Science.gov

Sample records for human genetics research

  1. Caries: Review of Human Genetics Research

    PubMed Central

    Vieira, Alexandre R.; Modesto, Adriana; Marazita, Mary L.

    2014-01-01

    The NIH Consensus Development Program released a statement in 2001 (NIH Consensus Statement, 2001) and listed six major clinical caries research directions. One of these directions was the need for genetic studies to identify genes and genetic markers of diagnostic, prognostic, and therapeutic value. This last decade has seen a steep increase in studies investigating the presence of genetic factors influencing individual susceptibility to caries. This review revisits recent caries human genetic studies and provides a perspective for future studies in order to fulfill their promise of revolutionizing our understanding of and the standard of care for the most prevalent bacteria-mediated non-contagious disease in the world. PMID:24853115

  2. Ethical genetic research on human subjects.

    PubMed

    Harris, J

    1999-01-01

    Since the Nuremberg trials and the Nazi doctors trial following World War II, international ethics protocols have emerged designed to protect human subjects from the atrocities of medical experimentation that were literally routine under the Nazis. Some of the apparent "lessons" from the Nazi period have been encapsulated in the Declaration of Helsinki, perhaps the leading medical ethics protocol. This paper argues that these protocols have not been notably conducive to human welfare or to the protection of human rights in the field of human genetics research. The paper proposes new protocols and a new approach to the ethics of research on human subjects.

  3. Genetic modification of preimplantation embryos: toward adequate human research policies.

    PubMed

    Dresser, Rebecca

    2004-01-01

    Citing advances in transgenic animal research and setbacks in human trials of somatic cell genetic interventions, some scientists and others want to begin planning for research involving the genetic modification of human embryos. Because this form of genetic modification could affect later-born children and their offspring, the protection of human subjects should be a priority in decisions about whether to proceed with such research. Yet because of gaps in existing federal policies, embryo modification proposals might not receive adequate scientific and ethical scrutiny. This article describes current policy shortcomings and recommends policy actions designed to ensure that the investigational genetic modification of embryos meets accepted standards for research on human subjects.

  4. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    ERIC Educational Resources Information Center

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  5. Genetic testing and its implications: human genetics researchers grapple with ethical issues.

    PubMed

    Rabino, Isaac

    2003-01-01

    To better understand ethical issues involved in the field of human genetics and promote debate within the scientific community, the author surveyed scientists who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. This study contributes systematic data on attitudes of scientific experts. The survey finds respondents are highly supportive of voluntary testing and the right to know one's genetic heritage. The majority consider in utero testing and consequent pregnancy termination acceptable for cases involving likelihood of serious disease but disapprove for genetic reasons they consider arbitrary, leaving a gray area of distinguishing between treatment of disorders and enhancement still to be resolved. While safeguarding patient confidentiality versus protecting at-risk third parties (kin, reproductive partners) presents a dilemma, preserving privacy from misuse by institutional third parties (employers, insurers) garners strong consensus for legislation against discrimination. Finally, a call is made for greater genetic literacy.

  6. Robotics for recombinant DNA and human genetics research

    SciTech Connect

    Beugelsdijk, T.J.

    1990-01-01

    In October of 1989, molecular biologists throughout the world formally embarked on ultimately determining the set of genetic instructions for a human being. Called by some the Manhattan Project'' a molecular biology, pursuit of this goal is projected to require approximately 3000 man years of effort over a 15-year period. The Humane Genome Initiative is a worldwide research effort that has the goal of analyzing the structure of human deoxyribonucleic acid (DNA) and determining the location of all human genes. The Department of Energy (DOE) has designated three of its national laboratories as centers for the Human Genome Project. These are Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley Laboratory (LBL). These laboratories are currently working on different, but complementary technology development areas in support of the Human Genome Project. The robotics group at LANL is currently working at developing the technologies that address the problems associated with physical mapping. This article describes some of these problems and discusses some of the robotics approaches and engineering tolls applicable to their solution. 7 refs., 8 figs., 1 tab.

  7. Human molecular genetics research at the International Centre for Genetic Engineering and Biotechnology.

    PubMed

    Falaschi, P A

    1997-01-01

    The ICGEB started its activity in 1987 as a special project of UNIDO (United Nations Industrial Development Organization) and operates now as a fully autonomous International Organization, of which 40 countries are members at present. The mandate of ICGEB is to become a Centre of excellence for research and training in modern biology addressed to the needs of the developing world. The ICGEB consists of two main laboratories, one in Trieste (where the direction of the Centre is also located) and one in New Delhi, plus a network of 30 Affiliated Centres. The Centre operates through: 1) specific research programs of hish scientific content at the Trieste and New Delhi laboratories; 2) long term training through post-doctoral and pre-doctoral fellowships; 3) short term training; 4) collaborative research program, through which the Centre finances research projects of major impact to the need of the Member States; 5) scientific services, namely consultation for scientific programs, distribution of reagents and a bioinformatics network particularly geared to the human genome research. The research on human molecular genetics in particularly active in the Trieste Component and concerns the study at the molecular level of several genes important for human health: control of DNA replication, response to infectious diseases, cardiocirculatory diseases, cystic fibrosis and cancer. The methodologies for developing new diagnostic methods and for developing gene therapy protocols are actively pursued. Through these programs, the member countries have access to state-of-the-art technologies anf know-how essential for the development of the molecular approaches to medicine brought forward by the study of the human genome.

  8. Research on human genetics in Iceland. Progress report

    SciTech Connect

    1980-10-31

    Records of the Icelandic Population are being used to investigate the possible inheritance of disabilities and diseases as well as other characters and the effect of environment on man. The progress report of research covers the period 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  9. Progress report on research on human genetics in Iceland

    SciTech Connect

    1980-10-31

    Records of the Icelandic population are being used to investigate the possible inheritance of disabilities and diseases as well as other characteristics and the effect of environment on man. The progress report of research covers the period from 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  10. The concept of human dignity in the ethics of genetic research.

    PubMed

    Chan, David K

    2015-05-01

    Despite criticism that dignity is a vague and slippery concept, a number of international guidelines on bioethics have cautioned against research that is contrary to human dignity, with reference specifically to genetic technology. What is the connection between genetic research and human dignity? In this article, I investigate the concept of human dignity in its various historical forms, and examine its status as a moral concept. Unlike Kant's ideal concept of human dignity, the empirical or relational concept takes human dignity as something that is affected by one's circumstances and what others do. I argue that the dignity objection to some forms of genetic research rests on a view of human nature that gives humans a special status in nature - one that is threatened by the potential of genetic research to reduce individuals to their genetic endowment. I distinguish two main philosophical accounts of human nature. One of these, the Aristotelian view, is compatible with the use of genetic technology to help humans realize their inherent potential to a fuller extent.

  11. Human genetics

    SciTech Connect

    Carlson, E.A.

    1984-01-01

    This text provides full and balanced coverage of the concepts requisite for a thorough understanding of human genetics. Applications to both the individual and society are integrated throughout the lively and personal narrative, and the essential principles of heredity are clearly presented to prepare students for informed participation in public controversies. High-interest, controversial topics, including recombinant DNA technology, oncogenes, embryo transfer, environmental mutagens and carcinogens, IQ testing, and eugenics encourage understanding of important social issues.

  12. The New Human Genetics: A Cell Bank Helps Researchers Fight Inherited Disease.

    ERIC Educational Resources Information Center

    Pines, Maya

    Research in human genetics is now expanding rapidly, leading to increasingly precise ways of preventing or treating some of the 2,000 or more inherited disorders that afflict human beings. At the same time, it has produced a wealth of new ideas and techniques which are laying the groundwork for new medical science for the 21st century. Recent work…

  13. Building capacity for human genetics and genomics research in Trinidad and Tobago

    PubMed Central

    Roach, Allana; Warner, Wayne A.; Llanos, Adana A. M.

    2016-01-01

    Advances in human genetics and genomic sciences and the corresponding explosion of biomedical technologies have deepened current understanding of human health and revolutionized medicine. In developed nations, this has led to marked improvements in disease risk stratification and diagnosis. These advances have also led to targeted intervention strategies aimed at promoting disease prevention, prolonging disease onset, and mitigating symptoms, as in the well-known case of breast cancer and the BRCA1 gene. In contrast, in the developing nation of Trinidad and Tobago, this scientific revolution has not translated into the development and application of effective genomics-based interventions for improving public health. While the reasons for this are multifactorial, the underlying basis may be rooted in the lack of pertinence of internationally driven genomics research to the local public health needs in the country, as well as a lack of relevance of internationally conducted genetics research to the genetic and environmental contexts of the population. Indeed, if Trinidad and Tobago is able to harness substantial public health benefit from genetics/genomics research, then there is a dire need, in the near future, to build local capacity for the conduct and translation of such research. Specifically, it is essential to establish a national human genetics/genomics research agenda in order to build sustainable human capacity through education and knowledge transfer and to generate public policies that will provide the basis for the creation of a mutually beneficial framework (including partnerships with more developed nations) that is informed by public health needs and contextual realities of the nation. PMID:26837529

  14. Monkey-based research on human disease: the implications of genetic differences.

    PubMed

    Bailey, Jarrod

    2014-11-01

    Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.

  15. Genetic research and biobanks.

    PubMed

    Chalmers, Don

    2011-01-01

    Human biobanks, and genetic research databases, as referred to by the Organisation for Economic Co-operation and Development (OECD), are essential tools for modern biomedical research. Biobanks may consist in collections created in clinical diagnosis (such as pathology tissue samples in hospitals) or collections created for large-scale longitudinal research (such as the UK Biobank). Human tissue collections are regulated by a patchwork of national laws. However, there is an increasing international uniformity in national privacy laws based on 1980s OECD standards. There are similar uniform standards developing in national research ethics guidelines. As biobanks develop collaborations and linkages, international harmonisation of legislation and human research regulation will be required across jurisdictions. It is essential that international public trust is maintained in biobanking research.

  16. The New Human Genetics. How Gene Splicing Helps Researchers Fight Inherited Disease.

    ERIC Educational Resources Information Center

    Pines, Maya

    The science of genetics is perceived to offer hope that a large number of the 3,000 inherited diseases which afflict human beings may be prevented or controlled. This document addresses some of the advances that have been made in this field. It includes an introduction and sections on: "The Beginning of Human Genetics"; "Unlocking the Secrets of…

  17. The use of genetically engineered model systems for research on human aging.

    PubMed

    Lepperdinger, Guenter; Berger, Peter; Breitenbach, Michael; Frohlich, Kai-Uwe; Grillari, Johannes; Grubeck-Loebenstein, Beatrix; Madeo, Frank; Minois, Nadege; Zwerschke, Werner; Jansen-Durr, Pidder

    2008-05-01

    A major goal in the field of aging research is to identify molecular mechanisms of aging at the cellular level, which are anticipated to form the basis for the development of age-associated dysfunctions and diseases in human beings. Recent progress in research into model organisms of aging has allowed determining precise molecular mechanisms and genetic determinants of the aging process, which appear to be conserved in evolution and some of which apply to human aging as well. The consortium of the authors focuses on aging mechanisms at the cellular level, and exploits the potential of genetic analyses in lower eukaryotic model organisms for a better understanding of regulatory pathways implicated in aging processes. We have established a new database (GiSAO), which provides a unique resource for the analysis of genome-wide expression patterns as being regulated by senescence, apoptosis and oxidative stress in our model systems. This has led to the identification of candidate genes, which are being tested for their impact on lifespan regulation in yeast, the fruit fly Drosophila melanogaster and the nematode C. elegans.

  18. Latest Research: Genetic Links

    MedlinePlus

    ... Current Issue Past Issues Feature: Vision Latest Research: Genetic Links Past Issues / Summer 2008 Table of Contents ... laboratories is one way the NEI is expanding genetic testing of eye diseases. Photo courtesy of National ...

  19. Human genetic research, race, ethnicity and the labeling of populations: recommendations based on an interdisciplinary workshop in Japan

    PubMed Central

    2014-01-01

    Background A challenge in human genome research is how to describe the populations being studied. The use of improper and/or imprecise terms has the potential to both generate and reinforce prejudices and to diminish the clinical value of the research. The issue of population descriptors has not attracted enough academic attention outside North America and Europe. In January 2012, we held a two-day workshop, the first of its kind in Japan, to engage in interdisciplinary dialogue between scholars in the humanities, social sciences, medical sciences, and genetics to begin an ongoing discussion of the social and ethical issues associated with population descriptors. Discussion Through the interdisciplinary dialogue, we confirmed that the issue of race, ethnicity and genetic research has not been extensively discussed in certain Asian communities and other regions. We have found, for example, the continued use of the problematic term, “Mongoloid” or continental terms such as “European,” “African,” and “Asian,” as population descriptors in genetic studies. We, therefore, introduce guidelines for reporting human genetic studies aimed at scientists and researchers in these regions. Conclusion We need to anticipate the various potential social and ethical problems entailed in population descriptors. Scientists have a social responsibility to convey their research findings outside of their communities as accurately as possible, and to consider how the public may perceive and respond to the descriptors that appear in research papers and media articles. PMID:24758583

  20. Human neuroscience at National Institute on Drug Abuse: Implications for genetics research

    SciTech Connect

    Gordon, H.W.

    1994-12-15

    It is becoming clear that there is a genetic component to drug abuse. Family studies, adoption studies, and critical twin studies have all pointed to some genetic vulnerability or risk factors for an individual to abuse psychoactive drugs depending on certain psychopathologies in the biological parents and/or parents` own drug use. The question for the next generation of research at the National Institute on Drug Abuse (NIDA) is to apply the rapidly developing technology in molecular genetics in an effort to determine the candidate genes contributing to the risk. 19 refs.

  1. Progress and Prospects in Human Genetic Research into Age-Related Hearing Impairment

    PubMed Central

    Sugiura, Saiko; Ueda, Hiromi; Nakashima, Tsutomu

    2014-01-01

    Age-related hearing impairment (ARHI) is a complex, multifactorial disorder that is attributable to confounding intrinsic and extrinsic factors. The degree of impairment shows substantial variation between individuals, as is also observed in the senescence of other functions. This individual variation would seem to refute the stereotypical view that hearing deterioration with age is inevitable and may indicate that there is ample scope for preventive intervention. Genetic predisposition could account for a sizable proportion of interindividual variation. Over the past decade or so, tremendous progress has been made through research into the genetics of various forms of hearing impairment, including ARHI and our knowledge of the complex mechanisms of auditory function has increased substantially. Here, we give an overview of recent investigations aimed at identifying the genetic risk factors involved in ARHI and of what we currently know about its pathophysiology. This review is divided into the following sections: (i) genes causing monogenic hearing impairment with phenotypic similarities to ARHI; (ii) genes involved in oxidative stress, biologic stress responses, and mitochondrial dysfunction; and (iii) candidate genes for senescence, other geriatric diseases, and neurodegeneration. Progress and prospects in genetic research are discussed. PMID:25140308

  2. Genetic studies in alcohol research

    SciTech Connect

    Karp, R.W.

    1994-12-15

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) supports research to elucidate the specific genetic factors, now largely unknown, which underlie susceptibility to alcoholism and its medical complications (including fetal alcohol syndrome). Because of the genetic complexity and heterogeneity of alcoholism, identification of the multiple underlying factors will require the development of new study designs and methods of analysis of data from human families. While techniques of genetic analysis of animal behavioral traits (e.g., targeted gene disruption, quantitative trait locus (QTL) mapping) are more powerful that those applicable to humans (e.g., linkage and allelic association studies), the validation of animal behaviors as models of aspects of human alcoholism has been problematic. Newly developed methods for mapping QTL influencing animal behavioral traits can not only permit analyses of human family data to be directly informed by the results of animal studies, but can also serve as a novel means of validating animal models of aspects of alcoholism. 55 refs.

  3. Twins' injuries: genetic and environmental risks / twin research reports / human interest stories.

    PubMed

    Segal, Nancy L

    2011-04-01

    The relative contributions of genetic and environmental factors to unintentional injuries are of interest to families with young twins. A recent study found that childhood injuries are explained mostly by child-specific environmental factors. Next, twin research reviews of the association between periodontal disease and cancer, secular trends in gestational age and birthweight, and language development in hearing and deaf co-twins are also summarized. Interesting reports of newborn twins, twin-like relationships, twin interactions and missed twin relationships are presented.

  4. Genetic compendium of 1511 human brains available through the UK Medical Research Council Brain Banks Network Resource

    PubMed Central

    Keogh, Michael J.; Wei, Wei; Wilson, Ian; Coxhead, Jon; Ryan, Sarah; Rollinson, Sara; Griffin, Helen; Kurzawa-Akanbi, Marzena; Santibanez-Koref, Mauro; Talbot, Kevin; Turner, Martin R.; McKenzie, Chris-Anne; Troakes, Claire; Attems, Johannes; Smith, Colin; Al Sarraj, Safa; Morris, Chris M.; Ansorge, Olaf; Pickering-Brown, Stuart; Ironside, James W.; Chinnery, Patrick F.

    2017-01-01

    Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies. PMID:28003435

  5. Genetic Research and Native American Cultural Issues

    NASA Astrophysics Data System (ADS)

    Romero, Francine; Bemis, Lynne T.; Burhansstipanov, Linda; Dignan, Mark

    Cultural issues relevant to genetic education and research arc the focus of a new and innovative curriculum being developed for Native American college students and health professionals. Genetic Education for Native Americans (GENA) is funded by the National Human Genome Research Institute of the National Institutes of Health. The goal of the GENA project is to provide a balance of scientific and cultural information about genetic research, genetic testing, and careers in genetics for Native American students. This article describes issues related to the implementation of GENA and provides an example of an innovative approach to teaching about genetic research among Native American populations.

  6. High Points of Human Genetics

    ERIC Educational Resources Information Center

    Stern, Curt

    1975-01-01

    Discusses such high points of human genetics as the study of chromosomes, somatic cell hybrids, the population formula: the Hardy-Weinberg Law, biochemical genetics, the single-active X Theory, behavioral genetics and finally how genetics can serve humanity. (BR)

  7. [Bioethical principles concerning human genetic data].

    PubMed

    Cruz-Coke, Ricardo

    2003-01-01

    UNESCO'S Universal declaration on the human genome and human rights (1997) has been accepted by the international scientific community. To apply these laws, it is necessary to get more specific rules about data regulation, human genetic samples and its derived information in biomedic research. Indeed, genetic material recollection, processing, use and storing, has potential risks over human rights' protection and exercise. The author, member of UNESCO'S intergovernmental Bioethics Committee which approved the final draft in June 2003, has taken part in the writing of the final text of an international declaration about human genetic data, whose abbreviate text is described and commented in this communication.

  8. Human Heredity: Genetic Mechanisms in Humans.

    ERIC Educational Resources Information Center

    Blank, C. E.

    1988-01-01

    Discussed are some of the uncertainties in human genetic mechanisms that are often presented as dogma in Biology textbooks. Presented is a brief historical background and illustrations involving chromosome abnormality in humans and linkage studies in humans. (CW)

  9. Genetics and recent human evolution.

    PubMed

    Templeton, Alan R

    2007-07-01

    Starting with "mitochondrial Eve" in 1987, genetics has played an increasingly important role in studies of the last two million years of human evolution. It initially appeared that genetic data resolved the basic models of recent human evolution in favor of the "out-of-Africa replacement" hypothesis in which anatomically modern humans evolved in Africa about 150,000 years ago, started to spread throughout the world about 100,000 years ago, and subsequently drove to complete genetic extinction (replacement) all other human populations in Eurasia. Unfortunately, many of the genetic studies on recent human evolution have suffered from scientific flaws, including misrepresenting the models of recent human evolution, focusing upon hypothesis compatibility rather than hypothesis testing, committing the ecological fallacy, and failing to consider a broader array of alternative hypotheses. Once these flaws are corrected, there is actually little genetic support for the out-of-Africa replacement hypothesis. Indeed, when genetic data are used in a hypothesis-testing framework, the out-of-Africa replacement hypothesis is strongly rejected. The model of recent human evolution that emerges from a statistical hypothesis-testing framework does not correspond to any of the traditional models of human evolution, but it is compatible with fossil and archaeological data. These studies also reveal that any one gene or DNA region captures only a small part of human evolutionary history, so multilocus studies are essential. As more and more loci became available, genetics will undoubtedly offer additional insights and resolutions of human evolution.

  10. Future research directions for evaluating human genetic and cancer risk from environmental exposures.

    PubMed Central

    Albertini, R J; Nicklas, J A; O'Neill, J P

    1996-01-01

    The utility of biomarkers for evaluating the genotoxicity of environmental exposures is well documented. Biomarkers of both exposure and effect provide bases for assessing human-genotoxicant interactions and may be indicative of future disease risk. At present, there is little information on the predictive value of these assays for either a population or the individuals tested. This paper describes some aspects of biomarker assays, the possible use of susceptibility measures in biomonitoring protocols, and the need for evaluation of disease relevance. A population study involving epidemiologists, geneticists, toxicologists, statisticians, and physicians is proposed to determine the disease relevance of these biomarkers. PMID:8781373

  11. Genetic Research on Biospecimens Poses Minimal Risk

    PubMed Central

    Wendler, David S.; Rid, Annette

    2014-01-01

    Genetic research on human biospecimens is increasingly common. Yet, debate continues over the level of risk that this research poses to sample donors. Some argue that genetic research on biospecimens poses minimal risk; others argue that it poses greater than minimal risk and therefore needs additional requirements and limitations. This debate raises concern that some donors are not receiving appropriate protection or, conversely, that valuable research is being subject to unnecessary requirements and limitations. The present paper attempts to address this concern using the widely-endorsed ‘risks of daily life’ standard. The three extant versions of this standard all suggest that, with proper measures in place to protect donor confidentiality, most genetic research on human biospecimens poses minimal risk to donors. PMID:25530152

  12. Basic Genetics: A Human Approach.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  13. Blending Genetics and Sociocultural Historical Inquiry: Ethics, Culture, and Human Subjects Protection in International Cross Cultural Research

    PubMed Central

    Sampson, Deborah A.; Caldwell, Dennis; Taylor, Andre D.; Taylor, Jacquelyn Y.

    2013-01-01

    In this paper, we examine the implementation and difficulties when conducting genetics research in a rural, traditional West African culture within the frame of the United States’ grounded research ethics. Research challenges are highlighted by Western researchers following U.S. Institutional Review Board (IRB) guidelines and practices in a non-Western country. IRB concepts are culture bound in Western ideals that may not have synchronicity and compatibility with non-Western cultures. Differences in sociocultural norms, traditions, language, and geography were influencing factors that can affect application of IRB principles. Suggestions for change are offered, which will potentially aid researchers considering application of IRB requirements when conducting research in non-Westernized, non-industrialized countries. PMID:23482512

  14. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies.

    PubMed

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Evans, Katy; Hayden, Matthew; Heywood, Sally; Hussain, Michelle; Phillips, Andrew D; Cooper, David N

    2017-03-27

    The Human Gene Mutation Database (HGMD(®)) constitutes a comprehensive collection of published germline mutations in nuclear genes that underlie, or are closely associated with human inherited disease. At the time of writing (March 2017), the database contained in excess of 203,000 different gene lesions identified in over 8000 genes manually curated from over 2600 journals. With new mutation entries currently accumulating at a rate exceeding 17,000 per annum, HGMD represents de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data. The public version of HGMD ( http://www.hgmd.org ) is freely available to registered users from academic institutions and non-profit organisations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via QIAGEN Inc.

  15. Contemporary Genetics for Gender Researchers: Not Your Grandma's Genetics Anymore

    ERIC Educational Resources Information Center

    Salk, Rachel H.; Hyde, Janet S.

    2012-01-01

    Over the past century, much of genetics was deterministic, and feminist researchers framed justified criticisms of genetics research. However, over the past two decades, genetics research has evolved remarkably and has moved far from earlier deterministic approaches. Our article provides a brief primer on modern genetics, emphasizing contemporary…

  16. Immunology taught by human genetics.

    PubMed

    Casanova, Jean-Laurent; Abel, Laurent; Quintana-Murci, Lluis

    2013-01-01

    Human genetic studies are rarely conducted for immunological purposes. Instead, they are typically driven by medical and evolutionary goals, such as understanding the predisposition or resistance to infectious or inflammatory diseases, the pathogenesis of such diseases, and human evolution in the context of the long-standing relationships between humans and their commensal and environmental microbes. However, the dissection of these experiments of Nature has also led to major immunological advances. In this review, we draw on some of the immunological lessons learned in the three branches of human molecular genetics most relevant to immunology: clinical genetics, epidemiological genetics, and evolutionary genetics. We argue that human genetics has become a new frontier not only for timely studies of specific features of human immunity, but also for defining general principles of immunity. These studies teach us about immunity as it occurs under "natural" conditions, through the transition from the almost complete wilderness that existed worldwide until about a century ago to the current unevenly distributed medically shaped environment. Hygiene, vaccines, antibiotics, and surgery have considerably decreased the burden of infection, but these interventions have been available only recently, so have yet to have a major impact on patterns of genomic diversity, making it possible to carry out unbiased evolutionary studies at the population level. Clinical genetic studies of childhood phenotypes have not been blurred by modern medicine either. Instead, medical advances have actually facilitated such studies, by making it possible for children with life-threatening infections to survive. In addition, the prevention and treatment of infectious diseases have increased life expectancy at birth from ∼20 yr to ∼80 yr, providing unique opportunities to study the genetic basis of immunological phenomena against which there is no natural counterselection, such as

  17. Genetic aspects of human congenital diaphragmatic hernia

    PubMed Central

    Pober, BR

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common major malformation affecting 1/3000–1/4000 births, which continues to be associated with significant perinatal mortality. Much current research is focused on elucidating the genetics and pathophysiology contributing to CDH to develop more effective therapies. The latest data suggest that many cases of CDH are genetically determined and also indicate that CDH is etiologically heterogeneous. The present review will provide a brief summary of diaphragm development and model organism work most relevant to human CDH and will primarily describe important human phenotypes associated with CDH and also provide recommendations for diagnostic evaluation of a fetus or infant with CDH. PMID:18510546

  18. American Society of Human Genetics

    MedlinePlus

    ... Deficiency October 20, 2016 Parents of Children with Cancer Value Sequencing Results, Even if Non-actionable October 20, 2016 The American Society of Human Genetics, Incorporated 9650 Rockville Pike • Bethesda, Maryland 20814 society@ashg.org • 1-866-HUM-GENE • (301) 634-7300 Privacy Policy

  19. Human genetic information: the legal implications.

    PubMed

    Brahams, D

    1990-01-01

    This paper provides a brief summary of some of the key legal issues raised by human genetic information and research as viewed from a British common law standpoint. The law is basically reactive rather than prospective and problems posed by futuristic medico-scientific discoveries are likely to be dealt with by reference to established legal principles and analogies made with decided cases. The acquisition and research into human genetic information in the form of DNA profiling may have wide-ranging legal implications. Human genetic information may provide an evidential tool in the legal process when the identity of a specific individual or his family connections and relationships are called into question. It may also pose problems of confidentiality which could conflict with a duty of disclosure. In the future it may be possible to identify a propensity to develop a disease which may be seriously disabling or terminal long before any symptoms are detectable. This sensitive information could be of considerable interest to any prospective employer, insurer, marriage partner or family member and is of serious concern to the individual himself. How far should or could such information lawfully be made available and to whom? Legal debates are also likely to focus on ownership of human genetic information, the patenting of techniques to unravel it, and therapies and medicines developed therefrom. The law will be invoked to safeguard any intellectual property which may exist and to patent any inventive steps in the field.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    PubMed

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-11-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide

  1. PATENTS IN GENOMICS AND HUMAN GENETICS

    PubMed Central

    Cook-Deegan, Robert; Heaney, Christopher

    2010-01-01

    Genomics and human genetics are scientifically fundamental and commercially valuable. These fields grew to prominence in an era of growth in government and nonprofit research funding, and of even greater growth of privately funded research and development in biotechnology and pharmaceuticals. Patents on DNA technologies are a central feature of this story, illustrating how patent law adapts---and sometimes fails to adapt---to emerging genomic technologies. In instrumentation and for therapeutic proteins, patents have largely played their traditional role of inducing investment in engineering and product development, including expensive postdiscovery clinical research to prove safety and efficacy. Patents on methods and DNA sequences relevant to clinical genetic testing show less evidence of benefits and more evidence of problems and impediments, largely attributable to university exclusive licensing practices. Whole-genome sequencing will confront uncertainty about infringing granted patents but jurisprudence trends away from upholding the broadest and potentially most troublesome patent claims. PMID:20590431

  2. Human Research Risk Management

    NASA Video Gallery

    Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) investigates and mitigates the highest risks to human health and per...

  3. Gene therapy for human genetic disease?

    PubMed

    Friedmann, T; Roblin, R

    1972-03-03

    In our view, gene therapy may ameliorate some human genetic diseases in the future. For this reason, we believe that research directed at the development of techniques for gene therapy should continue. For the foreseeable future, however, we oppose any further attempts at gene therapy in human patients because (i) our understanding of such basic processes as gene regulation and genetic recombination in human cells is inadequate; (ii) our understanding of the details of the relation between the molecular defect and the disease state is rudimentary for essentially all genetic diseases; and (iii) we have no information on the short-range and long-term side effects of gene therapy. We therefore propose that a sustained effort be made to formulate a complete set of ethicoscientific criteria to guide the development and clinical application of gene therapy techniques. Such an endeavor could go a long way toward ensuring that gene therapy is used in humans only in those instances where it will prove beneficial, and toward preventing its misuse through premature application. Two recent papers have provided new demonstrations of directed genetic modification of mammalian cells. Munyon et al. (44) restored the ability to synthesize the enzyme thymidine kinase to thymidine kinase-deficient mouse cells by infection with ultraviolet-irradiated herpes simplex virus. In their experiments the DNA from herpes simplex virus, which contains a gene coding for thymidine kinase, may have formed a hereditable association with the mouse cells. Merril et al. (45) reported that treatment of fibroblasts from patients with galactosemia with exogenous DNA caused increased activity of a missing enzyme, alpha-D-galactose-l-phosphate uridyltransferase. They also provided some evidence that the change persisted after subculturing the treated cells. If this latter report can be confirmed, the feasibility of directed genetic modification of human cells would be clearly demonstrated, considerably

  4. Genetic aspects of human obesity.

    PubMed

    Larder, Rachel; Lim, Chung Thong; Coll, Anthony P

    2014-01-01

    Obesity and its related metabolic consequences represent a major public health problem. Huge changes within the environment have undoubtedly contributed to the increased prevalence of obesity but genetic factors are also critical in determining an individual's predisposition to gain weight. The last two decades have seen a huge increase in the understanding of the mechanisms controlling appetitive behavior, body composition, and energy expenditure. Many regions throughout the central nervous system play critical roles in these processes but the hypothalamus, in particular, receives and orchestrates a variety of signals to bring about coordinated changes in energy balance. Reviewing data from human genetic and model organism studies, we consider how disruptions of hypothalamic pathways evolved to maintain energy homeostasis and go on to cause obesity. We highlight ongoing technological developments which continue to lead to novel insights and discuss how this increased knowledge may lead to effective therapeutic interventions in the future.

  5. [The Human Genome Project, genetic viability and genetic epidemiology].

    PubMed

    Hagymási, Krisztina; Tulassay, Zsolt

    2005-12-18

    The goal of the Human Genome Project to elucidate the complete sequence of the human genome has been achieved. The aims of the "post-genome" era are explaining the genetic information, characterisation of functional elements encoded in the human genome and mapping the human genetic variability as well. Two unrelated human beings also share 99.9% of their genomic sequence. The difference of 0.1% is the result of genetic polymorphisms: single nucleotide polymorphisms, repetitive sequences and insertion/deletion. The genetic differences, coupled with environmental exposures will determine the phenotypic variation we observe in health or disease. The disease-causing genetic variants can be identified by linkage analysis or association studies. The knowledge of human genome and application of multiple biomarkers will improve our ability to identify individuals at risk, so that preventive interventions can be applied, earlier diagnosis can be made and treatment can be optimized.

  6. Human Genetics: Educational Resources for the Classroom.

    ERIC Educational Resources Information Center

    Greendale, Karen; And Others

    1982-01-01

    Potential sources of information and assistance on human genetics are identified, including a brief description of the National Clearinghouse for Human Genetic Diseases, genetic service centers, voluntary groups, state programs, commercial procedures, workshops, speakers, curriculum development aids, and general references. (DC)

  7. Human research subjects as human research workers.

    PubMed

    Lynch, Holly Fernandez

    2014-01-01

    Biomedical research involving human subjects has traditionally been treated as a unique endeavor, presenting special risks and demanding special protections. But in several ways, the regulatory scheme governing human subjects research is counter-intuitively less protective than the labor and employment laws applicable to many workers. This Article relies on analogical and legal reasoning to demonstrate that this should not be the case; in a number of ways, human research subjects ought to be fundamentally recast as human research workers. Like other workers protected under worklaw, biomedical research subjects often have interests that diverge from those in positions of control but little bargaining power for change. Bearing these important similarities in mind, the question becomes whether there is any good reason to treat subjects and protected workers differently as a matter of law. With regard to unrestricted payment, eligibility for a minimum wage, compensation for injury, and rights to engage in concerted activity, the answer is no and human subjects regulations ought to be revised accordingly.

  8. Gordon Research Conference on Genetic Toxicology

    SciTech Connect

    Project Director Penelope Jeggo

    2003-02-15

    Genetic toxicology represents a study of the genetic damage that a cell can incur, the agents that induce such damage, the damage response mechanisms available to cells and organisms, and the potential consequences of such damage. Genotoxic agents are abundant in the environment and are also induced endogenously. The consequences of such damage can include carcinogenesis and teratogenesis. An understanding of genetic toxicology is essential to carry out risk evaluations of the impact of genotoxic agents and to assess how individual genetic differences influence the response to genotoxic damage. In recent years, the importance of maintaining genomic stability has become increasingly recognized, in part by the realization that failure of the damage response mechanisms underlies many, if not all, cancer incidence. The importance of these mechanisms is also underscored by their remarkable conservation between species, allowing the study of simple organisms to provide significant input into our understanding of the underlying mechanisms. It has also become clear that the damage response mechanisms interface closely with other aspects of cellular metabolism including replication, transcription and cell cycle regulation. Moreover, defects in many of these mechanisms, as observed for example in ataxia telangiectasia patients, confer disorders with associated developmental abnormalities demonstrating their essential roles during growth and development. In short, while a decade ago, a study of the impact of DNA damage was seen as a compartmentalized area of cellular research, it is now appreciated to lie at the centre of an array of cellular responses of crucial importance to human health. Consequently, this has become a dynamic and rapidly advancing area of research. The Genetic Toxicology Gordon Research Conference is biannual with an evolving change in the emphasis of the meetings. From evaluating the nature of genotoxic chemicals, which lay at the centre of the early

  9. The Human as an Experimental System in Molecular Genetics.

    ERIC Educational Resources Information Center

    White, Ray; Caskey, C. Thomas

    1988-01-01

    Discusses insights discovered from research into human biology that are raising possibilities for therapy, prevention of disease, and challenges to society in the form of ethical decisions about the appropriate application of genetic information. (Author/RT)

  10. Xenopus Research: Metamorphosed by Genetics and Genomics

    PubMed Central

    Harland, Richard M.; Grainger, Robert M.

    2011-01-01

    Research using Xenopus takes advantage of large, abundant eggs, and readily manipulated embryos in addition to conserved cellular, developmental and genomic organization with mammals. Research on Xenopus has defined key principles of gene regulation and signal transduction, embryonic induction, morphogenesis and patterning as well as cell cycle regulation. Genomic and genetic advances in this system, including development of Xenopus tropicalis as a genetically tractable complement to the widely used Xenopus laevis, capitalize on the classical strengths and wealth of achievements. These attributes provide the tools to tackle the complex biological problems of the new century, including cellular reprogramming, organogenesis, regeneration, gene regulatory networks and protein interactions controlling growth and development, all of which provide insights into a multitude of human diseases and their potential treatments. PMID:21963197

  11. Genetics of human metabolism: an update

    PubMed Central

    Kastenmüller, Gabi; Raffler, Johannes; Gieger, Christian; Suhre, Karsten

    2015-01-01

    Genome-wide association studies with metabolomics (mGWAS) identify genetically influenced metabotypes (GIMs), their ensemble defining the heritable part of every human's metabolic individuality. Knowledge of genetic variation in metabolism has many applications of biomedical and pharmaceutical interests, including the functional understanding of genetic associations with clinical end points, design of strategies to correct dysregulations in metabolic disorders and the identification of genetic effect modifiers of metabolic disease biomarkers. Furthermore, it has been shown that GIMs provide testable hypotheses for functional genomics and metabolomics and for the identification of novel gene functions and metabolite identities. mGWAS with growing sample sizes and increasingly complex metabolic trait panels are being conducted, allowing for more comprehensive and systems-based downstream analyses. The generated large datasets of genetic associations can now be mined by the biomedical research community and provide valuable resources for hypothesis-driven studies. In this review, we provide a brief summary of the key aspects of mGWAS, followed by an update of recently published mGWAS. We then discuss new approaches of integrating and exploring mGWAS results and finish by presenting selected applications of GIMs in recent studies. PMID:26160913

  12. Human Research Program Opportunities

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.

    2014-01-01

    The goal of HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Human Research Program was designed to meet the needs of human space exploration, and understand and reduce the risk to crew health and performance in exploration missions.

  13. Competent human research personnel.

    PubMed

    Arford, Patricia H; Knowles, Marilyn B; Sneed, Nancee V

    2008-12-01

    The process of conducting human research is highly regulated, rigorous, detailed oriented, potentially harmful, and, hopefully, beneficial. Health professionals learn how to critique, design, analyze, and apply human research but have minimal education in how to conduct human research. Successful completion of a 24-hour course was mandated for research support personnel to enhance the protection of human subjects, improve the integrity of data collected, and ensure cost-effective results. Routine audits demonstrated that the course substantially improved the documentation of the informed consent process, source documentation, protocol adherence, and regulatory compliance.

  14. Personalized Medicine and Human Genetic Diversity

    PubMed Central

    Lu, Yi-Fan; Goldstein, David B.; Angrist, Misha; Cavalleri, Gianpiero

    2014-01-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay–Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  15. Potential treatments for genetic hearing loss in humans: current conundrums.

    PubMed

    Minoda, R; Miwa, T; Ise, M; Takeda, H

    2015-08-01

    Genetic defects are a major cause of hearing loss in newborns. Consequently, hearing loss has a profound negative impact on human daily living. Numerous causative genes for genetic hearing loss have been identified. However, presently, there are no truly curative treatments for this condition. There have been several recent reports on successful treatments in mice using embryonic gene therapy, neonatal gene therapy and neonatal antisense oligonucleotide therapy. Herein, we describe state-of-the-art research on genetic hearing loss treatment through gene therapy and discuss the obstacles to overcome in curative treatments of genetic hearing loss in humans.

  16. Insights into the genetic foundations of human communication.

    PubMed

    Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E

    2015-03-01

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.

  17. Reverse Genetics in Ecological Research

    PubMed Central

    Schwachtje, Jens; Kutschbach, Susan; Baldwin, Ian T.

    2008-01-01

    By precisely manipulating the expression of individual genetic elements thought to be important for ecological performance, reverse genetics has the potential to revolutionize plant ecology. However, untested concerns about possible side-effects of the transformation technique, caused by Agrobacterium infection and tissue culture, on plant performance have stymied research by requiring onerous sample sizes. We compare 5 independently transformed Nicotiana attenuata lines harboring empty vector control (EVC) T-DNA lacking silencing information with isogenic wild types (WT), and measured a battery of ecologically relevant traits, known to be important in plant-herbivore interactions: phytohormones, secondary metabolites, growth and fitness parameters under stringent competitive conditions, and transcriptional regulation with microarrays. As a positive control, we included a line silenced in trypsin proteinase inhibitor gene (TPI) expression, a potent anti-herbivore defense known to exact fitness costs in its expression, in the analysis. The experiment was conducted twice, with 10 and 20 biological replicates per genotype. For all parameters, we detected no difference between any EVC and WT lines, but could readily detect a fitness benefit of silencing TPI production. A statistical power analyses revealed that the minimum sample sizes required for detecting significant fitness differences between EVC and WT was 2–3 orders of magnitude larger than the 10 replicates required to detect a fitness effect of TPI silencing. We conclude that possible side-effects of transformation are far too low to obfuscate the study of ecologically relevant phenotypes. PMID:18253491

  18. Genetically modified pig models for human diseases.

    PubMed

    Fan, Nana; Lai, Liangxue

    2013-02-20

    Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies. Although genetically modified mice have been widely used to model human diseases, some of these mouse models do not replicate important disease symptoms or pathology. Pigs are more similar to humans than mice in anatomy, physiology, and genome. Thus, pigs are considered to be better animal models to mimic some human diseases. This review describes genetically modified pigs that have been used to model various diseases including neurological, cardiovascular, and diabetic disorders. We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.

  19. Genetic & epigenetic approach to human obesity.

    PubMed

    Rao, K Rajender; Lal, Nirupama; Giridharan, N V

    2014-11-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  20. Genetic susceptibility to radiogenic cancer in humans.

    PubMed

    Allan, James M

    2008-11-01

    The clinical benefits associated with the use of ionizing radiation for diagnostic and therapeutic purposes are well established, particularly in cancer medicine. Unfortunately, it is now clear that prior exposure to radiation is associated with an excess risk of developing malignancy in the exposure field. Indeed, the development of a second primary malignancy is a devastating side effect that can often be attributed to radiotherapy for a first cancer. Research has focused on elucidating the relationship between therapeutic radiation dose and site-specific cancer risk, and how this relationship is affected by host factors such as age, sex, and exposure to other potential carcinogens. By contrast, there is a relative paucity of data on host genetic susceptibility to cancer following cytotoxic and mutagenic radiation exposure. Animal model systems suggest a strong genetic basis underlying susceptibility to radiogenic cancer. In humans, research has focused on investigating loci with relatively rare putative high penetrance risk alleles. However, genetic susceptibility to radiogenic cancer and other late effects of radiation exposure may be determined predominantly by co-inheritance of low penetrance risk alleles, and how these interact with each other (gene-gene interactions), with radiation dose (gene-exposure interactions) and other risk factors.

  1. Plasmodium falciparum genetic crosses in a humanized mouse model

    PubMed Central

    Vaughan, Ashley M.; Pinapati, Richard S.; Cheeseman, Ian H.; Camargo, Nelly; Fishbaugher, Matthew; Checkley, Lisa A.; Nair, Shalini; Hutyra, Carolyn A.; Nosten, François H.; Anderson, Timothy J. C.; Ferdig, Michael T.; Kappe, Stefan H. I.

    2015-01-01

    Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations. PMID:26030447

  2. Genetics of human iris colour and patterns.

    PubMed

    Sturm, Richard A; Larsson, Mats

    2009-10-01

    The presence of melanin pigment within the iris is responsible for the visual impression of human eye colouration with complex patterns also evident in this tissue, including Fuchs' crypts, nevi, Wolfflin nodules and contraction furrows. The genetic basis underlying the determination and inheritance of these traits has been the subject of debate and research from the very beginning of quantitative trait studies in humans. Although segregation of blue-brown eye colour has been described using a simple Mendelian dominant-recessive gene model this is too simplistic, and a new molecular genetic perspective is needed to fully understand the biological complexities of this process as a polygenic trait. Nevertheless, it has been estimated that 74% of the variance in human eye colour can be explained by one interval on chromosome 15 that contains the OCA2 gene. Fine mapping of this region has identified a single base change rs12913832 T/C within intron 86 of the upstream HERC2 locus that explains almost all of this association with blue-brown eye colour. A model is presented whereby this SNP, serving as a target site for the SWI/SNF family member HLTF, acts as part of a highly evolutionary conserved regulatory element required for OCA2 gene activation through chromatin remodelling. Major candidate genes possibly effecting iris patterns are also discussed, including MITF and PAX6.

  3. Genetic enhancement, human nature, and rights.

    PubMed

    McConnell, Terrance

    2010-08-01

    Authors such as Francis Fukuyama, the President's Council on Bioethics, and George Annas have argued that biotechnological interventions that aim to promote genetic enhancement pose a threat to human nature. This paper clarifies what conclusions these critics seek to establish, and then shows that there is no plausible account of human nature that will meet the conditions necessary to support this position. Appeals to human nature cannot establish a prohibition against the pursuit of genetic enhancement.

  4. The Sonoda–Tajima Cell Collection: A Human Genetics Research Resource with Emphasis on South American Indigenous Populations

    PubMed Central

    Danjoh, Inaho; Saijo, Kaoru; Hiroyama, Takashi

    2011-01-01

    The Sonoda–Tajima Cell Collection includes cell samples obtained from a range of ethnic minority groups across the world but in particular from South America. The collection is made all the more valuable by the fact that some of these ethnic populations have since died out, and thus it will be impossible to prepare a similar cell collection again. The collection was donated to our institute, a public cell bank in Japan, by Drs Sonoda and Tajima to make it available to researchers throughout the world. The original cell collection was composed of cryopreserved peripheral blood samples that would obviously have been rapidly exhausted if used directly. We, therefore, immortalized some samples with the Epstein–Barr virus and established B-lymphoblastoid cell lines (B-LCLs). As there is continuing controversy over whether the B-LCL genome is stably maintained, we performed an array comparative genomic hybridization (CGH) analysis to confirm the genomic stability of the cell lines. The array CGH analysis of the B-LCL lines and their parental B cells demonstrated that genomic stability was maintained in the long-term cell cultures. The B-LCLs of the Sonoda–Tajima Collection will therefore be made available to interested scientists around the world. At present, 512 B-LCLs have been developed, and we are willing to increase the number if there is sufficient demand. PMID:21383383

  5. Genetic Mapping

    MedlinePlus

    ... Fact Sheets Fact Sheets En Español: Mapeo Genético Genetic Mapping What is genetic mapping? How do researchers ... genetic map? What are genetic markers? What is genetic mapping? Among the main goals of the Human ...

  6. The genetics of human obesity.

    PubMed

    Waalen, Jill

    2014-10-01

    The heritability of obesity has long been appreciated and the genetics of obesity has been the focus of intensive study for decades. Early studies elucidating genetic factors involved in rare monogenic and syndromic forms of extreme obesity focused attention on dysfunction of hypothalamic leptin-related pathways in the control of food intake as a major contributor. Subsequent genome-wide association studies of common genetic variants identified novel loci that are involved in more common forms of obesity across populations of diverse ethnicities and ages. The subsequent search for factors contributing to the heritability of obesity not explained by these 2 approaches ("missing heritability") has revealed additional rare variants, copy number variants, and epigenetic changes that contribute. Although clinical applications of these findings have been limited to date, the increasing understanding of the interplay of these genetic factors with environmental conditions, such as the increased availability of high calorie foods and decreased energy expenditure of sedentary lifestyles, promises to accelerate the translation of genetic findings into more successful preventive and therapeutic interventions.

  7. The genetics of neuroticism and human values.

    PubMed

    Zacharopoulos, George; Lancaster, Thomas M; Maio, Gregory R; Linden, David E J

    2016-04-01

    Human values and personality have been shown to share genetic variance in twin studies. However, there is a lack of evidence about the genetic components of this association. This study examined the interplay between genes, values and personality in the case of neuroticism, because polygenic scores were available for this personality trait. First, we replicated prior evidence of a positive association between the polygenic neuroticism score (PNS) and neuroticism. Second, we found that the PNS was significantly associated with the whole human value space in a sinusoidal waveform that was consistent with Schwartz's circular model of human values. These results suggest that it is useful to consider human values in the analyses of genetic contributions to personality traits. They also pave the way for an investigation of the biological mechanisms contributing to human value orientations.

  8. The genetics of neuroticism and human values

    PubMed Central

    Lancaster, Thomas M.; Maio, Gregory R.; Linden, David E. J.

    2016-01-01

    Human values and personality have been shown to share genetic variance in twin studies. However, there is a lack of evidence about the genetic components of this association. This study examined the interplay between genes, values and personality in the case of neuroticism, because polygenic scores were available for this personality trait. First, we replicated prior evidence of a positive association between the polygenic neuroticism score (PNS) and neuroticism. Second, we found that the PNS was significantly associated with the whole human value space in a sinusoidal waveform that was consistent with Schwartz's circular model of human values. These results suggest that it is useful to consider human values in the analyses of genetic contributions to personality traits. They also pave the way for an investigation of the biological mechanisms contributing to human value orientations. PMID:26915771

  9. Behavioral genetics '97: ASHG statement. Recent developments in human behavioral genetics: past accomplishments and future directions.

    PubMed Central

    Sherman, S L; DeFries, J C; Gottesman, I I; Loehlin, J C; Meyer, J M; Pelias, M Z; Rice, J; Waldman, I

    1997-01-01

    The field of behavioral genetics has enormous potential to uncover both genetic and environmental influences on normal and deviant behavior. Behavioral-genetic methods are based on a solid foundation of theories and methods that successfully have delineated components of complex traits in plants and animals. New resources are now available to dissect the genetic component of these complex traits. As specific genes are identified, we can begin to explore how these interact with environmental factors in development. How we interpret such findings, how we ask new questions, how we celebrate the knowledge, and how we use or misuse this knowledge are all important considerations. These issues are pervasive in all areas of human research, and they are especially salient in human behavioral genetics. PMID:9199545

  10. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  11. Genetic Diversity and Human Equality.

    ERIC Educational Resources Information Center

    Dobzhansky, Theodosius

    The idea of equality often, if not frequently, bogs down in confusion and apparent contradictions; equality is confused with identity, and diversity with inequality. It would seem that the easiest way to discredit the idea of equality is to show that people are innately, genetically, and, therefore, irremediably diverse and unlike. The snare is,…

  12. [Progress in Association between Genetic Correlation and Human Violent Behavior].

    PubMed

    Li, Hui; Li, Lei; Xu, Hong-mei; Zhao, Zi-qin; Liu, Wen-bin; Zhou, Huai-gu

    2015-10-01

    Human violent behavior is a complex behavior which is influenced by genetic and environmental factors. There is a trend in investigating the mechanism of violent behavior by using the genetic methods. This article reviews several candidate genes and advances in epigenetics which are associated with violent behavior. The prospects and significance of violent behavior research from the view of gene polymorphism and epigenetics are also discussed.

  13. Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies

    PubMed Central

    Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.

    2015-01-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980

  14. Community Engagement about Genetic Variation Research

    PubMed Central

    Christensen, Kurt D.; Metosky, Susan; Rudofsky, Gayle; Deignan, Kathleen P.; Martinez, Hulda; Johnson-Moore, Penelope; Citrin, Toby

    2012-01-01

    Abstract The aim of this article is to describe the methods and effectiveness of the Public Engagement in Genetic Variation and Haplotype Mapping Issues (PEGV) Project, which engaged a community in policy discussion about genetic variation research. The project implemented a 6-stage community engagement model in New Rochelle, New York. First, researchers recruited community partners. Second, the project team created community oversight. Third, focus groups discussed concerns generated by genetic variation research. Fourth, community dialogue sessions addressed focus group findings and developed policy recommendations. Fifth, a conference was held to present these policy recommendations and to provide a forum for HapMap (haplotype mapping) researchers to dialogue directly with residents. Finally, findings were disseminated via presentations and papers to the participants and to the wider community beyond. The project generated a list of proposed guidelines for genetic variation research that addressed the concerns of New Rochelle residents. Project team members expressed satisfaction with the engagement model overall but expressed concerns about how well community groups were utilized and what segment of the community actually engaged in the project. The PEGV Project represents a model for researchers to engage the general public in policy development about genetic research. There are benefits of such a process beyond the desired genetic research. (Population Health Management 2012;15:78–89) PMID:21815821

  15. Mendelism in human genetics: 100 years on.

    PubMed

    Majumdar, Sisir K

    2003-01-01

    Genetics (Greek word--'genes' = born) is a science without an objective past. But the genre of genetics was always roaming in the corridors of human psyche since antiquity. The account of heritable deformities in human often appears in myths and legends. Ancient Hindu Caste system was based on the assumption that both desirable and undesirable traits are passed from generation to generation. In Babylonia 60 birth defects were listed on Clay tablets written around 5,000 year ago. The Jewish Talmud contains accurate description of the inheritance of haemophilia--a human genetic disorder. The Upanisads vedant--800--200 BC provides instructions for the choice of a wife emphasizing that no heritable illness should be present and that the family should show evidence of good character for several preceding generations. These examples indicate that heritable human traits played a significant role in social customs are presented in this article.

  16. Genetics of human aggressive behaviour.

    PubMed

    Craig, Ian W; Halton, Kelly E

    2009-07-01

    A consideration of the evolutionary, physiological and anthropological aspects of aggression suggests that individual differences in such behaviour will have important genetic as well as environmental underpinning. Surveys of the likely pathways controlling the physiological and neuronal processes involved highlight, as obvious targets to investigate, genes implicated in sexual differentiation, anxiety, stress response and the serotonin neurotransmitter pathway. To date, however, association studies on single candidates have provided little evidence for any such loci with a major effect size. This may be because genes do not operate independently, but function against a background in which other genetic and environmental factors are crucial. Indeed, a series of recent studies, particularly concentrating on the serotonin and norepinephrine metabolising enzyme, monoamine oxidase A, has emphasised the necessity of examining gene by environmental interactions if the contributions of individual loci are to be understood. These findings will have major significance for the interpretation and analysis of data from detailed whole genome association studies. Functional imaging studies of genetic variants affecting serotonin pathways have also provided valuable insights into potential links between genes, brain and aggressive behaviour.

  17. Human genetics of diabetic vascular complications.

    PubMed

    Tang, Zi-Hui; Fang, Zhou; Zhou, Linuo

    2013-12-01

    Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play important roles in the development of DVC. Genetic linkage studies have uncovered a number of genetic loci that may shape the risk of DVC. Genetic association studies have identified many common genetic variants for susceptibility to DVC. Structural variants such as copy number variation and interactions of gene x environment have also been detected by association analysis. Apart from the nuclear genome, mitochondrial DNA plays a critical role in regulation of development of DVC. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Recently, a new window has opened on identifying rare and common genetic loci through next generation sequencing technologies. This review focusses on the current knowledge of the genetic and epigenetic basis of DVC. Ultimately, identification of genes or genetic loci, structural variants and epigenetic changes contributing to risk of or protection from DVC will help uncover the complex mechanism(s) underlying DVC, with crucial implications for the development of personalized medicine for diabetes mellitus and its complications.

  18. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  19. Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon

    PubMed Central

    Kengne-Ouafo, Jonas A.; Millard, James D.; Nji, Theobald M.; Tantoh, William F.; Nyoh, Doris N.; Tendongfor, Nicholas; Enyong, Peter A.; Newport, Melanie J.; Davey, Gail; Wanji, Samuel

    2016-01-01

    Background There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Methods Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Results Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. Conclusion We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. PMID:25969503

  20. A genetic atlas of human admixture history

    PubMed Central

    Hellenthal, Garrett; Busby, George B.J.; Band, Gavin; Wilson, James F.; Capelli, Cristian

    2014-01-01

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations. PMID:24531965

  1. Sports genetics moving forward: lessons learned from medical research.

    PubMed

    Mattsson, C Mikael; Wheeler, Matthew T; Waggott, Daryl; Caleshu, Colleen; Ashley, Euan A

    2016-03-01

    Sports genetics can take advantage of lessons learned from human disease genetics. By righting past mistakes and increasing scientific rigor, we can magnify the breadth and depth of knowledge in the field. We present an outline of challenges facing sports genetics in the light of experiences from medical research. Sports performance is complex, resulting from a combination of a wide variety of different traits and attributes. Improving sports genetics will foremost require analyses based on detailed phenotyping. To find widely valid, reproducible common variants associated with athletic phenotypes, study sample sizes must be dramatically increased. One paradox is that in order to confirm relevance, replications in specific populations must be undertaken. Family studies of athletes may facilitate the discovery of rare variants with large effects on athletic phenotypes. The complexity of the human genome, combined with the complexity of athletic phenotypes, will require additional metadata and biological validation to identify a comprehensive set of genes involved. Analysis of personal genetic and multiomic profiles contribute to our conceptualization of precision medicine; the same will be the case in precision sports science. In the refinement of sports genetics it is essential to evaluate similarities and differences between sexes and among ethnicities. Sports genetics to date have been hampered by small sample sizes and biased methodology, which can lead to erroneous associations and overestimation of effect sizes. Consequently, currently available genetic tests based on these inherently limited data cannot predict athletic performance with any accuracy.

  2. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    PubMed

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  3. Overview of Behavioral Genetics Research for Family Researchers

    PubMed Central

    Samek, Diana; Rueter, Martha; Koh, Bibiana

    2013-01-01

    This article provides an overview of the methods, assumptions, and key findings of behavioral genetics methodology for family researchers with a limited background. We discuss how family researchers can utilize and contribute to the behavioral genetics field, particularly in terms of conducting research that seeks to explain shared environmental effects. This can be done, in part, by theoretically controlling for genetic confounds in research that seeks to determine cause-and-effect relationships among family variables and individual outcomes. Gene–environment correlation and interaction are especially promising areas for the family researcher to address. Given the methodological advancements in the field, we also briefly comment on new methods in molecular genetics for studying psychological mental health disorders. PMID:24073018

  4. Population genetics of malaria resistance in humans

    PubMed Central

    Hedrick, P W

    2011-01-01

    The high mortality and widespread impact of malaria have resulted in this disease being the strongest evolutionary selective force in recent human history, and genes that confer resistance to malaria provide some of the best-known case studies of strong positive selection in modern humans. I begin by reviewing JBS Haldane's initial contribution to the potential of malaria genetic resistance in humans. Further, I discuss the population genetics aspects of many of the variants, including globin, G6PD deficiency, Duffy, ovalocytosis, ABO and human leukocyte antigen variants. Many of the variants conferring resistance to malaria are ‘loss-of-function' mutants and appear to be recent polymorphisms from the last 5000–10 000 years or less. I discuss estimation of selection coefficients from case–control data and make predictions about the change for S, C and G6PD-deficiency variants. In addition, I consider the predicted joint changes when the two β-globin alleles S and C are both variable in the same population and when there is a variation for α-thalassemia and S, two unlinked, but epistatic variants. As more becomes known about genes conferring genetic resistance to malaria in humans, population genetics approaches can contribute both to investigating past selection and predicting the consequences in future generations for these variants. PMID:21427751

  5. Validating therapeutic targets through human genetics.

    PubMed

    Plenge, Robert M; Scolnick, Edward M; Altshuler, David

    2013-08-01

    More than 90% of the compounds that enter clinical trials fail to demonstrate sufficient safety and efficacy to gain regulatory approval. Most of this failure is due to the limited predictive value of preclinical models of disease, and our continued ignorance regarding the consequences of perturbing specific targets over long periods of time in humans. 'Experiments of nature' - naturally occurring mutations in humans that affect the activity of a particular protein target or targets - can be used to estimate the probable efficacy and toxicity of a drug targeting such proteins, as well as to establish causal rather than reactive relationships between targets and outcomes. Here, we describe the concept of dose-response curves derived from experiments of nature, with an emphasis on human genetics as a valuable tool to prioritize molecular targets in drug development. We discuss empirical examples of drug-gene pairs that support the role of human genetics in testing therapeutic hypotheses at the stage of target validation, provide objective criteria to prioritize genetic findings for future drug discovery efforts and highlight the limitations of a target validation approach that is anchored in human genetics.

  6. The Genetics of Human Skin Disease

    PubMed Central

    DeStefano, Gina M.; Christiano, Angela M.

    2014-01-01

    The skin is composed of a variety of cell types expressing specific molecules and possessing different properties that facilitate the complex interactions and intercellular communication essential for maintaining the structural integrity of the skin. Importantly, a single mutation in one of these molecules can disrupt the entire organization and function of these essential networks, leading to cell separation, blistering, and other striking phenotypes observed in inherited skin diseases. Over the past several decades, the genetic basis of many monogenic skin diseases has been elucidated using classical genetic techniques. Importantly, the findings from these studies has shed light onto the many classes of molecules and essential genetic as well as molecular interactions that lend the skin its rigid, yet flexible properties. With the advent of the human genome project, next-generation sequencing techniques, as well as several other recently developed methods, tremendous progress has been made in dissecting the genetic architecture of complex, non-Mendelian skin diseases. PMID:25274756

  7. Molecular genetics of human chromosome 21.

    PubMed Central

    Watkins, P C; Tanzi, R E; Cheng, S V; Gusella, J F

    1987-01-01

    Chromosome 21 is the smallest autosome, comprising only about 1.9% of human DNA, but represents one of the most intensively studied regions of the genome. Much of the interest in chromosome 21 can be attributed to its association with Down's syndrome, a genetic disorder that afflicts one in every 700 to 1000 newborns. Although only 17 genes have been assigned to chromosome 21, a very large number of cloned DNA segments of unknown function have been isolated and regionally mapped. The majority of these segments detect restriction fragment length polymorphisms (RFLPs) and therefore represent useful genetic markers. Continued molecular genetic investigation of chromosome 21 will be central to elucidating molecular events leading to meiotic non-disjunction and consequent trisomy, the contribution of specific genes to the pathology of Down's syndrome, and the possible role of chromosome 21 in Alzheimer's disease and other as yet unmapped genetic defects. PMID:2884319

  8. Sharing the benefits of genetic resources: from biodiversity to human genetics.

    PubMed

    Schroeder, Doris; Lasén-Díaz, Carolina

    2006-12-01

    Benefit sharing aims to achieve an equitable exchange between the granting of access to a genetic resource and the provision of compensation. The Convention on Biological Diversity (CBD), adopted at the 1992 Earth Summit in Rio de Janeiro, is the only international legal instrument setting out obligations for sharing the benefits derived from the use of biodiversity. The CBD excludes human genetic resources from its scope, however, this article considers whether it should be expanded to include those resources, so as to enable research subjects to claim a share of the benefits to be negotiated on a case-by-case basis. Our conclusion on this question is: 'No, the CBD should not be expanded to include human genetic resources.' There are essential differences between human and non-human genetic resources, and, in the context of research on humans, an essentially fair exchange model is already available between the health care industry and research subjects. Those who contribute to research should receive benefits in the form of accessible new health care products and services, suitable for local health needs and linked to economic prosperity (e.g. jobs). When this exchange model does not apply, as is often the case in developing countries, individually negotiated benefit sharing agreements between researchers and research subjects should not be used as 'window dressing'. Instead, national governments should focus their finances on the best economic investment they could make; the investment in population health and health research as outlined by the World Health Organization's Commission on Macroeconomics and Health; whilst international barriers to such spending need to be removed.

  9. The return of individual research findings in paediatric genetic research.

    PubMed

    Hens, Kristien; Nys, Herman; Cassiman, Jean-Jacques; Dierickx, Kris

    2011-03-01

    The combination of the issue of return of individual genetic results/incidental findings and paediatric biobanks is not much discussed in ethical literature. The traditional arguments pro and con return of such findings focus on principles such as respect for persons, autonomy and solidarity. Two dimensions have been distilled from the discussion on return of individual results in a genetic research context: the respect for a participant's autonomy and the duty of the researcher. Concepts such as autonomy and solidarity do not fit easily in the discussion when paediatric biobanks are concerned. Although parents may be allowed to enrol children in minimal risk genetic research on stored tissue samples, they should not be given the option to opt out of receiving important health information. Also, children have a right to an open future: parents do not have the right to access any genetic data that a biobank holds on their children. In this respect, the guidelines on genetic testing of minors are applicable. With regard to the duty of the researcher the question of whether researchers have a more stringent duty to return important health information when their research subjects are children is more difficult to answer. A researcher's primary duty is to perform useful research, a policy to return individual results must not hamper this task. The fact that vulnerable children are concerned, is an additional factor that should be considered when a policy of returning results is laid down for a specific collection or research project.

  10. Genetically modified animals and pharmacological research.

    PubMed

    Wells, Dominic J

    2010-01-01

    This chapter reviews the use of genetically modified animals and the increasingly detailed knowledge of the genomes of the domestic species. The different approaches to genetic modification are outlined as are the advantages and disadvantages of the techniques in different species. Genetically modified mice have been fundamental in understanding gene function and in generating affordable models of human disease although these are not without their drawbacks. Transgenic farm animals have been developed for nutritionally enhanced food, disease resistance and xenografting. Transgenic rabbits, goats, sheep and cows have been developed as living bioreactors producing potentially high value biopharmaceuticals, commonly referred to as "pharming". Domestic animals are also important as a target as well as for testing genetic-based therapies for both inherited and acquired disease. This latter field may be the most important of all, in the future development of novel therapies.

  11. Ethical issues in human genome research.

    PubMed

    Murray, T H

    1991-01-01

    In addition to provocative questions about science policy, research on the human genome will generate important ethical questions in at least three categories. First, the possibility of greatly increased genetic information about individuals and populations will require choices to be made about what that information should be and about who should control the generation and dissemination of genetic information. Presymptomatic testing, carrier screening, workplace genetic screening, and testing by insurance companies pose significant ethical problems. Second, the burgeoning ability to manipulate human genotypes and phenotypes raises a number of important ethical questions. Third, increasing knowledge about genetic contributions to ethically and politically significant traits and behaviors will challenge our self-understanding and social institutions.

  12. Human Research Program (HRP) Overview

    NASA Video Gallery

    The Human Research Program (HRP) is a major part of the Space Life and Physical Sciences Research and Applications Division within the Human Exploration and Operations Mission Directorate (HEOMD). ...

  13. Genetics of human congenital urinary bladder disease.

    PubMed

    Woolf, Adrian S; Stuart, Helen M; Newman, William G

    2014-03-01

    Lower urinary tract and/or kidney malformations are collectively the most common cause of end-stage renal disease in children, and they are also likely to account for a major subset of young adults requiring renal replacement therapy. Advances have been made regarding the discovery of the genetic causes of human kidney malformations. Indeed, testing for mutations of key nephrogenesis genes is now feasible for patients seen in nephrology clinics. Unfortunately, less is known about defined genetic bases of human lower urinary tract anomalies. The focus of this review is the genetic bases of congenital structural and functional disorders of the urinary bladder. Three are highlighted. First, prune belly syndrome, where mutations of CHRM3, encoding an acetylcholine receptor, HNF1B, encoding a transcription factor, and ACTA2, encoding a cytoskeletal protein, have been reported. Second, the urofacial syndrome, where mutations of LRIG2 and HPSE2, encoding proteins localised in nerves invading the fetal bladder, have been defined. Finally, we review emerging evidence that bladder exstrophy may have genetic bases, including variants in the TP63 promoter. These genetic discoveries provide a new perspective on a group of otherwise poorly understood diseases.

  14. Genetically modified pigs to model human diseases.

    PubMed

    Flisikowska, Tatiana; Kind, Alexander; Schnieke, Angelika

    2014-02-01

    Genetically modified mice are powerful tools to investigate the molecular basis of many human diseases. Mice are, however, of limited value for preclinical studies, because they differ significantly from humans in size, general physiology, anatomy and lifespan. Considerable efforts are, thus, being made to develop alternative animal models for a range of human diseases. These promise powerful new resources that will aid the development of new diagnostics, medicines and medical procedures. Here, we provide a comprehensive review of genetically modified porcine models described in the scientific literature: various cancers, cystic fibrosis, Duchenne muscular dystrophy, autosomal polycystic kidney disease, Huntington’s disease, spinal muscular atrophy, haemophilia A, X-linked severe combined immunodeficiency, retinitis pigmentosa, Stargardt disease, Alzheimer’s disease, various forms of diabetes mellitus and cardiovascular diseases.

  15. Human Genetic Disorders of Axon Guidance

    PubMed Central

    Engle, Elizabeth C.

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders. PMID:20300212

  16. Molecular genetics of human lactase deficiencies.

    PubMed

    Järvelä, Irma; Torniainen, Suvi; Kolho, Kaija-Leena

    2009-01-01

    Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.

  17. [Mycotoxin research in humans].

    PubMed

    Lazo, Ramón F; Sierra, Gonzalo

    2008-03-01

    This study investigates the occurrence of aflatoxins in Ecuador. Early investigators proved the presence of aflatoxins in human and animal food, but the disturbing data lead to the formation of two research teams at Guayaquil University and the Agrarian University of Ecuador to investigate aflaxotins and other mycotoxins in food and their relationship to human health. Because the concept of mycotoxicosis as a result of the secondary metabolites produced by different species of moulds could cause different clinical patterns, the research team includes Aspergillus metabolites found in the urine of a patient with pulmonary aspergilloma. We considered that the body itself could create secondary metabolites. An ELISA method was used to detect mycotoxins with the specific reactive compounds using a company base assay. This allows the detection quantitative of such metabolites in 24 h collected urine. The patient was treated with itraconazole for nine months, after clinical, radiological and aflatoxins testing. We also investigated three other cases in children with a second level of malnutrition and only with vomitoxins results and in three investigated cases of otomycosis caused by Aspergillus niger only in one case traces of aflatoxins were found.

  18. Genetic Heterogeneity in Algerian Human Populations

    PubMed Central

    Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429

  19. Genetic research: who is at risk for alcoholism.

    PubMed

    Foroud, Tatiana; Edenberg, Howard J; Crabbe, John C

    2010-01-01

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case-control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA-sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state-of-the-art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol-metabolizing enzymes and neurotransmitter receptors. Genome-wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol's effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches-for example, into epigenetic mechanisms of gene regulation-also are under way and undoubtedly will further clarify the genetic basis of alcoholism.

  20. Office for Human Research Protections

    MedlinePlus

    ... A A A Print Share Office for Human Research Protections The Office for Human Research Protections (OHRP) provides leadership in the protection of ... welfare, and wellbeing of human subjects involved in research conducted or supported by the U.S. Department of ...

  1. Genetic Susceptibility to Fungal Infections in Humans.

    PubMed

    Lionakis, Michail S

    2012-03-01

    Most fungal infections in humans occur in the setting of iatrogenic immunosuppression or HIV infection. In the absence of these factors, fungi cause mild, self-limited infections that typically involve mucocutaneous surfaces. Hence, when persistent or recurrent mucocutaneous infections (chronic mucocutaneous candidiasis [CMC]) or invasive fungal infections (IFIs) develop in a "normal" host, they are indicative of genetic defects causing innate or adaptive immune dysfunction. In this review, recent developments concerning genetic and immunologic factors that affect the risk for IFIs and CMC are critically discussed.

  2. Genetic Susceptibility to Fungal Infections in Humans

    PubMed Central

    Lionakis, Michail S.

    2012-01-01

    Most fungal infections in humans occur in the setting of iatrogenic immunosuppression or HIV infection. In the absence of these factors, fungi cause mild, self-limited infections that typically involve mucocutaneous surfaces. Hence, when persistent or recurrent mucocutaneous infections (chronic mucocutaneous candidiasis [CMC]) or invasive fungal infections (IFIs) develop in a “normal” host, they are indicative of genetic defects causing innate or adaptive immune dysfunction. In this review, recent developments concerning genetic and immunologic factors that affect the risk for IFIs and CMC are critically discussed. PMID:23087779

  3. Discovery Genetics - The History and Future of Spontaneous Mutation Research.

    PubMed

    Davisson, Muriel T; Bergstrom, David E; Reinholdt, Laura G; Donahue, Leah Rae

    2012-06-01

    Historically, spontaneous mutations in mice have served as valuable models of heritable human diseases, contributing substantially to our understanding of both disease mechanisms and basic biological pathways. While advances in molecular technologies have improved our ability to create mouse models of human disease through targeted mutagenesis and transgenesis, spontaneous mutations continue to provide valuable research tools for discovery of novel genes and functions. In addition, the genetic defects caused by spontaneous mutations are molecularly similar to mutations in the human genome and, therefore often produce phenotypes that more closely resemble those characteristic of human disease than do genetically engineered mutations. Due to the rarity with which spontaneous mutations arise and the animal intensive nature of their genetic analysis, large-scale spontaneous mutation analysis has traditionally been limited to large mammalian genetics institutes. More recently, ENU mutagenesis and new screening methods have increased the rate of mutant strain discovery, and high-throughput DNA sequencing has enabled rapid identification of the underlying genes and their causative mutations. Here, we discuss the continued value of spontaneous mutations for biomedical research.

  4. Population Genomics and the Statistical Values of Race: An Interdisciplinary Perspective on the Biological Classification of Human Populations and Implications for Clinical Genetic Epidemiological Research

    PubMed Central

    Maglo, Koffi N.; Mersha, Tesfaye B.; Martin, Lisa J.

    2016-01-01

    The biological status and biomedical significance of the concept of race as applied to humans continue to be contentious issues despite the use of advanced statistical and clustering methods to determine continental ancestry. It is thus imperative for researchers to understand the limitations as well as potential uses of the concept of race in biology and biomedicine. This paper deals with the theoretical assumptions behind cluster analysis in human population genomics. Adopting an interdisciplinary approach, it demonstrates that the hypothesis that attributes the clustering of human populations to “frictional” effects of landform barriers at continental boundaries is empirically incoherent. It then contrasts the scientific status of the “cluster” and “cline” constructs in human population genomics, and shows how cluster may be instrumentally produced. It also shows how statistical values of race vindicate Darwin's argument that race is evolutionarily meaningless. Finally, the paper explains why, due to spatiotemporal parameters, evolutionary forces, and socio-cultural factors influencing population structure, continental ancestry may be pragmatically relevant to global and public health genomics. Overall, this work demonstrates that, from a biological systematic and evolutionary taxonomical perspective, human races/continental groups or clusters have no natural meaning or objective biological reality. In fact, the utility of racial categorizations in research and in clinics can be explained by spatiotemporal parameters, socio-cultural factors, and evolutionary forces affecting disease causation and treatment response. PMID:26925096

  5. Genetic and environmental factors influencing human diseases with telomere dysfunction

    PubMed Central

    Ly, Hinh

    2009-01-01

    Both genetic and environmental factors have been implicated in the mechanism underlying the pathogenesis of serious and fatal forms of human blood disorder (acquired aplastic anemia, AA) and lung disease (idiopathic pulmonary fibrosis, IPF). We and other researchers have recently shown that naturally occurring mutations in genes encoding the telomere maintenance complex (telomerase) may predispose patients to the development of AA or IPF. Epidemiological data have shown that environmental factors can also cause and/or exacerbate the pathogenesis of these diseases. The exact mechanisms that these germ-line mutations in telomere maintenance genes coupled with environmental insults lead to ineffective hematopoiesis in AA and lung scarring in IPF are not well understood, however. In this article, we provide a summary of evidence for environmental and genetic factors influencing the diseases. These studies provide important insights into the interplay between environmental and genetic factors leading to human diseases with telomere dysfunction. PMID:19684885

  6. Helicopter human factors research

    NASA Technical Reports Server (NTRS)

    Nagel, David C.; Hart, Sandra G.

    1988-01-01

    Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.

  7. Human subjects research handbook: Protecting human research subjects. Second edition

    SciTech Connect

    1996-01-30

    This handbook serves as a guide to understanding and implementing the Federal regulations and US DOE Orders established to protect human research subjects. Material in this handbook is directed towards new and continuing institutional review board (IRB) members, researchers, institutional administrators, DOE officials, and others who may be involved or interested in human subjects research. It offers comprehensive overview of the various requirements, procedures, and issues relating to human subject research today.

  8. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  9. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  10. A global reference for human genetic variation.

    PubMed

    Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Garrison, Erik P; Kang, Hyun Min; Korbel, Jan O; Marchini, Jonathan L; McCarthy, Shane; McVean, Gil A; Abecasis, Gonçalo R

    2015-10-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

  11. Dissecting the genetic architecture of human personality.

    PubMed

    Munafò, Marcus R; Flint, Jonathan

    2011-09-01

    The first candidate gene studies of human personality promised much but, in the fifteen years since their publication, have delivered little in the way of clear evidence for the contribution of specific genetic variants to observed variation in personality traits. This is most likely due to the very small effects conferred by individual loci. The advent of genome-wide association studies has brought growing awareness that high levels of statistical stringency, very large sample sizes, and independent replication will be minimum requirements for future genetic studies of personality. At the same time, evidence from other fields indicates that the genetic architecture of personality is likely to consist of the combined effect of many hundreds, if not thousands, of small effect loci.

  12. [Constant or break? On the relations between human genetics and eugenics in the Twentieth Century].

    PubMed

    Germann, Pascal

    2015-07-01

    The history of human genetics has been a neglected topic in history of science and medicine for a long time. Only recently, have medical historians begun to pay more attention to the history of human heredity. An important research question deals with the interconnections between human genetics and eugenics. This paper addresses this question: By focusing on a Swiss case study, the investigation of the heredity of goiter, I will argue that there existed close but also ambiguous relations between heredity research and eugenics in the twentieth century. Studies on human heredity often produced evidence that challenged eugenic aims and ideas. Concurrently, however, these studies fostered visions of genetic improvement of human populations.

  13. Human Genetics Education: A Look to the Future.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study Journal, 1979

    1979-01-01

    Examines the status of human genetics education. Provides an updated report of the work being done at the BSCS Center for Education in Human and Medical Genetics. Includes reports of regional conferences and of West German educational programs. (MA)

  14. Human Genetic Engineering: A Survey of Student Value Stances

    ERIC Educational Resources Information Center

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  15. Human genetic technology: who shall control?

    PubMed

    Blank, R H

    1984-01-01

    The biotechnical "revolution" has fast come upon us. It promises to produce both substantial benefits and difficult dilemmas for individuals and society. Despite the growing attention being paid to biotechnology, a major unanswered question is who shall control the development and use of the powerful array of human genetic and reproductive innovations. Should the decisions be left to individual consumers and private industry or should they be made by the government or other social institutions? After briefly reviewing development in human genetics and reproduction and describing trends toward commercialization of them, this article discusses the dilemmas these trends raise for a democratic society. It argues for the urgent need to delineate societal goals and priorities for the future and for technology assessment as early as possible in the developmental process. The article concludes by presenting some examples of the social policy problems now emerging.

  16. Genetic basis of human circadian rhythm disorders.

    PubMed

    Jones, Christopher R; Huang, Angela L; Ptáček, Louis J; Fu, Ying-Hui

    2013-05-01

    Circadian rhythm disorders constitute a group of phenotypes that usually present as altered sleep-wake schedules. Until a human genetics approach was applied to investigate these traits, the genetic components regulating human circadian rhythm and sleep behaviors remained mysterious. Steady advances in the last decade have dramatically improved our understanding of the genes involved in circadian rhythmicity and sleep regulation. Finding these genes presents new opportunities to use a wide range of approaches, including in vitro molecular studies and in vivo animal modeling, to elevate our understanding of how sleep and circadian rhythms are regulated and maintained. Ultimately, this knowledge will reveal how circadian and sleep disruption contribute to various ailments and shed light on how best to maintain and recover good health.

  17. Gene Conversion in Human Genetic Disease

    PubMed Central

    Chen, Jian-Min; Férec, Claude; Cooper, David N.

    2010-01-01

    Gene conversion is a specific type of homologous recombination that involves the unidirectional transfer of genetic material from a ‘donor’ sequence to a highly homologous ‘acceptor’. We have recently reviewed the molecular mechanisms underlying gene conversion, explored the key part that this process has played in fashioning extant human genes, and performed a meta-analysis of gene-conversion events known to have caused human genetic disease. Here we shall briefly summarize some of the latest developments in the study of pathogenic gene conversion events, including (i) the emerging idea of minimal efficient sequence homology (MESH) for homologous recombination, (ii) the local DNA sequence features that appear to predispose to gene conversion, (iii) a mechanistic comparison of gene conversion and transient hypermutability, and (iv) recently reported examples of pathogenic gene conversion events. PMID:24710102

  18. The commercialization of human genetics: profits and problems.

    PubMed

    Caulfield, T

    1998-04-01

    Private-sector funding is becoming increasingly important to genetic scientists and clinicians, and the number of academic-industry collaborations is growing rapidly. Furthermore, genetics has become an important tool for the healthcare industry, as the genomes of humans and other organisms are mined for new diagnostic tests and drug leads. Potentially, this is a win-win situation: academic research gets a funding boost; industry benefits from academic research; and humankind benefits from the products of these liaisons. But these benefits do not come without cost. This article explores these costs and examines whether the commercialization of academic research is compromising academic freedom, progress in clinical research, and our attitudes to normal good health.

  19. Advances in gene technology: Human genetic disorders

    SciTech Connect

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  20. Human pain and genetics: some basics

    PubMed Central

    2013-01-01

    Human pain causes untold misery and suffering, with major impact on functioning and resources. Recent advances in genetics have revealed that subtle changes in DNA could partly explain the variation in individual differences in pain. Various genes encoding for receptors are now known to play a major role in the sensitivity, perception and expression of pain. The fields of epigenetics and proteomics hold promises in the way pain could be treated and managed in future. PMID:26516521

  1. Research Needs for Human Factors

    DTIC Science & Technology

    1983-01-01

    Research Note 83-07 RESEARCH NEEDS FOR HUMAN FACTORS Conmmittee on Human Factors Cot ittee on Behavioral and Social Sciences and Education National... Research Council IIJanuary 1983 i ~ Approvted for Dublit rellease; distribution unlimited. __ A N- This report, as submitted by the contractor, has...CATALOG NUMBE -- Research Note 83-07 A2{>/)/.2 ? ___ 4. TITLE (e 5110) S. TyPE of REPORT & PERIOD COVERED Renearch Needs for Human Facotrs S. PERFORMING

  2. Genetics Research Discovered in a Bestseller | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer One morning in early January, Amar Klar sat down at his computer and found an e-mail with a curious message from a colleague. While reading a bestselling novel, The Marriage Plot by Jeffrey Eugenides, his colleague, a professor at Princeton University, found a description of research on yeast genetics that was surprisingly similar to Klar’s early research. Even the laboratory in the novel was reminiscent of Cold Spring Harbor Laboratory, where Klar had conducted his research.

  3. [Network Research on Human Papillomavirus].

    PubMed

    Almeida-Gutiérrez, Eduardo; Paniagua, Ramón; Furuya, María ElenaYuriko

    2015-01-01

    In order to increase the research in important health questions at a national and institutional levels, the Human Papillomavirus Research Network of the Health Research Coordination of the Instituto Mexicano del Seguro Social offers this supplement with the purpose of assisting patients that daily look for attention due to the human papillomavirus or to cervical cancer.

  4. Generation of Transgenic Monkeys with Human Inherited Genetic Disease

    PubMed Central

    Chan, Anthony W.S; Yang, Shang-Hsun

    2009-01-01

    Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species. PMID:19467335

  5. Abortion and the ethics of genetic sexual orientation research.

    PubMed

    Murphy, T F

    1995-01-01

    Research is being conducted to determine whether there is a genetic basis for homoerotic sexual orientation in adults. Reports indicate that such a basis may exist. Some homosexual men and women have welcomed the possibility of biological confirmation of their sexual orientation and subsequent behavior. If human sexual orientation were proven to be genetically determined, many homosexuals would not feel compelled to justify their sexuality. One would simply be born either homosexual or heterosexual. Others, however, worry that the ability to identify homosexuality through genetic markers may be used prejudicially against homosexuals. German sexologist Gunter Schmidt has argued that since society has yet to fully accept homosexuals and homosexuality, research into the possible causes of homosexuality is potentially dangerous to gay men and women. In the same vein, gay studies scholar David Halperin argues that the search for a scientific etiology of sexual orientation is a homophobic venture which should be clearly seen as such. Considerable concern therefore exists that sexual orientation research may lead to genocide against homosexuals through the practice of selective abortion on the basis of a fetus's genetically identified sexual orientation. The author, however, is skeptical that a simple genetic test is on the horizon which is capable of determining an individual's sexual orientation, and were such a test available, that it would necessarily be used only to the detriment of homosexuals. He does acknowledge that such a test could be used prejudicially with regard to access to employment, insurance, and other social goods, but it nonetheless remains unjustified to completely forbid genetic sexual orientation research. A sexual orientation test and abortion, and the ethics of sexual orientation research are discussed.

  6. National Human Genome Research Institute

    MedlinePlus

    ... April 12, 2017 From NICHD : NIH researchers trace origin of blood-brain barrier 'sentry cells' April 11, 2017 From UC San Diego : Researchers Find New Genetic Links Underlying Progressively Blinding Eye Disease March 31, 2017 View more Quick Links Genomics ...

  7. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  8. Office for Human Research Protections

    MedlinePlus

    ... the Secretary’s Advisory Committee on Human Research Protections. International Learn how OHRP promotes ... Recent Announcements "Institutional Review Board (IRB) Written Procedures: Guidance for Institutions and ...

  9. Mapping human genetic diversity in Asia.

    PubMed

    Abdulla, Mahmood Ameen; Ahmed, Ikhlak; Assawamakin, Anunchai; Bhak, Jong; Brahmachari, Samir K; Calacal, Gayvelline C; Chaurasia, Amit; Chen, Chien-Hsiun; Chen, Jieming; Chen, Yuan-Tsong; Chu, Jiayou; Cutiongco-de la Paz, Eva Maria C; De Ungria, Maria Corazon A; Delfin, Frederick C; Edo, Juli; Fuchareon, Suthat; Ghang, Ho; Gojobori, Takashi; Han, Junsong; Ho, Sheng-Feng; Hoh, Boon Peng; Huang, Wei; Inoko, Hidetoshi; Jha, Pankaj; Jinam, Timothy A; Jin, Li; Jung, Jongsun; Kangwanpong, Daoroong; Kampuansai, Jatupol; Kennedy, Giulia C; Khurana, Preeti; Kim, Hyung-Lae; Kim, Kwangjoong; Kim, Sangsoo; Kim, Woo-Yeon; Kimm, Kuchan; Kimura, Ryosuke; Koike, Tomohiro; Kulawonganunchai, Supasak; Kumar, Vikrant; Lai, Poh San; Lee, Jong-Young; Lee, Sunghoon; Liu, Edison T; Majumder, Partha P; Mandapati, Kiran Kumar; Marzuki, Sangkot; Mitchell, Wayne; Mukerji, Mitali; Naritomi, Kenji; Ngamphiw, Chumpol; Niikawa, Norio; Nishida, Nao; Oh, Bermseok; Oh, Sangho; Ohashi, Jun; Oka, Akira; Ong, Rick; Padilla, Carmencita D; Palittapongarnpim, Prasit; Perdigon, Henry B; Phipps, Maude Elvira; Png, Eileen; Sakaki, Yoshiyuki; Salvador, Jazelyn M; Sandraling, Yuliana; Scaria, Vinod; Seielstad, Mark; Sidek, Mohd Ros; Sinha, Amit; Srikummool, Metawee; Sudoyo, Herawati; Sugano, Sumio; Suryadi, Helena; Suzuki, Yoshiyuki; Tabbada, Kristina A; Tan, Adrian; Tokunaga, Katsushi; Tongsima, Sissades; Villamor, Lilian P; Wang, Eric; Wang, Ying; Wang, Haifeng; Wu, Jer-Yuarn; Xiao, Huasheng; Xu, Shuhua; Yang, Jin Ok; Shugart, Yin Yao; Yoo, Hyang-Sook; Yuan, Wentao; Zhao, Guoping; Zilfalil, Bin Alwi

    2009-12-11

    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.

  10. Human Research Program Requirements Document. Human Research Program Revision E

    NASA Technical Reports Server (NTRS)

    Vargas, Paul

    2011-01-01

    This document defines, documents, and allocates the Human Research Program (HRP) requirements to the HRP Program Elements. It also establishes the flow of requirements from the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Health and Medical Officer (OCHMO) down to the various HRP Program Elements to ensure that human research and technology countermeasure investments support the delivery of countermeasures and technologies that satisfy HEOMD's and OCHMO's exploration mission requirements.

  11. Attitudes towards the use of genetically modified animals in research.

    PubMed

    Schuppli, Catherine A; Weary, Daniel M

    2010-11-01

    Here we provide the first experimental evidence that public concerns about the use of animals in research are accentuated when genetically modified (GM) animals are used. Using an online survey, we probed participant views on two uses of pigs as research animals (to reduce agricultural pollution or to improve organ transplant success in humans) with and without GM. We surveyed 327 animal technicians, researchers, advocates, university students and others. In both scenarios and across demographics, support dropped off when the research required the use of GM pigs or GM corn. For example, 66% of participants supported using pigs to reduce phosphorus pollution, but this declined to 49% when the pigs were fed GM corn and to 20% when the research required the creation of a new GM line of pigs. Those involved in animal research were more consistently supportive compared to those who were not or those who were vegetarians.

  12. Prospects for genetically modified non-human primate models, including the common marmoset.

    PubMed

    Sasaki, Erika

    2015-04-01

    Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research.

  13. HUMAN HEALTH RESEARCH STRATEGY

    EPA Science Inventory

    The mission of the U.S. Environmental Protection Agency (EPA) is to protect public health and safeguard the environment. Risk assessment is an integral part of this mission in that it identifies and characterizes environmentally related human health problems. The Human Health Re...

  14. Database tools in genetic diseases research.

    PubMed

    Bianco, Anna Monica; Marcuzzi, Annalisa; Zanin, Valentina; Girardelli, Martina; Vuch, Josef; Crovella, Sergio

    2013-02-01

    The knowledge of the human genome is in continuous progression: a large number of databases have been developed to make meaningful connections among worldwide scientific discoveries. This paper reviews bioinformatics resources and database tools specialized in disseminating information regarding genetic disorders. The databases described are useful for managing sample sequences, gene expression and post-transcriptional regulation. In relation to data sets available from genome-wide association studies, we describe databases that could be the starting point for developing studies in the field of complex diseases, particularly those in which the causal genes are difficult to identify.

  15. [SOME RESULTS OF MOLECULAR GENETIC RESEARCHES OF AGING AND LONGEVITY].

    PubMed

    Mustafina, O E; Somova, R Sh

    2015-01-01

    This review is devoted to the description of research achievements in genetics of aging and longevity. It represents a certain interest for understanding of a problems of aging as a whole. There is a huge amount of results of diverse genetic studies of aging and longevity. Studies were performed with using different experimental strategies on model organisms or samples from different human populations of the world. The search for aging and longevity genes was carried out within international consortiums. The first results of whole genome sequences of super-centenarians were received. The genes influencing life expectancy were revealed in organisms of different systematic groups. Many of these genes are evolutionarily conservative. Associations between APOE, FOXO1A, FOXO3A, AKT1 gene polymorphisms and human longevity were confirmed in independent studies.

  16. Applications of Genetic Programming in Cancer Research

    PubMed Central

    Worzel, William P.; Yu, Jianjun; Almal, Arpit A.; Chinnaiyan, Arul M.

    2012-01-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allows scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future. PMID:18929677

  17. Applications of genetic programming in cancer research.

    PubMed

    Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M

    2009-02-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.

  18. Genetically Encoded Voltage Indicators in Circulation Research

    PubMed Central

    Kaestner, Lars; Tian, Qinghai; Kaiser, Elisabeth; Xian, Wenying; Müller, Andreas; Oberhofer, Martin; Ruppenthal, Sandra; Sinnecker, Daniel; Tsutsui, Hidekazu; Miyawaki, Atsushi; Moretti, Alessandra; Lipp, Peter

    2015-01-01

    Membrane potentials display the cellular status of non-excitable cells and mediate communication between excitable cells via action potentials. The use of genetically encoded biosensors employing fluorescent proteins allows a non-invasive biocompatible way to read out the membrane potential in cardiac myocytes and other cells of the circulation system. Although the approaches to design such biosensors date back to the time when the first fluorescent-protein based Förster Resonance Energy Transfer (FRET) sensors were constructed, it took 15 years before reliable sensors became readily available. Here, we review different developments of genetically encoded membrane potential sensors. Furthermore, it is shown how such sensors can be used in pharmacological screening applications as well as in circulation related basic biomedical research. Potentials and limitations will be discussed and perspectives of possible future developments will be provided. PMID:26370981

  19. Parents' Perspectives on Participating in Genetic Research in Autism

    ERIC Educational Resources Information Center

    Trottier, Magan; Roberts, Wendy; Drmic, Irene; Scherer, Stephen W.; Weksberg, Rosanna; Cytrynbaum, Cheryl; Chitayat, David; Shuman, Cheryl; Miller, Fiona A.

    2013-01-01

    Genetic research in autism depends on the willingness of individuals with autism to participate; thus, there is a duty to assess participants' needs in the research process. We report on families' motives and expectations related to their participation in autism genetic research. Respondents valued having a genetic result, as it alleviates guilt,…

  20. Community Dissemination and Genetic Research: Moving Beyond Results Reporting

    PubMed Central

    Trinidad, Susan Brown; Ludman, Evette J.; Hopkins, Scarlett; James, Rosalina D.; Hoeft, Theresa J.; Kinegak, Annie; Lupie, Henry; Kinegak, Ralph; Boyer, Bert B.; Burke, Wylie

    2015-01-01

    The community-based participatory research (CBPR) literature notes that researchers should share study results with communities. In the case of human genetic research, results may be scientifically interesting but lack clinical relevance. The goals of this study were to learn what kinds of information community members want to receive about genetic research and how such information should be conveyed. We conducted 8 focus group discussions with Yup’ik Alaska Native people in southwest Alaska (N=60) and 6 (N=61) with members of a large health maintenance organization in Seattle, Washington. Participants wanted to receive genetic information they “could do something about” and wanted clinically actionable information to be shared with their healthcare providers; they also wanted researchers to share knowledge about other topics of importance to the community. Although Alaska Native participants were generally less familiar with western scientific terms and less interested in web-based information sources, the main findings were the same in Alaska and Seattle: participants wished for ongoing dialogue, including opportunities for informal, small-group conversations and receiving information that had local relevance. Effective community dissemination is more than a matter of presenting study results in lay language. Community members should be involved in both defining culturally appropriate communication strategies and in determining which information should be shared. Reframing dissemination as a two-way dialogue, rather than a one-way broadcast, supports the twin aims of advancing scientific knowledge and achieving community benefit. PMID:25900516

  1. Genetics of the dentofacial variation in human malocclusion.

    PubMed

    Moreno Uribe, L M; Miller, S F

    2015-04-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes.

  2. Genetics of the dentofacial variation in human malocclusion

    PubMed Central

    Moreno Uribe, L. M.; Miller, S. F.

    2015-01-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes. PMID:25865537

  3. Molecular genetics of speciation and human origins.

    PubMed Central

    Ayala, F J; Escalante, A; O'Huigin, C; Klein, J

    1994-01-01

    The major histocompatibility complex (MHC) plays a cardinal role in the defense of vertebrates against parasites and other pathogens. In some genes there are extensive and ancient polymorphisms that have passed from ancestral to descendant species and are shared among contemporary species. The polymorphism at the DRB1 locus, represented by 58 known alleles in humans, has existed for at least 30 million years and is shared by humans, apes, and other primates. The coalescence theory of populations genetics leads to the conclusion that the DRB1 polymorphism requires that the population ancestral to modern humans has maintained a mean effective size of 100,000 individuals over the 30-million-year persistence of this polymorphism. We explore the possibility of occasional population bottlenecks and conclude that the ancestral population could not have at any time consisted of fewer than several thousand individuals. The MHC polymorphisms exclude the theory claiming, on the basis of mitochondrial DNA polymorphisms, that a constriction down to one or few women occurred in Africa, at the transition from archaic to anatomically modern humans, some 200,000 years ago. The data are consistent with, but do not provide specific support for, the claim that human populations throughout the World were at that time replaced by populations migrating from Africa. The MHC and other molecular polymorphisms are consistent with a "multiregional" theory of Pleistocene human evolution that proposes regional continuity of human populations since the time of migrations of Homo erectus to the present, with distinctive regional selective pressures and occasional migrations between populations. PMID:8041698

  4. Genetics of human sensitivity to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  5. Human factors in visualization research.

    PubMed

    Tory, Melanie; Möller, Torsten

    2004-01-01

    Visualization can provide valuable assistance for data analysis and decision making tasks. However, how people perceive and interact with a visualization tool can strongly influence their understanding of the data as well as the system's usefulness. Human factors therefore contribute significantly to the visualization process and should play an important role in the design and evaluation of visualization tools. Several research initiatives have begun to explore human factors in visualization, particularly in perception-based design. Nonetheless, visualization work involving human factors is in its infancy, and many potentially promising areas have yet to be explored. Therefore, this paper aims to 1) review known methodology for doing human factors research, with specific emphasis on visualization, 2) review current human factors research in visualization to provide a basis for future investigation, and 3) identify promising areas for future research.

  6. Clinical genetic research 3: Genetics ELSI (Ethical, Legal, and Social Issues) research.

    PubMed

    Pullman, Daryl; Etchegary, Holly

    2015-01-01

    ELSI (Ethical, Legal, and Social Issues) is a widely used acronym in the bioethics literature that encompasses a broad range of research areas involved in examining the various impacts of science and technology on society. In Canada, GE3LS (Genetics, Ethical, Economic, Environmental, Legal, Social issues) is the term used to describe ELSI studies. It is intentionally more expansive in that GE3LS explicitly brings economic and environmental issues under its purview. ELSI/GE3LS research has become increasingly important in recent years as there has been a greater emphasis on "translational research" that moves genomics from the bench to the clinic. The purpose of this chapter is to outline a range of ELSI-related work that might be conducted as part of a large scale genetics or genomics research project, and to provide some practical insights on how a scientific research team might incorporate a strong and effective ELSI program within its broader research mandate. We begin by describing the historical context of ELSI research and the development of GE3LS research in the Canadian context. We then illustrate how some ELSI research might unfold by outlining a variety of research questions and the various methodologies that might be employed in addressing them in an area of ELSI research that is encompassed under the term "public engagement." We conclude with some practical pointers about how to build an effective ELSI/GE3LS team and focus within a broader scientific research program.

  7. Overview of genetic analysis of human opioid receptors.

    PubMed

    Spampinato, Santi M

    2015-01-01

    The human μ-opioid receptor gene (OPRM1), due to its genetic and structural variation, has been a target of interest in several pharmacogenetic studies. The μ-opioid receptor (MOR), encoded by OPRM1, contributes to regulate the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic polymorphisms of opioid receptors are candidates for the variability of clinical opioid effects. The non-synonymous polymorphism A118G of the OPRM1 has been repeatedly associated with the efficacy of opioid treatments for pain and various types of dependence. Genetic analysis of human opioid receptors has evidenced the presence of numerous polymorphisms either in exonic or in intronic sequences as well as the presence of synonymous coding variants that may have important effects on transcription, mRNA stability, and splicing, thus affecting gene function despite not directly disrupting any specific residue. Genotyping of opioid receptors is still in its infancy and a relevant progress in this field can be achieved by using advanced gene sequencing techniques described in this review that allow the researchers to obtain vast quantities of data on human genomes and transcriptomes in a brief period of time and with affordable costs.

  8. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  9. Human knockout research: new horizons and opportunities.

    PubMed

    Alkuraya, Fowzan S

    2015-02-01

    Although numerous approaches have been pursued to understand the function of human genes, Mendelian genetics has by far provided the most compelling and medically actionable dataset. Biallelic loss-of-function (LOF) mutations are observed in the majority of autosomal recessive Mendelian disorders, representing natural human knockouts and offering a unique opportunity to study the physiological and developmental context of these genes. The restriction of such context to 'disease' states is artificial, however, and the recent ability to survey entire human genomes for biallelic LOF mutations has revealed a surprising landscape of knockout events in 'healthy' individuals, sparking interest in their role in phenotypic diversity beyond disease causation. As I discuss in this review, the potentially wide implications of human knockout research warrant increased investment and multidisciplinary collaborations to overcome existing challenges and reap its benefits.

  10. Biological databases for human research.

    PubMed

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-02-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation.

  11. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    SciTech Connect

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  12. Human Research Program Requirements Document

    NASA Technical Reports Server (NTRS)

    Rieger, Gabe

    2007-01-01

    The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD s and OCHMO's exploration mission requirements.

  13. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    PubMed

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  14. Scaling up: human genetics as a Cold War network.

    PubMed

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology.

  15. Human Research Initiative (HRI)

    NASA Technical Reports Server (NTRS)

    Motil, Brian

    2003-01-01

    A code U initiative starting in the FY04 budget includes specific funding for 'Phase Change' and 'Multiphase Flow Research' on the ISS. NASA GRC developed a concept for two facilities based on funding/schedule constraints: 1) Two Phase Flow Facility (TphiFFy) which assumes integrating into FIR; 2) Contact Line Dynamics Experiment Facility (CLiDE) which assumes integration into MSG. Each facility will accommodate multiple experiments conducted by NRA selected PIs with an overall goal of enabling specific NASA strategic objectives. There may also be a significant ground-based component.

  16. Drawing the line on genetic intervention in humans.

    PubMed Central

    Kaura, D R

    1996-01-01

    Because the science of genetics can have such profound effects on medicine and mankind, society must define the characteristics of a moral framework within which to make decisions about genetic issues. University of Manitoba medical student Deepak Kaura, who claimed third prize in CMAJ's 1995 Logie Medical Ethics Essay Contest, examines the ethics of genetic intervention in humans. Images p928-a PMID:8634976

  17. Genetically modified plants and human health

    PubMed Central

    Key, Suzie; Ma, Julian K-C; Drake, Pascal MW

    2008-01-01

    Summary Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt ‘health campaigns’, the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly – through applications targeted at nutrition and enhancement of recombinant medicine production – but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion. PMID:18515776

  18. Genetic and Fossil Evidence for the Origin of Modern Humans.

    ERIC Educational Resources Information Center

    Stringer, C. B.; Andrews, P.

    1988-01-01

    Discusses how genetic data on present human population relationships and data from the Pleistocene fossil hominid record are being used to compare two contrasting models for the origin of modern humans. (TW)

  19. Breeding and quantitative genetics advances in sunflower Sclerotinia research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower quantitative genetics research to find and capture Sclerotinia resistance is increasing with every year t...

  20. Research Progress and Results from the 2009 Sunflower Genetics Trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower genetic research is ever increasing with more insect and disease problems nationwide. Preliminary data on...

  1. Behavioral phenotypes in genetic syndromes: genetic clues to human behavior.

    PubMed

    Cassidy, Suzanne B; Morris, Colleen A

    2002-01-01

    A behavioral phenotype is the characteristic cognitive, personality, behavioral, and psychiatric pattern that typifies a disorder. A number of genetic syndromes have been identified as having this type of distinctive and consistent behavior pattern. It may act as an important diagnostic sign, like a malformation or characteristic facial appearance. Such patterns are also useful for the physician's anticipatory guidance from an educational, rehabilitative, and parenting perspective. In addition, because they are the consequences of known genetic alterations, behavioral phenotypes can be potentially highly valuable clues to the identification of genes in the population that are important to determination of cognitive skills or deficits, personality determinants, behavioral abnormalities, or psychiatric disorders. The nature of a behavioral phenotype and its potential for genetic insight can be appreciated through the examples of Williams syndrome, Prader-Willi syndrome, and Angelman syndrome. The cognitive and behavioral characteristics of these disorders are distinctive. Williams syndrome is known for its association with remarkable conversational verbal abilities and excessive empathy, whereas Prader-Willi syndrome is known for temper tantrums and obsessive-compulsive features, and Angelman syndrome is associated with a constantly happy affect and hyperactivity. The genetic basis for each of these disorders is known, and the pathophysiology and genotype-phenotype correlations are beginning to provide insight into genes responsible for personality characteristics and behavioral abnormalities.

  2. Genetic research and testing in sport and exercise science: a review of the issues.

    PubMed

    Wackerhage, Henning; Miah, Andy; Harris, Roger C; Montgomery, Hugh E; Williams, Alun G

    2009-09-01

    This review is based on the BASES position stand on "Genetic Research and Testing in Sport and Exercise Science". Our aims are first to introduce the reader to research in sport and exercise genetics and then to highlight ethical problems arising from such research and its applications. Sport and exercise genetics research in the form of transgenic animal and human association studies has contributed significantly to our understanding of exercise physiology and there is potential for major new discoveries. Researchers starting out in this field will have to ensure an appropriate study design to avoid, for example, statistically underpowered studies. Ethical concerns arise more from the applications of genetic research than from the research itself, which is assessed by ethical committees. Possible applications of genetic research are genetic performance tests or genetic tests to screen, for example, for increased risk of sudden death during sport. The concerns are that genetic performance testing could be performed on embryos and could be used to select embryos for transplantation or abortion. Screening for risk of sudden death may reduce deaths during sporting events but those that receive a positive diagnosis may suffer severe psychological consequences. Equally, it will be almost impossible to keep a positive diagnosis confidential if the individual tested is an elite athlete.

  3. Research with vulnerable human beings.

    PubMed

    Tangwa, Godfrey B

    2009-11-01

    Some categories of human beings are particularly vulnerable vis-à-vis medical research. Vulnerability could be considered as the liability to be harmed, exploited, deceived, cheated, wronged, or otherwise unfairly treated, in roughly that descending order of importance. Vulnerable human beings obviously include the incompetent (minors and mentally handicapped adults), the desperately poor, ill or ignorant, prisoners, refugees, pregnant women, subordinates in highly authoritarian systems, etc. Vulnerability in itself does not imply that no research whatsoever should be carried out with such categories of humans but only that it should be carried out only under very special conditions. In this paper I treat of vulnerability in research of particularly developing world populations; of the types of research which exploit such vulnerability, and of why and how research subjects should be protected. The aim in this paper is to stimulate practical reflection on the possible vulnerabilities of potential research subjects that researchers or investigators need to avoid exploiting rather than on an adequate theoretical treatment of the issue.

  4. Inferences of Recent and Ancient Human Population History Using Genetic and Non-Genetic Data

    ERIC Educational Resources Information Center

    Kitchen, Andrew

    2008-01-01

    I have adopted complementary approaches to inferring human demographic history utilizing human and non-human genetic data as well as cultural data. These complementary approaches form an interdisciplinary perspective that allows one to make inferences of human history at varying timescales, from the events that occurred tens of thousands of years…

  5. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Name of Committee: National Human Genome Research Institute Special Emphasis Panel; Genetic... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  6. Public preferences and the challenge to genetic research policy.

    PubMed

    Dresser, Rebecca

    2014-03-01

    Modern genetic research requires scientists to collect, store, and study DNA samples and health information from thousands of people. Longstanding policy allows researchers to use samples and information without a person's informed consent as long as the person's identity is protected. Under existing policy, researchers must neither disclose study results to interested research participants nor compensate people who contribute to genetic research. Research and ethics experts developed these policy approaches without input from the people whose contributions are essential to the genetic research enterprise. A growing body of evidence shows that many research participants and would-be participants disagree with the current policy approaches. For ethical and practical reasons, participants should have a greater role in determining how genetic research is conducted.

  7. Seeking perfection: a Kantian look at human genetic engineering.

    PubMed

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  8. NCBI genetic resources supporting immunogenetic research.

    PubMed

    Feolo, M; Helmberg, W; Sherry, S; Maglott, D R

    2000-01-01

    The NCBI creates and maintains a set of integrated bibliographic, sequence, map, structure and other database resources to promote the efficient retrieval of information and the discovery of novel relationships. The connections made between elements of these resources permit researchers to start a search from a wide spectrum of entry points. These multiple dimensions of data can be roughly categorized by primary content as text or bibliographic (PubMed, PubMedCentral, OMIM, LocusLink), sequence (GenBank, Reference Sequence Project (RefSeq), dbSNP, MMDB), protein structure (MMDB) or map position (MapView). They can also becategorized by level of expert curation, which may range from validation of submissions from external groups (GenBank, PubMed, PubMedCentral,), to automatic computation (HomoloGene, UniGene), and to highly reviewed and corrected (LocusLink, MMDB, OMIM, RefSeq). Searches can be made by words (in an article title, key words, sequence annotation, database value, author) by sequence (BLAST or e-PCR against multiple sequence databases), or by map coordinates. By computing or curating bi-directional links between related objects, NCBI can represent content on the genetics, molecular biology, and clinical considerations of interest to immunogeneticists. There is also an emerging resource developed by the NCBI in collaboration with the IHWG devoted to the presentation of MHC data (dbMHC). How dbMHC will augment existing resources at the NCBI is described.

  9. Genetics/Genomics Research in the Central Region

    USGS Publications Warehouse

    ,

    2006-01-01

    Genetics-based research within the Biological Resources Discipline (BRD) Science Centers in the Central Region incorporates many aspects of the field of genetics. Research activities range from documenting patterns of genetic variation in order to investigate relationships among species, populations and individuals to investigating the structure, function and expression of genes and their response to environmental stressors. Research in the broad areas of genetics requires multidisciplinary expertise and specialized equipment and instrumentation. Brief summaries of the capabilities of the five BRD Centers are given below.

  10. Mine, Yours, Ours? Sharing Data on Human Genetic Variation

    PubMed Central

    Montinaro, Francesco; Capocasa, Marco; Sanna, Emanuele; Bisol, Giovanni Destro

    2012-01-01

    The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9%) was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%). The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6%) suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing. PMID:22679483

  11. Validation of human clinical genetic tests.

    PubMed

    Peris-Vicente, Juan; Ochoa-Arand, Enrique; Carda-Broch, Samuel; Esteve-Romero, Josep

    2014-01-01

    In the last ten years, a high amount of genetic assays has been developed for molecular biopathology and genetic laboratories of the hospitals, mainly developed and provided by external companies. In some cases, the specialized staff members of the hospitals (doctors, biopathologists, geneticists or pharmacists) develop their own methods. The validation of these methods is required before their use in clinical testing, in order to assess its reliability. Analytical methods are validated under the requirements of International Guidelines, but validation procedures for clinical genetic tests are under study and need clarifications. In this manuscript, the main information related to the field of genetic validation is revised, including statistics, explaining the difficulty of validation for some of the developed genetic tests. The provided information is in agreement with all the International Guides. The information could be useful by the workers daily performing this kind of analysis.

  12. Probing genetic overlap among complex human phenotypes.

    PubMed

    Rzhetsky, Andrey; Wajngurt, David; Park, Naeun; Zheng, Tian

    2007-07-10

    Geneticists and epidemiologists often observe that certain hereditary disorders cooccur in individual patients significantly more (or significantly less) frequently than expected, suggesting there is a genetic variation that predisposes its bearer to multiple disorders, or that protects against some disorders while predisposing to others. We suggest that, by using a large number of phenotypic observations about multiple disorders and an appropriate statistical model, we can infer genetic overlaps between phenotypes. Our proof-of-concept analysis of 1.5 million patient records and 161 disorders indicates that disease phenotypes form a highly connected network of strong pairwise correlations. Our modeling approach, under appropriate assumptions, allows us to estimate from these correlations the size of putative genetic overlaps. For example, we suggest that autism, bipolar disorder, and schizophrenia share significant genetic overlaps. Our disease network hypothesis can be immediately exploited in the design of genetic mapping approaches that involve joint linkage or association analyses of multiple seemingly disparate phenotypes.

  13. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  14. Review of approaches to the detection of genetic damage in the human fetus

    SciTech Connect

    Everson, R.B.

    1987-10-01

    Studies in experimental animals links between genetic damage to the fetus and the etiology of several disorders, including fetal loss, teratogenesis, and cancer. Methods for measuring genetic damage directly in the human fetus could provide epidemiologists and clinical researchers with powerful tools for investigating similar associations in humans. Current methods potentially available for such studies include assays for mutagenic substances in human body fluids and for measuring modifications to genetic material at the three levels of organization of genetic material: the chromosome, the gene or specific locus, and chemical DNA. Results of studies using fetal tissues to investigate each of these end points are reviewed, emphasizing studies of chemical modifications to DNA nucleotides detected in the human plancenta.

  15. The genetics of kinship in remote human groups.

    PubMed

    Zvénigorosky, Vincent; Crubézy, Eric; Gibert, Morgane; Thèves, Catherine; Hollard, Clémence; Gonzalez, Angéla; Fedorova, Sardana A; Alexeev, Anatoly N; Bravina, Rozalia I; Ludes, Bertrand; Keyser, Christine

    2016-11-01

    For fifteen years, part of the work of our research team has been focused on the study of parental links between individuals living hundreds or thousands of years ago, whose remains have been found in single graves or large funerary complexes. These studies have been undertaken using methods developed by forensic genetics to identify individuals, mainly based on the genotyping of autosomal STR (Short Tandem Repeats). Issues arose from this work, namely the limits of studying small numbers of subjects, originating from groups of finite sizes where kinships cannot be inferred a priori and for which reference allelic frequencies do not exist. Although ideal human populations are rare when undertaking such studies, the Yakuts of Eastern Siberia constitute a very advantageous model, with large numbers of small pastoral communities and well-preserved archaeological material. The study of kinship in the ancient Yakuts allowed us to highlight the difficulties in analysing genetic data from small ancient human groups and to develop a strategy to improve the accuracy of statistical computations. This work describes this strategy and possible solutions to the study of populations outside of the frame of reference of global meta-populations, due either to isolation, remoteness or antiquity.

  16. Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory

    PubMed Central

    Schrodi, Steven J.

    2016-01-01

    Development of human genetics theoretical models and the integration of those models with experiment and statistical evaluation are critical for scientific progress. This perspective argues that increased effort in disease genetics theory, complementing experimental, and statistical efforts, will escalate the unraveling of molecular etiologies of complex diseases. In particular, the development of new, realistic disease genetics models will help elucidate complex disease pathogenesis, and the predicted patterns in genetic data made by these models will enable the concurrent, more comprehensive statistical testing of multiple aspects of disease genetics predictions, thereby better identifying disease loci. By theoretical human genetics, I intend to encompass all investigations devoted to modeling the heritable architecture underlying disease traits and studies of the resulting principles and dynamics of such models. Hence, the scope of theoretical disease genetics work includes construction and analysis of models describing how disease-predisposing alleles (1) arise, (2) are transmitted across families and populations, and (3) interact with other risk and protective alleles across both the genome and environmental factors to produce disease states. Theoretical work improves insight into viable genetic models of diseases consistent with empirical results from linkage, transmission, and association studies as well as population genetics. Furthermore, understanding the patterns of genetic data expected under realistic disease models will enable more powerful approaches to discover disease-predisposing alleles and additional heritable factors important in common diseases. In spite of the pivotal role of disease genetics theory, such investigation is not particularly vibrant. PMID:27375680

  17. Overview of symposium "Systems Genetics in Nutrition and Obesity Research".

    PubMed

    Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2011-03-01

    Systems genetics is a novel approach for identifying the complex genetic architecture of quantitative traits and gene-environment interactions via detection of connections from genetic variation through intermediate phenotypes to overlying systems level phenotypes. This symposium, conducted at the Experimental Biology 2010 conference, aimed at educating nutrition researchers about the use of systems genetics as a tool for linking genetic variation to nutrient metabolism and energy balance and their overlying effects on health and disease. Basic concepts of systems genetics and the analytical framework used in these studies were presented. Further, the utility of genetic reference populations for gene-environment interaction studies along with specific studies addressing genetic variation in responsiveness to nutrients were discussed.

  18. Lunar Human Research Requirements (LHRR)

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela

    2009-01-01

    Biomedical research will be conducted during transit and on the surface of the Moon to prepare for extended stays on the Moon and to prepare for the exploration of Mars. The objective of the Human Research Program (HRP) is to preserve the health and enhance performance of astronaut explorers. Specific objectives of the HRP include developing the knowledge, capabilities, and necessary countermeasures and technologies in support of human space exploration; focusing on mitigating the highest risks to crew health and performance; and defining and improving human spaceflight medical, environmental, behavioral, and human factors standards. This document contains a detailed description of the resource accommodations, interfaces, and environments to be provided by the Constellation Program (CxP) to support the HRP research in transit and on the lunar surface. Covered, specifically, are the requirements for mass and volume transport; crew availability; ground operations, baseline data collection, and payload processing; power, and data. Volumes and mass are given for transport of conditioned samples only. They do not account for the engineering solution that the Constellation Program will implement (refrigerator/freezer volume/mass). This document does not account for requirements on the Orion vehicle for transportation to and from the International Space Station (ISS). The ISS Program has supplied requirements for this mission.

  19. Genetic modification of plant metabolism for human health benefits.

    PubMed

    Davies, Kevin M

    2007-09-01

    There has been considerable research progress over the past decade on elucidating biosynthetic pathways for important human health components of crops. This has enabled the use of genetic modification (GM) techniques to develop crop varieties with increased amounts of essential vitamins and minerals, and improved profiles of 'nutraceutical' compounds. Much of the research into vitamins and minerals has focused on generating new varieties of staple crops to improve the diet of populations in developing nations. Of particular note is the development of new rice lines with increased amounts of provitamin A and iron. Research on modifying production of nutraceuticals has generally been aimed at generating new crops for markets in the developed nations, commonly to deliver distinctive cultivars with high consumer appeal. Most progress on nutraceuticals has been made with just a few types of metabolites to date, in particular in the production of novel long-chain polyunsaturated fatty acids in oil-seed crops and to increase amounts of flavonoids and carotenoids in tomato and potato. However, given the rapid progress on elucidating plant metabolite biosynthetic pathways, wide-ranging success with metabolic engineering for levels of human health-related compounds in plants would be expected in the near future. A key aspect for future success will be better medical information to guide metabolic engineering endeavors. Although the desired levels of many vitamins are known, detailed information is lacking for most of the nutraceuticals that have attracted much interest over the past few years.

  20. Patenting genes and genetic research: good or bad for innovation?

    PubMed

    Arnold, Beth E; Ogielska-Zei, Eva

    2002-01-01

    Our goal with this article is to inform the debate over gene patenting, by providing an understanding of (a) the scope of patent claims that are actually being issued on genetic inventions in the United States, (b) the issues that impact their enforcement, and (c) the role that patents and patent licensing play in the commercialization of genetic technologies and products. We conclude by discussing whether the current legal regime effectively balances the beneficial role of patents in the development of new genetic technologies and products against negative impacts on genetic research or clinical genetic testing, or whether the current laws should be amended.

  1. [Application of genetic diversity in the researches on rodents].

    PubMed

    Liu, Zhu; Yang, Chun-Wen; Xu, Yan-Chun; Jin, Zhi-Min; Ma, Jian-Zhang

    2014-02-01

    Genetic diversity is the base of the species diversity and ecosystem diversity, and also the foundation for biological evolution and species differentiation. Furthermore, genetic diversity is important evidence for evaluation of biological resources of nature. The genetic diversity data from a wide variety of rodents have many complex applications. We summarized the application of rodent prevention, the origin and differentiation including evolutionary history of rodents, the potential adaptation of rodents, the dynamics of population and regulatory mechanisms, and the conservation biology of rodents. Researches in the future should focus on the systematic study on the relationships between population dynamics and genetic diversity, and long-term monitoring of genetic diversity of rodents.

  2. The etiology and molecular genetics of human pigmentation disorders

    PubMed Central

    Baxter, Laura L.; Pavan, William J.

    2012-01-01

    Pigmentation, defined as the placement of pigment in skin, hair, and eyes for coloration, is distinctive because the location, amount, and type of pigmentation provides a visual manifestation of genetic heterogeneity in pathways regulating the pigment-producing cells, melanocytes. The scope of this genetic heterogeneity in humans ranges from normal to pathological pigmentation phenotypes. Clinically normal human pigmentation encompasses a variety of skin and hair color as well as with punctate pigmentation such as melanocytic nevi (moles) or ephelides (freckles), while clinically abnormal human pigmentation exhibits markedly reduced or increased pigment levels, known as hypopigmentation and hyperpigmentation, respectively. Elucidation of the molecular genetics underlying pigmentation has revealed genes important for melanocyte development and function. Furthermore, many pigmentation disorders show additional defects in cells other than melanocytes, and identification of the genetic insults in these disorders has revealed pleiotropic genes, where a single gene is required for various functions, often in different cell types. Thus unravelling the genetics of easily visualized pigmentation disorders has identified molecular similarities between melanocytes and less visible cell types/tissues, revealing a common cellular origin and/or common genetic regulatory pathways. Herein we discuss notable human pigmentation disorders and their associated genetic alterations, focusing on the fact that the developmental genetics of pigmentation abnormalities is instructive for understanding normal pathways governing development and function of melanocytes. PMID:23799582

  3. Ethical Concerns About Human Genetic Enhancement in the Malay Science Fiction Novels.

    PubMed

    Isa, Noor Munirah; Hj Safian Shuri, Muhammad Fakhruddin

    2017-03-09

    Advancements in science and technology have not only brought hope to humankind to produce disease-free offspring, but also offer possibilities to genetically enhance the next generation's traits and capacities. Human genetic enhancement, however, raises complex ethical questions, such as to what extent should it be allowed? It has been a great challenge for humankind to develop robust ethical guidelines for human genetic enhancement that address both public concerns and needs. We believe that research about public concerns is necessary prior to developing such guidelines, yet the issues have not been thoroughly investigated in many countries, including Malaysia. Since the novel often functions as a medium for the public to express their concerns, this paper explores ethical concerns about human genetic enhancement expressed in four Malay science fiction novels namely Klon, Leksikon Ledang, Transgenesis Bisikan Rimba and Transgenik Sifar. Religion has a strong influence on the worldview of the Malays therefore some concerns such as playing God are obviously religious. Association of the negative image of scientists as well as the private research companies with the research on human genetic enhancement reflects the authors' concerns about the main motivations for conducting such research and the extent to which such research will benefit society.

  4. Genetic knowledge and moral responsibility: ambiguity at the interface of genetic research and clinical practice.

    PubMed

    Pullman, D; Hodgkinson, K

    2006-03-01

    Despite a rapidly expanding literature on the issue of duty to warn at-risk relatives in the context of clinical genetic testing, little has been written on parallel issues with regard to the management of genetic research results. Some might view this lack as an indication that there is little to discuss in this regard. That is, standard practice is that data obtained through medical research should not be treated as though they are clinically relevant, and this standard should hold for genetic research as well. This paper challenges this conclusion and its underlying assumptions. We argue that the line between genetic research and clinical practice is often ambiguous. In some cases, research data gathered from a very small number of subjects could have immediate clinical implications. Hence, it is unethical for genetic researchers to absolve themselves of clinical responsibilities for research subjects and/or their families, on the grounds that the data were obtained for research purposes. Indeed, we argue that it could well be unethical to embark on some forms of genetic research unless advance arrangements have been made for genetic counseling and clinical follow-up. Furthermore, in some cases, it might be unethical to enroll subjects in studies if the subjects are unwilling to receive their individual results.

  5. Beliefs in genetic determinism and attitudes towards psychiatric genetic research: psychometric scale properties, construct associations, demographic correlates, and cross-cultural comparisons.

    PubMed

    Voracek, Martin; Swami, Viren; Loibl, Lisa Mariella; Furnham, Adrian

    2007-12-01

    Using two new scales, this study examined beliefs in genetic determinism and attitudes towards psychiatric genetic research in student samples from Austria, Malaysia, Romania, and the United Kingdom. For both constructs, effects of culture were detectable, whereas those related to key demographics were either small and inconsistent across samples (political orientation and religiosity) or zero (sex and age). Judged from factorial dimensionality and internal consistency, the psychometric properties of both scales were satisfactory. Belief in genetic determinism had lower prevalence and corresponded only modestly to positive attitudes towards psychiatric genetic research which had higher prevalence. The correlations of both constructs with a preference of inequality among social groups (social dominance orientation) were modest and inconsistent across samples. Both scales appear appropriate for cross-cultural applications, in particular for research into lay theories and public perceptions regarding genetic vs environmental effects on human behavior, mental disorders, and behavioral and psychiatric genetic research related to these.

  6. Research advances on animal genetics in China in 2015.

    PubMed

    Bo, Zhang; Xiaofang, Chen; Xun, Huang; Xiao, Yang

    2016-06-20

    Chinese scientists have made significant achievements in the field of animal genetics in 2015. Incomplete statistics show that among all the publications of 2015 involving nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), zebrafish (Danio rerio), African clawed frog (Xenopus) or mice (Mus musculus), about 1/5 publications are from China. Many innovative studies were published in high-impact international academic journals by Chinese scientists, including the identification of a putative magnetic receptor MagR, the genetic basis for the regulation of wing polyphenism in the insect brown planthopper (Nilaparvata lugens), DNA N(6)-methyladenine (6mA) modification in the Drosophila genome, a novel molecular mechanism regarding the dendritic spine pruning and maturation in the mammals, the mechanism for the CREB coactivator CRTC2 in the regulation of hepatic lipid metabolism, the control of systemic inflammation by neurotransmitter dopamine, the role of Gasdermin protein family in triggering pyroptosis, a parvalbumin-positive excitatory visual pathway to trigger fear responses in mice, etc. Chinese scientists have also made important contributions in genome editing via TALEN or CRISPR/Cas system. According to incomplete statistics, more than 1/5 of the publications related to genome editing in 2015 are from China, where a variety of animals with different approaches were targeted, ranging from the worm to primates. Particularly, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes was successfully achieved for the first time. China has been one of the leading countries in genome sequencing in recent years, and Chinese scientists reported the sequence and annotation of the genomes of several important animal species in 2015, including goose (Anser cygnoides), Schlegel's Japanese Gecko (Gekko japonicus), grass carp (Ctenopharyngodon idellus), large yellow croaker (Larimichthys crocea) and pig (Sus scrofa). They further analyzed the genome

  7. Metabolic thrift and the genetic basis of human obesity

    PubMed Central

    O’Rourke, Robert W.

    2014-01-01

    Evolution has molded metabolic thrift within humans, a genetic heritage that, when thrust into our modern “obesogenic” environment, creates the current obesity crisis. Modern genetic analysis has identified genetic and epigenetic contributors to obesity, an understanding of which will guide the development of environmental, pharmacologic, and genetic therapeutic interventions. “The voyage was so long, food and water ran out. One hundred of the paddlers died; forty men remained. The voyagers finally reached Fitinui, then Aotona.”-From “The Story of Aka”, in The Native Culture in the Marquesas by E. S. Craighill Handy PMID:24368636

  8. Genetic and environmental factors in experimental and human cancer

    SciTech Connect

    Takayama, S.; Takebe, H.; Gelboin, H.V.; MaChahon, B.; Matsushima, T.; Sugimura, T.

    1980-01-01

    Recently technological advances in assaying mutagenic principles have revealed that there are many mutagens in the environment, some of which might be carcinogenic to human beings. Other advances in genetics have shown that genetic factors might play an important role in the induction of cancer in human beings, e.g., the high incidence of skin cancers in patients with xeroderma pigmentosum. These proceedings deal with the relationships between genetic and environmental factors in carcinogenesis. The contributors cover mixed-function oxidases, pharmacogenetics, twin studies, DNA repair, immunology, and epidemiology.

  9. Genetics and epigenetics of human retinoblastoma.

    PubMed

    Benavente, Claudia A; Dyer, Michael A

    2015-01-01

    Retinoblastoma is a pediatric tumor of the developing retina from which the genetic basis for cancer development was first described. Inactivation of both copies of the RB1 gene is the predominant initiating genetic lesion in retinoblastoma and is rate limiting for tumorigenesis. Recent whole-genome sequencing of retinoblastoma uncovered a tumor that had no coding-region mutations or focal chromosomal lesions other than in the RB1 gene, shifting the paradigm in the field. The retinoblastoma genome can be very stable; therefore, epigenetic deregulation of tumor-promoting pathways is required for tumorigenesis. This review highlights the genetic and epigenetic changes in retinoblastoma that have been reported, with special emphasis on recent whole-genome sequencing and epigenetic analyses that have identified novel candidate genes as potential therapeutic targets.

  10. Special considerations in prognostic research in cancer involving genetic polymorphisms

    PubMed Central

    2013-01-01

    Analysis of genetic polymorphisms may help identify putative prognostic markers and determine the biological basis of variable prognosis in patients. However, in contrast to other variables commonly used in the prognostic studies, there are special considerations when studying genetic polymorphisms. For example, variable inheritance patterns (recessive, dominant, codominant, and additive genetic models) need to be explored to identify the specific genotypes associated with the outcome. In addition, several characteristics of genetic polymorphisms, such as their minor allele frequency and linkage disequilibrium among multiple polymorphisms, and the population substructure of the cohort investigated need to be accounted for in the analyses. In addition, in cancer research due to the genomic differences between the tumor and non-tumor DNA, differences in the genetic information obtained using these tissues need to be carefully assessed in prognostic studies. In this article, we review these and other considerations specific to genetic polymorphism by focusing on genetic prognostic studies in cancer. PMID:23773794

  11. The support of human genetic evidence for approved drug indications.

    PubMed

    Nelson, Matthew R; Tipney, Hannah; Painter, Jeffery L; Shen, Judong; Nicoletti, Paola; Shen, Yufeng; Floratos, Aris; Sham, Pak Chung; Li, Mulin Jun; Wang, Junwen; Cardon, Lon R; Whittaker, John C; Sanseau, Philippe

    2015-08-01

    Over a quarter of drugs that enter clinical development fail because they are ineffective. Growing insight into genes that influence human disease may affect how drug targets and indications are selected. However, there is little guidance about how much weight should be given to genetic evidence in making these key decisions. To answer this question, we investigated how well the current archive of genetic evidence predicts drug mechanisms. We found that, among well-studied indications, the proportion of drug mechanisms with direct genetic support increases significantly across the drug development pipeline, from 2.0% at the preclinical stage to 8.2% among mechanisms for approved drugs, and varies dramatically among disease areas. We estimate that selecting genetically supported targets could double the success rate in clinical development. Therefore, using the growing wealth of human genetic data to select the best targets and indications should have a measurable impact on the successful development of new drugs.

  12. Ecological genetics at the USGS National Wetlands Research Center

    USGS Publications Warehouse

    Travis, Steven

    2006-01-01

    The Ecological Genetics Program at the USGS National Wetlands Research Center (NWRC) employs state-of-the-art DNA fingerprinting technologies in characterizing critical management aspects of the population biology of species of concern (fig. 1). The overarching themes of this program have been (1) the critical role that genetic diversity plays in maintaining population viability and (2) how management strategies might incorporate genetic information in preventing the decline of desirable species or in controlling the spread of invasive species.

  13. Parents' perspectives on participating in genetic research in autism.

    PubMed

    Trottier, Magan; Roberts, Wendy; Drmic, Irene; Scherer, Stephen W; Weksberg, Rosanna; Cytrynbaum, Cheryl; Chitayat, David; Shuman, Cheryl; Miller, Fiona A

    2013-03-01

    Genetic research in autism depends on the willingness of individuals with autism to participate; thus, there is a duty to assess participants' needs in the research process. We report on families' motives and expectations related to their participation in autism genetic research. Respondents valued having a genetic result, as it alleviates guilt, promotes awareness, and may be used to tailor interventions and for family planning. The act of participating was distinctly significant, as it provided personal control, a connection to autism experts, networking with families, and hope for the future. The results of this study highlight complex factors involved in families' decisions to participate in autism genetic research and provide points to consider for this population of research participants.

  14. Genetic Differential Sensitivity to Social Environments: Implications for Research

    PubMed Central

    McLanahan, Sara; Brooks-Gunn, Jeanne; Garfinkel, Irwin; Hobcraft, John; Notterman, Daniel

    2013-01-01

    Researchers have proposed a genetic differential sensitivity to social environmental (GDSE) model positing that individuals with certain genetic makeups are more sensitive to favorable and unfavorable environmental influences than those without these genetic makeups. We discuss several issues facing researchers who want to use GDSE to examine health: (1) the need for greater theorizing about the social environment to properly understand the size and direction of environmental influences; (2) the potential for combining multiple genetic markers to measure an individual’s genetic sensitivity to environmental influence; (3) how this model and exogenous shocks deal with gene–environment correlations; (4) implications of this model for public health and prevention; and (5) how life course and developmental theories may be used to inform GDSE research. PMID:23927507

  15. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    PubMed Central

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  16. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  17. Research on Sexual Orientation and Human Development: A Commentary.

    ERIC Educational Resources Information Center

    Strickland, Bonnie R.

    1995-01-01

    Reviews the evolution of research over the past 25 years on sexual orientation and its effects on human development, concluding that gay and lesbian interests and behavior appear to result from a complex interplay of genetic, prenatal, and environmental influences. Notes that gender identity develops early, especially for males, and is difficult…

  18. A Developmental-Genetic Model of Alcoholism: Implications for Genetic Research.

    ERIC Educational Resources Information Center

    Devor, Eric J.

    1994-01-01

    Research for biological-genetic markers of alcoholism is discussed in context of a multifactorial, heterogeneous, developmental model. Suggested that strategies used in linkage and association studies will require modification. Also suggested several extant associations of genetic markers represent true secondary interactive phenomena that alter…

  19. Genetic engineering of human pluripotent cells using TALE nucleases.

    PubMed

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  20. Human longevity: Genetics or Lifestyle? It takes two to tango.

    PubMed

    Passarino, Giuseppe; De Rango, Francesco; Montesanto, Alberto

    2016-01-01

    Healthy aging and longevity in humans are modulated by a lucky combination of genetic and non-genetic factors. Family studies demonstrated that about 25 % of the variation in human longevity is due to genetic factors. The search for genetic and molecular basis of aging has led to the identification of genes correlated with the maintenance of the cell and of its basic metabolism as the main genetic factors affecting the individual variation of the aging phenotype. In addition, studies on calorie restriction and on the variability of genes associated with nutrient-sensing signaling, have shown that ipocaloric diet and/or a genetically efficient metabolism of nutrients, can modulate lifespan by promoting an efficient maintenance of the cell and of the organism. Recently, epigenetic studies have shown that epigenetic modifications, modulated by both genetic background and lifestyle, are very sensitive to the aging process and can either be a biomarker of the quality of aging or influence the rate and the quality of aging. On the whole, current studies are showing that interventions modulating the interaction between genetic background and environment is essential to determine the individual chance to attain longevity.

  1. The genetics of innate immunity sensors and human disease.

    PubMed

    Pothlichet, Julien; Quintana-Murci, Lluis

    2013-04-01

    Since their discovery, innate immunity microbial sensors have been increasingly studied and shown to play a critical role in innate responses to microbes in several experimental in vitro, ex vivo, and animal models. However, their role in the human response to infection in natural conditions has just started to be deciphered, by means of clinical studies of primary immunodeficiencies and epidemiological genetic studies. Here, we summarize the major findings concerning the genetic diversity of the various families of microbial sensors in humans, and of other molecules involved in the signaling pathways they trigger. Specifically, we review the genetic associations, revealed by both clinical and epidemiological genetics studies, of microbial sensors from five different families: Toll-like receptors, C-type lectin receptors, NOD-like receptors, RIG-I-like receptors, and cytosolic DNA sensors. In particular, we consider the relationships between variation at the genes encoding these molecules and susceptibility to and the severity of infectious diseases and other clinical conditions associated with immune dysfunction, including autoimmunity, inflammation, allergy, and cancer. Despite the fact that the genetic links between innate immunity sensors and human disorders remain still limited, human genetics studies are increasingly improving our understanding of the genuine functions of microbial sensors and downstream signaling molecules in the natural setting.

  2. Human Factors Research and Nuclear Safety.

    ERIC Educational Resources Information Center

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  3. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  4. Consulting the community: public expectations and attitudes about genetics research

    PubMed Central

    Etchegary, Holly; Green, Jane; Dicks, Elizabeth; Pullman, Daryl; Street, Catherine; Parfrey, Patrick

    2013-01-01

    Genomic discoveries and technologies promise numerous opportunities for improving health. Key to these potential health improvements, however, are health-care consumers' understanding and acceptance of these new developments. We identified community groups and invited them to a public information-consultation session in order to explore public awareness, perception and expectations about genetics and genomics research. One hundred and four members of seven community groups in Newfoundland, Canada took part in the community sessions. Content analysis of participant comments revealed they were largely hopeful about genetics research in its capacity to improve health; however, they did not accept such research uncritically. Complex issues arose during the community consultations, including the place of genetics in primary care, the value of genetics for personal health, and concerns about access to and uses of genetic information. Participants unequivocally endorsed the value of public engagement with these issues. The rapid pace of discoveries in genomics research offers exciting opportunities to improve population health. However, public support will be crucial to realize health improvements. Our findings suggest that regular, transparent dialog between researchers and the public could allow a greater understanding of the research process, as well as assist in the design of efficient and effective genetic health services, informed by the public that will use them. PMID:23591403

  5. Views of Black Nurses Toward Genetic Research and Testing

    PubMed Central

    Powell-Young, Yolanda M.; Spruill, Ida J.

    2014-01-01

    Purpose To describe views and beliefs that Black nurses hold regarding several conceptual areas of genetic research and testing. Design Data were generated using a descriptive, cross-sectional design. The sample consisted of 384 Black nurses attending the 2009 annual conference of the National Black Nurses Association in Las Vegas, Nevada. Methods The chi-squared test was used to evaluate group differences by education level, functional area, age, and gender. Findings One half of the Black nurses surveyed believed the potential for the discriminative misuse of genetic information against minority populations exists. However, 84% of these nurses believed the possibility of information misuse should not be used as a barrier to participation in genetic research and testing by the Black populace. Conclusions Black nurses expressed concerns about the potential for discriminatory use of genetic information gleaned from research and testing. Yet, Black nurses recognize the importance of racial-ethnic minority participation in genetic research and testing. Clinical Relevance Participation in genetic research and testing by diverse populations will provide opportunities to improve the healthcare delivery system and aid the eradication of health disparities. More research is needed to clarify factors that contribute to the bifurcation of importance for participation, reluctance to participate, and what interventions might reduce reluctance. PMID:23470244

  6. Translational genetics for diagnosis of human disorders of sex development.

    PubMed

    Baxter, Ruth M; Vilain, Eric

    2013-01-01

    Disorders of sex development (DSDs) are congenital conditions with discrepancies between the chromosomal, gonadal, and phenotypic sex of the individual. Such disorders have historically been difficult to diagnose and cause great stress to patients and their families. Genetic analysis of human samples has been instrumental in elucidating the molecules and pathways involved in the development of the bipotential gonad into a functioning testis or ovary. However, many DSD patients still do not receive a genetic diagnosis. New genetic and genomic technologies are expanding our knowledge of the underlying mechanism of DSDs and opening new avenues for clinical diagnosis. We review the genetic technologies that have elucidated the genes that are well established in sex determination in humans, discuss findings from more recent genomic technologies, and propose a new paradigm for clinical diagnosis of DSDs.

  7. Translational Genetics for Diagnosis of Human Disorders of Sex Development

    PubMed Central

    Baxter, Ruth M.; Vilain, Eric

    2015-01-01

    Disorders of sex development (DSDs) are congenital conditions with discrepancies between the chromosomal, gonadal, and phenotypic sex of the individual. Such disorders have historically been difficult to diagnose and cause great stress to patients and their families. Genetic analysis of human samples has been instrumental in elucidating the molecules and pathways involved in the development of the bipotential gonad into a functioning testis or ovary. However, many DSD patients still do not receive a genetic diagnosis. New genetic and genomic technologies are expanding our knowledge of the underlying mechanism of DSDs and opening new avenues for clinical diagnosis. We review the genetic technologies that have elucidated the genes that are well established in sex determination in humans, discuss findings from more recent genomic technologies, and propose a new paradigm for clinical diagnosis of DSDs. PMID:23875799

  8. Genetic surfing in human populations: from genes to genomes.

    PubMed

    Peischl, Stephan; Dupanloup, Isabelle; Bosshard, Lars; Excoffier, Laurent

    2016-12-01

    Genetic surfing describes the spatial spread and increase in frequency of variants that are not lost by genetic drift and serial migrant sampling during a range expansion. Genetic surfing does not modify the total number of derived alleles in a population or in an individual genome, but it leads to a loss of heterozygosity along the expansion axis, implying that derived alleles are more often in homozygous state. Genetic surfing also affects selected variants on the wave front, making them behave almost like neutral variants during the expansion. In agreement with theoretical predictions, human genomic data reveals an increase in recessive mutation load with distance from Africa, an expansion load likely to have developed during the expansions of human populations out of Africa.

  9. Evolutionary anthropology and genes: investigating the genetics of human evolution from excavated skeletal remains.

    PubMed

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution.

  10. Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease.

    PubMed

    Borate, Bhavesh; Baxevanis, Andreas D

    2009-09-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive compendium of information on human genes and genetic disorders, with a particular emphasis on the interplay between observed phenotypes and underlying genotypes. This unit focuses on the basic methodology for formulating OMIM searches and illustrates the types of information that can be retrieved from OMIM, including descriptions of clinical manifestations resulting from genetic abnormalities. This unit also provides information on additional relevant medical and molecular biology databases. A basic knowledge of OMIM should be part of the armamentarium of physicians and scientists with an interest in research on and clinical aspects of genetic disorders.

  11. Searching Online Mendelian Inheritance in Man (OMIM) for information on genetic loci involved in human disease.

    PubMed

    Baxevanis, Andreas D

    2012-04-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive compendium of information on human genes and genetic disorders, with a particular emphasis on the interplay between observed phenotypes and underlying genotypes. This unit focuses on the basic methodology for formulating OMIM searches and illustrates the types of information that can be retrieved from OMIM, including descriptions of clinical manifestations resulting from genetic abnormalities. This unit also provides information on additional relevant medical and molecular biology databases. A basic knowledge of OMIM should be part of the armamentarium of physicians and scientists with an interest in research on the clinical aspects of genetic disorders.

  12. Molecular Genetic Study of Human Esophageal Carcinoma

    DTIC Science & Technology

    1991-07-16

    activating transmembrane mutations in the c- erbB2 proto-oncogene in human breast cancer. Oncogene, 5:237-239, 1990. Levine, A.J., & Monard, J. Tumor...have demonstrated susceptibility to mutations in different types of neoplasia. In the present investigation, two approaches were undertaken in the...search for such genes which might be mutated during the development of esophageal carcinoma. In the first, the human HER2 oncogene, encoding a

  13. Melanocortin MC₁ receptor in human genetics and model systems.

    PubMed

    Beaumont, Kimberley A; Wong, Shu S; Ainger, Stephen A; Liu, Yan Yan; Patel, Mira P; Millhauser, Glenn L; Smith, Jennifer J; Alewood, Paul F; Leonard, J Helen; Sturm, Richard A

    2011-06-11

    The melanocortin MC(1) receptor is a G-protein coupled receptor expressed in the melanocytes of the skin and hair and is known for its key role in the regulation of human pigmentation. Melanocortin MC(1) receptor activation after ultraviolet radiation exposure results in a switch from the red/yellow pheomelanin to the brown/black eumelanin pigment synthesis within cutaneous melanocytes; this pigment is then transferred to the surrounding keratinocytes of the skin. The increase in melanin maturation and uptake results in tanning of the skin, providing a physical protection of skin cells from ultraviolet radiation induced DNA damage. Melanocortin MC(1) receptor polymorphism is widespread within the Caucasian population and some variant alleles are associated with red hair colour, fair skin, poor tanning and increased risk of skin cancer. Here we will discuss the use of mouse coat colour models, human genetic association studies, and in vitro cell culture studies to determine the complex functions of the melanocortin MC(1) receptor and the molecular mechanisms underlying the association between melanocortin MC(1) receptor variant alleles and the red hair colour phenotype. Recent research indicates that melanocortin MC(1) receptor has many non-pigmentary functions, and that the increased risk of skin cancer conferred by melanocortin MC(1) receptor variant alleles is to some extent independent of pigmentation phenotypes. The use of new transgenic mouse models, the study of novel melanocortin MC(1) receptor response genes and the use of more advanced human skin models such as 3D skin reconstruction may provide key elements in understanding the pharmacogenetics of human melanocortin MC(1) receptor polymorphism.

  14. Ethical Considerations in Human Movement Research.

    ERIC Educational Resources Information Center

    Olivier, Steve

    1995-01-01

    Highlights ethical issues for human subject research, identifying principles that form the construct of a code of research ethics and evaluating against this construct past human experimentation and current research in human movement studies. The efficacy of legislation and self-regulation is examined. Particular attention is given to the context…

  15. 48 CFR 207.172 - Human research.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Human research. 207.172... OF DEFENSE ACQUISITION PLANNING ACQUISITION PLANNING Acquisition Plans 207.172 Human research. Any DoD component sponsoring research involving human subjects— (a) Is responsible for oversight...

  16. 48 CFR 207.172 - Human research.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Human research. 207.172... OF DEFENSE ACQUISITION PLANNING ACQUISITION PLANNING Acquisition Plans 207.172 Human research. Any DoD component sponsoring research involving human subjects— (a) Is responsible for oversight...

  17. 48 CFR 207.172 - Human research.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Human research. 207.172... OF DEFENSE ACQUISITION PLANNING ACQUISITION PLANNING Acquisition Plans 207.172 Human research. Any DoD component sponsoring research involving human subjects— (a) Is responsible for oversight...

  18. 48 CFR 207.172 - Human research.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Human research. 207.172... OF DEFENSE ACQUISITION PLANNING ACQUISITION PLANNING Acquisition Plans 207.172 Human research. Any DoD component sponsoring research involving human subjects— (a) Is responsible for oversight...

  19. 48 CFR 207.172 - Human research.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Human research. 207.172... OF DEFENSE ACQUISITION PLANNING ACQUISITION PLANNING Acquisition Plans 207.172 Human research. Any DoD component sponsoring research involving human subjects— (a) Is responsible for oversight...

  20. Recombinant genetic libraries and human monoclonal antibodies.

    PubMed

    Adams, Jarrett J; Nelson, Bryce; Sidhu, Sachdev S

    2014-01-01

    In order to comprehensively manipulate the human proteome we require a vast repertoire of pharmacological reagents. To address these needs we have developed repertoires of synthetic antibodies by phage display, where diversified oligonucleotides are used to modify the complementarity-determining regions (CDRs) of a human antigen-binding fragment (Fab) scaffold. As diversity is produced outside the confines of the mammalian immune system, synthetic antibody libraries allow us to bypass several limitations of hybridoma technology while improving the experimental parameters under which pharmacological reagents are produced. Here we describe the methodologies used to produce synthetic antibody libraries from a single human framework with diversity restricted to four CDRs. These synthetic repertoires can be extremely functional as they produce highly selective, high affinity Fabs to the majority of soluble human antigens. Finally we describe selection methodologies that allow us to overcome immuno-dominance in our selections to target a variety of epitopes per antigen. Together these methodologies allow us to produce human monoclonal antibodies to manipulate the human proteome.

  1. [Mitochondrial genetics and human essential hypertension].

    PubMed

    Chen, Hong; Guan, Min-xin

    2012-06-01

    Mitochondrial DNA (mtDNA) exhibits matrilineal inherence. Familial mitochondrial diseases caused by mtDNA mutations are generally involved in organs featuring high energy consumption, which include heart, brain and skeletal muscle. Recently, it has been found that some essential hypertension patients featured classical maternal inheritance, which has confirmed and enriched mtDNA mutations as one of the molecular mechanisms underlying maternally inherited hypertension. Nevertheless, more general as well as radical questions are still to be answered. This article reviews recent advance in mitochondrial genome evolution, mtDNA genetics and the role of mtDNA mutations in maternally inherited hypertension.

  2. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    PubMed

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  3. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  4. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  5. Genetics of human episodic memory: dealing with complexity.

    PubMed

    Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2011-09-01

    Episodic memory is a polygenic behavioral trait with substantial heritability estimates. Despite its complexity, recent empirical evidence supports the notion that behavioral genetic studies of episodic memory might successfully identify trait-associated molecules and pathways. The development of high-throughput genotyping methods, of elaborated statistical analyses and of phenotypic assessment methods at the neural systems level will facilitate the reliable identification of novel memory-related genes. Importantly, a necessary crosstalk between behavioral genetic studies and investigation of causality by molecular genetic studies will ultimately pave the way towards the identification of biologically important, and hopefully druggable, genes and molecular pathways related to human episodic memory.

  6. The evolution of human genetic and phenotypic variation in Africa.

    PubMed

    Campbell, Michael C; Tishkoff, Sarah A

    2010-02-23

    Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations.

  7. The genetic basis of hypertrophic cardiomyopathy in cats and humans.

    PubMed

    Kittleson, Mark D; Meurs, Kathryn M; Harris, Samantha P

    2015-12-01

    Mutations in genes that encode for muscle sarcomeric proteins have been identified in humans and two breeds of domestic cats with hypertrophic cardiomyopathy (HCM). This article reviews the history, genetics, and pathogenesis of HCM in the two species in order to give veterinarians a perspective on the genetics of HCM. Hypertrophic cardiomyopathy in people is a genetic disease that has been called a disease of the sarcomere because the preponderance of mutations identified that cause HCM are in genes that encode for sarcomeric proteins (Maron and Maron, 2013). Sarcomeres are the basic contractile units of muscle and thus sarcomeric proteins are responsible for the strength, speed, and extent of muscle contraction. In people with HCM, the two most common genes affected by HCM mutations are the myosin heavy chain gene (MYH7), the gene that encodes for the motor protein β-myosin heavy chain (the sarcomeric protein that splits ATP to generate force), and the cardiac myosin binding protein-C gene (MYBPC3), a gene that encodes for the closely related structural and regulatory protein, cardiac myosin binding protein-C (cMyBP-C). To date, the two mutations linked to HCM in domestic cats (one each in Maine Coon and Ragdoll breeds) also occur in MYBPC3 (Meurs et al., 2005, 2007). This is a review of the genetics of HCM in both humans and domestic cats that focuses on the aspects of human genetics that are germane to veterinarians and on all aspects of feline HCM genetics.

  8. Human Genetic Variation. Grades 9-12. NIH Curriculum Supplement Series.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs.

    This curriculum supplement guide brings the latest medical discoveries to classrooms. This module focuses on the objectives of introducing students to the genetic variations of human beings, and developing an understanding of the relationship between biomedical research and personal and public health. This module includes five major sections: (1)…

  9. Teachers' Conceptions about the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    ERIC Educational Resources Information Center

    Castéra, Jérémy; Clément, Pierre

    2014-01-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed…

  10. Human genetics for non-scientists: Practical workshops for policy makers and opinion leaders

    SciTech Connect

    1995-12-31

    These workshops form part of a series of workshops that the Banbury and the DNA Learning Centers of Cold Spring Harbor Laboratory have held for a number of years, introducing genetics, and the ways in which scientific research is done, to non-scientists. The purpose of the workshops as stated in the grant application was: {open_quotes}Our objective is to foster a better understanding of the societal impact of human genome research by providing basic information on genetics to non-scientists whose professions or special interests interface with genetic technology.... Participants will be chosen for their interest in human genetics and for their roles as opinion leaders in their own communities. Primary care physicians are of particular interest to us for this series of workshops.{close_quotes} Two workshops were held under this grant. The first was held in 21-24 April, 1994 and attended by 20 participants, and the second was held 16-19 November, 1995, and attended by 16 participants. In each case, there was a combination of concept lectures on the foundations of human molecular genetics; lectures by invited specialists; and laboratory experiments to introduce non-scientists to the techniques used in molecular genetics.

  11. Human Variome Project country nodes: documenting genetic information within a country.

    PubMed

    Patrinos, George P; Smith, Timothy D; Howard, Heather; Al-Mulla, Fahd; Chouchane, Lotfi; Hadjisavvas, Andreas; Hamed, Sherifa A; Li, Xi-Tao; Marafie, Makia; Ramesar, Rajkumar S; Ramos, Feliciano J; de Ravel, Thomy; El-Ruby, Mona O; Shrestha, Tilak Ram; Sobrido, María-Jesús; Tadmouri, Ghazi; Witsch-Baumgartner, Martina; Zilfalil, Bin Alwi; Auerbach, Arleen D; Carpenter, Kevin; Cutting, Garry R; Dung, Vu Chi; Grody, Wayne; Hasler, Julia; Jorde, Lynn; Kaput, Jim; Macek, Milan; Matsubara, Yoichi; Padilla, Carmancita; Robinson, Helen; Rojas-Martinez, Augusto; Taylor, Graham R; Vihinen, Mauno; Weber, Tom; Burn, John; Qi, Ming; Cotton, Richard G H; Rimoin, David

    2012-11-01

    The Human Variome Project (http://www.humanvariomeproject.org) is an international effort aiming to systematically collect and share information on all human genetic variation. The two main pillars of this effort are gene/disease-specific databases and a network of Human Variome Project Country Nodes. The latter are nationwide efforts to document the genomic variation reported within a specific population. The development and successful operation of the Human Variome Project Country Nodes are of utmost importance to the success of Human Variome Project's aims and goals because they not only allow the genetic burden of disease to be quantified in different countries, but also provide diagnosticians and researchers access to an up-to-date resource that will assist them in their daily clinical practice and biomedical research, respectively. Here, we report the discussions and recommendations that resulted from the inaugural meeting of the International Confederation of Countries Advisory Council, held on 12th December 2011, during the 2011 Human Variome Project Beijing Meeting. We discuss the steps necessary to maximize the impact of the Country Node effort for developing regional and country-specific clinical genetics resources and summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects.

  12. Genetic and epigenetic variation of human populations: An adaptive tale.

    PubMed

    Quintana-Murci, Lluis

    2016-01-01

    The evolutionary history of modern humans means much more than their demographic past. It includes the way in which humans have had to genetically adapt to the different environments they have encountered-nutritional, climatic or pathogenic-as well as the different epigenetic responses elicited by such environmental cues. Detecting how natural selection has affected human genome variability has proven to be a powerful tool to delineate genes and biological functions having played a key role in human adaptation, a variation which can also be involved in phenotypes of medical relevance. This article reviews several examples that illustrate well how different environmental pressures, particularly those imposed by pathogens and infectious diseases, have shaped the patterns of genetic and epigenetic variability currently observed in human populations.

  13. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    PubMed Central

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  14. Human aggression across the lifespan: genetic propensities and environmental moderators.

    PubMed

    Tuvblad, Catherine; Baker, Laura A

    2011-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental factors not shared by family members. Form of aggression (reactive, proactive, direct/physical, indirect/relational), method of assessment (laboratory observation, self-report, ratings by parents and teachers), and age of the subjects-all seem to be significant moderators of the magnitude of genetic and environmental influences on aggressive behavior. Neither study design (twin vs. sibling adoption design) nor sex (male vs. female) seems to impact the magnitude of the genetic and environmental influences on aggression. There is also some evidence of gene-environment interaction (G × E) from both twin/adoption studies and molecular genetic studies. Various measures of family adversity and social disadvantage have been found to moderate genetic influences on aggressive behavior. Findings from these G × E studies suggest that not all individuals will be affected to the same degree by experiences and exposures, and that genetic predispositions may have different effects depending on the environment.

  15. Human Aggression Across the Lifespan: Genetic Propensities and Environmental Moderators

    PubMed Central

    Tuvblad, Catherine; Baker, Laura A.

    2013-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental factors not shared by family members. Form of aggression (reactive, proactive, direct/physical, indirect/relational), method of assessment (laboratory observation, self-report, ratings by parents and teachers), and age of the subjects—all seem to be significant moderators of the magnitude of genetic and environmental influences on aggressive behavior. Neither study design (twin vs. sibling adoption design) nor sex (male vs. female) seems to impact the magnitude of the genetic and environmental influences on aggression. There is also some evidence of gene-environment interaction (G × E) from both twin/adoption studies and molecular genetic studies. Various measures of family adversity and social disadvantage have been found to moderate genetic influences on aggressive behavior. Findings from these G × E studies suggest that not all individuals will be affected to the same degree by experiences and exposures, and that genetic predispositions may have different effects depending on the environment. PMID:22078481

  16. Genetic and Epigenetic Discoveries in Human Retinoblastoma.

    PubMed

    McEvoy, Justina D; Dyer, Michael A

    2015-01-01

    Retinoblastoma is a rare pediatric cancer of the retina. Nearly all retinoblastomas are initiated through the biallelic inactivation of the retinoblastoma tumor susceptibility gene (RB1). Whole-genome sequencing has made it possible to identify secondary genetic lesions following RB1 inactivation. One of the major discoveries from retinoblastoma sequencing studies is that some retinoblastoma tumors have stable genomes. Subsequent epigenetic studies showed that changes in the epigenome contribute to the rapid progression of retinoblastoma following RB1 gene inactivation. In addition, gene amplification and elevated expression of p53 antagonists, MDM2 and MDM4, may also play an important role in retinoblastoma tumorigenesis. The knowledge gained from these recent molecular, cellular, genomic, and epigenomic analyses are now being integrated to identify new therapeutic approaches that can help save lives and vision in children with retinoblastoma, with fewer long-term side effects.

  17. Family consent and the pursuit of better medicines through genetic research.

    PubMed

    Renegar, G; Rieser, P; Manasco, P

    2001-01-01

    Rapid changes in the science and technology related to genetic research are challenging scientists, health care providers, ethicists, regulators, patient groups, and the pharmaceutical industry to keep pace with ethically grounded, workable guidelines for both the research and clinical applications of human genetics. We describe the genetic research being conducted by one pharmaceutical company (GlaxoSmithKline) and how the company is addressing the ethical, legal, and social issues surrounding this research; discuss an industry working group's attempt to advance pharmacogenetic research by openly addressing and disseminating information on related ethical, legal, and regulatory issues; identify scientific and ethical differences among various types of genetic research; discuss potential implications of family consent on subject privacy and autonomy, data collection, and study conduct; and suggest points to consider when study sponsors, investigators, and ethics committees evaluate research proposals. Public and expert opinion regarding informed consent in genetic research is evolving as a result of increased education, discussion, and understanding of the relevant issues. Five years ago, there was strong support for anonymity in genetic research as a privacy safeguard. Now, an increasingly popular school of thought advocates against anonymity to preserve an individual's ability to withdraw and, if desired, access research results. It is important to recognize this evolution and address consent issues in a reasoned, practical, and consistent way, including input from patients and their families, health care providers, ethicists, scientists, regulatory bodies, research sponsors, and the lay community. Responsibility for assessing issues related to family consent for research should remain with local investigators, ethics boards, and study sponsors. A "one-size-fits-all" perspective in the form of new regulations, for example, would likely be a disservice to all.

  18. The Genetics of Sun Sensitivity in Humans

    PubMed Central

    Rees, Jonathan L.

    2004-01-01

    Humans vary >100-fold in their sensitivity to the harmful effects of ultraviolet radiation. The main determinants of sensitivity are melanin pigmentation and less-well-characterized differences in skin inflammation and repair processes. Pigmentation has a high heritability, but susceptibility to cancers of the skin, a key marker of sun sensitivity, is less heritable. Despite a large number of murine coat-color mutations, only one gene in humans, the melanocortin 1 receptor (MC1R), is known to account for substantial variation in skin and hair color and in skin cancer incidence. MC1R encodes a 317–amino acid G-coupled receptor that controls the relative amounts of the two major melanin classes, eumelanin and pheomelanin. Most persons with red hair are homozygous for alleles of the MC1R gene that show varying degrees of diminished function. More than 65 human MC1R alleles with nonsynonymous changes have been identified, and current evidence suggests that many of them vary in their physiological activity, such that a graded series of responses can be achieved on the basis of (i) dosage effects (of one or two alleles) and (ii) individual differences in the pharmacological profile in response to ligand. Thus, a single locus, identified within a Mendelian framework, can contribute significantly to human pigmentary variation. PMID:15372380

  19. 75 FR 45130 - Guidance for Industry and Researchers on the Radioactive Drug Research Committee: Human Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Drug Research Committee: Human Research Without an Investigational New Drug Application; Availability... Drug Research Committee: Human Research Without an Investigational New Drug Application.'' This... committee, or ] whether research studies must be conducted under an investigational new drug...

  20. The Nazi symbiosis: politics and human genetics at the Kaiser Wilhelm Institute.

    PubMed

    Berez, Thomas M; Weiss, Sheila Faith

    2004-12-01

    The case of the Kaiser Wilhelm Institute for Anthropology, Human Heredity and Eugenics (KWIA), from its inception in Weimar Republic Germany to its apogee under the rule of the Third Reich, is an example of how politics and human heredity can function as mutually beneficial resources. Whether it was a result of the Nazi bureaucrats' desire to legitimize their racial policy through science, or the KWIA personnel's desire to secure more funding for their research, the symbiotic relationship that developed between human genetics and Nazi politics could help explain why many scientists in the Third Reich undertook research projects that wholly transgressed the boundaries of morally acceptable science.

  1. Genetic Engineering of Animals for Medical Research: Students' Views.

    ERIC Educational Resources Information Center

    Hill, Ruaraidh; Stanisstreet, Martin; O'Sullivan, Helen; Boyes, Edward

    1999-01-01

    Reports on the results of a survey meant to ascertain the views of 16- to 18-year-old students (n=778) on using animals in medical research. Suggests that students have no greater objection to the use of genetically engineered animals over naturally bred animals in medical research. Contains 16 references. (Author/WRM)

  2. Genetic Factors in Breast Cancer: Center for Interdisciplinary Biobehavioral Research

    DTIC Science & Technology

    2008-10-01

    45 Core B: Molecular Diagnostics and Research Core...Project used all of the Cores, which were dedicated to: Core A: Recruitment, Tracking, and Interviewing; Core B: Molecular Diagnostic and Research...exploratory qualitative study, Cancer Nurs 2006; 29(6):478-87. • Choi JY, Nowell SA, Blanco JG, Ambrosone CB: The role of genetic variability in drug

  3. Your Genes, Your Choices: Exploring the Issues Raised by Genetic Research

    SciTech Connect

    Baker, C.

    1999-05-31

    Your Genes, Your Choices provides accurate information about the ethical, legal, and social implications of the Human Genome Project and genetic research in an easy-to-read style and format. Each chapter in the book begins with a brief vignette, which introduces an issue within a human story, and raises a question for the reader to think about as the basic science and information are presented in the rest of the chapter.

  4. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    PubMed

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  5. Human genetic banking: altruism, benefit and consent.

    PubMed

    Williams, Garrath; Schroeder, Doris

    2004-04-01

    This article considers how we should frame the ethical issues raised by current proposals for large-scale genebanks with on-going links to medical and lifestyle data, such as the Wellcome Trust and Medical Research Council's 'UK Biobank'. As recent scandals such as Alder Hey have emphasised, there are complex issues concerning the informed consent of donors that need to be carefully considered. However, we believe that a preoccupation with informed consent obscures important questions about the purposes to which such collections are put, not least that they may be only haphazardly used for research (especially that of commercial interest)--an end that would not fairly reflect the original altruistic motivation of donors, and the trust they must invest. We therefore argue that custodians of such databases take on a weighty pro-active duty, to encourage public debate about the ends of such collections and to sponsor research that reflects publicly agreed priorities and provides public benefits.

  6. Translational research in cancer genetics: the road less traveled.

    PubMed

    Schully, S D; Benedicto, C B; Gillanders, E M; Wang, S S; Khoury, M J

    2011-01-01

    Gene discoveries in cancer have the potential for clinical and public health applications. To take advantage of such discoveries, a translational research agenda is needed to take discoveries from the bench to population health impact. To assess the current status of translational research in cancer genetics, we analyzed the extramural grant portfolio of the National Cancer Institute (NCI) from Fiscal Year 2007, as well as the cancer genetic research articles published in 2007. We classified both funded grants and publications as follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., test or therapy); T2 as research that evaluates a candidate application and develops evidence-based recommendations; T3 as research that assesses how to integrate an evidence-based recommendation into cancer care and prevention; and T4 as research that assesses health outcomes and population impact. We found that 1.8% of the grant portfolio and 0.6% of the published literature was T2 research or beyond. In addition to discovery research in cancer genetics, a translational research infrastructure is urgently needed to methodically evaluate and translate gene discoveries for cancer care and prevention.

  7. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    PubMed

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  8. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  9. Molecular genetics of human obesity: A comprehensive review.

    PubMed

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci.

  10. Unraveling the Genetics of Human Obesity

    PubMed Central

    Mutch, David M; Clément, Karine

    2006-01-01

    The use of modern molecular biology tools in deciphering the perturbed biochemistry and physiology underlying the obese state has proven invaluable. Identifying the hypothalamic leptin/melanocortin pathway as critical in many cases of monogenic obesity has permitted targeted, hypothesis-driven experiments to be performed, and has implicated new candidates as causative for previously uncharacterized clinical cases of obesity. Meanwhile, the effects of mutations in the melanocortin-4 receptor gene, for which the obese phenotype varies in the degree of severity among individuals, are now thought to be influenced by one's environmental surroundings. Molecular approaches have revealed that syndromes (Prader-Willi and Bardet-Biedl) previously assumed to be controlled by a single gene are, conversely, regulated by multiple elements. Finally, the application of comprehensive profiling technologies coupled with creative statistical analyses has revealed that interactions between genetic and environmental factors are responsible for the common obesity currently challenging many Westernized societies. As such, an improved understanding of the different “types” of obesity not only permits the development of potential therapies, but also proposes novel and often unexpected directions in deciphering the dysfunctional state of obesity. PMID:17196040

  11. Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide

    PubMed Central

    Chen, Alyce A.; Gheit, Tarik; Franceschi, Silvia

    2015-01-01

    ABSTRACT Human papillomavirus 18 (HPV18) is the second most carcinogenic HPV type, after HPV16, and it accounts for approximately 12% of squamous cell carcinoma (SCC) as well as 37% of adenocarcinoma (ADC) of the cervix worldwide. We aimed to evaluate the worldwide diversity and carcinogenicity of HPV18 genetic variants by sequencing the entire long control region (LCR) and the E6 open reading frame of 711 HPV18-positive cervical samples from 39 countries, taking advantage of the International Agency for Research on Cancer biobank. A total of 209 unique HPV18 sequence variants were identified that formed three phylogenetic lineages (A, B, and C). A and B lineages each divided into four sublineages, including a newly identified candidate B4 sublineage. The distribution of lineages varied by geographical region, with B and C lineages found principally in Africa. HPV18 (sub)lineages were compared between 453 cancer cases and 236 controls, as well as between 81 ADC and 160 matched SCC cases. In region-stratified analyses, there were no significant differences in the distribution of HPV18 variant lineages between cervical cancer cases and controls or between ADC and SCC. In conclusion, our findings do not support the role of HPV18 (sub)lineages for discriminating cancer risk or explaining why HPV18 is more strongly linked with ADC than SCC. IMPORTANCE This is the largest and most geographically/ethnically diverse study of the genetic variation of HPV18 to date, providing a comprehensive reference for phylogenetic classification of HPV18 sublineages for epidemiological and biological studies. PMID:26269181

  12. Mendelian genetics: Paradigm, conjecture, or research program

    NASA Astrophysics Data System (ADS)

    Oldham, V.; Brouwer, W.

    Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos's methodology of competing research programs are applied to a historical episode in biology. Each of these three models offers a different explanatory system for the development, neglect, and eventual acceptance of Mendel's paradigm of inheritance. The authors conclude that both rational and nonrational criteria play an important role during times of crisis in science, when different research programs compete for acceptance. It is suggested that Kuhn's model, emphasizing the nonrational basis of science, and Popper's model, emphasizing the rational basis of science, can be used fruitfully in high school science courses.

  13. Genetic alterations by human papillomaviruses in oncogenesis.

    PubMed

    Lazo, P A; Gallego, M I; Ballester, S; Feduchi, E

    1992-03-30

    The integration sites in the cellular genome of human papillomavirus are located in chromosomal regions always associated with oncogenes or other known tumor phenotypes. Two regions, 8q24 and 12q13, are common to several cases of cervical carcinoma and can have integrated more than one type of papillomavirus DNA. These two chromosomal regions contain several genes implicated in oncogenesis. These observations strongly imply that viral integration sites of DNA tumor viruses can be used as the access point to chromosomal regions where genes implicated in the tumor phenotype are located, a situation similar to that of non-transforming retroviruses.

  14. Human germline genetic modification: scientific and bioethical perspectives.

    PubMed

    Smith, Kevin R; Chan, Sarah; Harris, John

    2012-10-01

    The latest mammalian genetic modification technology offers efficient and reliable targeting of genomic sequences, in the guise of designer genetic recombination tools. These and other improvements in genetic engineering technology suggest that human germline genetic modification (HGGM) will become a safe and effective prospect in the relatively near future. Several substantive ethical objections have been raised against HGGM including claims of unacceptably high levels of risk, damage to the status of future persons, and violations of justice and autonomy. This paper critically reviews the latest GM science and discusses the key ethical objections to HGGM. We conclude that major benefits are likely to accrue through the use of safe and effective HGGM and that it would thus be unethical to take a precautionary stance against HGGM.

  15. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    ERIC Educational Resources Information Center

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  16. Genetic variation in lipid desaturases and its impact on the development of human disease

    PubMed Central

    2010-01-01

    Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management. PMID:20565855

  17. Human Subjects Issues in AIDS Research.

    ERIC Educational Resources Information Center

    Bayer, Ronald, Ed.

    1990-01-01

    Six articles are presented on the use of human subjects in research on acquired immune deficiency syndrome (AIDS). Topics include the ethics of human experimentation, female and pediatric AIDS patients, Human Immunodeficiency Virus (HIV) infection and AIDS among correctional inmates, community-based AIDS research, and clinical trials of HIV…

  18. Moving human SCNT research forward ethically.

    PubMed

    Hyun, Insoo

    2011-10-04

    A recent study of human somatic cells reprogrammed to a pluripotent state via somatic cell nuclear transfer (SCNT) will undoubtedly renew interest in human egg procurement. Thus it is imperative that human SCNT research move forward under stringent ethical standards in locales permitting directed egg donation for stem cell research.

  19. Mining and modeling human genetics for autism therapeutics.

    PubMed

    Smith, Daniel G; Ehlers, Michael D

    2012-10-01

    A growing understanding of the genetic origins of autism spectrum disorders (ASDs) and the impact of ASD risk genes on synaptic function presents new opportunities for drug discovery. Large-scale human genetics studies have begun to reveal molecular pathways and potential therapeutic drug targets. Subsequent validation and characterization of ASD risk genes in mouse models holds promise for defining relevant cellular mechanisms and brain circuits associated with the core behavioral symptoms of autism. Here we review recent advances in the molecular therapeutics in ASDs and discuss opportunities and obstacles for converting emerging biology into new medicines. We present emerging concepts on the impact of risk genes during development and adulthood that define points of intervention. We further highlight ongoing clinical trials in patients with syndromic forms of autism. These clinical studies will be an important test of the utility of human genetics as a starting point for drug discovery in ASDs.

  20. Genetic variation and the de novo assembly of human genomes

    PubMed Central

    Chaisson, Mark J. P.; Wilson, Richard K.; Eichler, Evan E.

    2016-01-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  1. Pervasive genetic integration directs the evolution of human skull shape.

    PubMed

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter

    2012-04-01

    It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others.

  2. Exploring human brain lateralization with molecular genetics and genomics.

    PubMed

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions.

  3. Public Attitudes toward Human Genetic Manipulation: A Revitalization of Eugenics?

    ERIC Educational Resources Information Center

    Veglia, Geremia; And Others

    The purpose of this investigation was to measure the attitudes of college students across the United States concerning the possible use of genetic manipulation, especially in terms of enhancing human physical and intellectual characteristics. The instrument used was divided into three general areas of inquiry: the first, designed to measure the…

  4. Human Research Program Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina

    2010-01-01

    NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3

  5. Religion, spirituality, and genetics: mapping the terrain for research purposes.

    PubMed

    Churchill, Larry R

    2009-02-15

    Genetic diseases often raise issues of profound importance for human self-understanding, such as one's identity, the family or community to which one belongs, and one's future or destiny. These deeper questions have commonly been seen as the purview of religion and spirituality. This essay explores how religion and spirituality are understood in the current US context and defined in the scholarly literature over the past 100 years. It is argued that a pragmatic, functional approach to religion and spirituality is important to understanding how patients respond to genetic diagnoses and participate in genetic therapies. A pragmatic, functional approach requires broadening the inquiry to include anything that provides a framework of transcendent meaning for the fundamental existential questions of human life. This approach also entails suspending questions about the truth claims of any particular religious/spiritual belief or practice. Three implications of adopting this broad working definition will be presented.

  6. Governing the postmortem procurement of human body material for research.

    PubMed

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  7. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    PubMed

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  8. Genetic regulation of human immunodeficiency virus.

    PubMed Central

    Steffy, K; Wong-Staal, F

    1991-01-01

    Human immunodeficiency virus (HIV) has a complex life cycle in which both cellular and virus-encoded factors participate to determine the level of virus production. Two of the viral genes, tat and rev, are essential for virus replication and encode novel trans-activators that interact specifically with their cognate RNA target elements. Elucidation of their mechanisms of action is likely to expand our knowledge of gene regulation at transcriptional and posttranscriptional levels in the eukaryotic cell. Several viral genes (vif, vpu, and vpr) facilitate virus infection and/or release and may play a role in target cell tropism and infection in vivo. The functions of yet other viral genes (nef, vpt) remain unclear. Recent data also suggest that the tat gene product may have a role in HIV pathogenesis that goes beyond trans-activating virus expression. It can potentially impact on uninfected cells as a diffusible molecule and alter the growth of different cell types. PMID:1886517

  9. Human life: genetic or social construction?

    PubMed

    Yudin, Boris

    2005-01-01

    I am going to discuss some present-day tendencies in the development of the very old debate on nature vs nurture. There is a widespread position describing the history of this debate as a pendulum-like process. Some three decades ago there was a time of overwhelming prevalence of the position stressing social factors in determining human character and behavior; now the pendulum has come to the opposite side and those who stress the role of biology, of genes are in favor. Yet in my view rather acute opposition of both positions still exists. Its existence depends not so much on new scientific discoveries as on some social and cultural factors which are more conservative than the development of science. More than that, we can even talk about competition of these two positions.

  10. Contextualising merit and integrity within human research.

    PubMed

    Pieper, Ian; Thomson, Colin J H

    2011-09-01

    The first consideration of any Australian Human Research Ethics Committee should be to satisfy itself that the project before them is worth undertaking. If the project does not add to the body of knowledge, if it does not improve social welfare or individual wellbeing then the use of human participants, their tissue or their data must be questioned. Sometimes, however, committees are criticised for appearing to adopt the role of scientific review committees. The intent of this paper is to provide researchers with an understanding of the ethical importance of demonstrating the merit of their research project and to help them develop protocols that show ethics committees that adequate attention has been paid to this central tenet in dealing ethically with human research participants. Any person proposing human research must be prepared to show that it is worthwhile. This paper will clarify the relationship between research merit and integrity, research ethics and the responsibilities of human research ethics committees.

  11. African diversity may hold key to human origins, medical questions. Genetic diversity.

    PubMed

    1999-02-01

    The genetic diversity of human populations in Africa has been studied less in Africa than it has been in Europe and Asia. However, the study of such diversity in Africa is important to the determination of where, when, and how modern humans evolved; to gain insight into the genetic diseases of Africans and African-Americans; and to identify potential treatments for diseases like malaria and HIV. Dr. Sarah Tishkoff et al.'s study of 3 locations on DNA samples from 13-18 populations in Africa and 30-45 other populations in other parts of the world found extremely high genetic diversity both within and between the African populations, and much less diversity in non-African populations. Tishkoff's research team examined the genetic information inherited from both the father and mother, which exists upon a strand of DNA close enough together that the markers are transferred intact. The use of genetic markers to trace lineages found that modern humans appear to have emerged from Africa 100,000-150,000 years ago and that the population which left Africa was rather small. These data agree with earlier research findings. The findings of Tishkoff et al. also suggest that the group which migrated from Africa came from northern East Africa.

  12. Ethics, Ethical Human Research and Human Research Ethics Committees

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2010-01-01

    Non-medical research involves the same issues of justice, beneficence, and respect for persons that apply to non-medical research. It also may involve risk of harm to participants, and conflicts of interest for researchers. It is therefore not possible to argue that such research should be exempt from ethical review. This paper argues that…

  13. The role of social networking sites in medical genetics research.

    PubMed

    Reaves, Allison Cook; Bianchi, Diana W

    2013-05-01

    Social networking sites (SNS) have potential value in the field of medical genetics as a means of research subject recruitment and source of data. This article examines the current role of SNS in medical genetics research and potential applications for these sites in future studies. Facebook is the primary SNS considered, given the prevalence of its use in the United States and role in a small but growing number of studies. To date, utilization of SNS in medical genetics research has been primarily limited to three studies that recruited subjects from populations of Facebook users [McGuire et al. (2009); Am J Bioeth 9: 3-10; Janvier et al. (2012); Pediatrics 130: 293-298; Leighton et al. (2012); Public Health Genomics 15: 11-21]. These studies and a number of other medical and public health studies that have used Facebook as a context for recruiting research subjects are discussed. Approaches for Facebook-based subject recruitment are identified, including paid Facebook advertising, snowball sampling, targeted searching and posting. The use of these methods in medical genetics research has the potential to facilitate cost-effective research on both large, heterogeneous populations and small, hard-to-access sub-populations.

  14. Using non-human primates to benefit humans: research and organ transplantation.

    PubMed

    Shaw, David; Dondorp, Wybo; de Wert, Guido

    2014-11-01

    Emerging biotechnology may soon allow the creation of genetically human organs inside animals, with non-human primates (henceforth simply "primates") and pigs being the best candidate species. This prospect raises the question of whether creating organs in primates in order to then transplant them into humans would be more (or less) acceptable than using them for research. In this paper, we examine the validity of the purported moral distinction between primates and other animals, and analyze the ethical acceptability of using primates to create organs for human use.

  15. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research.

    PubMed

    Widdig, Anja; Kessler, Matthew J; Bercovitch, Fred B; Berard, John D; Duggleby, Christine; Nürnberg, Peter; Rawlins, Richard G; Sauermann, Ulrike; Wang, Qian; Krawczak, Michael; Schmidtke, Jörg

    2016-01-01

    Genetic studies not only contribute substantially to our current understanding of the natural variation in behavior and health in many species, they also provide the basis of numerous in vivo models of human traits. Despite the many challenges posed by the high level of biological and social complexity, a long lifespan and difficult access in the field, genetic studies of primates are particularly rewarding because of the close evolutionary relatedness of these species to humans. The free-ranging rhesus macaque (Macaca mulatta) population on Cayo Santiago (CS), Puerto Rico, provides a unique resource in this respect because several of the abovementioned caveats are of either minor importance there, or lacking altogether, thereby allowing long-term genetic research in a primate population under constant surveillance since 1956. This review summarizes more than 40 years of genetic research carried out on CS, from early blood group typing and the genetic characterization of skeletal material via population-wide paternity testing with DNA fingerprints and short tandem repeats (STRs) to the analysis of the highly polymorphic DQB1 locus within the major histocompatibility complex (MHC). The results of the paternity studies also facilitated subsequent studies of male dominance and other factors influencing male reproductive success, of male reproductive skew, paternal kin bias, and mechanisms of paternal kin recognition. More recently, the CS macaques have been the subjects of functional genetic and gene expression analyses and have played an important role in behavioral and quantitative genetic studies. In addition, the CS colony has been used as a natural model for human adult-onset macular degeneration, glaucoma, and circadian rhythm disorder. Our review finishes off with a discussion of potential future directions of research on CS, including the transition from STRs to single nucleotide polymorphism (SNP) typing and whole genome sequencing.

  16. Human Research Program Integrated Research Plan. Revision A January 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The Integrated Research Plan (IRP) describes the portfolio of Human Research Program (HRP) research and technology tasks. The IRP is the HRP strategic and tactical plan for research necessary to meet HRP requirements. The need to produce an IRP is established in HRP-47052, Human Research Program - Program Plan, and is under configuration management control of the Human Research Program Control Board (HRPCB). Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological and behavioral effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes HRP s approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and how they are integrated to provide a risk mitigation tool. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.

  17. An atlas of genetic influences on human blood metabolites

    PubMed Central

    Santos, Rita; Huang, Jie; Arnold, Matthias; Erte, Idil; Forgetta, Vincenzo; Yang, Tsun-Po; Walter, Klaudia; Menni, Cristina; Chen, Lu; Vasquez, Louella; Valdes, Ana M.; Hyde, Craig L.; Wang, Vicky; Ziemek, Daniel; Xi, Li; Grundberg, Elin; Waldenberger, Melanie; Richards, J. Brent; Mohney, Robert P.; Milburn, Michael V.; John, Sally L.; Trimmer, Jeff; Theis, Fabian J.; Overington, John P.; Suhre, Karsten; Brosnan, M. Julia; Gieger, Christian; Kastenmüller, Gabi; Spector, Tim D; Soranzo, Nicole

    2014-01-01

    Genome-wide association scans with high-throughput metabolic profiling provide unprecedented insights into how genetic variation influences metabolism and complex disease. Here we report the most comprehensive exploration of genetic loci influencing human metabolism to date, including 7,824 adult individuals from two European population studies. We report genome-wide significant associations at 145 metabolic loci and their biochemical connectivity regarding more than 400 metabolites in human blood. We extensively characterize the resulting in vivo blueprint of metabolism in human blood by integrating it with information regarding gene expression, heritability, overlap with known drug targets, previous association with complex disorders and inborn errors of metabolism. We further developed a database and web-based resources for data mining and results visualization. Our findings contribute to a greater understanding of the role of inherited variation in blood metabolic diversity, and identify potential new opportunities for pharmacologic development and disease understanding. PMID:24816252

  18. Construction of multilocus genetic linkage maps in humans.

    PubMed Central

    Lander, E S; Green, P

    1987-01-01

    Human genetic linkage maps are most accurately constructed by using information from many loci simultaneously. Traditional methods for such multilocus linkage analysis are computationally prohibitive in general, even with supercomputers. The problem has acquired practical importance because of the current international collaboration aimed at constructing a complete human linkage map of DNA markers through the study of three-generation pedigrees. We describe here several alternative algorithms for constructing human linkage maps given a specified gene order. One method allows maximum-likelihood multilocus linkage maps for dozens of DNA markers in such three-generation pedigrees to be constructed in minutes. PMID:3470801

  19. Research Needs for Human Factors.

    ERIC Educational Resources Information Center

    Army Research Inst. for the Behavioral and Social Sciences, Arlington, VA.

    Human factors engineering can be defined as the application of scientific principles, methods, and data drawn from a variety of disciplines to the development of engineering systems in which people play a significant role. Since human factors issues arise in every domain in which humans interact with the products of a technological society, six…

  20. Psychiatric genetic research at the National Institute of Mental Health

    SciTech Connect

    Berg, K.; Mullican, C.; Maestri, N.

    1994-12-15

    For some time it has been known through the results of family, twin, and adoption studies that hereditary appears to play a significant casual role in many mental disorders, including schizophrenia, bipolar disorder, and other mood disorders, Alzheimer`s Disease, panic disorder, obsessive compulsive disorder, autism, dyslexia, and Tourette`s syndrome. The precise patterns of inheritance of these complex disorders have not been determined, nor have the relevant genes been localized or cloned. Because the genetics are complex and because there is also clearly an environmental contribution to behavior, we expect the analysis of the genetics of mental illness to be arduous and not quickly resolved. There are several compelling reasons to continue to focus our attention on uncovering the genetic factors for severe mental illness. Prominent among these are the implications for better treatment of mental disorders. The National Institute of Mental Health supports a wide range of studies on psychiatric genetic research. 16 refs.

  1. Can Research on the Genetics of Intelligence Be "Socially Neutral"?

    PubMed

    Roberts, Dorothy

    2015-01-01

    The history of research on the genetics of intelligence is fraught with social bias. During the eugenics era, the hereditary theory of intelligence justified policies that encouraged the proliferation of favored races and coercively stemmed procreation by disfavored ones. In the 1970s, Berkeley psychologist Arthur Jensen argued that black students' innate cognitive inferiority limited the efficacy of federal education programs. The 1994 controversial bestseller The Bell Curve, by Richard J. Herrnstein and Charles Murray, rehashed the claim that race and class disparities stem from immutable differences in inherited intelligence, which could not be eliminated through social interventions. Today most scientists studying the genetics of intelligence distance themselves from this history of social bias by arguing that their research need not investigate intellectual differences between social groups. Rather, they argue, examining the heritability of intelligence can be socially neutral and may even help to reduce social inequities. I argue, however, that research on the genetics of intelligence cannot be socially neutral. Even if we divorce the heritability of intelligence from a eugenicist mission, measuring intelligence remains useful only as a gage of individuals' appropriate positions in society. Research into the genetics of intelligence ultimately helps to determine individuals' inherited capacity for particular social positions, even when researchers aim to modify the effects of inheritance.

  2. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    ERIC Educational Resources Information Center

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  3. The role of genetically-engineered pigs in xenotransplantation research

    PubMed Central

    Cooper, David K.C.; Ekser, Burcin; Ramsoondar, Jagdeece; Phelps, Carol; Ayares, David

    2015-01-01

    There is a critical shortage in the number of deceased human organs that become available for purposes of clinical transplantation. This problem might be resolved by the transplantation or organs from pigs genetically-engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation, and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in nonhuman primates (NHP) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing 5 or 6 manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart, and islet transplantation will become feasible in the near future. PMID:26365762

  4. Defining the Genetic Architecture of Human Developmental Language Impairment

    PubMed Central

    Li, Ning; Bartlett, Christopher W.

    2012-01-01

    Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene × gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language. PMID:22365959

  5. Mapping genetic influences on the corticospinal motor system in humans.

    PubMed

    Cheeran, B J; Ritter, C; Rothwell, J C; Siebner, H R

    2009-11-24

    It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed a modulatory role of the common val66met polymorphism in the BDNF gene on corticospinal plasticity. Diffusion-sensitive magnetic resonance imaging has been employed to pinpoint subtle structural changes in corticospinal motor projections in individuals carrying a mutation in genes associated with motor neuron degeneration. These studies underscore the potential of non-invasive brain mapping techniques to characterize the genetic influence on the human corticospinal motor system.

  6. Ethics and trends in applied human genetics.

    PubMed

    Fletcher, J C

    1983-01-01

    Unless present trends change, in the next few years the public will see earlier and safer methods of prenatal diagnosis combined with more efficacious methods of fetal therapy. For some time to come, the power to diagnose will far outstrip the power to treat, but with sufficient research and resources, the 2 activities of fetal medicine will assume more balance. The effect of conjoining therapy to diagnosis will bring about a more ethical balance between the immediate risks and benefits of prenatal diagnosis. Abortion will not cease to be a controversial issue in the context of fetal medicine, but the ability to offer treatment to more affected fetuses will create more assurance that progress in diagnosis and treatment will not be halted due to legal and constitutional efforts to protect the life of the fetus. At the same time, special attention should be paid to the mother, father and extended family of the fetus diagnosed for a treatable disorder. Careful discussion and clear communication may prevent misunderstandings and surface family problems that could arise at the last minute to complicate the mother's consent to treatment. When the risks are significant for the mother and the benefits of treatment are unclear, there should be no suggestion or appearance of pressure on her to agree. The same principle should apply even when the risks to the mother are minimal and the benefits to the future child are unclear.

  7. Needed Research on the Genes and Environment in Human Psychological Development: Perspectives from Behavior Genetics. A Special Report of the USOE-Sponsored Grant Study: Critical Appraisal of Research in the Personality-Emotions-Motivation Domain.

    ERIC Educational Resources Information Center

    Loehlin, John C.; And Others

    The task group report presented in this publication is one of a series prepared by eminent psychologists who have served as consultants in the U.S.O.E.-sponsored grant study to conduct a Critical Appraisal of the Personality-Emotions-Motivation Domain. In order to attain the goal of identifying important problems and areas for new research and…

  8. Discovery Genetics – The History and Future of Spontaneous Mutation Research

    PubMed Central

    Davisson, Muriel T.; Bergstrom, David E.; Reinholdt, Laura G.; Donahue, Leah Rae

    2013-01-01

    Historically, spontaneous mutations in mice have served as valuable models of heritable human diseases, contributing substantially to our understanding of both disease mechanisms and basic biological pathways. While advances in molecular technologies have improved our ability to create mouse models of human disease through targeted mutagenesis and transgenesis, spontaneous mutations continue to provide valuable research tools for discovery of novel genes and functions. In addition, the genetic defects caused by spontaneous mutations are molecularly similar to mutations in the human genome and, therefore often produce phenotypes that more closely resemble those characteristic of human disease than do genetically engineered mutations. Due to the rarity with which spontaneous mutations arise and the animal intensive nature of their genetic analysis, large-scale spontaneous mutation analysis has traditionally been limited to large mammalian genetics institutes. More recently, ENU mutagenesis and new screening methods have increased the rate of mutant strain discovery, and high-throughput DNA sequencing has enabled rapid identification of the underlying genes and their causative mutations. Here, we discuss the continued value of spontaneous mutations for biomedical research. PMID:25364627

  9. Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research

    PubMed Central

    Chan, Anthony W. S.

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443

  10. Progress and prospects for genetic modification of nonhuman primate models in biomedical research.

    PubMed

    Chan, Anthony W S

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.

  11. The changing landscape of genetic testing and its impact on clinical and laboratory services and research in Europe.

    PubMed

    Hastings, Ros; de Wert, Guido; Fowler, Brian; Krawczak, Michael; Vermeulen, Eric; Bakker, Egbert; Borry, Pascal; Dondorp, Wybo; Nijsingh, Niels; Barton, David; Schmidtke, Jörg; van El, Carla G; Vermeesch, Joris; Stol, Yrrah; Carmen Howard, Heidi; Cornel, Martina C

    2012-09-01

    The arrival of new genetic technologies that allow efficient examination of the whole human genome (microarray, next-generation sequencing) will impact upon both laboratories (cytogenetic and molecular genetics in the first instance) and clinical/medical genetic services. The interpretation of analytical results in terms of their clinical relevance and the predicted health status poses a challenge to both laboratory and clinical geneticists, due to the wealth and complexity of the information obtained. There is a need to discuss how to best restructure the genetic services logistically and to determine the clinical utility of genetic testing so that patients can receive appropriate advice and genetic testing. To weigh up the questions and challenges of the new genetic technologies, the European Society of Human Genetics (ESHG) held a series of workshops on 10 June 2010 in Gothenburg. This was part of an ESHG satellite symposium on the 'Changing landscape of genetic testing', co-organized by the ESHG Genetic Services Quality and Public and Professional Policy Committees. The audience consisted of a mix of geneticists, ethicists, social scientists and lawyers. In this paper, we summarize the discussions during the workshops and present some of the identified ways forward to improve and adapt the genetic services so that patients receive accurate and relevant information. This paper covers ethics, clinical utility, primary care, genetic services and the blurring boundaries between healthcare and research.

  12. Uterus transplantation: animal research and human possibilities.

    PubMed

    Brännström, Mats; Diaz-Garcia, Cesar; Hanafy, Ash; Olausson, Michael; Tzakis, Andreas

    2012-06-01

    Uterus transplantation research has been conducted toward its introduction in the human as a treatment of absolute uterine-factor infertility, which is considered to be the last frontier to conquer for infertility research. In this review we describe the patient populations that may benefit from uterus transplantation. The animal research on uterus transplantation conducted during the past two decades is summarized, and we describe our views regarding a future research-based human attempt.

  13. Identification of spatial genetic boundaries using a multifractal model in human population genetics.

    PubMed

    Xue, Fuzhong; Wang, Jiezhen; Hu, Ping; Ma, Daoxin; Liu, Jing; Li, Guifu; Zhang, Li; Wu, Min; Sun, Guoqing; Hou, Haifeng

    2005-10-01

    There are two purposes in displaying spatial genetic structure. One is that a visual representation of the variation of the genetic variable should be provided in the contour map. The other is that spatial genetic structure should be reflected by the patterns or the gradients with genetic boundaries in the map. Nevertheless, most conventional interpolation methods, such as Cavalli-Sforza's method in genography, inverse distance-weighted methods, and the Kriging technique, focus only on the first primary purpose because of their arbitrary thresholds marked on the maps. In this paper we present an application of the contour area multifractal model (CAMM) to human population genetics. The method enables the analysis of the geographic distribution of a genetic marker and provides an insight into the spatial and geometric properties of obtained patterns. Furthermore, the CAMM may overcome some of the limitations of other interpolation techniques because no arbitrary thresholds are necessary in the computation of genetic boundaries. The CAMM is built by establishing power law relationships between the area A (> or =rho) in the contour map and the value p itself after plotting these values on a log-log graph. A series of straight-line segments can be fitted to the points on the log-log graph, each representing a power law relationship between the area A (> or =rho) and the cutoff genetic variable value for rho in a particular range. These straight-line segments can yield a group of cutoff values, which can be identified as the genetic boundaries that can classify the map of genetic variable into discrete genetic zones. These genetic zones usually correspond to spatial genetic structure on the landscape. To provide a better understanding of the interest in the CAMM approach, we analyze the spatial genetic structures of three loci (ABO, HLA-A, and TPOX) in China using the CAMM. Each synthetic principal component (SPC) contour map of the three loci is created by using both

  14. Genetic research for wildlife and fisheries management - A primer

    USGS Publications Warehouse

    Pawlitz, Rachel J.; Hunter, Margaret E.; Johnson, Nathan A.

    2012-01-01

    Scientists at the U.S. Geological Survey (USGS) use a range of research approaches to investigate the genetics of native and non-native species that are being managed. This Fact Sheet outlines those approaches and explains the type of information they provide.

  15. Psychological Issues in Cancer Genetics: Current Research and Future Priorities.

    ERIC Educational Resources Information Center

    Hopwood, Penelope

    1997-01-01

    Data concerning the psychological impact of high risk of cancer are reviewed, including implications of genetic testing, breast screening,and accuracy of women's risk estimates. Work in progress on prophylactic mastectomy and chemoprevention is reviewed. Research on cancer families, and interventions and prevention strategies for high-risk…

  16. Field-based phenomics for plant genetics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perhaps the greatest challenge for crop research in the 21st century is how to predict crop performance as a function of genetic architecture and climate change. Advances in “next generation” DNA sequencing have greatly reduced genotyping costs. Methods for characterization of plant traits (phenotyp...

  17. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    PubMed

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  18. Genetic variation and effects on human eating behavior.

    PubMed

    de Krom, Mariken; Bauer, Florianne; Collier, David; Adan, R A H; la Fleur, Susanne E

    2009-01-01

    Feeding is a physiological process, influenced by genetic factors and the environment. In recent years, many studies have been performed to unravel the involvement of genetics in both eating behavior and its pathological forms: eating disorders and obesity. In this review, we provide a condensed introduction on the neurological aspects of eating and we describe the current status of research into the genetics of eating behavior, primarily focused on specific traits such as taste, satiation, and hunger. This is followed by an overview on the genetic studies done to unravel the heritable background of obesity and eating disorders. We examine the discussion currently taking place in the field of genetics of complex disorders and phenotypes on how to perform good and powerful studies, with the use of large-scale whole-genome association studies as one of the possible solutions. In the final part of this review, we give our view on the latest developments, including endophenotype approaches and animal studies. Studies of endophenotypes of eating behavior may help to identify core traits that are genetically influenced. Such studies would yield important knowledge on the underlying biological scaffold on which diagnostic criteria for eating disorders could be based and would provide information to influence eating behavior toward healthier living.

  19. The Trustworthiness Deficit in Postgenomic Research on Human Intelligence.

    PubMed

    Richardson, Sarah S

    2015-01-01

    In the past, work on racial and ethnic variation in brain and behavior was marginalized within genetics. Against the backdrop of genetics' eugenic legacy, wide consensus held such research to be both ethically problematic and methodologically controversial. But today it is finding new opportunistic venues in a global, transdisciplinary, data-rich postgenomic research environment in which such a consensus is increasingly strained. The postgenomic sciences display worrisome deficits in their ability to govern and negotiate standards for making postgenomic claims in the transdisciplinary space between human population variation research, studies of intelligence, neuroscience, and evolutionary biology. Today some researchers are pursuing the genomics of intelligence on a newly grand scale. They are sequencing large numbers of whole genomes of people considered highly intelligent (by varying empirical and social measures) in the hope of finding gene variants predictive of intelligence. Troubling and at times outlandish futurist claims accompany this research. Scientists involved in this research have openly discussed the possibility of marketing prenatal tests for intelligence, of genetic engineering or selective embryo implantation to increase the likelihood of a high-IQ child, and of genotyping children to guide their education. In this permissive and contested environment, what would trustworthy research on the genomics of high intelligence look like?

  20. Wide disparity of clinical genetics services and EU rare disease research funding across Europe.

    PubMed

    Lynch, Sally Ann; Borg, Isabella

    2016-04-01

    The origins of clinical genetics services vary throughout Europe with some emerging from paediatric medicine and others from an academic laboratory setting. In 2011, the cross-border patients' rights directive recommended the creation of European Research Networks (ERNs) to improve patient care throughout EU. In 2013, the EU recommendation on the care for rare diseases came into place. The process of designating EU centres of expertise in rare diseases is being implemented to allow centres to enter ERNs. Hence, this is an opportune time to reflect on the current status of genetic services and research funding throughout Europe as 80 % of rare diseases have a genetic origin. Our aims were to determine (a) whether EU countries are prepared in terms of appropriate clinical genetic staffing to fulfil the European Union Committee of Experts on Rare Diseases (EUCERD) criteria that will allow national centres to be designated as centres of expertise, (b) which EU countries are successful in grant submissions to EU rare disease research funding and (c) country of origin of researchers from the EU presenting their research work as a spoken presentation at the European Society of Human Genetics annual conference. Our results show there is wide disparity of staffing levels per head of population in clinical genetics units throughout Europe. EU rare disease research funding is not being distributed equitably and the opportunity to present research is skewed with many countries not achieving spoken presentations despite abstract submissions. Inequity in the care of patients with rare diseases exists in Europe. Many countries will struggle to designate centres of expertise as their staffing mix and levels will not meet the EUCERD criteria which may prevent them from entering ERNs. The establishment of a small number of centres of expertise centrally, which is welcome, should not occur at the expense of an overall improvement in EU rare disease patient care. Caution should be

  1. Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits.

    PubMed

    Moreno-Estrada, Andrés; Gignoux, Christopher R; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M; Via, Marc; Ford, Jean G; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R; Romieu, Isabelle; Sienra-Monge, Juan José; del Rio Navarro, Blanca; London, Stephanie J; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D

    2014-06-13

    Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between subcontinental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide.

  2. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  3. [Clinical implications of molecular genetic research in otorhinolaryngology].

    PubMed

    Gürtler, N

    2003-08-01

    Molecular-genetic research in Otolaryngology has seen a rapid advancement during the last ten years, especially in the fields of otology and head and neck tumors. The results of this basic research have now started to be implemented in the clinic. In otology the understanding of auditive function has dramatically improved. The syndromic and non-syndromic forms of hereditary hearing impairment can be subdivided into their underlying genetic defects, as more and more genes are identified. Diagnostic of syndromic hearing loss has been improved and can be done earlier. But the molecular-genetic analysis is still time-consuming and difficult. Currently, in our clinic, only patients with suspected Pendred-syndrome, representing the most frequent syndrome with hearing impairment, undergo a routine search for mutation detection in the corresponding gene SLC26A4. A multitude of genes and mutations are seen in the non-syndromic forms of hereditary hearing impairment. The gene gap-junction-protein beta2, encoding connexin 26, is encountered most frequently. Its prevalence in Switzerland is high with about 20% in the non-syndromic group. A molecular-genetic analysis of connexin 26 is offered in cases of congenital hearing loss. Another analysis, which has been implemented in the clinic, is the sequencing of Wolfram-syndrome gene 1 in familial low-frequency hearing loss. This gene seems to be involved in the majority of families with this type of hearing loss. Gene therapy for hearing loss is currently not an option in the clinical field. The different steps in carcinogenesis of head and neck cancer have further been elucidated by molecular-genetic research. Clinical applications are the establishment of risk-profiles for tumor-development and defining prognostic markers as well as the development of new treatment strategies based on genetic therapy.

  4. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  5. Human genetics and genomics a decade after the release of the draft sequence of the human genome.

    PubMed

    Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng

    2011-10-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.

  6. The ethics of genetic research on sexual orientation.

    PubMed

    Schüklenk, U; Stein, E; Kerin, J; Byne, W

    1997-01-01

    Research into the genetic component of some complex behaviors often causes controversy, depending on the social meaning and significance of the behavior under study. Research into sexual orientation-simplistically referred to as "gay gene" research-is an example of research that provokes intense controversy. This research is worrisome for many reasons, including the fact that it has been used to harm lesbians and gay men. Many homosexual people have been forced to undergo "treatments" to change their sexual orientation. Other chose to undergo them to escape discrimination and social disapprobation. But there are other reasons to worry about such research. The very motivation for seeking an "origin" of homosexuality reveals homophobia. Moreover, such research may lead to prenatal tests that claim to predict for homosexuality. For homosexual people who live in countries with no legal protections these dangers are particularly serious.

  7. Milestones in Medical Research, The Human Genome and ClinicalTrials.gov | NIH MedlinePlus the Magazine

    MedlinePlus

    ... turn Javascript on. Milestones in Medical Research, The Human Genome and ClinicalTrials.gov Past Issues / Fall 2010 ... milestone in understanding the genetic foundation of all human beings; the second, a comprehensive information service to ...

  8. Genetic eye research in Tasmania: a historical overview.

    PubMed

    Mackey, David A

    2012-03-01

    Although considerable recent work on hereditary eye diseases in Tasmanian families has been published, much of this depended on a century of meticulous pedigree collection by earlier clinical researchers. This article reviews some of the historical papers and the importance they have played in gene discovery and understanding of ophthalmic genetics. Tasmanian families have contributed to the identification of genes for X-linked megalocornea, Leber's hereditary optic neuropathy, retinitis pigmentosa, congenital cataract, ptosis, keratoconus, glaucoma and myopia. The true value of the Tasmanian pedigrees will be realized with the translation of genetic discoveries into early diagnosis and treatment for these eye diseases.

  9. Using genetic research to inform imperiled and invasive species management

    USGS Publications Warehouse

    Hunter, Margaret E.; Pawlitz, Rachel J.

    2012-01-01

    The long-term viability of species and populations is related to their potential to migrate, reproduce, and adapt to environmental changes. In the southeast United States, U.S. Geological Survey (USGS) scientists are providing resource managers with genetic information to improve the long-term survival and sustainability of the Nation's aquatic species. Research focused on native and imperiled species can assess the genetic factors influencing their survival and recovery, while work on invasive species can provide information on their proliferation, dispersal, and impacts on native species.

  10. Application of Humanized Mice in Immunological Research.

    PubMed

    Tu, Wenwei; Zheng, Jian

    2016-01-01

    During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.

  11. [Patenting human genetic material: ethical and legal implications].

    PubMed

    Bergel, S D

    2001-01-01

    If we introduce the subject of patents on human genetic material in a Bioethics Conference we must answer two questions. Firstly, whether the debate can be universalized, bearing in mind the national nature of norms governing intellectual property, and, secondly, whether there are links between patent law and ethics. Using the example of the patenting of biological material, we will see how this impacts on society, which, beyond the technical or legal knowledge required, is voicing its concern on the ethical level.

  12. Molecular basis of telomere dysfunction in human genetic diseases.

    PubMed

    Sarek, Grzegorz; Marzec, Paulina; Margalef, Pol; Boulton, Simon J

    2015-11-01

    Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.

  13. Genetic Analysis of Daily Activity in Humans and Mice

    DTIC Science & Technology

    2007-11-02

    of the technical developments that have made such genetic dissections a productive force in the mouse , have, when combined with innovations in...and Mice AFOSR grant F49620-97-1-0321 Joseph S. Takahashi Dept. of Neurobiology & Physiology Northwestern University 2153 North Campus Dr. Evanston...Activity in Humans and Mice Unclassified 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 6. AUTHOR(S) Takahashi, Joseph S. ; 5f. WORK

  14. [Teaching experience in integrated course of human development and genetics].

    PubMed

    Qiu, Guang-Rong; Li, Xiao-Ming; Chen, Fang-Jie; Li, Chun-Yi; Liu, Hong; Li, Fu-Cai; Jin, Chun-Lian; Sun, Gui-Yuan; Liu, Cai-Xia; Zhao, Yan-Yan; Sun, Kai-Lai

    2010-04-01

    Establishment of integrated course system in human development and genetics is an important part of course reformation, and the improvement of this system is achieved by integrating the content of course, stabilizing teaching force, building teaching materials and applying problem-based learning. Integrity-PBL teaching model is founded and proved to be feasible and effective by teaching practice. Therefore, it maybe play an important role in improving teaching effect and cultivating ability of students to analyse and solve problems.

  15. [Research advances on medical genetics in China in 2015].

    PubMed

    Li, Yuanfeng; Han, Yubo; Cao, Pengbo; Meng, Jinfeng; Li, Haibei; Qin, Geng; Zhang, Feng; Jin, Guangfu; Yang, Yong; Wu, Lingqian; Ping, Jie; Zhou, Gangqiao

    2016-05-01

    Steady progress has been achieved in the medical genetics in China in 2015, as numerous original researches were published in the world's leading journals. Chinese scientists have made significant contributions to various fields of medical genetics, such as pathogenicity of rare diseases, predisposition of common diseases, somatic mutations of cancer, new technologies and methods, disease-related microRNAs (miRNAs), disease-related long non-coding RNAs (lncRNAs), disease-related competing endogenous RNAs (ceRNAs), disease-related RNA splicing and molecular evolution. In these fields, Chinese scientists have gradually formed the tendency, from common variants to rare variants, from single omic analyses to multipleomics integration analyses, from genetic discovery to functional confirmation, from basic research to clinical application. Meanwhile, the findings of Chinese scientists have been drawn great attentions of international peers. This review aims to provide an overall picture of the front in Chinese medical genetics, and highlights the important findings and their research strategy.

  16. Human Subjects Research and the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kubitskey, Beth W.; Thomsen, Marshall

    2012-09-01

    Physics Education Research is a form of social science research in that it uses human subjects. As physicists we need to be aware of the ethical and legal ramifications of performing this research, taking into account the fundamental differences between working with substances and working with people. For several decades, the federal government has regulated research involving human subjects. With current procedures, a proposal soliciting federal funds for a research project involving human subjects will be flagged by the applicants institution and checked for compliance with appropriate regulations. However, there is a large body of Physics Education Research that is not federally funded and thus may not be flagged. Nevertheless, there are ethical standards that apply to this research. This paper outlines the preliminary considerations for conducting such research.

  17. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives.

    PubMed

    Singh, Jay Shankar; Abhilash, P C; Singh, H B; Singh, Rana P; Singh, D P

    2011-07-01

    This minireview explores the environmental bioremediation mediated by genetically engineered (GE) bacteria and it also highlights the limitations and challenges associated with the release of engineered bacteria in field conditions. Application of GE bacteria based remediation of various heavy metal pollutants is in the forefront due to eco-friendly and lesser health hazards compared to physico-chemical based strategies, which are less eco-friendly and hazardous to human health. A combination of microbiological and ecological knowledge, biochemical mechanisms and field engineering designs would be an essential element for successful in situ bioremediation of heavy metal contaminated sites using engineered bacteria. Critical research questions pertaining to the development and implementation of GE bacteria for enhanced bioremediation have been identified and poised for possible future research. Genetic engineering of indigenous microflora, well adapted to local environmental conditions, may offer more efficient bioremediation of contaminated sites and making the bioremediation more viable and eco-friendly technology. However, many challenges are to be addressed concerning the release of genetically engineered bacteria in field conditions. There are possible risks associated with the use of GE bacteria in field condition, with particular emphasis on ways in which molecular genetics could contribute to the risk mitigation. Both environmental as well as public health concerns need to be addressed by the molecular biologists. Although bioremediation of heavy metals by using the genetically engineered bacteria has been extensively reviewed in the past also, but the bio-safety assessment and factors of genetic pollution have been never the less ignored.

  18. Recent genetic discoveries implicating ion channels in human cardiovascular diseases.

    PubMed

    George, Alfred L

    2014-04-01

    The term 'channelopathy' refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac conduction phenotypes, pulmonary and systemic hypertension. These recent discoveries further emphasize the importance of ion channels in the pathophysiology of human disease and as important druggable targets.

  19. Efficient genetic engineering of human intestinal organoids using electroporation.

    PubMed

    Fujii, Masayuki; Matano, Mami; Nanki, Kosaku; Sato, Toshiro

    2015-10-01

    Gene modification in untransformed human intestinal cells is an attractive approach for studying gene function in intestinal diseases. However, because of the lack of practical tools, such studies have largely depended upon surrogates, such as gene-engineered mice or immortalized human cell lines. By taking advantage of the recently developed intestinal organoid culture method, we developed a methodology for modulating genes of interest in untransformed human colonic organoids via electroporation of gene vectors. Here we describe a detailed protocol for the generation of intestinal organoids by culture with essential growth factors in a basement membrane matrix. We also describe how to stably integrate genes via the piggyBac transposon, as well as precise genome editing using the CRISPR-Cas9 system. Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 weeks.

  20. Teachers' Conceptions About the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    NASA Astrophysics Data System (ADS)

    Castéra, Jérémy; Clément, Pierre

    2012-07-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed teachers' conceptions. This illustrates that innatism is present in two distinct ways: in relation to individuals (e.g. genetic determinism to justify intellectual likeness between individuals such as twins) or in relation to groups of humans (e.g. genetic determinism to justify gender differences or the superiority of some human ethnic groups). A between-factor analysis discriminates between countries, showing very significant differences. There is more innatism among teachers' conceptions in African countries and Lebanon than in European countries, Brazil and Australia. Among the other controlled parameters, only two are significantly independent of the country: the level of training and the level of knowledge of biology. A co-inertia analysis shows a strong correlation between non-citizen attitudes towards and innatist conceptions of genetic determinism regarding human groups. We discuss these findings and their implications for education.

  1. Genetic Determinants of Human Health Span and Life Span: Progress and New Opportunities

    PubMed Central

    Martin, George M; Bergman, Aviv; Barzilai, Nir

    2007-01-01

    We review three approaches to the genetic analysis of the biology and pathobiology of human aging. The first and so far the best-developed is the search for the biochemical genetic basis of varying susceptibilities to major geriatric disorders. These include a range of progeroid syndromes. Collectively, they tell us much about the genetics of health span. Given that the major risk factor for virtually all geriatric disorders is biological aging, they may also serve as markers for the study of intrinsic biological aging. The second approach seeks to identify allelic contributions to exceptionally long life spans. While linkage to a locus on Chromosome 4 has not been confirmed, association studies have revealed a number of significant polymorphisms that impact upon late-life diseases and life span. The third approach remains theoretical. It would require longitudinal studies of large numbers of middle-aged sib-pairs who are extremely discordant or concordant for their rates of decline in various physiological functions. We can conclude that there are great opportunities for research on the genetics of human aging, particularly given the huge fund of information on human biology and pathobiology, and the rapidly developing knowledge of the human genome. PMID:17677003

  2. Human Research Program Integrated Research Plan. Revision C

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2011-01-01

    Crew health and performance are critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes (1) HRP's approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and (2) the method of integration for risk mitigation. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.

  3. [Research progress on molecular genetics of forest musk deer].

    PubMed

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer.

  4. Molecular genetics research in ADHD: ethical considerations concerning patients' benefit and resource allocation.

    PubMed

    Rothenberger, Lillian Geza

    2012-12-01

    Immense resource allocations have led to great data output in genetic research. Concerning ADHD resources spent on genetic research are less than those spent on clinical research. But there are successful efforts made to increase support for molecular genetics research in ADHD. Concerning genetics no evidence based conclusive results have significant impact on prevention, diagnosis or treatment yet. With regard to ethical aspects like the patients' benefit and limited resources the question arises if it is indicated to think about a new balance of resource allocation between molecular genetics and non-genetics research in ADHD. An ethical reflection was performed focusing on recent genetic studies and reviews based on a selective literature search. There are plausible reasons why genetic research results in ADHD are somehow disappointing for clinical practice so far. Researchers try to overcome these gaps systematically, without knowing what the potential future benefits for the patients might be. Non-genetic diagnostic/therapeutic research may lead to clinically relevant findings within a shorter period of time. On the other hand, non-genetic research in ADHD may be nurtured by genetic approaches. But, with the latter there exist significant risks of harm like stigmatization and concerns regarding data protection. Isolated speeding up resources of genetic research in ADHD seems questionable from an ethical point of view. There is a need to find a new balance of resource allocation between genetic and non-genetic research in ADHD, probably by integrating genetics more systematically into clinical research. A transdisciplinary debate is recommended.

  5. Beneficence as a principle in human research.

    PubMed

    Pieper, Ian; Thomson, Colin J H

    2016-06-01

    Beneficence is one of the four principles that form the basis of the Australian National Statement. The aim of this paper is to explore the philosophical development of this principle and to clarify the role that beneficence plays in contemporary discussions about human research ethics. By examining the way that guidance documents, particularly the National Statement, treats beneficence we offer guidance to researchers and human research ethics committee members on the practical application of what can be a conceptually difficult principle.

  6. Human Research and Complexity Theory

    ERIC Educational Resources Information Center

    Horn, James

    2008-01-01

    The disavowal of positivist science by many educational researchers has resulted in a deepening polarization of research agendas and an epistemological divide that appears increasingly difficult to span. Despite a turning away from science altogether by some, and thus toward various forms of poststructuralist inquiry, this has not held back the…

  7. Genetic Differences Between Great Apes and Humans: Implications for Human Evolution

    SciTech Connect

    Varki, Ajit

    2004-03-17

    When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship to a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.

  8. ["A decision meaning a new foundation...": from the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics to the Max Planck Institute for Molecular Genetics].

    PubMed

    Sachse, Carola

    2011-01-01

    The Max Planck Institute for Molecular Genetics (MPIMG) in Berlin-Dahlem dates its establishment to 1964. Its homepage makes no mention of its predecessor institutes, the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics (KWIA) and the subsequent MPI for Comparative Genetics and Hereditary Pathology (MPIVEE). This article traces the two critical phases of transition regarding the constellations of academic staff, institutional and epistemic ruptures and continuities specific to the era. Only one of the five department heads from the final war years, Hans Nachtsheim, remained a researcher within the Max Planck Society (MPG); he nevertheless continued to advocate the pre-war and wartime eugenic agenda in the life sciences and social policy. The generational change of 1959/60 became a massive struggle within the institute, in which microbial genetics (with Fritz Kaudewitz) was pitted against human genetics (with Friedrich Vogel) and managed to establish itself after a fresh change in personnel in 1964/65. For the Dahlem institute, this involved a far-reaching reorientation of its research, but for the genetically oriented life sciences in the Max Planck Society as a whole it only meant that molecular biology, which was already being pursued in the West German institutes, gained an additional facility. With this realignment of research traditions, the Society was able to draw a line under the Nazi past without having to address it head-on.

  9. [Teaching design and practice of human blood type traits in genetics comprehensive laboratory course].

    PubMed

    Zhao, Jian; Hu, Dongmei; Yu, Dade; Dong, Mingliang; Li, Yun; Fan, Yingming; Wang, Yanwei; Zhang, Jinfeng

    2016-05-01

    Comprehensive laboratory courses, which enable students to aptly apply theoretic knowledge and master experiment skills, play an important role in the present educational reform of laboratory courses. We utilized human ABO blood type as the experimental subject, and designed the experiment--"Molecular Genotyping of Human ABO Blood Type and Analysis of Population Genetic Equilibrium". In the experiment, DNA in mucosal cells is extracted from students' saliva, and each student's genotype is identified using a series of molecular genetics technologies, including PCR amplification of target fragments, enzymatic digestion, and electrophoretic separation. Then, taking the whole class as an analogous Mendel population, a survey of genotype frequency of ABO blood type is conducted, followed with analyses of various population genetic parameters using Popgene. Through the open laboratory course, students can not only master molecular genetic experimental skills, but also improve their understanding of theoretic knowledge through independent design and optimization of molecular techniques. After five years of research and practice, a stable experimental system of molecular genetics has been established to identify six genotypes of ABO blood types, namely I(A)I(A), I(A)i, I(B)I(B), I(B)i, I(A)I(B) and ii. Laboratory courses of molecular and population genetics have been integrated by calculating the frequencies of the six genotypes and three multiple alleles and testing population genetic equilibrium. The goal of the open laboratory course with independent design and implementation by the students has been achieved. This laboratory course has proved effective and received good reviews from the students. It could be applied as a genetics laboratory course for the biology majors directly, and its ideas and methods could be promoted and applied to other biological laboratory courses.

  10. Human Subjects Research and the Physics Classroom

    ERIC Educational Resources Information Center

    Kubitskey, Beth W.; Thomsen, Marshall

    2012-01-01

    Physics Education Research is a form of social science research in that it uses human subjects. As physicists we need to be aware of the ethical and legal ramifications of performing this research, taking into account the fundamental differences between working with substances and working with people. For several decades, the federal government…

  11. Basic Research in Human Factors

    DTIC Science & Technology

    1990-07-01

    in the fields of experimental psychology , bimeccanics, mathematical psychology , cognitive and information sciences, sociology, business...administration, organizational and industrial psychology , and engineering. Each of these experts serves on the ccmittee or its subgroup without reimbursement other...studies on macro models and has identified researh needed for the description and prediction of human performance. Its report, which will recammend

  12. Genetic and phenotypic consequences of introgression between humans and Neanderthals.

    PubMed

    Wills, Christopher

    2011-01-01

    Strong evidence for introgression of Neanderthal genes into parts of the modern human gene pool has recently emerged. The evidence indicates that some populations of modern humans have received infusions of genes from two different groups of Neanderthals. One of these Neanderthal groups lived in the Middle East and Central Europe and the other group (the Denisovans) is known to have lived in Central Asia and was probably more widespread. This review examines two questions. First, how were these introgressions detected and what does the genetic evidence tell us about their nature and extent? We will see that an unknown but possibly large fraction of the entire Neanderthal gene complement may have survived in modern humans. Even though each modern European and Asian carries only a few percent of genes that can be traced back to Neanderthals, different individuals carry different subgroups of these introgressed genes. Second, what is the likelihood that this Neanderthal genetic legacy has had phenotypic effects on modern humans? We examine evidence for and against the possibility that some of the surviving fragments of Neanderthal genomes have been preserved by natural selection, and we explore the ways in which more evidence bearing on this question will become available in the future.

  13. Human genetic differentiation across the Strait of Gibraltar

    PubMed Central

    2010-01-01

    Background The Strait of Gibraltar is a crucial area in the settlement history of modern humans because it represents a possible connection between Africa and Europe. So far, genetic data were inconclusive about the fact that this strait constitutes a barrier to gene flow, as previous results were highly variable depending on the genetic locus studied. The present study evaluates the impact of the Gibraltar region in reducing gene flow between populations from North-Western Africa and South-Western Europe, by comparing formally various genetic loci. First, we compute several statistics of population differentiation. Then, we use an original simulation approach in order to infer the most probable evolutionary scenario for the settlement of the area, taking into account the effects of both demography and natural selection at some loci. Results We show that the genetic patterns observed today in the region of the Strait of Gibraltar may reflect an ancient population genetic structure which has not been completely erased by more recent events such as Neolithic migrations. Moreover, the differences observed among the loci (i.e. a strong genetic boundary revealed by the Y-chromosome polymorphism and, at the other extreme, no genetic differentiation revealed by HLA-DRB1 variation) across the strait suggest specific evolutionary histories like sex-mediated migration and natural selection. By considering a model of balancing selection for HLA-DRB1, we here estimate a coefficient of selection of 2.2% for this locus (although weaker in Europe than in Africa), which is in line with what was estimated from synonymous versus non-synonymous substitution rates. Selection at this marker thus appears strong enough to leave a signature not only at the DNA level, but also at the population level where drift and migration processes were certainly relevant. Conclusions Our multi-loci approach using both descriptive analyses and Bayesian inferences lead to better characterize the role of

  14. Ecogeography, genetics, and the evolution of human body form.

    PubMed

    Roseman, Charles C; Auerbach, Benjamin M

    2015-01-01

    Genetic resemblances among groups are non-randomly distributed in humans. This population structure may influence the correlations between traits and environmental drivers of natural selection thus complicating the interpretation of the fossil record when modern human variation is used as a referential model. In this paper, we examine the effects of population structure and natural selection on postcranial traits that reflect body size and shape with application to the more general issue of how climate - using latitude as a proxy - has influenced hominin morphological variation. We compare models that include terms reflecting population structure, ascertained from globally distributed microsatellite data, and latitude on postcranial phenotypes derived from skeletal dimensions taken from a large global sample of modern humans. We find that models with a population structure term fit better than a model of natural selection along a latitudinal cline in all cases. A model including both latitude and population structure terms is a good fit to distal limb element lengths and bi-iliac breadth, indicating that multiple evolutionary forces shaped these morphologies. In contrast, a model that included only a population structure term best explained femoral head diameter and the crural index. The results demonstrate that population structure is an important part of human postcranial variation, and that clinally distributed natural selection is not sufficient to explain among-group differentiation. The distribution of human body form is strongly influenced by the contingencies of modern human origins, which calls for new ways to approach problems in the evolution of human variation, past and present.

  15. Human genetic mapping studies using single sperm typing

    SciTech Connect

    Hubert, R.S.

    1993-01-01

    Sperm typing is a powerful technique that uses the polymerase chain reaction (PCR) to analyze DNA sequences within single sperm cells in order to construct genetic maps. This methodology was used to estimate the recombination fraction between D3S2 and D3S2 which was found to be 0.28 (95% CI = 0.20-0.36). Pedigree analysis was unable to determine genetic distance between these two markers due to their low informativeness. We also showed that dinucleotide and tetranucleotide repeat polymorphisms can be analyzed in single cells without using radioactivity or denaturing gels. This provides a rich new source of DANA polymorphisms for genetic mapping by sperm typing. In addition, an approach that uses the sperm typing methodology is described that can define the physical boundaries of meiotic recombination hotspots. The hotspot at 4p16.3 near the Huntington disease gene was localized to an interval between D4S10 and D4S126. These studies demonstrated the usefulness of sperm typing as a tool for the study of human genetic.

  16. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  17. Accessible Genetics Research Ethics Education (AGREE): A Web-Based Program for IRBs and Investigators

    SciTech Connect

    Sugarman, Jeremy; Lee, Linda

    2006-03-31

    The primary objective of this project was to design and evaluate a series of web-based educational modules on genetics research ethics for members of Institutional Review Boards and investigators to facilitate the development and oversight of important research that is sensitive to the relevant ethical, legal and social issues. After a needs assessment was completed in March of 2003, five online educational modules on the ethics of research in genetics were developed, tested, and made available through a host website for AGREE: http://agree.mc.duke.edu/index.html. The 5 modules are: (1) Ethics and Genetics Research in Populations; (2) Ethics in Behavioral Genetics Research; (3) Ethical Issues in Research on Gene-Environment Interactions; (4) Ethical Issues in Reproductive Genetics Research; and (5) Ethical Issues in Diagnostic and Therapeutic Research. The development process adopted a tested approach used at Duke University School of Medicine in providing education for researchers and IRB members, supplementing it with expert input and a rigorous evaluation. The host website also included a description of the AGREE; short bios on the AGREE Investigators and Expert Advisory Panel; streaming media of selected presentations from a conference, Working at the Frontiers of Law and Science: Applications of the Human Genome held October 2-3, 2003, at the University of North Carolina at Chapel Hill; and links to online resources in genomics, research ethics, ethics in genomics research, and related organizations. The web site was active beginning with the posting of the first module and was maintained throughout the project period. We have also secured agreement to keep the site active an additional year beyond the project period. AGREE met its primary objective of creating web-based educational modules related to the ethical issues in genetics research. The modules have been disseminated widely. While it is clearly easier to judge the quality of the educational experience

  18. [Influence of genetic factors on human sexual orientation. Review].

    PubMed

    Rodríguez-Larralde, Alvaro; Paradisi, Irene

    2009-09-01

    Human sexual orientation is a complex trait, influenced by several genes, experiential and sociocultural factors. These elements interact and produce a typical pattern of sexual orientation towards the opposite sex. Some exceptions exist, like bisexuality and homosexuality, which seem to be more frequent in males than females. Traditional methods for the genetic study of behavior multifactorial characteristics consist in detecting the presence of familial aggregation. In order to identify the importance of genetic and environmental factors in this aggregation, the concordance of the trait for monozygotic and dizygotic twins and for adopted sibs, reared together and apart, is compared. These types of studies have shown that familial aggregation is stronger for male than for female homosexuality. Based on the threshold method for multifactorial traits, and varying the frequency of homosexuality in the population between 4 and 10%, heritability estimates between 0.27 and 0.76 have been obtained. In 1993, linkage between homosexuality and chromosomal region Xq28 based on molecular approaches was reported. Nevertheless, this was not confirmed in later studies. Recently, a wide search of the genome has given significant or close to significant linkage values with regions 7q36, 8p12 and 10q26, which need to be studied more closely. Deviation in the proportion of X chromosome inactivation in mothers of homosexuals seems to favor the presence of genes related with sexual orientation in this chromosome. There is still much to be known about the genetics of human homosexuality.

  19. Explosive genetic evidence for explosive human population growth.

    PubMed

    Gao, Feng; Keinan, Alon

    2016-12-01

    The advent of next-generation sequencing technology has allowed the collection of vast amounts of genetic variation data. A recurring discovery from studying larger and larger samples of individuals had been the extreme, previously unexpected, excess of very rare genetic variants, which has been shown to be mostly due to the recent explosive growth of human populations. Here, we review recent literature that inferred recent changes in population size in different human populations and with different methodologies, with many pointing to recent explosive growth, especially in European populations for which more data has been available. We also review the state-of-the-art methods and software for the inference of historical population size changes that lead to these discoveries. Finally, we discuss the implications of recent population growth on personalized genomics, on purifying selection in the non-equilibrium state it entails and, as a consequence, on the genetic architecture underlying complex disease and the performance of mapping methods in discovering rare variants that contribute to complex disease risk.

  20. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases.

    PubMed

    Redel, Bethany K; Prather, Randall S

    2016-04-01

    Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases.

  1. Application of genetically modified and cloned pigs in translational research.

    PubMed

    Matsunari, Hitomi; Nagashima, Hiroshi

    2009-06-01

    Pigs are increasingly being recognized as good large-animal models for translational research, linking basic science to clinical applications in order to establish novel therapeutics. This article reviews the current status and future prospects of genetically modified and cloned pigs in translational studies. It also highlights pigs specially designed as disease models, for xenotransplantation or to carry cell marker genes. Finally, use of porcine somatic stem and progenitor cells in preclinical studies of cell transplantation therapy is also discussed.

  2. Human copy number variation and complex genetic disease.

    PubMed

    Girirajan, Santhosh; Campbell, Catarina D; Eichler, Evan E

    2011-01-01

    Copy number variants (CNVs) play an important role in human disease and population diversity. Advancements in technology have allowed for the analysis of CNVs in thousands of individuals with disease in addition to thousands of controls. These studies have identified rare CNVs associated with neuropsychiatric diseases such as autism, schizophrenia, and intellectual disability. In addition, copy number polymorphisms (CNPs) are present at higher frequencies in the population, show high diversity in copy number, sequence, and structure, and have been associated with multiple phenotypes, primarily related to immune or environmental response. However, the landscape of copy number variation still remains largely unexplored, especially for smaller CNVs and those embedded within complex regions of the human genome. An integrated approach including characterization of single nucleotide variants and CNVs in a large number of individuals with disease and normal genomes holds the promise of thoroughly elucidating the genetic basis of human disease and diversity.

  3. Unequal treatment of human research subjects.

    PubMed

    Resnik, David B

    2015-02-01

    Unequal treatment of human research subjects is a significant ethical concern, because justice in research involving human subjects requires equal protection of rights and equal protection from harm and exploitation. Disputes sometimes arise concerning the issue of unequal treatment of research subjects. Allegedly unequal treatment occurs when subjects are treated differently and there is a genuine dispute concerning the appropriateness of equal treatment. Patently unequal treatment occurs when subjects are treated differently and there is not a genuine dispute about the appropriateness of equal treatment. Allegedly unequal treatment will probably always occur in research with human subjects due to disagreements about fundamental questions of justice. The best way to deal with allegedly unequal treatment is to promote honest and open discussions of the issues at stake. Research regulations can help to minimize patently unequal treatment by providing rules for investigators, ethical review boards, institutions, and sponsors to follow. However, patently unequal treatment may still occur because the regulations are subject to interpretation. Federal agencies have provided interpretive guidance that can help promote consistent review and oversight of human subjects research. Additional direction may be needed on topics that are not adequately covered by current guidance or regulations. International guidelines can help promote equal treatment of human subjects around the globe. While minor variations in the treatment of research subjects should be tolerated and even welcomed, major ones (i.e. those that significantly impact human rights or welfare) should be avoided or minimized.

  4. Crystal cataracts: Human genetic cataract caused by protein crystallization

    NASA Astrophysics Data System (ADS)

    Pande, Ajay; Pande, Jayanti; Asherie, Neer; Lomakin, Aleksey; Ogun, Olutayo; King, Jonathan; Benedek, George B.

    2001-05-01

    Several human genetic cataracts have been linked recently to point mutations in the D crystallin gene. Here we provide a molecular basis for lens opacity in two genetic cataracts and suggest that the opacity occurs because of the spontaneous crystallization of the mutant proteins. Such crystallization of endogenous proteins leading to pathology is an unusual event. Measurements of the solubility curves of crystals of the Arg-58 to His and Arg-36 to Ser mutants of D crystallin show that the mutations dramatically lower the solubility of the protein. Furthermore, the crystal nucleation rate of the mutants is enhanced considerably relative to that of the wild-type protein. It should be noted that, although there is a marked difference in phase behavior, there is no significant difference in protein conformation among the three proteins.

  5. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    PubMed Central

    2014-01-01

    Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs. PMID:25126564

  6. Biology and genetics of human head and body lice.

    PubMed

    Veracx, Aurélie; Raoult, Didier

    2012-12-01

    Head lice and body lice have distinct ecologies and differ slightly in morphology and biology, questioning their taxonomic status. Over the past 10 years many genetic studies have been undertaken. Controversial data suggest that not only body lice but also head lice can serve as vectors of Bartonella quintana, and a better understanding of louse epidemiology is crucial. Here, we review taxonomic studies based on biology and genetics, including genomic data on lice, lice endosymbionts, and louse-transmitted bacteria. We recommend that studies of human lice employ morphological and biological characteristics in conjunction with transcriptomic date because lice seem to differ mainly in gene expression (and not in gene content), leading to different phenotypes.

  7. Research on automatic human chromosome image analysis

    NASA Astrophysics Data System (ADS)

    Ming, Delie; Tian, Jinwen; Liu, Jian

    2007-11-01

    Human chromosome karyotyping is one of the essential tasks in cytogenetics, especially in genetic syndrome diagnoses. In this thesis, an automatic procedure is introduced for human chromosome image analysis. According to different status of touching and overlapping chromosomes, several segmentation methods are proposed to achieve the best results. Medial axis is extracted by the middle point algorithm. Chromosome band is enhanced by the algorithm based on multiscale B-spline wavelets, extracted by average gray profile, gradient profile and shape profile, and calculated by the WDD (Weighted Density Distribution) descriptors. The multilayer classifier is used in classification. Experiment results demonstrate that the algorithms perform well.

  8. Genetic polymorphisms in human drug-metabolizing enzymes: potential uses of reverse genetics to identify genes of toxicological relevance.

    PubMed

    Puga, A; Nebert, D W; McKinnon, R A; Menon, A G

    1997-03-01

    The human mind was engaged with fundamental questions on the nature of heredity long before the study of genetics became a scientific discipline. Many traits, such as height, eye color, blood pressure, or cancer susceptibility, have been known to run in families, although the genes or combination of genes that underlie these observable characteristics remain unknown in most cases. Differences in susceptibility to environmental agents in humans are likewise determined by variations in genetic background--genetic polymorphisms. In this article, we review the current status of studies on human polymorphisms in drug-metabolizing enzymes and discuss various approaches to the analysis of genetic polymorphisms. We expect that in the near future, novel methods in genetic analysis of human populations will be likely to play a key role in the identification of genes of toxicological relevance.

  9. Non-coding genetic variants in human disease.

    PubMed

    Zhang, Feng; Lupski, James R

    2015-10-15

    Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described.

  10. Non-coding genetic variants in human disease

    PubMed Central

    Zhang, Feng; Lupski, James R.

    2015-01-01

    Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described. PMID:26152199

  11. Fruit Flies Help Human Sleep Research

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer 2007 ... courtesy of NIGMS Neuroscientist Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be tough ...

  12. [Human rights and genetics: the fundamental principles of the Universal Declaration on the Human Genome and Human Rights].

    PubMed

    Bergel, S D

    1998-01-01

    The Universal Declaration on the Human Genome and Human Rights sets out generally agreed criteria in response to the human rights challenges posed by advances in molecular biology and genetics. The lynchpin of these criteria is respect for human dignity, a premise from which other principles are derived. The author examines and gives the justification for these principles, and refers to another crucial bioethics text, the recent Council of Europe Convention on the protection of human rights and the dignity of the human person in regard to applications of biology and medicine.

  13. Genetics Behind Barbed Wire: Masuo Kodani, Émigré Geneticists, and Wartime Genetics Research at Manzanar Relocation Center

    PubMed Central

    Smocovitis, Vassiliki Betty

    2011-01-01

    This article explores the sociopolitical backdrop of genetics research during the politically turbulent decades of the mid-20th century that saw the persecution, displacement, and relocation of unpopular minorities in both the United States and Europe. It explores how geneticists in the United States accommodated these disruptions through formal and informal émigré networks and how the subsequent war affected their research programs and their lives. It does so by focusing on the career and life of geneticist Masuo Kodani, who, as a Japanese American, found himself conducting unexpected cytogenetics research in Manzanar, a “relocation center,” or internment camp, located in the California desert, after the attack on Pearl Harbor. After the war, Kodani's subsequent career continued to be shaped by his experiences as a Japanese American and by the specific skills as a cytogeneticist that he demonstrated at a critical period in the history of 20th-century genetics. His many relocations in search of employment culminated in his work with the Atomic Bomb Casualty Commission on human chromosomes, for which he is best known. PMID:21307394

  14. Genetics behind barbed wire: Masuo Kodani, émigré geneticists, and wartime genetics research at Manzanar relocation center.

    PubMed

    Smocovitis, Vassiliki Betty

    2011-02-01

    This article explores the sociopolitical backdrop of genetics research during the politically turbulent decades of the mid-20th century that saw the persecution, displacement, and relocation of unpopular minorities in both the United States and Europe. It explores how geneticists in the United States accommodated these disruptions through formal and informal émigré networks and how the subsequent war affected their research programs and their lives. It does so by focusing on the career and life of geneticist Masuo Kodani, who, as a Japanese American, found himself conducting unexpected cytogenetics research in Manzanar, a "relocation center," or internment camp, located in the California desert, after the attack on Pearl Harbor. After the war, Kodani's subsequent career continued to be shaped by his experiences as a Japanese American and by the specific skills as a cytogeneticist that he demonstrated at a critical period in the history of 20th-century genetics. His many relocations in search of employment culminated in his work with the Atomic Bomb Casualty Commission on human chromosomes, for which he is best known.

  15. A genetic basis for mechanosensory traits in humans.

    PubMed

    Frenzel, Henning; Bohlender, Jörg; Pinsker, Katrin; Wohlleben, Bärbel; Tank, Jens; Lechner, Stefan G; Schiska, Daniela; Jaijo, Teresa; Rüschendorf, Franz; Saar, Kathrin; Jordan, Jens; Millán, José M; Gross, Manfred; Lewin, Gary R

    2012-01-01

    In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  16. A Genetic Basis for Mechanosensory Traits in Humans

    PubMed Central

    Frenzel, Henning; Bohlender, Jörg; Pinsker, Katrin; Wohlleben, Bärbel; Tank, Jens; Lechner, Stefan G.; Schiska, Daniela; Jaijo, Teresa; Rüschendorf, Franz; Saar, Kathrin; Jordan, Jens; Millán, José M.; Gross, Manfred; Lewin, Gary R.

    2012-01-01

    In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A. PMID:22563300

  17. Human Immunodeficiency Virus Research Program

    DTIC Science & Technology

    1993-11-30

    over that developed by Shafferman. Using the procedure, pilot scale productions of the four fusion proteins were carried out at the Forest Glen Annex...field from pursuing large scale trials with this product. This study is in preliminary phases. Serum from Phase I vaccinees will be evaluated for ADE over...researchers at AFRIMS to plan and implement a setting which will ultimately support large scale Vaccine Trials. There are three objectives for the

  18. Discovery and resolve: the Human Genetics Society of Australasia Oration 2011.

    PubMed

    Pearn, John

    2011-10-01

    Human genetics spans every facet of biology from molecular science, through laboratory and clinical practice, to psychology and anthropology. In each of these areas, the history of human genetics has been punctuated by paradigm shifts in knowledge. Each such new concept has been received with skepticism, often with perplexity, and sometimes with frank incredulity. Such comprise the datum milestones along the path leading to our present corpus of genetic knowledge. In parallel to the personal threats to Copernicus and Galileo in the field of astronomy in the 17th century, almost all genetic discoveries of the 19th and 20th centuries were seen as challenges to the received wisdom, and sometimes the social order, of their time and place. Researchers, scientists and clinicians encountering such new and often-heretical paradigm shifts have required considerable resolve to promote and publish their work. Just as in the field of astronomy, new directions in genetics have threatened not only the reputations and sometimes the careers of scientists, but also have been challenges to fundamental religious and sociological beliefs in society more broadly. Examples followed the discovery of biological sexual dimorphism (in plants as well as animals) by Nehemiah Grew (1641-1712). Darwinian evolution, Mendel's First and Second Laws, the existence of mitochondrial genes, apoptosis and its genetic basis, and uniparental disomy are more recent examples. Many of these new revelations, which today have led to the current understanding of fundamental biology, were discovered by individuals working in relative isolation. To promote and publish findings that fundamentally challenge received wisdom continues to require considerable resolve, if not courage. Herein lies a message for all clinicians and researchers.

  19. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    NASA Astrophysics Data System (ADS)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  20. Educational Research: The Importance of the Humanities

    ERIC Educational Resources Information Center

    Smith, Richard

    2015-01-01

    It is one sign of the lack of understanding of the value of the humanities, to educational research and inquiry as well as to our world more widely, that such justifications of them as are offered frequently take a crudely instrumental form. The humanities (which in this essay are not distinguished from the arts) are welcomed insofar as they are…

  1. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    PubMed

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation.

  2. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    ERIC Educational Resources Information Center

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  3. Can artificial techniques supply morally neutral human embryos for research?

    PubMed

    Cheshire, William P; Jones, Nancy L

    2005-01-01

    Amidst controversy surrounding research on human embryos, biotechnology has conceived a substitute in the artificial human embryo. We examine the claim that novel embryos constructed artificially should be exempt from ethical restraints appropriate for research on embryos that come into being through natural processes. Morally relevant differences in intrinsic value depend on the sense in which the entity may be artificial, whether in regard to constituent matter, genetic or cellular form, generative means, or intended purpose. Considering each of these Aristotelian categories from a physicalist viewpoint, technology can achieve only limited degrees of artificiality because redesigned embryos still retain most of their natural features and relationships. From an essentialist viewpoint, the very limits of technology preclude the capability of manipulating the fundamental nature or essence of the individual who, even at the embryonic stage of life, cannot be made to be artificial through and through. A human may possess artificially contributed attributes but cannot be an artificial being. Classification of novel human organisms as artificial, therefore, is insufficient grounds by which to relinquish the principle that human moral status should be recognized for all living beings of human origin. In uncertain cases, at least the possibility of special human moral status should be considered present in organisms that are derived asexually, are developmentally defective, or are otherwise technologically altered.

  4. Human research ethics committees in technical universities.

    PubMed

    Koepsell, David; Brinkman, Willem-Paul; Pont, Sylvia

    2014-07-01

    Human research ethics has developed in both theory and practice mostly from experiences in medical research. Human participants, however, are used in a much broader range of research than ethics committees oversee, including both basic and applied research at technical universities. Although mandated in the United States, the United Kingdom, Canada, and Australia, non-medical research involving humans need not receive ethics review in much of Europe, Asia, Latin America, and Africa. Our survey of the top 50 technical universities in the world shows that, where not specifically mandated by law, most technical universities do not employ ethics committees to review human studies. As the domains of basic and applied sciences expand, ethics committees are increasingly needed to guide and oversee all such research regardless of legal requirements. We offer as examples, from our experience as an ethics committee in a major European technical university, ways in which such a committee provides needed services and can help ensure more ethical studies involving humans outside the standard medical context. We provide some arguments for creating such committees, and in our supplemental article, we provide specific examples of cases and concerns that may confront technical, engineering, and design research, as well as outline the general framework we have used in creating our committee.

  5. Alu repeats as markers for human population genetics

    SciTech Connect

    Batzer, M.A.; Alegria-Hartman, M.; Bazan, H.

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  6. Methods for human embryonic stem cells derived cardiomyocytes cultivation, genetic manipulation, and transplantation.

    PubMed

    Arbel, Gil; Caspi, Oren; Huber, Irit; Gepstein, Amira; Weiler-Sagie, Michal; Gepstein, Lior

    2010-01-01

    A decade has passed since the initial derivation of human embryonic stem cells (hESC). The ensuing years have witnessed a significant progress in the development of methodologies allowing cell cultivation, differentiation, genetic manipulation, and in vivo transplantation. Specifically, the potential to derive human cardiomyocytes from the hESC lines, which can be used for several basic and applied cardiovascular research areas including in the emerging field of cardiac regenerative medicine, attracted significant attention from the scientific community. This resulted in the development of protocols for the cultivation of hESC and their successful differentiation toward the cardiomyocyte lineage fate. In this chapter, we will describe in detail methods related to the cultivation, genetic manipulation, selection, and in vivo transplantation of hESC-derived cardiomyocytes.

  7. Indiana Health Science Teachers: Their Human Genetics/Bioethics Educational Needs.

    ERIC Educational Resources Information Center

    Hendrix, Jon R.; And Others

    1982-01-01

    Results from a human genetics/bioethics needs assessment questionnaire (N = 124 out of 300) mailed to Indiana health teachers are reported. Genetic topics and human genetic diseases/defects included in health science instruction are listed in two tables. Responses to 16 science/society statements (and statements themselves) are also reported. (SK)

  8. Mutation and Human Exceptionalism: Our Future Genetic Load.

    PubMed

    Lynch, Michael

    2016-03-01

    Although the human germline mutation rate is higher than that in any other well-studied species, the rate is not exceptional once the effective genome size and effective population size are taken into consideration. Human somatic mutation rates are substantially elevated above those in the germline, but this is also seen in other species. What is exceptional about humans is the recent detachment from the challenges of the natural environment and the ability to modify phenotypic traits in ways that mitigate the fitness effects of mutations, e.g., precision and personalized medicine. This results in a relaxation of selection against mildly deleterious mutations, including those magnifying the mutation rate itself. The long-term consequence of such effects is an expected genetic deterioration in the baseline human condition, potentially measurable on the timescale of a few generations in westernized societies, and because the brain is a particularly large mutational target, this is of particular concern. Ultimately, the price will have to be covered by further investment in various forms of medical intervention. Resolving the uncertainties of the magnitude and timescale of these effects will require the establishment of stable, standardized, multigenerational measurement procedures for various human traits.

  9. Mutation and Human Exceptionalism: Our Future Genetic Load

    PubMed Central

    Lynch, Michael

    2016-01-01

    Although the human germline mutation rate is higher than that in any other well-studied species, the rate is not exceptional once the effective genome size and effective population size are taken into consideration. Human somatic mutation rates are substantially elevated above those in the germline, but this is also seen in other species. What is exceptional about humans is the recent detachment from the challenges of the natural environment and the ability to modify phenotypic traits in ways that mitigate the fitness effects of mutations, e.g., precision and personalized medicine. This results in a relaxation of selection against mildly deleterious mutations, including those magnifying the mutation rate itself. The long-term consequence of such effects is an expected genetic deterioration in the baseline human condition, potentially measurable on the timescale of a few generations in westernized societies, and because the brain is a particularly large mutational target, this is of particular concern. Ultimately, the price will have to be covered by further investment in various forms of medical intervention. Resolving the uncertainties of the magnitude and timescale of these effects will require the establishment of stable, standardized, multigenerational measurement procedures for various human traits. PMID:26953265

  10. Stable genetic modification of human embryonic stem cells by lentiviral vectors.

    PubMed

    Gropp, Michal; Itsykson, Pavel; Singer, Orna; Ben-Hur, Tamir; Reinhartz, Etti; Galun, Eithan; Reubinoff, Benjamin E

    2003-02-01

    Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass of the early preimplantation embryo. An efficient strategy for stable genetic modification of hES cells may be highly valuable for manipulating the cells in vitro and may promote the study of hES cell biology, human embryogenesis, and the development of cell-based therapies. Here, we demonstrate that vectors derived from self-inactivating (SIN) human immunodeficiency virus type 1 (HIV-1) are efficient tools for stable genetic modification of hES cells. Transduction of hES cells by a modified vector derived from SIN HIV-1 and containing the woodchuck hepatitis regulatory element (WPRE) and the central polypurine tract (cPPT) sequence facilitated stable transgene expression during prolonged (38 weeks) undifferentiated proliferation in vitro. Southern blot analysis revealed that the viral vector had integrated into the host cells' DNA. Transgene expression was maintained throughout differentiation into progeny of all three germ layers both in vitro and in vivo in teratomas. Thus, the transduced hES cells retained the capability for self-renewal and their pluripotent potential. Genetic modification of hES cells by lentiviral vectors provides a powerful tool for basic and applied research in the area of human ES cells.

  11. Human Experimentation: Impact on Health Education Research.

    ERIC Educational Resources Information Center

    Vacalis, T. Demetri; Griffis, Kathleen

    1980-01-01

    The problems of the use of humans as subjects of medical research and the protection of their rights are discussed. Issues include the use of informed consent, the evaluation of risks and benefits, and the review of research plans by a committee. (JD)

  12. Research in the Humanities: Ideals and Idols

    ERIC Educational Resources Information Center

    Gombrich, E. H.

    1973-01-01

    Research in the humanities should be done in areas of interest, under circumstances conducive to intellectual study and should not be undertaken for the purposes of gathering all information on a subject, for the purpose of seeking the novel, in order to apply the latest research tools, or totally because the subject is being taught and…

  13. [Recent advances of genetic research on paroxysmal kinesigenic dyskinesias].

    PubMed

    Li, Xun-hua; Chen, Su-qin; Wang, Yi-ming

    2008-08-01

    Paroxysmal kinesigenic choreoathetosis/dyskinesias (PKC/PKD) is one of the most common types of praoxysmal dyskinesia. It is characterized by recurrent episodic dystonia and/or choreoathetotic attacks triggered by sudden voluntary movement. Some patients have a history of febrile infantile convulsion. PKD commonly occurs sporadically or as an autosomal-dominant familial trait with variable penetrance. It has been linked to 16p12-q12 or 16q13-q22 loci in various families of different populations, which suggests a genetic heterogeneity. The exact etiology and pathogenesis of PKD await further elucidation, although ion channelopathy is suggested as a probable underlying etiology. Here, the recent advances of the genetic research on PKD will be reviewed.

  14. Genetic manipulation in nutrition, metabolism, and obesity research.

    PubMed

    Campión, Javier; Milagro, Fermín I; Martínez, J Alfredo

    2004-08-01

    We summarize the current standard methods for overexpressing, inactivating, or manipulating genes, with special focus on nutritional and obesity research. These molecular biology procedures can be carried out with the maintenance of the genetic information to subsequent generations (transgenic technology) or devised to exclusively transfer the genetic material to a given target animal, which cannot be transmitted to the future progeny (gene therapy). On the other hand, the RNA interference (RNAi) approach allows for the creation of new experimental models by transient ablation of gene expression by degrading specific mRNA, which can be applied to assess different biological functions and mechanisms. The combination of these technologies contributes to the study of the function and regulation of different metabolism- and obesity-related genes as well as the identification of new pharmacologic targets for nutritional and therapeutic approaches.

  15. Genetic analysis of modern and historical burned human remains.

    PubMed

    von Wurmb-Schwark, Nicole; Ringleb, Arne; Gebühr, Michael; Simeoni, Eva

    2005-03-01

    Burning of corpses is a well-known funeral procedure that has been performed for a long time in many cultures. Nowadays more and more corpses are burned in crematories and buried in urns, often for practical and financial reasons. In some scientific, criminal or civil cases even after cremation there is the need of genetic investigations for identification or paternity testing. Furthermore, burned remains are the only remains left in North Europe from 1200 BC to 500 AD. This makes genetic investigation of those materials interesting for anthropological reasons. We present on one hand a systematic investigation of 10 corpses before and after the cremation and on the other hand the analysis of seven historical remains representing the bronze age. We chose the ground bone powder and the less destroyed bone parts respectively and employed a slightly modified commercially available DNA extraction method. The presence of human nuclear and mitochondrial DNA was tested by a simple but highly sensitive Duplex-PCR. DNA quantification was done using real time PCR, and genetic typing was tried out using the AmpFISTR Identifiler Multiplex Kit, followed by an automatic analysis on an AbiPrism310.

  16. Human Research Program: 2010 Annual Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    2010 was a year of solid performance for the Human Research Program in spite of major changes in NASA's strategic direction for Human Spaceflight. Last year, the Program completed the final steps in solidifying the management foundation, and in 2010 we achieved exceptional performance from all elements of the research and technology portfolio. We transitioned from creating building blocks to full execution of the management tools for an applied research and technology program. As a team, we continue to deliver the answers and technologies that enable human exploration of space. While the Agency awaits strategic direction for human spaceflight, the Program is well positioned and critically important to helping the Agency achieve its goals.

  17. Psychological aspects of human cloning and genetic manipulation: the identity and uniqueness of human beings.

    PubMed

    Morales, N M

    2009-01-01

    Human cloning has become one of the most controversial debates about reproduction in Western civilization. Human cloning represents asexual reproduction, but the critics of human cloning argue that the result of cloning is not a new individual who is genetically unique. There is also awareness in the scientific community, including the medical community, that human cloning and the creation of clones are inevitable. Psychology and other social sciences, together with the natural sciences, will need to find ways to help the healthcare system, to be prepared to face the new challenges introduced by the techniques of human cloning. One of those challenges is to help the healthcare system to find specific standards of behaviour that could be used to help potential parents to interact properly with cloned babies or children created through genetic manipulation. In this paper, the concepts of personality, identity and uniqueness are discussed in relationship to the contribution of twin studies in these areas. The author argues that an individual created by human cloning techniques or any other type of genetic manipulation will not show the donor's characteristics to the extent of compromising uniqueness. Therefore, claims to such an effect are needlessly alarmist.

  18. [Reflections about research ethics in humans].

    PubMed

    Perales, Alberto

    2010-09-01

    In order to propose the necessary moral reflection about the personal responsibility that each researcher assumes when he performs scientific research in human beings, an essay of moral and scientific themes is presented, using information from the relevant scientific and ethical literature. Around the concepts of heteronymous and autonomous ethics, it is proposed that ultimately and beyond informed consent and training courses on research ethics, the behavior of the researcher will depend on his/her own moral responsibility, tested in different situational contexts. Two explanatory models are used in order to understand this dynamic, the one of normality in mental health and the one of moral development of men. We conclude that the research process in human beings is a scientific and moral activity that, depending in various situations of conflicts of interest, will always test the researcher's moral controls.

  19. Genetic Characterization of Simian Foamy Viruses Infecting Humans

    PubMed Central

    Rua, Réjane; Betsem, Edouard; Calattini, Sara; Saib, Ali

    2012-01-01

    Simian foamy viruses (SFVs) are retroviruses that are widespread among nonhuman primates (NHPs). SFVs actively replicate in their oral cavity and can be transmitted to humans after NHP bites, giving rise to a persistent infection even decades after primary infection. Very few data on the genetic structure of such SFVs found in humans are available. In the framework of ongoing studies searching for SFV-infected humans in south Cameroon rainforest villages, we studied 38 SFV-infected hunters whose times of infection had presumably been determined. By long-term cocultures of peripheral blood mononuclear cells with BHK-21 cells, we isolated five new SFV strains and obtained complete genomes of SFV strains from chimpanzee (Pan troglodytes troglodytes; strains BAD327 and AG15), monkey (Cercopithecus nictitans; strain AG16), and gorilla (Gorilla gorilla; strains BAK74 and BAD468). These zoonotic strains share a very high degree of similarity with their NHP counterparts and have a high degree of conservation of the genetic elements important for viral replication. Interestingly, analysis of FV DNA sequences obtained before cultivation revealed variants with deletions in both the U3 region and tas that may correlate with in vivo chronicity in humans. Genomic changes in bet (a premature stop codon) and gag were also observed. To determine if such changes were specific to zoonotic strains, we studied local SFV-infected chimpanzees and found the same genomic changes. Our study reveals that natural polymorphism of SFV strains does exist at both the intersubspecies level (gag, bet) and the intrasubspecies (U3, tas) levels but does not seem to reflect a viral adaptation specific to zoonotic SFV strains. PMID:23015714

  20. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  1. Somatic retrotransposition alters the genetic landscape of the human brain

    PubMed Central

    Baillie, J. Kenneth; Barnett, Mark W.; Upton, Kyle R.; Gerhardt, Daniel J.; Richmond, Todd A.; De Sapio, Fioravante; Brennan, Paul; Rizzu, Patrizia; Smith, Sarah; Fell, Mark; Talbot, Richard T.; Gustincich, Stefano; Freeman, Thomas C.; Mattick, John S.; Hume, David A.; Heutink, Peter; Carninci, Piero; Jeddeloh, Jeffrey A.; Faulkner, Geoffrey J.

    2011-01-01

    Retrotransposons are mobile genetic elements that employ a germ line “copy-and-paste” mechanism to spread throughout metazoan genomes1. At least 50% of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease2-3. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells4-5, excluding early embryo development and some malignancies6-7. Recent reports of L1 expression8-9 and copy number variation10-11 (CNV) in the human brain suggest L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germ line mutations, as well as 7,743 putative somatic L1 insertions in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 and 1,350 somatic Alu and SVA insertions, respectively. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes. PMID:22037309

  2. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    PubMed

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  3. [Genetically engineered mice: mouse models for cancer research].

    PubMed

    Szymańska, Hanna

    2007-10-26

    Genetically engineered mice (GEM) have been extensively used to model human cancer. Mouse models mimic the morphology, histopathology, phenotype, and genotype of the corresponding cancer in humans. GEM mice are created by random integration of a transgene into the genome, which results in gene overexpression (transgenic mice); gene deletion (knock-out mice); or targeted insertion of the transgene in a selected locus (knock-in mice). Knock-out may be constitutive, i.e. total inactivation of the gene of interest in any cell, or conditional, i.e. tissue-specific inactivation of the gene. Gene knock-down (RNAi) and humanization of the mouse are more sophisticated models of GEM mice. RNA interference (RNAi) is a mechanism in which double-stranded RNAs inhibits the respective gene expression by inducing degradation of its mRNA. Humanization is based on replacing a mouse gene by its human counterpart. The alterations in genes in GEM have to be heritable. The opportunities provided by employing GEM cancer models are: analysis of the role of specific cancer genes and modifier genes, evaluation of conventional cancer therapies and new drugs, identification of cancer markers of tumor growth, analysis of the influence of the tumor's microenvironment on tumor formation, and the definition of the pre-clinical, discrete steps of tumorigenesis. The validation of mouse models of human cancer is the task of the MMHCC (Mouse Models of Human Cancer Consortium). The GEM models of breast, pancreatic, intestinal and colon, and prostate cancer are the most actively explored. In contrast, the models of brain tumors and ovary, cervical, and skin cancer are in the early stage of investigation.

  4. Human Research Program Requirements Document (Revision C)

    NASA Technical Reports Server (NTRS)

    Vargas, Paul R.

    2009-01-01

    The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program Elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD's and OCHMO's exploration mission requirements. Requirements driving the HRP work and deliverables are derived from the exploration architecture, as well as Agency standards regarding the maintenance of human health and performance. Agency human health and performance standards will define acceptable risk for each type and duration of exploration mission. It is critical to have the best available scientific and clinical evidence in setting and validating these standards. In addition, it is imperative that the best available evidence on preventing and mitigating human health and performance risks is incorporated into exploration mission and vehicle designs. These elements form the basis of the HRP research and technology development requirements and highlight the importance of HRP investments in enabling NASA's exploration missions. This PRD defines the requirements of the HRP which is comprised of the following major Program Elements: Behavioral Health and Performance (BHP), Exploration Medical Capability (ExMC), Human Health Countermeasures (HHC), ISS Medical Project (ISSMP), Space Human Factors and Habitability (SHFH), and Space Radiation (SR).

  5. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  6. Genetic research in schizophrenia: new tools and future perspectives.

    PubMed

    Bertram, Lars

    2008-09-01

    Genetically, schizophrenia is a complex disease whose pathogenesis is likely governed by a number of different risk factors. While substantial efforts have been made to identify the underlying susceptibility alleles over the past 2 decades, they have been of only limited success. Each year, the field is enriched with nearly 150 additional genetic association studies, each of which either proposes or refutes the existence of certain schizophrenia genes. To facilitate the evaluation and interpretation of these findings, we have recently created a database for genetic association studies in schizophrenia ("SzGene"; available at http://www.szgene.org). In addition to systematically screening the scientific literature for eligible studies, SzGene also reports the results of allele-based meta-analyses for polymorphisms with sufficient genotype data. Currently, these meta-analyses highlight not only over 20 different potential schizophrenia genes, many of which represent the "usual suspects" (eg, various dopamine receptors and neuregulin 1), but also several that were never meta-analyzed previously. All the highlighted loci contain at least one variant showing modest (summary odds ratios approximately 1.20 [range 1.06-1.45]) but nominally significant risk effects. This review discusses some of the strengths and limitations of the SzGene database, which could become a useful bioinformatics tool within the schizophrenia research community.

  7. Research progress in the genetics of hyperuricaemia and gout.

    PubMed

    Min, Zheng; Junwu, Ma

    2016-04-01

    Gout is one of the most common inflammatory arthritis caused by hyperuricaemia, which is affected by both genetic factors and environmental factors. Early researches show that a few of rare monogenic mutations, such as PRPS1 and HPRT1 mutations, lead to abnormal purine anabolism and then cause hyperuricaemia and gout. In recent years, genome-wide association studies (GWAS) have identified dozens of susceptibility loci and/or candidate genes associated with hyperuricemia and gout. Loss-of-function mutations in SLC2A9, SLC22A11, and SLC22A12 cause hereditary hypouricaemia, while their overexpression may increase the reabsorption of uric acid. In contrast, loss-of-function mutations in ABCG2, SLC17A1, and SLC17A3 cause urate underexcretion of renal and intestinal. These variations leading to blood uric acid excretion disorder (excess reabsorption and underexcretion) are the main genetic factors affecting hyperuicemia and gout. Moreover, to some degree, inhibins-activins growth factor system, transcription factors, cytoskeleton and gene-environment interaction can also affect the level of blood uric acid. In addition, two risk genes, RFX3 and KCNQ1, which might impair immune response and lead to functional deficiency of beta cell were recently discovered to influence hyperuiceamia and gout in Han Chinese. This paper systematically reviews genetic studies on hyperuricaemia and gout to improve our understanding of pathogenesis of hyperuricaemia and gout.

  8. Biobanking, consent, and commercialization in international genetics research: the Type 1 Diabetes Genetics Consortium

    PubMed Central

    Hall, Mark A; King, Nancy MP; Perdue, Letitia H; Hilner, Joan E; Akolkar, Beena; Greenbaum, Carla J; McKeon, Catherine

    2010-01-01

    Background and Purpose This article describes several ethical, legal, and social issues typical of international genetics biobanking, as encountered in the Type 1 Diabetes Genetics Consortium (T1DGC). Methods By studying the examples set and lessons learned from other international biobanking studies and by devoting considerable time and resources to identifying, addressing, and continually monitoring ethical and regulatory concerns, T1DGC was able to minimize the problems reported by some earlier studies. Conclusions Several important conclusions can be drawn based on the experience in this study: (1) Basic international standards for research ethics review and informed consent are broadly consistent across developed countries. (2) When consent forms are adapted locally and translated into different languages, discrepancies are inevitable and therefore require prompt central review and resolution before research is initiated. (3) Providing separate ‘check-box’ consent for different elements of a study creates confusion and may not be essential. (4) Creating immortalized cell lines to aid future research is broadly acceptable, both in the US and internationally. (5) Imposing some limits on the use of stored samples aids in obtaining ethics approvals worldwide. (6) Allowing potential commercial uses of donated samples is controversial in some Asian countries. (7) Obtaining government approvals can be labor-intensive and time-consuming, and can require legal and diplomatic skills. PMID:20693188

  9. The Australian joint inquiry into the Protection of Human Genetic Information.

    PubMed

    Weisbrot, David

    2003-04-01

    The Australian Law Reform Commission (ALRC) and the Australian Health Ethics Committee are currently engaged in an inquiry into the Protection of Human Genetic Information. In particular, the Attorney-General and the Minister for Health and Ageing have asked us to focus, in relation to human genetic information and tissue samples, on how best to ensure world's best practice in relation to: privacy protection; protection against unlawful discrimination; and the maintenance of high ethical standards in medical research and clinical practice. While initial concerns and controversies have related mainly to aspects of medical research (e.g. consent; re-use of samples) and access to private insurance coverage, relevant issues arise in a wide variety of contexts, including: employment; medical practice; tissue banks and genetic databases; health administration; superannuation; access to government services (e.g. schools, nursing homes); law enforcement; and use by government authorities (e.g. for immigration purposes) or other bodies (e.g. by sports associations). Under the Australian federal system, it is also the case that laws and practices may vary across states and territories. For example, neonatal genetic testing is standard, but storage and retention policies for the resulting 'Guthrie cards' differ markedly. Similarly, some states have developed highly linked health information systems (e.g. incorporating hospitals, doctors' offices and public records), while others discourage such linkages owing to concerns about privacy. The challenge for Australia is to develop policies, standards and practices that promote the intelligent use of genetic information, while providing a level of security with which the community feels comfortable. The inquiry is presently reviewing the adequacy of existing laws and regulatory mechanisms, but recognizes that it will be even more important to develop a broad mix of strategies, such as community and professional education, and the

  10. Human Genetic Evidence for Involvement of CD137 in Atherosclerosis

    PubMed Central

    Söderström, Leif Å; Gertow, Karl; Folkersen, Lasse; Sabater-Lleal, Maria; Sundman, Eva; Sheikine, Yuri; Goel, Anuj; Baldassarre, Damiano; Humphries, Steve E; de Faire, Ulf; Watkins, Hugh; Tremoli, Elena; Veglia, Fabrizio; Hamsten, Anders; Hansson, Göran K; Olofsson, Peder S

    2014-01-01

    Atherosclerosis is an inflammatory disease and the main cause of cardiovascular disease. Inflammation promotes plaque instability and clinical disease, such as myocardial infarction, stroke and peripheral vascular disease. Subclinical atherosclerosis begins with thickening of the arterial intimal layer, and increased intima-media thickness (IMT) in the carotid artery is a widely used measurement of subclinical atherosclerosis. Activation of CD137 (tumor necrosis factor receptor super family 9) promotes inflammation and disease development in murine atherosclerosis. CD137 is expressed in human atherosclerosis, but its role is largely unknown. This study uses a genetic approach to investigate CD137 in human atherosclerotic disease. In publicly available data on genotype and gene expression from the HapMap project, the minor T allele of rs2453021, a single nucleotide polymorphism in CD137, was significantly associated with CD137 gene expression. In the PROCARDIS and Wellcome Trust Case Control Consortium (WTCCC) cohorts of 13,029 cases and controls, no significant association was detected between the minor T allele of rs2453021 and risk for coronary artery disease or myocardial infarction. However, in the IMPROVE multicenter study of 3,418 individuals, the minor T allele of rs2453021 was associated with increased IMT of the common carotid artery (CCA), as measured by ultrasonography, with presence of plaque in CCA and with increased incidence of adverse noncardiac vascular events. Taken together, this study shows that the minor T allele of rs2453021 is associated with increased IMT in the CCA and increased risk of incident noncardiac vascular events, thus providing the first human genetic evidence for involvement of CD137 in atherosclerosis. PMID:25032953

  11. Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation.

    PubMed

    Cassina, Matteo; Cagnoli, Giulia A; Zuccarello, Daniela; Di Gianantonio, Elena; Clementi, Maurizio

    2017-01-01

    Exposure to teratogenic drugs during pregnancy is associated with a wide range of embryo-fetal anomalies and sometimes results in recurrent and recognizable patterns of malformations; however, the comprehension of the mechanisms underlying the pathogenesis of drug-induced birth defects is difficult, since teratogenesis is a multifactorial process which is always the result of a complex interaction between several environmental factors and the genetic background of both the mother and the fetus. Animal models have been extensively used to assess the teratogenic potential of pharmacological agents and to study their teratogenic mechanisms; however, a still open issue concerns how the information gained through animal models can be translated to humans. Instead, significant information can be obtained by the identification and analysis of human genetic syndromes characterized by clinical features overlapping with those observed in drug-induced embryopathies. Until now, genetic phenocopies have been reported for the embryopathies/fetopathies associated with prenatal exposure to warfarin, leflunomide, mycophenolate mofetil, fluconazole, thalidomide and ACE inhibitors. In most cases, genetic phenocopies are caused by mutations in genes encoding for the main targets of teratogens or for proteins belonging to the same molecular pathways. The aim of this paper is to review the proposed teratogenic mechanisms of these drugs, by the analysis of human monogenic disorders and their molecular pathogenesis.

  12. Human metabolic individuality in biomedical and pharmaceutical research.

    PubMed

    Suhre, Karsten; Shin, So-Youn; Petersen, Ann-Kristin; Mohney, Robert P; Meredith, David; Wägele, Brigitte; Altmaier, Elisabeth; Deloukas, Panos; Erdmann, Jeanette; Grundberg, Elin; Hammond, Christopher J; de Angelis, Martin Hrabé; Kastenmüller, Gabi; Köttgen, Anna; Kronenberg, Florian; Mangino, Massimo; Meisinger, Christa; Meitinger, Thomas; Mewes, Hans-Werner; Milburn, Michael V; Prehn, Cornelia; Raffler, Johannes; Ried, Janina S; Römisch-Margl, Werner; Samani, Nilesh J; Small, Kerrin S; Wichmann, H-Erich; Zhai, Guangju; Illig, Thomas; Spector, Tim D; Adamski, Jerzy; Soranzo, Nicole; Gieger, Christian

    2011-08-31

    Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.

  13. Genetic variants influencing effectiveness of exercise training programmes in obesity – an overview of human studies

    PubMed Central

    Ahmetov, II; Zmijewski, P

    2016-01-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary. PMID:27601774

  14. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts

    PubMed Central

    Gagnon, Kenneth B.

    2013-01-01

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes. PMID:23325410

  15. The humankind genome: from genetic diversity to the origin of human diseases.

    PubMed

    Belizário, Jose E

    2013-12-01

    Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

  16. Social diversity in humans: implications and hidden consequences for biological research.

    PubMed

    Duster, Troy

    2014-05-01

    Humans are both similar and diverse in such a vast number of dimensions that for human geneticists and social scientists to decide which of these dimensions is a worthy focus of empirical investigation is a formidable challenge. For geneticists, one vital question, of course, revolves around hypothesizing which kind of social diversity might illuminate genetic variation-and vice versa (i.e., what genetic variation illuminates human social diversity). For example, are there health outcomes that can be best explained by genetic variation-or for social scientists, are health outcomes mainly a function of the social diversity of lifestyles and social circumstances of a given population? Indeed, what is a "population," how is it bounded, and are those boundaries most appropriate or relevant for human genetic research, be they national borders, religious affiliation, ethnic or racial identification, or language group, to name but a few? For social scientists, the matter of what constitutes the relevant borders of a population is equally complex, and the answer is demarcated by the goal of the research project. Although race and caste are categories deployed in both human genetics and social science, the social meaning of race and caste as pathways to employment, health, or education demonstrably overwhelms the analytic and explanatory power of genetic markers of difference between human aggregates.

  17. Social Diversity in Humans: Implications and Hidden Consequences for Biological Research

    PubMed Central

    Duster, Troy

    2014-01-01

    Humans are both similar and diverse in such a vast number of dimensions that for human geneticists and social scientists to decide which of these dimensions is a worthy focus of empirical investigation is a formidable challenge. For geneticists, one vital question, of course, revolves around hypothesizing which kind of social diversity might illuminate genetic variation—and vice versa (i.e., what genetic variation illuminates human social diversity). For example, are there health outcomes that can be best explained by genetic variation—or for social scientists, are health outcomes mainly a function of the social diversity of lifestyles and social circumstances of a given population? Indeed, what is a “population,” how is it bounded, and are those boundaries most appropriate or relevant for human genetic research, be they national borders, religious affiliation, ethnic or racial identification, or language group, to name but a few? For social scientists, the matter of what constitutes the relevant borders of a population is equally complex, and the answer is demarcated by the goal of the research project. Although race and caste are categories deployed in both human genetics and social science, the social meaning of race and caste as pathways to employment, health, or education demonstrably overwhelms the analytic and explanatory power of genetic markers of difference between human aggregates. PMID:24789817

  18. Comparison of LAIR-1 genetic pathways in murine vs human internal organs.

    PubMed

    Sun, Shuqiu; Jiao, Yan; Wei, Wei; Postlethwaite, Arnold E; Gu, Weikuan; Sun, Dianjun

    2014-11-15

    Growing evidence suggests that defective expression or dysfunction of LAIR-1, a novel immunoinhibitory receptor for collagen, is closely associated with some autoimmune diseases, cancers, as well as viral infections. We analyzed the variation of LAIR-1 genetic pathways in murine versus human internal organs, including the lung and brain. The results showed that, under physiological conditions, LAIR-1 links more closely to the common genes in mouse than in human, which poses tissue specificity. It means that mice experimental data in relation to the role of LAIR-1 immune regulation may be overestimated when applied to assess human conditions. Moreover, we found that the in vivo interaction of LAIR-1 with LAIR-2 rarely occurs, implying that the species difference in LAIR-1 genetic pathways could not be primarily attributed to the existence of human LAIR-2. In summary, this study opens the door for insight into LAIR-1 functions inside the human body, and raises concern as to extrapolative credibility of the murine model in biomedical research.

  19. Human milk research for answering questions about human health.

    PubMed

    Wang, Richard Y; Bates, Michael N; Goldstein, Daniel A; Haynes, Suzanne G; Hench, Karen D; Lawrence, Ruth A; Paul, Ian M; Qian, Zhengmin

    2005-10-22

    Concerns regarding human milk in our society are diverse, ranging from the presence of environmental chemicals to the health of breastfed infants and the economic value of breastfeeding to society. The panel convened for the Technical Workshop on Human Milk Surveillance and Biomonitoring for Environmental Chemicals in the United States, held at the Hershey Medical Center, Pennsylvania State College of Medicine, on 24--26 September 2004, considered how human milk research may contribute to environmental health initiatives to benefit society. The panel concluded that infant, maternal, and community health can benefit from studies using human milk biomonitoring. Unlike other biological specimens, human milk provides information regarding exposure of the mother and breastfed infant to environmental chemicals. Some of the health topics relevant to this field of research include disorders of growth and development in infants, cancer origins in women, and characterization of the trend of exposure to environmental chemicals in the community. The research focus will determine the design of the study and the need for the collection of alternative biological specimens and the long-term storage of these specimens. In order to strengthen the ability to interpret study results, it is important to identify reference ranges for the chemicals measured and to control for populations with high environmental chemical exposure, because the amount of data on environmental chemical levels in human milk that is available for comparison is extremely limited. In addition, it will be necessary to validate models used to assess infant exposure from breastfeeding because of the variable nature of current models. Information on differences between individual and population risk estimates for toxicity needs to be effectively communicated to the participant. Human milk research designed to answer questions regarding health will require additional resources to meet these objectives.

  20. A REVIEW OF THE GENETIC AND RELATED EFFECTS OF 1,3-BUTADIENE IN RODENTS AND HUMANS

    EPA Science Inventory

    In this paper, the metabolism and genetic toxicity of 1,3-butadiene (BD) and its oxidative metabolites in humans and rodents is reviewed with attention to newer data that have been published since the latest evaluation of BD by the International Agency for Research on Cancer (IAR...

  1. [Newest research progress in hypoxia genetic adaptation to high altitude].

    PubMed

    Zhou, Futao; Sun, Xuechuan

    2010-06-01

    The genetic adaptation of Plateau residents to hypoxia of low-pressure has been the hot spot for study. In terms of physiology, the adaptation involves the regulation responses of blood vessels, the changes in blood cells, antioxidant capacity and energy metabolism, as well as the hypoxia-induced changes in nuclear transcription. Physiological adaptation is heritable, so people who have already adapted themselves to high altitude are bound to be different, in regard to gene level, from the crowd who have not yet adapted themselves to high altitude environment. For this reason, researchers have studied a great deal of gene related-enzymes, the receptors, polypeptide, as well as transcription factors in body, and they found a number of the DNA polymorphism sites in the people who have adapted themsevles to high altitude being different from those in the people who do not get acclimatized. In this paper is reviewed the newest advance in research of these gene polymorphisms. The data could serve as references for further study of hypoxia genetic adaptation to high altitude.

  2. Genetic Characterization and Classification of Human and Animal Sapoviruses.

    PubMed

    Oka, Tomoichiro; Lu, Zhongyan; Phan, Tung; Delwart, Eric L; Saif, Linda J; Wang, Qiuhong

    2016-01-01

    Sapoviruses (SaVs) are enteric caliciviruses that have been detected in multiple mammalian species, including humans, pigs, mink, dogs, sea lions, chimpanzees, and rats. They show a high level of diversity. A SaV genome commonly encodes seven nonstructural proteins (NSs), including the RNA polymerase protein NS7, and two structural proteins (VP1 and VP2). We classified human and animal SaVs into 15 genogroups (G) based on available VP1 sequences, including three newly characterized genomes from this study. We sequenced the full length genomes of one new genogroup V (GV), one GVII and one GVIII porcine SaV using long range RT-PCR including newly designed forward primers located in the conserved motifs of the putative NS3, and also 5' RACE methods. We also determined the 5'- and 3'-ends of sea lion GV SaV and canine GXIII SaV. Although the complete genomic sequences of GIX-GXII, and GXV SaVs are unavailable, common features of SaV genomes include: 1) "GTG" at the 5'-end of the genome, and a short (9~14 nt) 5'-untranslated region; and 2) the first five amino acids (M [A/V] S [K/R] P) of the putative NS1 and the five amino acids (FEMEG) surrounding the putative cleavage site between NS7 and VP1 were conserved among the chimpanzee, two of five genogroups of pig (GV and GVIII), sea lion, canine, and human SaVs. In contrast, these two amino acid motifs were clearly different in three genogroups of porcine (GIII, GVI and GVII), and bat SaVs. Our results suggest that several animal SaVs have genetic similarities to human SaVs. However, the ability of SaVs to be transmitted between humans and animals is uncertain.

  3. Patenting and licensing in genetic testing: recommendations of the European Society of Human Genetics.

    PubMed

    Aymé, S; Matthijs, Gert; Soini, S

    2008-05-01

    Patents for inventions can be beneficial for society, if they drive innovation and promote progress. In most areas, the patenting system works satisfactorily. However, it must be recognized that in some instances it can also be problematic; this is the case in the field of genetics, and particularly in the area of genetic testing. As patents should serve their original purpose (promoting innovation through a fair reward system for the inventors), the European Society of Human Genetics (ESHG) suggests ways to improve the mechanisms that already form part of the patents system as a whole. In brief, the ESHG recommends limiting the breadth of the claims in genetic patents and, more practically, to reduce the number of patents by limiting the patentable subject matter, thereby improving the quality of the patents that will eventually be granted. There is also a suggestion to redefine the concept of utility in patent law, by taking account of downstream clinical experience. The ESHG sees no harm in the patenting of novel technical tools for genetic testing (eg PCR or chip technologies), as they can promote investment and still allow for invention around them. Many disputes between supporters of the patenting system and the public revolve around ethical issues. The European Patent Office should consider the benefit of having an ethics committee to consider issues of major interest, such as patents applied to genes. The problem of licensing should also be addressed. Practically, this means supporting the Organisation for Economic Co-operation and Development guidelines, which prescribe that licences should be non-exclusive and easily obtainable, both in practical and in financial terms. To promote this, the practical exploration of alternative models for licensing, like patent pools and clearinghouses, is a prerequisite. To better track developments in this field, the establishment of a voluntary reporting system, whereby geneticists could report on any issues related to

  4. Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer.

    PubMed

    Viloria, Cristina G; Obaya, Alvaro J; Moncada-Pazos, Angela; Llamazares, María; Astudillo, Aurora; Capellá, Gabriel; Cal, Santiago; López-Otín, Carlos

    2009-06-01

    Matrix metalloproteinases have been traditionally linked to cancer dissemination through their ability to degrade most extracellular matrix components, thus facilitating invasion and metastasis of tumor cells. However, recent functional studies have revealed that some metalloproteases, including several members of the ADAMTS family, also exhibit tumor suppressor properties. In particular, ADAMTS1, ADAMTS9, and ADAMTS18 have been found to be epigenetically silenced in malignant tumors of different sources, suggesting that they may function as tumor suppressor genes. Herein, we show that ADAMTS15 is genetically inactivated in colon cancer. We have performed a mutational analysis of the ADAMTS15 gene in human colorectal carcinomas, with the finding of four mutations in 50 primary tumors and 6 colorectal cancer cell lines. Moreover, functional in vitro and in vivo studies using HCT-116 and SW-620 colorectal cancer cells and severe combined immunodeficient mice have revealed that ADAMTS15 restrains tumor growth and invasion. Furthermore, the presence of ADAMTS15 in human colorectal cancer samples showed a negative correlation with the histopathologic differentiation grade of the corresponding tumors. Collectively, these results provide evidence that extracellular proteases, including ADAMTS15, may be targets of inactivating mutations in human cancer and further validate the concept that secreted metalloproteases may show tumor suppressor properties.

  5. Limits to genetic intervention in humans: somatic and germline.

    PubMed

    Davis, B D

    1990-01-01

    The promise of somatic cell gene therapy is likely to be limited to a narrow range of monogenic hereditary defects. This therapy raises few moral issues. However, extension to the 'improvement' of a normal trait might raise problems, similar to the use of hormones in sports. Another danger is uses that result, like heroic measures to save the premature newborn, in the prolongation of misery and in intolerable expense. The genetic alteration of germline cells, which can already be accomplished in animals, is in principle applicable to all monogenic diseases. Its use in humans is much less acceptable than somatic cell therapy. The objection that it tampers with human evolution is widely cited. However, more important may be the risk of producing a new defect, for risk is much less acceptable in a yet unborn person than in an already ill individual. In addition, the goal of germline therapy could almost always be accomplished more simply and safely by prenatal diagnosis and selective abortion. The highly polygenic nature of the most interesting traits, both behavioural and physical, makes it unlikely that we shall be able to modify them usefully in the foreseeable future by either somatic or germline intervention. Despite this delivery from temptation, public fear of future 'blueprinting' of humans no doubt contributes to a multi-faceted antiscience movement.

  6. Genetic elucidation of human hyperosmia to isovaleric acid.

    PubMed

    Menashe, Idan; Abaffy, Tatjana; Hasin, Yehudit; Goshen, Sivan; Yahalom, Vered; Luetje, Charles W; Lancet, Doron

    2007-10-30

    The genetic basis of odorant-specific variations in human olfactory thresholds, and in particular of enhanced odorant sensitivity (hyperosmia), remains largely unknown. Olfactory receptor (OR) segregating pseudogenes, displaying both functional and nonfunctional alleles in humans, are excellent candidates to underlie these differences in olfactory sensitivity. To explore this hypothesis, we examined the association between olfactory detection threshold phenotypes of four odorants and segregating pseudogene genotypes of 43 ORs genome-wide. A strong association signal was observed between the single nucleotide polymorphism variants in OR11H7P and sensitivity to the odorant isovaleric acid. This association was largely due to the low frequency of homozygous pseudogenized genotype in individuals with specific hyperosmia to this odorant, implying a possible functional role of OR11H7P in isovaleric acid detection. This predicted receptor-ligand functional relationship was further verified using the Xenopus oocyte expression system, whereby the intact allele of OR11H7P exhibited a response to isovaleric acid. Notably, we also uncovered another mechanism affecting general olfactory acuity that manifested as a significant inter-odorant threshold concordance, resulting in an overrepresentation of individuals who were hyperosmic to several odorants. An involvement of polymorphisms in other downstream transduction genes is one possible explanation for this observation. Thus, human hyperosmia to isovaleric acid is a complex trait, contributed to by both receptor and other mechanisms in the olfactory signaling pathway.

  7. Genetic Elucidation of Human Hyperosmia to Isovaleric Acid

    PubMed Central

    Menashe, Idan; Abaffy, Tatjana; Hasin, Yehudit; Goshen, Sivan; Yahalom, Vered; Luetje, Charles W; Lancet, Doron

    2007-01-01

    The genetic basis of odorant-specific variations in human olfactory thresholds, and in particular of enhanced odorant sensitivity (hyperosmia), remains largely unknown. Olfactory receptor (OR) segregating pseudogenes, displaying both functional and nonfunctional alleles in humans, are excellent candidates to underlie these differences in olfactory sensitivity. To explore this hypothesis, we examined the association between olfactory detection threshold phenotypes of four odorants and segregating pseudogene genotypes of 43 ORs genome-wide. A strong association signal was observed between the single nucleotide polymorphism variants in OR11H7P and sensitivity to the odorant isovaleric acid. This association was largely due to the low frequency of homozygous pseudogenized genotype in individuals with specific hyperosmia to this odorant, implying a possible functional role of OR11H7P in isovaleric acid detection. This predicted receptor–ligand functional relationship was further verified using the Xenopus oocyte expression system, whereby the intact allele of OR11H7P exhibited a response to isovaleric acid. Notably, we also uncovered another mechanism affecting general olfactory acuity that manifested as a significant inter-odorant threshold concordance, resulting in an overrepresentation of individuals who were hyperosmic to several odorants. An involvement of polymorphisms in other downstream transduction genes is one possible explanation for this observation. Thus, human hyperosmia to isovaleric acid is a complex trait, contributed to by both receptor and other mechanisms in the olfactory signaling pathway. PMID:17973576

  8. Integrating Spaceflight Human System Risk Research

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Anton, Wilma; Havenhill, Maria; Shelhamer, Mark; Canga, Michael

    2016-01-01

    NASA is working to increase the likelihood of human health and performance success during exploration missions as well as to maintain the subsequent long-term health of the crew. To manage the risks in achieving these goals, a system modelled after a Continuous Risk Management framework is in place. "Human System Risks" (Risks) have been identified, and approximately 30 are being actively addressed by NASA's Human Research Program (HRP). Research plans for each of HRP's Risks have been developed and are being executed. Inter-disciplinary ties between the research efforts supporting each Risk have been identified; however, efforts to identify and benefit from these connections have been mostly ad hoc. There is growing recognition that solutions developed to address the full set of Risks covering medical, physiological, behavioural, vehicle, and organizational aspects of exploration missions must be integrated across Risks and disciplines. This paper discusses how a framework of factors influencing human health and performance in space is being applied as the backbone for bringing together sometimes disparate information relevant to the individual Risks. The resulting interrelated information enables identification and visualization of connections between Risks and research efforts in a systematic and standardized manner. This paper also discusses the applications of the visualizations and insights into research planning, solicitation, and decision-making processes.

  9. Integrating Spaceflight Human System Risk Research

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Lumpkins, S.; Anton, W.; Havenhill, M.; Shelhamer, M.; Canga, M.

    2016-01-01

    NASA is working to increase the likelihoods of human health and performance success during exploration missions, and subsequent crew long-term health. To manage the risks in achieving these goals, a system modeled after a Continuous Risk Management framework is in place. "Human System Risks" (Risks) have been identified, and approximately 30 are being actively addressed by NASA's Human Research Program (HRP). Research plans for each of HRP's Risks have been developed and are being executed. Ties between the research efforts supporting each Risk have been identified, however, this has been in an ad hoc fashion. There is growing recognition that solutions developed to address the full set of Risks covering medical, physiological, behavioral, vehicle, and organizational aspects of the exploration missions must be integrated across Risks and disciplines. We will discuss how a framework of factors influencing human health and performance in space is being applied as the backbone for bringing together sometimes disparate information relevant to the individual Risks. The resulting interrelated information is allowing us to identify and visualize connections between Risks and research efforts in a systematic and standardized way. We will discuss the applications of the visualizations and insights to research planning, solicitation, and decision-making processes.

  10. Public health genomics and genetic test evaluation: the challenge of conducting behavioural research on the utility of lifestyle-genetic tests.

    PubMed

    Sanderson, Saskia C; Wardle, Jane; Humphries, Steve E

    2008-01-01

    Human genetics research is increasingly concerned with multifactorial conditions such as diabetes and heart disease, which are influenced not only by genetic but also lifestyle factors such as diet and smoking. Although the results of 'lifestyle-genetic' tests using this information could conceivably motivate lifestyle changes in the future, companies are already selling such tests and related lifestyle advice commercially. Some academics and lobby groups have condemned the companies for selling these tests in advance of scientific support. Others are concerned that the tests may not motivate lifestyle improvements, instead causing distress in people receiving adverse test results and complacency in those receiving reassuring results. There is currently no regulatory oversight of genetic test utility, despite consensus in the Public Health Genomics community that clinical utility (including psychological and behavioural impact) of all emerging genetic tests should be evaluated before being introduced for individual use. Clearly, empirical data in this area is much needed, to inform understanding of the potential utility of these tests, and of whether stricter regulation of commercial exploitation is needed. In this article, we review the current situation regarding lifestyle-genetic tests, and discuss the challenges inherent in conducting this kind of behavioural research in the genomics era.

  11. The latest progress in sugarcane molecular genetics research at the USDA-ARS, Sugarcane Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, two sugar molecular genetics tools were developed in the USDA-ARS, Southeast Area, Sugarcane Research Laboratory at Houma, LA. One is the high throughput fluorescence- and capillary electrophoregrams (CE)-based SSR genotyping tool and the other is single pollen collection and SSR genotyping...

  12. Current knowledge on the genetics of autism and propositions for future research.

    PubMed

    Bourgeron, Thomas

    2016-01-01

    Autism spectrum disorders (ASD) are a heterogeneous group of neuropsychiatric disorders characterized by problems in social communication, as well as by the presence of restricted interests, stereotyped and repetitive behaviours. In the last 40years, genetic studies have provided crucial information on the causes of ASD and its diversity. In this article, I will first review the current knowledge on the genetics of ASD and then suggest three propositions to foster research in this field. Twin and familial studies estimated the heritability of ASD to be 50%. While most of the inherited part of ASD is captured by common variants, our current knowledge on the genetics of ASD comes almost exclusively from the identification of highly penetrant de novo mutations through candidate gene or whole exome/genome sequencing studies. Approximately 10% of patients with ASD, especially those with intellectual disability, are carriers of de novo copy-number (CNV) or single nucleotide variants (SNV) affecting clinically relevant genes for ASD. Given the function of these genes, it was hypothesized that abnormal synaptic plasticity and failure of neuronal/synaptic homeostasis could increase the risk of ASD. In addition to these discoveries, three propositions coming from institutions, researchers and/or communities of patients and families can be made to foster research on ASD: (i) to use more dimensional and quantitative data than diagnostic categories; (ii) to increase data sharing and research on genetic and brain diversity in human populations; (iii) to involve patients and relatives as participants for research. Hopefully, this knowledge will lead to a better diagnosis, care and integration of individuals with ASD.

  13. Human neural tube defects: genetic causes and prevention.

    PubMed

    De Marco, Patrizia; Merello, Elisa; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2011-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting 1-2 in 1,000 live births, whose etiology is multifactorial, involving environmental and genetic factors. NTDs arise as consequence of the failure of fusion of the neural tube early during embryogenesis. NTDs' pathogenesis has been linked to genes involved in folate metabolism, consistent with an epidemiologic evidence that 70% of NTDs can be prevented by maternal periconceptional supplementation. However, polymorphisms in such genes are not linked in all populations, suggesting that other genetic factors and environmental factors could be involved. Animal models have provided crucial mechanistic information and possible candidate genes to explain susceptibility to NTDs. A crucial role has been assigned to the planar cell polarity (PCP) pathway, a highly conserved, non-canonical Wnt-frizzled-dishevelled signaling cascade that plays a key role in establishing and maintaining polarity in the plane of the epithelium and in the process of convergent extension during gastrulation and neurulation in vertebrates. The Loop-tail (Lp) mouse that develops craniorachischisis carry missense mutations in the PCP core gene Vangl2, that is the mammalian homolog of the Drosophila Strabismus/Van gogh (Stbm/Vang). The presence of mutations in human VANGL1 and VANGL2 genes encourages us to extend the investigation to other PCP genes that, with VANGL, play an essential role in neurulation during development.

  14. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    PubMed Central

    Chaturvedi, Swati; Singh, Ashok K.; Maity, Siddhartha; Sarkar, Srimanta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  15. Correlation of physical and genetic maps of human chromosome 16

    SciTech Connect

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  16. Transgenic animal models of neurodegeneration based on human genetic studies

    PubMed Central

    Richie, Christopher T.; Hoffer, Barry J.; Airavaara, Mikko

    2011-01-01

    The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease. PMID:20931247

  17. GOOD GIFTS FOR THE COMMON GOOD: Blood and Bioethics in the Market of Genetic Research

    PubMed Central

    REDDY, DEEPA S.

    2008-01-01

    This article is based on ethnographic fieldwork conducted with the Indian community in Houston, as part of a NIH–NHGRI-sponsored ethics study and sample collection initiative entitled “Indian and Hindu Perspectives on Genetic Variation Research.” At the heart of this research is one central exchange—blood samples donated for genetic research—that draws both the Indian community and a community of researchers into an encounter with bioethics. I consider the meanings that come to be associated with blood donation as it passes through various hands, agendas, and associated ethical filters on its way to the lab bench: how and why blood is solicited, how the giving and taking of blood is rationalized, how blood as material substance is alienated, processed, documented, and made available for the promised ends of basic science research. Examining corporeal substances and asking what sorts of gifts and problems these represent, I argue, sheds some light on two imbricated tensions expressed by a community of Indians, on the one hand, and of geneticists and basic science researchers, on the other hand: that gifts ought to be free (but are not), and that science ought to be pure (but is not). In this article, I explore how experiences of bioethics are variously shaped by the histories and habits of Indic giving, prior sample collection controversies, commitments to “good science” and the common “good of humanity,” and negotiations of the sites where research findings circulate. PMID:18458755

  18. Stakeholder views on the creation and use of genetically-engineered animals in research.

    PubMed

    Ormandy, Elisabeth H

    2016-05-01

    This interview-based study examined the diversity of views relating to the creation and use of genetically-engineered (GE) animals in biomedical science. Twenty Canadian participants (eight researchers, five research technicians and seven members of the public) took part in the interviews, in which four main themes were discussed: a) how participants felt about the genetic engineering of animals as a practice; b) governance of the creation and use of GE animals in research, and whether current guidelines are sufficient; c) the Three Rs (Replacement, Reduction, Refinement) and how they are applied during the creation and use of GE animals in research; and d) whether public opinion should play a greater role in the creation and use of GE animals. Most of the participants felt that the creation and use of GE animals for biomedical research purposes (as opposed to food purposes) is acceptable, provided that tangible human health benefits are gained. However, obstacles to Three Rs implementation were identified, and the participants agreed that more effort should be placed on engaging the public on the use of GE animals in research.

  19. Genetic mapping of the pericentric region of human chromosome 10

    SciTech Connect

    Schuster, M.K.

    1994-12-31

    A genetic linkage map of the pericentric region of human chromosome 10 has been generated to better define the region containing the gene causing the multiple endocrine neoplasia type 2A (MEN-2A) disease, earlier limited to a 15.1 cM interval. 6 new markers have been added to this interval, where the markers are separated by an average of 2.65 cM. These new markers were used to evaluate three large MEN-3A families and did not reveal any recombinants that could better define the MEN-2A containing region. These families were used, however, to determine risks for individuals who were potential gene carriers. Six individuals were determined to be gene carriers and one individual, who had a thyroidectomy based on clinical testing results, was determined not to be a gene carrier. These results suggest that conventional clinical criteria need to be altered to include results from genetic testing. Since the map was generated, the RET proto-oncogene has been identified as the MEN-2A disease gene. The markers have been used to analyze familial and sporadic medullary thryoid carcinomas (MTCs). This analysis has determined one tumor (NL5) has retained heterozygosity for a limited region encompassing the RET region but has lost heterozygosity at all flanking loci on chromosome 10 tested, losing the allele which segregated with MEN-2A, suggesting a chromosomal rearrangement involving the RET locus. An analysis of sporadic and familial allelic instability with several dinucleotide repeat markers from chromosome 10 as well as other chromosomes. Similar results have been observed in colorectal cancer involving mutation in a mismatch repair enzyme (hMSH2). It is difficult to envision a direct role for the RET proto-oncogene in genetic instability, as seen in the colorectal tumors. Consequently, the genetic instability seen in the MEN-2A tumors, perhaps caused by mutations in the hMSH2 gene, may be the result of secondary effects developing independently from RET in MEN-2A tumors.

  20. Genetic implication of a novel thiamine transporter in human hypertension

    PubMed Central

    Zhang, Kuixing; Huentelman, Matthew J.; Rao, Fangwen; Sun, Eric I.; Corneveaux, Jason J.; Schork, Andrew J.; Wei, Zhiyun; Waalen, Jill; Miramontes-Gonzalez, Jose Pablo; Hightower, C. Makena; Maihofer, Adam X.; Mahata, Manjula; Pastinen, Tomi; Ehret, Georg B.; Schork, Nicholas J.; Eskin, Eleazar; Nievergelt, Caroline M.; Saier, Milton H.; O'Connor, Daniel T.

    2014-01-01

    Objectives We coupled two strategies – trait extremes and genome-wide pooling – to discover a novel BP locus that encodes a previously uncharacterized thiamine transporter. Background Hypertension is a heritable trait that remains the most potent and widespread cardiovascular risk factor, though details of its genetic determination are poorly understood. Methods Representative genomic DNA pools were created from male and female subjects in the highest and lowest 5th %iles of BP in a primary care population of >50,000 individuals. The peak associated SNPs were typed in individual DNA samples, as well as twins/siblings phenotyped for cardiovascular and autonomic traits. Biochemical properties of the associated transporter were evaluated in cellular assays. Results After chip hybridization and calculation of relative allele scores, the peak associations were typed in individual samples, revealing association of hypertension, SBP, and DBP to the previously uncharacterized solute carrier SLC35F3. The BP genetic association at SLC35F3 was validated by meta-analysis in an independent sample from the original source population, as well as the ICBP (across North America and Western Europe). Sequence homology to a putative yeast thiamine (vitamin B1) transporter prompted us to express human SLC35F3 in E. coli, which catalyzed [3H]-thiamine uptake. SLC35F3 risk allele (T/T) homozygotes displayed decreased erythrocyte thiamine content on microbiological assay. In twin pairs, the SLC35F3 risk allele predicted heritable cardiovascular traits previously associated with thiamine deficiency, including elevated cardiac stroke volume with decreased vascular resistance, and elevated pressor responses to environmental (cold) stress. Allelic expression imbalance (AEI) confirmed that cis-variation at the human SLC35F3 locus influenced expression of that gene, and the AEI peak coincided with the hypertension peak. Conclusions Novel strategies were coupled to position a new

  1. Information Technology and the Human Research Facility

    NASA Technical Reports Server (NTRS)

    Klee, Margaret

    2002-01-01

    This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

  2. Four historic legends in human papillomaviruses research.

    PubMed

    Mammas, Ioannis N; Spandidos, Demetrios A

    2015-01-01

    Human papillomaviruses (HPVs) infection and HPVs-associated lesions, including skin warts in children and adults and cervical neoplasia in women, have been excessively studied since ancient years. In our article, we present briefly four major researchers from the HPVs pre-vaccination historic period: Hippokrates the Asclepiad, Domenico Antonio Rigoni-Stern, George N. Papanicolaou and Harald zur Hausen.

  3. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  4. Research on Assessing Human Abilities. Final Report.

    ERIC Educational Resources Information Center

    Harman, Harry H.

    The primary objectives of this project commonly refereed to as "Assessing Human Abilities" were: (1) to provide reference measures for cognitive factors; and (2) to provide a guide to reference measures for self-report temperament factors. The overall objective was to conduct research in the area of factor analysis directed toward the…

  5. Research opportunities in human behavior and performance

    NASA Technical Reports Server (NTRS)

    Christensen, J. M. (Editor); Talbot, J. M. (Editor)

    1985-01-01

    Extant information on the subject of psychological aspects of manned space flight are reviewed; NASA's psychology research program is examined; significant gaps in knowledge are identified; and suggestions are offered for future research program planning. Issues of human behavior and performance related to the United States space station, to the space shuttle program, and to both near and long term problems of a generic nature in applicable disciplines of psychology are considered. Topics covered include: (1) human performance requirements for a 90 day mission; (2) human perceptual, cognitive, and motor capabilities and limitations in space; (3) crew composition, individual competencies, crew competencies, selection criteria, and special training; (4) environmental factors influencing behavior; (5) psychosocial aspects of multiperson space crews in long term missions; (6) career determinants in NASA; (7) investigational methodology and equipment; and (8) psychological support.

  6. Genetic structure of a unique admixed population: implications for medical research.

    PubMed

    Patterson, Nick; Petersen, Desiree C; van der Ross, Richard E; Sudoyo, Herawati; Glashoff, Richard H; Marzuki, Sangkot; Reich, David; Hayes, Vanessa M

    2010-02-01

    Coloured individuals and made comparisons with historically predicted founder populations. We show that there is substantial genetic contribution from at least four distinct population groups: Europeans, South Asians, Indonesians and a population genetically close to the isiXhosa sub-Saharan Bantu. This is in good accord with the historical record. We briefly examine the implications of determining the genetic diversity of this population, not only for furthering understanding of human evolution out of Africa, but also for genome-wide association studies using admixture mapping. In conclusion, we define the genetic structure of a uniquely admixed population that holds great potential to advance genetic-based medical research.

  7. Virology research and virulent human pandemics.

    PubMed Central

    Mims, C. A.

    1995-01-01

    The possibility that a devastating human pandemic could arise, causing massive loss of human life, is discussed. Such a major threat to the human species is likely to be a virus, and would spread by the respiratory route. It need not necessarily cause massive loss of life, but if it caused serious illness or incapacity it would still have a major impact. A possible source is from an existing respiratory pathogen, but it would more probably arise from an infection that is maintained in an arthropod or vertebrate host, but which at present either does not infect humans, or if it does it fails to be effectively transmitted between them. More research should therefore focus on the pathogenetic factors and the viral determinants that promote respiratory transmission. PMID:8557069

  8. Genetic resources offer efficient tools for rice functional genomics research.

    PubMed

    Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May

    2016-05-01

    Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.

  9. Pigmentation, pleiotropy, and genetic pathways in humans and mice

    SciTech Connect

    Barsh, G.S.

    1995-10-01

    Some of the most striking polymorphisms in human populations affect the color of our eyes, hair, or skin. Despite some simple lessons from high school biology (blue eyes are recessive; brown are dominant), the genetic basis of such phenotypic variability has, for the most part, eluded Mendelian description. A logical place to search for the keys to understanding common variation in human pigmentation are genes in which defects cause uncommon conditions such as albinism or piebaldism. The area under this lamppost has recently gotten larger, with two articles, one in this issue of the Journal, that describe the map position for Hermansky-Pudlak syndrome (HPS) and with the recent cloning of a gene that causes X-linked ocular albinism (OA1). In addition, a series of three recent articles in Cell demonstrate (1) that defects in the gene encoding the endothelin B (ET{sub B}) receptor cause hypopigmentation and Hirschsprung disease in a Mennonite population and the mouse mutation piebald(s) and (2) that a defect in the edn3 gene, which encodes one of the ligands for the ET{sub B} receptor, causes the lethal spotting (ls) mouse mutation. 47 refs., 1 fig.

  10. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  11. Human gene therapy: a brief overview of the genetic revolution.

    PubMed

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  12. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  13. [Search problems of human radiation protection in the world of genetics of aging].

    PubMed

    Koterov, A N

    2013-01-01

    Currently, the urgency for protection from negative effects of radiation in the range of low and medium dose where classic radioprotectors are ineffective is increased. In this respect it seems promising to study the molecular pathways that increase, on the one hand, the stability of the genome against radiation damage (inducers of carcinogenesis), and, on the other hand, elevate the radiation sensitivity of cell populations in order to eliminate potentially carcinogenic cells. This approach requires modification of cascade mechanisms of signal transduction to apoptosis and responses to DNA damage. Research plan is similar to the Genetics of Aging, where a number of hypotheses about the mechanism of aging have been proposed, including a decrease in the stability of the genome to external influences. Proceedings of the 2nd International Conference "The genetics of aging and longevity" (Moscow, April 2012) demonstrated, however, that patterns of aging mechanisms identified in model animals (nematodes, drosophila and mice) are far from the possibility of their practical application. Discovered genes that may be responsible for life expectancy (stress-inducible protein and other components of the signal transduction cascade, as well as suppressors and inducers) rarely find significance in the study of the genomes of centenarian cohorts. This may be due to the difficulty in transferring molecular genetic patterns from model objects to large mammals, including humans, with respect to systems of signal transduction. This point must be taken into account during the search for a new generation of radioprotective agents that promote anti-carcinogenic potential of human cells exposed to radiation at low and moderate doses. It may be necessary to search for such tools in large laboratory animals and in human tissue cultures obtained through genetic engineering or cloning.

  14. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  15. Human Genetics and Islam: Scientific and Medical Aspects

    PubMed Central

    Ghareeb, Bilal A.A.

    2011-01-01

    Objective: To relate diverse aspects of genetics and its applications to concepts in the Glorious Qur’an and the ḥadīth. Study Design: The author compared passages from the Glorious Qur’an and ḥadīth with modern concepts in genetics, such as recessive inheritance, genetic counseling, genetic variation, cytoplasmic inheritance, sex chromosomes, genetics-environment interactions, gender determination, and the hypothesis of “pairing in the universe.” Conclusions: A fresh understanding of Islamic scripture reveals references to principles of genetics that predate contemporary discoveries. This highlights the need for further exploration of possible links between science and religion. PMID:23610491

  16. The role of genetic factors in autoimmune disease: implications for environmental research.

    PubMed Central

    Cooper, G S; Miller, F W; Pandey, J P

    1999-01-01

    Studies in both humans and in animal models of specific disorders suggest that polymorphisms of multiple genes are involved in conferring either a predisposition to or protection from autoimmune diseases. Genes encoding polymorphic proteins that regulate immune responses or the rates and extent of metabolism of certain chemical structures have been the focus of much of the research regarding genetic susceptibility. We examine the type and strength of evidence concerning genetic factors and disease etiology, drawing examples from a number of autoimmune diseases. Twin studies of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type I diabetes, and multiple sclerosis (MS) indicate that disease concordance in monozygotic twins is 4 or more times higher than in dizygotic twins. Strong familial associations (odds ratio ranging from 5-10) are seen in studies of MS, type I diabetes, Graves disease, discoid lupus, and SLE. Familial association studies have also reported an increased risk of several systemic autoimmune diseases among relatives of patients with a systemic autoimmune disease. This association may reflect a common etiologic pathway with shared genetic or environmental influences among these diseases. Recent genomewide searches in RA, SLE, and MS provide evidence for multiple susceptibility genes involving major histocompatibility complex (MHC) and non-MHC loci; there is also evidence that many autoimmune diseases share a common set of susceptibility genes. The multifactorial nature of the genetic risk factors and the low penetrance of disease underscore the potential influence of environmental factors and gene-environment interactions on the etiology of autoimmune diseases. PMID:10502533

  17. Is embryo research and preimplantation genetic diagnosis ethical?

    PubMed

    Beyleveld, D

    2000-09-11

    The legal position in the UK on embryo research and preimplantation genetic diagnosis (PGD) is outlined and contrasted with the position in other EU countries. The "gradualist" position of the UK on the moral status of the embryo is defended on the basis of an argument that precaution must be applied in proportion to the degree to which the embryo has developed to display components of agency, on the assumption that mortality is categorically binding and requires agents to be granted rights and that it cannot be known with certainty that the embryo is not an agent. The extent to which this argument, when combined with vicarious protections that the embryo should receive in order to protect the rights of other agents, limits embryo research and PGD, is discussed. It is concluded that the complexities that attend deliberation about the moral problems attending embryo research and PGD are such that the proper response to these problems is via the procedures of political democracy to achieve accountable answers rather than "correct" answers. This allows for a variety of judgements.

  18. The State of Federal Research Funding in Genetics as Reflected by Members of the Genetics Society of America

    PubMed Central

    Rine, Jasper; Fagen, Adam P.

    2015-01-01

    Scientific progress runs on the intellect, curiosity, and passion of its practitioners fueled by the research dollars of its sponsors. The concern over research funding in biology in general and genetics in particular led us to survey the membership of the Genetics Society of America for information about the federal support of genetics at the level of individual principal investigators. The results paint a mosaic of circumstances—some good, others not so good—that describes some of our present challenges with sufficient detail to suggest useful steps that could address the challenges. PMID:26178966

  19. The State of Federal Research Funding in Genetics as Reflected by Members of the Genetics Society of America.

    PubMed

    Rine, Jasper; Fagen, Adam P

    2015-08-01

    Scientific progress runs on the intellect, curiosity, and passion of its practitioners fueled by the research dollars of its sponsors. The concern over research funding in biology in general and genetics in particular led us to survey the membership of the Genetics Society of America for information about the federal support of genetics at the level of individual principal investigators. The results paint a mosaic of circumstances-some good, others not so good-that describes some of our present challenges with sufficient detail to suggest useful steps that could address the challenges.

  20. International Space Station Research Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Kamigaichi, Shigeki; Sorokin, Igor V.; Zell, Martin; Fuglesang, Christer; Sabbagh, Jean; Pignataro, Salvatore

    2012-01-01

    The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth -- not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.

  1. Human Hallucinogen Research: Guidelines for Safety

    PubMed Central

    Johnson, Matthew W.; Richards, William A.; Griffiths, Roland R.

    2010-01-01

    There has recently been a renewal of human research with classical hallucinogens (psychedelics). This paper first briefly discusses the unique history of human hallucinogen research, and then reviews the risks of hallucinogen administration and safeguards for minimizing these risks. Although hallucinogens are relatively safe physiologically and are not considered drugs of dependence, their administration involves unique psychological risks. The most likely risk is overwhelming distress during drug action (“bad trip”), which could lead to potentially dangerous behavior such as leaving the study site. Less common are prolonged psychoses triggered by hallucinogens. Safeguards against these risks include the exclusion of volunteers with personal or family history of psychotic disorders or other severe psychiatric disorders, establishing trust and rapport between session monitors and volunteer before the session, careful volunteer preparation, a safe physical session environment, and interpersonal support from at least two study monitors during the session. Investigators should probe for the relatively rare hallucinogen persisting perception disorder in follow up contact. Persisting adverse reactions are rare when research is conducted along these guidelines. Incautious research may jeopardize participant safety and future research. However, carefully conducted research may inform the treatment of psychiatric disorders, and may lead to advances in basic science. PMID:18593734

  2. Identification of susceptibility genes and genetic modifiers of human diseases

    NASA Astrophysics Data System (ADS)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  3. The Latin American School of Human and Medical Genetics: promoting education and collaboration in genetics and ethics applied to health sciences across the continent.

    PubMed

    Giugliani, Roberto; Baldo, Guilherme; Vairo, Filippo; Lujan Lopez, Monica; Matte, Ursula

    2015-07-01

    The Latin American Network of Human Genetics (RELAGH) created the Latin American School of Human and Medical Genetics (ELAG) to prepare young researchers and professionals of Latin America to deal with the growing challenge of the genomic medicine. ELAG promotes an annually course since 2005, which received 838 students from 17 Latin American countries over these 10 years. ELAG plays an important role to provide education in genetics applied to health sciences to fellows who live in countries with a less favorable economic situation. Influenced, among others, by the humanitarian perspective of José Maria Cantú, one of its founders, ELAG has always favored the discussion of ethical and social issues related to genetics in Latin America. Few initiatives in Latin America lasted 10 consecutive years. One of the factors responsible for the ELAG's success has been its group of faculty members, who contribute to a friendly environment prone to facilitating the exchange of their own experiences with young researchers.

  4. Inconsistencies in pedigree symbols in human genetics publications: A need for standardization

    SciTech Connect

    Steinhaus, K.A.; Bennett, R.L.; Resta, R.G.

    1995-04-10

    To determine consistency in usage of pedigree symbols by genetics professionals, we reviewed pedigrees printed in 10 human genetic and medical journals and 24 medical genetics textbooks. We found no consistent symbolization for common situations such as pregnancy, spontaneous abortion, death, or test results. Inconsistency in pedigree design can create difficulties in the interpretation of family studies and detract from the pedigree`s basic strength of simple and accurate communication of medical information. We recommend the development of standard pedigree symbols, and their incorporation into genetic publications, professional genetics training programs, pedigree software programs, and genetic board examinations. 5 refs., 11 figs., 2 tabs.

  5. [Ethical principles in human scientific research].

    PubMed

    Cruz-Coke, R

    1994-07-01

    Hippocrates was the first physician to use the scientific method to find rational and not religious or mythic causes, for the etiology of diseases. Hippocrates and Aristoteles did not dare to dissect the human body. Afterwards however, many scientists such as Herophilus, Erasitastrus, Vesalus and Fallopio, performed experiments in human beings using vivisection. According to that age's ideas, there was no cruelty in performing vivisection in criminals, since useful knowledge for the progress of medicine and relief of diseases was obtained. Only during the nineteenth century and with Claude Bernard (1865), the ethical principles of systematic scientific research in humans were defined. These principles were violated by nazi physicians during Hitler's dictatorship in Germany (1933-1945). As a response to these horrors, the Ethical Codes of Nuremberg (1947) and Geneva (1948), that reestablished all the strength of Hippocratic principles, were dictated. The Nuremberg rules enact that a research subject must give a voluntary consent, that the experiment must by necessary and exempt of death risk, that the research must be qualified and that the experiment must be discontinued if there is a risk for the subject. The Geneva statement is a modernized hippocratic oath that protects patient's life above all. These classical rules, in force at the present time, are the essential guides that must be applied by physicians and researchers.

  6. Usability: Human Research Program - Space Human Factors and Habitability

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Holden, Kritina L.

    2009-01-01

    The Usability project addresses the need for research in the area of metrics and methodologies used in hardware and software usability testing in order to define quantifiable and verifiable usability requirements. A usability test is a human-in-the-loop evaluation where a participant works through a realistic set of representative tasks using the hardware/software under investigation. The purpose of this research is to define metrics and methodologies for measuring and verifying usability in the aerospace domain in accordance with FY09 focus on errors, consistency, and mobility/maneuverability. Usability metrics must be predictive of success with the interfaces, must be easy to obtain and/or calculate, and must meet the intent of current Human Systems Integration Requirements (HSIR). Methodologies must work within the constraints of the aerospace domain, be cost and time efficient, and be able to be applied without extensive specialized training.

  7. Atlas of Cryptic Genetic Relatedness Among 1000 Human Genomes

    PubMed Central

    Fedorova, Larisa; Qiu, Shuhao; Dutta, Rajib; Fedorov, Alexei

    2016-01-01

    A novel computational method for detecting identical-by-descent (IBD) chromosomal segments between sequenced genomes is presented. It utilizes the distribution patterns of very rare genetic variants (vrGVs), which have minor allele frequencies <0.2%. Contrary to the existing probabilistic approaches our method is rather deterministic, because it considers a group of very rare events which cannot happen together only by chance. This method has been applied for exhaustive computational search of shared IBD segments among 1,092 sequenced individuals from 14 populations. It demonstrated that clusters of vrGVs are unique and powerful markers of genetic relatedness, that uncover IBD chromosomal segments between and within populations, irrespective of whether divergence was recent or occurred hundreds-to-thousands of years ago. We found that several IBD segments are shared by practically any possible pair of individuals belonging to the same population. Moreover, shared short IBD segments (median size 183 kb) were found in 10% of inter-continental human pairs, each comprising of a person from sub-Saharan Africa and a person from Southern Europe. The shortest shared IBD segments (median size 54 kb) were found in 0.42% of inter-continental pairs composed of individuals from Chinese/Japanese populations and Africans from Kenya and Nigeria. Knowledge of inheritance of IBD segments is important in clinical case–control and cohort studies, since unknown distant familial relationships could compromise interpretation of collected data. Clusters of vrGVs should be useful markers for familial relationship and common multifactorial disorders. PMID:26907499

  8. Genetic analysis of human parainfluenza viruses circulating in Korea, 2006.

    PubMed

    Park, Kwang Sook; Yang, Mi Hwa; Lee, Chang Kyu; Song, Ki-Joon

    2014-06-01

    Human parainfluenza viruses (HPIV) are important causes of respiratory tract infections in young children. To characterize the molecular epidemiology of an HPIV outbreak occurring in Korea during 2006, genetic analysis of 269 cell culture isolates from HPIV-infected children, was conducted using nested reverse transcription-PCR (RT-PCR). HPIV-1 was detected in 70.3% of tested samples (189/269). The detection rate of HPIV-2 and HPIV-3 was 1.5% (4/269) and 9.3% (25/269), respectively. Mixed HPIV-1, -2 and -3 infections were detected in 19.0% (51/269): HPIV-1 and HPIV-2 in 15, HPIV-1 and HPIV-3 in 26, HPIV-2 and HPIV-3 in 6, and HPIV-1, -2 and -3 in 4. Of these positive samples for three different types HIPV-1, -2, and -3, two each representative strains were selected, the full length of hemagglutinin-neuraminidase (HN) gene for HPIV was amplified by RT-PCR, and sequenced. Multiple alignment analysis, based on reference sequence of HPIV-1, -2, and -3 strains available in GenBank, showed that the identity of nucleotide and deduced amino acid sequences was 92.4-97.6% and 92.7-97.9%, respectively, for HPIV-1, 88.5-99.8% and 88.6-100% for HPIV-2, and 96.3-99.5% and 95.0-99.3% for HPIV-3, respectively. Phylogenetic analysis showed that HPIV-1, -2, and -3 strains identified in this study were closely related among the strains in the same type with no significant genetic variability. These results show that HPIV of multiple imported sources was circulating in Korea.

  9. If I Could in a Small Way Help”: Motivations for and Beliefs about Sample Donation for Genetic Research

    PubMed Central

    Michie, Marsha; Henderson, Gail; Garrett, Joanne; Corbie-Smith, Giselle

    2012-01-01

    Human genome research depends upon participants who donate genetic samples, but few studies have explored in depth the motivations of genetic research donors. This mixed methods study examines telephone interviews with 752 sample donors in a U.S. genetic epidemiology study investigating colorectal cancer. Quantitative and qualitative results indicate that most participants wanted to help society, and that many also wanted information about their own health, even though such information was not promised. Qualitative analysis reveals that donors believed their samples contributed to a scientific “common good”; imagined samples as information rather than tissues; and often blurred distinctions between research and diagnostic testing of samples. Differences between African American and White perspectives were distinct from educational and other possible explanatory factors. PMID:21680977

  10. The need for interaction between assisted reproduction technology and genetics: recommendations of the European Societies of Human Genetics and Human Reproduction and Embryology.

    PubMed

    2006-08-01

    Infertility and reproductive genetic risk are both increasing in our societies because of lifestyle changes and possibly environmental factors. Owing to the magnitude of the problem, they have implications not only at the individual and family levels but also at the community level. This leads to an increasing demand for access to assisted reproduction technology (ART) and genetic services, especially when the cause of infertility may be genetic in origin. The increasing application of genetics in reproductive medicine and vice versa requires closer collaboration between the two disciplines. ART and genetics are rapidly evolving fields where new technologies are currently introduced without sufficient knowledge of their potential long-term effects. As for any medical procedures, there are possible unexpected effects which need to be envisaged to make sure that the balance between benefits and risks is clearly on the benefit side. The development of ART and genetics as scientific activities is creating an opportunity to understand the early stages of human development, which is leading to new and challenging findings/knowledge. However, there are opinions against investigating the early stages of development in humans who deserve respect and attention. For all these reasons, these two societies, European Society of Human Genetics (ESHG) and European Society of Human Reproduction and Embryology (ESHRE), have joined efforts to explore the issues at stake and to set up recommendations to maximize the benefit for the couples in need and for the community.

  11. EPA'S GENETIC DIVERSITY RESEARCH PROGRAM: ECOLOGICAL INDICATOR DEVELOPMENT

    EPA Science Inventory

    Genetic diversity is a fundamental component of biodiversity that is affected by environmental stressors in predictable ways and limits potential responses of a population to future stressors. Understanding patterns of genetic diversity enhances the value and interpretation of o...

  12. Genetically-Based Biologic Technologies. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Mayer, William V.; McInerney, Joseph D.

    The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…

  13. Research opportunities in human behavior and performances

    NASA Technical Reports Server (NTRS)

    Christensen, J. M.; Talbot, J. M.

    1985-01-01

    The NASA research program in the biological and medical aspects of space flight includes investigations of human behavior and performance. The research focuses on psychological and psychophysiological responses to operational and environmental stresses and demands of spaceflight, and encompasses problems in perception, cognition, motivation, psychological stability, small group dynamics, and performance. The primary objective is to acquire the knowledge and methodology to aid in achieving high productivity and essential psychological support of space and ground crews in the Space Shuttle and space station programs. The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology reviewed its program in psychology and identified its research for future program planning to be in line with NASA's goals.

  14. Patenting of human genetic material v. bioethics: revisiting the case of John Moore v. Regents of the University of California.

    PubMed

    Narayanan, Nithya

    2010-01-01

    Moore v. Regents of the University of California was one of the first cases internationally that dealt with the patenting of human genetic material. The case is closely related to the development of medicine and of biotechnology applied to medicine. These developments require the utilisation of human body parts, both for experiments and for transplant, and present certain major medico-legal problems. However, the case did not produce conclusive decisions on the various key legal issues that it raised involved in biomedical research and the patenting of human genetic material. This article re-examines the case from an Indian and an international perspective. After a brief introduction in Part I, Part II of the article describes existing laws in various countries with respect to the patenting of human genetic material. Part III discusses legal regimes applicable in the context of biological materials. Part IV elaborates on the importance of the doctrine of informed consent in the context of biomedical research on human subjects. Part V discusses the significance of bioethics in research and the patenting of biotechnology, according to international law. Part VI concludes the article with an assertion of the urgent need for legislation in this area.

  15. Retinoblastoma genetics in India: From research to implementation.

    PubMed

    Dimaras, Helen

    2015-03-01

    Retinoblastoma is the prototypic genetic cancer. India carries the biggest burden of retinoblastoma globally, with an estimated 1500 new cases annually. Recent advances in retinoblastoma genetics are reviewed, focusing specifically on information with clinical significance to patients. The Indian literature on retinoblastoma clinical genetics is also highlighted, with a comment on challenges and future directions. The review concludes with recommendations to help clinicians implement and translate retinoblastoma genetics to their practice.

  16. Drosophila as a genetic model for studying pathogenic human viruses.

    PubMed

    Hughes, Tamara T; Allen, Amanda L; Bardin, Joseph E; Christian, Megan N; Daimon, Kansei; Dozier, Kelsey D; Hansen, Caom L; Holcomb, Lisa M; Ahlander, Joseph

    2012-02-05

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area.

  17. Drosophila as a genetic model for studying pathogenic human viruses

    PubMed Central

    Hughes, Tamara T.; Allen, Amanda L.; Bardin, Joseph E.; Christian, Megan N.; Daimon, Kansei; Dozier, Kelsey D.; Hansen, Caom L.; Holcomb, Lisa M.; Ahlander, Joseph

    2011-01-01

    Viruses are infectious particles whose viability is dependent on the cells of living organisms, such as bacteria, plants, and animals. It is of great interest to discover how viruses function inside host cells in order to develop therapies to treat virally infected organisms. The fruit fly Drosophila melanogaster is an excellent model system for studying the molecular mechanisms of replication, amplification, and cellular consequences of human viruses. In this review, we describe the advantages of using Drosophila as a model system to study human viruses, and highlight how Drosophila has been used to provide unique insight into the gene function of several pathogenic viruses. We also propose possible directions for future research in this area. PMID:22177780

  18. Future directions in human-environment research.

    PubMed

    Moran, Emilio F; Lopez, Maria Claudia

    2016-01-01

    Human-environment research in the 21st century will need to change in major ways. It will need to integrate the natural and the social sciences; it will need to engage stakeholders and citizens in the design of research and in the delivery of science for the benefit of society; it will need to address ethical and democratic goals; and it will need to address a myriad of important theoretical and methodological challenges that continue to impede progress in the advance of sustainability science.

  19. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    PubMed Central

    Saeb, Amr T. M.; Al-Naqeb, Dhekra

    2016-01-01

    Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases. PMID:27313952

  20. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes.

    PubMed

    Broaders, Eileen; Gahan, Cormac G M; Marchesi, Julian R

    2013-01-01

    The human intestine is an important location for horizontal gene transfer (HGT) due to the presence of a densely populated community of microorganisms which are essential to the health of the human superorganism. HGT in this niche has the potential to influence the evolution of members of this microbial community and to mediate the spread of antibiotic resistance genes from commensal organisms to potential pathogens. Recent culture-independent techniques and metagenomic studies have provided an insight into the distribution of mobile genetic elements (MGEs) and the extent of HGT in the human gastrointestinal tract. In this mini-review, we explore the current knowledge of mobile genetic elements in the gastrointestinal tract, the progress of research into the distribution of antibiotic resistance genes in the gut and the potential role of MGEs in the spread of antibiotic resistance. In the face of reduced treatment options for many clinical infections, understanding environmental and commensal antibiotic resistance and spread is critical to the future development of meaningful and long lasting anti-microbial therapies.

  1. Genetic Regulation of Charged Particle Mutagenesis in Human Cells

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.

    1999-01-01

    Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.

  2. The human genetic history of the Americas: the final frontier.

    PubMed

    O'Rourke, Dennis H; Raff, Jennifer A

    2010-02-23

    The Americas, the last continents to be entered by modern humans, were colonized during the late Pleistocene via a land bridge across what is now the Bering strait. However, the timing and nature of the initial colonization events remain contentious. The Asian origin of the earliest Americans has been amply established by numerous classical marker studies of the mid-twentieth century. More recently, mtDNA sequences, Y-chromosome and autosomal marker studies have provided a higher level of resolution in confirming the Asian origin of indigenous Americans and provided more precise time estimates for the emergence of Native Americans. But these data raise many additional questions regarding source populations, number and size of colonizing groups and the points of entry to the Americas. Rapidly accumulating molecular data from populations throughout the Americas, increased use of demographic models to test alternative colonization scenarios, and evaluation of the concordance of archaeological, paleoenvironmental and genetic data provide optimism for a fuller understanding of the initial colonization of the Americas.

  3. Human emotion detector based on genetic algorithm using lip features

    NASA Astrophysics Data System (ADS)

    Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga

    2010-04-01

    We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.

  4. GENETIC ASSOCIATION BETWEEN HUMAN CHITINASES AND LUNG FUNCTION IN COPD

    PubMed Central

    Aminuddin, F.; Akhabir, L.; Stefanowicz, D.; Paré, P.D.; Connett, J.E.; Anthonisen, N.R.; Fahy, J.V.; Seibold, M.A.; Burchard, E.G.; Eng, C.; Gulsvik, A.; Bakke, P.; Cho, M. H.; Litonjua, A.; Lomas, D.A.; Anderson, W. H.; Beaty, T.H.; Crapo, J.D.; Silverman, E.K.; Sandford, A.J.

    2013-01-01

    Two primary chitinases have been identified in humans – acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host’s immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to Chronic Obstructive Pulmonary Disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the Caucasian LHS population, the baseline forced expiratory volume in one second (FEV1) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV1 and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV1. Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups. PMID:22200767

  5. Live vaccines for human metapneumovirus designed by reverse genetics.

    PubMed

    Buchholz, Ursula J; Nagashima, Kunio; Murphy, Brian R; Collins, Peter L

    2006-10-01

    Human metapneumovirus (HMPV) was first described in 2001 and has quickly become recognized as an important cause of respiratory tract disease worldwide, especially in the pediatric population. A vaccine against HMPV is required to prevent severe disease associated with infection in infancy. The primary strategy is to develop a live-attenuated virus for intranasal immunization, which is particularly well suited against a respiratory virus. Reverse genetics provides a means of developing highly characterized 'designer' attenuated vaccine candidates. To date, several promising vaccine candidates have been developed, each using a different mode of attenuation. One candidate involves deletion of the G glycoprotein, providing attenuation that is probably based on reduced efficiency of attachment. A second candidate involves deletion of the M2-2 protein, which participates in regulating RNA synthesis and whose deletion has the advantageous property of upregulating transcription and increasing antigen synthesis. A third candidate involves replacing the P protein gene of HMPV with its counterpart from the related avian metapneumovirus, thereby introducing attenuation owing to its chimeric nature and host range restriction. Another live vaccine strategy involves using an attenuated parainfluenza virus as a vector to express HMPV protective antigens, providing a bivalent pediatric vaccine. Additional modifications to provide improved vaccines will also be discussed.

  6. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    PubMed

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders.

  7. Challenges of Research and Human Capital Development in Nigeria

    ERIC Educational Resources Information Center

    Chikwe, Christian K.; Ogidi, Reuben C.; Nwachukwu, K.

    2015-01-01

    The paper discussed the challenges of research and human capital development in Nigeria. Research and human capital development are critical to the development of any nation. Research facilitates human capital development. A high rating in human capital development indices places a country among the leading countries of the world. The paper…

  8. Human genome research and the public interest: Progress notes from an American Science Policy Experiment

    SciTech Connect

    Juengst, E.T. )

    1994-01-01

    This essay reviews the efforts of the US Human Genome Project to anticipate and address the ethical, legal, and social implications of new advances in human genetics. Since 1990, approximately $10 million has been awarded by the National Institutes of Health and the DOE, in support of 65 research, education, and public discussion projects. These projects address four major areas of need: (1) the need for both client-centered assessments of new genetic services and for improved knowledge of the psychosocial and ethnocultural factors that shape clients' clinical genetic experiences; (2) the need for clear professional policies regarding human-subject research, clinical practical standards, and public health goals in human genetics; (3) the need for social policy protection against unfair access to and use of personal genetic information; (4) the need for improved public and professional understanding and discussion of these issues. The Human Genome Project's goal is to have defined, by 1995, policy options and programs capable of addressing these needs. 47 refs.

  9. Unequal Treatment of Human Research Subjects

    PubMed Central

    Resnik, David B.

    2015-01-01

    Unequal treatment of human research subjects is a significant ethical concern, because justice requires that equals be treated equally. If two research subjects are the same in the relevant respects, they should be treated equally. However, not all human subjects are the same in relevant respects: people differ with respect to age, health, gender, race, mental abilities, socioeconomic status, and other characteristics. Disputes sometimes arise concerning the issue of whether subjects are the same in relevant respects and should therefore be treated equally. Allegedly unequal treatment occurs when subjects are treated differently and there is a serious dispute about whether subjects are the same in relevant respects. Patently unequal treatment occurs when there is no significant dispute about whether subjects are the same in relevant respects and they are treated unequally. Research regulations can help to minimize patently unequal treatment by providing rules for investigators, institutional review boards, institutions, and sponsors to follow. However, patently unequal treatment may still occur because the regulations are subject to interpretation. Additional guidance may be necessary to minimize patently unequal treatment of research subjects. PMID:24879129

  10. Puzzling role of genetic risk factors in human longevity: "risk alleles" as pro-longevity variants.

    PubMed

    Ukraintseva, Svetlana; Yashin, Anatoliy; Arbeev, Konstantin; Kulminski, Alexander; Akushevich, Igor; Wu, Deqing; Joshi, Gaurang; Land, Kenneth C; Stallard, Eric

    2016-02-01

    Complex diseases are major contributors to human mortality in old age. Paradoxically, many genetic variants that have been associated with increased risks of such diseases are found in genomes of long-lived people, and do not seem to compromise longevity. Here we argue that trade-off-like and conditional effects of genes can play central role in this phenomenon and in determining longevity. Such effects may occur as result of: (i) antagonistic influence of gene on the development of different health disorders; (ii) change in the effect of gene on vulnerability to death with age (especially, from "bad" to "good"); (iii) gene-gene interaction; and (iv) gene-environment interaction, among other factors. A review of current knowledge provides many examples of genetic factors that may increase the risk of one disease but reduce chances of developing another serious health condition, or improve survival from it. Factors that may increase risk of a major disease but attenuate manifestation of physical senescence are also discussed. Overall, available evidence suggests that the influence of a genetic variant on longevity may be negative, neutral or positive, depending on a delicate balance of the detrimental and beneficial effects of such variant on multiple health and aging related traits. This balance may change with age, internal and external environments, and depend on genetic surrounding. We conclude that trade-off-like and conditional genetic effects are very common and may result in situations when a disease "risk allele" can also be a pro-longevity variant, depending on context. We emphasize importance of considering such effects in both aging research and disease prevention.

  11. International Space Station -- Human Research Facility (HRF)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  12. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints.

    PubMed

    Sessions, October M; Wilm, Andreas; Kamaraj, Uma Sangumathi; Choy, Milly M; Chow, Angelia; Chong, Yuwen; Ong, Xin Mei; Nagarajan, Niranjan; Cook, Alex R; Ooi, Eng Eong

    2015-01-01

    Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients' sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses.

  13. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints

    PubMed Central

    Sessions, October M.; Wilm, Andreas; Kamaraj, Uma Sangumathi; Choy, Milly M.; Chow, Angelia; Chong, Yuwen; Ong, Xin Mei; Nagarajan, Niranjan; Cook, Alex R.; Ooi, Eng Eong

    2015-01-01

    Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients’ sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses. PMID:26327586

  14. Accelerating epistasis analysis in human genetics with consumer graphics hardware

    PubMed Central

    2009-01-01

    Background Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. Findings We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU

  15. 20 Years of hypertension research using genetically modified animals: no clinically promising approaches in sight.

    PubMed

    Stingl, Lavinia; Völkel, Manfred; Lindl, Toni

    2009-01-01

    The incidence of essential or primary hypertension is increasing, especially in the northern hemisphere, but although the disease displays clear symptoms, its aetiology appears very complex, and thus no causal treatment is available yet. In the 1990's, genetically modified animals (GMO) were considered to be the key to solving this problem of high complexity. However, until now, although a few approaches have shown that old, well-known drugs have a positive effect (decrease of blood pressure) on such animal models of hypertension, no approach has appeared in the literature of this area of research which might indicate a direct connection between GMO and a therapeutic strategy to treat or prevent this type of hypertension in humans. Instead, criticism of the GMO approach has accumulated in the last years, arguing that it is misleading as this disease does not have a monogenic cause and so complementary regulatory mechanisms could prevent the true identification of the function of the modified genes. Furthermore, the technology is best developed in mice, whose physiology of blood pressure is different from that of humans. Because of species specificity, it is not easy to extrapolate the results from animal models of hypertension to human hypertension. Also, in the years 2000 to 2004 a reorientation of the technology and the aims of this kind of research took place. Therefore, although these approaches are without exception deemed "very promising" in the literature, it cannot be expected that research on GMO will make any contribution to a new therapeutic strategy in the near future.

  16. Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics.

    PubMed

    Melicher, Dora; Buzas, Edit I; Falus, Andras

    2015-11-01

    Telomeres are protective heterochromatic structures that cap the end of linear chromosomes and play a key role in preserving genomic stability. Telomere length represents a balance between processes that shorten telomeres during cell divisions with incomplete DNA replication and the ones that lengthen telomeres by the action of telomerase, an RNA-protein complex with reverse transcriptase activity which adds telomeric repeats to DNA molecule ends. Telomerase activity and telomere length have a crucial role in cellular ageing and in the pathobiology of several human diseases attracting intense research. The last few decades have witnessed remarkable advances in our understanding about telomeres, telomere-associated proteins, and the biogenesis and regulation of the telomerase holoenzyme complex, as well as about telomerase activation and the telomere-independent functions of telomerase. Emerging data have revealed that telomere length can be modified by genetic and epigenetic factors, sex hormones, reactive oxygen species and inflammatory reactions. It has become clear that, in order to find out more about the factors influencing the rate of telomere attrition in vivo, it is crucial to explore both genetic and epigenetic mechanisms. Since the telomere/telomerase assembly is under the control of multiple epigenetic influences, the unique design of twin studies could help disentangle genetic and environmental factors in the functioning of the telomere/telomerase system. It is surprising that the literature on twin studies investigating this topic is rather scarce. This review aims to provide an overview of some important immune response- and epigenetics-related aspects of the telomere/telomerase system demanding more research, while presenting the available twin data published in connection with telomere research so far. By emphasising what we know and what we still do not know in these areas, another purpose of this review is to urge more twin studies in telomere

  17. The role of the genetic counsellor: a systematic review of research evidence.

    PubMed

    Skirton, Heather; Cordier, Christophe; Ingvoldstad, Charlotta; Taris, Nicolas; Benjamin, Caroline

    2015-04-01

    In Europe, genetic counsellors are employed in specialist genetic centres or other specialist units. According to the European Board of Medical Genetics, the genetic counsellor must fulfil a range of roles, including provision of information and facilitation of psychosocial adjustment of the client to their genetic status and situation. To evaluate the extent to which genetic counsellors fulfil their prescribed roles, we conducted a systematic review of the published relevant scientific evidence. We searched five relevant electronic databases (Medline, CINAHL, SocIndex, AMED and PsychInfo) using relevant search terms and handsearched four subject-specific journals for research-based papers published in English between 1 January 2000 and 30 June 2013. Of 419 potential papers identified initially, seven satisfied the inclusion criteria for the review. Themes derived from the thematic analysis of the data were: (i) rationale for genetic counsellors to provide care, (ii) appropriate roles and responsibilities and (iii) the types of conditions included in the genetic counsellor caseload. The findings of this systematic review indicate that where genetic counsellors are utilised in specialist genetic settings, they undertake a significant workload associated with direct patient care and this appears to be acceptable to patients. With the burden on genetic services, there is an argument for the increased use of genetic counsellors in countries where they are under-utilised. In addition, roles undertaken by genetic counsellors in specialist genetic settings could be adapted to integrate genetic counsellors into multi-disciplinary teams in other specialisms.

  18. The role of the genetic counsellor: a systematic review of research evidence

    PubMed Central

    Skirton, Heather; Cordier, Christophe; Ingvoldstad, Charlotta; Taris, Nicolas; Benjamin, Caroline

    2015-01-01

    In Europe, genetic counsellors are employed in specialist genetic centres or other specialist units. According to the European Board of Medical Genetics, the genetic counsellor must fulfil a range of roles, including provision of information and facilitation of psychosocial adjustment of the client to their genetic status and situation. To evaluate the extent to which genetic counsellors fulfil their prescribed roles, we conducted a systematic review of the published relevant scientific evidence. We searched five relevant electronic databases (Medline, CINAHL, SocIndex, AMED and PsychInfo) using relevant search terms and handsearched four subject-specific journals for research-based papers published in English between 1 January 2000 and 30 June 2013. Of 419 potential papers identified initially, seven satisfied the inclusion criteria for the review. Themes derived from the thematic analysis of the data were: (i) rationale for genetic counsellors to provide care, (ii) appropriate roles and responsibilities and (iii) the types of conditions included in the genetic counsellor caseload. The findings of this systematic review indicate that where genetic counsellors are utilised in specialist genetic settings, they undertake a significant workload associated with direct patient care and this appears to be acceptable to patients. With the burden on genetic services, there is an argument for the increased use of genetic counsellors in countries where they are under-utilised. In addition, roles undertaken by genetic counsellors in specialist genetic settings could be adapted to integrate genetic counsellors into multi-disciplinary teams in other specialisms. PMID:24916644

  19. The Human Model: Changing Focus on Autism Research.

    PubMed

    Muotri, Alysson Renato

    2016-04-15

    The lack of live human brain cells for research has slowed progress toward understanding the mechanisms underlying autism spectrum disorders. A human model using reprogrammed patient somatic cells offers an attractive alternative, as it captures a patient's genome in relevant cell types. Despite the current limitations, the disease-in-a-dish approach allows for progressive time course analyses of target cells, offering a unique opportunity to investigate the cellular and molecular alterations before symptomatic onset. Understanding the current drawbacks of this model is essential for the correct data interpretation and extrapolation of conclusions applicable to the human brain. Innovative strategies for collecting biological material and clinical information from large patient cohorts are important for increasing the statistical power that will allow for the extraction of information from the noise resulting from the variability introduced by reprogramming and differentiation methods. Working with large patient cohorts is also important for understanding how brain cells derived from diverse human genetic backgrounds respond to specific drugs, creating the possibility of personalized medicine for autism spectrum disorders.

  20. Developing genetic competency in undergraduate nursing students through the context of human disease and the constructivist framework

    NASA Astrophysics Data System (ADS)

    Tribble, Leta Meole

    Nowhere is the influence of genetics more extensively seen than in medicine. More precise diagnostic testing, prevention methods, and risk counseling have resulted from recent decades of genetics research, including the Human Genome Project (HGP). The expansion in genetics knowledge and related technologies will drive a major paradigm shift from diagnosis and treatment to preventive medicine. Resulting from this predicted shift are educational challenges for healthcare professionals including both physicians and nurses. The largest group of healthcare providers is registered professional nurses whose work allows a unique and holistic view of patients and families, often caring for patients throughout the life span. Nurses need to understand basic genetic concepts including the role of genes in common diseases, to identify individuals at risk through the collection of informed family histories, to provide information about genetic testing and informed consent, and to know when and how to make appropriate referrals to genetic specialists. The purpose of this study was to expand the clinical application and use of genetic principles in patient management and care. To do this, a survey of South Carolina nursing educators from twenty two nursing programs was conducted to determine the extent of genetic content in the curriculum. The second part of the study was teaching a semester course in human genetics to undergraduate nursing students, a need identified in the literature review and supported by results of the nursing programs survey. Through the use of clinical case studies, PBL activities, and "shrink wrapped" lectures, all congruent with the constructivist viewpoint of learning, student's objective post-intervention measurements indicated significant improvement in content knowledge with an effect size of 1.6 and significant improvement in their ability to analyze and draw the family history in a pedigree format. An attitudinal tool used to assess student

  1. A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans.

    PubMed

    Kostrzewa, E; Brandys, M K; van Lith, H A; Kas, M J H

    2015-01-01

    Individual levels of physical activity, and especially of voluntary physical exercise, highly contribute to the susceptibility for developing metabolic, cardiovascular diseases, and potentially to psychiatric disorders. Here, we applied a cross-species approach to explore a candidate genetic region for voluntary exercise levels. First, a panel of mouse chromosome substitution strains was used to map a genomic region on mouse chromosome 2 that contributes to voluntary wheel running levels - a behavioral readout considered a model of voluntary exercise in humans. Subsequently, we tested the syntenic region (HSA20: 51,212,545-55,212,986) in a human sample (Saint Thomas Twin Register; n=3038) and found a significant association between voluntary exercise levels (categorized into excessive and non-excessive exercise) and an intergenic SNP rs459465 (adjusted P-value of 0.001). Taking under consideration the methodological challenges embedded in this translational approach in the research of complex phenotypes, we wanted to further test the validity of this finding. Therefore, we repeated the analysis in an independent human population (ALSPAC data set; n=2557). We found a significant association of excessive exercise with two SNPs in the same genomic region (rs6022999, adjusted P-value of P=0.011 and rs6092090, adjusted P-value of 0.012). We explored the locus for possible candidate genes by means of literature search and bioinformatics analysis of gene function and of trans-regulatory elements. We propose three potential human candidate genes for voluntary physical exercise levels (MC3R, CYP24A1, and GRM8). To conclude, the identified genetic variance in the human locus 20q13.2 may affect voluntary exercise levels.

  2. Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!’

    PubMed Central

    Apt, Alexander S

    2011-01-01

    Relevance and accuracy of experimental mouse models of tuberculosis (TB) are the subject of constant debate. This article briefly reviews genetic aspects of this problem and provides a few examples of mycobacterial diseases with similar or identical genetic control in mice and humans. The two species display more similarities than differences regarding both genetics of susceptibility/severity of mycobacterial diseases and the networks of protective and pathological immune reactions. In the opinion of the author, refined mouse models of mycobacterial diseases are extremely useful for modelling the corresponding human conditions, if genetic diversity is taken into account. PMID:21896006

  3. The Impact of a Web-Based Research Simulation in Bioinformatics on Students' Understanding of Genetics

    NASA Astrophysics Data System (ADS)

    Gelbart, Hadas; Brill, Gilat; Yarden, Anat

    2009-11-01

    Providing learners with opportunities to engage in activities similar to those carried out by scientists was addressed in a web-based research simulation in genetics developed for high school biology students. The research simulation enables learners to apply their genetics knowledge while giving them an opportunity to participate in an authentic genetics study using bioinformatics tools. The main purpose of the study outlined here is to examine how learning using this research simulation influences students’ understanding of genetics, and how students’ approaches to learning using the simulation influence their learning outcomes. Using both quantitative and qualitative procedures, we were able to show that while learning using the simulation students expanded their understanding of the relationships between molecular mechanisms and phenotype, and refined their understanding of certain genetic concepts. Two types of learners, research-oriented and task-oriented, were identified on the basis of the differences in the ways they seized opportunities to recognize the research practices, which in turn influenced their learning outcomes. The research-oriented learners expanded their genetics knowledge more than the task-oriented learners. The learning approach taken by the research-oriented learners enabled them to recognize the epistemology that underlies authentic genetic research, while the task-oriented learners referred to the research simulation as a set of simple procedural tasks. Thus, task-oriented learners should be encouraged by their teachers to cope with the scientists’ steps, while learning genetics through the simulation in a class setting.

  4. Report on the 6th African Society of Human Genetics (AfSHG) Meeting, March 12–15, 2009, Yaoundé, Cameroon

    PubMed Central

    Sirugo, Giorgio; Williams, Scott M.; Royal, Charmaine D. M.; Newport, Melanie J.; Hennig, Branwen J.; Mariani-Costantini, Renato; Buonaguro, Franco M.; Velez Edwards, Digna R.; Ibrahim, Muntaser; Soodyall, Himla; Wonkam, Ambroise; Ramesar, Raj; Rotimi, Charles N.

    2010-01-01

    The African Society of Human Genetics (AfSHG), founded in 2003 with its inaugural meeting in Accra, Ghana,1 has the stated missions of (1) disseminating information about human genetics research in Africa, (2) establishing a mentorship network providing educational resources, including the development of appropriate technology transfer, (3) providing advocacy for human genetic research in Africa, and (4) encouraging collaborative research. Despite its young age, the AfSHG has developed a strong cadre of active researchers, both within and outside of Africa, with more than 400 members (from 16 countries across Africa as well as 8 other countries), and has held six successful meetings, five in Africa and one in the United States. PMID:20682860

  5. Research Issues in Genetic Testing of Adolescents for Obesity

    PubMed Central

    Segal, Mary E.; Sankar, Pamela; Reed, Danielle R.

    2006-01-01

    Obesity is often established in adolescence, and advances are being made in identifying its genetic underpinnings. We examine issues related to the eventual likelihood of genetic tests for obesity targeted to adolescents: family involvement; comprehension of the test’s meaning; how knowledge of genetic status may affect psychological adaptation; minors’ ability to control events; parental/child autonomy; ability to make informed medical decisions; self-esteem; unclear distinctions between early/late onset for this condition; and social stigmatization. The public health arena will be important in educating families about possible future genetic tests for obesity. PMID:15478685

  6. GENETIC ASSOCIATION ANALYSIS OF COPY NUMBER VARIATION (CNVs) IN HUMAN DISEASE PATHOGENESIS

    PubMed Central

    Ionita-Laza, Iuliana; Rogers, Angela J.; Lange, Christoph; Raby, Benjamin A.; Lee, Charles

    2009-01-01

    Structural genetic variation, including copy number variation (CNV), constitutes a substantial fraction of total genetic variability and the importance of structural genetic variants in modulating human disease is increasingly being recognized. Early successes in identifying disease-associated CNVs via a candidate gene approach mandate that future disease association studies need to include structural genetic variation. Such analyses should not rely on previously developed methodologies that were designed to evaluate single nucleotide polymorphisms (SNPs). Instead, development of novel technical, statistical, and epidemiologic methods will be necessary to optimally capture this newly-appreciated form of genetic variation in a meaningful manner. PMID:18822366

  7. Crowdsourcing taste research: genetic and phenotypic predictors of bitter taste perception as a model

    PubMed Central

    Garneau, Nicole L.; Nuessle, Tiffany M.; Sloan, Meghan M.; Santorico, Stephanie A.; Coughlin, Bridget C.; Hayes, John E.

    2014-01-01

    Understanding the influence of taste perception on food choice has captured the interest of academics, industry, and the general public, the latter as evidenced by the extent of popular media coverage and use of the term supertaster. Supertasters are highly sensitive to the bitter tastant propylthiouracil (PROP) and its chemical relative phenylthiocarbamide. The well-researched differences in taste sensitivity to these bitter chemicals are partially controlled by variation in the TAS2R38 gene; however, this variation alone does not explain the supertaster phenomenon. It has been suggested that density of papillae, which house taste buds, may explain supertasting. To address the unresolved role of papillae, we used crowdsourcing in the museum-based Genetics of Taste Lab. This community lab is uniquely situated to attract both a large population of human subjects and host a team of citizen scientists to research population-based questions about human genetics, taste, and health. Using this model, we find that PROP bitterness is not in any way predicted by papillae density. This result holds within the whole sample, when divided into major diplotypes, and when correcting for age, sex, and genotype. Furthermore, it holds when dividing participants into oft-used taster status groups. These data argue against the use of papillae density in predicting taste sensitivity and caution against imprecise use of the term supertaster. Furthermore, it supports a growing volume of evidence that sets the stage for hypergeusia, a reconceptualization of heightened oral sensitivity that is not based solely on PROP or papillae density. Finally, our model demonstrates how community-based research can serve as a unique venue for both study participation and citizen science that makes scientific research accessible and relevant to people’s everyday lives. PMID:24904324

  8. Future human bone research in space

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Shackelford, L.; Schneider, V.

    1998-01-01

    Skylab crewmembers demonstrated negative calcium (Ca) balance reaching about -300 mg/day by flight day 84. Limited bone density (BMD) measurements documented that bone was not lost equally from all parts of the skeleton. Subsequent BMD studies during long duration Russian flights documented the regional extent of bone loss. These studies demonstrated mean losses in the spine, femur neck, trochanter, and pelvis of about 1%-1.6% with large differences between individuals as well as between bone sites in a given individual. Limited available data indicate postflight bone recovery occurred in some individuals, but may require several years for complete restoration. Long duration bedrest studies showed a similar pattern of bone loss and calcium balance (-180 mg/day) as spaceflight. During long duration bedrest, resorption markers were elevated, formation markers were unchanged, 1,25 vitamin D (VitD) and calcium absorption were decreased, and serum ionized Ca was increased. Although this information is a good beginning, additional spaceflight research is needed to assess architectural and subregional bone changes, elucidate mechanisms, and develop efficient as well as effective countermeasures. Space research poses a number of unique problems not encountered in ground-based laboratory research. Therefore, researchers contemplating human spaceflight research need to consider a number of unique problems related to spaceflight in their experimental design.

  9. The 'Out of Africa' Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a long-lasting effect on the pattern of comparative economic development that is not captured by geographical, institutional, and cultural factors. In particular, the level of genetic diversity within a society is found to have a hump-shaped effect on development outcomes in both the pre-colonial and the modern era, reflecting the trade-off between the beneficial and the detrimental effects of diversity on productivity. While the intermediate level of genetic diversity prevalent among Asian and European populations has been conducive for development, the high degree of diversity among African populations and the low degree of diversity among Native American populations have been a detrimental force in the development of these regions. PMID:25506083

  10. Updating the African human mitochondrial DNA tree: Relevance to forensic and population genetics.

    PubMed

    Heinz, Tanja; Pala, Maria; Gómez-Carballa, Alberto; Richards, Martin B; Salas, Antonio

    2017-03-01

    Analysis of human mitochondrial DNA (mtDNA) variation plays an important role in forensic genetic investigations, especially in degraded biological samples and hair shafts. There are many issues of the mtDNA phylogeny that are of special interest to the forensic community, such as haplogroup classification or the post hoc investigation of potential errors in mtDNA datasets. We have analyzed >2200 mitogenomes of African ancestry with the aim of improving the known worldwide phylogeny. More than 300 new minor subclades were identified, and the Time to the Most Recent Common Ancestor (TMRCA) was estimated for each node of the phylogeny. Phylogeographic details are provided which might also be relevant to forensic genetics. The present study has special interest for forensic investigations because current analysis and interpretation of mtDNA casework rest on a solid worldwide phylogeny, as is evident from the role that phylogeny plays in popular resources in the field (e.g. PhyloTree), software (e.g. Haplogrep 2), and databases (e.g. EMPOP). Apart from this forensic genetic interest, we also highlight the impact of this research in anthropological studies, such as those related to the reconstruction of the transatlantic slave trade.

  11. Public acceptance of human gene therapy and perceptions of human genetic manipulation.

    PubMed

    Macer, D R

    1992-10-01

    Clinical trials of gene therapy are underway in different countries, and further countries can be expected to use gene therapy soon. Little remains known, however, about public perceptions of gene therapy. Nationwide mail response opinion surveys were conducted in Japan in August-October, 1991. A total of 54% of the public, 65% of the high school biology teachers, and 54% of the scientists who responded said that they would be willing to use gene therapy, and 66%, 73%, and 62%, respectively, said that they would be willing to use gene therapy on their children. There appears to be growing acceptance of gene therapy in Japan, although about one-quarter of the population are against it. The underlying reasoning behind the acceptability of human genetic manipulation and perceived benefits and risks are presented, and these were found to be generally similar to reasoning expressed in a similar survey conducted in New Zealand in May, 1990. Public perceptions are also compared to those in Europe and the United States. People perceive both benefits and risks from genetic manipulation. There appears to be more teaching of ethical, social, and environmental issues associated with genetic engineering in senior high school biology classes in New Zealand than in Japan. In Japan and New Zealand, about 90% of the public would support including discussion of social issues associated with science and technology in the curriculum.

  12. Understanding our Genetic Inheritance: The U.S. Human Genome Project, The First Five Years FY 1991--1995

    DOE R&D Accomplishments Database

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  13. Understanding our genetic inheritance: The US Human Genome Project, The first five years FY 1991--1995

    SciTech Connect

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  14. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Xeroxing Human Beings

    ERIC Educational Resources Information Center

    Freund, Paul A.

    1972-01-01

    If the aim of new research is to improve the genetic inheritance of future generations, then decisions regarding who should decide what research should be done needs to be established. Positive and negative eugenics need to be considered thoroughly. (PS)

  15. Recent molecular genetic studies and methodological issues in suicide research.

    PubMed

    Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay

    2011-06-01

    Suicide behavior (SB) spans a spectrum ranging from suicidal ideation to suicide attempts and completed suicide. Strong evidence suggests a genetic susceptibility to SB, including familial heritability and common occurrence in twins. This review addresses recent molecular genetic studies in SB that include case-control association, genome gene-expression microarray, and genome-wide association (GWA). This work also reviews epigenetics in SB and pharmacogenetic studies of antidepressant-induced suicide. SB fulfills criteria for a complex genetic phenotype in which environmental factors interact with multiple genes to influence susceptibility. So far, case-control association approaches are still the mainstream in SB genetic studies, although whole genome gene-expression microarray and GWA studies have begun to emerge in recent years. Genetic association studies have suggested several genes (e.g., serotonin transporter, tryptophan hydroxylase 2, and brain-derived neurotrophic factor) related to SB, but not all reports support these findings. The case-control approach while useful is limited by present knowledge of disease pathophysiology. Genome-wide studies of gene expression and genetic variation are not constrained by our limited knowledge. However, the explanatory power and path to clinical translation of risk estimates for common variants reported in genome-wide association studies remain unclear because of the presence of rare and structural genetic variation. As whole genome sequencing becomes increasingly widespread, available genomic information will no longer be the limiting factor in applying genetics to clinical medicine. These approaches provide exciting new avenues to identify new candidate genes for SB genetic studies. The other limitation of genetic association is the lack of a consistent definition of the SB phenotype among studies, an inconsistency that hampers the comparability of the studies and data pooling. In summary, SB involves multiple genes

  16. Molecular genetics of human cancer predisposition and progression.

    PubMed

    Cavenee, W K; Scrable, H J; James, C D

    1991-04-01

    The development of human cancer is generally thought to entail a series of events that cause a progressively more malignant phenotype. Such a hypothesis predicts that tumor cells of the ultimate stage will carry each of the events, cells of the penultimate stage will carry each of the events less the last one and so on. A dissection of the pathway from a normal cell to a fully malignant tumor may thus be viewed as the unraveling of a nested set of aberrations. In experiments designed to elucidate these events we have compared genotypic combinations at genomic loci defined by restriction endonuclease recognition site variation in normal and tumor tissues from patients with various forms and stages of cancer. The first step, inherited predisposition, is best described for retinoblastoma in which a recessive mutation of a locus residing in the 13q14 region of the genome is unmasked by aberrant, but specific, mitotic chromosomal segregation. Similar mechanisms involving the distal short arm of chromosome 17 are apparent in astrocytic tumors and the events are shared by cells in each malignancy state. DNA sequencing indicates that these events accomplish the homozygosis of mutant alleles of the p53 gene. Copy number amplification of the epidermal growth factor receptor gene occurs in intermediate and late-stage tumors whereas loss of heterozygosity for loci on chromosome 10 is restricted to the ultimate stage, glioblastoma multiforme. These results suggest a genetic approach to defining degrees of tumor progression and the locations of genes involved in the pathway as a prelude to their molecular isolation and characterization.

  17. Development of a Rotating Human Research Facility

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Caldwell, William F.; Tucker, John; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A unique facility has been developed at the NASA Ames Research Center to provide scientists with unusual research opportunities at greater than Earth's gravity. In addition to its use for basic research, this facility will help provide answers to many of the questions posed by proponents of rotating human space vehicles. This paper describes the design and planned use of this facility, the Spaceflight Environmental Simulator. Using an existing 52-foot diameter cylindrical rotating platform design centrifuge, the revised facility design includes the provision of two human habitats for long duration studies of the effects of hypergravity. Up to four humans (per habitat) will be able to live at up to 2 G for as long as one month without stopping the centrifuge. Each habitat, constructed of lightweight honeycomb sandwich panels, is nominally 9 ft high x 11 ft wide x 25 1/2 ft long. A radial positioning system provides for positioning each habitat at a distance of 15 to 21 feet from the centrifuge's axis of rotation to the midpoint of the habitat's interior floor. As centrifugal acceleration changes with rotation rate, a habitat floor-mounted accelerometer signal provides automatic servo controlled adjustment of each habitat's angle of inclination to provide an environment for the habitat's crew and cargo in which the resultant gravity vector is normal to the habitat floor at all times. Design of the habitats and modifications to the centrifuge are complete, and are currently under construction. Design philosophy and operational rationale are presented along with complete descriptions of the facility and its systems.

  18. An Atlas of Genetic Correlations across Human Diseases and Traits

    PubMed Central

    Bulik-Sullivan, Brendan; Finucane, Hilary K; Anttila, Verneri; Gusev, Alexander; Day, Felix R.; Loh, Po-Ru; Duncan, Laramie; Perry, John R.B.; Patterson, Nick; Robinson, Elise B.; Daly, Mark J.; Price, Alkes L.; Neale, Benjamin M.

    2015-01-01

    Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique – cross-trait LD Score regression – for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity and associations between educational attainment and several diseases. These results highlight the power of genome-wide analyses, since there currently are no significantly associated SNPs for anorexia nervosa and only three for educational attainment. PMID:26414676

  19. The Impact of a Web-Based Research Simulation in Bioinformatics on Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Gelbart, Hadas; Brill, Gilat; Yarden, Anat

    2009-01-01

    Providing learners with opportunities to engage in activities similar to those carried out by scientists was addressed in a web-based research simulation in genetics developed for high school biology students. The research simulation enables learners to apply their genetics knowledge while giving them an opportunity to participate in an authentic…

  20. Impact of molecular genetic research on peanut cultivar development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) has lagged other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low levels of molecular polymorphism among cultivated varieties. Recent advances in molecular genetic technology have allowed res...