores, a measurement of evolutionary constraint. By searching for new anchored sequences on the last 10 amino acids of proteins in the human proteome with lengths between 3–10 residues and up to 5 degenerate positions in the consensus sequences, we have identified new consensus sequences that predict instances in the majority of human genes. All of this information is consolidated into a database that can be accessed through a C-terminome web system with search and browse functions for minimotifs and human proteins. A known consensus sequence-based predicted function is assigned to nearly half the proteins in the human proteome. Weblink: http://cterminome.bio-toolkit.com. PMID:27050421

  11. Multiple endocrine neoplasia type 1 (MEN1): An update of 208 new germline variants reported in the last nine years.

    PubMed

    Concolino, Paola; Costella, Alessandra; Capoluongo, Ettore

    2016-01-01

    This review will focus on the germline MEN1 mutations that have been reported in patients with MEN1 and other hereditary endocrine disorders from 2007 to September 2015. A comprehensive review regarding the analysis of 1336 MEN1 mutations reported in the first decade following the gene's identification was performed by Lemos and Thakker in 2008. No other similar papers are available in literature apart from these data. We also checked for the list of Locus-Specific DataBases (LSDBs) and we found five MEN1 free-online mutational databases. 151 articles from the NCBI PubMed literature database were read and evaluated and a total of 75 MEN1 variants were found. On the contrary, 67, 22 and 44 novel MEN1 variants were obtained from ClinVar, MEN1 at Café Variome and HGMD (The Human Gene Mutation Database) databases respectively. A final careful analysis of MEN1 mutations affecting the coding region was performed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Feasibility of Genome-Wide Screening for Biosafety Assessment of Probiotics: A Case Study of Lactobacillus helveticus MTCC 5463.

    PubMed

    Senan, S; Prajapati, J B; Joshi, C G

    2015-12-01

    Recent years have witnessed an explosion in genome sequencing of probiotic strains for accurate identification and characterization. Regulatory bodies are emphasizing on the need for performing phase I safety studies for probiotics. The main hypothesis of this study was to explore the feasibility of using genome databases for safety screening of strains. In this study, we attempted to develop a framework for the safety assessment of a potential probiotic strain, Lactobacillus helveticus MTCC 5463 based on genome mining for genes associated with antibiotic resistance, production of harmful metabolites, and virulence. The sequencing of MTCC 5463 was performed using GS-FLX Titanium reagents. Genes coding for antibiotic resistance and virulence were identified using Antibiotic Resistance Genes Database and Virulence Factors Database. Results indicated that MTCC 5463 carried antibiotic resistance genes associated with beta-lactam and fluoroquinolone. There is no threat of transfer of these genes to host gut commensals because the genes are not plasmid encoded. The presence of genes for adhesion, biofilm, surface proteins, and stress-related proteins provides robustness to the strain. The presence of hemolysin gene in the genome revealed a theoretical risk of virulence. The results of in silico analysis complemented the in vitro studies and human clinical trials, confirming the safety of the probiotic strain. We propose that the safety assessment of probiotic strains administered live at high doses using a genome-wide screening could be an effective and time-saving tool for identifying prognostic biomarkers of biosafety.

  13. Using FlyBase, a Database of Drosophila Genes and Genomes.

    PubMed

    Marygold, Steven J; Crosby, Madeline A; Goodman, Joshua L

    2016-01-01

    For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic, and high-throughput technologies add to the quantity and diversity of available data and resources.FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets, or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback.This chapter provides an overview of the data content, organization, and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries.

  14. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    PubMed

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  15. ZIKV – CDB: A Collaborative Database to Guide Research Linking SncRNAs and ZIKA Virus Disease Symptoms

    PubMed Central

    Morais, Daniel Kumazawa; Cuadros-Orellana, Sara; Pais, Fabiano Sviatopolk-Mirsky; Medeiros, Julliane Dutra; Geraldo, Juliana Assis; Gilbert, Jack; Volpini, Angela Cristina; Fernandes, Gabriel Rocha

    2016-01-01

    Background In early 2015, a ZIKA Virus (ZIKV) infection outbreak was recognized in northeast Brazil, where concerns over its possible links with infant microcephaly have been discussed. Providing a causal link between ZIKV infection and birth defects is still a challenge. MicroRNAs (miRNAs) are small noncoding RNAs (sncRNAs) that regulate post-transcriptional gene expression by translational repression, and play important roles in viral pathogenesis and brain development. The potential for flavivirus-mediated miRNA signalling dysfunction in brain-tissue development provides a compelling hypothesis to test the perceived link between ZIKV and microcephaly. Methodology/Principal Findings Here, we applied in silico analyses to provide novel insights to understand how Congenital ZIKA Syndrome symptoms may be related to an imbalance in miRNAs function. Moreover, following World Health Organization (WHO) recommendations, we have assembled a database to help target investigations of the possible relationship between ZIKV symptoms and miRNA-mediated human gene expression. Conclusions/Significance We have computationally predicted both miRNAs encoded by ZIKV able to target genes in the human genome and cellular (human) miRNAs capable of interacting with ZIKV genomes. Our results represent a step forward in the ZIKV studies, providing new insights to support research in this field and identify potential targets for therapy. PMID:27332714

  16. SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers

    PubMed Central

    Mann, Michael B

    2018-01-01

    Abstract Large-scale oncogenomic studies have identified few frequently mutated cancer drivers and hundreds of infrequently mutated drivers. Defining the biological context for rare driving events is fundamentally important to increasing our understanding of the druggable pathways in cancer. Sleeping Beauty (SB) insertional mutagenesis is a powerful gene discovery tool used to model human cancers in mice. Our lab and others have published a number of studies that identify cancer drivers from these models using various statistical and computational approaches. Here, we have integrated SB data from primary tumor models into an analysis and reporting framework, the Sleeping Beauty Cancer Driver DataBase (SBCDDB, http://sbcddb.moffitt.org), which identifies drivers in individual tumors or tumor populations. Unique to this effort, the SBCDDB utilizes a single, scalable, statistical analysis method that enables data to be grouped by different biological properties. This allows for SB drivers to be evaluated (and re-evaluated) under different contexts. The SBCDDB provides visual representations highlighting the spatial attributes of transposon mutagenesis and couples this functionality with analysis of gene sets, enabling users to interrogate relationships between drivers. The SBCDDB is a powerful resource for comparative oncogenomic analyses with human cancer genomics datasets for driver prioritization. PMID:29059366

  17. HIVsirDB: a database of HIV inhibiting siRNAs.

    PubMed

    Tyagi, Atul; Ahmed, Firoz; Thakur, Nishant; Sharma, Arun; Raghava, Gajendra P S; Kumar, Manoj

    2011-01-01

    Human immunodeficiency virus (HIV) is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi) is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA) for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes. HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i) siRNAmap for mapping siRNAs on target sequence, ii) HIVsirblast for BLAST search against database, iii) siRNAalign for aligning siRNAs. HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.

  18. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  19. Extraction, integration and analysis of alternative splicing and protein structure distributed information

    PubMed Central

    D'Antonio, Matteo; Masseroli, Marco

    2009-01-01

    Background Alternative splicing has been demonstrated to affect most of human genes; different isoforms from the same gene encode for proteins which differ for a limited number of residues, thus yielding similar structures. This suggests possible correlations between alternative splicing and protein structure. In order to support the investigation of such relationships, we have developed the Alternative Splicing and Protein Structure Scrutinizer (PASS), a Web application to automatically extract, integrate and analyze human alternative splicing and protein structure data sparsely available in the Alternative Splicing Database, Ensembl databank and Protein Data Bank. Primary data from these databases have been integrated and analyzed using the Protein Identifier Cross-Reference, BLAST, CLUSTALW and FeatureMap3D software tools. Results A database has been developed to store the considered primary data and the results from their analysis; a system of Perl scripts has been implemented to automatically create and update the database and analyze the integrated data; a Web interface has been implemented to make the analyses easily accessible; a database has been created to manage user accesses to the PASS Web application and store user's data and searches. Conclusion PASS automatically integrates data from the Alternative Splicing Database with protein structure data from the Protein Data Bank. Additionally, it comprehensively analyzes the integrated data with publicly available well-known bioinformatics tools in order to generate structural information of isoform pairs. Further analysis of such valuable information might reveal interesting relationships between alternative splicing and protein structure differences, which may be significantly associated with different functions. PMID:19828075

  20. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    PubMed

    Corona, Erik; Wang, Liuyang; Ko, Dennis; Patel, Chirag J

    2018-01-01

    Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  1. Aquatic models, genomics and chemical risk management.

    PubMed

    Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio

    2012-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    PubMed Central

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  3. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  4. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    PubMed Central

    2011-01-01

    Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes. PMID:21333005

  5. Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.

    PubMed

    Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L

    2016-11-04

    The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/ .

  6. Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics

    PubMed Central

    Deutsch, Eric W.; Sun, Zhi; Campbell, David S.; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S.; Moritz, Robert L.

    2016-01-01

    The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances – a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ~20,000 primary isoforms plus contaminants to a very large database that includes almost all non-redundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/. PMID:27577934

  7. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    PubMed Central

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D’Elia, D.; Montalvo, A. de; Pinto, B. de; De Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H. V.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces cerevisiae. MitBASE reports all available information from different organisms and from intraspecies variants and mutants. Data have been drawn from the primary databases and from the literature; value adding information has been structured, e.g., editing information on protist mtDNA genomes, pathological information for human mtDNA variants, etc. The different databases, some of which are structured using commercial packages (Microsoft Access, File Maker Pro) while others use a flat-file format, have been integrated under ORACLE. Ad hoc retrieval systems have been devised for some of the above listed databases keeping into account their peculiarities. The database is resident at the EBI and is available at the following site: http://www3.ebi.ac.uk/Research/Mitbase/mitbase.pl . The impact of this project is intended for both basic and applied research. The study of mitochondrial genetic diseases and mitochondrial DNA intraspecies diversity are key topics in several biotechnological fields. The database has been funded within the EU Biotechnology programme. PMID:10592207

  8. SIDD: A Semantically Integrated Database towards a Global View of Human Disease

    PubMed Central

    Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong

    2013-01-01

    Background A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. Methodology To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. Conclusions A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD. PMID:24146757

  9. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes.

    PubMed

    Piñero, Janet; Queralt-Rosinach, Núria; Bravo, Àlex; Deu-Pons, Jordi; Bauer-Mehren, Anna; Baron, Martin; Sanz, Ferran; Furlong, Laura I

    2015-01-01

    DisGeNET is a comprehensive discovery platform designed to address a variety of questions concerning the genetic underpinning of human diseases. DisGeNET contains over 380,000 associations between >16,000 genes and 13,000 diseases, which makes it one of the largest repositories currently available of its kind. DisGeNET integrates expert-curated databases with text-mined data, covers information on Mendelian and complex diseases, and includes data from animal disease models. It features a score based on the supporting evidence to prioritize gene-disease associations. It is an open access resource available through a web interface, a Cytoscape plugin and as a Semantic Web resource. The web interface supports user-friendly data exploration and navigation. DisGeNET data can also be analysed via the DisGeNET Cytoscape plugin, and enriched with the annotations of other plugins of this popular network analysis software suite. Finally, the information contained in DisGeNET can be expanded and complemented using Semantic Web technologies and linked to a variety of resources already present in the Linked Data cloud. Hence, DisGeNET offers one of the most comprehensive collections of human gene-disease associations and a valuable set of tools for investigating the molecular mechanisms underlying diseases of genetic origin, designed to fulfill the needs of different user profiles, including bioinformaticians, biologists and health-care practitioners. Database URL: http://www.disgenet.org/ © The Author(s) 2015. Published by Oxford University Press.

  10. NEIBank: Genomics and bioinformatics resources for vision research

    PubMed Central

    Peterson, Katherine; Gao, James; Buchoff, Patee; Jaworski, Cynthia; Bowes-Rickman, Catherine; Ebright, Jessica N.; Hauser, Michael A.; Hoover, David

    2008-01-01

    NEIBank is an integrated resource for genomics and bioinformatics in vision research. It includes expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. PMID:18648525

  11. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  12. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    PubMed Central

    Oduru, Sreedhar; Campbell, Janee L; Karri, SriTulasi; Hendry, William J; Khan, Shafiq A; Williams, Simon C

    2003-01-01

    Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells. PMID:12783626

  13. Massive NGS Data Analysis Reveals Hundreds Of Potential Novel Gene Fusions in Human Cell Lines.

    PubMed

    Gioiosa, Silvia; Bolis, Marco; Flati, Tiziano; Massini, Annalisa; Garattini, Enrico; Chillemi, Giovanni; Fratelli, Maddalena; Castrignanò, Tiziana

    2018-06-01

    Gene fusions derive from chromosomal rearrangements and the resulting chimeric transcripts are often endowed with oncogenic potential. Furthermore, they serve as diagnostic tools for the clinical classification of cancer subgroups with different prognosis and, in some cases, they can provide specific drug targets. So far, many efforts have been carried out to study gene fusion events occurring in tumor samples. In recent years, the availability of a comprehensive Next Generation Sequencing dataset for all the existing human tumor cell lines has provided the opportunity to further investigate these data in order to identify novel and still uncharacterized gene fusion events. In our work, we have extensively reanalyzed 935 paired-end RNA-seq experiments downloaded from "The Cancer Cell Line Encyclopedia" repository, aiming at addressing novel putative cell-line specific gene fusion events in human malignancies. The bioinformatics analysis has been performed by the execution of four different gene fusion detection algorithms. The results have been further prioritized by running a bayesian classifier which makes an in silico validation. The collection of fusion events supported by all of the predictive softwares results in a robust set of ∼ 1,700 in-silico predicted novel candidates suitable for downstream analyses. Given the huge amount of data and information produced, computational results have been systematized in a database named LiGeA. The database can be browsed through a dynamical and interactive web portal, further integrated with validated data from other well known repositories. Taking advantage of the intuitive query forms, the users can easily access, navigate, filter and select the putative gene fusions for further validations and studies. They can also find suitable experimental models for a given fusion of interest. We believe that the LiGeA resource can represent not only the first compendium of both known and putative novel gene fusion events in the catalog of all of the human malignant cell lines, but it can also become a handy starting point for wet-lab biologists who wish to investigate novel cancer biomarkers and specific drug targets.

  14. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    PubMed Central

    2012-01-01

    Background The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak. PMID:23134687

  15. APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals

    PubMed Central

    You, Leiming; Wu, Jiexin; Feng, Yuchao; Fu, Yonggui; Guo, Yanan; Long, Liyuan; Zhang, Hui; Luan, Yijie; Tian, Peng; Chen, Liangfu; Huang, Guangrui; Huang, Shengfeng; Li, Yuxin; Li, Jie; Chen, Chengyong; Zhang, Yaqing; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Increasing amounts of genes have been shown to utilize alternative polyadenylation (APA) 3′-processing sites depending on the cell and tissue type and/or physiological and pathological conditions at the time of processing, and the construction of genome-wide database regarding APA is urgently needed for better understanding poly(A) site selection and APA-directed gene expression regulation for a given biology. Here we present a web-accessible database, named APASdb (http://mosas.sysu.edu.cn/utr), which can visualize the precise map and usage quantification of different APA isoforms for all genes. The datasets are deeply profiled by the sequencing alternative polyadenylation sites (SAPAS) method capable of high-throughput sequencing 3′-ends of polyadenylated transcripts. Thus, APASdb details all the heterogeneous cleavage sites downstream of poly(A) signals, and maintains near complete coverage for APA sites, much better than the previous databases using conventional methods. Furthermore, APASdb provides the quantification of a given APA variant among transcripts with different APA sites by computing their corresponding normalized-reads, making our database more useful. In addition, APASdb supports URL-based retrieval, browsing and display of exon-intron structure, poly(A) signals, poly(A) sites location and usage reads, and 3′-untranslated regions (3′-UTRs). Currently, APASdb involves APA in various biological processes and diseases in human, mouse and zebrafish. PMID:25378337

  16. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    PubMed

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  17. Using Bioinformatic Approaches to Identify Pathways Targeted by Human Leukemogens

    PubMed Central

    Thomas, Reuben; Phuong, Jimmy; McHale, Cliona M.; Zhang, Luoping

    2012-01-01

    We have applied bioinformatic approaches to identify pathways common to chemical leukemogens and to determine whether leukemogens could be distinguished from non-leukemogenic carcinogens. From all known and probable carcinogens classified by IARC and NTP, we identified 35 carcinogens that were associated with leukemia risk in human studies and 16 non-leukemogenic carcinogens. Using data on gene/protein targets available in the Comparative Toxicogenomics Database (CTD) for 29 of the leukemogens and 11 of the non-leukemogenic carcinogens, we analyzed for enrichment of all 250 human biochemical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The top pathways targeted by the leukemogens included metabolism of xenobiotics by cytochrome P450, glutathione metabolism, neurotrophin signaling pathway, apoptosis, MAPK signaling, Toll-like receptor signaling and various cancer pathways. The 29 leukemogens formed 18 distinct clusters comprising 1 to 3 chemicals that did not correlate with known mechanism of action or with structural similarity as determined by 2D Tanimoto coefficients in the PubChem database. Unsupervised clustering and one-class support vector machines, based on the pathway data, were unable to distinguish the 29 leukemogens from 11 non-leukemogenic known and probable IARC carcinogens. However, using two-class random forests to estimate leukemogen and non-leukemogen patterns, we estimated a 76% chance of distinguishing a random leukemogen/non-leukemogen pair from each other. PMID:22851955

  18. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    PubMed Central

    Ho Sui, Shannan J.; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P.; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes. PMID:15933209

  19. Array comparative genomic hybridization and computational genome annotation in constitutional cytogenetics: suggesting candidate genes for novel submicroscopic chromosomal imbalance syndromes.

    PubMed

    Van Vooren, Steven; Coessens, Bert; De Moor, Bart; Moreau, Yves; Vermeesch, Joris R

    2007-09-01

    Genome-wide array comparative genomic hybridization screening is uncovering pathogenic submicroscopic chromosomal imbalances in patients with developmental disorders. In those patients, imbalances appear now to be scattered across the whole genome, and most patients carry different chromosomal anomalies. Screening patients with developmental disorders can be considered a forward functional genome screen. The imbalances pinpoint the location of genes that are involved in human development. Because most imbalances encompass regions harboring multiple genes, the challenge is to (1) identify those genes responsible for the specific phenotype and (2) disentangle the role of the different genes located in an imbalanced region. In this review, we discuss novel tools and relevant databases that have recently been developed to aid this gene discovery process. Identification of the functional relevance of genes will not only deepen our understanding of human development but will, in addition, aid in the data interpretation and improve genetic counseling.

  20. From Saccharomyces cerevisiae to human: The important gene co-expression modules.

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Chen, Haiwei; Shen, Weibiao; Zhong, Yuexian; Tian, Tian; He, Huaqin

    2017-08-01

    Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co-expression network analysis algorithm was applied to construct a gene co-expression network in Saccharomyces cerevisiae . Seventeen stable gene co-expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra-modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.

  1. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    PubMed

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  2. TDR Targets: a chemogenomics resource for neglected diseases.

    PubMed

    Magariños, María P; Carmona, Santiago J; Crowther, Gregory J; Ralph, Stuart A; Roos, David S; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C; Agüero, Fernán

    2012-01-01

    The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.

  3. TDR Targets: a chemogenomics resource for neglected diseases

    PubMed Central

    Magariños, María P.; Carmona, Santiago J.; Crowther, Gregory J.; Ralph, Stuart A.; Roos, David S.; Shanmugam, Dhanasekaran; Van Voorhis, Wesley C.; Agüero, Fernán

    2012-01-01

    The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context. PMID:22116064

  4. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions

    PubMed Central

    Arjunan, Selvam; Sastri, Narayan P.; Chandra, Nagasuma

    2016-01-01

    Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue–human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue–human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/). PMID:27618709

  5. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions.

    PubMed

    Karyala, Prashanthi; Metri, Rahul; Bathula, Christopher; Yelamanchi, Syam K; Sahoo, Lipika; Arjunan, Selvam; Sastri, Narayan P; Chandra, Nagasuma

    2016-09-01

    Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue-human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue-human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/).

  6. MicroRNA Gene Regulatory Networks in Peripheral Nerve Sheath Tumors

    DTIC Science & Technology

    2013-09-01

    3.0 hierarchical clustering of both the X and the Y-axis using Centroid linkage. The resulting clustered matrixes were visualized using Java Treeview...To score potential ceRNA interactions, the 54979 human interactions were loaded into a mySQL database and when the user selects a given mRNA all...on the fly using PHP interactions with mySQL in a similar fashion as previously described in our publicly available databases such as sarcoma

  7. CMS: A Web-Based System for Visualization and Analysis of Genome-Wide Methylation Data of Human Cancers

    PubMed Central

    Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong

    2013-01-01

    Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576

  8. CMS: a web-based system for visualization and analysis of genome-wide methylation data of human cancers.

    PubMed

    Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong

    2013-01-01

    DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.

  9. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  10. The Human Cell Surfaceome of Breast Tumors

    PubMed Central

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  11. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  12. DNA methylation biomarkers for head and neck squamous cell carcinoma.

    PubMed

    Zhou, Chongchang; Ye, Meng; Ni, Shumin; Li, Qun; Ye, Dong; Li, Jinyun; Shen, Zhishen; Deng, Hongxia

    2018-06-21

    DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients.

  13. Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis.

    PubMed

    Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng

    2018-05-24

    BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.

  14. Identification of a unique library of complex, but ordered, arrays of repetitive elements in the human genome and implication of their potential involvement in pathobiology.

    PubMed

    Lee, Kang-Hoon; Lee, Young-Kwan; Kwon, Deug-Nam; Chiu, Sophia; Chew, Victoria; Rah, Hyungchul; Kujawski, Gregory; Melhem, Ramzi; Hsu, Karen; Chung, Cecilia; Greenhalgh, David G; Cho, Kiho

    2011-06-01

    Approximately 2% of the human genome is reported to be occupied by genes. Various forms of repetitive elements (REs), both characterized and uncharacterized, are presumed to make up the vast majority of the rest of the genomes of human and other species. In conjunction with a comprehensive annotation of genes, information regarding components of genome biology, such as gene polymorphisms, non-coding RNAs, and certain REs, is found in human genome databases. However, the genome-wide profile of unique RE arrangements formed by different groups of REs has not been fully characterized yet. In this study, the entire human genome was subjected to an unbiased RE survey to establish a whole-genome profile of REs and their arrangements. Due to the limitation in query size within the bl2seq alignment program (National Center for Biotechnology Information [NCBI]) utilized for the RE survey, the entire NCBI reference human genome was fragmented into 6206 units of 0.5M nucleotides. A number of RE arrangements with varying complexities and patterns were identified throughout the genome. Each chromosome had unique profiles of RE arrangements and density, and high levels of RE density were measured near the centromere regions. Subsequently, 175 complex RE arrangements, which were selected throughout the genome, were subjected to a comparison analysis using five different human genome sequences. Interestingly, three of the five human genome databases shared the exactly same arrangement patterns and sequences for all 175 RE arrangement regions (a total of 12,765,625 nucleotides). The findings from this study demonstrate that a substantial fraction of REs in the human genome are clustered into various forms of ordered structures. Further investigations are needed to examine whether some of these ordered RE arrangements contribute to the human pathobiology as a functional genome unit. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A cluster of novel serotonin receptor 3-like genes on human chromosome 3.

    PubMed

    Karnovsky, Alla M; Gotow, Lisa F; McKinley, Denise D; Piechan, Julie L; Ruble, Cara L; Mills, Cynthia J; Schellin, Kathleen A B; Slightom, Jerry L; Fitzgerald, Laura R; Benjamin, Christopher W; Roberds, Steven L

    2003-11-13

    The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated. Portions of four novel genes homologous to 5-HT(3A) and 5-HT(3B) receptors were identified within human sequence databases. We named the genes 5-HT(3C1)-5-HT(3C4). Radiation hybrid (RH) mapping localized these genes to chromosome 3q27-28. All four genes shared similar intron-exon organizations and predicted protein secondary structure with 5-HT(3A) and 5-HT(3B). Orthologous genes were detected by Southern blotting in several species including dog, cow, and chicken, but not in rodents, suggesting that these novel genes are not present in rodents or are very poorly conserved. Two of the novel genes are predicted to be pseudogenes, but two other genes are transcribed and spliced to form appropriate open reading frames. The 5-HT(3C1) transcript is expressed almost exclusively in small intestine and colon, suggesting a possible role in the serotonin-responsiveness of the gut.

  16. Exceptionally long 5' UTR short tandem repeats specifically linked to primates.

    PubMed

    Namdar-Aligoodarzi, P; Mohammadparast, S; Zaker-Kandjani, B; Talebi Kakroodi, S; Jafari Vesiehsari, M; Ohadi, M

    2015-09-10

    We have previously reported genome-scale short tandem repeats (STRs) in the core promoter interval (i.e. -120 to +1 to the transcription start site) of protein-coding genes that have evolved identically in primates vs. non-primates. Those STRs may function as evolutionary switch codes for primate speciation. In the current study, we used the Ensembl database to analyze the 5' untranslated region (5' UTR) between +1 and +60 of the transcription start site of the entire human protein-coding genes annotated in the GeneCards database, in order to identify "exceptionally long" STRs (≥5-repeats), which may be of selective/adaptive advantage. The importance of this critical interval is its function as core promoter, and its effect on transcription and translation. In order to minimize ascertainment bias, we analyzed the evolutionary status of the human 5' UTR STRs of ≥5-repeats in several species encompassing six major orders and superorders across mammals, including primates, rodents, Scandentia, Laurasiatheria, Afrotheria, and Xenarthra. We introduce primate-specific STRs, and STRs which have expanded from mouse to primates. Identical co-occurrence of the identified STRs of rare average frequency between 0.006 and 0.0001 in primates supports a role for those motifs in processes that diverged primates from other mammals, such as neuronal differentiation (e.g. APOD and FGF4), and craniofacial development (e.g. FILIP1L). A number of the identified STRs of ≥5-repeats may be human-specific (e.g. ZMYM3 and DAZAP1). Future work is warranted to examine the importance of the listed genes in primate/human evolution, development, and disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Disease Portals, disease-gene annotation and the RGD disease ontology at the Rat Genome Database.

    PubMed

    Hayman, G Thomas; Laulederkind, Stanley J F; Smith, Jennifer R; Wang, Shur-Jen; Petri, Victoria; Nigam, Rajni; Tutaj, Marek; De Pons, Jeff; Dwinell, Melinda R; Shimoyama, Mary

    2016-01-01

    The Rat Genome Database (RGD;http://rgd.mcw.edu/) provides critical datasets and software tools to a diverse community of rat and non-rat researchers worldwide. To meet the needs of the many users whose research is disease oriented, RGD has created a series of Disease Portals and has prioritized its curation efforts on the datasets important to understanding the mechanisms of various diseases. Gene-disease relationships for three species, rat, human and mouse, are annotated to capture biomarkers, genetic associations, molecular mechanisms and therapeutic targets. To generate gene-disease annotations more effectively and in greater detail, RGD initially adopted the MEDIC disease vocabulary from the Comparative Toxicogenomics Database and adapted it for use by expanding this framework with the addition of over 1000 terms to create the RGD Disease Ontology (RDO). The RDO provides the foundation for, at present, 10 comprehensive disease area-related dataset and analysis platforms at RGD, the Disease Portals. Two major disease areas are the focus of data acquisition and curation efforts each year, leading to the release of the related Disease Portals. Collaborative efforts to realize a more robust disease ontology are underway. Database URL:http://rgd.mcw.edu. © The Author(s) 2016. Published by Oxford University Press.

  18. BRCA Share: A Collection of Clinical BRCA Gene Variants.

    PubMed

    Béroud, Christophe; Letovsky, Stanley I; Braastad, Corey D; Caputo, Sandrine M; Beaudoux, Olivia; Bignon, Yves Jean; Bressac-De Paillerets, Brigitte; Bronner, Myriam; Buell, Crystal M; Collod-Béroud, Gwenaëlle; Coulet, Florence; Derive, Nicolas; Divincenzo, Christina; Elzinga, Christopher D; Garrec, Céline; Houdayer, Claude; Karbassi, Izabela; Lizard, Sarab; Love, Angela; Muller, Danièle; Nagan, Narasimhan; Nery, Camille R; Rai, Ghadi; Revillion, Françoise; Salgado, David; Sévenet, Nicolas; Sinilnikova, Olga; Sobol, Hagay; Stoppa-Lyonnet, Dominique; Toulas, Christine; Trautman, Edwin; Vaur, Dominique; Vilquin, Paul; Weymouth, Katelyn S; Willis, Alecia; Eisenberg, Marcia; Strom, Charles M

    2016-12-01

    As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world. © 2016 WILEY PERIODICALS, INC.

  19. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    PubMed Central

    2013-01-01

    Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200

  20. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    PubMed Central

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry

    2014-01-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  1. Sys-BodyFluid: a systematical database for human body fluid proteome research

    PubMed Central

    Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong

    2009-01-01

    Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10 000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/. PMID:18978022

  2. Sys-BodyFluid: a systematical database for human body fluid proteome research.

    PubMed

    Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong

    2009-01-01

    Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10,000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/.

  3. Lynx web services for annotations and systems analysis of multi-gene disorders.

    PubMed

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia

    2014-07-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Using FlyBase, a Database of Drosophila Genes & Genomes

    PubMed Central

    Marygold, Steven J.; Crosby, Madeline A.; Goodman, Joshua L.

    2016-01-01

    SUMMARY For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic and high-throughput technologies add to the quantity and diversity of available data and resources. FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback. This chapter provides an overview of the data content, organization and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries. PMID:27730573

  5. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B.

    PubMed

    Rallapalli, P M; Kemball-Cook, G; Tuddenham, E G; Gomez, K; Perkins, S J

    2013-07-01

    Factor IX (FIX) is important in the coagulation cascade, being activated to FIXa on cleavage. Defects in the human F9 gene frequently lead to hemophilia B. To assess 1113 unique F9 mutations corresponding to 3721 patient entries in a new and up-to-date interactive web database alongside the FIXa protein structure. The mutations database was built using MySQL and structural analyses were based on a homology model for the human FIXa structure based on closely-related crystal structures. Mutations have been found in 336 (73%) out of 461 residues in FIX. There were 812 unique point mutations, 182 deletions, 54 polymorphisms, 39 insertions and 26 others that together comprise a total of 1113 unique variants. The 64 unique mild severity mutations in the mature protein with known circulating protein phenotypes include 15 (23%) quantitative type I mutations and 41 (64%) predominantly qualitative type II mutations. Inhibitors were described in 59 reports (1.6%) corresponding to 25 unique mutations. The interactive database provides insights into mechanisms of hemophilia B. Type II mutations are deduced to disrupt predominantly those structural regions involved with functional interactions. The interactive features of the database will assist in making judgments about patient management. © 2013 International Society on Thrombosis and Haemostasis.

  6. Differential display RT PCR of total RNA from human foreskin fibroblasts for investigation of androgen-dependent gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, E.M.; Moquin, A.; Adams, P.S.

    1996-05-03

    Male sexual differentiation is a process that involves androgen action via the androgen receptor. Defects in the androgen receptor, many resulting from point mutations in the androgen receptor gene, lead to varying degrees of impaired masculinization in chromosomally male individuals. To date no specific androgen regulated morphogens involved in this process have been identified and no marker genes are known that would help to predict further virilization in infants with partial androgen insensitivity. In the present study we first show data on androgen regulated gene expression investigated by differential display reverse transcription PCR (dd RT PCR) on total RNA frommore » human neonatal genital skin fibroblasts cultured in the presence or absence of 100 nM testosterone. Using three different primer combinations, 54 cDNAs appeared to be regulated by androgens. Most of these sequences show the characteristics of expressed mRNAs but showed no homology to sequences in the database. However 15 clones with significant homology to previously cloned sequences were identified. Seven cDNAs appear to be induced by androgen withdrawal. Of these, five are similar to ETS (expression tagged sequences) from unknown genes; the other two show significant homology to the cDNAs of ubiquitin and human guanylate binding protein 2 (GBP-2). In addition, we have identified 8 cDNA clones which show homologies to other sequences in the database and appear to be upregulated in the presence of testosterone. Three differential expressed sequences show significant homology to the cDNAs of L-plastin and one to the cDNA of testican. This latter gene codes for a proteoglycan involved in cell social behavior and therefore of special interest in this context. The results of this study are of interest in further investigation of normal and disturbed androgen-dependent gene expression. 49 refs., 2 figs., 5 tabs.« less

  7. Meta sequence analysis of human blood peptides and their parent proteins.

    PubMed

    Bowden, Peter; Pendrak, Voitek; Zhu, Peihong; Marshall, John G

    2010-04-18

    Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins. Copyright 2010. Published by Elsevier B.V.

  8. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    PubMed

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.

  9. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    PubMed Central

    Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950

  10. The Effects of Simulated Microgravity on Gene Expression in Human Bone Marrow MSC's Under Osteogenic Differentiation

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Gershovich, J. G.; Gershovich, P. M.; Grigoriev, A. I.

    2013-02-01

    In this work it was found that the expression level of 144 genes significantly changed in human mesenchymal stem cells during their osteogenic differentiation after 20 days of exposure to simulated microgravity: the expression of 30 genes significantly increased (from 1.7 to 11.9 fold), and 114 - decreased (from 0.2 to 0.6 fold). Most of the revealed genes were attributed to the 11 major groups corresponding to its biological role in the cells. Additional group was formed from the genes which did not belong to these categories, or did not have a description in the known databases (such as Pubmed). The greatest number of genes with altered expression was found in the group “Matrix and Adhesion", while the lowest - in the "Apoptosis and the response to external stimuli" group. These findings suggest that cultured hMSCs, placed in non-standard conditions, maintain a high level of viability, but have significantly altered functional properties which could affect their efficiency to differentiate towards osteogenic direction.

  11. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis

    PubMed Central

    Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet. PMID:28695067

  12. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis.

    PubMed

    Costa, Raquel L; Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet.

  13. Nencki Genomics Database--Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs.

    PubMed

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql -h database.nencki-genomics.org -u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface.

  14. Nencki Genomics Database—Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs

    PubMed Central

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql –h database.nencki-genomics.org –u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface. Database URL: http://www.nencki-genomics.org. PMID:24089456

  15. ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples

    PubMed Central

    2011-01-01

    Background Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology. While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or hundreds of disease gene candidates, the identification of disease genes among the candidates remains time-consuming and expensive. Efficient computational methods are therefore needed to prioritize genes within the list of candidates, by exploiting the wealth of information available about the genes in various databases. Results We propose ProDiGe, a novel algorithm for Prioritization of Disease Genes. ProDiGe implements a novel machine learning strategy based on learning from positive and unlabeled examples, which allows to integrate various sources of information about the genes, to share information about known disease genes across diseases, and to perform genome-wide searches for new disease genes. Experiments on real data show that ProDiGe outperforms state-of-the-art methods for the prioritization of genes in human diseases. Conclusions ProDiGe implements a new machine learning paradigm for gene prioritization, which could help the identification of new disease genes. It is freely available at http://cbio.ensmp.fr/prodige. PMID:21977986

  16. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis.

    PubMed

    Lee, A Yeong; Park, Won; Kang, Tae-Wook; Cha, Min Ho; Chun, Jin Mi

    2018-07-15

    Yijin-Tang (YJT) is a traditional prescription for the treatment of hyperlipidaemia, atherosclerosis and other ailments related to dampness phlegm, a typical pathological symptom of abnormal body fluid metabolism in Traditional Korean Medicine. However, a holistic network pharmacology approach to understanding the therapeutic mechanisms underlying hyperlipidaemia and atherosclerosis has not been pursued. To examine the network pharmacological potential effects of YJT on hyperlipidaemia and atherosclerosis, we analysed components, performed target prediction and network analysis, and investigated interacting pathways using a network pharmacology approach. Information on compounds in herbal medicines was obtained from public databases, and oral bioavailability and drug-likeness was screened using absorption, distribution, metabolism, and excretion (ADME) criteria. Correlations between compounds and genes were linked using the STITCH database, and genes related to hyperlipidaemia and atherosclerosis were gathered using the GeneCards database. Human genes were identified and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Network analysis identified 447 compounds in five herbal medicines that were subjected to ADME screening, and 21 compounds and 57 genes formed the main pathways linked to hyperlipidaemia and atherosclerosis. Among them, 10 compounds (naringenin, nobiletin, hesperidin, galangin, glycyrrhizin, homogentisic acid, stigmasterol, 6-gingerol, quercetin and glabridin) were linked to more than four genes, and are bioactive compounds and key chemicals. Core genes in this network were CASP3, CYP1A1, CYP1A2, MMP2 and MMP9. The compound-target gene network revealed close interactions between multiple components and multiple targets, and facilitates a better understanding of the potential therapeutic effects of YJT. Pharmacological network analysis can help to explain the potential effects of YJT for treating dampness phlegm-related diseases such as hyperlipidaemia and atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    PubMed

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates.

  18. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.

    PubMed

    Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.

  19. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500

  20. PIGD: a database for intronless genes in the Poaceae.

    PubMed

    Yan, Hanwei; Jiang, Cuiping; Li, Xiaoyu; Sheng, Lei; Dong, Qing; Peng, Xiaojian; Li, Qian; Zhao, Yang; Jiang, Haiyang; Cheng, Beijiu

    2014-10-01

    Intronless genes are a feature of prokaryotes; however, they are widespread and unequally distributed among eukaryotes and represent an important resource to study the evolution of gene architecture. Although many databases on exons and introns exist, there is currently no cohesive database that collects intronless genes in plants into a single database. In this study, we present the Poaceae Intronless Genes Database (PIGD), a user-friendly web interface to explore information on intronless genes from different plants. Five Poaceae species, Sorghum bicolor, Zea mays, Setaria italica, Panicum virgatum and Brachypodium distachyon, are included in the current release of PIGD. Gene annotations and sequence data were collected and integrated from different databases. The primary focus of this study was to provide gene descriptions and gene product records. In addition, functional annotations, subcellular localization prediction and taxonomic distribution are reported. PIGD allows users to readily browse, search and download data. BLAST and comparative analyses are also provided through this online database, which is available at http://pigd.ahau.edu.cn/. PIGD provides a solid platform for the collection, integration and analysis of intronless genes in the Poaceae. As such, this database will be useful for subsequent bio-computational analysis in comparative genomics and evolutionary studies.

  1. HUNT: launch of a full-length cDNA database from the Helix Research Institute.

    PubMed

    Yudate, H T; Suwa, M; Irie, R; Matsui, H; Nishikawa, T; Nakamura, Y; Yamaguchi, D; Peng, Z Z; Yamamoto, T; Nagai, K; Hayashi, K; Otsuki, T; Sugiyama, T; Ota, T; Suzuki, Y; Sugano, S; Isogai, T; Masuho, Y

    2001-01-01

    The Helix Research Institute (HRI) in Japan is releasing 4356 HUman Novel Transcripts and related information in the newly established HUNT database. The institute is a joint research project principally funded by the Japanese Ministry of International Trade and Industry, and the clones were sequenced in the governmental New Energy and Industrial Technology Development Organization (NEDO) Human cDNA Sequencing Project. The HUNT database contains an extensive amount of annotation from advanced analysis and represents an essential bioinformatics contribution towards understanding of the gene function. The HRI human cDNA clones were obtained from full-length enriched cDNA libraries constructed with the oligo-capping method and have resulted in novel full-length cDNA sequences. A large fraction has little similarity to any proteins of known function and to obtain clues about possible function we have developed original analysis procedures. Any putative function deduced here can be validated or refuted by complementary analysis results. The user can also extract information from specific categories like PROSITE patterns, PFAM domains, PSORT localization, transmembrane helices and clones with GENIUS structure assignments. The HUNT database can be accessed at http://www.hri.co.jp/HUNT.

  2. The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes.

    PubMed

    Matsushita, Junya; Okamura, Kazuyuki; Nakabayashi, Kazuhiko; Suzuki, Takehiro; Horibe, Yu; Kawai, Tomoko; Sakurai, Toshihiro; Yamashita, Satoshi; Higami, Yoshikazu; Ichihara, Gaku; Hata, Kenichiro; Nohara, Keiko

    2018-03-22

    C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information for further epigenetic studies of mice models of HCC. The present study particularly proposed novel DNA methylation-regulated pathways for Mst1r and Slpi, which may be applied not only to mouse HCC but also to human HCC.

  3. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    PubMed Central

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  4. Columba: an integrated database of proteins, structures, and annotations.

    PubMed

    Trissl, Silke; Rother, Kristian; Müller, Heiko; Steinke, Thomas; Koch, Ina; Preissner, Robert; Frömmel, Cornelius; Leser, Ulf

    2005-03-31

    Structural and functional research often requires the computation of sets of protein structures based on certain properties of the proteins, such as sequence features, fold classification, or functional annotation. Compiling such sets using current web resources is tedious because the necessary data are spread over many different databases. To facilitate this task, we have created COLUMBA, an integrated database of annotations of protein structures. COLUMBA currently integrates twelve different databases, including PDB, KEGG, Swiss-Prot, CATH, SCOP, the Gene Ontology, and ENZYME. The database can be searched using either keyword search or data source-specific web forms. Users can thus quickly select and download PDB entries that, for instance, participate in a particular pathway, are classified as containing a certain CATH architecture, are annotated as having a certain molecular function in the Gene Ontology, and whose structures have a resolution under a defined threshold. The results of queries are provided in both machine-readable extensible markup language and human-readable format. The structures themselves can be viewed interactively on the web. The COLUMBA database facilitates the creation of protein structure data sets for many structure-based studies. It allows to combine queries on a number of structure-related databases not covered by other projects at present. Thus, information on both many and few protein structures can be used efficiently. The web interface for COLUMBA is available at http://www.columba-db.de.

  5. Vγ9 and Vδ2 T cell antigen receptor genes and butyrophilin 3 (BTN3) emerged with placental mammals and are concomitantly preserved in selected species like alpaca (Vicugna pacos).

    PubMed

    Karunakaran, Mohindar M; Göbel, Thomas W; Starick, Lisa; Walter, Lutz; Herrmann, Thomas

    2014-04-01

    Human Vγ9Vδ2 T cells recognize phosphorylated products of isoprenoid metabolism (phosphoantigens) PAg with TCR comprising Vγ9JP γ-chains and Vδ2 δ-chains dependent on butyrophilin 3 (BTN3) expressed by antigen-presenting cells. They are massively activated in many infections and show anti-tumor activity and so far, they have been considered to exist only in higher primates. We performed a comprehensive analysis of databases and identified the three genes in species of both placental magnorders, but not in rodents. The common occurrence or loss of in silico translatable Vγ9, Vδ2, and BTN3 genes suggested their co-evolution based on a functional relationship. In the peripheral lymphocytes of alpaca (Vicugna pacos), characteristic Vγ9JP rearrangements and in-frame Vδ2 rearrangements were found and could be co-expressed in a TCR-negative mouse T cell hybridoma where they rescued CD3 expression and function. Finally, database sequence analysis of the extracellular domain of alpaca BTN3 revealed complete conservation of proposed PAg binding residues of human BTN3A1. In summary, we show emergence and preservation of Vγ9 and Vδ2 TCR genes with the gene of the putative antigen-presenting molecule BTN3 in placental mammals and lay the ground for analysis of alpaca as candidate for a first non-primate species to possess Vγ9Vδ2 T cells.

  6. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus

    PubMed Central

    Brinkmann, Ulrich; Vasmatzis, George; Lee, Byungkook; Yerushalmi, Noga; Essand, Magnus; Pastan, Ira

    1998-01-01

    We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus. PMID:9724777

  7. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus.

    PubMed

    Brinkmann, U; Vasmatzis, G; Lee, B; Yerushalmi, N; Essand, M; Pastan, I

    1998-09-01

    We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.

  8. Dizeez: An Online Game for Human Gene-Disease Annotation

    PubMed Central

    Loguercio, Salvatore; Good, Benjamin M.; Su, Andrew I.

    2013-01-01

    Structured gene annotations are a foundation upon which many bioinformatics and statistical analyses are built. However the structured annotations available in public databases are a sparse representation of biological knowledge as a whole. The rate of biomedical data generation is such that centralized biocuration efforts struggle to keep up. New models for gene annotation need to be explored that expand the pace at which we are able to structure biomedical knowledge. Recently, online games have emerged as an effective way to recruit, engage and organize large numbers of volunteers to help address difficult biological challenges. For example, games have been successfully developed for protein folding (Foldit), multiple sequence alignment (Phylo) and RNA structure design (EteRNA). Here we present Dizeez, a simple online game built with the purpose of structuring knowledge of gene-disease associations. Preliminary results from game play online and at scientific conferences suggest that Dizeez is producing valid gene-disease annotations not yet present in any public database. These early results provide a basic proof of principle that online games can be successfully applied to the challenge of gene annotation. Dizeez is available at http://genegames.org. PMID:23951102

  9. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.

    PubMed

    Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi

    2015-01-21

    Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cDNA libraries of rapeseed (Brassica napus), soybean (Glycine max), sesame (Sesamum indicum) and peanut (Arachis hypogaea). These unigenes were annotated by a sequence similarity search against databases including TAIR, NR protein database, Gene Ontology, COG, Swiss-Prot, TrEMBL and Kyoto Encyclopedia of Genes and Genomes (KEGG). Five genome-scale metabolic networks that contain different numbers of metabolites and gene-enzyme reaction-association entries were analysed and constructed using Cytoscape and yEd programs. Details of unigene entries, deduced amino acid sequences and putative annotation are available from our database to browse, search and download. Intuitive and graphical representations of EST/unigene sequences, functional annotations, metabolic pathways and metabolic networks are also available. ocsESTdb will be updated regularly and can be freely accessed at http://ocri-genomics.org/ocsESTdb/ . ocsESTdb may serve as a valuable and unique resource for comparative analysis of acyl lipid synthesis and metabolism in oilseed plants. It also may provide vital insights into improving oil content in seeds of oil crop species by transcriptional reconstruction of the metabolic network.

  10. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    PubMed

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  11. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.

    PubMed

    Karchin, Rachel; Diekhans, Mark; Kelly, Libusha; Thomas, Daryl J; Pieper, Ursula; Eswar, Narayanan; Haussler, David; Sali, Andrej

    2005-06-15

    The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org http://salilab.org/LS-SNP/supp-info.pdf.

  12. A versatile genome-scale PCR-based pipeline for high-definition DNA FISH.

    PubMed

    Bienko, Magda; Crosetto, Nicola; Teytelman, Leonid; Klemm, Sandy; Itzkovitz, Shalev; van Oudenaarden, Alexander

    2013-02-01

    We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.3 million primer pairs targeting the human and mouse genomes that is readily usable for rapid and flexible generation of probes.

  13. [Establishment of a comprehensive database for laryngeal cancer related genes and the miRNAs].

    PubMed

    Li, Mengjiao; E, Qimin; Liu, Jialin; Huang, Tingting; Liang, Chuanyu

    2015-09-01

    By collecting and analyzing the laryngeal cancer related genes and the miRNAs, to build a comprehensive laryngeal cancer-related gene database, which differs from the current biological information database with complex and clumsy structure and focuses on the theme of gene and miRNA, and it could make the research and teaching more convenient and efficient. Based on the B/S architecture, using Apache as a Web server, MySQL as coding language of database design and PHP as coding language of web design, a comprehensive database for laryngeal cancer-related genes was established, providing with the gene tables, protein tables, miRNA tables and clinical information tables of the patients with laryngeal cancer. The established database containsed 207 laryngeal cancer related genes, 243 proteins, 26 miRNAs, and their particular information such as mutations, methylations, diversified expressions, and the empirical references of laryngeal cancer relevant molecules. The database could be accessed and operated via the Internet, by which browsing and retrieval of the information were performed. The database were maintained and updated regularly. The database for laryngeal cancer related genes is resource-integrated and user-friendly, providing a genetic information query tool for the study of laryngeal cancer.

  14. High-sensitivity HLA typing by Saturated Tiling Capture Sequencing (STC-Seq).

    PubMed

    Jiao, Yang; Li, Ran; Wu, Chao; Ding, Yibin; Liu, Yanning; Jia, Danmei; Wang, Lifeng; Xu, Xiang; Zhu, Jing; Zheng, Min; Jia, Junling

    2018-01-15

    Highly polymorphic human leukocyte antigen (HLA) genes are responsible for fine-tuning the adaptive immune system. High-resolution HLA typing is important for the treatment of autoimmune and infectious diseases. Additionally, it is routinely performed for identifying matched donors in transplantation medicine. Although many HLA typing approaches have been developed, the complexity, low-efficiency and high-cost of current HLA-typing assays limit their application in population-based high-throughput HLA typing for donors, which is required for creating large-scale databases for transplantation and precision medicine. Here, we present a cost-efficient Saturated Tiling Capture Sequencing (STC-Seq) approach to capturing 14 HLA class I and II genes. The highly efficient capture (an approximately 23,000-fold enrichment) of these genes allows for simplified allele calling. Tests on five genes (HLA-A/B/C/DRB1/DQB1) from 31 human samples and 351 datasets using STC-Seq showed results that were 98% consistent with the known two sets of digitals (field1 and field2) genotypes. Additionally, STC can capture genomic DNA fragments longer than 3 kb from HLA loci, making the library compatible with the third-generation sequencing. STC-Seq is a highly accurate and cost-efficient method for HLA typing which can be used to facilitate the establishment of population-based HLA databases for the precision and transplantation medicine.

  15. Molecular differences between mature and immature dental pulp cells: Bioinformatics and preliminary results.

    PubMed

    Chen, Long; Jiang, Yifeng; Du, Zhen

    2018-04-01

    Although previous studies have demonstrated that dental pulp stem cells (DPSCs) from mature and immature teeth exhibit potential for multi-directional differentiation, the molecular and biological difference between the DPSCs from mature and immature permanent teeth has not been fully investigated. In the present study, 500 differentially expressed genes from dental pulp cells (DPCs) in mature and immature permanent teeth were obtained from the Gene Expression Omnibus online database. Based on bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery, these genes were divided into a number of subgroups associated with immunity, inflammation and cell signaling. The results of the present study suggest that immune features, response to infection and cell signaling may be different in DPCs from mature and immature permanent teeth; furthermore, DPCs from immature permanent teeth may be more suitable for use in tissue engineering or stem cell therapy. The Online Mendelian Inheritance in Man database stated that Sonic Hedgehog (SHH), a differentially expressed gene in DPCs from mature and immature permanent teeth, serves a crucial role in the development of craniofacial tissues, including teeth, which further confirmed that SHH may cause DPCs from mature and immature permanent teeth to exhibit different biological characteristics. The Search Tool for the Retrieval of Interacting Genes/Proteins database revealed that SHH has functional protein associations with a number of other proteins, including Glioma-associated oncogene (GLI)1, GLI2, growth arrest-specific protein 1, bone morphogenetic protein (BMP)2 and BMP4, in mice and humans. It was also demonstrated that SHH may interact with other genes to regulate the biological characteristics of DPCs. The results of the present study may provide a useful reference basis for selecting suitable DPSCs and molecules for the treatment of these cells to optimize features for tissue engineering or stem cell therapy. Quantitative polymerase chain reaction should be performed to confirm the differential expression of these genes prior to the beginning of a functional study.

  16. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus).

    PubMed

    Ribas, Laia; Pardo, Belén G; Fernández, Carlos; Alvarez-Diós, José Antonio; Gómez-Tato, Antonio; Quiroga, María Isabel; Planas, Josep V; Sitjà-Bobadilla, Ariadna; Martínez, Paulino; Piferrer, Francesc

    2013-03-15

    Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database ("Turbot 2 database") was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences ("Turbot 3 database"), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50-90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single nucleotide polymorphisms (SNPs) were also compiled. Further, 2,976 putative natural antisense transcripts (NATs) including microRNAs were also identified. The combined sequencing strategies employed here significantly increased the turbot genomic resources available, including 34,400 novel sequences. The generated database contains a larger number of genes relevant for reproduction- and immune-associated studies, with an excellent coverage of most genes present in many relevant physiological pathways. This database also allowed the identification of many microsatellites and SNP markers that will be very useful for population and genome screening and a valuable aid in marker assisted selection programs.

  17. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks.

    PubMed

    Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis

    2012-01-31

    Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.

  18. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions

    PubMed Central

    Camanocha, Anuj; Dewhirst, Floyd E.

    2014-01-01

    Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies. PMID:25317252

  19. Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man

    PubMed Central

    Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.

    2000-01-01

    The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409

  20. The ZNF75 zinc finger gene subfamily: Isolation and mapping of the four members in humans and great apes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, A.; Strina, D.; Frattini, A.

    We have previously reported the characterization of the human ZNF75 gene located on Xq26, which has only limited homology (less than 65%) to other ZF genes in the databases. Here, we describe three human zinc finger genes with 86 to 95% homology to ZNF75 at the nucleotide level, which represent all the members of the human ZNF75 subfamily. One of these, ZNF75B, is a pseudogene mapped to chromosome 12q13. The other two, ZNF75A and ZNF75C, maintain on ORF in the sequenced region, and at least the latter is expressed in the U937 cell line. They were mapped to chromosomes 16more » and 11, respectively. All these genes are conserved in chimpanzees, gorillas, and orangutans. The ZNF75B homologue is a pseudogene in all three great apes, and in chimpanzee it is located on chromosome 10 (phylogenetic XII), at p13 (corresponding to the human 12q13). The chimpanzee homologue of ZNF75 is also located on the Xq26 chromosome, in the same region, as detected by in situ hybridization. As expected, nucleotide changes were clearly more abundant between human and organutan than between human and chimpanzee or gorilla homologues. Members of the same class were more similar to each other than to the other homologues within the same species. This suggests that the duplication and/or retrotranscription events occurred in a common ancestor long before great ape speciation. This, together with the existance of at least two genes in cows and horses, suggests a relatively high conservation of this gene family. 20 refs., 5 figs., 1 tab.« less

  1. Phenome-driven disease genetics prediction toward drug discovery.

    PubMed

    Chen, Yang; Li, Li; Zhang, Guo-Qiang; Xu, Rong

    2015-06-15

    Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% (P < e(-4)) and 81.3% (P < e(-12)) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn's disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn's disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn's disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. nlp. edu/public/data/DMN © The Author 2015. Published by Oxford University Press.

  2. Epigenetic hereditary transcription profiles III, evidence for an epigenetic network resulting in gender, tissue and age-specific variation in overall transcription

    PubMed Central

    Simons, Johannes WIM

    2009-01-01

    Background We have previously shown that deviations from the average transcription profile of a group of functionally related genes are not only heritable, but also demonstrate specific patterns associated with age, gender and differentiation, thereby implicating genome-wide nuclear programming as the cause. To determine whether these results could be reproduced, a different micro-array database (obtained from two types of muscle tissue, derived from 81 human donors aged between 16 to 89 years) was studied. Results This new database also revealed the existence of age, gender and tissue-specific features in a small group of functionally related genes. In order to further analyze this phenomenon, a method was developed for quantifying the contribution of different factors to the variability in gene expression, and for generating a database limited to residual values reflecting constitutional differences between individuals. These constitutional differences, presumably epigenetic in origin, contribute to about 50% of the observed residual variance which is connected with a network of interrelated changes in gene expression with some genes displaying a decrease or increase in residual variation with age. Conclusion Epigenetic variation in gene expression without a clear concomitant relation to gene function appears to be a widespread phenomenon. This variation is connected with interactions between genes, is gender and tissue specific and is related to cellular aging. This finding, together with the method developed for analysis, might contribute to the elucidation of the role of nuclear programming in differentiation, aging and carcinogenesis Reviewers This article was reviewed by Thiago M. Venancio (nominated by Aravind Iyer), Hua Li (nominated by Arcady Mushegian) and Arcady Mushegian and J.P.de Magelhaes (nominated by G. Church). PMID:19796384

  3. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface.

    PubMed

    Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B; Almon, Richard R; DuBois, Debra C; Jusko, William J; Hoffman, Eric P

    2004-01-01

    Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp).

  4. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface

    PubMed Central

    Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B.; Almon, Richard R.; DuBois, Debra C.; Jusko, William J.; Hoffman, Eric P.

    2004-01-01

    Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp). PMID:14681485

  5. The Ensembl genome database project.

    PubMed

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  6. Atlas - a data warehouse for integrative bioinformatics.

    PubMed

    Shah, Sohrab P; Huang, Yong; Xu, Tao; Yuen, Macaire M S; Ling, John; Ouellette, B F Francis

    2005-02-21

    We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development. The Atlas system is based on relational data models that we developed for each of the source data types. Data stored within these relational models are managed through Structured Query Language (SQL) calls that are implemented in a set of Application Programming Interfaces (APIs). The APIs include three languages: C++, Java, and Perl. The methods in these API libraries are used to construct a set of loader applications, which parse and load the source datasets into the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database (HPRD), Biomolecular Interaction Network Database (BIND), Database of Interacting Proteins (DIP), Molecular Interactions Database (MINT), IntAct, NCBI Taxonomy, Gene Ontology (GO), Online Mendelian Inheritance in Man (OMIM), LocusLink, Entrez Gene and HomoloGene. The retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy, integrated access to this data. We present use cases that use Atlas to integrate these sources for genome annotation, inference of molecular interactions across species, and gene-disease associations. The Atlas biological data warehouse serves as data infrastructure for bioinformatics research and development. It forms the backbone of the research activities in our laboratory and facilitates the integration of disparate, heterogeneous biological sources of data enabling new scientific inferences. Atlas achieves integration of diverse data sets at two levels. First, Atlas stores data of similar types using common data models, enforcing the relationships between data types. Second, integration is achieved through a combination of APIs, ontology, and tools. The Atlas software is freely available under the GNU General Public License at: http://bioinformatics.ubc.ca/atlas/

  7. Atlas – a data warehouse for integrative bioinformatics

    PubMed Central

    Shah, Sohrab P; Huang, Yong; Xu, Tao; Yuen, Macaire MS; Ling, John; Ouellette, BF Francis

    2005-01-01

    Background We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development. Description The Atlas system is based on relational data models that we developed for each of the source data types. Data stored within these relational models are managed through Structured Query Language (SQL) calls that are implemented in a set of Application Programming Interfaces (APIs). The APIs include three languages: C++, Java, and Perl. The methods in these API libraries are used to construct a set of loader applications, which parse and load the source datasets into the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database (HPRD), Biomolecular Interaction Network Database (BIND), Database of Interacting Proteins (DIP), Molecular Interactions Database (MINT), IntAct, NCBI Taxonomy, Gene Ontology (GO), Online Mendelian Inheritance in Man (OMIM), LocusLink, Entrez Gene and HomoloGene. The retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy, integrated access to this data. We present use cases that use Atlas to integrate these sources for genome annotation, inference of molecular interactions across species, and gene-disease associations. Conclusion The Atlas biological data warehouse serves as data infrastructure for bioinformatics research and development. It forms the backbone of the research activities in our laboratory and facilitates the integration of disparate, heterogeneous biological sources of data enabling new scientific inferences. Atlas achieves integration of diverse data sets at two levels. First, Atlas stores data of similar types using common data models, enforcing the relationships between data types. Second, integration is achieved through a combination of APIs, ontology, and tools. The Atlas software is freely available under the GNU General Public License at: PMID:15723693

  8. The Listeria monocytogenes strain 10403S BioCyc database

    PubMed Central

    Orsi, Renato H.; Bergholz, Teresa M.; Wiedmann, Martin; Boor, Kathryn J.

    2015-01-01

    Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry, while the high mortality of listeriosis in specific groups of humans makes it a great concern for public health. Previous studies have shown that a regulatory network involving alternative sigma (σ) factors and transcription factors is pivotal to stress survival. However, few studies have evaluated at the metabolic networks controlled by these regulatory mechanisms. The L. monocytogenes BioCyc database uses the strain 10403S as a model. Computer-generated initial annotation for all genes also allowed for identification, annotation and display of predicted reactions and pathways carried out by a single cell. Further ongoing manual curation based on published data as well as database mining for selected genes allowed the more refined annotation of functions, which, in turn, allowed for annotation of new pathways and fine-tuning of previously defined pathways to more L. monocytogenes-specific pathways. Using RNA-Seq data, several transcription start sites and promoter regions were mapped to the 10403S genome and annotated within the database. Additionally, the identification of promoter regions and a comprehensive review of available literature allowed the annotation of several regulatory interactions involving σ factors and transcription factors. The L. monocytogenes 10403S BioCyc database is a new resource for researchers studying Listeria and related organisms. It allows users to (i) have a comprehensive view of all reactions and pathways predicted to take place within the cell in the cellular overview, as well as to (ii) upload their own data, such as differential expression data, to visualize the data in the scope of predicted pathways and regulatory networks and to carry on enrichment analyses using several different annotations available within the database. Database URL: http://biocyc.org/organism-summary?object=10403S_RAST PMID:25819074

  9. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.

    PubMed

    Tuo, Youlin; An, Ning; Zhang, Ming

    2018-03-01

    The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of P<0.05. Based on the protein‑protein interactions (PPIs) in the Biological General Repository for Interaction Datasets, Human Protein Reference Database and Biomolecular Interaction Network Database, the PPI network of the feature genes was constructed. The feature genes identified by topological characteristics were then used for support vector machine (SVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several independent datasets. CDK2, CDKN1A, E2F1 and MYC were indicated as the potential feature genes in metastatic breast cancer.

  10. A highly polymorphic dinucleotide repeat on the proximal short arm of the human X chromosome: linkage mapping of the synapsin I/A-raf-1 genes.

    PubMed Central

    Kirchgessner, C U; Trofatter, J A; Mahtani, M M; Willard, H F; DeGennaro, L J

    1991-01-01

    A compound (AC)n repeat located 1,000 bp downstream from the human synapsin I gene and within the last intron of the A-raf-1 gene has been identified. DNA data-base comparisons of the sequences surrounding the repeat indicate that the synapsin I gene and the A-raf-1 gene lie immediately adjacent to each other, in opposite orientation. PCR amplification of this synapsin I/A-raf-1 associated repeat by using total genomic DNA from members of the 40 reference pedigree families of the Centre d'Etude du Polymorphisme Humaine showed it to be highly polymorphic, with a PIC value of .84 and a minimum of eight alleles. Because the synapsin I gene has been mapped previously to the short arm of the human X chromosome at Xp11.2, linkage analysis was performed with markers on the proximal short arm of the X chromosome. The most likely gene order is DXS7SYN/ARAF1TIMPDXS255DXS146, with a relative probability of 5 x 10(8) as compared with the next most likely order. This highly informative repeat should serve as a valuable marker for disease loci mapped to the Xp11 region. Images Figure 2 PMID:1905878

  11. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes.

    PubMed

    Seligmann, Hervé

    2013-05-07

    GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection.

    PubMed

    Ignatieva, Elena V; Igoshin, Alexander V; Yudin, Nikolay S

    2017-12-28

    Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.

  13. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    PubMed

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  14. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2009-04-01

    expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by

  15. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.

  16. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  17. Analysis of disease-associated objects at the Rat Genome Database

    PubMed Central

    Wang, Shur-Jen; Laulederkind, Stanley J. F.; Hayman, G. T.; Smith, Jennifer R.; Petri, Victoria; Lowry, Timothy F.; Nigam, Rajni; Dwinell, Melinda R.; Worthey, Elizabeth A.; Munzenmaier, Diane H.; Shimoyama, Mary; Jacob, Howard J.

    2013-01-01

    The Rat Genome Database (RGD) is the premier resource for genetic, genomic and phenotype data for the laboratory rat, Rattus norvegicus. In addition to organizing biological data from rats, the RGD team focuses on manual curation of gene–disease associations for rat, human and mouse. In this work, we have analyzed disease-associated strains, quantitative trait loci (QTL) and genes from rats. These disease objects form the basis for seven disease portals. Among disease portals, the cardiovascular disease and obesity/metabolic syndrome portals have the highest number of rat strains and QTL. These two portals share 398 rat QTL, and these shared QTL are highly concentrated on rat chromosomes 1 and 2. For disease-associated genes, we performed gene ontology (GO) enrichment analysis across portals using RatMine enrichment widgets. Fifteen GO terms, five from each GO aspect, were selected to profile enrichment patterns of each portal. Of the selected biological process (BP) terms, ‘regulation of programmed cell death’ was the top enriched term across all disease portals except in the obesity/metabolic syndrome portal where ‘lipid metabolic process’ was the most enriched term. ‘Cytosol’ and ‘nucleus’ were common cellular component (CC) annotations for disease genes, but only the cancer portal genes were highly enriched with ‘nucleus’ annotations. Similar enrichment patterns were observed in a parallel analysis using the DAVID functional annotation tool. The relationship between the preselected 15 GO terms and disease terms was examined reciprocally by retrieving rat genes annotated with these preselected terms. The individual GO term–annotated gene list showed enrichment in physiologically related diseases. For example, the ‘regulation of blood pressure’ genes were enriched with cardiovascular disease annotations, and the ‘lipid metabolic process’ genes with obesity annotations. Furthermore, we were able to enhance enrichment of neurological diseases by combining ‘G-protein coupled receptor binding’ annotated genes with ‘protein kinase binding’ annotated genes. Database URL: http://rgd.mcw.edu PMID:23794737

  18. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability.

    PubMed

    Reggiani, Claudio; Coppens, Sandra; Sekhara, Tayeb; Dimov, Ivan; Pichon, Bruno; Lufin, Nicolas; Addor, Marie-Claude; Belligni, Elga Fabia; Digilio, Maria Cristina; Faletra, Flavio; Ferrero, Giovanni Battista; Gerard, Marion; Isidor, Bertrand; Joss, Shelagh; Niel-Bütschi, Florence; Perrone, Maria Dolores; Petit, Florence; Renieri, Alessandra; Romana, Serge; Topa, Alexandra; Vermeesch, Joris Robert; Lenaerts, Tom; Casimir, Georges; Abramowicz, Marc; Bontempi, Gianluca; Vilain, Catheline; Deconinck, Nicolas; Smits, Guillaume

    2017-07-19

    Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.

  19. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins

    PubMed Central

    Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie

    2018-01-01

    Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202

  20. Regulatory interactions between long noncoding RNA LINC00968 and miR-9-3p in non-small cell lung cancer: A bioinformatic analysis based on miRNA microarray, GEO and TCGA.

    PubMed

    Li, Dong-Yao; Chen, Wen-Jie; Shang, Jun; Chen, Gang; Li, Shi-Kang

    2018-06-01

    Long non-coding RNAs (lncRNAs) have been demonstrated to mediate carcinogenesis in various types of cancer. However, the regulatory role of lncRNA LINC00968 in lung adenocarcinoma remains unclear. The microRNA (miRNA) expression in LINC00968-overexpressing human lung adenocarcinoma A549 cells was detected using miRNA microarray analysis. miR-9-3p was selected for further analysis, and its expression was verified in the Gene Expression Omnibus (GEO) database. In addition, the regulatory axis of LINC00968 was validated using The Cancer Genome Atlas (TCGA) database. Results of the GEO database indicated miR-9-3p expression in lung adenocarcinoma was significantly higher compared with normal tissues. Functional enrichment analyses of the target genes of miR-9-3p indicated protein binding and the AMP-activated protein kinase pathway were the most enriched Gene Ontology and KEGG terms, respectively. Combining target genes with the correlated genes of LINC00968 and miR-9-3p, 120 objective genes were obtained, which were used to construct a protein-protein interaction (PPI) network. Cyclin A2 (CCNA2) was identified to have a vital role in the PPI network. Significant correlations were detected between LINC00968, miR-9-3p and CCNA2 in lung adenocarcinoma. The LINC00968/miR-9-3p/CCNA2 regulatory axis provides a new foundation for further evaluating the regulatory mechanisms of LINC00968 in lung adenocarcinoma.

  1. ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells.

    PubMed

    Xu, Huilei; Baroukh, Caroline; Dannenfelser, Ruth; Chen, Edward Y; Tan, Christopher M; Kou, Yan; Kim, Yujin E; Lemischka, Ihor R; Ma'ayan, Avi

    2013-01-01

    High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE

  2. Thailand mutation and variation database (ThaiMUT).

    PubMed

    Ruangrit, Uttapong; Srikummool, Metawee; Assawamakin, Anunchai; Ngamphiw, Chumpol; Chuechote, Suparat; Thaiprasarnsup, Vilasinee; Agavatpanitch, Gallissara; Pasomsab, Ekawat; Yenchitsomanus, Pa-Thai; Mahasirimongkol, Surakameth; Chantratita, Wasun; Palittapongarnpim, Prasit; Uyyanonvara, Bunyarit; Limwongse, Chanin; Tongsima, Sissades

    2008-08-01

    With the completion of the human genome project, novel sequencing and genotyping technologies had been utilized to detect mutations. Such mutations have continually been produced at exponential rate by researchers in various communities. Based on the population's mutation spectra, occurrences of Mendelian diseases are different across ethnic groups. A proportion of Mendelian diseases can be observed in some countries at higher rates than others. Recognizing the importance of mutation effects in Thailand, we established a National and Ethnic Mutation Database (NEMDB) for Thai people. This database, named Thailand Mutation and Variation database (ThaiMUT), offers a web-based access to genetic mutation and variation information in Thai population. This NEMDB initiative is an important informatics tool for both research and clinical purposes to retrieve and deposit human variation data. The mutation data cataloged in ThaiMUT database were derived from journal articles available in PubMed and local publications. In addition to collected mutation data, ThaiMUT also records genetic polymorphisms located in drug related genes. ThaiMUT could then provide useful information for clinical mutation screening services for Mendelian diseases and pharmacogenomic researches. ThaiMUT can be publicly accessed from http://gi.biotec.or.th/thaimut.

  3. Comparison of human cell signaling pathway databases—evolution, drawbacks and challenges

    PubMed Central

    Chowdhury, Saikat; Sarkar, Ram Rup

    2015-01-01

    Elucidating the complexities of cell signaling pathways is of immense importance to gain understanding about various biological phenomenon, such as dynamics of gene/protein expression regulation, cell fate determination, embryogenesis and disease progression. The successful completion of human genome project has also helped experimental and theoretical biologists to analyze various important pathways. To advance this study, during the past two decades, systematic collections of pathway data from experimental studies have been compiled and distributed freely by several databases, which also integrate various computational tools for further analysis. Despite significant advancements, there exist several drawbacks and challenges, such as pathway data heterogeneity, annotation, regular update and automated image reconstructions, which motivated us to perform a thorough review on popular and actively functioning 24 cell signaling databases. Based on two major characteristics, pathway information and technical details, freely accessible data from commercial and academic databases are examined to understand their evolution and enrichment. This review not only helps to identify some novel and useful features, which are not yet included in any of the databases but also highlights their current limitations and subsequently propose the reasonable solutions for future database development, which could be useful to the whole scientific community. PMID:25632107

  4. A bioinformatics analysis of Lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome.

    PubMed

    Arancio, Walter

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to premature aging. HGPS is caused by mutation in the Lamin-A (LMNA) gene that leads, in affected young individuals, to the accumulation of the progerin protein, usually present only in aging differentiated cells. Bioinformatics analyses of the network of interactions of the LMNA gene and transcripts are presented. The LMNA gene network has been analyzed using the BioGRID database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA ( http://genemania.org/). The network of interaction of LMNA transcripts has been further analyzed following the competing endogenous (ceRNA) hypotheses (RNA cross-talk via microRNAs [miRNAs]) and using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest particular relevance of epigenetic modifiers (via acetylase complexes and specifically HTATIP histone acetylase) and adenosine triphosphate (ATP)-dependent chromatin remodelers (via pBAF, BAF, and SWI/SNF complexes).

  5. Non-random mate choice in humans: insights from a genome scan.

    PubMed

    Laurent, R; Toupance, B; Chaix, R

    2012-02-01

    Little is known about the genetic factors influencing mate choice in humans. Still, there is evidence for non-random mate choice with respect to physical traits. In addition, some studies suggest that the Major Histocompatibility Complex may affect pair formation. Nowadays, the availability of high density genomic data sets gives the opportunity to scan the genome for signatures of non-random mate choice without prior assumptions on which genes may be involved, while taking into account socio-demographic factors. Here, we performed a genome scan to detect extreme patterns of similarity or dissimilarity among spouses throughout the genome in three populations of African, European American, and Mexican origins from the HapMap 3 database. Our analyses identified genes and biological functions that may affect pair formation in humans, including genes involved in skin appearance, morphogenesis, immunity and behaviour. We found little overlap between the three populations, suggesting that the biological functions potentially influencing mate choice are population specific, in other words are culturally driven. Moreover, whenever the same functional category of genes showed a significant signal in two populations, different genes were actually involved, which suggests the possibility of evolutionary convergences. © 2011 Blackwell Publishing Ltd.

  6. HRGFish: A database of hypoxia responsive genes in fishes

    NASA Astrophysics Data System (ADS)

    Rashid, Iliyas; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kumar, Ravindra; Pathak, Ajey Kumar; Singh, Mahender; Kushwaha, Basdeo

    2017-02-01

    Several studies have highlighted the changes in the gene expression due to the hypoxia response in fishes, but the systematic organization of the information and the analytical platform for such genes are lacking. In the present study, an attempt was made to develop a database of hypoxia responsive genes in fishes (HRGFish), integrated with analytical tools, using LAMPP technology. Genes reported in hypoxia response for fishes were compiled through literature survey and the database presently covers 818 gene sequences and 35 gene types from 38 fishes. The upstream fragments (3,000 bp), covered in this database, enables to compute CG dinucleotides frequencies, motif finding of the hypoxia response element, identification of CpG island and mapping with the reference promoter of zebrafish. The database also includes functional annotation of genes and provides tools for analyzing sequences and designing primers for selected gene fragments. This may be the first database on the hypoxia response genes in fishes that provides a workbench to the scientific community involved in studying the evolution and ecological adaptation of the fish species in relation to hypoxia.

  7. Information resources at the National Center for Biotechnology Information.

    PubMed Central

    Woodsmall, R M; Benson, D A

    1993-01-01

    The National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, was established in 1988 to perform basic research in the field of computational molecular biology as well as build and distribute molecular biology databases. The basic research has led to new algorithms and analysis tools for interpreting genomic data and has been instrumental in the discovery of human disease genes for neurofibromatosis and Kallmann syndrome. The principal database responsibility is the National Institutes of Health (NIH) genetic sequence database, GenBank. NCBI, in collaboration with international partners, builds, distributes, and provides online and CD-ROM access to over 112,000 DNA sequences. Another major program is the integration of multiple sequences databases and related bibliographic information and the development of network-based retrieval systems for Internet access. PMID:8374583

  8. The HUPO PSI's molecular interaction format--a community standard for the representation of protein interaction data.

    PubMed

    Hermjakob, Henning; Montecchi-Palazzi, Luisa; Bader, Gary; Wojcik, Jérôme; Salwinski, Lukasz; Ceol, Arnaud; Moore, Susan; Orchard, Sandra; Sarkans, Ugis; von Mering, Christian; Roechert, Bernd; Poux, Sylvain; Jung, Eva; Mersch, Henning; Kersey, Paul; Lappe, Michael; Li, Yixue; Zeng, Rong; Rana, Debashis; Nikolski, Macha; Husi, Holger; Brun, Christine; Shanker, K; Grant, Seth G N; Sander, Chris; Bork, Peer; Zhu, Weimin; Pandey, Akhilesh; Brazma, Alvis; Jacq, Bernard; Vidal, Marc; Sherman, David; Legrain, Pierre; Cesareni, Gianni; Xenarios, Ioannis; Eisenberg, David; Steipe, Boris; Hogue, Chris; Apweiler, Rolf

    2004-02-01

    A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).

  9. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  10. The UCSC Genome Browser database: extensions and updates 2013.

    PubMed

    Meyer, Laurence R; Zweig, Ann S; Hinrichs, Angie S; Karolchik, Donna; Kuhn, Robert M; Wong, Matthew; Sloan, Cricket A; Rosenbloom, Kate R; Roe, Greg; Rhead, Brooke; Raney, Brian J; Pohl, Andy; Malladi, Venkat S; Li, Chin H; Lee, Brian T; Learned, Katrina; Kirkup, Vanessa; Hsu, Fan; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Goldman, Mary; Giardine, Belinda M; Fujita, Pauline A; Dreszer, Timothy R; Diekhans, Mark; Cline, Melissa S; Clawson, Hiram; Barber, Galt P; Haussler, David; Kent, W James

    2013-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.

  11. Featured Article: Genotation: Actionable knowledge for the scientific reader.

    PubMed

    Nagahawatte, Panduka; Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L

    2016-06-01

    We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug-gene relationships, 5981 gene-disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. © 2016 by the Society for Experimental Biology and Medicine.

  12. An emerging cyberinfrastructure for biodefense pathogen and pathogen–host data

    PubMed Central

    Zhang, C.; Crasta, O.; Cammer, S.; Will, R.; Kenyon, R.; Sullivan, D.; Yu, Q.; Sun, W.; Jha, R.; Liu, D.; Xue, T.; Zhang, Y.; Moore, M.; McGarvey, P.; Huang, H.; Chen, Y.; Zhang, J.; Mazumder, R.; Wu, C.; Sobral, B.

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host–pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/. PMID:17984082

  13. Profiling RNA editing in human tissues: towards the inosinome Atlas

    PubMed Central

    Picardi, Ernesto; Manzari, Caterina; Mastropasqua, Francesca; Aiello, Italia; D’Erchia, Anna Maria; Pesole, Graziano

    2015-01-01

    Adenine to Inosine RNA editing is a widespread co- and post-transcriptional mechanism mediated by ADAR enzymes acting on double stranded RNA. It has a plethora of biological effects, appears to be particularly pervasive in humans with respect to other mammals, and is implicated in a number of diverse human pathologies. Here we present the first human inosinome atlas comprising 3,041,422 A-to-I events identified in six tissues from three healthy individuals. Matched directional total-RNA-Seq and whole genome sequence datasets were generated and analysed within a dedicated computational framework, also capable of detecting hyper-edited reads. Inosinome profiles are tissue specific and edited gene sets consistently show enrichment of genes involved in neurological disorders and cancer. Overall frequency of editing also varies, but is strongly correlated with ADAR expression levels. The inosinome database is available at: http://srv00.ibbe.cnr.it/editing/. PMID:26449202

  14. The Moroccan Genetic Disease Database (MGDD): a database for DNA variations related to inherited disorders and disease susceptibility.

    PubMed

    Charoute, Hicham; Nahili, Halima; Abidi, Omar; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Barakat, Abdelhamid

    2014-03-01

    National and ethnic mutation databases provide comprehensive information about genetic variations reported in a population or an ethnic group. In this paper, we present the Moroccan Genetic Disease Database (MGDD), a catalogue of genetic data related to diseases identified in the Moroccan population. We used the PubMed, Web of Science and Google Scholar databases to identify available articles published until April 2013. The Database is designed and implemented on a three-tier model using Mysql relational database and the PHP programming language. To date, the database contains 425 mutations and 208 polymorphisms found in 301 genes and 259 diseases. Most Mendelian diseases in the Moroccan population follow autosomal recessive mode of inheritance (74.17%) and affect endocrine, nutritional and metabolic physiology. The MGDD database provides reference information for researchers, clinicians and health professionals through a user-friendly Web interface. Its content should be useful to improve researches in human molecular genetics, disease diagnoses and design of association studies. MGDD can be publicly accessed at http://mgdd.pasteur.ma.

  15. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. CORUM: the comprehensive resource of mammalian protein complexes

    PubMed Central

    Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner

    2008-01-01

    Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090

  17. WGE: a CRISPR database for genome engineering.

    PubMed

    Hodgkins, Alex; Farne, Anna; Perera, Sajith; Grego, Tiago; Parry-Smith, David J; Skarnes, William C; Iyer, Vivek

    2015-09-15

    The rapid development of CRISPR-Cas9 mediated genome editing techniques has given rise to a number of online and stand-alone tools to find and score CRISPR sites for whole genomes. Here we describe the Wellcome Trust Sanger Institute Genome Editing database (WGE), which uses novel methods to compute, visualize and select optimal CRISPR sites in a genome browser environment. The WGE database currently stores single and paired CRISPR sites and pre-calculated off-target information for CRISPRs located in the mouse and human exomes. Scoring and display of off-target sites is simple, and intuitive, and filters can be applied to identify high-quality CRISPR sites rapidly. WGE also provides a tool for the design and display of gene targeting vectors in the same genome browser, along with gene models, protein translation and variation tracks. WGE is open, extensible and can be set up to compute and present CRISPR sites for any genome. The WGE database is freely available at www.sanger.ac.uk/htgt/wge : vvi@sanger.ac.uk or skarnes@sanger.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  18. Refined physical map of the human PAX2/HOX11/NFKB2 cancer gene region at 10q24 and relocalization of the HPV6AI1 viral integration site to 14q13.3-q21.1

    PubMed Central

    Gough, Sheryl M; McDonald, Margaret; Chen, Xiao-Ning; Korenberg, Julie R; Neri, Antonino; Kahn, Tomas; Eccles, Michael R; Morris, Christine M

    2003-01-01

    Background Chromosome band 10q24 is a gene-rich domain and host to a number of cancer, developmental, and neurological genes. Recurring translocations, deletions and mutations involving this chromosome band have been observed in different human cancers and other disease conditions, but the precise identification of breakpoint sites, and detailed characterization of the genetic basis and mechanisms which underlie many of these rearrangements has yet to be resolved. Towards this end it is vital to establish a definitive genetic map of this region, which to date has shown considerable volatility through time in published works of scientific journals, within different builds of the same international genomic database, and across the differently constructed databases. Results Using a combination of chromosome and interphase fluorescent in situ hybridization (FISH), BAC end-sequencing and genomic database analysis we present a physical map showing that the order and chromosomal orientation of selected genes within 10q24 is CEN-CYP2C9-PAX2-HOX11-NFKB2-TEL. Our analysis has resolved the orientation of an otherwise dynamically evolving assembly of larger contigs upstream of this region, and in so doing verifies the order and orientation of a further 9 cancer-related genes and GOT1. This study further shows that the previously reported human papillomavirus type 6a DNA integration site HPV6AI1 does not map to 10q24, but that it maps at the interface of chromosome bands 14q13.3-q21.1. Conclusions This revised map will allow more precise localization of chromosome rearrangements involving chromosome band 10q24, and will serve as a useful baseline to better understand the molecular aetiology of chromosomal instability in this region. In particular, the relocation of HPV6AI1 is important to report because this HPV6a integration site, originally isolated from a tonsillar carcinoma, was shown to be rearranged in other HPV6a-related malignancies, including 2 of 25 genital condylomas, and 2 of 7 head and neck tumors tested. Our finding shifts the focus of this genomic interest from 10q24 to the chromosome 14 site. PMID:12697057

  19. CELLPEDIA: a repository for human cell information for cell studies and differentiation analyses.

    PubMed

    Hatano, Akiko; Chiba, Hirokazu; Moesa, Harry Amri; Taniguchi, Takeaki; Nagaie, Satoshi; Yamanegi, Koji; Takai-Igarashi, Takako; Tanaka, Hiroshi; Fujibuchi, Wataru

    2011-01-01

    CELLPEDIA is a repository database for current knowledge about human cells. It contains various types of information, such as cell morphologies, gene expression and literature references. The major role of CELLPEDIA is to provide a digital dictionary of human cells for the biomedical field, including support for the characterization of artificially generated cells in regenerative medicine. CELLPEDIA features (i) its own cell classification scheme, in which whole human cells are classified by their physical locations in addition to conventional taxonomy; and (ii) cell differentiation pathways compiled from biomedical textbooks and journal papers. Currently, human differentiated cells and stem cells are classified into 2260 and 66 cell taxonomy keys, respectively, from which 934 parent-child relationships reported in cell differentiation or transdifferentiation pathways are retrievable. As far as we know, this is the first attempt to develop a digital cell bank to function as a public resource for the accumulation of current knowledge about human cells. The CELLPEDIA homepage is freely accessible except for the data submission pages that require authentication (please send a password request to cell-info@cbrc.jp). Database URL: http://cellpedia.cbrc.jp/

  20. Pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of Plasmodium vivax in human patients.

    PubMed

    Merino, Emilio F; Fernandez-Becerra, Carmen; Madeira, Alda M B N; Machado, Ariane L; Durham, Alan; Gruber, Arthur; Hall, Neil; del Portillo, Hernando A

    2003-07-21

    Plasmodium vivax is the most widely distributed human malaria, responsible for 70-80 million clinical cases each year and large socio-economical burdens for countries such as Brazil where it is the most prevalent species. Unfortunately, due to the impossibility of growing this parasite in continuous in vitro culture, research on P. vivax remains largely neglected. A pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of P. vivax was performed. To do so, 1,184 clones from a cDNA library constructed with parasites obtained from 10 different human patients in the Brazilian Amazon were sequenced. Sequences were automatedly processed to remove contaminants and low quality reads. A total of 806 sequences with an average length of 586 bp met such criteria and their clustering revealed 666 distinct events. The consensus sequence of each cluster and the unique sequences of the singlets were used in similarity searches against different databases that included P. vivax, Plasmodium falciparum, Plasmodium yoelii, Plasmodium knowlesi, Apicomplexa and the GenBank non-redundant database. An E-value of <10(-30) was used to define a significant database match. ESTs were manually assigned a gene ontology (GO) terminology A total of 769 ESTs could be assigned a putative identity based upon sequence similarity to known proteins in GenBank. Moreover, 292 ESTs were annotated and a GO terminology was assigned to 164 of them. These are the first ESTs reported for P. vivax and, as such, they represent a valuable resource to assist in the annotation of the P. vivax genome currently being sequenced. Moreover, since the GC-content of the P. vivax genome is strikingly different from that of P. falciparum, these ESTs will help in the validation of gene predictions for P. vivax and to create a gene index of this malaria parasite.

  1. A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal; Bandyopadhyay, Sanghamitra

    2012-01-01

    Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed. PMID:22539940

  2. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  3. Variation in umami perception and in candidate genes for the umami receptor in mice and humans1234

    PubMed Central

    Shirosaki, Shinya; Ohkuri, Tadahiro; Sanematsu, Keisuke; Islam, AA Shahidul; Ogiwara, Yoko; Kawai, Misako; Yoshida, Ryusuke; Ninomiya, Yuzo

    2009-01-01

    The unique taste induced by monosodium glutamate is referred to as umami taste. The umami taste is also elicited by the purine nucleotides inosine 5′-monophosphate and guanosine 5′-monophosphate. There is evidence that a heterodimeric G protein–coupled receptor, which consists of the T1R1 (taste receptor type 1, member 1, Tas1r1) and the T1R3 (taste receptor type 1, member 3, Tas1r3) proteins, functions as an umami taste receptor for rodents and humans. Splice variants of metabotropic glutamate receptors, mGluR1 (glutamate receptor, metabotropic 1, Grm1) and mGluR4 (glutamate receptor, metabotropic 4, Grm4), also have been proposed as taste receptors for glutamate. The taste sensitivity to umami substances varies in inbred mouse strains and in individual humans. However, little is known about the relation of umami taste sensitivity to variations in candidate umami receptor genes in rodents or in humans. In this article, we summarize current knowledge of the diversity of umami perception in mice and humans. Furthermore, we combine previously published data and new information from the single nucleotide polymorphism databases regarding variation in the mouse and human candidate umami receptor genes: mouse Tas1r1 (TAS1R1 for human), mouse Tas1r3 (TAS1R3 for human), mouse Grm1 (GRM1 for human), and mouse Grm4 (GRM4 for human). Finally, we discuss prospective associations between variation of these genes and umami taste perception in both species. PMID:19625681

  4. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome.

    PubMed

    Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A

    2015-01-01

    A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen LA; Massingham, Lauren J; Wick, Heather C; Siegel, Ashley E; Tantravahi, Umadevi; Bianchi, Diana W

    2016-09-02

    Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.

  6. The Listeria monocytogenes strain 10403S BioCyc database.

    PubMed

    Orsi, Renato H; Bergholz, Teresa M; Wiedmann, Martin; Boor, Kathryn J

    2015-01-01

    Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry, while the high mortality of listeriosis in specific groups of humans makes it a great concern for public health. Previous studies have shown that a regulatory network involving alternative sigma (σ) factors and transcription factors is pivotal to stress survival. However, few studies have evaluated at the metabolic networks controlled by these regulatory mechanisms. The L. monocytogenes BioCyc database uses the strain 10403S as a model. Computer-generated initial annotation for all genes also allowed for identification, annotation and display of predicted reactions and pathways carried out by a single cell. Further ongoing manual curation based on published data as well as database mining for selected genes allowed the more refined annotation of functions, which, in turn, allowed for annotation of new pathways and fine-tuning of previously defined pathways to more L. monocytogenes-specific pathways. Using RNA-Seq data, several transcription start sites and promoter regions were mapped to the 10403S genome and annotated within the database. Additionally, the identification of promoter regions and a comprehensive review of available literature allowed the annotation of several regulatory interactions involving σ factors and transcription factors. The L. monocytogenes 10403S BioCyc database is a new resource for researchers studying Listeria and related organisms. It allows users to (i) have a comprehensive view of all reactions and pathways predicted to take place within the cell in the cellular overview, as well as to (ii) upload their own data, such as differential expression data, to visualize the data in the scope of predicted pathways and regulatory networks and to carry on enrichment analyses using several different annotations available within the database. © The Author(s) 2015. Published by Oxford University Press.

  7. Mutation databases and other online sites as a resource for transfusion medicine: history and attributes.

    PubMed

    Blumenfeld, Olga O

    2002-04-01

    Recent advances in molecular biology and technology have provided evidence, at a molecular level, for long-known observations that the human genome is not unique but is characterized by individual sequence variation. At the present time, documentation of genetic variation occurring in a large number of genes is increasing exponentially. The characterization of alleles that encode a variety of blood group antigens has been particularly fruitful for transfusion medicine. Phenotypic variation, as identified by the serologic study of blood group variants, is required to identify the presence of a variant allele. Many of the other alleles currently recorded have been selected and identified on the basis of inherited disease traits. New approaches document single nucleotide polymorphisms that occur throughout the genome and best show how the DNA sequence varies in the human population. The primary data dealing with variant alleles or more general genomic variation are scattered throughout the scientific literature and only within the last few years has information begun to be organized into databases. This article provides guidance on how to access those databases online as a source of information about genetic variation for purposes of molecular, clinical, and diagnostic medicine, research, and teaching. The attributes of the sites are described. A more detailed view of the database dealing specifically with alleles of genes encoding the blood group antigens includes a brief preliminary analysis of the molecular basis for observed polymorphisms. Other online sites that may be particularly useful to the transfusion medicine readership as well as a brief historical account are also presented. Copyright 2002, Elsevier Science (USA). All rights reserved.

  8. DNA variant databases improve test accuracy and phenotype prediction in Alport syndrome.

    PubMed

    Savige, Judy; Ars, Elisabet; Cotton, Richard G H; Crockett, David; Dagher, Hayat; Deltas, Constantinos; Ding, Jie; Flinter, Frances; Pont-Kingdon, Genevieve; Smaoui, Nizar; Torra, Roser; Storey, Helen

    2014-06-01

    X-linked Alport syndrome is a form of progressive renal failure caused by pathogenic variants in the COL4A5 gene. More than 700 variants have been described and a further 400 are estimated to be known to individual laboratories but are unpublished. The major genetic testing laboratories for X-linked Alport syndrome worldwide have established a Web-based database for published and unpublished COL4A5 variants ( https://grenada.lumc.nl/LOVD2/COL4A/home.php?select_db=COL4A5 ). This conforms with the recommendations of the Human Variome Project: it uses the Leiden Open Variation Database (LOVD) format, describes variants according to the human reference sequence with standardized nomenclature, indicates likely pathogenicity and associated clinical features, and credits the submitting laboratory. The database includes non-pathogenic and recurrent variants, and is linked to another COL4A5 mutation database and relevant bioinformatics sites. Access is free. Increasing the number of COL4A5 variants in the public domain helps patients, diagnostic laboratories, clinicians, and researchers. The database improves the accuracy and efficiency of genetic testing because its variants are already categorized for pathogenicity. The description of further COL4A5 variants and clinical associations will improve our ability to predict phenotype and our understanding of collagen IV biochemistry. The database for X-linked Alport syndrome represents a model for databases in other inherited renal diseases.

  9. Mimvec: a deep learning approach for analyzing the human phenome.

    PubMed

    Gan, Mingxin; Li, Wenran; Zeng, Wanwen; Wang, Xiaojian; Jiang, Rui

    2017-09-21

    The human phenome has been widely used with a variety of genomic data sources in the inference of disease genes. However, most existing methods thus far derive phenotype similarity based on the analysis of biomedical databases by using the traditional term frequency-inverse document frequency (TF-IDF) formulation. This framework, though intuitive, not only ignores semantic relationships between words but also tends to produce high-dimensional vectors, and hence lacks the ability to precisely capture intrinsic semantic characteristics of biomedical documents. To overcome these limitations, we propose a framework called mimvec to analyze the human phenome by making use of the state-of-the-art deep learning technique in natural language processing. We converted 24,061 records in the Online Mendelian Inheritance in Man (OMIM) database to low-dimensional vectors using our method. We demonstrated that the vector presentation not only effectively enabled classification of phenotype records against gene ones, but also succeeded in discriminating diseases of different inheritance styles and different mechanisms. We further derived pairwise phenotype similarities between 7988 human inherited diseases using their vector presentations. With a joint analysis of this phenome with multiple genomic data, we showed that phenotype overlap indeed implied genotype overlap. We finally used the derived phenotype similarities with genomic data to prioritize candidate genes and demonstrated advantages of this method over existing ones. Our method is capable of not only capturing semantic relationships between words in biomedical records but also alleviating the dimensional disaster accompanying the traditional TF-IDF framework. With the approaching of precision medicine, there will be abundant electronic records of medicine and health awaiting for deep analysis, and we expect to see a wide spectrum of applications borrowing the idea of our method in the near future.

  10. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    PubMed

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  11. SM-TF: A structural database of small molecule-transcription factor complexes.

    PubMed

    Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin; Zou, Xiaoqin

    2016-06-30

    Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset.

    PubMed

    Mallik, Saurav; Maulik, Ujjwal

    2015-10-01

    Gene ranking is an important problem in bioinformatics. Here, we propose a new framework for ranking biomolecules (viz., miRNAs, transcription-factors/TFs and genes) in a multi-informative uterine leiomyoma dataset having both gene expression and methylation data using (statistical) eigenvector centrality based approach. At first, genes that are both differentially expressed and methylated, are identified using Limma statistical test. A network, comprising these genes, corresponding TFs from TRANSFAC and ITFP databases, and targeter miRNAs from miRWalk database, is then built. The biomolecules are then ranked based on eigenvector centrality. Our proposed method provides better average accuracy in hub gene and non-hub gene classifications than other methods. Furthermore, pre-ranked Gene set enrichment analysis is applied on the pathway database as well as GO-term databases of Molecular Signatures Database with providing a pre-ranked gene-list based on different centrality values for comparing among the ranking methods. Finally, top novel potential gene-markers for the uterine leiomyoma are provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data

    PubMed Central

    Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent

    2009-01-01

    Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039

  14. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    PubMed

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  15. oPOSSUM: integrated tools for analysis of regulatory motif over-representation

    PubMed Central

    Ho Sui, Shannan J.; Fulton, Debra L.; Arenillas, David J.; Kwon, Andrew T.; Wasserman, Wyeth W.

    2007-01-01

    The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM/ PMID:17576675

  16. Interactive knowledge discovery and data mining on genomic expression data with numeric formal concept analysis.

    PubMed

    González-Calabozo, Jose M; Valverde-Albacete, Francisco J; Peláez-Moreno, Carmen

    2016-09-15

    Gene Expression Data (GED) analysis poses a great challenge to the scientific community that can be framed into the Knowledge Discovery in Databases (KDD) and Data Mining (DM) paradigm. Biclustering has emerged as the machine learning method of choice to solve this task, but its unsupervised nature makes result assessment problematic. This is often addressed by means of Gene Set Enrichment Analysis (GSEA). We put forward a framework in which GED analysis is understood as an Exploratory Data Analysis (EDA) process where we provide support for continuous human interaction with data aiming at improving the step of hypothesis abduction and assessment. We focus on the adaptation to human cognition of data interpretation and visualization of the output of EDA. First, we give a proper theoretical background to bi-clustering using Lattice Theory and provide a set of analysis tools revolving around [Formula: see text]-Formal Concept Analysis ([Formula: see text]-FCA), a lattice-theoretic unsupervised learning technique for real-valued matrices. By using different kinds of cost structures to quantify expression we obtain different sequences of hierarchical bi-clusterings for gene under- and over-expression using thresholds. Consequently, we provide a method with interleaved analysis steps and visualization devices so that the sequences of lattices for a particular experiment summarize the researcher's vision of the data. This also allows us to define measures of persistence and robustness of biclusters to assess them. Second, the resulting biclusters are used to index external omics databases-for instance, Gene Ontology (GO)-thus offering a new way of accessing publicly available resources. This provides different flavors of gene set enrichment against which to assess the biclusters, by obtaining their p-values according to the terminology of those resources. We illustrate the exploration procedure on a real data example confirming results previously published. The GED analysis problem gets transformed into the exploration of a sequence of lattices enabling the visualization of the hierarchical structure of the biclusters with a certain degree of granularity. The ability of FCA-based bi-clustering methods to index external databases such as GO allows us to obtain a quality measure of the biclusters, to observe the evolution of a gene throughout the different biclusters it appears in, to look for relevant biclusters-by observing their genes and what their persistence is-to infer, for instance, hypotheses on their function.

  17. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery

    PubMed Central

    Pan, Shu-Ting; Xue, Danfeng; Li, Zhi-Ling; Zhou, Zhi-Wei; He, Zhi-Xu; Yang, Yinxue; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-01-01

    The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA (“Orthologous MAtrix”) Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery. PMID:27367670

  18. Using the TIGR gene index databases for biological discovery.

    PubMed

    Lee, Yuandan; Quackenbush, John

    2003-11-01

    The TIGR Gene Index web pages provide access to analyses of ESTs and gene sequences for nearly 60 species, as well as a number of resources derived from these. Each species-specific database is presented using a common format with a homepage. A variety of methods exist that allow users to search each species-specific database. Methods implemented currently include nucleotide or protein sequence queries using WU-BLAST, text-based searches using various sequence identifiers, searches by gene, tissue and library name, and searches using functional classes through Gene Ontology assignments. This protocol provides guidance for using the Gene Index Databases to extract information.

  19. What model organisms and interactomics can reveal about the genetics of human obesity.

    PubMed

    Williams, Michael J; Almén, Markus S; Fredriksson, Robert; Schiöth, Helgi B

    2012-11-01

    Genome-wide association studies have identified a number of genes associated with human body weight. While some of these genes are large fields within obesity research, such as MC4R, POMC, FTO and BDNF, the majority do not have a clearly defined functional role explaining why they may affect body weight. Here, we searched biological databases and discovered 33 additional genes associated with human obesity (CADM2, GIPR, GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL, GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL, TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A, SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2, KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160). We find that the majority have orthologues in distant species, such as D. melanogaster and C. elegans, suggesting that they are important for the biology of most bilateral species. Intriguingly, signalling cascade genes and transcription factors are enriched among these obesity genes, and several of the genes show properties that could be useful for potential drug discovery. In this review, we demonstrate how information from several distant model species, interactomics and signalling pathway analysis represents an important way to better understand the functional diversity of the surprisingly high number of molecules that seem to be important for human obesity.

  20. Featured Article: Genotation: Actionable knowledge for the scientific reader

    PubMed Central

    Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L

    2016-01-01

    We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org. The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug–gene relationships, 5981 gene–disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. PMID:26900164

  1. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys

    PubMed Central

    Werner, Jeffrey J; Koren, Omry; Hugenholtz, Philip; DeSantis, Todd Z; Walters, William A; Caporaso, J Gregory; Angenent, Largus T; Knight, Rob; Ley, Ruth E

    2012-01-01

    Taxonomic classification of the thousands–millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naïve Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases. PMID:21716311

  2. Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome

    PubMed Central

    Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J.; Dye, Michael J.

    2013-01-01

    Summary Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. PMID:23562152

  3. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  4. Deciphering the colon cancer genes--report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010.

    PubMed

    Kohonen-Corish, Maija R J; Macrae, Finlay; Genuardi, Maurizio; Aretz, Stefan; Bapat, Bharati; Bernstein, Inge T; Burn, John; Cotton, Richard G H; den Dunnen, Johan T; Frebourg, Thierry; Greenblatt, Marc S; Hofstra, Robert; Holinski-Feder, Elke; Lappalainen, Ilkka; Lindblom, Annika; Maglott, Donna; Møller, Pål; Morreau, Hans; Möslein, Gabriela; Sijmons, Rolf; Spurdle, Amanda B; Tavtigian, Sean; Tops, Carli M J; Weber, Thomas K; de Wind, Niels; Woods, Michael O

    2011-04-01

    The Human Variome Project (HVP) has established a pilot program with the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) to compile all inherited variation affecting colon cancer susceptibility genes. An HVP-InSiGHT Workshop was held on May 10, 2010, prior to the HVP Integration and Implementation Meeting at UNESCO in Paris, to review the progress of this pilot program. A wide range of topics were covered, including issues relating to genotype-phenotype data submission to the InSiGHT Colon Cancer Gene Variant Databases (chromium.liacs.nl/LOVD2/colon_cancer/home.php). The meeting also canvassed the recent exciting developments in models to evaluate the pathogenicity of unclassified variants using in silico data, tumor pathology information, and functional assays, and made further plans for the future progress and sustainability of the pilot program. © 2011 Wiley-Liss, Inc.

  5. Exploiting the Proteome to Improve the Genome-Wide Genetic Analysis of Epistasis in Common Human Diseases

    PubMed Central

    Pattin, Kristine A.; Moore, Jason H.

    2009-01-01

    One of the central goals of human genetics is the identification of loci with alleles or genotypes that confer increased susceptibility. The availability of dense maps of single-nucleotide polymorphisms (SNPs) along with high-throughput genotyping technologies has set the stage for routine genome-wide association studies that are expected to significantly improve our ability to identify susceptibility loci. Before this promise can be realized, there are some significant challenges that need to be addressed. We address here the challenge of detecting epistasis or gene-gene interactions in genome-wide association studies. Discovering epistatic interactions in high dimensional datasets remains a challenge due to the computational complexity resulting from the analysis of all possible combinations of SNPs. One potential way to overcome the computational burden of a genome-wide epistasis analysis would be to devise a logical way to prioritize the many SNPs in a dataset so that the data may be analyzed more efficiently and yet still retain important biological information. One of the strongest demonstrations of the functional relationship between genes is protein-protein interaction. Thus, it is plausible that the expert knowledge extracted from protein interaction databases may allow for a more efficient analysis of genome-wide studies as well as facilitate the biological interpretation of the data. In this review we will discuss the challenges of detecting epistasis in genome-wide genetic studies and the means by which we propose to apply expert knowledge extracted from protein interaction databases to facilitate this process. We explore some of the fundamentals of protein interactions and the databases that are publicly available. PMID:18551320

  6. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    PubMed Central

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo. PMID:14681357

  7. Lynx: a database and knowledge extraction engine for integrative medicine.

    PubMed

    Sulakhe, Dinanath; Balasubramanian, Sandhya; Xie, Bingqing; Feng, Bo; Taylor, Andrew; Wang, Sheng; Berrocal, Eduardo; Dave, Utpal; Xu, Jinbo; Börnigen, Daniela; Gilliam, T Conrad; Maltsev, Natalia

    2014-01-01

    We have developed Lynx (http://lynx.ci.uchicago.edu)--a web-based database and a knowledge extraction engine, supporting annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Its underlying knowledge base (LynxKB) integrates various classes of information from >35 public databases and private collections, as well as manually curated data from our group and collaborators. Lynx provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization to assist the user in extracting meaningful knowledge from LynxKB and experimental data, whereas its service-oriented architecture provides public access to LynxKB and its analytical tools via user-friendly web services and interfaces.

  8. Liverome: a curated database of liver cancer-related gene signatures with self-contained context information.

    PubMed

    Lee, Langho; Wang, Kai; Li, Gang; Xie, Zhi; Wang, Yuli; Xu, Jiangchun; Sun, Shaoxian; Pocalyko, David; Bhak, Jong; Kim, Chulhong; Lee, Kee-Ho; Jang, Ye Jin; Yeom, Young Il; Yoo, Hyang-Sook; Hwang, Seungwoo

    2011-11-30

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. A number of molecular profiling studies have investigated the changes in gene and protein expression that are associated with various clinicopathological characteristics of HCC and generated a wealth of scattered information, usually in the form of gene signature tables. A database of the published HCC gene signatures would be useful to liver cancer researchers seeking to retrieve existing differential expression information on a candidate gene and to make comparisons between signatures for prioritization of common genes. A challenge in constructing such database is that a direct import of the signatures as appeared in articles would lead to a loss or ambiguity of their context information that is essential for a correct biological interpretation of a gene's expression change. This challenge arises because designation of compared sample groups is most often abbreviated, ad hoc, or even missing from published signature tables. Without manual curation, the context information becomes lost, leading to uninformative database contents. Although several databases of gene signatures are available, none of them contains informative form of signatures nor shows comprehensive coverage on liver cancer. Thus we constructed Liverome, a curated database of liver cancer-related gene signatures with self-contained context information. Liverome's data coverage is more than three times larger than any other signature database, consisting of 143 signatures taken from 98 HCC studies, mostly microarray and proteome, and involving 6,927 genes. The signatures were post-processed into an informative and uniform representation and annotated with an itemized summary so that all context information is unambiguously self-contained within the database. The signatures were further informatively named and meaningfully organized according to ten functional categories for guided browsing. Its web interface enables a straightforward retrieval of known differential expression information on a query gene and a comparison of signatures to prioritize common genes. The utility of Liverome-collected data is shown by case studies in which useful biological insights on HCC are produced. Liverome database provides a comprehensive collection of well-curated HCC gene signatures and straightforward interfaces for gene search and signature comparison as well. Liverome is available at http://liverome.kobic.re.kr.

  9. KERIS: kaleidoscope of gene responses to inflammation between species

    PubMed Central

    Li, Peng; Tompkins, Ronald G; Xiao, Wenzhong

    2017-01-01

    A cornerstone of modern biomedical research is the use of animal models to study disease mechanisms and to develop new therapeutic approaches. In order to help the research community to better explore the similarities and differences of genomic response between human inflammatory diseases and murine models, we developed KERIS: kaleidoscope of gene responses to inflammation between species (available at http://www.igenomed.org/keris/). As of June 2016, KERIS includes comparisons of the genomic response of six human inflammatory diseases (burns, trauma, infection, sepsis, endotoxin and acute respiratory distress syndrome) and matched mouse models, using 2257 curated samples from the Inflammation and the Host Response to Injury Glue Grant studies and other representative studies in Gene Expression Omnibus. A researcher can browse, query, visualize and compare the response patterns of genes, pathways and functional modules across different diseases and corresponding murine models. The database is expected to help biologists choosing models when studying the mechanisms of particular genes and pathways in a disease and prioritizing the translation of findings from disease models into clinical studies. PMID:27789704

  10. Gene annotation from scientific literature using mappings between keyword systems.

    PubMed

    Pérez, Antonio J; Perez-Iratxeta, Carolina; Bork, Peer; Thode, Guillermo; Andrade, Miguel A

    2004-09-01

    The description of genes in databases by keywords helps the non-specialist to quickly grasp the properties of a gene and increases the efficiency of computational tools that are applied to gene data (e.g. searching a gene database for sequences related to a particular biological process). However, the association of keywords to genes or protein sequences is a difficult process that ultimately implies examination of the literature related to a gene. To support this task, we present a procedure to derive keywords from the set of scientific abstracts related to a gene. Our system is based on the automated extraction of mappings between related terms from different databases using a model of fuzzy associations that can be applied with all generality to any pair of linked databases. We tested the system by annotating genes of the SWISS-PROT database with keywords derived from the abstracts linked to their entries (stored in the MEDLINE database of scientific references). The performance of the annotation procedure was much better for SWISS-PROT keywords (recall of 47%, precision of 68%) than for Gene Ontology terms (recall of 8%, precision of 67%). The algorithm can be publicly accessed and used for the annotation of sequences through a web server at http://www.bork.embl.de/kat

  11. Assignment of the human caltractin gene (CALT) to Xq28 by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Tanaka; Okui, Keiko; Nakamura, Yusuke

    1994-12-01

    The centrosome is the major microtubule-organizing center of interphase eukaryotic cells, an its duplication is essential to eukaryotic cell division. Caltractin, a structural component of centrosomes, is highly homologous in amino acid sequence to the product of the CDC31 gene of Saccharomyces cerevisiae. In S. cerevisiae, an important role for CDC31 in duplication of the spindle pole body (SPB), a kind of microtubule-organizing center, has been demonstrated by an experiment in which mutant CDC31 prevented SPB duplication and led to formation of a monopolar spindle. In view of the localization of human caltractin in centrosomes and the sequence homology itmore » bears to yeast CDC31, it is reasonable to assume that caltractin functions in humans as CDC31 does in yeast. As a part of the Human Genome Project, we have been determining nucleotide sequences of DNA clones randomly selected from a directionally cloned cDNA library constructed from fetal brain mRNA obtained from Clontech (La Jolla, CA). By comparing 5{prime} partial DNA sequences of these cDNA clones with known DNA sequences in the database, we found one clone that was highly homologous to the caltractin gene of Chlamydomonas, which turned out to be the same as a human gene identified recently. 4 refs., 1 fig.« less

  12. [Locus HS.633957 expression in human gastrointestinal tract and tumors].

    PubMed

    Polev, D E; Krukovskaia, L L; Kozlov, A P

    2011-01-01

    Human locus HS.633957 corresponds to its namesake cluster in the UniGene database http:/www.ncbi.nlm.nih.gov/unigene. It is located on chromosome 7 and is 3.7 tpn in size. It does not seem to encode proteins nor has its function been identified. According to bioinformation evidence, its expression is tumor-specific. PCR assay on kDNA samples from different intact human tissues detected its slight expression in liver, heart, embryonal brain and kidney as well as in a wide spectrum of tumors. This work features locus Hs.633957 expression in different parts of human gastrointestinal tract and tumors.

  13. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    PubMed

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  14. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  15. Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    PubMed Central

    Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher J.; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.

    2014-01-01

    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions. PMID:25033284

  16. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    PubMed

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  17. Compositional Gene Landscapes in Vertebrates

    PubMed Central

    Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio

    2004-01-01

    The existence of a well conserved linear relationship between GC levels of genes' second and third codon positions (GC2, GC3) prompted us to focus on the landscape, or joint distribution, spanned by these two variables. In human, well curated coding sequences now cover at least 15%–30% of the estimated total gene set. Our analysis of the landscape defined by this gene set revealed not only the well documented linear crest, but also the presence of several peaks and valleys along that crest, a property that was also indicated in two other warm-blooded vertebrates represented by large gene databases, that is, mouse and chicken. GC2 is the sum of eight amino acid frequencies, whereas GC3 is linearly related to the GC level of the chromosomal region containing the gene. The landscapes therefore portray relations between proteins and the DNA environments of the genes that encode them. PMID:15123586

  18. Compositional gene landscapes in vertebrates.

    PubMed

    Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio

    2004-05-01

    The existence of a well conserved linear relationship between GC levels of genes' second and third codon positions (GC2, GC3) prompted us to focus on the landscape, or joint distribution, spanned by these two variables. In human, well curated coding sequences now cover at least 15%-30% of the estimated total gene set. Our analysis of the landscape defined by this gene set revealed not only the well documented linear crest, but also the presence of several peaks and valleys along that crest, a property that was also indicated in two other warm-blooded vertebrates represented by large gene databases, that is, mouse and chicken. GC2 is the sum of eight amino acid frequencies, whereas GC3 is linearly related to the GC level of the chromosomal region containing the gene. The landscapes therefore portray relations between proteins and the DNA environments of the genes that encode them.

  19. CoPub: a literature-based keyword enrichment tool for microarray data analysis.

    PubMed

    Frijters, Raoul; Heupers, Bart; van Beek, Pieter; Bouwhuis, Maurice; van Schaik, René; de Vlieg, Jacob; Polman, Jan; Alkema, Wynand

    2008-07-01

    Medline is a rich information source, from which links between genes and keywords describing biological processes, pathways, drugs, pathologies and diseases can be extracted. We developed a publicly available tool called CoPub that uses the information in the Medline database for the biological interpretation of microarray data. CoPub allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs. CoPub is freely accessible at http://services.nbic.nl/cgi-bin/copub/CoPub.pl.

  20. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions.

    PubMed

    Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana

    2017-01-04

    Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922: chimeric transcripts along with 11 714: cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the 'Full Collection'. In addition, for every chimera, we have added a predicted Chimeric Protein-Protein Interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922: chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Reconstruction of metabolic pathways for the cattle genome

    PubMed Central

    Seo, Seongwon; Lewin, Harris A

    2009-01-01

    Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology. PMID:19284618

  2. SGDB: a database of synthetic genes re-designed for optimizing protein over-expression.

    PubMed

    Wu, Gang; Zheng, Yuanpu; Qureshi, Imran; Zin, Htar Thant; Beck, Tyler; Bulka, Blazej; Freeland, Stephen J

    2007-01-01

    Here we present the Synthetic Gene Database (SGDB): a relational database that houses sequences and associated experimental information on synthetic (artificially engineered) genes from all peer-reviewed studies published to date. At present, the database comprises information from more than 200 published experiments. This resource not only provides reference material to guide experimentalists in designing new genes that improve protein expression, but also offers a dataset for analysis by bioinformaticians who seek to test ideas regarding the underlying factors that influence gene expression. The SGDB was built under MySQL database management system. We also offer an XML schema for standardized data description of synthetic genes. Users can access the database at http://www.evolvingcode.net/codon/sgdb/index.php, or batch downloads all information through XML files. Moreover, users may visually compare the coding sequences of a synthetic gene and its natural counterpart with an integrated web tool at http://www.evolvingcode.net/codon/sgdb/aligner.php, and discuss questions, findings and related information on an associated e-forum at http://www.evolvingcode.net/forum/viewforum.php?f=27.

  3. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin.

    PubMed

    Tan, Lu; Li, Linyun; Ashbolt, Nicholas; Wang, Xiaolong; Cui, Yuxiao; Zhu, Xiao; Xu, Yan; Yang, Yang; Mao, Daqing; Luo, Yi

    2018-04-15

    The increasing global prevalence of antibiotic resistance genes (ARGs) in the environment is attributed to anthropogenic activities, particularly the misuse of antimicrobial drugs in human care and animal production. In the present study, we first examined Arctic/sub-Arctic (polar) sediments for the abundance and diversity of 30 ARGs against sulfonamide, tetracycline, aminoglycoside, quinolone, macrolide, and β-lactam antibiotics. Polar sediment ARGs were detected by qPCR at relatively low levels (10 -9 to 10 -5 copies/16S rRNA gene copies) compared to the reference sites, which were heavily impacted regions of China (the Haihe River, the Tianjin Water Park water and the Qilihai Wetland water, at 10 -8 to 10 -2 copies/16S rRNA gene copies). A human mitochondrial gene target, Hmt, was first used to aid in the identification of ARGs associated with anthropogenic activities, being relatively persistent, in high copy number and a human-specific molecular marker. Hmt was consistently present in easily quantifiable amounts in the polar sediment samples, indicating their relationship with human-impact, and it was also positively correlated with the relative abundance of ARGs and to the concentrations of modern-day antibiotics. Phylogenetic analyses of resistance sequences from both the Arctic marine sediments and a major database of human pathogens indicated that the ARGs in polar region were the result of a mix of human influence and natural origins. To our knowledge, this is the first study to show that ARGs in Arctic marine sediments appear to be a mixture of both natural origins and recent human influence. This study provides a significant reference regarding the global reach of antibiotic resistance, which is associated with anthropogenic activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. MeSH key terms for validation and annotation of gene expression clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechtsteiner, A.; Rocha, L. M.

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert whomore » had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes associated with MeSH terms. MeSH terms can be associated with genes through co-occurrence of these in MEDLINE citations, i.e. the genes occur in titles or abstracts and the MeSH terms are assigned by experts. To identify MeSH terms associated with a group of genes we used the tool MESHGENE developed at the Information Dynamics Lab at HP Labs (http://www-idl.hpl.hp.com/meshgene/). When presented with a list of human genes, MESHGENE uses some sophisticated techniques to search for these gene symbols in the titles and abstracts of all MEDLINE citations. MeSH terms and the number of co-occurrences can be retrieved. Gene symbols that are aliases of each other are pooled from several databases. This addresses the problem of synonymy, the fact that several symbols can refer to the same gene. MESHGENE employs some sophisticated algorithms that disregards symbols that are likely to be acronyms for other concepts than a gene. This addresses the problem of polysemy, i.e. possible multiple meanings of a gene symbol. We applied our approach to gene expression data from herpes virus infected human fibroblast cells. The data contains 12 time-points, between 1/2 hrs and 48 hrs after infection. Singular Value Decomposition was used to identify the dominant modes of expression. 75% of the variance in the expression data was captured by the first two modes, the first exhibiting a monotonly increasing expression pattern and the second a more transient pattern. Projection of the gene expression vectors onto this first two modes identified 3 statistically significant clusters of co-expressed genes. 500 genes from cluster 1 and 300 genes from clusters 2 and 3 each were uploaded to MESHGENE and the MeSH terms and co-occurrence values were retrieved. MeSH terms were also obtained for 5 groups of randomly selected genes with similar numbers of genes. The log was taken of the co-occurrence values and for each MeSH term these log co-occurrence values were summed for each group over the genes in that group. A matrix with 8 columns for the 8 groups of genes and with 14,000 rows with the MeSH terms was obtained. To analyze this association matrix we used a Latent Semantic Analysis (LSA) approach. We applied SVD to this gene-group vs. MeSH term association matrix. The first 2 modes that capture most of the variation (and therefore most times also information) in the association matrix were highly associated with MeSH terms that occurred uniquely or disproportionally in the 3 gene clusters. MeSH terms highly associated with the 5 groups of randomly selected genes were associated with the lower modes. These modes seem to just capture 'noise' in the association matrix. This result by itself is of great interest for gene expression analysis. We were able to show that the 3 clusters of genes not only separated in 'expression space' but also in the MeSH term space with which they are associated through the literature.« less

  5. Generation of a foveomacular transcriptome

    PubMed Central

    Bernstein, Steven; Wong, Paul W.

    2014-01-01

    Purpose Organizing molecular biologic data is a growing challenge since the rate of data accumulation is steadily increasing. Information relevant to a particular biologic query can be difficult to extract from the comprehensive databases currently available. We present a data collection and organization model designed to ameliorate these problems and applied it to generate an expressed sequence tag (EST)–based foveomacular transcriptome. Methods Using Perl, MySQL, EST libraries, screening, and human foveomacular gene expression as a model system, we generated a foveomacular transcriptome database enriched for molecularly relevant data. Results Using foveomacula as a gene expression model tissue, we identified and organized 6,056 genes expressed in that tissue. Of those identified genes, 3,480 had not been previously described as expressed in the foveomacula. Internal experimental controls as well as comparison of our data set to published data sets suggest we do not yet have a complete description of the foveomacula transcriptome. Conclusions We present an organizational method designed to amplify the utility of data pertinent to a specific research interest. Our method is generic enough to be applicable to a variety of conditions yet focused enough to allow for specialized study. PMID:24991187

  6. SoyNet: a database of co-functional networks for soybean Glycine max.

    PubMed

    Kim, Eiru; Hwang, Sohyun; Lee, Insuk

    2017-01-04

    Soybean (Glycine max) is a legume crop with substantial economic value, providing a source of oil and protein for humans and livestock. More than 50% of edible oils consumed globally are derived from this crop. Soybean plants are also important for soil fertility, as they fix atmospheric nitrogen by symbiosis with microorganisms. The latest soybean genome annotation (version 2.0) lists 56 044 coding genes, yet their functional contributions to crop traits remain mostly unknown. Co-functional networks have proven useful for identifying genes that are involved in a particular pathway or phenotype with various network algorithms. Here, we present SoyNet (available at www.inetbio.org/soynet), a database of co-functional networks for G. max and a companion web server for network-based functional predictions. SoyNet maps 1 940 284 co-functional links between 40 812 soybean genes (72.8% of the coding genome), which were inferred from 21 distinct types of genomics data including 734 microarrays and 290 RNA-seq samples from soybean. SoyNet provides a new route to functional investigation of the soybean genome, elucidating genes and pathways of agricultural importance. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Establishment of an international database for genetic variants in esophageal cancer.

    PubMed

    Vihinen, Mauno

    2016-10-01

    The establishment of a database has been suggested in order to collect, organize, and distribute genetic information about esophageal cancer. The World Organization for Specialized Studies on Diseases of the Esophagus and the Human Variome Project will be in charge of a central database of information about esophageal cancer-related variations from publications, databases, and laboratories; in addition to genetic details, clinical parameters will also be included. The aim will be to get all the central players in research, clinical, and commercial laboratories to contribute. The database will follow established recommendations and guidelines. The database will require a team of dedicated curators with different backgrounds. Numerous layers of systematics will be applied to facilitate computational analyses. The data items will be extensively integrated with other information sources. The database will be distributed as open access to ensure exchange of the data with other databases. Variations will be reported in relation to reference sequences on three levels--DNA, RNA, and protein-whenever applicable. In the first phase, the database will concentrate on genetic variations including both somatic and germline variations for susceptibility genes. Additional types of information can be integrated at a later stage. © 2016 New York Academy of Sciences.

  8. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.

    PubMed

    Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie

    2018-04-20

    Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.

  9. Phenome-driven disease genetics prediction toward drug discovery

    PubMed Central

    Chen, Yang; Li, Li; Zhang, Guo-Qiang; Xu, Rong

    2015-01-01

    Motivation: Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. Results: To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% (P < e−4) and 81.3% (P < e−12) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn’s disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn’s disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn’s disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. Availability and implementation: nlp.case.edu/public/data/DMN Contact: rxx@case.edu PMID:26072493

  10. Prenatal Exposure to Arsenic and Cadmium Impacts Infectious Disease-Related Genes within the Glucocorticoid Receptor Signal Transduction Pathway

    PubMed Central

    Rager, Julia E.; Yosim, Andrew; Fry, Rebecca C.

    2014-01-01

    There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans. PMID:25479081

  11. Appearance of the pituitary factor Pit-1 increases chromatin remodeling at hypersensitive site III in the human GH locus.

    PubMed

    Yang, Xiaoyang; Jin, Yan; Cattini, Peter A

    2010-07-01

    Expression of pituitary and placental members of the human GH and chorionic somatomammotropin (CS) gene family is directed by an upstream remote locus control region (LCR). Pituitary-specific expression of GH requires direct binding of Pit-1 (listed as POU1F1 in the HUGO database) to sequences marked by a hypersensitive site (HS) region (HS I/II) 14.6 kb upstream of the GH-N gene (listed as GH1 in the HUGO database). We used human embryonic kidney 293 (HEK293) cells overexpressing wild-type and mutant Pit-1 proteins as a model system to gain insight into the mechanism by which Pit-1 gains access to the GH LCR. Addition of Pit-1 to these cells increased DNA accessibility at HS III, located 28 kb upstream of the human GH-N gene, in a POU homeodomain-dependent manner, as reflected by effects on histone hyperacetylation and RNA polymerase II activity. Direct binding of Pit-1 to HS III sequences is not supported. However, the potential for binding of ETS family members to this region has been demonstrated, and Pit-1 association with this ETS element in HS III sequences requires the POU homeodomain. Also, both ETS1 and ELK1 co-precipitate from human pituitary extracts using two independent sources of Pit-1 antibodies. Finally, overexpression of ELK1 or Pit-1 expression in HEK293 cells increased GH-N RNA levels. However, while ELK1 overexpression also stimulated placental CS RNA levels, the effect of Pit-1 appeared to correlate with ETS factor levels and target GH-N preferentially. These data are consistent with recruitment and an early role for Pit-1 in remodeling of the GH LCR at the constitutively open HS III through protein-protein interaction.

  12. The extraction of drug-disease correlations based on module distance in incomplete human interactome.

    PubMed

    Yu, Liang; Wang, Bingbo; Ma, Xiaoke; Gao, Lin

    2016-12-23

    Extracting drug-disease correlations is crucial in unveiling disease mechanisms, as well as discovering new indications of available drugs, or drug repositioning. Both the interactome and the knowledge of disease-associated and drug-associated genes remain incomplete. We present a new method to predict the associations between drugs and diseases. Our method is based on a module distance, which is originally proposed to calculate distances between modules in incomplete human interactome. We first map all the disease genes and drug genes to a combined protein interaction network. Then based on the module distance, we calculate the distances between drug gene sets and disease gene sets, and take the distances as the relationships of drug-disease pairs. We also filter possible false positive drug-disease correlations by p-value. Finally, we validate the top-100 drug-disease associations related to six drugs in the predicted results. The overlapping between our predicted correlations with those reported in Comparative Toxicogenomics Database (CTD) and literatures, and their enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways demonstrate our approach can not only effectively identify new drug indications, but also provide new insight into drug-disease discovery.

  13. The BioGRID Interaction Database: 2011 update

    PubMed Central

    Stark, Chris; Breitkreutz, Bobby-Joe; Chatr-aryamontri, Andrew; Boucher, Lorrie; Oughtred, Rose; Livstone, Michael S.; Nixon, Julie; Van Auken, Kimberly; Wang, Xiaodong; Shi, Xiaoqi; Reguly, Teresa; Rust, Jennifer M.; Winter, Andrew; Dolinski, Kara; Tyers, Mike

    2011-01-01

    The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions. PMID:21071413

  14. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis.

    PubMed

    Gao, Li; Zhang, Li-Jie; Li, Sheng-Hua; Wei, Li-Li; Luo, Bin; He, Rong-Quan; Xia, Shuang

    2018-03-06

    MiR-452-5p has been reported to be down-regulated in prostate cancer, affecting the development of this type of cancer. However, the molecular mechanism of miR-452-5p in prostate cancer remains unclear. Therefore, we investigated the network of target genes of miR-452-5p in prostate cancer using bioinformatics analyses. We first analyzed the expression profiles and prognostic value of miR-452-5p in prostate cancer tissues from a public database. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), PANTHER pathway analyses, and a disease ontology (DG) analysis were performed to find the molecular functions of the target genes from GSE datasets and miRWalk. Finally, we validated hub genes from the protein-protein interaction (PPI) networks of the target genes in the Human Protein Atlas (HPA) database and Gene Expression Profiling Interactive Analysis (GEPIA). Narrowing down the optimal target genes was conducted by seeking the common parts of up-regulated genes from GEPIA, down-regulated genes from GSE datasets, and predicted genes in miRWalk. Based on mining of GEO and ArrayExpress microarray chips and miRNA-Seq data in the TCGA database, which includes 1007 prostate cancer samples and 387 non-cancer samples, miR-452-5p is shown to be down-regulated in prostate cancer. GO, KEGG, and PANTHER pathway analyses suggested that the target genes might participate in important biological processes, such as transforming growth factor beta signaling and the positive regulation of brown fat cell differentiation and mesenchymal cell differentiation, as well as the Ras signaling pathway and pathways regulating the pluripotency of stem cells and arrhythmogenic right ventricular cardiomyopathy (ARVC). Nine genes-GABBR, PNISR, NTSR1, DOCK1, EREG, SFRP1, PTGS2, LEF1, and BMP2-were defined as hub genes in the PPI network. Three genes-FAM174B, SLC30A4, and SLIT1-were jointly shared by GEPIA, the GSE datasets, and miRWalk. Down-regulated miR-452-5p might play an essential role in the tumorigenesis of prostate cancer. Copyright © 2018. Published by Elsevier GmbH.

  15. SEA: a super-enhancer archive.

    PubMed

    Wei, Yanjun; Zhang, Shumei; Shang, Shipeng; Zhang, Bin; Li, Song; Wang, Xinyu; Wang, Fang; Su, Jianzhong; Wu, Qiong; Liu, Hongbo; Zhang, Yan

    2016-01-04

    Super-enhancers are large clusters of transcriptional enhancers regarded as having essential roles in driving the expression of genes that control cell identity during development and tumorigenesis. The construction of a genome-wide super-enhancer database is urgently needed to better understand super-enhancer-directed gene expression regulation for a given biology process. Here, we present a specifically designed web-accessible database, Super-Enhancer Archive (SEA, http://sea.edbc.org). SEA focuses on integrating super-enhancers in multiple species and annotating their potential roles in the regulation of cell identity gene expression. The current release of SEA incorporates 83 996 super-enhancers computationally or experimentally identified in 134 cell types/tissues/diseases, including human (75 439, three of which were experimentally identified), mouse (5879, five of which were experimentally identified), Drosophila melanogaster (1774) and Caenorhabditis elegans (904). To facilitate data extraction, SEA supports multiple search options, including species, genome location, gene name, cell type/tissue and super-enhancer name. The response provides detailed (epi)genetic information, incorporating cell type specificity, nearby genes, transcriptional factor binding sites, CRISPR/Cas9 target sites, evolutionary conservation, SNPs, H3K27ac, DNA methylation, gene expression and TF ChIP-seq data. Moreover, analytical tools and a genome browser were developed for users to explore super-enhancers and their roles in defining cell identity and disease processes in depth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Down-weighting overlapping genes improves gene set analysis

    PubMed Central

    2012-01-01

    Background The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set. Results In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results. Conclusions PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org. PMID:22713124

  17. AgeFactDB--the JenAge Ageing Factor Database--towards data integration in ageing research.

    PubMed

    Hühne, Rolf; Thalheim, Torsten; Sühnel, Jürgen

    2014-01-01

    AgeFactDB (http://agefactdb.jenage.de) is a database aimed at the collection and integration of ageing phenotype data including lifespan information. Ageing factors are considered to be genes, chemical compounds or other factors such as dietary restriction, whose action results in a changed lifespan or another ageing phenotype. Any information related to the effects of ageing factors is called an observation and is presented on observation pages. To provide concise access to the complete information for a particular ageing factor, corresponding observations are also summarized on ageing factor pages. In a first step, ageing-related data were primarily taken from existing databases such as the Ageing Gene Database--GenAge, the Lifespan Observations Database and the Dietary Restriction Gene Database--GenDR. In addition, we have started to include new ageing-related information. Based on homology data taken from the HomoloGene Database, AgeFactDB also provides observation and ageing factor pages of genes that are homologous to known ageing-related genes. These homologues are considered as candidate or putative ageing-related genes. AgeFactDB offers a variety of search and browse options, and also allows the download of ageing factor or observation lists in TSV, CSV and XML formats.

  18. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis.

    PubMed

    Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat

    2017-05-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.

  19. Coordination of Gene Expression of Arachidonic and Docosahexaenoic Acid Cascade Enzymes during Human Brain Development and Aging

    PubMed Central

    Ryan, Veronica H.; Primiani, Christopher T.; Rao, Jagadeesh S.; Ahn, Kwangmi; Rapoport, Stanley I.; Blanchard, Helene

    2014-01-01

    Background The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. Hypothesis AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. Methods The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Results Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Conclusions Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease. PMID:24963629

  20. SABRE: a method for assessing the stability of gene modules in complex tissues and subject populations.

    PubMed

    Shannon, Casey P; Chen, Virginia; Takhar, Mandeep; Hollander, Zsuzsanna; Balshaw, Robert; McManus, Bruce M; Tebbutt, Scott J; Sin, Don D; Ng, Raymond T

    2016-11-14

    Gene network inference (GNI) algorithms can be used to identify sets of coordinately expressed genes, termed network modules from whole transcriptome gene expression data. The identification of such modules has become a popular approach to systems biology, with important applications in translational research. Although diverse computational and statistical approaches have been devised to identify such modules, their performance behavior is still not fully understood, particularly in complex human tissues. Given human heterogeneity, one important question is how the outputs of these computational methods are sensitive to the input sample set, or stability. A related question is how this sensitivity depends on the size of the sample set. We describe here the SABRE (Similarity Across Bootstrap RE-sampling) procedure for assessing the stability of gene network modules using a re-sampling strategy, introduce a novel criterion for identifying stable modules, and demonstrate the utility of this approach in a clinically-relevant cohort, using two different gene network module discovery algorithms. The stability of modules increased as sample size increased and stable modules were more likely to be replicated in larger sets of samples. Random modules derived from permutated gene expression data were consistently unstable, as assessed by SABRE, and provide a useful baseline value for our proposed stability criterion. Gene module sets identified by different algorithms varied with respect to their stability, as assessed by SABRE. Finally, stable modules were more readily annotated in various curated gene set databases. The SABRE procedure and proposed stability criterion may provide guidance when designing systems biology studies in complex human disease and tissues.

  1. Evolution of the CYP2D gene cluster in humans and four non-human primates.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2011-01-01

    The human cytochrome P450 2D6 (CYP2D6) is a primary enzyme involved in the metabolism of about 25% of commonly used therapeutic drugs. CYP2D6 belongs to the CYP2D subfamily, a gene cluster located on chromosome 22, which comprises the CYP2D6 gene and pseudogenes CYP2D7P and CYP2D8P. Although the chemical and physiological properties of CYP2D6 have been extensively studied, there has been no study to date on molecular evolution of the CYP2D subfamily in the human genome. Such knowledge could greatly contribute to the understanding of drug metabolism in humans because it makes us to know when and how the current metabolic system has been constructed. The knowledge moreover can be useful to find differences in exogenous substrates in a particular metabolism between human and other animals such as experimental animals. Here, we conducted a preliminary study to investigate the evolution and gene organization of the CYP2D subfamily, focused on humans and four non-human primates (chimpanzees, orangutans, rhesus monkeys, and common marmosets). Our results indicate that CYP2D7P has been duplicated from CYP2D6 before the divergence between humans and great apes, whereas CYP2D6 and CYP2D8P have been already present in the stem lineages of New World monkeys and Catarrhini. Furthermore, the origin of the CYP2D subfamily in the human genome can be traced back to before the divergence between amniotes and amphibians. Our analyses also show that reported chimeric sequences of the CYP2D6 and CYP2D7 genes in the chimpanzee genome appear to be exchanged in its genome database.

  2. Bioinformatic prediction of leader genes in human periodontitis.

    PubMed

    Covani, Ugo; Marconcini, Simone; Giacomelli, Luca; Sivozhelevov, Victor; Barone, Antonio; Nicolini, Claudio

    2008-10-01

    Genes involved in different biologic processes form complex interaction networks. However, only a few have a high number of interactions with the other genes in the network. In previous bioinformatics and experimental studies concerning the T lymphocyte cell cycle, these genes were identified and termed "leader genes." In this work, genes involved in human periodontitis were tentatively identified and ranked according to their number of interactions to obtain a preliminary, broader view of molecular mechanisms of periodontitis and plan targeted experimentation. Genes were identified with interrelated queries of several databases. The interactions among these genes were mapped and given a significance score. The weighted number of links (weighted sum of scores for every interaction in which the given gene is involved) was calculated for each gene. Genes were clustered according to this parameter. The genes in the highest cluster were termed leader genes. Sixty-one genes involved or potentially involved in periodontitis were identified. Only five were identified as leader genes, whereas 12 others were ranked in an immediately lower cluster. For 10 of 17 genes there is evidence of involvement in periodontitis; seven new genes that are potentially involved in this disease were identified. The involvement in periodontitis has been completely established for only two leader genes. We applied a validated bioinformatics algorithm to increase our knowledge of molecular mechanisms of periodontitis. Even with the limitations of this ab initio analysis, this theoretical study can suggest ad hoc experimentation targeted on significant genes and, therefore, simpler than mass-scale molecular genomics. Moreover, the identification of leader genes might suggest new potential risk factors and therapeutic targets.

  3. Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens.

    PubMed

    Adel, Susan; Kakularam, Kumar Reddy; Horn, Thomas; Reddanna, Pallu; Kuhn, Hartmut; Heydeck, Dagmar

    2015-01-01

    Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute promyelocytic leukemia cells and representing a new member of a family of interferon-stimulated genes

    PubMed Central

    Yu, Man; Tong, Jian-Hua; Mao, Mao; Kan, Li-Xin; Liu, Meng-Min; Sun, Yi-Wu; Fu, Gang; Jing, Yong-Kui; Yu, Long; Lepaslier, Denis; Lanotte, Michel; Wang, Zhen-Yi; Chen, Zhu; Waxman, Samuel; Wang, Ya-Xin; Tan, Jia-Zhen; Chen, Sai-Juan

    1997-01-01

    In a cell line (NB4) derived from a patient with acute promyelocytic leukemia, all-trans-retinoic acid (ATRA) and interferon (IFN) induce the expression of a novel gene we call RIG-G (for retinoic acid-induced gene G). This gene codes for a 58-kDa protein containing 490 amino acids with several potential sites for post-translational modification. In untreated NB4 cells, the expression of RIG-G is undetectable. ATRA treatment induces the transcriptional expression of RIG-G relatively late (12–24 hr) in a protein synthesis-dependent manner, whereas IFN-α induces its expression early (30 min to 3 hr). Database search has revealed a high-level homology between RIG-G and several IFN-stimulated genes in human (ISG54K, ISG56K, and IFN-inducible and retinoic acid-inducible 58K gene) and some other species, defining a well conserved gene family. The gene is composed of two exons and has been mapped by fluorescence in situ hybridization to chromosome 10q24, where two other human IFN-stimulated gene members are localized. A synergistic induction of RIG-G expression in NB4 cells by combined treatment with ATRA and IFNs suggests that a collaboration exists between their respective signaling pathways. PMID:9207104

  5. Drug-Path: a database for drug-induced pathways

    PubMed Central

    Zeng, Hui; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661

  6. Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.

    PubMed

    Woods, John O; Singh-Blom, Ulf Martin; Laurent, Jon M; McGary, Kriston L; Marcotte, Edward M

    2013-06-21

    Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such "orthologous phenotypes," or "phenologs," are examples of deep homology, and may be used to predict additional candidate disease genes. In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data--from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans--establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene-phenotype associations, as for the Arabidopsis response to vernalization phenotype. We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.

  7. Automated Gene Ontology annotation for anonymous sequence data.

    PubMed

    Hennig, Steffen; Groth, Detlef; Lehrach, Hans

    2003-07-01

    Gene Ontology (GO) is the most widely accepted attempt to construct a unified and structured vocabulary for the description of genes and their products in any organism. Annotation by GO terms is performed in most of the current genome projects, which besides generality has the advantage of being very convenient for computer based classification methods. However, direct use of GO in small sequencing projects is not easy, especially for species not commonly represented in public databases. We present a software package (GOblet), which performs annotation based on GO terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. The paper also addresses the reliability of automated GO annotations by using a reference set of more than 6000 human proteins. The GOblet server is accessible at http://goblet.molgen.mpg.de.

  8. The GermOnline cross-species systems browser provides comprehensive information on genes and gene products relevant for sexual reproduction.

    PubMed

    Gattiker, Alexandre; Niederhauser-Wiederkehr, Christa; Moore, James; Hermida, Leandro; Primig, Michael

    2007-01-01

    We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at http://www.germonline.org/.

  9. DynGO: a tool for visualizing and mining of Gene Ontology and its associations

    PubMed Central

    Liu, Hongfang; Hu, Zhang-Zhi; Wu, Cathy H

    2005-01-01

    Background A large volume of data and information about genes and gene products has been stored in various molecular biology databases. A major challenge for knowledge discovery using these databases is to identify related genes and gene products in disparate databases. The development of Gene Ontology (GO) as a common vocabulary for annotation allows integrated queries across multiple databases and identification of semantically related genes and gene products (i.e., genes and gene products that have similar GO annotations). Meanwhile, dozens of tools have been developed for browsing, mining or editing GO terms, their hierarchical relationships, or their "associated" genes and gene products (i.e., genes and gene products annotated with GO terms). Tools that allow users to directly search and inspect relations among all GO terms and their associated genes and gene products from multiple databases are needed. Results We present a standalone package called DynGO, which provides several advanced functionalities in addition to the standard browsing capability of the official GO browsing tool (AmiGO). DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations. The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. Conclusion We have presented a standalone package DynGO that provides functionalities to search and browse GO and its association databases as well as several additional functions such as batch retrieval and semantic retrieval. The complete documentation and software are freely available for download from the website . PMID:16091147

  10. Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease

    NASA Astrophysics Data System (ADS)

    Petriz, Bernardo A.; Franco, Octávio L.

    2017-01-01

    Classic studies on phylotype profiling are limited to the identification of microbial constituents, where information is lacking about the molecular interaction of these bacterial communities with the host genome and the possible outcomes in host biology. A range of OMICs approaches have provided great progress linking the microbiota to health and disease. However, the investigation of this context through proteomic mass spectrometry-based tools is still being improved. Therefore, metaproteomics or community proteogenomics has emerged as a complementary approach to metagenomic data, as a field in proteomics aiming to perform large-scale characterization of proteins from environmental microbiota such as the human gut. The advances in molecular separation methods coupled with mass spectrometry (e.g. LC-MS/MS) and proteome bioinformatics have been fundamental in these novel large-scale metaproteomic studies, which have further been performed in a wide range of samples including soil, plant and human environments. Metaproteomic studies will make major progress if a comprehensive database covering the genes and expresses proteins from all gut microbial species is developed. To this end, we here present some of the main limitations of metaproteomic studies in complex microbiota environments such as the gut, also addressing the up-to-date pipelines in sample preparation prior to fractionation/separation and mass spectrometry analysis. In addition, a novel approach to the limitations of metagenomic databases is also discussed. Finally, prospects are addressed regarding the application of metaproteomic analysis using a unified host-microbiome gene database and other meta-OMICs platforms.

  11. The Natural History of Class I Primate Alcohol Dehydrogenases Includes Gene Duplication, Gene Loss, and Gene Conversion

    PubMed Central

    Carrigan, Matthew A.; Uryasev, Oleg; Davis, Ross P.; Zhai, LanMin; Hurley, Thomas D.; Benner, Steven A.

    2012-01-01

    Background Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids. Methodology/Principal Findings To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines). Database mining then identified novel ADH1 paralogs in both macaque (an OWM) and marmoset (a NWM). These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding) sequences and intronic sequences. Conclusions/Significance We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels). The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs) and catarrhines (OWMs and hominoids) having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates, followed by the loss of an ADH1 paralog in the human lineage. PMID:22859968

  12. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies.

    PubMed

    Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja

    2013-02-14

    Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.

  13. Identification of phylogenetic position in the Chlamydiaceae family for Chlamydia strains released from monkeys and humans with chlamydial pathology.

    PubMed

    Karaulov, Alexander; Aleshkin, Vladimir; Slobodenyuk, Vladimir; Grechishnikova, Olga; Afanasyev, Stanislav; Lapin, Boris; Dzhikidze, Eteri; Nesvizhsky, Yuriy; Evsegneeva, Irina; Voropayeva, Elena; Afanasyev, Maxim; Aleshkin, Andrei; Metelskaya, Valeria; Yegorova, Ekaterina; Bayrakova, Alexandra

    2010-01-01

    Based on the results of the comparative analysis concerning relatedness and evolutional difference of the 16S-23S nucleotide sequences of the middle ribosomal cluster and 23S rRNA I domain, and based on identification of phylogenetic position for Chlamydophila pneumoniae and Chlamydia trichomatis strains released from monkeys, relatedness of the above stated isolates with similar strains released from humans and with strains having nucleotide sequences presented in the GenBank electronic database has been detected for the first time ever. Position of these isolates in the Chlamydiaceae family phylogenetic tree has been identified. The evolutional position of the investigated original Chlamydia and Chlamydophila strains close to analogous strains from the Gen-Bank electronic database has been demonstrated. Differences in the 16S-23S nucleotide sequence of the middle ribosomal cluster and 23S rRNA I domain of plasmid and nonplasmid Chlamydia trachomatis strains released from humans and monkeys relative to different genotype groups (group B-B, Ba, D, Da, E, L1, L2, L2a; intermediate group-F, G, Ga) have been revealed for the first time ever. Abnormality in incA chromosomal gene expression resulting in Chlamydia life development cycle disorder, and decrease of Chlamydia virulence can be related to probable changes in the nucleotide sequence of the gene under consideration.

  14. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    PubMed Central

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  15. SoyFN: a knowledge database of soybean functional networks.

    PubMed

    Xu, Yungang; Guo, Maozu; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Many databases for soybean genomic analysis have been built and made publicly available, but few of them contain knowledge specifically targeting the omics-level gene-gene, gene-microRNA (miRNA) and miRNA-miRNA interactions. Here, we present SoyFN, a knowledge database of soybean functional gene networks and miRNA functional networks. SoyFN provides user-friendly interfaces to retrieve, visualize, analyze and download the functional networks of soybean genes and miRNAs. In addition, it incorporates much information about KEGG pathways, gene ontology annotations and 3'-UTR sequences as well as many useful tools including SoySearch, ID mapping, Genome Browser, eFP Browser and promoter motif scan. SoyFN is a schema-free database that can be accessed as a Web service from any modern programming language using a simple Hypertext Transfer Protocol call. The Web site is implemented in Java, JavaScript, PHP, HTML and Apache, with all major browsers supported. We anticipate that this database will be useful for members of research communities both in soybean experimental science and bioinformatics. Database URL: http://nclab.hit.edu.cn/SoyFN.

  16. Gene Discovery through Genomic Sequencing of Brucella abortus

    PubMed Central

    Sánchez, Daniel O.; Zandomeni, Ruben O.; Cravero, Silvio; Verdún, Ramiro E.; Pierrou, Ester; Faccio, Paula; Diaz, Gabriela; Lanzavecchia, Silvia; Agüero, Fernán; Frasch, Alberto C. C.; Andersson, Siv G. E.; Rossetti, Osvaldo L.; Grau, Oscar; Ugalde, Rodolfo A.

    2001-01-01

    Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10−5) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology to Agrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified several B. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene from Salmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery. PMID:11159979

  17. Lynx: a database and knowledge extraction engine for integrative medicine

    PubMed Central

    Sulakhe, Dinanath; Balasubramanian, Sandhya; Xie, Bingqing; Feng, Bo; Taylor, Andrew; Wang, Sheng; Berrocal, Eduardo; Dave, Utpal; Xu, Jinbo; Börnigen, Daniela; Gilliam, T. Conrad; Maltsev, Natalia

    2014-01-01

    We have developed Lynx (http://lynx.ci.uchicago.edu)—a web-based database and a knowledge extraction engine, supporting annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Its underlying knowledge base (LynxKB) integrates various classes of information from >35 public databases and private collections, as well as manually curated data from our group and collaborators. Lynx provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization to assist the user in extracting meaningful knowledge from LynxKB and experimental data, whereas its service-oriented architecture provides public access to LynxKB and its analytical tools via user-friendly web services and interfaces. PMID:24270788

  18. Transcriptome analysis of duck liver and identification of differentially expressed transcripts in response to duck hepatitis A virus genotype C infection.

    PubMed

    Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua

    2013-01-01

    Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.

  19. An informatics approach to integrating genetic and neurological data in speech and language neuroscience.

    PubMed

    Bohland, Jason W; Myers, Emma M; Kim, Esther

    2014-01-01

    A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database ( http://neurospeech.org/sldb ) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.

  20. Functional Abstraction as a Method to Discover Knowledge in Gene Ontologies

    PubMed Central

    Ultsch, Alfred; Lötsch, Jörn

    2014-01-01

    Computational analyses of functions of gene sets obtained in microarray analyses or by topical database searches are increasingly important in biology. To understand their functions, the sets are usually mapped to Gene Ontology knowledge bases by means of over-representation analysis (ORA). Its result represents the specific knowledge of the functionality of the gene set. However, the specific ontology typically consists of many terms and relationships, hindering the understanding of the ‘main story’. We developed a methodology to identify a comprehensibly small number of GO terms as “headlines” of the specific ontology allowing to understand all central aspects of the roles of the involved genes. The Functional Abstraction method finds a set of headlines that is specific enough to cover all details of a specific ontology and is abstract enough for human comprehension. This method exceeds the classical approaches at ORA abstraction and by focusing on information rather than decorrelation of GO terms, it directly targets human comprehension. Functional abstraction provides, with a maximum of certainty, information value, coverage and conciseness, a representation of the biological functions in a gene set plays a role. This is the necessary means to interpret complex Gene Ontology results thus strengthening the role of functional genomics in biomarker and drug discovery. PMID:24587272

  1. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus)

    PubMed Central

    2013-01-01

    Background Genomic resources for plant and animal species that are under exploitation primarily for human consumption are increasingly important, among other things, for understanding physiological processes and for establishing adequate genetic selection programs. Current available techniques for high-throughput sequencing have been implemented in a number of species, including fish, to obtain a proper description of the transcriptome. The objective of this study was to generate a comprehensive transcriptomic database in turbot, a highly priced farmed fish species in Europe, with potential expansion to other areas of the world, for which there are unsolved production bottlenecks, to understand better reproductive- and immune-related functions. This information is essential to implement marker assisted selection programs useful for the turbot industry. Results Expressed sequence tags were generated by Sanger sequencing of cDNA libraries from different immune-related tissues after several parasitic challenges. The resulting database (“Turbot 2 database”) was enlarged with sequences generated from a 454 sequencing run of brain-hypophysis-gonadal axis-derived RNA obtained from turbot at different development stages. The assembly of Sanger and 454 sequences generated 52,427 consensus sequences (“Turbot 3 database”), of which 23,661 were successfully annotated. A total of 1,410 sequences were confirmed to be related to reproduction and key genes involved in sex differentiation and maturation were identified for the first time in turbot (AR, AMH, SRY-related genes, CYP19A, ZPGs, STAR FSHR, etc.). Similarly, 2,241 sequences were related to the immune system and several novel key immune genes were identified (BCL, TRAF, NCK, CD28 and TOLLIP, among others). The number of genes of many relevant reproduction- and immune-related pathways present in the database was 50–90% of the total gene count of each pathway. In addition, 1,237 microsatellites and 7,362 single nucleotide polymorphisms (SNPs) were also compiled. Further, 2,976 putative natural antisense transcripts (NATs) including microRNAs were also identified. Conclusions The combined sequencing strategies employed here significantly increased the turbot genomic resources available, including 34,400 novel sequences. The generated database contains a larger number of genes relevant for reproduction- and immune-associated studies, with an excellent coverage of most genes present in many relevant physiological pathways. This database also allowed the identification of many microsatellites and SNP markers that will be very useful for population and genome screening and a valuable aid in marker assisted selection programs. PMID:23497389

  2. The curation paradigm and application tool used for manual curation of the scientific literature at the Comparative Toxicogenomics Database

    PubMed Central

    Davis, Allan Peter; Wiegers, Thomas C.; Murphy, Cynthia G.; Mattingly, Carolyn J.

    2011-01-01

    The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the effects of environmental chemicals on human health. CTD biocurators read the scientific literature and convert free-text information into a structured format using official nomenclature, integrating third party controlled vocabularies for chemicals, genes, diseases and organisms, and a novel controlled vocabulary for molecular interactions. Manual curation produces a robust, richly annotated dataset of highly accurate and detailed information. Currently, CTD describes over 349 000 molecular interactions between 6800 chemicals, 20 900 genes (for 330 organisms) and 4300 diseases that have been manually curated from over 25 400 peer-reviewed articles. This manually curated data are further integrated with other third party data (e.g. Gene Ontology, KEGG and Reactome annotations) to generate a wealth of toxicogenomic relationships. Here, we describe our approach to manual curation that uses a powerful and efficient paradigm involving mnemonic codes. This strategy allows biocurators to quickly capture detailed information from articles by generating simple statements using codes to represent the relationships between data types. The paradigm is versatile, expandable, and able to accommodate new data challenges that arise. We have incorporated this strategy into a web-based curation tool to further increase efficiency and productivity, implement quality control in real-time and accommodate biocurators working remotely. Database URL: http://ctd.mdibl.org PMID:21933848

  3. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    PubMed

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.

  4. PlantGI: a database for searching gene indices in agricultural plants developed at NIAB, Korea

    PubMed Central

    Kim, Chang Kug; Choi, Ji Weon; Park, DongSuk; Kang, Man Jung; Seol, Young-Joo; Hyun, Do Yoon; Hahn, Jang Ho

    2008-01-01

    The Plant Gene Index (PlantGI) database is developed as a web-based search system with search capabilities for keywords to provide information on gene indices specifically for agricultural plants. The database contains specific Gene Index information for ten agricultural species, namely, rice, Chinese cabbage, wheat, maize, soybean, barley, mushroom, Arabidopsis, hot pepper and tomato. PlantGI differs from other Gene Index databases in being specific to agricultural plant species and thus complements services from similar other developments. The database includes options for interactive mining of EST CONTIGS and assembled EST data for user specific keyword queries. The current version of PlantGI contains a total of 34,000 EST CONTIGS data for rice (8488 records), wheat (8560 records), maize (4570 records), soybean (3726 records), barley (3417 records), Chinese cabbage (3602 records), tomato (1236 records), hot pepper (998 records), mushroom (130 records) and Arabidopsis (8 records). Availability The database is available for free at http://www.niab.go.kr/nabic/. PMID:18685722

  5. IntPath--an integrated pathway gene relationship database for model organisms and important pathogens.

    PubMed

    Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon

    2012-01-01

    Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath. We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that often hamper effective use of pathway databases. We have included four organisms in the current release of IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath.

  6. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression.

    PubMed

    Xu, Yan; Hu, Brian; Alnajm, Sammy S; Lu, Yin; Huang, Yangxin; Allen-Gipson, Diane; Cheng, Feng

    2015-01-01

    Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information for drug development against smoking-related diseases. The SEGEL web server is available online at http://www.chengfeng.info/smoking_database.html.

  8. Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    PubMed Central

    Horton, Roger; Gibson, Richard; Coggill, Penny; Miretti, Marcos; Allcock, Richard J.; Almeida, Jeff; Forbes, Simon; Gilbert, James G. R.; Halls, Karen; Harrow, Jennifer L.; Hart, Elizabeth; Howe, Kevin; Jackson, David K.; Palmer, Sophie; Roberts, Anne N.; Sims, Sarah; Stewart, C. Andrew; Traherne, James A.; Trevanion, Steve; Wilming, Laurens; Rogers, Jane; de Jong, Pieter J.; Elliott, John F.; Sawcer, Stephen; Todd, John A.; Trowsdale, John

    2008-01-01

    The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. PMID:18193213

  9. Sequence verification as quality-control step for production of cDNA microarrays.

    PubMed

    Taylor, E; Cogdell, D; Coombes, K; Hu, L; Ramdas, L; Tabor, A; Hamilton, S; Zhang, W

    2001-07-01

    To generate cDNA arrays in our core laboratory, we amplified about 2300 PCR products from a human, sequence-verified cDNA clone library. As a quality-control step, we sequenced the PCR products immediately before printing. The sequence information was used to search the GenBank database to confirm the identities. Although these clones were previously sequence verified by the company, we found that only 79% of the clones matched the original database after handling. Our experience strongly indicates the necessity to sequence verify the clones at the final stage before printing on microarray slides and to modify the gene list accordingly.

  10. Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder.

    PubMed

    Saeliw, Thanit; Tangsuwansri, Chayanin; Thongkorn, Surangrat; Chonchaiya, Weerasak; Suphapeetiporn, Kanya; Mutirangura, Apiwat; Tencomnao, Tewin; Hu, Valerie W; Sarachana, Tewarit

    2018-01-01

    Alu elements are a group of repetitive elements that can influence gene expression through CpG residues and transcription factor binding. Altered gene expression and methylation profiles have been reported in various tissues and cell lines from individuals with autism spectrum disorder (ASD). However, the role of Alu elements in ASD remains unclear. We thus investigated whether Alu elements are associated with altered gene expression profiles in ASD. We obtained five blood-based gene expression profiles from the Gene Expression Omnibus database and human Alu-inserted gene lists from the TranspoGene database. Differentially expressed genes (DEGs) in ASD were identified from each study and overlapped with the human Alu-inserted genes. The biological functions and networks of Alu-inserted DEGs were then predicted by Ingenuity Pathway Analysis (IPA). A combined bisulfite restriction analysis of lymphoblastoid cell lines (LCLs) derived from 36 ASD and 20 sex- and age-matched unaffected individuals was performed to assess the global DNA methylation levels within Alu elements, and the Alu expression levels were determined by quantitative RT-PCR. In ASD blood or blood-derived cells, 320 Alu-inserted genes were reproducibly differentially expressed. Biological function and pathway analysis showed that these genes were significantly associated with neurodevelopmental disorders and neurological functions involved in ASD etiology. Interestingly, estrogen receptor and androgen signaling pathways implicated in the sex bias of ASD, as well as IL-6 signaling and neuroinflammation signaling pathways, were also highlighted. Alu methylation was not significantly different between the ASD and sex- and age-matched control groups. However, significantly altered Alu methylation patterns were observed in ASD cases sub-grouped based on Autism Diagnostic Interview-Revised scores compared with matched controls. Quantitative RT-PCR analysis of Alu expression also showed significant differences between ASD subgroups. Interestingly, Alu expression was correlated with methylation status in one phenotypic ASD subgroup. Alu methylation and expression were altered in LCLs from ASD subgroups. Our findings highlight the association of Alu elements with gene dysregulation in ASD blood samples and warrant further investigation. Moreover, the classification of ASD individuals into subgroups based on phenotypes may be beneficial and could provide insights into the still unknown etiology and the underlying mechanisms of ASD.

  11. Introducing meta-services for biomedical information extraction

    PubMed Central

    Leitner, Florian; Krallinger, Martin; Rodriguez-Penagos, Carlos; Hakenberg, Jörg; Plake, Conrad; Kuo, Cheng-Ju; Hsu, Chun-Nan; Tsai, Richard Tzong-Han; Hung, Hsi-Chuan; Lau, William W; Johnson, Calvin A; Sætre, Rune; Yoshida, Kazuhiro; Chen, Yan Hua; Kim, Sun; Shin, Soo-Yong; Zhang, Byoung-Tak; Baumgartner, William A; Hunter, Lawrence; Haddow, Barry; Matthews, Michael; Wang, Xinglong; Ruch, Patrick; Ehrler, Frédéric; Özgür, Arzucan; Erkan, Güneş; Radev, Dragomir R; Krauthammer, Michael; Luong, ThaiBinh; Hoffmann, Robert; Sander, Chris; Valencia, Alfonso

    2008-01-01

    We introduce the first meta-service for information extraction in molecular biology, the BioCreative MetaServer (BCMS; ). This prototype platform is a joint effort of 13 research groups and provides automatically generated annotations for PubMed/Medline abstracts. Annotation types cover gene names, gene IDs, species, and protein-protein interactions. The annotations are distributed by the meta-server in both human and machine readable formats (HTML/XML). This service is intended to be used by biomedical researchers and database annotators, and in biomedical language processing. The platform allows direct comparison, unified access, and result aggregation of the annotations. PMID:18834497

  12. Getting ready for the Human Phenome Project: the 2012 forum of the Human Variome Project.

    PubMed

    Oetting, William S; Robinson, Peter N; Greenblatt, Marc S; Cotton, Richard G; Beck, Tim; Carey, John C; Doelken, Sandra C; Girdea, Marta; Groza, Tudor; Hamilton, Carol M; Hamosh, Ada; Kerner, Berit; MacArthur, Jacqueline A L; Maglott, Donna R; Mons, Barend; Rehm, Heidi L; Schofield, Paul N; Searle, Beverly A; Smedley, Damian; Smith, Cynthia L; Bernstein, Inge Thomsen; Zankl, Andreas; Zhao, Eric Y

    2013-04-01

    A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project." Understanding the genetic contribution to both rare single-gene "Mendelian" disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort toward this important goal. © 2013 Wiley Periodicals, Inc.

  13. Report on the Human Genome Initiative for the Office of Health and Environmental Research

    DOE R&D Accomplishments Database

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large, multi-year, multidisciplinary, technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA, major new analytical methods for ordering and sequencing, theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted, broadly based, scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time, single laboratory effort into a coordinated, worldwide, comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude, but so will be the benefit to biological understanding, new technology and the diagnosis and treatment of human disease.

  14. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    USDA-ARS?s Scientific Manuscript database

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  15. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    PubMed Central

    Muller, Jean; Mehlen, André; Vetter, Guillaume; Yatskou, Mikalai; Muller, Arnaud; Chalmel, Frédéric; Poch, Olivier; Friederich, Evelyne; Vallar, Laurent

    2007-01-01

    Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI) allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our data demonstrate that Actichip is a powerful alternative to commercial high density microarrays for cytoskeleton gene profiling in normal or pathological samples. Actichip is available upon request. PMID:17727702

  16. Integrative genomic analyses of the histamine H1 receptor and its role in cancer prediction.

    PubMed

    Wang, Minghai; Wei, Xiaolong; Shi, Lianghui; Chen, Bin; Zhao, Guohai; Yang, Haiwei

    2014-04-01

    The human histamine receptor H1 (HRH1) gene is located on chromosome 3p25 and encodes for a 487 amino acid G protein-coupled receptor (GPCR) with a long third intracellular loop (IL3). The HRH1 predominantly couples to Gαq/11 proteins, leading to the activation of phospholipase C (PLC) and subsequent release of the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) followed by the activation of PKC and the release of [Ca2+]i. In the present study, we identified HRH1 genes from 14 vertebrate genomes and found that HRH1 exists in all types of vertebrates including fish, amphibians, birds and mammals. We identified 88 SNPs including 4 available alleles disrupting an existing exonic splicing enhancer and 84 SNPs causing missense mutation, which may impact the effect of histamine on the HRH1 protein. We found that the human HRH1 gene was expressed in many tissues or organs, and predominant expression of HRH1 was shown in the bone marrow, whole blood, lymph node, thymus, brain, cerebellum, retina, spinal cord, heart, smooth muscle, skeletal muscle, small intestine, colon, adipocytes, kidney, liver, lung, pancreas, thyroid salivary gland, skin, ovary, uterus, placenta, prostate and testis. When searched in the PrognoScan database, human HRH1 was also found to be expressed in bladder cancer, blood cancer, brain cancer, breast cancer, colorectal cancer, eye cancer, head and neck cancer, lung cancer, ovarian cancer, skin cancer and soft tissue cancer tissues. The relationship between the expression of HRH1 and prognosis was found to vary in different types of cancers, even in the same cancer from different databases. This implies that the function of HRH1 in these tumors may be multidimensional. GR, STAT5A and c-Myb regulatory transcription factor binding sites were identified in the HRH1 gene upstream (promoter) region, which may be involved in the effect of HRH1 in tumors.

  17. OGRO: The Overview of functionally characterized Genes in Rice online database.

    PubMed

    Yamamoto, Eiji; Yonemaru, Jun-Ichi; Yamamoto, Toshio; Yano, Masahiro

    2012-12-01

    The high-quality sequence information and rich bioinformatics tools available for rice have contributed to remarkable advances in functional genomics. To facilitate the application of gene function information to the study of natural variation in rice, we comprehensively searched for articles related to rice functional genomics and extracted information on functionally characterized genes. As of 31 March 2012, 702 functionally characterized genes were annotated. This number represents about 1.6% of the predicted loci in the Rice Annotation Project Database. The compiled gene information is organized to facilitate direct comparisons with quantitative trait locus (QTL) information in the Q-TARO database. Comparison of genomic locations between functionally characterized genes and the QTLs revealed that QTL clusters were often co-localized with high-density gene regions, and that the genes associated with the QTLs in these clusters were different genes, suggesting that these QTL clusters are likely to be explained by tightly linked but distinct genes. Information on the functionally characterized genes compiled during this study is now available in the O verview of Functionally Characterized G enes in R ice O nline database (OGRO) on the Q-TARO website ( http://qtaro.abr.affrc.go.jp/ogro ). The database has two interfaces: a table containing gene information, and a genome viewer that allows users to compare the locations of QTLs and functionally characterized genes. OGRO on Q-TARO will facilitate a candidate-gene approach to identifying the genes responsible for QTLs. Because the QTL descriptions in Q-TARO contain information on agronomic traits, such comparisons will also facilitate the annotation of functionally characterized genes in terms of their effects on traits important for rice breeding. The increasing amount of information on rice gene function being generated from mutant panels and other types of studies will make the OGRO database even more valuable in the future.

  18. Online Analytical Processing (OLAP): A Fast and Effective Data Mining Tool for Gene Expression Databases

    PubMed Central

    2005-01-01

    Gene expression databases contain a wealth of information, but current data mining tools are limited in their speed and effectiveness in extracting meaningful biological knowledge from them. Online analytical processing (OLAP) can be used as a supplement to cluster analysis for fast and effective data mining of gene expression databases. We used Analysis Services 2000, a product that ships with SQLServer2000, to construct an OLAP cube that was used to mine a time series experiment designed to identify genes associated with resistance of soybean to the soybean cyst nematode, a devastating pest of soybean. The data for these experiments is stored in the soybean genomics and microarray database (SGMD). A number of candidate resistance genes and pathways were found. Compared to traditional cluster analysis of gene expression data, OLAP was more effective and faster in finding biologically meaningful information. OLAP is available from a number of vendors and can work with any relational database management system through OLE DB. PMID:16046824

  19. The insertional history of an active family of L1 retrotransposons in humans.

    PubMed

    Boissinot, Stéphane; Entezam, Ali; Young, Lynn; Munson, Peter J; Furano, Anthony V

    2004-07-01

    As humans contain a currently active L1 (LINE-1) non-LTR retrotransposon family (Ta-1), the human genome database likely provides only a partial picture of Ta-1-generated diversity. We used a non-biased method to clone Ta-1 retrotransposon-containing loci from representatives of four ethnic populations. We obtained 277 distinct Ta-1 loci and identified an additional 67 loci in the human genome database. This collection represents approximately 90% of the Ta-1 population in the individuals examined and is thus more representative of the insertional history of Ta-1 than the human genome database, which lacked approximately 40% of our cloned Ta-1 elements. As both polymorphic and fixed Ta-1 elements are as abundant in the GC-poor genomic regions as in ancestral L1 elements, the enrichment of L1 elements in GC-poor areas is likely due to insertional bias rather than selection. Although the chromosomal distribution of Ta-1 inserts is generally a function of chromosomal length and gene density, chromosome 4 significantly deviates from this pattern and has been much more hospitable to Ta-1 insertions than any other chromosome. Also, the intra-chromosomal distribution of Ta-1 elements is not uniform. Ta-1 elements tend to cluster, and the maximal gaps between Ta-1 inserts are larger than would be expected from a model of uniform random insertion. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN

  20. Evaluating the quality of Marfan genotype-phenotype correlations in existing FBN1 databases.

    PubMed

    Groth, Kristian A; Von Kodolitsch, Yskert; Kutsche, Kerstin; Gaustadnes, Mette; Thorsen, Kasper; Andersen, Niels H; Gravholt, Claus H

    2017-07-01

    Genetic FBN1 testing is pivotal for confirming the clinical diagnosis of Marfan syndrome. In an effort to evaluate variant causality, FBN1 databases are often used. We evaluated the current databases regarding FBN1 variants and validated associated phenotype records with a new Marfan syndrome geno-phenotyping tool called the Marfan score. We evaluated four databases (UMD-FBN1, ClinVar, the Human Gene Mutation Database (HGMD), and Uniprot) containing 2,250 FBN1 variants supported by 4,904 records presented in 307 references. The Marfan score calculated for phenotype data from the records quantified variant associations with Marfan syndrome phenotype. We calculated a Marfan score for 1,283 variants, of which we confirmed the database diagnosis of Marfan syndrome in 77.1%. This represented only 35.8% of the total registered variants; 18.5-33.3% (UMD-FBN1 versus HGMD) of variants associated with Marfan syndrome in the databases could not be confirmed by the recorded phenotype. FBN1 databases can be imprecise and incomplete. Data should be used with caution when evaluating FBN1 variants. At present, the UMD-FBN1 database seems to be the biggest and best curated; therefore, it is the most comprehensive database. However, the need for better genotype-phenotype curated databases is evident, and we hereby present such a database.Genet Med advance online publication 01 December 2016.

  1. Genome-wide identification of genetic determinants for the cytotoxicity of perifosine

    PubMed Central

    2008-01-01

    Perifosine belongs to the class of alkylphospholipid analogues, which act primarily at the cell membrane, thereby targeting signal transduction pathways. In phase I/II clinical trials, perifosine has induced tumour regression and caused disease stabilisation in a variety of tumour types. The genetic determinants responsible for its cytotoxicity have not been comprehensively studied, however. We performed a genome-wide analysis to identify genes whose expression levels or genotypic variation were correlated with the cytotoxicity of perifosine, using public databases on the US National Cancer Institute (NCI)-60 human cancer cell lines. For demonstrating drug specificity, the NCI Standard Agent Database (including 171 drugs acting through a variety of mechanisms) was used as a control. We identified agents with similar cytotoxicity profiles to that of perifosine in compounds used in the NCI drug screen. Furthermore, Gene Ontology and pathway analyses were carried out on genes more likely to be perifosine specific. The results suggested that genes correlated with perifosine cytotoxicity are connected by certain known pathways that lead to the mitogen-activated protein kinase signalling pathway and apoptosis. Biological processes such as 'response to stress', 'inflammatory response' and 'ubiquitin cycle' were enriched among these genes. Three single nucleotide polymorphisms (SNPs) located in CACNA2DI and EXOC4 were found to be correlated with perifosine cytotoxicity. Our results provided a manageable list of genes whose expression levels or genotypic variation were strongly correlated with the cytotoxcity of perifosine. These genes could be targets for further studies using candidate-gene approaches. The results also provided insights into the pharmacodynamics of perifosine. PMID:19129090

  2. Identifying Mendelian disease genes with the Variant Effect Scoring Tool

    PubMed Central

    2013-01-01

    Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is available as a stand-alone software package at http://wiki.chasmsoftware.org and is hosted by the CRAVAT web server at http://www.cravat.us PMID:23819870

  3. PrimerZ: streamlined primer design for promoters, exons and human SNPs.

    PubMed

    Tsai, Ming-Fang; Lin, Yi-Jung; Cheng, Yu-Chang; Lee, Kuo-Hsi; Huang, Cheng-Chih; Chen, Yuan-Tsong; Yao, Adam

    2007-07-01

    PrimerZ (http://genepipe.ngc.sinica.edu.tw/primerz/) is a web application dedicated primarily to primer design for genes and human SNPs. PrimerZ accepts genes by gene name or Ensembl accession code, and SNPs by dbSNP rs or AFFY_Probe IDs. The promoter and exon sequence information of all gene transcripts fetched from the Ensembl database (http://www.ensembl.org) are processed before being passed on to Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) for individual primer design. All results returned from Primer 3 are organized and integrated in a specially designed web page for easy browsing. Besides the web page presentation, csv text file export is also provided for enhanced user convenience. PrimerZ automates highly standard but tedious gene primer design to improve the success rate of PCR experiments. More than 2000 primers have been designed with PrimerZ at our institute since 2004 and the success rate is over 70%. The addition of several new features has made PrimerZ even more useful to the research community in facilitating primer design for promoters, exons and SNPs.

  4. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    PubMed

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  5. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines.

    PubMed

    Li, Bo; Bi, Chang Long; Lang, Ning; Li, Yu Ze; Xu, Chao; Zhang, Ying Qi; Zhai, Ai Xia; Cheng, Zhi Feng

    2014-01-01

    Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.

  6. Identification of Genes Potentially Regulated by Human Polynucleotide Phosphorylase (hPNPaseold-35) Using Melanoma as a Model

    PubMed Central

    Sokhi, Upneet K.; Bacolod, Manny D.; Dasgupta, Santanu; Emdad, Luni; Das, Swadesh K.; Dumur, Catherine I.; Miles, Michael F.; Sarkar, Devanand; Fisher, Paul B.

    2013-01-01

    Human Polynucleotide Phosphorylase (hPNPaseold-35 or PNPT1) is an evolutionarily conserved 3′→5′ exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPaseold-35 in cellular physiology, we knocked-down and overexpressed hPNPaseold-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPaseold-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPaseold-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPaseold-35 knockdown and overexpression datasets allowed us to identify 77 potential “direct” and 61 potential “indirect” targets of hPNPaseold-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPaseold-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes. PMID:24143183

  7. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system.

    PubMed

    Niira, Kazutaka; Ito, Mika; Masuda, Tsuneyuki; Saitou, Toshiya; Abe, Tadatsugu; Komoto, Satoshi; Sato, Mitsuo; Yamasato, Hiroshi; Kishimoto, Mai; Naoi, Yuki; Sano, Kaori; Tuchiaka, Shinobu; Okada, Takashi; Omatsu, Tsutomu; Furuya, Tetsuya; Aoki, Hiroshi; Katayama, Yukie; Oba, Mami; Shirai, Junsuke; Taniguchi, Koki; Mizutani, Tetsuya; Nagai, Makoto

    2016-10-01

    Porcine rotavirus C (RVC) is distributed throughout the world and is thought to be a pathogenic agent of diarrhea in piglets. Although, the VP7, VP4, and VP6 gene sequences of Japanese porcine RVCs are currently available, there is no whole-genome sequence data of Japanese RVC. Furthermore, only one to three sequences are available for porcine RVC VP1-VP3 and NSP1-NSP3 genes. Therefore, we determined nearly full-length whole-genome sequences of nine Japanese porcine RVCs from seven piglets with diarrhea and two healthy pigs and compared them with published RVC sequences from a database. The VP7 genes of two Japanese RVCs from healthy pigs were highly divergent from other known RVC strains and were provisionally classified as G12 and G13 based on the 86% nucleotide identity cut-off value. Pairwise sequence identity calculations and phylogenetic analyses revealed that candidate novel genotypes of porcine Japanese RVC were identified in the NSP1, NSP2 and NSP3 encoding genes, respectively. Furthermore, VP3 of Japanese porcine RVCs was shown to be closely related to human RVCs, suggesting a gene reassortment event between porcine and human RVCs and past interspecies transmission. The present study demonstrated that porcine RVCs show greater genetic diversity among strains than human and bovine RVCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Gene Set Builder: collation, curation, and distribution of sets of genes

    PubMed Central

    Yusuf, Dimas; Lim, Jonathan S; Wasserman, Wyeth W

    2005-01-01

    Background In bioinformatics and genomics, there are many applications designed to investigate the common properties for a set of genes. Often, these multi-gene analysis tools attempt to reveal sequential, functional, and expressional ties. However, while tremendous effort has been invested in developing tools that can analyze a set of genes, minimal effort has been invested in developing tools that can help researchers compile, store, and annotate gene sets in the first place. As a result, the process of making or accessing a set often involves tedious and time consuming steps such as finding identifiers for each individual gene. These steps are often repeated extensively to shift from one identifier type to another; or to recreate a published set. In this paper, we present a simple online tool which – with the help of the gene catalogs Ensembl and GeneLynx – can help researchers build and annotate sets of genes quickly and easily. Description The Gene Set Builder is a database-driven, web-based tool designed to help researchers compile, store, export, and share sets of genes. This application supports the 17 eukaryotic genomes found in version 32 of the Ensembl database, which includes species from yeast to human. User-created information such as sets and customized annotations are stored to facilitate easy access. Gene sets stored in the system can be "exported" in a variety of output formats – as lists of identifiers, in tables, or as sequences. In addition, gene sets can be "shared" with specific users to facilitate collaborations or fully released to provide access to published results. The application also features a Perl API (Application Programming Interface) for direct connectivity to custom analysis tools. A downloadable Quick Reference guide and an online tutorial are available to help new users learn its functionalities. Conclusion The Gene Set Builder is an Ensembl-facilitated online tool designed to help researchers compile and manage sets of genes in a user-friendly environment. The application can be accessed via . PMID:16371163

  9. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks

    PubMed Central

    2013-01-01

    Background A co-ordinated tissue-independent gene expression profile associated with growth is present in rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth event. The aim of this study was to describe gene expression and biological pathways associated with stages of growth in children and to assess tissue-independent expression patterns in relation to human growth. Results We conducted gene expression analysis on a library of datasets from normal children with age annotation, collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated with the phases of growth – infancy, childhood, puberty and final height. Network analysis on these clusters identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor – Hyper-geometric test, q < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth and maturation. Conclusions Similar evolutionarily conserved pathways have been associated with gene expression and child growth in multiple tissues. These expression profiles associate with the developmental phases of growth including the return to active long bone growth in puberty, a distinctly human event. These observations also have direct medical relevance to pathological changes that induce disease in children. Taking into account development-dependent gene expression profiles for normal children will be key to the appropriate selection of genes and pathways as potential biomarkers of disease or as drug targets. PMID:23941278

  10. sscMap: an extensible Java application for connecting small-molecule drugs using gene-expression signatures.

    PubMed

    Zhang, Shu-Dong; Gant, Timothy W

    2009-07-31

    Connectivity mapping is a process to recognize novel pharmacological and toxicological properties in small molecules by comparing their gene expression signatures with others in a database. A simple and robust method for connectivity mapping with increased specificity and sensitivity was recently developed, and its utility demonstrated using experimentally derived gene signatures. This paper introduces sscMap (statistically significant connections' map), a Java application designed to undertake connectivity mapping tasks using the recently published method. The software is bundled with a default collection of reference gene-expression profiles based on the publicly available dataset from the Broad Institute Connectivity Map 02, which includes data from over 7000 Affymetrix microarrays, for over 1000 small-molecule compounds, and 6100 treatment instances in 5 human cell lines. In addition, the application allows users to add their custom collections of reference profiles and is applicable to a wide range of other 'omics technologies. The utility of sscMap is two fold. First, it serves to make statistically significant connections between a user-supplied gene signature and the 6100 core reference profiles based on the Broad Institute expanded dataset. Second, it allows users to apply the same improved method to custom-built reference profiles which can be added to the database for future referencing. The software can be freely downloaded from http://purl.oclc.org/NET/sscMap.

  11. Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius

    PubMed Central

    Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.

    2010-01-01

    Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665

  12. Definition of RNA polymerase II CoTC terminator elements in the human genome.

    PubMed

    Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J; Dye, Michael J

    2013-04-25

    Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. APPRIS: annotation of principal and alternative splice isoforms

    PubMed Central

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L.

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  14. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies.

    PubMed

    Yang, Tsun-Po; Beazley, Claude; Montgomery, Stephen B; Dimas, Antigone S; Gutierrez-Arcelus, Maria; Stranger, Barbara E; Deloukas, Panos; Dermitzakis, Emmanouil T

    2010-10-01

    Genevar (GENe Expression VARiation) is a database and Java tool designed to integrate multiple datasets, and provides analysis and visualization of associations between sequence variation and gene expression. Genevar allows researchers to investigate expression quantitative trait loci (eQTL) associations within a gene locus of interest in real time. The database and application can be installed on a standard computer in database mode and, in addition, on a server to share discoveries among affiliations or the broader community over the Internet via web services protocols. http://www.sanger.ac.uk/resources/software/genevar.

  15. Drug-Path: a database for drug-induced pathways.

    PubMed

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.

  16. PedAM: a database for Pediatric Disease Annotation and Medicine.

    PubMed

    Jia, Jinmeng; An, Zhongxin; Ming, Yue; Guo, Yongli; Li, Wei; Li, Xin; Liang, Yunxiang; Guo, Dongming; Tai, Jun; Chen, Geng; Jin, Yaqiong; Liu, Zhimei; Ni, Xin; Shi, Tieliu

    2018-01-04

    There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration. It also uses disease-manifestation (D-M) integrated from existing biomedical ontologies as prior knowledge to automatically recognize text-mined, D-M-specific syntactic patterns from 774 514 full-text articles and 8 848 796 abstracts in MEDLINE. Additionally, disease connections based on phenotypes or genes can be visualized on the web page of PedAM. Currently, the PedAM contains standardized 8528 pediatric disease terms (4542 unique disease concepts and 3986 synonyms) with eight annotation fields for each disease, including definition synonyms, gene, symptom, cross-reference (Xref), human phenotypes and its corresponding phenotypes in the mouse. The database PedAM is freely accessible at http://www.unimd.org/pedam/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments.

    PubMed

    Silva, Lourival A; Vinaud, Marina C; Castro, Ana Maria; Cravo, Pedro Vítor L; Bezerra, José Clecildo B

    2015-01-01

    Leishmaniasis is a complex disease that affects mammals and is caused by approximately 20 distinct protozoa from the genus Leishmania. Leishmaniasis is an endemic disease that exerts a large socioeconomic impact on poor and developing countries. The current treatment for leishmaniasis is complex, expensive, and poorly efficacious. Thus, there is an urgent need to develop more selective, less expensive new drugs. The energy metabolism pathways of Leishmania include several interesting targets for specific inhibitors. In the present study, we sought to establish which energy metabolism enzymes in Leishmania could be targets for inhibitors that have already been approved for the treatment of other diseases. We were able to identify 94 genes and 93 Leishmania energy metabolism targets. Using each gene's designation as a search criterion in the TriTrypDB database, we located the predicted peptide sequences, which in turn were used to interrogate the DrugBank, Therapeutic Target Database (TTD), and PubChem databases. We identified 44 putative targets of which 11 are predicted to be amenable to inhibition by drugs which have already been approved for use in humans for 11 of these targets. We propose that these drugs should be experimentally tested and potentially used in the treatment of leishmaniasis.

  18. The Molecular Signatures Database (MSigDB) hallmark gene set collection.

    PubMed

    Liberzon, Arthur; Birger, Chet; Thorvaldsdóttir, Helga; Ghandi, Mahmoud; Mesirov, Jill P; Tamayo, Pablo

    2015-12-23

    The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis. Since its creation, MSigDB has grown beyond its roots in metabolic disease and cancer to include >10,000 gene sets. These better represent a wider range of biological processes and diseases, but the utility of the database is reduced by increased redundancy across, and heterogeneity within, gene sets. To address this challenge, here we use a combination of automated approaches and expert curation to develop a collection of "hallmark" gene sets as part of MSigDB. Each hallmark in this collection consists of a "refined" gene set, derived from multiple "founder" sets, that conveys a specific biological state or process and displays coherent expression. The hallmarks effectively summarize most of the relevant information of the original founder sets and, by reducing both variation and redundancy, provide more refined and concise inputs for gene set enrichment analysis.

  19. CCDB: a curated database of genes involved in cervix cancer.

    PubMed

    Agarwal, Subhash M; Raghav, Dhwani; Singh, Harinder; Raghava, G P S

    2011-01-01

    The Cervical Cancer gene DataBase (CCDB, http://crdd.osdd.net/raghava/ccdb) is a manually curated catalog of experimentally validated genes that are thought, or are known to be involved in the different stages of cervical carcinogenesis. In spite of the large women population that is presently affected from this malignancy still at present, no database exists that catalogs information on genes associated with cervical cancer. Therefore, we have compiled 537 genes in CCDB that are linked with cervical cancer causation processes such as methylation, gene amplification, mutation, polymorphism and change in expression level, as evident from published literature. Each record contains details related to gene like architecture (exon-intron structure), location, function, sequences (mRNA/CDS/protein), ontology, interacting partners, homology to other eukaryotic genomes, structure and links to other public databases, thus augmenting CCDB with external data. Also, manually curated literature references have been provided to support the inclusion of the gene in the database and establish its association with cervix cancer. In addition, CCDB provides information on microRNA altered in cervical cancer as well as search facility for querying, several browse options and an online tool for sequence similarity search, thereby providing researchers with easy access to the latest information on genes involved in cervix cancer.

  20. Comparisons of Highly Virulent H5N1 Influenza A Viruses Isolated from Humans and Chickens from Hong Kong

    PubMed Central

    Suarez, David L.; Perdue, Michael L.; Cox, Nancy; Rowe, Thomas; Bender, Catherine; Huang, Jing; Swayne, David E.

    1998-01-01

    Genes of an influenza A (H5N1) virus from a human in Hong Kong isolated in May 1997 were sequenced and found to be all avian-like (K. Subbarao et al., Science 279:393–395, 1998). Gene sequences of this human isolate were compared to those of a highly pathogenic chicken H5N1 influenza virus isolated from Hong Kong in April 1997. Sequence comparisons of all eight RNA segments from the two viruses show greater than 99% sequence identity between them. However, neither isolate’s gene sequence was closely (>95% sequence identity) related to any other gene sequences found in the GenBank database. Phylogenetic analysis demonstrated that the nucleotide sequences of at least four of the eight RNA segments clustered with Eurasian origin avian influenza viruses. The hemagglutinin gene phylogenetic analysis also included the sequences from an additional three human and two chicken H5N1 virus isolates from Hong Kong, and the isolates separated into two closely related groups. However, no single amino acid change separated the chicken origin and human origin isolates, but they all contained multiple basic amino acids at the hemagglutinin cleavage site, which is associated with a highly pathogenic phenotype in poultry. In experimental intravenous inoculation studies with chickens, all seven viruses were highly pathogenic, killing most birds within 24 h. All infected chickens had virtually identical pathologic lesions, including moderate to severe diffuse edema and interstitial pneumonitis. Viral nucleoprotein was most frequently demonstrated in vascular endothelium, macrophages, heterophils, and cardiac myocytes. Asphyxiation from pulmonary edema and generalized cardiovascular collapse were the most likely pathogenic mechanisms responsible for illness and death. In summary, a small number of changes in hemagglutinin gene sequences defined two closely related subgroups, with both subgroups having human and chicken members, among the seven viruses examined from Hong Kong, and all seven viruses were highly pathogenic in chickens and caused similar lesions in experimental inoculations. PMID:9658115

Top