Sample records for human head models

  1. Coupling of a finite element human head model with a lumped parameter Hybrid III dummy model: preliminary results.

    PubMed

    Ruan, J S; Prasad, P

    1995-08-01

    A skull-brain finite element model of the human head has been coupled with a multilink rigid body model of the Hybrid III dummy. The experimental coupled model is intended to represent anatomically a 50th percentile human to the extent the dummy and the skull-brain model represent a human. It has been verified by simulating several human cadaver head impact tests as well as dummy head 'impacts" during barrier crashes in an automotive environment. Skull-isostress and brain-isostrain response curves were established based on model calibration of experimental human cadaver tolerance data. The skull-isostress response curve agrees with the JARI Human Head Impact Tolerance Curve for skull fracture. The brain-isostrain response curve predicts a higher G level for concussion than does the JARI concussion curve and the Wayne State Tolerance Curve at the longer time duration range. Barrier crash simulations consist of belted dummies impacting an airbag, a hard and soft steering wheel hub, and no head contact with vehicle interior components. Head impact force, intracranial pressures and strains, skull stress, and head center-of-gravity acceleration were investigated as injury parameters. Head injury criterion (HIC) was also calculated along with these parameters. Preliminary results of the model simulations in those impact conditions are discussed.

  2. Human recognition based on head-shoulder contour extraction and BP neural network

    NASA Astrophysics Data System (ADS)

    Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian

    2014-11-01

    In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.

  3. An efficient use of mixing model for computing the effective dielectric and thermal properties of the human head.

    PubMed

    Mishra, Varsha; Puthucheri, Smitha; Singh, Dharmendra

    2018-05-07

    As a preventive measure against the electromagnetic (EM) wave exposure to human body, EM radiation regulatory authorities such as ICNIRP and FCC defined the value of specific absorption rate (SAR) for the human head during EM wave exposure from mobile phone. SAR quantifies the absorption of EM waves in the human body and it mainly depends on the dielectric properties (ε', σ) of the corresponding tissues. The head part of the human body is more susceptible to EM wave exposure due to the usage of mobile phones. The human head is a complex structure made up of multiple tissues with intermixing of many layers; thus, the accurate measurement of permittivity (ε') and conductivity (σ) of the tissues of the human head is still a challenge. For computing the SAR, researchers are using multilayer model, which has some challenges for defining the boundary for layers. Therefore, in this paper, an attempt has been made to propose a method to compute effective complex permittivity of the human head in the range of 0.3 to 3.0 GHz by applying De-Loor mixing model. Similarly, for defining the thermal effect in the tissue, thermal properties of the human head have also been computed using the De-Loor mixing method. The effective dielectric and thermal properties of equivalent human head model are compared with the IEEE Std. 1528. Graphical abstract ᅟ.

  4. Optimization of a reversible hood for protecting a pedestrian's head during car collisions.

    PubMed

    Huang, Sunan; Yang, Jikuang

    2010-07-01

    This study evaluated and optimized the performance of a reversible hood (RH) for the prevention of the head injuries of an adult pedestrian from car collisions. The FE model of a production car front was introduced and validated. The baseline RH was developed from the original hood in the validated car front model. In order to evaluate the protective performance of the baseline RH, the FE models of an adult headform and a 50th percentile human head were used in parallel to impact the baseline RH. Based on the evaluation, the response surface method was applied to optimize the RH in terms of the material stiffness, lifting speed, and lifted height. Finally, the headform model and the human head model were again used to evaluate the protective performance of the optimized RH. It was found that the lifted baseline RH can obviously reduce the impact responses of the headform model and the human head model by comparing with the retracted and lifting baseline RH. When the optimized RH was lifted, the HIC values of the headform model and the human head model were further reduced to much lower than 1000. The risk of pedestrian head injuries can be prevented as required by EEVC WG17. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Biomechanical Modeling of the Human Head

    DTIC Science & Technology

    2017-10-03

    between model predictions and experimental data. This report details model calibration for all materials identified in models of a human head and...14 3 Stress-strain data for the pia mater and dura mater (human subject); experimental data orig- inally presented in [28...treated as one material) based on a hyperelastic model and experimental data from [59] ............................................... 20 5 Comparison of

  6. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head.

    PubMed

    Beard, Brian B; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2006-06-05

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

  7. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  8. The Influence of Neck Muscle Activation on Head and Neck Injuries of Occupants in Frontal Impacts.

    PubMed

    Li, Fan; Lu, Ronggui; Hu, Wei; Li, Honggeng; Hu, Shiping; Hu, Jiangzhong; Wang, Haibin; Xie, He

    2018-01-01

    The aim of the present paper was to study the influence of neck muscle activation on head and neck injuries of vehicle occupants in frontal impacts. A mixed dummy-human finite element model was developed to simulate a frontal impact. The head-neck part of a Hybrid III dummy model was replaced by a well-validated head-neck FE model with passive and active muscle characteristics. The mixed dummy-human FE model was validated by 15 G frontal volunteer tests conducted in the Naval Biodynamics Laboratory. The effects of neck muscle activation on the head dynamic responses and neck injuries of occupants in three frontal impact intensities, low speed (10 km/h), medium speed (30 km/h), and high speed (50 km/h), were studied. The results showed that the mixed dummy-human FE model has good biofidelity. The activation of neck muscles can not only lower the head resultant acceleration under different impact intensities and the head angular acceleration in medium- and high-speed impacts, thereby reducing the risks of head injury, but also protect the neck from injury in low-speed impacts.

  9. Measurement of Pressure Responses in a Physical Model of a Human Head with High Shape Fidelity Based on Ct/mri Data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro

    This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.

  10. Brain Injury Differences in Frontal Impact Crash Using Different Simulation Strategies

    PubMed Central

    Ma, Chunsheng; Shen, Ming; Li, Peiyu; Zhang, Jinhuan

    2015-01-01

    In the real world crashes, brain injury is one of the leading causes of deaths. Using isolated human head finite element (FE) model to study the brain injury patterns and metrics has been a simplified methodology widely adopted, since it costs significantly lower computation resources than a whole human body model does. However, the degree of precision of this simplification remains questionable. This study compared these two kinds of methods: (1) using a whole human body model carried on the sled model and (2) using an isolated head model with prescribed head motions, to study the brain injury. The distribution of the von Mises stress (VMS), maximum principal strain (MPS), and cumulative strain damage measure (CSDM) was used to compare the two methods. The results showed that the VMS of brain mainly concentrated at the lower cerebrum and occipitotemporal region close to the cerebellum. The isolated head modelling strategy predicted higher levels of MPS and CSDM 5%, while the difference is small in CSDM 10% comparison. It suggests that isolated head model may not equivalently reflect the strain levels below the 10% compared to the whole human body model. PMID:26495029

  11. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head

    PubMed Central

    Beard, Brian B.; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2018-01-01

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position. PMID:29515260

  12. [Establishment of a 3D finite element model of human skull using MSCT images and mimics software].

    PubMed

    Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu

    2011-02-01

    To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.

  13. Assessment of mechanical properties of human head tissues for trauma modelling.

    PubMed

    Lozano-Mínguez, Estívaliz; Palomar, Marta; Infante-García, Diego; Rupérez, María José; Giner, Eugenio

    2018-05-01

    Many discrepancies are found in the literature regarding the damage and constitutive models for head tissues as well as the values of the constants involved in the constitutive equations. Their proper definition is required for consistent numerical model performance when predicting human head behaviour, and hence skull fracture and brain damage. The objective of this research is to perform a critical review of constitutive models and damage indicators describing human head tissue response under impact loading. A 3D finite element human head model has been generated by using computed tomography images, which has been validated through the comparison to experimental data in the literature. The threshold values of the skull and the scalp that lead to fracture have been analysed. We conclude that (1) compact bone properties are critical in skull fracture, (2) the elastic constants of the cerebrospinal fluid affect the intracranial pressure distribution, and (3) the consideration of brain tissue as a nearly incompressible solid with a high (but not complete) water content offers pressure responses consistent with the experimental data. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    NASA Astrophysics Data System (ADS)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  15. A Unified Model of Heading and Path Perception in Primate MSTd

    PubMed Central

    Layton, Oliver W.; Browning, N. Andrew

    2014-01-01

    Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell's receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow. PMID:24586130

  16. Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact.

    PubMed

    White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D

    2014-11-01

    A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.

  17. Research study on neck injury lessening with active head restraint using human body FE model.

    PubMed

    Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji

    2008-12-01

    The objective of this study is to examine the effectiveness of the active head restraint system in reducing neck injury risk of car occupants in low-speed rear impacts. A human body FE model "THUMS" was used to simulate head and neck kinematics of the occupant and to evaluate loading to the neck. Joint capsule strain was calculated to predict neck injury risk as well as NIC. The validity of the model was confirmed comparing its mechanical responses to those in human subjects in the literatures. Seat FE models were also prepared representing one with a fixed head restraint and the other one with an active head restraint system. The active head restraint system was designed to move the head restraint forward and upward when the lower unit was lower unit was loaded by the pelvis. Rear impact simulations were performed assuming a triangular acceleration pulse at a delta-V of 25 km/h. The model reproduced similar head and neck motions to those measured in the human volunteer test, except for active muscular responses. The calculated joint capsule strain also showed a good match with those of PMHS tests in the literature. A rear-impact simulation was conducted using the model with the fixed head restraint. The result revealed that NIC was strongly correlated with the relative acceleration between the head and the torso and that its maximum peak appeared when the head contacted the head restraint. It was also found that joint capsule strain grew in later timing synchronizing with the relative displacement. Another simulation with the active head restraint system showed that both NIC and joint capsule strain were lowered owing to the forward and upward motion of the head restraint. A close investigation of the vertebral motion indicated that the active head restraint reduced the magnitude of shear deformation in the facet joint, which contributed to the strain growth in the fixed head restraint case. Rear-impact simulations were conducted using a human body FE model, THUMS, representing an average-size male occupant. The cervical system including the facet joint capsules was incorporated to the model. The validity of the model was examined comparing its mechanical responses to those in the literature such as the whole body motion of the volunteer subject and the vertebral motion in the PMHS tests. Rear-impact simulations were conducted using the validated THUMS model and two prototype seat models; one had a fixed head restraint and the other one was equipped with an active head restraint system. The active head restraint system works moving the head restraint forward and upward when the lower unit is loaded by the pelvis. The head and neck kinematics and responses were analyzed from the simulation results. The force and acceleration rose at the pelvis first, followed by T1 and the head. The early timing of force rise and its magnitude indicated that the pelvis force was a good trigger for the active head restraint system. The results showed that the head was supported earlier in a case with the active head restraint system, and both NIC and joint capsule strain were lowered. The study also analyzed the mechanism of strain growth in the joint capsules. Relatively greater strain was observed in the direction of the facet joint surface, which was around 45 degrees inclined to the spinal column. The forward and upward motion of the active head restraint were aligned with the direction of the joint deformation and contributed to lower strain in the joint capsules. The results indicated that the active head restraint could help reduce the neck injury risk not only by supporting the head at an early timing but also through its trajectory stopping the joint deformation.

  18. The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model.

    PubMed

    Pfrommer, Andreas; Henning, Anke

    2018-03-13

    The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.

  19. SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones

    NASA Astrophysics Data System (ADS)

    Torres-Silva, H.

    2008-09-01

    A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.

  20. Development of the software tool for generation and visualization of the finite element head model with bone conduction sounds

    NASA Astrophysics Data System (ADS)

    Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad

    2015-12-01

    Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.

  1. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

    PubMed Central

    Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.

    2017-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  2. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1994-01-01

    A template model of human visual self-motion perception, which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions. We tested the model detectors with stimuli used by others in single-unit studies. The detectors showed emergent properties similar to those of MST neurons: (1) Sensitivity to non-preferred flow; Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow, and (2) Position invariance; The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields. It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  3. Competitive Dynamics in MSTd: A Mechanism for Robust Heading Perception Based on Optic Flow

    PubMed Central

    Layton, Oliver W.; Fajen, Brett R.

    2016-01-01

    Human heading perception based on optic flow is not only accurate, it is also remarkably robust and stable. These qualities are especially apparent when observers move through environments containing other moving objects, which introduce optic flow that is inconsistent with observer self-motion and therefore uninformative about heading direction. Moving objects may also occupy large portions of the visual field and occlude regions of the background optic flow that are most informative about heading perception. The fact that heading perception is biased by no more than a few degrees under such conditions attests to the robustness of the visual system and warrants further investigation. The aim of the present study was to investigate whether recurrent, competitive dynamics among MSTd neurons that serve to reduce uncertainty about heading over time offer a plausible mechanism for capturing the robustness of human heading perception. Simulations of existing heading models that do not contain competitive dynamics yield heading estimates that are far more erratic and unstable than human judgments. We present a dynamical model of primate visual areas V1, MT, and MSTd based on that of Layton, Mingolla, and Browning that is similar to the other models, except that the model includes recurrent interactions among model MSTd neurons. Competitive dynamics stabilize the model’s heading estimate over time, even when a moving object crosses the future path. Soft winner-take-all dynamics enhance units that code a heading direction consistent with the time history and suppress responses to transient changes to the optic flow field. Our findings support recurrent competitive temporal dynamics as a crucial mechanism underlying the robustness and stability of perception of heading. PMID:27341686

  4. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  5. Multi-sector thermo-physiological head simulator for headgear research

    NASA Astrophysics Data System (ADS)

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M.; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  6. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models.

    PubMed

    Beard, Brian B; Kainz, Wolfgang

    2004-10-13

    We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.

  7. Review and standardization of cell phone exposure calculations using the SAM phantom and anatomically correct head models

    PubMed Central

    Beard, Brian B; Kainz, Wolfgang

    2004-01-01

    We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head. PMID:15482601

  8. Quantification of visual clutter using a computation model of human perception : an application for head-up displays

    DOT National Transportation Integrated Search

    2004-03-20

    A means of quantifying the cluttering effects of symbols is needed to evaluate the impact of displaying an increasing volume of information on aviation displays such as head-up displays. Human visual perception has been successfully modeled by algori...

  9. Multi-sector thermo-physiological head simulator for headgear research.

    PubMed

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  10. A link-segment model of upright human posture for analysis of head-trunk coordination

    NASA Technical Reports Server (NTRS)

    Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.

    1998-01-01

    Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.

  11. SAR in human head model due to resonant wireless power transfer system.

    PubMed

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  12. Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts

    NASA Astrophysics Data System (ADS)

    Rossikhin, Yury A.; Shitikova, Marina V.

    2013-06-01

    The collision of two elastic or viscoelastic spherical shells is investigated as a model for the dynamic response of a human head impacted by another head or by some spherical object. Determination of the impact force that is actually being transmitted to bone will require the model for the shock interaction of the impactor and human head. This model is indended to be used in simulating crash scenarios in frontal impacts, and provide an effective tool to estimate the severity of effect on the human head and to estimate brain injury risks. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. It is assumed that the viscoelastic features of the shells are exhibited only in the contact domain, while the remaining parts retain their elastic properties. In this case, the contact spot is assumed to be a plane disk with constant radius, and the viscoelastic features of the shells are described by the fractional derivative standard linear solid model. In the case under consideration, the governing differential equations are solved analytically by the Laplace transform technique. It is shown that the fractional parameter of the fractional derivative model plays very important role, since its variation allows one to take into account the age-related changes in the mechanical properties of bone.

  13. Linking the Heart and the Head: Humanism and Professionalism in Medical Education and Practice.

    PubMed

    Montgomery, Lynda; Loue, Sana; Stange, Kurt C

    2017-05-01

    This paper articulates a practical interpretive framework for understanding humanism in medicine through the lens of how it is taught and learned. Beginning with a search for key tensions and relevant insights in the literature on humanism in health professions education, we synthesized a conceptual model designed to foster reflection and action to realize humanistic principles in medical education and practice. The resulting model centers on the interaction between the heart and the head. The heart represents the emotive domains of empathy, compassion, and connectedness. The head represents the cognitive domains of knowledge, attitudes, and beliefs. The cognitive domains often are associated with professionalism, and the emotive domains with humanism, but it is the connection between the two that is vital to humanistic education and practice. The connection between the heart and the head is nurtured by critical reflection and conscious awareness. Four provinces of experience nurture humanism: (1) personal reflection, (2) action, (3) system support, and (4) collective reflection. These domains represent potential levers for developing humanism. Critical reflection and conscious awareness between the heart and head through personal reflection, individual and collective behavior, and supportive systems has potential to foster humanistic development toward healing and health.

  14. Developments in deep brain stimulation using time dependent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  15. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  16. Numerical evaluation of heating in the human head due to magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Nguyen, Uyen; Brown, Steve; Chang, Isaac; Krycia, Joe; Mirotznik, Mark S.

    2003-06-01

    In this paper we present a numerical model for evaluating tissue heating during magnetic resonance imaging (MRI). Our method, which included a detailed anatomical model of a human head, calculated both the electromagnetic power deposition and the associated temperature elevations during a MRI head examination. Numerical studies were conducted using a realistic birdcage coil excited at frequencies ranging from 63 MHz to 500 MHz. The model was validated both experimentally and analytically. The experimental validation was performed at the MR test facility located at the FDA's Center for Devices and Radiological Health (CDRH).

  17. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  18. Inputs in the Production of Early Childhood Human Capital: Evidence from Head Start. NBER Working Paper No. 20639

    ERIC Educational Resources Information Center

    Walters, Christopher

    2014-01-01

    Studies of small-scale "model" early-childhood programs show that high-quality preschool can have transformative effects on human capital and economic outcomes. Evidence on the Head Start program is more mixed. Inputs and practices vary widely across Head Start centers, however, and little is known about variation in effectiveness within…

  19. Theory and application of a three-dimensional model of the human spine.

    PubMed

    Belytschko, T; Schwer, L; Privitzer, E

    1978-01-01

    A three-dimensional, discrete model of the human spine, torso, and head was developed for the purpose of evaluating mechanical response in pilot ejection. However, it was developed in sufficient generality to be applicable to other body response problems, such as occupant response in aircraft crash and arbitrary loads on the head-spine system. The anatomy is modelled by a collection of rigid bodies, which represent skeletal segments such as the vertebrae, pelvis, head, and ribs, interconnected by deformable elements, which represent ligaments, cargilagenous joints, viscera and connective tissues. Results are presented for several conditions: different rates of onset, ejection at angles, preejection alignment, and eccentric head loadings. It is shown that slow rates of onset and angling the seat reduce both the peak axial loads and bending moments. In the presence of eccentric head masses, such as helmet-mounted devices, the reflected flexural wave is shown to be the key injury mechanism.

  20. Simulation-based assessment for construction helmets.

    PubMed

    Long, James; Yang, James; Lei, Zhipeng; Liang, Daan

    2015-01-01

    In recent years, there has been a concerted effort for greater job safety in all industries. Personnel protective equipment (PPE) has been developed to help mitigate the risk of injury to humans that might be exposed to hazardous situations. The human head is the most vulnerable to impact as a moderate magnitude can cause serious injury or death. That is why industries have required the use of an industrial hard hat or helmet. There have only been a few articles published to date that are focused on the risk of head injury when wearing an industrial helmet. A full understanding of the effectiveness of construction helmets on reducing injury is lacking. This paper presents a simulation-based method to determine the threshold at which a human will sustain injury when wearing a construction helmet and assesses the risk of injury for wearers of construction helmets or hard hats. Advanced finite element, or FE, models were developed to study the impact on construction helmets. The FE model consists of two parts: the helmet and the human models. The human model consists of a brain, enclosed by a skull and an outer layer of skin. The level and probability of injury to the head was determined using both the head injury criterion (HIC) and tolerance limits set by Deck and Willinger. The HIC has been widely used to assess the likelihood of head injury in vehicles. The tolerance levels proposed by Deck and Willinger are more suited for finite element models but lack wide-scale validation. Different cases of impact were studied using LSTC's LS-DYNA.

  1. A framework for geometry acquisition, 3-D printing, simulation, and measurement of head-related transfer functions with a focus on hearing-assistive devices

    PubMed Central

    Harder, Stine; Paulsen, Rasmus R.; Larsen, Martin; Laugesen, Søren; Mihocic, Michael; Majdak, Piotr

    2017-01-01

    Individual head-related transfer functions (HRTFs) are essential in applications like fitting hearing-assistive devices (HADs) for providing accurate sound localization performance. Individual HRTFs are usually obtained through intricate acoustic measurements. This paper investigates the use of a three-dimensional (3D) head model for acquisition of individual HRTFs. Two aspects were investigated; whether a 3D-printed model can replace measurements on a human listener and whether numerical simulations can replace acoustic measurements. For this purpose, HRTFs were acoustically measured for four human listeners and for a 3D printed head model of one of these listeners. Further, HRTFs were simulated by applying the finite element method to the 3D head model. The monaural spectral features and spectral distortions were very similar between re-measurements and between human and printed measurements, however larger deviations were observed between measurement and simulation. The binaural cues were in agreement among all HRTFs of the same listener, indicating that the 3D model is able to provide localization cues potentially accessible to HAD users. Hence, the pipeline of geometry acquisition, printing, and acoustic measurements or simulations, seems to be a promising step forward towards in-silico design of HADs. PMID:28239188

  2. Heading in football. Part 3: Effect of ball properties on head response

    PubMed Central

    Shewchenko, N; Withnall, C; Keown, M; Gittens, R; Dvorak, J

    2005-01-01

    Objectives: Head impacts from footballs are an essential part of the game but have been implicated in mild and acute neuropsychological impairment. Ball characteristics have been noted in literature to affect the impact response of the head; however, the biomechanics are not well understood. The present study determined whether ball mass, pressure, and construction characteristics help reduce head and neck can impact response. Methods: Head responses under ball impact (6–7 m/s) were measured with a biofidelic numerical human model and controlled human subject trials (n = 3). Three ball masses and four ball pressures were investigated for frontal heading. Further, the effect of ball construction in wet/dry conditions was studied with the numerical model. The dynamic ball characteristics were determined experimentally. Head linear and angular accelerations were measured and compared with injury assessment functions comprising peak values and head impact power. Neck responses were assessed with the numerical model. Results: Ball mass reductions up to 35% resulted in decreased head responses up to 23–35% for the numerical and subject trials. Similar decreases in neck axial and shear responses were observed. Ball pressure reductions of 50% resulted in head and neck response reductions up to 10–31% for the subject trials and numerical model. Head response reductions up to 15% were observed between different ball constructions. The wet condition generally resulted in greater head and neck responses of up to 20%. Conclusion: Ball mass, pressure, and construction can reduce the impact severity to the head and neck. It is foreseeable that the benefits can be extended to players of all ages and skill levels. PMID:16046354

  3. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  4. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.

    PubMed

    Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui

    2017-07-20

    In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.

  5. Influence of visual path information on human heading perception during rotation.

    PubMed

    Li, Li; Chen, Jing; Peng, Xiaozhe

    2009-03-31

    How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.

  6. FLOW SIMULATION IN THE HUMAN UPPER RESPIRATORY TRACT

    EPA Science Inventory


    ABSTRACT

    Computer simulations of airflow patterns within the human upper respiratory tract (URT) are presented. The URT model includes airways of the head (nasal and oral), throat (pharyngeal and laryngeal), and lungs (trachea and main bronchi). The head and throat mor...

  7. Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions

    NASA Astrophysics Data System (ADS)

    Indahlastari, Aprinda; Chauhan, Munish; Schwartz, Benjamin; Sadleir, Rosalind J.

    2016-12-01

    Objective. In this study, we determined efficient head model sizes relative to predicted current densities in transcranial direct current stimulation (tDCS). Approach. Efficiency measures were defined based on a finite element (FE) simulations performed using nine human head models derived from a single MRI data set, having extents varying from 60%-100% of the original axial range. Eleven tissue types, including anisotropic white matter, and three electrode montages (T7-T8, F3-right supraorbital, Cz-Oz) were used in the models. Main results. Reducing head volume extent from 100% to 60%, that is, varying the model’s axial range from between the apex and C3 vertebra to one encompassing only apex to the superior cerebellum, was found to decrease the total modeling time by up to half. Differences between current density predictions in each model were quantified by using a relative difference measure (RDM). Our simulation results showed that {RDM} was the least affected (a maximum of 10% error) for head volumes modeled from the apex to the base of the skull (60%-75% volume). Significance. This finding suggested that the bone could act as a bioelectricity boundary and thus performing FE simulations of tDCS on the human head with models extending beyond the inferior skull may not be necessary in most cases to obtain reasonable precision in current density results.

  8. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  9. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland Scott; Perrone, J. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A template model of human visual self-motion perception (Perrone, JOSA, 1992; Perrone & Stone, Vis. Res., in press), which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results (Warren & Hannon, Nature, 1988; Stone & Perrone, Neuro. Abstr., 1991) including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions (Royden et al., Nature, 1992). We tested the model detectors with stimuli used by others in- single-unit studies. The detectors showed emergent properties similar to those of MST neurons: 1) Sensitivity to non-preferred flow. Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow (Orban et al., PNAS, 1992), and 2) Position invariance. The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields (e.g. Duffy & Wurtz, J. Neurophys., 1991; Graziano et al., J. Neurosci., 1994). It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  10. A neural model of motion processing and visual navigation by cortical area MST.

    PubMed

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  11. Numerical model (switchable/dual model) of the human head for rigid body and finite elements applications.

    PubMed

    Tabacu, Stefan

    2015-01-01

    In this paper, a methodology for the development and validation of a numerical model of the human head using generic procedures is presented. All steps required, starting with the model generation, model validation and applications will be discussed. The proposed model may be considered as a dual one due to its capabilities to switch from deformable to a rigid body according to the application's requirements. The first step is to generate the numerical model of the human head using geometry files or medical images. The required stiffness and damping for the elastic connection used for the rigid body model are identified by performing a natural frequency analysis. The presented applications for model validation are related to impact analysis. The first case is related to Nahum's (Nahum and Smith 1970) experiments pressure data being evaluated and a pressure map generated using the results from discrete elements. For the second case, the relative displacement between the brain and the skull is evaluated according to Hardy's (Hardy WH, Foster CD, Mason, MJ, Yang KH, King A, Tashman S. 2001.Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337-368, SAE Paper 2001-22-0016) experiments. The main objective is to validate the rigid model as a quick and versatile tool for acquiring the input data for specific brain analyses.

  12. Motivating drivers to correctly adjust head restraints: assessing effectiveness of three different interventions.

    PubMed

    Fockler, S K; Vavrik, J; Kristiansen, L

    1998-11-01

    Three types of driver educational strategies were tested to determine the most effective approach for motivating drivers to adjust their head restraints to the correct vertical position: (1) a human interactive personal contact with a member of an ICBC-trained head restraint adjustment team, (2) a passive video presentation of the consequences of correct and incorrect head restraint adjustment, and (3) an interactive three-dimensional kinetic model showing the consequences of correct and incorrect head restraint adjustment. An experimental pretest-posttest control group design was used. A different educational treatment was used in each of three lanes of a vehicle emissions testing facility, with a fourth lane with no intervention serving as a control group. Observational and self-reported data were obtained from a total of 1,974 vehicles entering and exiting the facility. The human intervention led to significantly more drivers actually adjusting their head restraints immediately after the intervention than the passive video or interactive kinetic model approaches, which were both no different from the control group. The human intervention was recommended as the most effective and was implemented successfully on a limited basis during 3 months of 1995 and again during 3 months of 1996.

  13. Experimental Injury Biomechanics of the Pediatric Head and Brain

    NASA Astrophysics Data System (ADS)

    Margulies, Susan; Coats, Brittany

    Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States and results in over 2,500 childhood deaths, 37,000 hospitalizations, and 435,000 emergency department visits each year (Langlois et al. 2004). Computational models of the head have proven to be powerful tools to help us understand mechanisms of adult TBI and to determine load thresholds for injuries specific to adult TBI. Similar models need to be developed for children and young adults to identify age-specific mechanisms and injury tolerances appropriate for children and young adults. The reliability of these tools, however, depends heavily on the availability of pediatric tissue material property data. To date the majority of material and structural properties used in pediatric computer models have been scaled from adult human data. Studies have shown significant age-related differences in brain and skull properties (Prange and Margulies 2002; Coats and Margulies 2006a, b), indicating that the pediatric head cannot be modeled as a miniature adult head, and pediatric computer models incorporating age-specific data are necessary to accurately mimic the pediatric head response to impact or rotation. This chapter details the developmental changes of the pediatric head and summarizes human pediatric properties currently available in the literature. Because there is a paucity of human pediatric data, material properties derived from animal tissue are also presented to demonstrate possible age-related differences in the heterogeneity and rate dependence of tissue properties. The chapter is divided into three main sections: (1) brain, meninges, and cerebral spinal fluid (CSF); (2) skull; and (3) scalp.

  14. Modeling the Biodynamical Response of the Human Head for Injury Analysis

    DTIC Science & Technology

    2001-09-01

    1 II. BACKGROUND ..............................................5 A. HUMAN ANATOMY ......................................5...facilitate the simulation of the sled acceleration test used for model validation. A. HUMAN ANATOMY 1. The Spine The muscles and other soft tissue

  15. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    PubMed

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. Published by Elsevier Inc.

  16. A Literature Review of Musculoskeletal Injuries to the Human Neck and the Effects of Head-Supported Mass Worn by Soldier

    DTIC Science & Technology

    2005-10-01

    in whiplash -type injury studies (Table 1). At the time it was the most sophisticated head - neck model available. This model uses a series of rigid...phase of rear-end whiplash loading (i.e. the extension phase). In this initial phase, the head translates backward, putting the upper spine in local...work to characterize neck response in impact scenarios has been performed, the effect of musculature on head -neck whiplash -type response is still

  17. Modal analysis of the human neck in vivo as a criterion for crash test dummy evaluation

    NASA Astrophysics Data System (ADS)

    Willinger, R.; Bourdet, N.; Fischer, R.; Le Gall, F.

    2005-10-01

    Low speed rear impact remains an acute automative safety problem because of a lack of knowledge of the mechanical behaviour of the human neck early after impact. Poorly validated mathematical models of the human neck or crash test dummy necks make it difficult to optimize automotive seats and head rests. In this study we have constructed an experimental and theoretical modal analysis of the human head-neck system in the sagittal plane. The method has allowed us to identify the mechanical properties of the neck and to validate a mathematical model in the frequency domain. The extracted modal characteristics consist of a first natural frequency at 1.3±0.1 Hz associated with head flexion-extension motion and a second mode at 8±0.7 Hz associated with antero-posterior translation of the head, also called retraction motion. Based on this new validation parameters we have been able to compare the human and crash test dummy frequency response functions and to evaluate their biofidelity. Three head-neck systems of current test dummies dedicated for use in rear-end car crash accident investigations have been evaluated in the frequency domain. We did not consider any to be acceptable, either because of excessive rigidity of their flexion-extension mode or because they poorly reproduce the head translation mode. In addition to dummy evaluation, this study provides new insight into injury mechanisms when a given natural frequency can be linked to a specific neck deformation.

  18. Head and neck resonance in a rhesus monkey - a comparison with results from a human model

    NASA Astrophysics Data System (ADS)

    Tinniswood, Adam; Gandhi, Om P.

    1999-03-01

    The use of primates for examining the effects of electromagnetic radiation on behavioural patterns is well established. Rats have also been used for this purpose. However, the monkey is of greater interest as its physiological make-up is somewhat closer to that of the human. Since the behavioural effects are likely to occur at lower field strengths for resonant absorption conditions for the head and neck, the need for determination of resonance frequencies for this region is obvious. Numerical techniques are ideal for the prediction of coupling to each of the organs, and accurate anatomically based models can be used to pinpoint the conditions for maximum absorption in the head in order to focus the experiments. In this paper we use two models, one of a human male and the other of a rhesus monkey, and find the mass-averaged power absorption spectra for both. The frequencies at which highest absorption (i.e. resonance) occurs in both the whole body and the head and neck region are determined. The results from these two models are compared for both E-polarization and k-polarization, and are shown to obey basic electromagnetic scaling principles.

  19. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591

  20. Levels of detail analysis of microwave scattering from human head models for brain stroke detection

    PubMed Central

    2017-01-01

    In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115

  1. Wavelet analysis of head acceleration response under dirac excitation for early oedema detection.

    PubMed

    Kostopoulos, V; Loutas, T H; Derdas, C; Douzinas, E

    2008-04-01

    The present work deals with the application of an innovative in-house developed wavelet-based methodology for the analysis of the acceleration responses of a human head complex model as a simulated diffused oedema progresses. The human head complex has been modeled as a structure consisting of three confocal prolate spheroids, whereas the three defined regions by the system of spheroids, from the outside to the inside, represent the scull, the region of cerebrospinal fluid, and the brain tissue. A Dirac-like pulse has been used to excite the human head complex model and the acceleration response of the system has been calculated and analyzed via the wavelet-based methodology. For the purpose of the present analysis, a wave propagation commercial finite element code, LS-DYNA 3D, has been used. The progressive diffused oedema was modeled via consecutive increases in brain volume accompanied by a decrease in brain density. It was shown that even a small increase in brain volume (at the level of 0.5%) can be identified by the effect it has on the vibration characteristics of the human head complex. More precisely, it was found that for some of the wavelet decomposition levels, the energy content changes monotonically as the brain volume increases, thus providing a useful index of monitoring an oncoming brain oedema before any brain damage appears due to uncontrolled intracranial hypertension. For the purpose of the present work and for the levels of brain volume increase considered in the present analysis, no pressure increase was assumed into the cranial vault and, associatively, no brain compliance variation.

  2. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass.

    PubMed

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.

  3. Eye-head coordination during free exploration in human and cat.

    PubMed

    Einhäuser, Wolfgang; Moeller, Gudrun U; Schumann, Frank; Conradt, Jörg; Vockeroth, Johannes; Bartl, Klaus; Schneider, Erich; König, Peter

    2009-05-01

    Eye, head, and body movements jointly control the direction of gaze and the stability of retinal images in most mammalian species. The contribution of the individual movement components, however, will largely depend on the ecological niche the animal occupies and the layout of the animal's retina, in particular its photoreceptor density distribution. Here the relative contribution of eye-in-head and head-in-world movements in cats is measured, and the results are compared to recent human data. For the cat, a lightweight custom-made head-mounted video setup was used (CatCam). Human data were acquired with the novel EyeSeeCam device, which measures eye position to control a gaze-contingent camera in real time. For both species, analysis was based on simultaneous recordings of eye and head movements during free exploration of a natural environment. Despite the substantial differences in ecological niche, photoreceptor density, and saccade frequency, eye-movement characteristics in both species are remarkably similar. Coordinated eye and head movements dominate the dynamics of the retinal input. Interestingly, compensatory (gaze-stabilizing) movements play a more dominant role in humans than they do in cats. This finding was interpreted to be a consequence of substantially different timescales for head movements, with cats' head movements showing about a 5-fold faster dynamics than humans. For both species, models and laboratory experiments therefore need to account for this rich input dynamic to obtain validity for ecologically realistic settings.

  4. Low resolution brain electromagnetic tomography in a realistic geometry head model: a simulation study

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Lai, Yuan; He, Bin

    2005-01-01

    It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multi-source localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.

  5. Modeling the mechanics of axonal fiber tracts using the embedded finite element method.

    PubMed

    Garimella, Harsha T; Kraft, Reuben H

    2017-05-01

    A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Trans-cranial focused ultrasound without hair shaving: feasibility study in an ex vivo cadaver model

    PubMed Central

    2013-01-01

    In preparing a patient for a trans-cranial magnetic resonance (MR)-guided focused ultrasound procedure, current practice is to shave the patient’s head on treatment day. Here we present an initial attempt to evaluate the feasibility of trans-cranial focused ultrasound in an unshaved, ex vivo human head model. A human skull filled with tissue-mimicking phantom and covered with a wig made of human hair was sonicated using 220- and 710-kHz head transducers to evaluate the feasibility of acoustic energy transfer. Heating at the focal point was measured by MR proton resonance shift thermometry. Results showed that the hair had a negligible effect on focal spot thermal rise at 220 kHz and a 17% drop in temperature elevation when using 710 kHz. PMID:25512865

  7. Evaluation of Acoustic Propagation Paths into the Human Head

    DTIC Science & Technology

    2005-07-25

    paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult male head. Finite-element analysis was used to model the...air-borne sound pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database ... database of an adult male head Coupled acoustic-mechanical finite-element analysis (FEA) was used to model the wave propagation through the fluid-solid

  8. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking.

    PubMed

    Lee, Min Su; Ju, Hojin; Song, Jin Woo; Park, Chan Gook

    2015-11-06

    In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT)-based pedestrian dead reckoning (PDR) and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF) on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE) with respect to walking distance is achieved.

  9. Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first.

    PubMed

    Corneil, Brian D; Elsley, James K

    2005-07-01

    The countermanding task requires subjects to cancel a planned movement on appearance of a stop signal, providing insights into response generation and suppression. Here, we studied human eye-head gaze shifts in a countermanding task with targets located beyond the horizontal oculomotor range. Consistent with head-restrained saccadic countermanding studies, the proportion of gaze shifts on stop trials increased the longer the stop signal was delayed after target presentation, and gaze shift stop-signal reaction times (SSRTs: a derived statistic measuring how long it takes to cancel a movement) averaged approximately 120 ms across seven subjects. We also observed a marked proportion of trials (13% of all stop trials) during which gaze remained stable but the head moved toward the target. Such head movements were more common at intermediate stop signal delays. We never observed the converse sequence wherein gaze moved while the head remained stable. SSRTs for head movements averaged approximately 190 ms or approximately 70-75 ms longer than gaze SSRTs. Although our findings are inconsistent with a single race to threshold as proposed for controlling saccadic eye movements, movement parameters on stop trials attested to interactions consistent with a race model architecture. To explain our data, we tested two extensions to the saccadic race model. The first assumed that gaze shifts and head movements are controlled by parallel but independent races. The second model assumed that gaze shifts and head movements are controlled by a single race, preceded by terminal ballistic intervals not under inhibitory control, and that the head-movement branch is activated at a lower threshold. Although simulations of both models produced acceptable fits to the empirical data, we favor the second alternative as it is more parsimonious with recent findings in the oculomotor system. Using the second model, estimates for gaze and head ballistic intervals were approximately 25 and 90 ms, respectively, consistent with the known physiology of the final motor paths. Further, the threshold of the head movement branch was estimated to be 85% of that required to activate gaze shifts. From these results, we conclude that a commitment to a head movement is made in advance of gaze shifts and that the comparative SSRT differences result primarily from biomechanical differences inherent to eye and head motion.

  10. Human activities recognition by head movement using partial recurrent neural network

    NASA Astrophysics Data System (ADS)

    Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.

    2003-06-01

    Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.

  11. Head-first impact with head protrusion causes noncontiguous injuries of the cadaveric cervical spine.

    PubMed

    Ivancic, Paul C

    2012-09-01

    To simulate horizontally aligned head-first impacts with initial head protrusion using a human cadaveric neck model and to determine biomechanical responses, injuries, and injury severity. Head-first impacts with initial head protrusion were simulated at 2.4 m/s using a human cadaver neck model (n = 10) mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Macroscopic neck injuries were determined, and ligamentous injuries were quantified using fluoroscopy and visual inspection after the impacts. Representative time-history responses for injured specimens were determined during impact using load cell data and analyses of high-speed video. Biomechanics research laboratory. Cervical spines of 10 human cadavers. Injury severity at the middle and lower cervical spine was statistically compared using a 2-sample t test (P < 0.05). Neck buckling consisted of hyperflexion at C6/7 and C7/T1 and hyperextension at superior spinal levels. Noncontiguous neck injuries included forward dislocation at C7/T1, spinous process fracture and compression-extension injuries at the middle cervical spine, and atlas and odontoid fractures. Ligamentous injury severity at C7/T1 was significantly greater than at the middle cervical spine. Distinct injury mechanisms were observed throughout the neck, consisting of extension-compression and posterior shear at the upper and middle cervical spine and flexion-compression and anterior shear at C6/7 and C7/T1. Our experimental results highlight the importance of clinical awareness of potential noncontiguous cervical spine injuries due to head-first sports impacts.

  12. The virtual morphology and the main movements of the human neck simulations used for car crash studies

    NASA Astrophysics Data System (ADS)

    Ciunel, St.; Tica, B.

    2016-08-01

    The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.

  13. A numerical and experimental comparison of human head phantoms for compliance testing of mobile telephone equipment.

    PubMed

    Christ, Andreas; Chavannes, Nicolas; Nikoloski, Neviana; Gerber, Hans-Ulrich; Poković, Katja; Kuster, Niels

    2005-02-01

    A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.

  14. Mobile phone types and SAR characteristics of the human brain.

    PubMed

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-07

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  15. Mobile phone types and SAR characteristics of the human brain

    NASA Astrophysics Data System (ADS)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-01

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  16. The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting

    PubMed Central

    Huang, Yu; Parra, Lucas C.; Haufe, Stefan

    2018-01-01

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm 3 resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. PMID:26706450

  17. Ultrastructural Morphology of Sperm from Human Globozoospermia

    PubMed Central

    Ricci, Giuseppe; Andolfi, Laura; Luppi, Stefania; Boscolo, Rita; Zweyer, Marina; Trevisan, Elisa

    2015-01-01

    Globozoospermia is a rare disorder characterized by the presence of sperm with round head, lacking acrosome. Coiling tail around the nucleus has been reported since early human studies, but no specific significance has conferred it. By contrast, studies on animal models suggest that coiling tail around the nucleus could represent a crucial step of defective spermatogenesis, resulting in round-headed sperm. No observations, so far, support the transfer of this hypothesis to human globozoospermia. The purpose of this work was to compare ultrastructural morphology of human and mouse model globozoospermic sperm. Sperm have been investigated by using scanning and transmission electron microscopy. The images that we obtained show significant similarities to those described in GOPC knockout mice, an animal model of globozoospermia. By using this model as reference, we were able to identify the probable steps of the tail coiling process in human globozoospermia. Although we have no evidence that there is the same pathophysiology in man and knocked-out mouse, the similarities between these ultrastructural observations in human and those in the experimental model are very suggestive. This is the first demonstration of the existence of relevant morphological homologies between the tail coiling in animal model and human globozoospermia. PMID:26436098

  18. Effect of cell-phone radiofrequency on angiogenesis and cell invasion in human head and neck cancer cells.

    PubMed

    Alahmad, Yaman M; Aljaber, Mohammed; Saleh, Alaaeldin I; Yalcin, Huseyin C; Aboulkassim, Tahar; Yasmeen, Amber; Batist, Gerald; Moustafa, Ala-Eddin Al

    2018-05-13

    Today, the cell phone is the most widespread technology globally. However, the outcome of cell-phone radiofrequency on head and neck cancer progression has not yet been explored. The chorioallantoic membrane (CAM) and human head and neck cancer cell lines, FaDu and SCC25, were used to explore the outcome of cell-phone radiofrequency on angiogenesis, cell invasion, and colony formation of head and neck cancer cells, respectively. Western blot analysis was used to investigate the impact of the cell phone on the regulation of E-cadherin and Erk1/Erk2 genes. Our data revealed that cell-phone radiofrequency promotes angiogenesis of the CAM. In addition, the cell phone enhances cell invasion and colony formation of human head and neck cancer cells; this is accompanied by a downregulation of E-cadherin expression. More significantly, we found that the cell phone can activate Erk1/Erk2 in our experimental models. Our investigation reveals that cell-phone radiofrequency could enhance head and neck cancer by stimulating angiogenesis and cell invasion via Erk1/Erk2 activation. © 2018 Wiley Periodicals, Inc.

  19. A research on the postural stability of a person wearing the lower limb exoskeletal robot by the HAT model.

    PubMed

    Chang, Minsu; Kim, Yeongmin; Lee, Yoseph; Jeon, Doyoung

    2017-07-01

    This paper proposes a method of detecting the postural stability of a person wearing the lower limb exoskeletal robot with the HAT(Head-Arm-Trunk) model. Previous studies have shown that the human posture is stable when the CoM(Center of Mass) of the human body is placed on the BoS(Base of Support). In the case of the lower limb exoskeletal robot, the motion data, which are used for the CoM estimation, are acquired by sensors in the robot. The upper body, however, does not have sensors in each segment so that it may cause the error of the CoM estimation. In this paper, the HAT(Head-Arm-Trunk) model which combines head, arms, and torso into a single segment is considered because the motion of head and arms are unknown due to the lack of sensors. To verify the feasibility of HAT model, the reflecting markers are attached to each segment of the whole human body and the exact motion data are acquired by the VICON to compare the COM of the full body model and HAT model. The difference between the CoM with full body and that with HAT model is within 20mm for the various motions of head and arms. Based on the HAT model, the XCoM(Extrapolated Center of Mass) which includes the velocity of the CoM is used for prediction of the postural stability. The experiment of making unstable posture shows that the XCoM of the whole body based on the HAT model is feasible to detect the instance of postural instability earlier than the CoM by 20-250 msec. This result may be used for the lower limb exoskeletal robot to prepare for any action to prevent the falling down.

  20. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  1. Novel Model of Frontal Impact Closed Head Injury in the Rat

    PubMed Central

    Kilbourne, Michael; Kuehn, Reed; Tosun, Cigdem; Caridi, John; Keledjian, Kaspar; Bochicchio, Grant; Scalea, Thomas; Gerzanich, Volodymyr

    2009-01-01

    Abstract Frontal impact, closed head trauma is a frequent cause of traumatic brain injury (TBI) in motor vehicle and sports accidents. Diffuse axonal injury (DAI) is common in humans and experimental animals, and results from shearing forces that develop within the anisotropic brain. Because the specific anisotropic properties of the brain are axis-dependent, the anatomical site where force is applied as well as the resultant acceleration, be it linear, rotational, or some combination, are important determinants of the resulting pattern of brain injury. Available rodent models of closed head injury do not reproduce the frontal impact commonly encountered in humans. Here we describe a new rat model of closed head injury that is a modification of the impact-acceleration model of Marmarou. In our model (the Maryland model), the impact force is applied to the anterior part of the cranium and produces TBI by causing anterior-posterior plus sagittal rotational acceleration of the brain inside the intact cranium. Skull fractures, prolonged apnea, and mortality were absent. The animals exhibited petechial hemorrhages, DAI marked by a bead-like pattern of β-amyloid precursor protein (β-APP) in damaged axons, and widespread upregulation of β-APP in neurons, with regions affected including the orbitofrontal cortex (coup), corpus callosum, caudate, putamen, thalamus, cerebellum, and brainstem. Activated caspase-3 was prominent in hippocampal neurons and Purkinje cells at the grey-white matter junction of the cerebellum. Neurobehavioral dysfunction, manifesting as reduced spontaneous exploration, lasted more than 1 week. We conclude that the Maryland model produces diffuse injuries that may be relevant to human brain injury. PMID:19929375

  2. Exploratory study on the methodology of fast imaging of unilateral stroke lesions by electrical impedance asymmetry in human heads.

    PubMed

    Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.

  3. Exploratory Study on the Methodology of Fast Imaging of Unilateral Stroke Lesions by Electrical Impedance Asymmetry in Human Heads

    PubMed Central

    Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke. PMID:25006594

  4. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model.

    PubMed

    Strati, Katerina; Pitot, Henry C; Lambert, Paul F

    2006-09-19

    Head and neck squamous cell carcinoma (HNSCC) is a leading cause of cancer mortality worldwide. Recent reports have associated a subset of HNSCC with high-risk human papillomaviruses (HPVs), particularly HPV16, the same subset of HPVs responsible for the majority of cervical and anogenital cancers. In this study we describe a mouse model for HPV-associated HNSCC that employs mice transgenic for the HPV16 oncogenes E6 and E7. In these mice, E6 and E7 induce aberrant epithelial proliferation and, in the presence of a chemical carcinogen, they increase dramatically the animal's susceptibility to HNSCC. The cancers arising in the HPV16-transgenic mice mirror the molecular and histopathological characteristics of human HPV-positive HNSCC that distinguish the latter from human HPV-negative HNSCC, including overexpression of p16 protein and formation of more basaloid cancers. This validated model of HPV-associated HNSCC provides the means to define the contributions of individual HPV oncogenes to HNSCC and to understand the molecular basis for the differing clinical properties of HPV-positive and HPV-negative human HNSCC. From this study, we identify minichromosome maintenance protein 7 (MCM7) and p16 as potentially useful biomarkers for HPV-positive head and neck cancer.

  5. Feasibility of Primary Tumor Culture Models and Preclinical Prediction Assays for Head and Neck Cancer: A Narrative Review

    PubMed Central

    Dohmen, Amy J. C.; Swartz, Justin E.; Van Den Brekel, Michiel W. M.; Willems, Stefan M.; Spijker, René; Neefjes, Jacques; Zuur, Charlotte L.

    2015-01-01

    Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well. PMID:26343729

  6. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  7. S-values calculated from a tomographic head/brain model for brain imaging

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-chian; Xu, X. George

    2004-11-01

    A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.

  8. Development of a head-phantom and measurement setup for lightning effects.

    PubMed

    Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael

    2016-08-01

    Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.

  9. Sensing Passive Eye Response to Impact Induced Head Acceleration Using MEMS IMUs.

    PubMed

    Meng, Yuan; Bottenfield, Brent; Bolding, Mark; Liu, Lei; Adams, Mark L

    2018-02-01

    The eye may act as a surrogate for the brain in response to head acceleration during an impact. Passive eye movements in a dynamic system are sensed by microelectromechanical systems (MEMS) inertial measurement units (IMU) in this paper. The technique is validated using a three-dimensional printed scaled human skull model and on human volunteers by performing drop-and-impact experiments with ribbon-style flexible printed circuit board IMUs inserted in the eyes and reference IMUs on the heads. Data are captured by a microcontroller unit and processed using data fusion. Displacements are thus estimated and match the measured parameters. Relative accelerations and displacements of the eye to the head are computed indicating the influence of the concussion causing impacts.

  10. An ex vivo model in human femoral heads for histopathological study and resonance frequency analysis of dental implant primary stability.

    PubMed

    Hernández-Cortés, Pedro; Monje, Alberto; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Mesa, Francisco; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David; O'Valle, Francisco

    2014-01-01

    This study was designed to explore relationships of resonance frequency analysis (RFA)-assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies.

  11. The role of passive avian head stabilization in flapping flight

    PubMed Central

    Pete, Ashley E.; Kress, Daniel; Dimitrov, Marina A.; Lentink, David

    2015-01-01

    Birds improve vision by stabilizing head position relative to their surroundings, while their body is forced up and down during flapping flight. Stabilization is facilitated by compensatory motion of the sophisticated avian head–neck system. While relative head motion has been studied in stationary and walking birds, little is known about how birds accomplish head stabilization during flapping flight. To unravel this, we approximate the avian neck with a linear mass–spring–damper system for vertical displacements, analogous to proven head stabilization models for walking humans. We corroborate the model's dimensionless natural frequency and damping ratios from high-speed video recordings of whooper swans (Cygnus cygnus) flying over a lake. The data show that flap-induced body oscillations can be passively attenuated through the neck. We find that the passive model robustly attenuates large body oscillations, even in response to head mass and gust perturbations. Our proof of principle shows that bird-inspired drones with flapping wings could record better images with a swan-inspired passive camera suspension. PMID:26311316

  12. Head Lice Surveillance on a Deregulated OTC-Sales Market: A Study Using Web Query Data

    PubMed Central

    Lindh, Johan; Magnusson, Måns; Grünewald, Maria; Hulth, Anette

    2012-01-01

    The head louse, Pediculus humanus capitis, is an obligate ectoparasite that causes infestations of humans. Studies have demonstrated a correlation between sales figures for over-the-counter (OTC) treatment products and the number of humans with head lice. The deregulation of the Swedish pharmacy market on July 1, 2009, decreased the possibility to obtain complete sale figures and thereby the possibility to obtain yearly trends of head lice infestations. In the presented study we wanted to investigate whether web queries on head lice can be used as substitute for OTC sales figures. Via Google Insights for Search and Vårdguiden medical web site, the number of queries on “huvudlöss” (head lice) and “hårlöss” (lice in hair) were obtained. The analysis showed that both the Vårdguiden series and the Google series were statistically significant (p<0.001) when added separately, but if the Google series were already included in the model, the Vårdguiden series were not statistically significant (p = 0.5689). In conclusion, web queries can detect if there is an increase or decrease of head lice infested humans in Sweden over a period of years, and be as reliable a proxy as the OTC-sales figures. PMID:23144923

  13. Head lice surveillance on a deregulated OTC-sales market: a study using web query data.

    PubMed

    Lindh, Johan; Magnusson, Måns; Grünewald, Maria; Hulth, Anette

    2012-01-01

    The head louse, Pediculus humanus capitis, is an obligate ectoparasite that causes infestations of humans. Studies have demonstrated a correlation between sales figures for over-the-counter (OTC) treatment products and the number of humans with head lice. The deregulation of the Swedish pharmacy market on July 1, 2009, decreased the possibility to obtain complete sale figures and thereby the possibility to obtain yearly trends of head lice infestations. In the presented study we wanted to investigate whether web queries on head lice can be used as substitute for OTC sales figures. Via Google Insights for Search and Vårdguiden medical web site, the number of queries on "huvudlöss" (head lice) and "hårlöss" (lice in hair) were obtained. The analysis showed that both the Vårdguiden series and the Google series were statistically significant (p<0.001) when added separately, but if the Google series were already included in the model, the Vårdguiden series were not statistically significant (p = 0.5689). In conclusion, web queries can detect if there is an increase or decrease of head lice infested humans in Sweden over a period of years, and be as reliable a proxy as the OTC-sales figures.

  14. Computational Electromagnetic Analysis in a Human Head Model with EEG Electrodes and Leads Exposed to RF-Field Sources at 915 MHz and 1748 MHz

    PubMed Central

    Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang

    2010-01-01

    An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803

  15. Modular use of human body models of varying levels of complexity: Validation of head kinematics.

    PubMed

    Decker, William; Koya, Bharath; Davis, Matthew L; Gayzik, F Scott

    2017-05-29

    The significant computational resources required to execute detailed human body finite-element models has motivated the development of faster running, simplified models (e.g., GHBMC M50-OS). Previous studies have demonstrated the ability to modularly incorporate the validated GHBMC M50-O brain model into the simplified model (GHBMC M50-OS+B), which allows for localized analysis of the brain in a fraction of the computation time required for the detailed model. The objective of this study is to validate the head and neck kinematics of the GHBMC M50-O and M50-OS (detailed and simplified versions of the same model) against human volunteer test data in frontal and lateral loading. Furthermore, the effect of modular insertion of the detailed brain model into the M50-OS is quantified. Data from the Navy Biodynamics Laboratory (NBDL) human volunteer studies, including a 15g frontal, 8g frontal, and 7g lateral impact, were reconstructed and simulated using LS-DYNA. A five-point restraint system was used for all simulations, and initial positions of the models were matched with volunteer data using settling and positioning techniques. Both the frontal and lateral simulations were run with the M50-O, M50-OS, and M50-OS+B with active musculature for a total of nine runs. Normalized run times for the various models used in this study were 8.4 min/ms for the M50-O, 0.26 min/ms for the M50-OS, and 0.97 min/ms for the M50-OS+B, a 32- and 9-fold reduction in run time, respectively. Corridors were reanalyzed for head and T1 kinematics from the NBDL studies. Qualitative evaluation of head rotational accelerations and linear resultant acceleration, as well as linear resultant T1 acceleration, showed reasonable results between all models and the experimental data. Objective evaluation of the results for head center of gravity (CG) accelerations was completed via ISO TS 18571, and indicated scores of 0.673 (M50-O), 0.638 (M50-OS), and 0.656 (M50-OS+B) for the 15g frontal impact. Scores at lower g levels yielded similar results, 0.667 (M50-O), 0.675 (M50-OS), and 0.710 (M50-OS+B) for the 8g frontal impact. The 7g lateral simulations also compared fairly with an average ISO score of 0.565 for the M50-O, 0.634 for the M50-OS, and 0.606 for the M50-OS+B. The three HBMs experienced similar head and neck motion in the frontal simulations, but the M50-O predicted significantly greater head rotation in the lateral simulation. The greatest departure from the detailed occupant models were noted in lateral flexion, potentially indicating the need for further study. Precise modeling of the belt system however was limited by available data. A sensitivity study of these parameters in the frontal condition showed that belt slack and muscle activation have a modest effect on the ISO score. The reduction in computation time of the M50-OS+B reduces the burden of high computational requirements when handling detailed HBMs. Future work will focus on harmonizing the lateral head response of the models and studying localized injury criteria within the brain from the M50-O and M50-OS+B.

  16. Head and cervical spine posture in behaving rats: implications for modeling human conditions involving the head and cervical spine.

    PubMed

    Griffin, C; Choong, W Y; Teh, W; Buxton, A J; Bolton, P S

    2015-02-01

    The aim of this study was to define the temporal and spatial (postural) characteristics of the head and cervical vertebral column (spine) of behaving rats in order to better understand their suitability as a model to study human conditions involving the head and neck. Time spent in each of four behavioral postures was determined from video tape recordings of rats (n = 10) in the absence and presence of an intruder rat. Plain film radiographic examination of a subset of these rats (n = 5) in each of these postures allowed measurement of head and cervical vertebral column positions adopted by the rats. When single they were quadruped or crouched most (∼80%) of the time and bipedal either supported or free standing for only ∼10% of the time. The introduction of an intruder significantly (P < 0.0001) reduced the proportion of time rats spent quadruped (median, from 71% to 47%) and bipedal free standing (median, from 2.9% to 0.4%). The cervical spine was orientated (median, 25-75 percentile) near vertical (18.8°, 4.2°-30.9°) when quadruped, crouched (15.4°, 7.6°-69.3°) and bipedal supported (10.5°, 4.8°-22.6°) but tended to be less vertical oriented when bipedal free standing (25.9°, 7.7°-39.3°). The range of head positions relative to the cervical spine was largest when crouched (73.4°) and smallest when erect free standing (17.7°). This study indicates that, like humans, rats have near vertical orientated cervical vertebral columns but, in contrast to humans, they displace their head in space by movements at both the cervico-thoracic junction and the cranio-cervical regions. © 2014 Wiley Periodicals, Inc.

  17. Getting Ahead of Oneself: Anticipation and the Vestibulo-ocular Reflex (VOR)

    PubMed Central

    King, W. Michael

    2014-01-01

    Compensatory counter-rotations of the eyes provoked by head turns are commonly attributed to the vestibulo-ocular reflex (VOR). A recent study in guinea pigs demonstrates, however, that this assumption is not always valid. During voluntary head turns, guinea pigs make highly accurate compensatory eye movements that occur with zero or even negative latencies with respect to the onset of the provoking head movements. Furthermore, the anticipatory eye movements occur in animals with bilateral peripheral vestibular lesions, thus confirming that they have an extra vestibular origin. This discovery suggests the possibility that anticipatory responses might also occur in other species including humans and non-human primates, but have been overlooked and mistakenly identified as being produced by the VOR. This review will compare primate and guinea pig vestibular physiology in light of these new findings. A unified model of vestibular and cerebellar pathways will be presented that is consistent with current data in primates and guinea pigs. The model is capable of accurately simulating compensatory eye movements to active head turns (anticipatory responses) and to passive head perturbations (VOR induced eye movements) in guinea pigs and in human subjects who use coordinated eye and head movements to shift gaze direction in space. Anticipatory responses provide new evidence and opportunities to study the role of extra vestibular signals in motor control and sensory-motor transformations. Exercises that employ voluntary head turns are frequently used to improve visual stability in patients with vestibular hypofunction. Thus, a deeper understanding of the origin and physiology of anticipatory responses could suggest new translational approaches to rehabilitative training of patients with bilateral vestibular loss. PMID:23370320

  18. EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System.

    PubMed

    Inum, Reefat; Rana, Md Masud; Shushama, Kamrun Nahar; Quader, Md Anwarul

    2018-01-01

    A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S -parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain.

  19. EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System

    PubMed Central

    Rana, Md. Masud; Shushama, Kamrun Nahar; Quader, Md. Anwarul

    2018-01-01

    A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S-parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain. PMID:29623087

  20. Real-time face and gesture analysis for human-robot interaction

    NASA Astrophysics Data System (ADS)

    Wallhoff, Frank; Rehrl, Tobias; Mayer, Christoph; Radig, Bernd

    2010-05-01

    Human communication relies on a large number of different communication mechanisms like spoken language, facial expressions, or gestures. Facial expressions and gestures are one of the main nonverbal communication mechanisms and pass large amounts of information between human dialog partners. Therefore, to allow for intuitive human-machine interaction, a real-time capable processing and recognition of facial expressions, hand and head gestures are of great importance. We present a system that is tackling these challenges. The input features for the dynamic head gestures and facial expressions are obtained from a sophisticated three-dimensional model, which is fitted to the user in a real-time capable manner. Applying this model different kinds of information are extracted from the image data and afterwards handed over to a real-time capable data-transferring framework, the so-called Real-Time DataBase (RTDB). In addition to the head and facial-related features, also low-level image features regarding the human hand - optical flow, Hu-moments are stored into the RTDB for the evaluation process of hand gestures. In general, the input of a single camera is sufficient for the parallel evaluation of the different gestures and facial expressions. The real-time capable recognition of the dynamic hand and head gestures are performed via different Hidden Markov Models, which have proven to be a quick and real-time capable classification method. On the other hand, for the facial expressions classical decision trees or more sophisticated support vector machines are used for the classification process. These obtained results of the classification processes are again handed over to the RTDB, where other processes (like a Dialog Management Unit) can easily access them without any blocking effects. In addition, an adjustable amount of history can be stored by the RTDB buffer unit.

  1. Parameter study for child injury mitigation in near-side impacts through FE simulations.

    PubMed

    Andersson, Marianne; Pipkorn, Bengt; Lövsund, Per

    2012-01-01

    The objective of this study is to investigate the effects of crash-related car parameters on head and chest injury measures for 3- and 12-year-old children in near-side impacts. The evaluation was made using a model of a complete passenger car that was impacted laterally by a barrier. The car model was validated in 2 crash conditions: the Insurance Institute for Highway Safety (IIHS) and the US New Car Assessment Program (NCAP) side impact tests. The Small Side Impact Dummy (SID-IIs) and the human body model 3 (HBM3) (Total HUman Model for Safety [THUMS] 3-year-old) finite element models were used for the parametric investigation (HBM3 on a booster). The car parameters were as follows: vehicle mass, side impact structure stiffness, a head air bag, a thorax-pelvis air bag, and a seat belt with pretensioner. The studied dependent variables were as follows: resultant head linear acceleration, resultant head rotational acceleration, chest viscous criterion, rib deflection, and relative velocity at head impact. The chest measurements were only considered for the SID-IIs. The head air bag had the greatest effect on the head measurements for both of the occupant models. On average, it reduced the peak head linear acceleration by 54 g for the HBM3 and 78 g for the SID-IIs. The seat belt had the second greatest effect on the head measurements; the peak head linear accelerations were reduced on average by 39 g (HBM3) and 44 g (SID-IIs). The high stiffness side structure increased the SID-IIs' head acceleration, whereas it had marginal effect on the HBM3. The vehicle mass had a marginal effect on SID-IIs' head accelerations, whereas the lower vehicle mass caused 18 g higher head acceleration for HBM3 and the greatest rotational acceleration. The thorax-pelvis air bag, vehicle mass, and seat belt pretensioner affected the chest measurements the most. The presence of a thorax-pelvis air bag, high vehicle mass, and a seat belt pretensioner all reduced the chest viscous criterion (VC) and peak rib deflection in the SID-IIs. The head and thorax-pelvis air bags have the potential to reduce injury measurements for both the SID-IIs and the HBM3, provided that the air bag properties are designed to consider these occupant sizes also. The seat belt pretensioner is also effective, provided that the lateral translation of the torso is managed by other features. The importance of lateral movement management is greater the smaller the occupant is. Light vehicles require interior restraint systems of higher performance than heavy vehicles do to achieve the same level of injury measures for a given side structure. Copyright © 2012 Taylor & Francis Group, LLC

  2. Effects of head down tilt on episcleral venous pressure in a rabbit model.

    PubMed

    Lavery, W J; Kiel, J W

    2013-06-01

    In humans, changing from upright to supine elicits an approximately 10 mmHg increase in cephalic venous pressure caused by the hydrostatic column effect, but episcleral venous pressure (EVP) and intraocular pressure (IOP) rise by only a few mmHg. The dissociation of the small increases in IOP and EVP compared to the larger increase in cephalic venous pressure suggests a regulatory mechanism controlling EVP. The aim of the present study was to determine if the rabbit model is suitable to study the effects of postural changes on EVP despite its short hydrostatic column. In anesthetized rabbits (n = 43), we measured arterial pressure (AP), IOP, and orbital venous pressure (OVP) by direct cannulation; carotid blood flow (BFcar) by transit time ultrasound, heart rate (HR) by digital cardiotachometer, and EVP with a servonull micropressure system. The goal of the protocol was to obtain measurement of supine EVP for ≈10 min, followed by ≈10 min of EVP measurement with the rabbit in a head down tilt. The data were analyzed by paired t-tests and the results reported as the mean ± standard error of the mean. In a separate group of animals (n = 35), aqueous flow was measured by fluorophotometry. This protocol entailed measurement of aqueous flow in the supine position for ≈60 min, followed by ≈60 min of aqueous flow measurement with the rabbit in a head down tilt. From supine to head down tilt, AP and BFcar were unchanged, IOP increased by 2.3 ± 0.4 mmHg (p < 0.001), EVP increased by 2.4 ± 0.4 mmHg (p < 0.001), OVP increased by 2.5 ± 0.2 mmHg (p < 0.001) and HR decreased by 9 ± 3 bpm (p = 0.002). Head down tilt caused no significant change in aqueous flow. Although the hydrostatic column in the rabbit is shorter than humans, the rabbit model permits sufficiently sensitive measurements of the pressures and systemic parameters likely involved in the EVP responses to posture change. The present results indicate directionally similar EVP and IOP responses to tilt as occur in humans and, as in humans, the responses are smaller than would be expected from the change in the hydrostatic column height. Also, as in humans, the model reveals no change in aqueous flow during head down tilt. We conclude the rabbit model is appropriate for studying the mechanisms responsible for the relative immunity of EVP and IOP to posture change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Predicting brain acceleration during heading of soccer ball

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Hasnun Arif Hassan, Mohd; Azri Aris, Mohd; Anuar, Zulfika

    2013-12-01

    There has been a long debate whether purposeful heading could cause harm to the brain. Studies have shown that repetitive heading could lead to degeneration of brain cells, which is similarly found in patients with mild traumatic brain injury. A two-degree of freedom linear mathematical model was developed to study the impact of soccer ball to the brain during ball-to-head impact in soccer. From the model, the acceleration of the brain upon impact can be obtained. The model is a mass-spring-damper system, in which the skull is modelled as a mass and the neck is modelled as a spring-damper system. The brain is a mass with suspension characteristics that are also defined by a spring and a damper. The model was validated by experiment, in which a ball was dropped from different heights onto an instrumented dummy skull. The validation shows that the results obtained from the model are in a good agreement with the brain acceleration measured from the experiment. This findings show that a simple linear mathematical model can be useful in giving a preliminary insight on what human brain endures during a ball-to-head impact.

  4. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury.

    PubMed

    Nyein, Michelle K; Jason, Amanda M; Yu, Li; Pita, Claudio M; Joannopoulos, John D; Moore, David F; Radovitzky, Raul A

    2010-11-30

    Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain's response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid-solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion.

  5. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury

    PubMed Central

    Nyein, Michelle K.; Jason, Amanda M.; Yu, Li; Pita, Claudio M.; Joannopoulos, John D.; Moore, David F.; Radovitzky, Raul A.

    2010-01-01

    Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid–solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion. PMID:21098257

  6. H3N2 Mismatch of 2014–15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps

    PubMed Central

    Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong

    2015-01-01

    The poor performance of 2014–15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009–10, 2010–11 and 2014–15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014–15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014–15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model. PMID:26472175

  7. H3N2 Mismatch of 2014-15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong

    2015-10-01

    The poor performance of 2014-15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009-10, 2010-11 and 2014-15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014-15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014-15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model.

  8. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.

    PubMed

    de Salles, Alvaro A; Bulla, Giovani; Rodriguez, Claudio E Fernández

    2006-01-01

    The Specific Absorption Rate (SAR) produced by mobile phones in the head of adults and children is simulated using an algorithm based on the Finite Difference Time Domain (FDTD) method. Realistic models of the child and adult head are used. The electromagnetic parameters are fitted to these models. Comparison also are made with the SAR calculated in the children model when using adult human electromagnetic parameters values. Microstrip (or patch) antennas and quarter wavelength monopole antennas are used in the simulations. The frequencies used to feed the antennas are 1850 MHz and 850 MHz. The SAR results are compared with the available international recommendations. It is shown that under similar conditions, the 1g-SAR calculated for children is higher than that for the adults. When using the 10-year old child model, SAR values higher than 60% than those for adults are obtained.

  9. Extracting heading and temporal range from optic flow: Human performance issues

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Perrone, John A.; Stone, Leland; Banks, Martin S.; Crowell, James A.

    1993-01-01

    Pilots are able to extract information about their vehicle motion and environmental structure from dynamic transformations in the out-the-window scene. In this presentation, we focus on the information in the optic flow which specifies vehicle heading and distance to objects in the environment, scaled to a temporal metric. In particular, we are concerned with modeling how the human operators extract the necessary information, and what factors impact their ability to utilize the critical information. In general, the psychophysical data suggest that the human visual system is fairly robust to degradations in the visual display, e.g., reduced contrast and resolution or restricted field of view. However, extraneous motion flow, i.e., introduced by sensor rotation, greatly compromises human performance. The implications of these models and data for enhanced/synthetic vision systems are discussed.

  10. Thickness and resistivity variations over the upper surface of the human skull.

    PubMed

    Law, S K

    1993-01-01

    A study of skull thickness and resistivity variations over the upper surface was made for an adult human skull. Physical measurements of thickness and qualitative analysis of photographs and CT scans of the skull were performed to determine internal and external features of the skull. Resistivity measurements were made using the four-electrode method and ranged from 1360 to 21400 Ohm-cm with an overall mean of 7560 +/- 4130 Ohm-cm. The presence of sutures was found to decrease resistivity substantially. The absence of cancellous bone was found to increase resistivity, particularly for samples from the temporal bone. An inverse relationship between skull thickness and resistivity was determined for trilayer bone (n = 12, p < 0.001). The results suggest that the skull cannot be considered a uniform layer and that local resistivity variations should be incorporated into realistic geometric and resistive head models to improve resolution in EEG. Influences of these variations on head models, methods for determining these variations, and incorporation into realistic head models, are discussed.

  11. Parallel Solver for Diffuse Optical Tomography on Realistic Head Models With Scattering and Clear Regions.

    PubMed

    Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto

    2016-09-01

    Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.

  12. A new mathematical neck model for a low-velocity rear-end impact dummy: evaluation of components influencing head kinematics.

    PubMed

    Linder, A

    2000-03-01

    A mathematical model of a new rear-end impact dummy neck was implemented using MADYMO. The main goal was to design a model with a human-like response of the first extension motion in the crash event. The new dummy neck was modelled as a series of rigid bodies (representing the seven cervical vertebrae and the uppermost thoracic element, T1) connected by pin joints, and supplemented by two muscle substitutes. The joints had non-linear stiffness characteristics and the muscle elements possessed both elastic stiffness and damping properties. The new model was compared with two neck models with the same number of vertebrae, but without muscle substitutes. The properties of the muscle substitutes and the need of these were evaluated by using three different modified neck models. The motion of T1 in the simulations was prescribed using displacement data obtained from volunteer tests. In a sensitivity analysis of the mathematical model the influence of different factors on the head-neck kinematics was evaluated. The neck model was validated against kinematics data from volunteer tests: linear displacement, angular displacement, and acceleration of the head relative to the upper torso at 7 km/h velocity change. The response of the new model was within the corridor of the volunteer tests for the main part of the time history plot. This study showed that a combination of elastic stiffness and damping in the muscle substitutes, together with a non-linear joint stiffness, resulted in a head-neck response similar to human volunteers, and superior to that of other tested neck models.

  13. 9.4T Human MRI: Preliminary Results

    PubMed Central

    Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil

    2014-01-01

    This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852

  14. A study of cervical spine kinematics and joint capsule strain in rear impacts using a human FE model.

    PubMed

    Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji

    2006-11-01

    Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues. A rear-end collision was then simulated using THUMS and a prototype seat model, assuming a delta-V of 25 km/h. The trajectory of the vertebrae was analyzed in a local coordinate system defined along the joint surface. Strain growth in the joint capsules was explained, as related to contact events between the occupant and the seat. A new seat concept was proposed to help lessen the loading level to the neck soft tissues. The foam material of the seat back was softened, the initial gap behind the head was reduced and the head restraint was stiffened for firm support. The lower seat back frame was also reinforced to withstand the impact severity at the given delta-V. Another rear impact simulation was conducted using the new seat concept model to examine the effectiveness of the new concept. The joint capsule strain was found to be relatively lower with the new seat concept. The study also discusses the influence of seat parameters to the vertebral motion and the resultant strain in the joint capsules. The meaning of the contact timing of the head to the head restraint was examined based on the results in terms of correlation with injury indicators such as NIC and the joint capsule strain.

  15. An experimental study and finite element modeling of head and neck cooling for brain hypothermia.

    PubMed

    Li, Hui; Chen, Roland K; Tang, Yong; Meurer, William; Shih, Albert J

    2018-01-01

    Reducing brain temperature by head and neck cooling is likely to be the protective treatment for humans when subjects to sudden cardiac arrest. This study develops the experimental validation model and finite element modeling (FEM) to study the head and neck cooling separately, which can induce therapeutic hypothermia focused on the brain. Anatomically accurate geometries based on CT images of the skull and carotid artery are utilized to find the 3D geometry for FEM to analyze the temperature distributions and 3D-printing to build the physical model for experiment. The results show that FEM predicted and experimentally measured temperatures have good agreement, which can be used to predict the temporal and spatial temperature distributions of the tissue and blood during the head and neck cooling process. Effects of boundary condition, perfusion, blood flow rate, and size of cooling area are studied. For head cooling, the cooling penetration depth is greatly depending on the blood perfusion in the brain. In the normal blood flow condition, the neck internal carotid artery temperature is decreased only by about 0.13°C after 60min of hypothermia. In an ischemic (low blood flow rate) condition, such temperature can be decreased by about 1.0°C. In conclusion, decreasing the blood perfusion and metabolic reduction factor could be more beneficial to cool the core zone. The results also suggest that more SBC researches should be explored, such as the optimization of simulation and experimental models, and to perform the experiment on human subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effectiveness of headgear in football

    PubMed Central

    Withnall, C; Shewchenko, N; Wonnacott, M; Dvorak, J; Scott, D

    2005-01-01

    Objectives: Commercial headgear is currently being used by football players of all ages and skill levels to provide protection from heading and direct impact. The clinical and biomechanical effectiveness of the headgear in attenuating these types of impact is not well defined or understood. This study was conducted to determine whether football headgear has an effect on head impact responses. Methods: Controlled laboratory tests were conducted with a human volunteer and surrogate head/neck system. The impact attenuation of three commercial headgears during ball impact speeds of 6–30 m/s and in head to head contact with a closing speed of 2–5 m/s was quantified. The human subject, instrumented to measure linear and angular head accelerations, was exposed to low severity impacts during heading in the unprotected and protected states. High severity heading contact and head to head impacts were studied with a biofidelic surrogate headform instrumented to measure linear and angular head responses. Subject and surrogate responses were compared with published injury assessment functions associated with mild traumatic brain injury (MTBI). Results: For ball impacts, none of the headgear provided attenuation over the full range of impact speeds. Head responses with or without headgear were not significantly different (p>0.05) and remained well below levels associated with MTBI. In head to head impact tests the headgear provided an overall 33% reduction in impact response. Conclusion: The football headgear models tested did not provide benefit during ball impact. This is probably because of the large amount of ball deformation relative to headband thickness. However, the headgear provided measurable benefit during head to head impacts. PMID:16046355

  17. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness.

    PubMed

    Keshvari, J; Kivento, M; Christ, A; Bit-Babik, G

    2016-04-21

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  18. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness

    NASA Astrophysics Data System (ADS)

    Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.

    2016-04-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  19. A finite element model of the human head for auditory bone conduction simulation.

    PubMed

    Taschke, Henning; Hudde, Herbert

    2006-01-01

    In order to investigate the mechanisms of bone conduction, a finite element model of the human head was developed. The most important steps of the modelling process are described. The model was excited by means of percutaneously applied forces in order to get a deeper insight into the way the parts of the peripheral hearing organ and the surrounding tissue vibrate. The analysis is done based on the division of the bone conduction mechanisms into components. The frequency-dependent patterns of vibration of the components are analyzed. Furthermore, the model allows for the calculation of the contribution of each component to the overall bone-conducted sound. The components interact in a complicated way, which strongly depends on the nature of the excitation and the spatial region to which it is applied.

  20. Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).

    PubMed

    Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2016-08-01

    Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.

  1. Virtual head rotation reveals a process of route reconstruction from human vestibular signals

    PubMed Central

    Day, Brian L; Fitzpatrick, Richard C

    2005-01-01

    The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. PMID:16002439

  2. Of Lice and Math: Using Models to Understand and Control Populations of Head Lice

    PubMed Central

    Laguna, Mara Fabiana; Risau-Gusman, Sebastián

    2011-01-01

    In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold (“superspreader”). For both cases we assess the impact of several collective strategies of treatment. PMID:21799752

  3. Of lice and math: using models to understand and control populations of head lice.

    PubMed

    Laguna, María Fabiana; Laguna, Mara Fabiana; Risau-Gusman, Sebastián

    2011-01-01

    In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold ("superspreader"). For both cases we assess the impact of several collective strategies of treatment.

  4. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase but had a higher peak response. Chest z-acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z-displacement but the THOR was in phase and was comparable to the mean peak response. Head xand z-displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA

  5. In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice

    PubMed Central

    Yoon, Kyong Sup; Ketzis, Jennifer K.; Andrewes, Samuel W.; Wu, Christopher S.; Honraet, Kris; Staljanssens, Dorien; Rossel, Bart; Marshall Clark, J.

    2015-01-01

    The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp. PMID:26336209

  6. Dynamic response due to behind helmet blunt trauma measured with a human head surrogate.

    PubMed

    Freitas, Christopher J; Mathis, James T; Scott, Nikki; Bigger, Rory P; Mackiewicz, James

    2014-01-01

    A Human Head Surrogate has been developed for use in behind helmet blunt trauma experiments. This human head surrogate fills the void between Post-Mortem Human Subject testing (with biofidelity but handling restrictions) and commercial ballistic head forms (with no biofidelity but ease of use). This unique human head surrogate is based on refreshed human craniums and surrogate materials representing human head soft tissues such as the skin, dura, and brain. A methodology for refreshing the craniums is developed and verified through material testing. A test methodology utilizing these unique human head surrogates is also developed and then demonstrated in a series of experiments in which non-perforating ballistic impact of combat helmets is performed with and without supplemental ceramic appliques for protecting against larger caliber threats. Sensors embedded in the human head surrogates allow for direct measurement of intracranial pressure, cranial strain, and head and helmet acceleration. Over seventy (70) fully instrumented experiments have been executed using this unique surrogate. Examples of the data collected are presented. Based on these series of tests, the Southwest Research Institute (SwRI) Human Head Surrogate has demonstrated great potential for providing insights in to injury mechanics resulting from non-perforating ballistic impact on combat helmets, and directly supports behind helmet blunt trauma studies.

  7. Dynamic Response Due to Behind Helmet Blunt Trauma Measured with a Human Head Surrogate

    PubMed Central

    Freitas, Christopher J.; Mathis, James T.; Scott, Nikki; Bigger, Rory P.; MacKiewicz, James

    2014-01-01

    A Human Head Surrogate has been developed for use in behind helmet blunt trauma experiments. This human head surrogate fills the void between Post-Mortem Human Subject testing (with biofidelity but handling restrictions) and commercial ballistic head forms (with no biofidelity but ease of use). This unique human head surrogate is based on refreshed human craniums and surrogate materials representing human head soft tissues such as the skin, dura, and brain. A methodology for refreshing the craniums is developed and verified through material testing. A test methodology utilizing these unique human head surrogates is also developed and then demonstrated in a series of experiments in which non-perforating ballistic impact of combat helmets is performed with and without supplemental ceramic appliques for protecting against larger caliber threats. Sensors embedded in the human head surrogates allow for direct measurement of intracranial pressure, cranial strain, and head and helmet acceleration. Over seventy (70) fully instrumented experiments have been executed using this unique surrogate. Examples of the data collected are presented. Based on these series of tests, the Southwest Research Institute (SwRI) Human Head Surrogate has demonstrated great potential for providing insights in to injury mechanics resulting from non-perforating ballistic impact on combat helmets, and directly supports behind helmet blunt trauma studies. PMID:24688303

  8. Biomechanics of Sports-Induced Axial-Compression Injuries of the Neck

    PubMed Central

    Ivancic, Paul C.

    2012-01-01

    Context Head-first sports-induced impacts cause cervical fractures and dislocations and spinal cord lesions. In previous biomechanical studies, researchers have vertically dropped human cadavers, head-neck specimens, or surrogate models in inverted postures. Objective To develop a cadaveric neck model to simulate horizontally aligned, head-first impacts with a straightened neck and to use the model to investigate biomechanical responses and failure mechanisms. Design Descriptive laboratory study. Setting Biomechanics research laboratory. Patients or Other Participants Five human cadaveric cervical spine specimens. Intervention(s) The model consisted of the neck specimen mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Head-first impacts were simulated at 4.1 m/s into a padded, deformable barrier. Main Outcome Measure(s) Time-history responses were determined for head and neck loads, accelerations, and motions. Average occurrence times of the compression force peaks at the impact barrier, occipital condyles, and neck were compared. Results The first local compression force peaks at the impact barrier (3070.0 ± 168.0 N at 18.8 milliseconds), occipital condyles (2868.1 ± 732.4 N at 19.6 milliseconds), and neck (2884.6 ± 910.7 N at 25.0 milliseconds) occurred earlier than all global compression peaks, which reached 7531.6 N in the neck at 46.6 milliseconds (P < .001). Average peak head motions relative to the torso were 6.0 cm in compression, 2.4 cm in posterior shear, and 6.4° in flexion. Neck compression fractures included occipital condyle, atlas, odontoid, and subaxial comminuted burst and facet fractures. Conclusions Neck injuries due to excessive axial compression occurred within 20 milliseconds of impact and were caused by abrupt deceleration of the head and continued forward torso momentum before simultaneous rebound of the head and torso. Improved understanding of neck injury mechanisms during sports-induced impacts will increase clinical awareness and immediate care and ultimately lead to improved protective equipment, reducing the frequency and severity of neck injuries and their associated societal costs. PMID:23068585

  9. Effect of head motion on MRI B0 field distribution.

    PubMed

    Liu, Jiaen; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joseph; Duyn, Jeff H

    2018-05-16

    To identify and characterize the sources of B 0 field changes due to head motion, to reduce motion sensitivity in human brain MRI. B 0 fields were measured in 5 healthy human volunteers at various head poses. After measurement of the total field, the field originating from the subject was calculated by subtracting the external field generated by the magnet and shims. A subject-specific susceptibility model was created to quantify the contribution of the head and torso. The spatial complexity of the field changes was analyzed using spherical harmonic expansion. Minor head pose changes can cause substantial and spatially complex field changes in the brain. For rotations and translations of approximately 5 º and 5 mm, respectively, at 7 T, the field change that is associated with the subject's magnetization generates a standard deviation (SD) of about 10 Hz over the brain. The stationary torso contributes to this subject-associated field change significantly with a SD of about 5 Hz. The subject-associated change leads to image-corrupting phase errors in multi-shot T2*-weighted acquisitions. The B 0 field changes arising from head motion are problematic for multishot T2*-weighted imaging. Characterization of the underlying sources provides new insights into mitigation strategies, which may benefit from individualized predictive field models in addition to real-time field monitoring and correction strategies. © 2018 International Society for Magnetic Resonance in Medicine.

  10. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy

    PubMed Central

    Winslow, Timothy B.; Eranki, Annu; Ullas, Soumya; Singh, Anurag K.; Repasky, Elizabeth A.; Sen, Arindam

    2015-01-01

    Purpose The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. Materials and methods SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Results Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Conclusions Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy. PMID:25986432

  11. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy.

    PubMed

    Winslow, Timothy B; Eranki, Annu; Ullas, Soumya; Singh, Anurag K; Repasky, Elizabeth A; Sen, Arindam

    2015-01-01

    The tumour microenvironment is frequently hypoxic, poorly perfused, and exhibits abnormally high interstitial fluid pressure. These factors can significantly reduce efficacy of chemo and radiation therapies. The present study aims to determine whether mild systemic heating alters these parameters and improves response to radiation in human head and neck tumour xenografts in SCID mice. SCID mice were injected with FaDu cells (a human head and neck carcinoma cell line), or implanted with a resected patient head and neck squamous cell carcinoma grown as a xenograft, followed by mild systemic heating. Body temperature during heating was maintained at 39.5 ± 0.5 °C for 4 h. Interstitial fluid pressure (IFP), hypoxia and relative tumour perfusion in the tumours were measured at 2 and 24 h post-heating. Tumour vessel perfusion was measured 24 h post-heating, coinciding with the first dose of fractionated radiotherapy. Heating tumour-bearing mice resulted in significant decrease in intratumoural IFP, increased the number of perfused tumour blood vessels as well as relative tumour perfusion in both tumour models. Intratumoural hypoxia was also reduced in tumours of mice that received heat treatment. Mice bearing FaDu tumours heated 24 h prior to five daily radiation treatments exhibited significantly enhanced tumour response compared to tumours in control mice. Mild systemic heating can significantly alter the tumour microenvironment of human head and neck tumour xenograft models, decreasing IFP and hypoxia while increasing microvascular perfusion. Collectively, these effects could be responsible for the improved response to radiotherapy.

  12. 3-D PARTICLE TRANSPORT WITHIN THE HUMAN UPPER RESPIRATORY TRACT

    EPA Science Inventory

    In this study trajectories of inhaled particulate matter (PM) were simulated within a three-dimensional (3-D) computer model of the human upper respiratory tract (URT). The airways were described by computer-reconstructed images of a silicone rubber cast of the human head, throat...

  13. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    PubMed

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  14. The FieldTrip-SimBio pipeline for EEG forward solutions.

    PubMed

    Vorwerk, Johannes; Oostenveld, Robert; Piastra, Maria Carla; Magyari, Lilla; Wolters, Carsten H

    2018-03-27

    Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained.

  15. Genetic Landscape of Human Papillomavirus–Associated Head and Neck Cancer and Comparison to Tobacco-Related Tumors

    PubMed Central

    Hayes, D. Neil; Van Waes, Carter; Seiwert, Tanguy Y.

    2015-01-01

    Head and neck cancer is the fifth most common cancer worldwide. It is often amenable to curative intent therapy when localized to the head and neck region, but it carries a poor prognosis when it is recurrent or metastatic. Therefore, initial treatment decisions are critical to improve patient survival. However, multimodality therapy used with curative intent is toxic. The balance between offering intensive versus tolerable and function-preserving therapy has been thrown into sharp relief with the recently described epidemic of human papillomavirus–associated head and neck squamous cell carcinomas characterized by improved clinical outcomes compared with smoking-associated head and neck tumors. Model systems and clinical trials have been slow to address the clinical questions that face the field to date. With this as a background, a host of translational studies have recently reported the somatic alterations in head and neck cancer and have highlighted the distinct genetic and biologic differences between viral and tobacco-associated tumors. This review seeks to summarize the main findings of studies, including The Cancer Genome Atlas, for the clinician scientist, with a goal of leveraging this new knowledge toward the betterment of patients with head and neck cancer. PMID:26351353

  16. [Mathematical modeling of the kinematics of a pilot's head while catapulting into an air stream].

    PubMed

    Kharchenko, V I; Golovleva, N V; Konakhevich, Iu G; Liapin, V A; Mar'in, A V

    1987-01-01

    The trajectories of head movements in the helmet and velocities of impact contact with the seat and anterior of the cockpit were calculated as applied to every stage of the catapulting process and mass-inertia parameters of helmets taken into account. Kinematic models were used to describe biomechanic parameters of the head-neck system. Special attention was given to the case of catapulting to the air flow. The effect upon the nod of aerodynamic forces acting on the human body and the catapult ejection seat at air flow velocities of 700-800 and 1300 km/hr was calculated.

  17. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    PubMed Central

    Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David

    2014-01-01

    Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307

  18. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    PubMed Central

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-01-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761

  19. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  20. Rotating and translating anthropomorphic head voxel models to establish an horizontal Frankfort plane for dental CBCT Monte Carlo simulations: a dose comparison study

    NASA Astrophysics Data System (ADS)

    Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.

    2016-12-01

    In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60  ×  60 mm2 and 80  ×  80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100  ×  90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from  -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.

  1. Growth trajectories of the human embryonic head and periconceptional maternal conditions.

    PubMed

    Koning, I V; Baken, L; Groenenberg, I A L; Husen, S C; Dudink, J; Willemsen, S P; Gijtenbeek, M; Koning, A H J; Reiss, I K M; Steegers, E A P; Steegers-Theunissen, R P M

    2016-05-01

    Can growth trajectories of the human embryonic head be created using 3D ultrasound (3D-US) and virtual reality (VR) technology, and be associated with second trimester fetal head size and periconceptional maternal conditions? Serial first trimester head circumference (HC) and head volume (HV) measurements were used to create reliable growth trajectories of the embryonic head, which were significantly associated with fetal head size and periconceptional maternal smoking, age and ITALIC! in vitro fertilization (IVF)/intra-cytoplasmic sperm injection (ICSI) treatment. Fetal growth is influenced by periconceptional maternal conditions. We selected 149 singleton pregnancies with a live born non-malformed fetus from the Rotterdam periconception cohort. Bi-parietal diameter and occipital frontal diameter to calculate HC, HV and crown-rump length (CRL) were measured weekly between 9 + 0 and 12 + 6 weeks gestational age (GA) using 3D-US and VR. Fetal HC was obtained from second trimester structural anomaly scans. Growth trajectories of the embryonic head were created with general additive models and linear mixed models were used to estimate associations with maternal periconceptional conditions as a function of GA and CRL, respectively. A total of 303 3D-US images of 149 pregnancies were eligible for embryonic head measurements (intra-class correlation coefficients >0.99). Associations were found between embryonic HC and fetal HC ( ITALIC! ρ = 0.617, ITALIC! P < 0.001) and between embryonic HV and fetal HC ( ITALIC! ρ = 0.660, ITALIC! P < 0.001) in ITALIC! Z-scores. Maternal periconceptional smoking was associated with decreased, and maternal age and IVF/ICSI treatment with increased growth trajectories of the embryonic head measured by HC and HV (All ITALIC! P < 0.05). The consequences of the small effect sizes for neurodevelopmental outcome need further investigation. As the study population consists largely of tertiary hospital patients, external validity should be studied in the general population. Assessment of growth trajectories of the embryonic head may be of benefit in future early antenatal care. This study was funded by the Department of Obstetrics and Gynaecology, Erasmus MC University Medical Centre and Sophia Foundation for Medical Research, Rotterdam, The Netherlands (SSWO grant number 644). No competing interests are declared. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. 16 CFR 1203.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... solid model in the shape of a human head of sizes A, E, J, M, and O as defined in draft ISO/DIS 6220... configure the helmet for a range of different head sizes. (d) Coronal plane is an anatomical plane... to secure its position on the headform. The mass of the preload ballast is 5 kg (11 lb). (j...

  3. 16 CFR 1203.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... solid model in the shape of a human head of sizes A, E, J, M, and O as defined in draft ISO/DIS 6220... configure the helmet for a range of different head sizes. (d) Coronal plane is an anatomical plane... to secure its position on the headform. The mass of the preload ballast is 5 kg (11 lb). (j...

  4. Experience of head and neck theatre staff and attitudes to human factors using an aviation-based analysis and classification system--a pilot survey.

    PubMed

    Konieczny, Katarzyna M; Seager, Leonie; Scott, Jim; Colbert, Serryth; Dale, Trevor; Brennan, Peter A

    2014-01-01

    The role that human factors have in contributing to air crashes is well known and is included as an essential part of training. Awareness of human factors in surgery is increasingly being recognised but surprisingly few papers have come from head and neck specialties. We circulated a questionnaire on human factors based on an aviation model to 140 head and neck medical and ancillary staff who work in operating theatres in 3 large UK hospitals. Most positive responses were found in the consultant group followed by trainee doctors and support staff. A significant difference was found in the subcategories of Unsafe Supervision (p=0.002) and Preconditions to Unsafe Acts (p=0.001). This work will help to identify multi-system deficiencies that can be corrected, and highlights aspects that may yield the greatest reduction in surgical errors. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. A probabilistic model of overt visual attention for cognitive robots.

    PubMed

    Begum, Momotaz; Karray, Fakhri; Mann, George K I; Gosine, Raymond G

    2010-10-01

    Visual attention is one of the major requirements for a robot to serve as a cognitive companion for human. The robotic visual attention is mostly concerned with overt attention which accompanies head and eye movements of a robot. In this case, each movement of the camera head triggers a number of events, namely transformation of the camera and the image coordinate systems, change of content of the visual field, and partial appearance of the stimuli. All of these events contribute to the reduction in probability of meaningful identification of the next focus of attention. These events are specific to overt attention with head movement and, therefore, their effects are not addressed in the classical models of covert visual attention. This paper proposes a Bayesian model as a robot-centric solution for the overt visual attention problem. The proposed model, while taking inspiration from the primates visual attention mechanism, guides a robot to direct its camera toward behaviorally relevant and/or visually demanding stimuli. A particle filter implementation of this model addresses the challenges involved in overt attention with head movement. Experimental results demonstrate the performance of the proposed model.

  6. The effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot.

    PubMed

    Hwang, Jihong; Park, Taezoon; Hwang, Wonil

    2013-05-01

    The affective interaction between human and robots could be influenced by various aspects of robots, which are appearance, countenance, gesture, voice, etc. Among these, the overall shape of robot could play a key role in invoking desired emotions to the users and bestowing preferred personalities to robots. In this regard, the present study experimentally investigates the effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot with an objective of deriving guidelines for the affective design of service robots. In so doing, 27 different shapes of robot were selected, modeled and fabricated, which were combinations of three different shapes of head, trunk and limb (legs and arms) - rectangular-parallelepiped, cylindrical and human-like shapes. For the experiment, visual images and real prototypes of these robot shapes were presented to participants, and emotions invoked and personalities perceived from the presented robots were measured. The results showed that the overall shape of robot arouses any of three emotions named 'concerned', 'enjoyable' and 'favorable', among which 'concerned' emotion is negatively correlated with the 'big five personality factors' while 'enjoyable' and 'favorable' emotions are positively correlated. It was found that the 'big five personality factors', and 'enjoyable' and 'favorable' emotions are more strongly perceived through the real prototypes than through the visual images. It was also found that the robot shape consisting of cylindrical head, human-like trunk and cylindrical head is the best for 'conscientious' personality and 'favorable' emotion, the robot shape consisting of cylindrical head, human-like trunk and human-like limb for 'extroverted' personality, the robot shape consisting of cylindrical head, cylindrical trunk and cylindrical limb for 'anti-neurotic' personality, and the robot shape consisting of rectangular-parallelepiped head, human-like trunk and human-like limb for 'enjoyable' emotion. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  8. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  9. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies.

    PubMed

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-07

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  10. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice

    PubMed Central

    Guley, Natalie H.; Rogers, Joshua T.; Del Mar, Nobel A.; Deng, Yunping; Islam, Rafiqul M.; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J.; Marchetta, Jeffrey G.; Rex, Tonia S.; Honig, Marcia G.

    2016-01-01

    Abstract Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25–40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50–60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  11. Analysis and evaluation of the biofidelity of the human body finite element model in lateral impact simulations according to ISO-TR9790 procedures.

    PubMed

    Ruan, Jesse S; El-Jawahri, Raed; Rouhana, Stephen W; Barbat, Saeed; Prasad, Priya

    2006-11-01

    The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method. The resulting rating for the human body FE model was 8.5 on a 0 to 10 scale with 8.6-10 being excellent biofidelity. In addition, in order to explore whether there is a dependency of the impact responses of the FE model on different analysis codes, three commercially available analysis codes, namely, LS-DYNA, Pamcrash, and Radioss were used to run the human body FE model. Effects of these codes on biofidelity when compared with ISO-TR9790 data are discussed. Model robustness and numerical issues arising with three different code simulations are also discussed.

  12. Coordinates of Human Visual and Inertial Heading Perception.

    PubMed

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.

  13. Coordinates of Human Visual and Inertial Heading Perception

    PubMed Central

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results. PMID:26267865

  14. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, Nate; Somers, Jeff; Caldewll, Erin; Gernhardt, Michael

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-­-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-­-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-­-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-­-acceleration peak response correlated with the human response at 8 and 10-­-G 100 ms but not 10-­-G 70 ms. The phase lagged the human response. Head z-­-acceleration was not correlated. Chest x-­-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-­-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-­-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-­-acceleration was not well correlated. Head and chest z-­-acceleration was in phase but had a higher peak response. Chest z-­-acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z-­-displacement but the THOR was in phase and was comparable to the mean peak response. Head x-­- and z-­-displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA

  15. The point spread function of the human head and its implications for transcranial current stimulation

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Bikson, Marom; Parra, Lucas C.

    2012-10-01

    Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode-cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown.

  16. The biomechanics of concussion in unhelmeted football players in Australia: a case–control study

    PubMed Central

    McIntosh, Andrew S; Patton, Declan A; Fréchède, Bertrand; Pierré, Paul-André; Ferry, Edouard; Barthels, Tobias

    2014-01-01

    Objective Concussion is a prevalent brain injury in sport and the wider community. Despite this, little research has been conducted investigating the dynamics of impacts to the unprotected human head and injury causation in vivo, in particular the roles of linear and angular head acceleration. Setting Professional contact football in Australia. Participants Adult male professional Australian rules football players participating in 30 games randomly selected from 103 games. Cases selected based on an observable head impact, no observable symptoms (eg, loss-of-consciousness and convulsions), no on-field medical management and no injury recorded at the time. Primary and secondary outcome measures A data set for no-injury head impact cases comprising head impact locations and head impact dynamic parameters estimated through rigid body simulations using the MAthematical DYnamic MOdels (MADYMO) human facet model. This data set was compared to previously reported concussion case data. Results Qualitative analysis showed that the head was more vulnerable to lateral impacts. Logistic regression analyses of head acceleration and velocity components revealed that angular acceleration of the head in the coronal plane had the strongest association with concussion; tentative tolerance levels of 1747 rad/s2 and 2296 rad/s2 were reported for a 50% and 75% likelihood of concussion, respectively. The mean maximum resultant angular accelerations for the concussion and no-injury cases were 7951 rad/s2 (SD 3562 rad/s2) and 4300 rad/s2 (SD 3657 rad/s2), respectively. Linear acceleration is currently used in the assessment of helmets and padded headgear. The 50% and 75% likelihood of concussion values for resultant linear head acceleration in this study were 65.1 and 88.5 g, respectively. Conclusions As hypothesised by Holbourn over 70 years ago, angular acceleration plays an important role in the pathomechanics of concussion, which has major ramifications in terms of helmet design and other efforts to prevent and manage concussion. PMID:24844272

  17. Heading-vector navigation based on head-direction cells and path integration.

    PubMed

    Kubie, John L; Fenton, André A

    2009-05-01

    Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal, heading-based navigation is used in small mammals and humans. Copyright 2008 Wiley-Liss, Inc.

  18. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    NASA Astrophysics Data System (ADS)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  19. A Novel Method for Quantifying Human In Situ Whole Brain Deformation under Rotational Loading Using Sonomicrometry.

    PubMed

    Alshareef, Ahmed; Giudice, J Sebastian; Forman, Jason; Salzar, Robert S; Panzer, Matthew B

    2018-03-01

    Traumatic brain injuries (TBI) are one of the least understood injuries to the body. Finite element (FE) models of the brain have been crucial for understanding concussion and for developing injury mitigation systems; however, the experimental brain deformation data currently used to validate these models are limited. The objective of this study was to develop a methodology for the investigation of in situ three-dimensional brain deformation during pure rotational loading of the head, using sonomicrometry. Sonomicrometry uses ultrasonic pulses to measure the dynamic distances between piezoelectric crystals implanted in any sound-transmitting media. A human cadaveric head-neck specimen was acquired 14 h postmortem and was instrumented with an array of 32 small sonomicrometry crystals embedded in the head: 24 crystals were implanted in the brain, and 8 were fixed to the inner skull. A dynamic rotation was then applied to the head using a closed-loop controlled test device. Four pulses with different severity levels were applied around three orthogonal anatomical axes of rotation. A repeated test of the highest severity rotation was conducted in each axis to assess repeatability. All tests were completed within 56 h postmortem. Overall, the combined experimental and sonomicrometry methods were demonstrated to reliably and repeatedly capture three-dimensional dynamic deformation of an intact human brain. These methods provide a framework for using sonomicrometry to acquire multidimensional experimental data required for FE model development and validation, and will lend insight into the deformations sustained by the brain during impact.

  20. Simulation of a steady-state integrated human thermal system.

    NASA Technical Reports Server (NTRS)

    Hsu, F. T.; Fan, L. T.; Hwang, C. L.

    1972-01-01

    The mathematical model of an integrated human thermal system is formulated. The system consists of an external thermal regulation device on the human body. The purpose of the device (a network of cooling tubes held in contact with the surface of the skin) is to maintain the human body in a state of thermoneutrality. The device is controlled by varying the inlet coolant temperature and coolant mass flow rate. The differential equations of the model are approximated by a set of algebraic equations which result from the application of the explicit forward finite difference method to the differential equations. The integrated human thermal system is simulated for a variety of combinations of the inlet coolant temperature, coolant mass flow rate, and metabolic rates. Two specific cases are considered: (1) the external thermal regulation device is placed only on the head and (2) the devices are placed on the head and the torso. The results of the simulation indicate that when the human body is exposed to hot environment, thermoneutrality can be attained by localized cooling if the operating variables of the external regulation device(s) are properly controlled.

  1. Central circulatory hemodynamics as a function of gravitational stress

    NASA Technical Reports Server (NTRS)

    Latham, Rick D.; White, C. D.; Fanton, J. W.; Owens, R. W.; Barber, J. F.; Lewkowski, B. E.; Goff, O. T.

    1991-01-01

    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity.

  2. Multiscale Analysis of Head Impacts in Contact Sports

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Sett, Subham; Franck, Jennifer; McNamara, Kyle; Bar-Kochba, Eyal; Crisco, Joseph; Blume, Janet; Franck, Christian

    2012-02-01

    Traumatic brain injury (TBI) is one of the world's major causes of death and disability. To aid companies in designing safer and improved protective gear and to aid the medical community in producing improved quantitative TBI diagnosis and assessment tools, a multiscale finite element model of the human brain, head and neck is being developed. Recorded impact data from football and hockey helmets instrumented with accelerometers are compared to simulated impact data in the laboratory. Using data from these carefully constructed laboratory experiments, we can quantify impact location, magnitude, and linear and angular accelerations of the head. The resultant forces and accelerations are applied to a fully meshed head-form created from MRI data by Simpleware. With appropriate material properties for each region of the head-form, the Abaqus finite element model can determine the stresses, strains, and deformations in the brain. Simultaneously, an in-vitro cellular TBI criterion is being developed to be incorporated into Abaqus models for the brain. The cell-based injury criterion functions the same way that damage criteria for metals and other materials are used to predict failure in structural materials.

  3. Computer-based simulation of the Bielschowsky head-tilt test using the SEE++ software system.

    PubMed

    Kaltofen, Thomas; Buchberger, Michael; Priglinger, Siegfried

    2008-01-01

    Latest measurements of the vestibulo-ocular reflex (VOR) allowed the integration of the simulation of the Bielschowsky head-tilt test (BHTT) into the SEE++ software system. SEE++ realizes a biomechanical model of the human eye in order to simulate eye motility disorders and strabismus surgeries. With the addition of the BHTT it can now also be used for differential-diagnostic simulations of complex disorders (e.g., superior oblique palsies). In order to simulate the BHTT in SEE++, the user can freely choose the desired head-tilt angle from -45 degrees to +45 degrees. The chosen angle is shown in the 3D view with a human body model and is also used in the calculation of the Hess-Lancaster test. The integration of the BHTT offers an additional improvement of the possibilities for simulating eye motility disorders. Moreover, SEE++ allows the creation of a video of the "virtual patient" while tilting the head from one side to the other, which shows dynamic changes in the simulated Hess-diagrams. Comparisons of simulation results with patient-measured data showed a good correlation between the simulated and the measured data. Further comparisons with patient data are planned.

  4. In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice.

    PubMed

    Yoon, Kyong Sup; Ketzis, Jennifer K; Andrewes, Samuel W; Wu, Christopher S; Honraet, Kris; Staljanssens, Dorien; Rossel, Bart; Marshall Clark, J

    2015-09-01

    The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  5. Towards child versus adult brain mechanical properties.

    PubMed

    Chatelin, S; Vappou, J; Roth, S; Raul, J S; Willinger, R

    2012-02-01

    The characterization of brain tissue mechanical properties is of crucial importance in the development of realistic numerical models of the human head. While the mechanical behavior of the adult brain has been extensively investigated in several studies, there is a considerable paucity of data concerning the influence of age on mechanical properties of the brain. Therefore, the implementation of child and infant head models often involves restrictive assumptions like properties scaling from adult or animal data. The present study presents a step towards the investigation of the effects of age on viscoelastic properties of human brain tissue from a first set of dynamic oscillatory shear experiments. Tests were also performed on three different locations of brain (corona radiata, thalamus and brainstem) in order to investigate regional differences. Despite the limited number of child brain samples a significant increase in both storage and loss moduli occurring between the age of 5 months and the age of 22 months was found, confirmed by statistical Student's t-tests (p=0.104,0.038 and 0.054 for respectively corona radiata, thalamus and brain stem samples locations respectively). The adult brain appears to be 3-4 times stiffer than the young child one. Moreover, the brainstem was found to be approximately 2-3 times stiffer than both gray and white matter from corona radiata and thalamus. As a tentative conclusion, this study provides the first rheological data on the human brain at different ages and brain regions. This data could be implemented in numerical models of the human head, especially in models concerning pediatric population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Working Memory, Age, Crew Downsizing, System Design and Training

    DTIC Science & Technology

    2000-08-01

    Radvansky and Zacks, 1997). As authors have noted perceived demand. Accurate "Situation Models " (Johnson- when attempting to make sense of a... models of cognitive function and workload (cf. Baddeley bodies of information to be processed or multiple results and Gathercole, 1993). The ability to...major bottleneck in human performance. Some models of multiple traces from different headings and the human information processing (Pashler, 1998) place

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Fujita, A; Buch, K

    Purpose: To investigate the correlation between texture analysis-based model observer and human observer in the task of diagnosis of ischemic infarct in non-contrast head CT of adults. Methods: Non-contrast head CTs of five patients (2 M, 3 F; 58–83 y) with ischemic infarcts were retro-reconstructed using FBP and Adaptive Statistical Iterative Reconstruction (ASIR) of various levels (10–100%). Six neuro -radiologists reviewed each image and scored image quality for diagnosing acute infarcts by a 9-point Likert scale in a blinded test. These scores were averaged across the observers to produce the average human observer responses. The chief neuro-radiologist placed multiple ROIsmore » over the infarcts. These ROIs were entered into a texture analysis software package. Forty-two features per image, including 11 GLRL, 5 GLCM, 4 GLGM, 9 Laws, and 13 2-D features, were computed and averaged over the images per dataset. The Fisher-coefficient (ratio of between-class variance to in-class variance) was calculated for each feature to identify the most discriminating features from each matrix that separate the different confidence scores most efficiently. The 15 features with the highest Fisher -coefficient were entered into linear multivariate regression for iterative modeling. Results: Multivariate regression analysis resulted in the best prediction model of the confidence scores after three iterations (df=11, F=11.7, p-value<0.0001). The model predicted scores and human observers were highly correlated (R=0.88, R-sq=0.77). The root-mean-square and maximal residual were 0.21 and 0.44, respectively. The residual scatter plot appeared random, symmetric, and unbiased. Conclusion: For diagnosis of ischemic infarct in non-contrast head CT in adults, the predicted image quality scores from texture analysis-based model observer was highly correlated with that of human observers for various noise levels. Texture-based model observer can characterize image quality of low contrast, subtle texture changes in addition to human observers.« less

  8. A visible Chinese human-combined Monte Carlo simulation study on low-level light therapy of stroke

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Pan, Boan; Zhong, Fulin; Li, Ting

    2017-02-01

    Stroke is a devastating disease, which is the third leading cause of death and disability worldwide. Although the incidence of stroke increases progressively with age, morbidity among young and middle-aged adults is increasing annually. Medications nevertheless remain the bulwarks of stroke. The treatment is ineffective, speculative and has a long treatment cycle. The function of acupuncture and moxibustion, which are potential therapeutic tools for stroke, is still controversial. Recently, Low-level light therapy (LLLT) has been demonstrated potent in vivo efficacy for treatment of ischemic conditions of acute myocardial infraction and stroke in multiple validated animal models. Optimum LLLT treatment has a dominant influence on therapy of stroke. While more than a thousand clinical trials have been halted, only a few trials on animals have been reported. We addressed this issue by simulating near-infrared light propagation with accurate visible Chinese human head by Monte Carlo modeling. The visible human head embody region of atherosclerotic plaques in head. Through comparing the light propagation of different light illumination, we can get a precise, optimized and straightforward treatment. Here, we developed a LLLT helmet for treating stroke depend on near-infrared light. There are more than 30 LED arrays in in multi-layered 3D printed helmet. Each LED array has independent water-cooling module and can be adjusted to touch the head of different subjects based on Electro pneumatic module. Moreover, the software provides the setup of illumination parameters and 3D distribution of light fluence rate distribution in human brain.

  9. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium

    PubMed Central

    Previte, D.; Olds, B. P.; Yoon, K.; Sun, W.; Muir, W.; Paige, K. N.; Lee, S. H.; Clark, J.; Koehler, J. E.; Pittendrigh, B. R.

    2014-01-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days postinfection, but plateaued in head lice at 4 days postinfection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961

  10. Human Papillomavirus Induced Transformation in Cervical and Head and Neck Cancers

    PubMed Central

    Adams, Allie K.; Wise-Draper, Trisha M.; Wells, Susanne I.

    2014-01-01

    Human papillomavirus (HPV) is one of the most widely publicized and researched pathogenic DNA viruses. For decades, HPV research has focused on transforming viral activities in cervical cancer. During the past 15 years, however, HPV has also emerged as a major etiological agent in cancers of the head and neck, in particular squamous cell carcinoma. Even with significant strides achieved towards the screening and treatment of cervical cancer, and preventive vaccines, cervical cancer remains the leading cause of cancer-associated deaths for women in developing countries. Furthermore, routine screens are not available for those at risk of head and neck cancer. The current expectation is that HPV vaccination will prevent not only cervical, but also head and neck cancers. In order to determine if previous cervical cancer models for HPV infection and transformation are directly applicable to head and neck cancer, clinical and molecular disease aspects must be carefully compared. In this review, we briefly discuss the cervical and head and neck cancer literature to highlight clinical and genomic commonalities. Differences in prognosis, staging and treatment, as well as comparisons of mutational profiles, viral integration patterns, and alterations in gene expression will be addressed. PMID:25226287

  11. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium.

    PubMed

    Previte, D; Olds, B P; Yoon, K; Sun, W; Muir, W; Paige, K N; Lee, S H; Clark, J; Koehler, J E; Pittendrigh, B R

    2014-04-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. © 2014 The Royal Entomological Society.

  12. Sensitivity of head and cervical spine injury measures to impact factors relevant to rollover crashes.

    PubMed

    Mattos, G A; Mcintosh, A S; Grzebieta, R H; Yoganandan, N; Pintar, F A

    2015-01-01

    Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly. A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine. The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle. The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.

  13. Effects of human hair on trans-cranial focused ultrasound efficacy in an ex-vivo cadaver model

    NASA Astrophysics Data System (ADS)

    Hananel, Arik; Snell, John W.; Kassell, Neal F.; Eames, Matthew D. C.

    2012-11-01

    Current practice before a trans-cranial MR guided Focused ultrasound procedure is shaving the patient head on treatment day. Here we present an initial attempt to evaluate the feasibility of trans-cranial FUS, in an unshaved, ex-vivo cadaver skull. We have sonicated using 220kHz and 710kHz head transducers, a cadaver skull filled with tissue mimicking phantom and covered with a wig made of human hair to evaluate feasibility of acoustic energy transfer in a full size model. Heating at focal point was measured using MR proton resonance shift thermometry. Results showed negligible effect of hair in 220kHz, and an 18% drop in temperature elevation when using 710kHz.

  14. Anatomical limits on interaural time differences: an ecological perspective

    PubMed Central

    Hartmann, William M.; Macaulay, Eric J.

    2013-01-01

    Human listeners, and other animals too, use interaural time differences (ITD) to localize sounds. If the sounds are pure tones, a simple frequency factor relates the ITD to the interaural phase difference (IPD), for which there are known iso-IPD boundaries, 90°, 180°… defining regions of spatial perception. In this article, iso-IPD boundaries for humans are translated into azimuths using a spherical head model (SHM), and the calculations are checked by free-field measurements. The translated boundaries provide quantitative tests of an ecological interpretation for the dramatic onset of ITD insensitivity at high frequencies. According to this interpretation, the insensitivity serves as a defense against misinformation and can be attributed to limits on binaural processing in the brainstem. Calculations show that the ecological explanation passes the tests only if the binaural brainstem properties evolved or developed consistent with heads that are 50% smaller than current adult heads. Measurements on more realistic head shapes relax that requirement only slightly. The problem posed by the discrepancy between the current head size and a smaller, ideal head size was apparently solved by the evolution or development of central processes that discount large IPDs in favor of interaural level differences. The latter become more important with increasing head size. PMID:24592209

  15. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  16. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    PubMed

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  17. Animal models and their importance to human physiological responses in microgravity

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.

    1996-01-01

    Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.

  18. Kinematics of a Head-Neck Model Simulating Whiplash

    NASA Astrophysics Data System (ADS)

    Colicchia, Giuseppe; Zollman, Dean; Wiesner, Hartmut; Sen, Ahmet Ilhan

    2008-02-01

    A whiplash event is a relative motion between the head and torso that occurs in rear-end automobile collisions. In particular, the large inertia of the head results in a horizontal translation relative to the thorax. This paper describes a simulation of the motion of the head and neck during a rear-end (whiplash) collision. A head-neck model that qualitatively undergoes the same forces acting in whiplash and shows the same behavior is used to analyze the kinematics of both the head and the cervical spine and the resulting neck loads. The rapid acceleration during a whiplash event causes the extension and flexion of the cervical spine, which in turn can cause dislocated vertebrae, torn ligaments, intervertebral disc herniation, and other trauma that appear to be the likely causes of subsequent painful headache or neck pain symptoms. Thus, whiplash provides a connection between the dynamics of the human body and physics. Its treatment can enliven the usual teaching in kinematics, and both theoretical and experimental approaches provide an interesting biological context to teach introductory principles of mechanics.

  19. Development of HEATHER for cochlear implant stimulation using a new modeling workflow.

    PubMed

    Tran, Phillip; Sue, Andrian; Wong, Paul; Li, Qing; Carter, Paul

    2015-02-01

    The current conduction pathways resulting from monopolar stimulation of the cochlear implant were studied by developing a human electroanatomical total head reconstruction (namely, HEATHER). HEATHER was created from serially sectioned images of the female Visible Human Project dataset to encompass a total of 12 different tissues, and included computer-aided design geometries of the cochlear implant. Since existing methods were unable to generate the required complexity for HEATHER, a new modeling workflow was proposed. The results of the finite-element analysis agree with the literature, showing that the injected current exits the cochlea via the modiolus (14%), the basal end of the cochlea (22%), and through the cochlear walls (64%). It was also found that, once leaving the cochlea, the current travels to the implant body via the cranial cavity or scalp. The modeling workflow proved to be robust and flexible, allowing for meshes to be generated with substantial user control. Furthermore, the workflow could easily be employed to create realistic anatomical models of the human head for different bioelectric applications, such as deep brain stimulation, electroencephalography, and other biophysical phenomena.

  20. Oral malignant melanomas and other head and neck neoplasms in Danish dogs - data from the Danish Veterinary Cancer Registry

    PubMed Central

    2009-01-01

    Background Head and neck cancers (HNC) are relatively common and often very serious diseases in both dogs and humans. Neoplasms originating in the head and neck region are a heterogeneous group. HNC often has an unfavourable prognosis and the proximity of the tissue structures renders extirpation of tumours with sufficient margins almost incompatible with preservation of functionality. In humans oral malignant melanoma (OMM) is extremely rare, but represents a particular challenge since it is highly aggressive as is the canine counterpart, which thus may be of interest as a spontaneous animal model. Methods Canine cases entered in the Danish Veterinary Cancer Registry (DVCR) from May 15th 2005 through February 29th 2008 were included in this study. Fisher's exact test was used to compare proportions of HNC in dogs and humans as well as proportions of surgically treated cases of OMM and squamous cell carcinomas (SCC). Also the proportions of benign and malignant neoplasms of different locations in dogs were compared using Fisher's exact test. Results A total of 1768 cases of neoplasias (679 malignant, 826 benign, 263 unknown) were submitted. Of all neoplasias HNC accounted for 7.2% (n = 128). Of these, 64 (50%) were malignant and 44 (34%) benign. The most common types of malignant neoplasia were SCC (18; 28% of malignant), OMM (13; 20% of malignant), soft tissue sarcoma (11; 17% of malignant) and adenocarcinoma (5; 11% of malignant). The most common types of benign neoplasms were adenoma (7; 16% of benign), polyps (6; 14% of benign) and fibroma (5; 11% of benign). Conclusions In the current study, the proportion of neoplasia in the head and neck region in dogs in Denmark was similar to other canine studies and significantly more common than in humans with a large proportion of malignancies. Spontaneous HNC in dogs thus, may serve as a model for HNC in humans. Canine OMM is a spontaneous cancer in an outbred, immune-competent large mammal population and could be a clinical model for OMM in humans. PMID:20021647

  1. A mathematical model for human brain cooling during cold-water near-drowning.

    PubMed

    Xu, X; Tikuisis, P; Giesbrecht, G

    1999-01-01

    A two-dimensional mathematical model was developed to estimate the contributions of different mechanisms of brain cooling during cold-water near-drowning. Mechanisms include 1) conductive heat loss through tissue to the water at the head surface and in the upper airway and 2) circulatory cooling to aspirated water via the lung and via venous return from the scalp. The model accounts for changes in boundary conditions, blood circulation, respiratory ventilation of water, and head size. Results indicate that conductive heat loss through the skull surface or the upper airways is minimal, although a small child-sized head will conductively cool faster than a large adult-sized head. However, ventilation of cold water may provide substantial brain cooling through circulatory cooling. Although it seems that water breathing is required for rapid "whole" brain cooling, it is possible that conductive cooling may provide some advantage by cooling the brain cortex peripherally and the brain stem centrally via the upper airway.

  2. High resolution, MRI-based, segmented, computerized head phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less

  3. Human Centered Hardware Modeling and Collaboration

    NASA Technical Reports Server (NTRS)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  4. A micro-architectural evaluation of osteoporotic human femoral heads to guide implant placement in proximal femoral fractures.

    PubMed

    Jenkins, Paul J; Ramaesh, Rishikesan; Pankaj, Pankaj; Patton, James T; Howie, Colin R; Goffin, Jérôme M; Merwe, Andrew van der; Wallace, Robert J; Porter, Daniel E; Simpson, A Hamish

    2013-10-01

    The micro-architecture of bone has been increasingly recognized as an important determinant of bone strength. Successful operative stabilization of fractures depends on bone strength. We evaluated the osseous micro-architecture and strength of the osteoporotic human femoral head. 6 femoral heads, obtained during arthroplasty surgery for femoral neck fracture, underwent micro-computed tomography (microCT) scanning at 30 μm, and bone volume ratio (BV/TV), trabecular thickness, structural model index, connection density, and degree of anisotropy for volumes of interest throughout the head were derived. A further 15 femoral heads underwent mechanical testing of compressive failure stress of cubes of trabecular bone from different regions of the head. The greatest density and trabecular thickness was found in the central core that extended from the medial calcar to the physeal scar. This region also correlated with the greatest degree of anisotropy and proportion of plate-like trabeculae. In the epiphyseal region, the trabeculae were organized radially from the physeal scar. The weakest area was found at the apex and peripheral areas of the head. The strongest region was at the center of the head. The center of the femoral head contained the strongest trabecular bone, with the thickest, most dense trabeculae. The apical region was weaker. From an anatomical and mechanical point of view, implants that achieve fixation in or below this central core may achieve the most stable fixation during fracture healing.

  5. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.

    PubMed

    Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H

    2013-07-01

    This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.

  6. Bayesian estimation of optical properties of the human head via 3D structural MRI

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander H.; Culver, Joseph P.; Sorensen, A. Gregory; Dale, Anders M.; Boas, David A.

    2003-10-01

    Knowledge of the baseline optical properties of the tissues of the human head is essential for absolute cerebral oximetry, and for quantitative studies of brain activation. In this work we numerically model the utility of signals from a small 6-optode time-resolved diffuse optical tomographic apparatus for inferring baseline scattering and absorption coefficients of the scalp, skull and brain, when complete geometric information is available from magnetic resonance imaging (MRI). We use an optical model where MRI-segmented tissues are assumed homogeneous. We introduce a noise model capturing both photon shot noise and forward model numerical accuracy, and use Bayesian inference to predict errorbars and correlations on the measurments. We also sample from the full posterior distribution using Markov chain Monte Carlo. We conclude that ~ 106 detected photons are sufficient to measure the brain"s scattering and absorption to a few percent. We present preliminary results using a fast multi-layer slab model, comparing the case when layer thicknesses are known versus unknown.

  7. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates.

    PubMed

    Dunbar, Donald C; Macpherson, Jane M; Simmons, Roger W; Zarcades, Athina

    2008-12-01

    Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (> 20 deg.) and stability (< or = 20 deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head-neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame.

  8. Theoretical and experimental study on near infrared time-resolved optical diffuse tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Yamada, Yukio

    2006-08-01

    Parts of the works of our group in the past five years on near infrared time-resolved (TR) optical tomography are summarized in this paper. The image reconstruction algorithm is based on Newton Raphson scheme with a datatype R generated from modified Generalized Pulse Spectrum Technique. Firstly, the algorithm is evaluated with simulated data from a 2-D model and the datatype R is compared with other popularly used datatypes. In this second part of the paper, the in vitro and in vivo NIR DOT imaging on a chicken leg and a human forearm, respectively are presented for evaluating both the image reconstruction algorithm and the TR measurement system. The third part of this paper is about the differential pathlength factor of human head while monitoring head activity with NIRS and applying the modified Lambert-Beer law. Benefiting from the TR system, the measured DPF maps of the three import areas of human head are presented in this paper.

  9. Combining urbanization and hydrodynamics data to evaluate sea level rise impacts on coastal water resources

    NASA Astrophysics Data System (ADS)

    Young, C. R.; Martin, J. B.

    2016-02-01

    Assessments of the potential for salt water intrusion due to sea level rise require consideration of both coastal hydrodynamic and human activity thresholds. In siliciclastic systems, sea level rise may cause salt intrusion to coastal aquifers at annual or decadal scales, whereas in karst systems salt intrudes at the tidal scalse. In both cases, human activity impacts the freshwater portion of the system by altering the water demand on the aquifer. We combine physicochemical and human activity data to evaluate impact of sea level rise on salt intrusion to siliclastic (Indian River Lagoon, Fl, USA) and karst (Puerto Morelos, Yucatan, Mexico) systems under different sea level rise rate scenarios. Two hydrodynamic modeling scenarios are considered; flux controlled and head controlled. Under a flux controlled system hydraulic head gradients remain constant during sea level rise while under a head controlled system hydraulic graidents diminish, allowing saltwater intrusion. Our model contains three key terms; aquifer recharge, groundwater discharge and hydraulic conductivity. Groundwater discharge and hydraulic conductivity were calculated based on high frequency (karst system) and decadal (siliciclastic system) field measurements. Aquifer recharge is defined as precipitation less evapotranspiration and water demand was evaluated based on urban planning data that provided the regional water demand. Water demand includes agricultural area, toursim, traffic patterns, garbage collection and total population. Water demand was initially estimated using a partial leaset squares regression based on these variables. Our model indicates that water demand depends most on agricultural area, which has changed significantly over the last 30 years. In both systems, additional water demand creates a head controlled scenario, thus increaseing the protential fo salt intrusion with projected sea level rise.

  10. An empirical model of human aspiration in low-velocity air using CFD investigations.

    PubMed

    Anthony, T Renée; Anderson, Kimberly R

    2015-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve's decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion.

  11. Probabilistic description of infant head kinematics in abusive head trauma.

    PubMed

    Lintern, T O; Nash, M P; Kelly, P; Bloomfield, F H; Taberner, A J; Nielsen, P M F

    2017-12-01

    Abusive head trauma (AHT) is a potentially fatal result of child abuse, but the mechanisms by which injury occur are often unclear. To investigate the contention that shaking alone can elicit the injuries observed, effective computational models are necessary. The aim of this study was to develop a probabilistic model describing infant head kinematics in AHT. A deterministic model incorporating an infant's mechanical properties, subjected to different shaking motions, was developed in OpenSim. A Monte Carlo analysis was used to simulate the range of infant kinematics produced as a result of varying both the mechanical properties and the type of shaking motions. By excluding physically unrealistic shaking motions, worst-case shaking scenarios were simulated and compared to existing injury criteria for a newborn, a 4.5 month-old, and a 12 month-old infant. In none of the three cases were head kinematics observed to exceed previously-estimated subdural haemorrhage injury thresholds. The results of this study provide no biomechanical evidence to demonstrate how shaking by a human alone can cause the injuries observed in AHT, suggesting either that additional factors, such as impact, are required, or that the current estimates of injury thresholds are incorrect.

  12. Walking Ahead: The Headed Social Force Model.

    PubMed

    Farina, Francesco; Fontanelli, Daniele; Garulli, Andrea; Giannitrapani, Antonio; Prattichizzo, Domenico

    2017-01-01

    Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians' heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism.

  13. Origin of Clothing Lice Indicates Early Clothing Use by Anatomically Modern Humans in Africa

    PubMed Central

    Toups, Melissa A.; Kitchen, Andrew; Light, Jessica E.; Reed, David L.

    2011-01-01

    Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene. PMID:20823373

  14. Assembly And Initial Characterization Of A Panel Of 85 Genomically Validated Cell Lines From Diverse Head And Neck Tumor Sites

    PubMed Central

    Zhao, Mei; Sano, Daisuke; Pickering, Curtis R.; Jasser, Samar A.; Henderson, Ying C.; Clayman, Gary L.; Sturgis, Erich M.; Ow, Thomas J.; Lotan, Reuben; Carey, Thomas E.; Sacks, Peter G.; Grandis, Jennifer R.; Sidransky, David; Heldin, Nils Erik; Myers, Jeffrey N.

    2011-01-01

    Purpose Human cell lines are useful for studying cancer biology and pre-clinically modeling cancer therapy, but can be misidentified and cross contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma (HNSCC), thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium, was assembled from the collections of several individuals and institutions. Authenticity was verified by performing short tandem repeat (STR) analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination demonstrates a wide range of in vitro phenotypes. Conclusion This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be utilized for biological as well as preclinical studies. PMID:21868764

  15. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    PubMed

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  17. [Virtual audiovisual talking heads: articulatory data and models--applications].

    PubMed

    Badin, P; Elisei, F; Bailly, G; Savariaux, C; Serrurier, A; Tarabalka, Y

    2007-01-01

    In the framework of experimental phonetics, our approach to the study of speech production is based on the measurement, the analysis and the modeling of orofacial articulators such as the jaw, the face and the lips, the tongue or the velum. Therefore, we present in this article experimental techniques that allow characterising the shape and movement of speech articulators (static and dynamic MRI, computed tomodensitometry, electromagnetic articulography, video recording). We then describe the linear models of the various organs that we can elaborate from speaker-specific articulatory data. We show that these models, that exhibit a good geometrical resolution, can be controlled from articulatory data with a good temporal resolution and can thus permit the reconstruction of high quality animation of the articulators. These models, that we have integrated in a virtual talking head, can produce augmented audiovisual speech. In this framework, we have assessed the natural tongue reading capabilities of human subjects by means of audiovisual perception tests. We conclude by suggesting a number of other applications of talking heads.

  18. A brief history of behavioral assessment following experimental traumatic brain injury in juveniles.

    PubMed

    Hartman, Richard E

    2011-12-01

    This review focuses on assessment of behavioral outcomes following traumatic brain injury in juvenile animal models. In the 15 years since the first publication in this field, the majority of studies have used rats roughly equivalent to human toddlers in terms of brain development. Few studies have tested ages closer to human neonates, and fewer have assessed ages closer to human adolescents. Closed head impact has been the most commonly used model, causing relatively consistent motor and cognitive deficits. Additionally, closed head impacts of a more severe nature have generally led to behavioral deficits of a more severe nature. Impact models (both closed and open skull) have produced more severe deficits in younger animals than in older animals, similar to patterns observed in juvenile humans with traumatic brain injury. In contrast, the fluid percussion model has produced relatively subtle deficits that did not get worse with a more severe injury and were worse for older animals than younger animals. Most of the studies have looked at relatively short postinjury time points, and none so far have assessed behavior in old adult animals injured as juveniles. The review ends with a discussion of possible directions for future animal research into juvenile traumatic brain injury.

  19. The biomechanics of concussion in unhelmeted football players in Australia: a case-control study.

    PubMed

    McIntosh, Andrew S; Patton, Declan A; Fréchède, Bertrand; Pierré, Paul-André; Ferry, Edouard; Barthels, Tobias

    2014-05-20

    Concussion is a prevalent brain injury in sport and the wider community. Despite this, little research has been conducted investigating the dynamics of impacts to the unprotected human head and injury causation in vivo, in particular the roles of linear and angular head acceleration. Professional contact football in Australia. Adult male professional Australian rules football players participating in 30 games randomly selected from 103 games. Cases selected based on an observable head impact, no observable symptoms (eg, loss-of-consciousness and convulsions), no on-field medical management and no injury recorded at the time. A data set for no-injury head impact cases comprising head impact locations and head impact dynamic parameters estimated through rigid body simulations using the MAthematical DYnamic MOdels (MADYMO) human facet model. This data set was compared to previously reported concussion case data. Qualitative analysis showed that the head was more vulnerable to lateral impacts. Logistic regression analyses of head acceleration and velocity components revealed that angular acceleration of the head in the coronal plane had the strongest association with concussion; tentative tolerance levels of 1747 rad/s(2) and 2296 rad/s(2) were reported for a 50% and 75% likelihood of concussion, respectively. The mean maximum resultant angular accelerations for the concussion and no-injury cases were 7951 rad/s(2) (SD 3562 rad/s(2)) and 4300 rad/s(2) (SD 3657 rad/s(2)), respectively. Linear acceleration is currently used in the assessment of helmets and padded headgear. The 50% and 75% likelihood of concussion values for resultant linear head acceleration in this study were 65.1 and 88.5 g, respectively. As hypothesised by Holbourn over 70 years ago, angular acceleration plays an important role in the pathomechanics of concussion, which has major ramifications in terms of helmet design and other efforts to prevent and manage concussion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    PubMed

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  1. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  2. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders.

    PubMed

    Fanjul-Vélez, Félix; Salas-García, Irene; Ortega-Quijano, Noé; Arce-Diego, José Luis

    2015-01-01

    Non-invasive treatment of neurodegenerative diseases is particularly challenging in Western countries, where the population age is increasing. In this work, magnetic propagation in human head is modelled by Finite-Difference Time-Domain (FDTD) method, taking into account specific characteristics of Transcranial Magnetic Stimulation (TMS) in neurodegenerative diseases. It uses a realistic high-resolution three-dimensional human head mesh. The numerical method is applied to the analysis of magnetic radiation distribution in the brain using two realistic magnetic source models: a circular coil and a figure-8 coil commonly employed in TMS. The complete model was applied to the study of magnetic stimulation in Alzheimer and Parkinson Diseases (AD, PD). The results show the electrical field distribution when magnetic stimulation is supplied to those brain areas of specific interest for each particular disease. Thereby the current approach entails a high potential for the establishment of the current underdeveloped TMS dosimetry in its emerging application to AD and PD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  4. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates

    PubMed Central

    Dunbar, Donald C.; Macpherson, Jane M.; Simmons, Roger W.; Zarcades, Athina

    2009-01-01

    SUMMARY Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (>20deg.) and stability (≤20deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head–neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame. PMID:19043061

  5. Effect of conductor geometry on source localization: Implications for epilepsy studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlitt, H.; Heller, L.; Best, E.

    1994-07-01

    We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we mustmore » first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head.« less

  6. Synthesis of elastic microfibrillar components fibrillin-1 and fibrillin-2 by human optic nerve head astrocytes in situ and in vitro.

    PubMed

    Pena, J D; Mello, P A; Hernandez, M R

    2000-05-01

    The purpose of this study was to identify elastic microfibrillar components fibrillin-1 and fibrillin-2 in optic nerve heads of adult normal and glaucomatous subjects, in cultured optic nerve head astrocytes (type 1B astrocytes), as well as fibrillin-1 in fetal optic nerve heads. To characterize synthesis and gene expression of microfibrillar proteins in human optic nerve heads and cultured type 1B astrocytes, light microscopy immunohistochemistry, in situ hybridization, and RT-PCR or Northern blots were performed. Our results demonstrated that fibrillin-1 was associated with blood vessels, astrocytes in the glial columns and cribriform plates, and with astrocyte processes in the nerve bundles in all samples. In glaucomatous optic nerves there was enhanced fibrillin-1 immunoreactivity, especially surrounding blood vessels. Fibrillin-2 was localized primarily to blood vessels in all samples, without qualitative differences between normal and glaucomatous samples. In fetal optic nerve heads fibrillin-1 mRNA was localized to glial cells and to the blood vessel walls. In adult optic nerve heads, there was little fibrillin-1 mRNA as detectable by in situ hybridization and RT-PCR. There was no detectable upregulation of fibrillin-1 mRNA in glaucoma. In cultured type 1B astrocytes, fibrillin-1 staining was mostly pericellular. There was little fibrillin-2 immunoreactivity. In conclusion, astrocytes from the optic nerve head deposit elastic microfibrillar components in situ and in vitro, with a predominance of fibrillin-1. Upregulation of fibrillin-1 mRNA was not observed in glaucoma, suggesting that increased transcription may occur early in the disease process. Cultures of type 1B astrocytes from the optic nerve head provides a useful model to study mechanisms regulating the interactions of elastin and the microfibrils in optic nerve head astrocytes.

  7. Matters of simulation of the semicircular canal system

    NASA Technical Reports Server (NTRS)

    Gurfinkel, V. S.; Petukhov, S. V.

    1977-01-01

    A scale model of the human semicircular canal system was developed based on the theory of dynamic similitude. This enlarged model makes it convenient to conduct tests on the vestibular processes and dynamics in the semicircular canals. Tests revealed hydromechanical interaction between canals, with asymmetry of the conditions of movement of the endolymph in the canals in opposite directions. A type of vestibular reactions, occurring with angular oscillations of the head, was predicted and demonstrated using this model and human test subjects.

  8. Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells

    DTIC Science & Technology

    2012-06-29

    the tissue-force interaction(s) and the cellular damage properties remain unresolved. Studies on a mechanical head model demonstrated high transient...that pressure transient. In vitro models of primary blast injury [5,18,19] are likewise limited by an absence of real-time, high spatial and temporal... models , as well as with human injuries in which expression of bTBI symptoms among different individuals that are exposed to the same blast is

  9. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age.

    PubMed

    Scholkmann, Felix; Wolf, Martin

    2013-10-01

    Continuous-wave near-infrared spectroscopy and near-infrared imaging enable the measurement of relative concentration changes in oxy- and deoxyhemoglobin and thus hemodynamics and oxygenation. The accuracy of determined changes depends mainly on the modeling of the light transport through the probed tissue. Due to the highly scattering nature of tissue, the light path is longer than the source-detector separation (d). This is incorporated in modeling by multiplying d by a differential pathlength factor (DPF) which depends on several factors such as wavelength, age of the subject, and type of tissue. In the present work, we derive a general DPF equation for the frontal human head, incorporating dependency on wavelength and age, based on published data. We validated the equation using different data sets of experimentally determined DPFs from six independent studies.

  10. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  11. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  12. A Study of the Response of the Human Cadaver Head to Impact

    PubMed Central

    Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott

    2008-01-01

    High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591

  13. Effect of bulk modulus on deformation of the brain under rotational accelerations

    NASA Astrophysics Data System (ADS)

    Ganpule, S.; Daphalapurkar, N. P.; Cetingul, M. P.; Ramesh, K. T.

    2018-01-01

    Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

  14. Development of a human body finite element model with multiple muscles and their controller for estimating occupant motions and impact responses in frontal crash situations.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki; Sugiyama, Takahiko; Min, Kyuengbo

    2012-10-01

    A few reports suggest differences in injury outcomes between cadaver tests and real-world accidents under almost similar conditions. This study hypothesized that muscle activity could primarily cause the differences, and then developed a human body finite element (FE) model with individual muscles. Each muscle was modeled as a hybrid model of bar elements with active properties and solid elements with passive properties. The model without muscle activation was firstly validated against five series of cadaver test data on impact responses in the anterior-posterior direction. The model with muscle activation levels estimated based on electromyography (EMG) data was secondly validated against four series of volunteer test data on bracing effects for stiffness and thickness of an upper arm muscle, and braced driver's responses under a static environment and a brake deceleration. A muscle controller using reinforcement learning (RL), which is a mathematical model of learning process in the basal ganglia associated with human postural controls, were newly proposed to estimate muscle activity in various occupant conditions including inattentive and attentive conditions. Control of individual muscles predicted by RL reproduced more human like head-neck motions than conventional control of two groups of agonist and antagonist muscles. The model and the controller demonstrated that head-neck motions of an occupant under an impact deceleration of frontal crash were different in between a bracing condition with maximal braking force and an occupant condition predicted by RL. The model and the controller have the potential to investigate muscular effects in various occupant conditions during frontal crashes.

  15. An improved finite element modeling of the cerebrospinal fluid layer in the head impact analysis.

    PubMed

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    The finite element (FE) method has been widely used to investigate the mechanism of traumatic brain injuries (TBIs), because it is technically difficult to quantify the responses of the brain tissues to the impact in experiments. One of technical challenges to build a FE model of a human head is the modeling of the cerebrospinal fluid (CSF) of the brain. In the current study, we propose to use membrane elements to construct the CSF layer. Using the proposed approach, we demonstrate that a head model can be built by using existing meshes available in commercial databases, without using any advanced meshing software tool, and with the sole use of native functions of the FE package Abaqus. The calculated time histories of the intracranial pressures at frontal, posterior fossa, parietal, and occipital positions agree well with the experimental data and the simulations in the literature, indicating that the physical effects of the CSF layer have been accounted for in the proposed modeling approach. The proposed modeling approach would be useful for bioengineers to solve practical problems.

  16. Driver head pose tracking with thermal camera

    NASA Astrophysics Data System (ADS)

    Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.

    2016-09-01

    Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.

  17. Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R.

    2004-01-01

    In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.

  18. Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization

    PubMed Central

    Liu, Quanying; Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2018-01-01

    Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data. It still remains to be clarified, however, what technological aspects of hdEEG acquisition and analysis primarily influence this correspondence. Here we examined to what extent the detection of EEG-RSN maps by sICA depends on the electrode density, the accuracy of the head model, and the source localization algorithm employed. Our analyses revealed that the collection of EEG data using a high-density montage is crucial for RSN detection by sICA, but also the use of appropriate methods for head modeling and source localization have a substantial effect on RSN reconstruction. Overall, our results confirm the potential of hdEEG for mapping the functional architecture of the human brain, and highlight at the same time the interplay between acquisition technology and innovative solutions in data analysis. PMID:29551969

  19. 'Goats that stare at men': dwarf goats alter their behaviour in response to human head orientation, but do not spontaneously use head direction as a cue in a food-related context.

    PubMed

    Nawroth, Christian; von Borell, Eberhard; Langbein, Jan

    2015-01-01

    Recently, comparative research on the mechanisms and species-specific adaptive values of attributing attentive states and using communicative cues has gained increased interest, particularly in non-human primates, birds, and dogs. Here, we investigate these phenomena in a farm animal species, the dwarf goat (Capra aegagrus hircus). In the first experiment, we investigated the effects of different human head and body orientations, as well as human experimenter presence/absence, on the behaviour of goats in a food-anticipating paradigm. Over a 30-s interval, the experimenter engaged in one of four different postures or behaviours (head and body towards the subject-'Control', head to the side, head and body away from the subject, or leaving the room) before delivering a reward. We found that the level of subjects' active anticipatory behaviour was highest in the control condition and decreased with a decreasing level of attention paid to the subject by the experimenter. Additionally, goats 'stared' (i.e. stood alert) at the experimental set-up for significantly more time when the experimenter was present but paid less attention to the subject ('Head' and 'Back' condition) than in the 'Control' and 'Out' conditions. In a second experiment, the experimenter provided different human-given cues that indicated the location of a hidden food reward in a two-way object choice task. Goats were able to use both 'Touch' and 'Point' cues to infer the correct location of the reward but did not perform above the level expected by chance in the 'Head only' condition. We conclude that goats are able to differentiate among different body postures of a human, including head orientation; however, despite their success at using multiple physical human cues, they fail to spontaneously use human head direction as a cue in a food-related context.

  20. Effects of end-ring/shield configuration on homogeneity and signal-to-noise ratio in a birdcage-type coil loaded with a human head.

    PubMed

    Liu, Wanzhan; Collins, Christopher M; Delp, Pamela J; Smith, Michael B

    2004-01-01

    We modeled four different end-ring/shield configurations of a birdcage coil to examine their effects on field homogeneity and signal-to-noise ratio (SNR) at 64 MHz and 125 MHz. The configurations are defined as: 1) conventional: a conventional cylindrical shield; 2) surrounding shield: a shield with annular extensions to closely shield the end rings; 3) solid connection: a shield with annular extensions connected to the rungs; and 4) thin wire connection: a shield with thin wires connected to the rungs. At both frequencies, the coil with conventional end-ring/shield configuration produces the most homogeneous RF magnetic (B1) field when the coil is empty, but produces the least homogeneous B1 field when the coil is loaded with a human head. The surrounding shield configuration results in the most homogeneous B1 and highest SNR in the coil loaded with the human head at both frequencies, followed closely by the solid connection configuration. Copyright 2003 Wiley-Liss, Inc.

  1. Computational modeling of human head under blast in confined and open spaces: primary blast injury.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G

    2014-01-01

    In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations.

    PubMed

    Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T

    1999-05-01

    Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.

  3. Three-dimensional adult male head and skull contours.

    PubMed

    Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R

    2014-01-01

    Traumatic brain injury (TBI) is a major public health issue, affecting millions of people annually. Anthropomorphic test devices (ATDs) and finite element models (FEMs) provide a means of understanding factors leading to TBI, potentially reducing the occurrence. Thus, there is a need to ensure that these tools accurately model humans. For example, the Hybrid III was not based on 3-dimensional human head shape data. The objective of this study is to produce average head and skull contours for an average U.S. male that can be used for ATDs and FEMs. Computed tomography (CT) scans of adult male heads were obtained from a database provided by the University of Virginia Center for Applied Biomechanics. An orthographic viewer was used to extract head and skull contours from the CT scans. Landmarks were measured graphically using HyperMesh (Altair, HyperWorks). To determine the head occipital condyle (OC) centroid, surface meshes of the OCs were made and the centroid of the surfaces was calculated. The Hybrid III contour was obtained using a MicroScribe Digitizer (Solution Technologies, Inc., Oella, MD). Comparisons of the average male and ATD contours were performed using 2 methods: (1) the midsagittal and midcoronal ATD contours relative to the OC centroid were compared to the corresponding 1 SD range of the average male contours; (2) the ATD sagittal contour was translated relative to the average male sagittal contour to minimize the area between the 2 contours. Average male head and skull contours were created. Landmark measurements were made for the dorsum sellae, nasion skin, nasion bone, infraorbital foramen, and external auditory meatus, all relative to the OC centroid. The Hybrid III midsagittal contour was outside the 1 SD range for 15.2 percent of the average male head contour but only by a maximum distance of 1.5 mm, whereas the Hybrid III midcoronal head contour was outside the 1 SD range for 12.2 percent of the average male head contour by a maximum distance of 2 mm. Minimization of the area between the midsagittal contours resulted in only 2.3 mm of translation, corroborating the good correlation between the contours established by initial comparison. Three-dimensional average male head and skull contours were created and measurements of landmark locations were made. It was found that the 50th percentile male Hybrid III corresponds well to the average male head contour and validated its 3D shape. Average adult head and skull contours and landmark data are available for public research use at http://biomechanics.pratt.duke.edu/data .

  4. Oncogenic impact of human papilloma virus in head and neck cancer.

    PubMed

    Heffernan, C B; O'Neill, J P; Timon, C

    2010-09-01

    There is considerable debate within the literature about the significance of human papilloma virus in head and neck squamous cell carcinoma, and its potential influence on the prevention, diagnosis, grading, treatment and prognosis of these cancers. Cigarette smoking and alcohol consumption have traditionally been cited as the main risk factors for head and neck cancers. However, human papilloma virus, normally associated with cervical and other genital carcinomas, has emerged as a possible key aetiological factor in head and neck squamous cell carcinoma, especially oropharyngeal cancers. These cancers pose a significant financial burden on health resources and are increasing in incidence. The recent introduction of vaccines targeted against human papilloma virus types 16 and 18, to prevent cervical cancer, has highlighted the need for ongoing research into the importance of human papilloma virus in head and neck squamous cell carcinoma.

  5. Why infest the loved ones--inherent human behaviour indicates former mutualism with head lice.

    PubMed

    Rózsa, Lajos; Apari, Péter

    2012-05-01

    Head lice transmit to new hosts when people lean their heads together. Humans frequently touch their heads to express friendship or love, while this behaviour is absent in apes. We hypothesize that this behaviour was adaptive because it enabled people to acquire head lice infestations as early as possible to provoke an immune response effective against both head lice and body lice throughout the subsequent periods of their life. This cross-immunity could provide some defence against the body-louse-borne lethal diseases like epidemic typhus, trench fever, relapsing fever and the classical plague. Thus the human 'touching heads' behaviour probably acts as an inherent and unconscious 'vaccination' against body lice to reduce the threat exposed by the pathogens they may transmit. Recently, the eradication of body-louse-borne diseases rendered the transmission of head lice a maladaptive, though still widespread, behaviour in developed societies.

  6. Comparison of smooth pursuit and combined eye-head tracking in human subjects with deficient labyrinthine function

    NASA Technical Reports Server (NTRS)

    Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.

    1987-01-01

    The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.

  7. Detection of bacterial pathogens including potential new species in human head lice from Mali

    PubMed Central

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077

  8. Detection of bacterial pathogens including potential new species in human head lice from Mali.

    PubMed

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.

  9. Human body and head characteristics as a communication medium for Body Area Network.

    PubMed

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  10. The application of additive technologies in creation a medical simulator-trainer of the human head operating field

    NASA Astrophysics Data System (ADS)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.; Pashaev, B. Y.

    2016-06-01

    The aim of the work was to determine the possible application of additive manufacturing technology during the manufacturing process as close as possible to reality of medical simulator-trainers. In work were used some additive manufacturing technologies: selective laser sintering (SLS), fused deposition modeling (FDM), binder Jetting. As a result, a prototype of simulator-trainer of the human head operating field, which based on the CT real patient, was manufactured and conducted its tests. It was found that structure, which is obtained with the use of 3D-printers ProJet 160, most appropriate and closest to the real properties of the bone.

  11. Modelling and validation of diffuse reflectance of the adult human head for fNIRS: scalp sub-layers definition

    NASA Astrophysics Data System (ADS)

    Herrera-Vega, Javier; Montero-Hernández, Samuel; Tachtsidis, Ilias; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-11-01

    Accurate estimation of brain haemodynamics parameters such as cerebral blood flow and volume as well as oxygen consumption i.e. metabolic rate of oxygen, with funcional near infrared spectroscopy (fNIRS) requires precise characterization of light propagation through head tissues. An anatomically realistic forward model of the human adult head with unprecedented detailed specification of the 5 scalp sublayers to account for blood irrigation in the connective tissue layer is introduced. The full model consists of 9 layers, accounts for optical properties ranging from 750nm to 950nm and has a voxel size of 0.5mm. The whole model is validated comparing the predicted remitted spectra, using Monte Carlo simulations of radiation propagation with 108 photons, against continuous wave (CW) broadband fNIRS experimental data. As the true oxy- and deoxy-hemoglobin concentrations during acquisition are unknown, a genetic algorithm searched for the vector of parameters that generates a modelled spectrum that optimally fits the experimental spectrum. Differences between experimental and model predicted spectra was quantified using the Root mean square error (RMSE). RMSE was 0.071 +/- 0.004, 0.108 +/- 0.018 and 0.235+/-0.015 at 1, 2 and 3cm interoptode distance respectively. The parameter vector of absolute concentrations of haemoglobin species in scalp and cortex retrieved with the genetic algorithm was within histologically plausible ranges. The new model capability to estimate the contribution of the scalp blood flow shall permit incorporating this information to the regularization of the inverse problem for a cleaner reconstruction of brain hemodynamics.

  12. Head-Neck Biomechanics in Simulated Rear Impact

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Cusick, Joseph F.; Kleinberger, Michael

    1998-01-01

    The first objective of this study is to present an overview of the human cadaver studies aimed to determine the biomechanics of the head-neck in a simulated rear crash. The need for kinematic studies to better understand the mechanisms of load transfer to the human head-neck complex is emphasized. Based on this need, a methodology is developed to delineate the dynamic kinematics of the human head-neck complex. Intact human cadaver head-neck complexes were subjected to postero-anterior impact using a mini-sled pendulum device. The integrity of the soft tissues including the musculature and skin were maintained. The kinematic data were recorded using high-speed photography coupled with retroreflective targets placed at various regions of the human head-neck complex. The overall and segmental kinematics of the entire head-neck complex, and the localized facet joint motions were determined. During the initial stages of loading, a transient decoupling of the head occurred with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower cervical spinal column is in local extension. This establishes a reverse curvature to the cervical head-neck complex. With continued loading, head motion ensues and approximately at the end of the loading phase, the entire head-neck complex is under the extension mode with a single curvature. In contrast, the lower cervical spine facet joint kinematics show varying compression and sliding. While both the anterior and posterior-most regions of the facet joint slide, the posterior-most region (mean: 2.84 mm) of the joint compresses more than the anterior-most (mean: 2.02 mm) region. These varying kinematics at the ends of the facet joint result in a pinching mechanism. These biomechanical kinematic findings may be correlated to the presence of headaches and neck pain (Lord, Bogduk et al. 1992; Barnsley, Lord et al. 1995), based on the unique human head-neck anatomy at the upper cervical spine region and the associated facet joint characteristics, and clinical studies.

  13. Finite element analysis of moment-rotation relationships for human cervical spine.

    PubMed

    Zhang, Qing Hang; Teo, Ee Chon; Ng, Hong Wan; Lee, Vee Sin

    2006-01-01

    A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.

  14. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms

    PubMed Central

    Courtney, Amy; Courtney, Michael

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism. PMID:26539158

  15. The role of blood vessels in high-resolution volume conductor head modeling of EEG.

    PubMed

    Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T

    2016-03-01

    Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Arrestant Effect of Human Scalp Components on Head Louse (Phthiraptera: Pediculidae) Behavior.

    PubMed

    Ortega-Insaurralde, Isabel; Ceferino Toloza, Ariel; Gonzalez-Audino, Paola; Inés Picollo, María

    2017-03-01

    Relevant evidence has shown that parasites process host-related information using chemical, visual, tactile, or auditory cues. However, the cues that are involved in the host-parasite interaction between Pediculus humanus capitis (De Geer 1767) and humans have not been identified yet. In this work, we studied the effect of human scalp components on the behavior of adult head lice. Filter paper segments were rubbed on volunteers' scalps and then placed in the experimental arena, where adult head lice were individually tested. The movement of the insects was recorded for each arena using the software EthoVision. Average movement parameters were calculated for the treatments in the bioassays such as total distance, velocity, number of times a head louse crossed between zones of the arena, and time in each zone of the arena. We found that scalp components induced head lice to decrease average locomotor activity and to remain arrested on the treated paper. The effect of the ageing of human scalp samples in the response of head lice was not statistically significant (i.e., human scalp samples of 4, 18, 40, and 60 h of ageing did not elicit a significant change in head louse behavior). When we analyzed the effect of the sex in the response of head lice to human scalp samples, males demonstrated significant differences. Our results showed for the first time the effect of host components conditioning head lice behavior. We discuss the role of these components in the dynamic of head lice infestation. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    PubMed

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  18. Multimodal Education: A Model with Promise.

    ERIC Educational Resources Information Center

    Gerler, Edwin R., Jr.; Locke, Don C.

    1980-01-01

    Describes a program that uses Lazarus's factors that contribute to human growth and development as the basis for its program. The modalities covered are given the headings behavior, affect, sensation and imagery, cognition, interpersonal, and diet/physiology. (IRT)

  19. Destabilization of Human Balance Control by Static and Dynamic Head Tilts

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.

    2004-01-01

    To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.

  20. Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads.

    PubMed

    Salzar, Robert S; Treichler, Derrick; Wardlaw, Andrew; Weiss, Greg; Goeller, Jacques

    2017-04-15

    The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.

  1. Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity.

    PubMed

    Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony

    2016-09-01

    This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Head Excursion of Restrained Human Volunteers and Hybrid III Dummies in Steady State Rollover Tests

    PubMed Central

    Moffatt, Edward; Hare, Barry; Hughes, Raymond; Lewis, Lance; Iiyama, Hiroshi; Curzon, Anne; Cooper, Eddie

    2003-01-01

    Seatbelts provide substantial benefits in rollover crashes, yet occupants still receive head and neck injuries from contacting the vehicle roof interior when the roof exterior strikes the ground. Prior research has evaluated rollover restraint performance utilizing anthropomorphic test devices (dummies), but little dynamic testing has been done with human volunteers to learn how they move during rollovers. In this study, the vertical excursion of the head of restrained dummies and human subjects was measured in a vehicle being rotated about its longitudinal roll axis at roll rates from 180-to-360 deg/sec and under static inversion conditions. The vehicle’s restraint design was the commonly used 3-point seatbelt with continuous loop webbing and a sliding latch plate. This paper presents an analysis of the observed occupant motion and provides a comparison of dummy and human motion under similar test conditions. Thirty-five tests (eighteen static and seventeen dynamic) were completed using two different sizes of dummies and human subjects in both near and far-side roll directions. The research indicates that far-side rollovers cause the restrained test subjects to have greater head excursion than near-side rollovers, and that static inversion testing underestimates head excursion for far-side occupants. Human vertical head excursion of up to 200 mm was found at a roll rate of 220 deg/sec. Humans exhibit greater variability in head excursion in comparison to dummies. Transfer of seatbelt webbing through the latch plate did not correlate directly with differences in head excursion. PMID:12941241

  3. A Model of Human Orientation and Self Motion Perception during Body Acceleration: The Orientation Modeling System

    DTIC Science & Technology

    2016-09-28

    previous research and modeling results. The OMS and Perception Toolbox were used to perform a case study of an F18 mishap. Model results imply that...request documents from DTIC. Change of Address Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic...54  Coriolis head movement during a coordinated turn. .............................................55  Case Study

  4. A model-based analysis of a display for helicopter landing approach. [control theoretical model of human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wheat, L. W.

    1975-01-01

    A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.

  5. 77 FR 41266 - Extension of Import Restrictions on Archaeological Objects and Ecclesiastical and Ritual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... figurines; warrior figures; animals such as birds, bulls and pigs; tubular figurines; boat models; and human masks. In the Cypro-Archaic period, terra cotta models illustrate a variety of daily activities.... Illustrated examples include the head of a woman decorated with rosettes and a bearded male with spiral...

  6. Conductive Critical Thinking

    ERIC Educational Resources Information Center

    Paetkau, Mark

    2007-01-01

    One of my goals as an instructor is to teach students critical thinking skills. This paper presents an example of a student-led discussion of heat conduction at the first-year level. Heat loss from a human head is calculated using conduction and radiation models. The results of these plausible (but wrong) models of heat transfer contradict what…

  7. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    PubMed

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  8. 45 CFR 1301.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... operating a Head Start program. Development and administrative costs mean costs incurred in accordance with...

  9. A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    ERIC Educational Resources Information Center

    Elder, David M.; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…

  10. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  11. Recent technology products from Space Human Factors research

    NASA Technical Reports Server (NTRS)

    Jenkins, James P.

    1991-01-01

    The goals of the NASA Space Human Factors program and the research carried out concerning human factors are discussed with emphasis given to the development of human performance models, data, and tools. The major products from this program are described, which include the Laser Anthropometric Mapping System; a model of the human body for evaluating the kinematics and dynamics of human motion and strength in microgravity environment; an operational experience data base for verifying and validating the data repository of manned space flights; the Operational Experience Database Taxonomy; and a human-computer interaction laboratory whose products are the display softaware and requirements and the guideline documents and standards for applications on human-computer interaction. Special attention is given to the 'Convoltron', a prototype version of a signal processor for synthesizing the head-related transfer functions.

  12. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    PubMed Central

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  13. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation.

    PubMed

    Bornstein, Sophia; White, Ruth; Malkoski, Stephen; Oka, Masako; Han, Gangwen; Cleaver, Timothy; Reh, Douglas; Andersen, Peter; Gross, Neil; Olson, Susan; Deng, Chuxia; Lu, Shi-Long; Wang, Xiao-Jing

    2009-11-01

    Smad4 is a central mediator of TGF-beta signaling, and its expression is downregulated or lost at the malignant stage in several cancer types. In this study, we found that Smad4 was frequently downregulated not only in human head and neck squamous cell carcinoma (HNSCC) malignant lesions, but also in grossly normal adjacent buccal mucosa. To gain insight into the importance of this observation, we generated mice in which Smad4 was deleted in head and neck epithelia (referred to herein as HN-Smad4-/- mice) and found that they developed spontaneous HNSCC. Interestingly, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited increased genomic instability, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/Brca (Fanc/Brca) DNA repair pathway linked to HNSCC susceptibility in humans. Consistent with this, further analysis revealed a correlation between downregulation of Smad4 protein and downregulation of the Brca1 and Rad51 proteins in human HNSCC. In addition to the above changes in tumor epithelia, both normal head and neck tissue and HNSCC from HN-Smad4-/- mice exhibited severe inflammation, which was associated with increased expression of TGF-beta1 and activated Smad3. We present what we believe to be the first single gene-knockout model for HNSCC, in which both HNSCC formation and invasion occurred as a result of Smad4 deletion. Our results reveal an intriguing connection between Smad4 and the Fanc/Brca pathway and highlight the impact of epithelial Smad4 loss on inflammation.

  14. 77 FR 55844 - Tribal Consultation Meeting; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Tribal... Department of Health and Human Services, Administration for Children and Families', Office of Head Start leadership and the leadership of Tribal Governments operating Head Start and Early Head Start programs in...

  15. 45 CFR 1311.1 - Head Start Fellows Program Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to Head Start and to other child development and family services programs. ... 1311.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD...

  16. 45 CFR 1311.1 - Head Start Fellows Program Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to Head Start and to other child development and family services programs. ... 1311.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD...

  17. 45 CFR 1311.1 - Head Start Fellows Program Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to Head Start and to other child development and family services programs. ... 1311.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD...

  18. 45 CFR 1306.23 - Training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... grantees must provide staff with information and training about the underlying philosophy and goals of Head...

  19. 45 CFR 1311.1 - Head Start Fellows Program Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 1311.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD... to Head Start and to other child development and family services programs. ...

  20. 45 CFR 1311.1 - Head Start Fellows Program Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 1311.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD... to Head Start and to other child development and family services programs. ...

  1. Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice.

    PubMed

    Jabbar, Sean; Strati, Katerina; Shin, Myeong Kyun; Pitot, Henry C; Lambert, Paul F

    2010-11-10

    High-risk human papillomaviruses (HPVs) contribute to cervical and other anogenital cancers, and they are also linked etiologically to a subset of head and neck squamous cell carcinomas (HNSCC). We previously established a model for HPV-associated HNSCC in which we treated transgenic mice expressing the papillomaviral oncoproteins with the chemical carcinogen 4-nitroquinoline-1-oxide (4-NQO). We found that the HPV-16 E7 oncoprotein was highly potent in causing HNSCC, and its dominance masked any potential oncogenic contribution of E6, a second papillomaviral oncoprotein commonly expressed in human cancers. In the current study, we shortened the duration of treatment with 4-NQO to reduce the incidence of cancers and discovered a striking synergy between E6 and E7 in causing HNSCC. Comparing the oncogenic properties of wild-type versus mutant E6 genes in this model for HNSCC uncovered a role for some but not other cellular targets of E6 previously shown to contribute to cervical cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Human Papillomavirus Type 16 E6 and E7 Oncoproteins Act Synergistically to Cause Head and Neck Cancer in Mice

    PubMed Central

    Jabbar, Sean; Strati, Katerina; Shin, Myeong Kyun; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    High-risk human papillomaviruses (HPVs) contribute to cervical and other anogenital cancers, and they are also linked etiologically to a subset of head and neck squamous cell carcinomas (HNSCC). We previously established a model for HPV-associated HNSCC in which we treated transgenic mice expressing the papillomaviral oncoproteins with the chemical carcinogen 4-nitroquinoline-1-oxide (4-NQO). We found that the HPV-16 E7 oncoprotein was highly potent in causing HNSCC, and its dominance masked any potential oncogenic contribution of E6, a second papillomaviral oncoprotein commonly expressed in human cancers. In the current study, we shortened the duration of treatment with 4-NQO to reduce the incidence of cancers and discovered a striking synergy between E6 and E7 in causing HNSCC. Comparing the oncogenic properties of wild-type versus mutant E6 genes in this model for HNSCC uncovered a role for some but not other cellular targets of E6 previously shown to contribute to cervical cancer. PMID:20797753

  3. Human papilloma virus: a new risk factor in a subset of head and neck cancers.

    PubMed

    Bisht, Manisha; Bist, Sampan Singh

    2011-01-01

    Head and neck cancer is the sixth most common malignancy worldwide. Tobacco smoking and alcohol consumption are two well known behavioral risk factors associated with head and neck cancer. Recently, evidence is mounting that infection with human papilloma virus, most commonly human papilloma virus-16 is responsible for a subset of head and neck squamous cell carcinoma especially tumors of tonsillar origin. The molecular pathway used by human papilloma virus to trigger malignant transformation of tissue is different from that of other well known risk factors, i.e. smoking and alcohol, associated with squamous cell carcinoma. Apparently, these subsets of patients with human papilloma virus positive tumor are more likely to have a better prognosis than human papilloma virus negative tumor. Considering this fact, the human papilloma virus infection should be determined in all oropharyngeal cancers since it can have a major impact on the decision making process of the treatment.

  4. Novel Application of Postmortem CT Angiography for Evaluation of the Intracranial Vascular Anatomy in Cadaver Heads.

    PubMed

    van Eijk, Ruben P A; van der Zwan, Albert; Bleys, Ronald L A W; Regli, Luca; Esposito, Giuseppe

    2015-12-01

    Postmortem CT angiography is a common procedure used to visualize the entire human vasculature. For visualization of a specific organ's vascular anatomy, casting is the preferred method. Because of the permanent and damaging nature of casting, the organ cannot be further used as an experimental model after angiography. Therefore, there is a need for a minimally traumatic method to visualize organ-specific vascular anatomy. The purpose of this study was to develop and evaluate a contrast enhancement technique that is capable of visualizing the intracranial vascular anatomy while preserving the anatomic integrity in cadaver heads. Seven human heads were used in this study. Heads were prepared by cannulating the vertebral and internal carotid arteries. Contrast agent was injected as a mixture of tap water, polyethylene glycol 600, and an iodinated contrast agent. Postmortem imaging was executed on a 64-MDCT scanner. Primary image review and 3D reconstruction were performed on a CT workstation. Clear visualization of the major cerebral arteries and smaller intracranial branches was achieved. Adequate visualization was obtained for both the anterior and posterior intracranial circulation. The minimally traumatic angiography method preserved the vascular integrity of the cadaver heads. A novel application of postmortem CT angiography is presented here. The technique can be used for radiologic evaluation of the intracranial circulation in cadaver heads. After CT angiography, the specimen can be used for further experimental or laboratory testing and teaching purposes.

  5. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head.

    PubMed

    Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H

    1997-08-01

    Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.

  6. Adaptation to Space: An Introduction

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1995-01-01

    The cardiovascular and musculoskeletal systems are normally exposed to gradients of blood pressure and weight on Earth. These gradients increase blood pressure and tissue weight in dependent tissues of the body. Exposure to actual and simulated microgravity causes blood and tissue fluid to shift from the legs to the head. Studies of humans in space have documented facial edema, space motion sickness, decreased plasma volume, muscle atrophy, and loss of bone strength. Return of astronauts to Earth is accompanied by orthostatic intolerance, decreased neuromuscular coordination, and reduced exercise capacity. These factors decrease performance during descent from orbit and increase risk during emergency egress from the spacecraft. Models of simulated microgravity include 6 deg head-down tilt, immersion, and prolonged horizontal bedrest. Head-down tilt is the most accepted model and studies using this model of up to one year have been performed in Russia. Animal models which offer clear insights into the role of gravity on vertebrates include the developing giraffe and snakes from various habitats. Finally, possible countermeasures to speed readaptation of astronauts to gravity after prolonged space flight will be discussed.

  7. Confronting human papilloma virus/oropharyngeal cancer: a model for interprofessional collaboration.

    PubMed

    Fried, Jacquelyn L

    2014-06-01

    A collaborative practice model related to Human Papilloma Virus (HPV) associated oropharyngeal cancer highlights the role of the dental hygienist in addressing this condition. The incidence of HPV associated head and neck cancer is rising. Multiple professionals including the dental hygienist can work collaboratively to confront this growing public health concern. A critical review applies the growth and utilization of interprofessional education (IPE) and interprofessional collaboration (IPC) to multi-disciplinary models addressing the human papilloma virus and oropharyngeal cancers. A model related to HPV associated oropharyngeal cancer addresses an oral systemic condition that supports the inclusion of a dental hygienist on collaborative teams addressing prevention, detection, treatment and cure of OPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Porcine experimental model for perforator flap raising in reconstructive microsurgery.

    PubMed

    González-García, José A; Chiesa-Estomba, Carlos M; Álvarez, Leire; Altuna, Xabier; García-Iza, Leire; Thomas, Izaskun; Sistiaga, Jon A; Larruscain, Ekhiñe

    2018-07-01

    Perforator free flap-based reconstruction of the head and neck is a challenging surgical procedure and needs a steep learning curve. A reproducible mammal large animal model with similarities to human anatomy is relevant for perforator flap raising and microanastomosis. The aim of this study was to assess the feasibility of a swine model for perforator-based free flaps in reconstructive microsurgery. Eleven procedures were performed under general anesthesia in a porcine model, elevating a skin flap vascularized by perforating musculocutaneous branches of the superior epigastric artery to evaluate the relevance of this model for head and neck reconstructive microsurgery. The anterior abdominal skin perforator-based free flap in a swine model irrigated by the superior epigastric artery was elevated in eleven procedures. In six of these procedures, we could perform an arterial and venous microanastomosis to the great vessels located in the base of the neck. The porcine experimental model of superior epigastric artery perforator-based free flap reconstruction offers relevant similarities to the human deep inferior epigastric artery perforator flap. We could demonstrate this model as acceptable for perforator free flap training due to the necessity of perforator and pedicle dissection and transfer to a distant area. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Acceleration induced water removal from ear canals.

    NASA Astrophysics Data System (ADS)

    Kang, Hosung; Averett, Katelee; Jung, Sunghwan

    2017-11-01

    Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.

  10. Apparent Diffusion Coefficient Histograms of Human Papillomavirus-Positive and Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma: Assessment of Tumor Heterogeneity and Comparison with Histopathology.

    PubMed

    de Perrot, T; Lenoir, V; Domingo Ayllón, M; Dulguerov, N; Pusztaszeri, M; Becker, M

    2017-11-01

    Head and neck squamous cell carcinoma associated with human papillomavirus infection represents a distinct tumor entity. We hypothesized that diffusion phenotypes based on the histogram analysis of ADC values reflect distinct degrees of tumor heterogeneity in human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinomas. One hundred five consecutive patients (mean age, 64 years; range, 45-87 years) with primary oropharyngeal ( n = 52) and oral cavity ( n = 53) head and neck squamous cell carcinoma underwent MR imaging with anatomic and diffusion-weighted sequences ( b = 0, b = 1000 s/mm 2 , monoexponential ADC calculation). The collected tumor voxels from the contoured ROIs provided histograms from which position, dispersion, and form parameters were computed. Histogram data were correlated with histopathology, p16-immunohistochemistry, and polymerase chain reaction for human papillomavirus DNA. There were 21 human papillomavirus-positive and 84 human papillomavirus-negative head and neck squamous cell carcinomas. At histopathology, human papillomavirus-positive cancers were more often nonkeratinizing (13/21, 62%) than human papillomavirus-negative cancers (19/84, 23%; P = .001), and their mitotic index was higher (71% versus 49%; P = .005). ROI-based mean and median ADCs were significantly lower in human papillomavirus-positive (1014 ± 178 × 10 -6 mm 2 /s and 970 ± 187 × 10 -6 mm 2 /s, respectively) than in human papillomavirus-negative tumors (1184 ± 168 × 10 -6 mm 2 /s and 1161 ± 175 × 10 -6 mm 2 /s, respectively; P < .001), whereas excess kurtosis and skewness were significantly higher in human papillomavirus-positive (1.934 ± 1.386 and 0.923 ± 0.510, respectively) than in human papillomavirus-negative tumors (0.643 ± 0.982 and 0.399 ± 0.516, respectively; P < .001). Human papillomavirus-negative head and neck squamous cell carcinoma had symmetric normally distributed ADC histograms, which corresponded histologically to heterogeneous tumors with variable cellularity, high stromal component, keratin pearls, and necrosis. Human papillomavirus-positive head and neck squamous cell carcinomas had leptokurtic skewed right histograms, which corresponded to homogeneous tumors with back-to-back densely packed cells, scant stromal component, and scattered comedonecrosis. Diffusion phenotypes of human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinomas show significant differences, which reflect their distinct degree of tumor heterogeneity. © 2017 by American Journal of Neuroradiology.

  11. A human body model with active muscles for simulation of pretensioned restraints in autonomous braking interventions.

    PubMed

    Osth, Jonas; Brolin, Karin; Bråse, Dan

    2015-01-01

    The aim of this work is to study driver and passenger kinematics in autonomous braking scenarios, with and without pretensioned seat belts, using a whole-body finite element (FE) human body model (HBM) with active muscles. Upper extremity musculature for elbow and shoulder flexion-extension feedback control was added to an HBM that was previously complemented with feedback controlled muscles for the trunk and neck. Controller gains were found using a radial basis function metamodel sampled by making 144 simulations of an 8 ms(-2) volunteer sled test. The HBM kinematics, interaction forces, and muscle activations were validated using a second volunteer data set for the passenger and driver positions, with and without 170 N seat belt pretension, in 11 ms(-2) autonomous braking deceleration. The HBM was then used for a parameter study in which seat belt pretension force and timing were varied from 170 to 570 N and from 0.25 s before to 0.15 s after deceleration onset, in an 11 ms(-2) autonomous braking scenario. The model validation showed that the forward displacements and interaction forces of the HBM correlated with those of corresponding volunteer tests. Muscle activations and head rotation angles were overestimated in the HBM when compared with volunteer data. With a standard seat belt in 11 ms(-2) autonomous braking interventions, the HBM exhibited peak forward head displacements of 153 and 232 mm for the driver and passenger positions. When 570 N seat belt pretension was applied 0.15 s before deceleration onset, a reduction of peak head displacements to 60 and 75 mm was predicted. Driver and passenger responses to autonomous braking with standard and pretensioned restraints were successfully modeled in a whole-body FE HBM with feedback controlled active muscles. Variations of belt pretension force level and timing revealed that belt pretension 0.15 s before deceleration onset had the largest effect in reducing forward head and torso movement caused by the autonomous brake intervention. The displacement of the head relative to the torso for the HBM is quite constant for all variations in timing and belt force; it is the reduced torso displacements that lead to reduced forward head displacements.

  12. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.

    PubMed

    Stauffer, Paul R; Snow, Brent W; Rodrigues, Dario B; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F

    2014-02-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.

  13. Human Papillomavirus Status and the Risk of Cerebrovascular Events Following Radiation Therapy for Head and Neck Cancer.

    PubMed

    Addison, Daniel; Seidelmann, Sara B; Janjua, Sumbal A; Emami, Hamed; Staziaki, Pedro V; Hallett, Travis R; Szilveszter, Bálint; Lu, Michael T; Cambria, Richard P; Hoffmann, Udo; Chan, Annie W; Wirth, Lori J; Neilan, Tomas G

    2017-08-30

    Radiation therapy (RT) is a standard treatment for head and neck cancer; however, it is associated with inflammation, accelerated atherosclerosis, and cerebrovascular events (CVEs; stroke or transient ischemic attack). Human papillomavirus (HPV) is found in nearly half of head and neck cancers and is associated with inflammation and atherosclerosis. Whether HPV confers an increased risk of CVEs after RT is unknown. Using an institutional database, we identified all consecutive patients treated with RT from 2002 to 2012 for head and neck cancer who were tested for HPV. The outcome of interest was the composite of ischemic stroke and transient ischemic attack, and the association between HPV and CVEs was assessed using Cox proportional hazard models, competing risk analysis, and inverse probability weighting. Overall, 326 participants who underwent RT for head and neck cancer were tested for HPV (age 59±12 years, 75% were male, 9% had diabetes mellitus, 45% had hypertension, and 61% were smokers), of which 191 (59%) were tumor HPV positive. Traditional risk factors for CVEs were similar between HPV-positive and -negative patients. Over a median follow-up of 3.4 years, there were 18 ischemic strokes and 5 transient ischemic attacks (event rate of 1.8% per year). The annual event rate was higher in the HPV-positive patients compared with the HPV-negative patients (2.6% versus 0.9%, P =0.002). In a multivariable model, HPV-positive status was associated with a >4 times increased risk of CVEs (hazard ratio: 4.4; 95% confidence interval, 1.5-13.2; P =0.008). In this study, HPV-positive status is associated with an increased risk of stroke or transient ischemic attack following RT for head and neck cancer. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. A MEG investigation of somatosensory processing in the rhesus monkey

    PubMed Central

    Wilson, Tony W.; Godwin, Dwayne W.; Czoty, Paul W.; Nader, Michael A.; Kraft, Robert A.; Buchheimer, Nancy C.; Daunais, James B.

    2009-01-01

    The use of minimally and non-invasive neuroimaging methods in animal models has sharply increased over the past decade. Such studies have enhanced understanding of the neural basis of the physical signals quantified by these tools, and have addressed an assortment of fundamental and otherwise intractable questions in neurobiology. To date, these studies have almost exclusively utilized positron-emission tomography or variants of magnetic resonance based imaging. These methods provide largely indirect measures of brain activity and are strongly reliant on intact vasculature and normal blood flow, which is known to be compromised in many clinical conditions. The current study provides the first demonstration of whole-head magnetoencephalography (MEG), a non-invasive and direct measure of neuronal activity, in a rhesus monkey, and in the process supplies the initial data on systems-level dynamics in somatosensory cortices. An adult rhesus monkey underwent three separate studies of tactile stimulation on the pad of the right second or fifth digit as whole-head MEG data were acquired. The neural generators of the primary neuromagnetic components were localized using an equivalent-current-dipole model. Second digit stimulation produced an initial cortical response peaking ∼16 ms after stimulus onset in the contralateral somatosensory cortices, with a later response at ∼96 ms in an overlapping or nearby neural area with a roughly orthogonal orientation. Stimulation of the fifth digit produced similar results, the main exception being a substantially weaker later response. We believe the 16ms response is likely the monkey homologue of the human M50 response, as both are the earliest cortical response and localize to the contralateral primary somatosensory area. Thus, these data suggest that mechanoreception in nonhuman primates operates substantially faster than that in adult humans. More broadly, these results demonstrate that it is feasible to use current human whole-head MEG instrumentation to record neuromagnetic responses in adult rhesus monkeys. Nonhuman primate models of human disease provide the closest phylogenetic link to humans. The present, non-invasive imaging study could promote exciting links between invasive animal studies and non-invasive human studies, allowing experimentally induced deficits and pharmacological treatments to be interpreted in light of resulting brain network interactions. PMID:19306931

  15. Learning toward practical head pose estimation

    NASA Astrophysics Data System (ADS)

    Sang, Gaoli; He, Feixiang; Zhu, Rong; Xuan, Shibin

    2017-08-01

    Head pose is useful information for many face-related tasks, such as face recognition, behavior analysis, human-computer interfaces, etc. Existing head pose estimation methods usually assume that the face images have been well aligned or that sufficient and precise training data are available. In practical applications, however, these assumptions are very likely to be invalid. This paper first investigates the impact of the failure of these assumptions, i.e., misalignment of face images, uncertainty and undersampling of training data, on head pose estimation accuracy of state-of-the-art methods. A learning-based approach is then designed to enhance the robustness of head pose estimation to these factors. To cope with misalignment, instead of using hand-crafted features, it seeks suitable features by learning from a set of training data with a deep convolutional neural network (DCNN), such that the training data can be best classified into the correct head pose categories. To handle uncertainty and undersampling, it employs multivariate labeling distributions (MLDs) with dense sampling intervals to represent the head pose attributes of face images. The correlation between the features and the dense MLD representations of face images is approximated by a maximum entropy model, whose parameters are optimized on the given training data. To estimate the head pose of a face image, its MLD representation is first computed according to the model based on the features extracted from the image by the trained DCNN, and its head pose is then assumed to be the one corresponding to the peak in its MLD. Evaluation experiments on the Pointing'04, FacePix, Multi-PIE, and CASIA-PEAL databases prove the effectiveness and efficiency of the proposed method.

  16. Genotyping of human lice suggests multiple emergencies of body lice from local head louse populations.

    PubMed

    Li, Wenjun; Ortiz, Gabriel; Fournier, Pierre-Edouard; Gimenez, Gregory; Reed, David L; Pittendrigh, Barry; Raoult, Didier

    2010-03-23

    Genetic analyses of human lice have shown that the current taxonomic classification of head lice (Pediculus humanus capitis) and body lice (Pediculus humanus humanus) does not reflect their phylogenetic organization. Three phylotypes of head lice A, B and C exist but body lice have been observed only in phylotype A. Head and body lice have different behaviours and only the latter have been involved in outbreaks of infectious diseases including epidemic typhus, trench fever and louse borne recurrent fever. Recent studies suggest that body lice arose several times from head louse populations. By introducing a new genotyping technique, sequencing variable intergenic spacers which were selected from louse genomic sequence, we were able to evaluate the genotypic distribution of 207 human lice. Sequence variation of two intergenic spacers, S2 and S5, discriminated the 207 lice into 148 genotypes and sequence variation of another two intergenic spacers, PM1 and PM2, discriminated 174 lice into 77 genotypes. Concatenation of the four intergenic spacers discriminated a panel of 97 lice into 96 genotypes. These intergenic spacer sequence types were relatively specific geographically, and enabled us to identify two clusters in France, one cluster in Central Africa (where a large body louse outbreak has been observed) and one cluster in Russia. Interestingly, head and body lice were not genetically differentiated. We propose a hypothesis for the emergence of body lice, and suggest that humans with both low hygiene and head louse infestations provide an opportunity for head louse variants, able to ingest a larger blood meal (a required characteristic of body lice), to colonize clothing. If this hypothesis is ultimately supported, it would help to explain why poor human hygiene often coincides with outbreaks of body lice. Additionally, if head lice act as a reservoir for body lice, and that any social degradation in human populations may allow the formation of new populations of body lice, then head louse populations are potentially a greater threat to humans than previously assumed.

  17. Genotyping of Human Lice Suggests Multiple Emergences of Body Lice from Local Head Louse Populations

    PubMed Central

    Li, Wenjun; Ortiz, Gabriel; Fournier, Pierre-Edouard; Gimenez, Gregory; Reed, David L.; Pittendrigh, Barry; Raoult, Didier

    2010-01-01

    Background Genetic analyses of human lice have shown that the current taxonomic classification of head lice (Pediculus humanus capitis) and body lice (Pediculus humanus humanus) does not reflect their phylogenetic organization. Three phylotypes of head lice A, B and C exist but body lice have been observed only in phylotype A. Head and body lice have different behaviours and only the latter have been involved in outbreaks of infectious diseases including epidemic typhus, trench fever and louse borne recurrent fever. Recent studies suggest that body lice arose several times from head louse populations. Methods and Findings By introducing a new genotyping technique, sequencing variable intergenic spacers which were selected from louse genomic sequence, we were able to evaluate the genotypic distribution of 207 human lice. Sequence variation of two intergenic spacers, S2 and S5, discriminated the 207 lice into 148 genotypes and sequence variation of another two intergenic spacers, PM1 and PM2, discriminated 174 lice into 77 genotypes. Concatenation of the four intergenic spacers discriminated a panel of 97 lice into 96 genotypes. These intergenic spacer sequence types were relatively specific geographically, and enabled us to identify two clusters in France, one cluster in Central Africa (where a large body louse outbreak has been observed) and one cluster in Russia. Interestingly, head and body lice were not genetically differentiated. Conclusions We propose a hypothesis for the emergence of body lice, and suggest that humans with both low hygiene and head louse infestations provide an opportunity for head louse variants, able to ingest a larger blood meal (a required characteristic of body lice), to colonize clothing. If this hypothesis is ultimately supported, it would help to explain why poor human hygiene often coincides with outbreaks of body lice. Additionally, if head lice act as a reservoir for body lice, and that any social degradation in human populations may allow the formation of new populations of body lice, then head louse populations are potentially a greater threat to humans than previously assumed. PMID:20351779

  18. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  19. The Relationship between Robot's Nonverbal Behaviour and Human's Likability Based on Human's Personality.

    PubMed

    Thepsoonthorn, Chidchanok; Ogawa, Ken-Ichiro; Miyake, Yoshihiro

    2018-05-30

    At current state, although robotics technology has been immensely developed, the uncertainty to completely engage in human-robot interaction is still growing among people. Many current studies then started to concern about human factors that might influence human's likability like human's personality, and found that compatibility between human's and robot's personality (expressions of personality characteristics) can enhance human's likability. However, it is still unclear whether specific means and strategy of robot's nonverbal behaviours enhances likability from human with different personality traits and whether there is a relationship between robot's nonverbal behaviours and human's likability based on human's personality. In this study, we investigated and focused on the interaction via gaze and head nodding behaviours (mutual gaze convergence and head nodding synchrony) between introvert/extravert participants and robot in two communication strategies (Backchanneling and Turn-taking). Our findings reveal that the introvert participants are positively affected by backchanneling in robot's head nodding behaviour, which results in substantial head nodding synchrony whereas the extravert participants are positively influenced by turn-taking in gaze behaviour, which leads to significant mutual gaze convergence. This study demonstrates that there is a relationship between robot's nonverbal behaviour and human's likability based on human's personality.

  20. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    PubMed

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  1. Partners in Creating a 21st Century Head Start. Hearing on Detailing the Recommendations Made in the Report of the Committee on Head Start Quality and Expansion in Preparation for the 1994 Head Start Reauthorization Process, before the Committee on Labor and Human Resources. United States Senate. One Hundred Third Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This hearing examined issues concerning Project Head Start quality and expansion. Testimony was offered by: (1) Senator Edward Kennedy, who discussed the importance of strengthening Head Start; (2) Mary Jo Bane, Assistant Secretary for the Administration for Children and Families, Department of Health and Human Services, who presented highlights…

  2. AHNS series: Do you know your guidelines? Management of head and neck cancer in the era of human papillomavirus: Educating our patients on human papillomavirus.

    PubMed

    Guo, Theresa; Goldenberg, David; Fakhry, Carole

    2017-05-01

    Human papillomavirus (HPV) has changed the face of head and neck cancer over the past 2 decades. No longer is this solely a disease of older patients with a history of heavy tobacco and alcohol use. Patients with HPV-related head and neck cancers tend to be younger, healthier, and have an improved prognosis, compared with those with HPV-negative tumors. As more patients are diagnosed with HPV-related head and neck cancer, physicians have important topics to consider. These include prevalence, transmission, and natural history of HPV, the role of screening, vaccines, and HPV testing in head and neck cancer. This article continues a series developed by the American Head and Neck Society's Education Committee entitled "Do you know your guidelines?" and is intended to provide guidance for navigating common questions and concerns patients may have about HPV infection and HPV-related head and neck cancer. © 2017 Wiley Periodicals, Inc. Head Neck 39: 833-839, 2017. © 2017 Wiley Periodicals, Inc.

  3. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.

    PubMed

    Hicheur, Halim; Vieilledent, Stéphane; Berthoz, Alain

    Anticipatory head orientation relative to walking direction was investigated in humans. Subjects were asked to walk along a 20 m perimeter, figure of eight. The geometry of this path required subjects to steer their body according to both curvature variations (alternate straight with curved walking) and walking direction (clock wise and counter clock wise). In agreement with previous results obtained during different locomotor tasks [R. Grasso, S. Glasauer, Y. Takei, A. Berthoz, The predictive brain: anticipatory control of head direction for the steering of locomotion, NeuroReport 7 (1996) 1170-1174; R. Grasso, P. Prevost, Y.P. Ivanenko, A. Berthoz, Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy, Neurosci. Lett. 253 (2) (1998) 115-118; T. Imai, S.T. Moore, T. Raphan, B. Cohen, Interaction of body, head, and eyes during walking and turning, Exp. Brain Res. 136 (2001) 1-18; P. Prevost, Y. Ivanenko, R. Grasso, A. Berthoz, Spatial invariance in anticipatory orienting behaviour during human navigation, Neurosci. Lett. 339 (2002) 243-247; G. Courtine, M. Schieppati, Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision, Eur. J. Neurosci. 18 (2003) 177-190], the head turned toward the future walking direction. This anticipatory head behaviour was continuously modulated by the geometrical variations of the path. Two main components were observed in the anticipatory head behaviour. One was related to the geometrical form of the path, the other to the transfer of body mass from one foot to the other during stepping. A clear modulation of the head deviation pattern was observed between walking on curved versus straight parts of the path: head orientation was influenced to a lesser extent by step alternation for curved path where a transient head fixation was observed. We also observed good symmetry in the head deviation profile, i.e. the head tended to anticipate the future walking direction with the same amplitude when turning to the left (29.75 +/- 7.41 degrees of maximum head deviation) or to the right (30.86 +/- 9.92 degrees ). These findings suggest a combination of motor strategies underlying head stabilization in space and more global orienting mechanisms for steering the whole body in the desired direction.

  4. Automated Sperm Head Detection Using Intersecting Cortical Model Optimised by Particle Swarm Optimization.

    PubMed

    Tan, Weng Chun; Mat Isa, Nor Ashidi

    2016-01-01

    In human sperm motility analysis, sperm segmentation plays an important role to determine the location of multiple sperms. To ensure an improved segmentation result, the Laplacian of Gaussian filter is implemented as a kernel in a pre-processing step before applying the image segmentation process to automatically segment and detect human spermatozoa. This study proposes an intersecting cortical model (ICM), which was derived from several visual cortex models, to segment the sperm head region. However, the proposed method suffered from parameter selection; thus, the ICM network is optimised using particle swarm optimization where feature mutual information is introduced as the new fitness function. The final results showed that the proposed method is more accurate and robust than four state-of-the-art segmentation methods. The proposed method resulted in rates of 98.14%, 98.82%, 86.46% and 99.81% in accuracy, sensitivity, specificity and precision, respectively, after testing with 1200 sperms. The proposed algorithm is expected to be implemented in analysing sperm motility because of the robustness and capability of this algorithm.

  5. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Corey C.; Taylor, Paul Allen

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots ofmore » maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.« less

  6. A domestic porcine model for studying the effects of radiation on head and neck cancers.

    PubMed

    Arnold, Christoph R; Kloss, Frank; Singh, Sarvpreet; Vasiljevic, Danijela; Stigler, Robert; Auberger, Thomas; Wenzel, Volker; Klima, Günter; Lukas, Peter; Lepperdinger, Günter; Gassner, Robert

    2017-05-01

    Radiation therapy (RT) of the head and neck region is often accompanied by serious side effects. Research in this area is needed to improve treatment outcomes and ameliorate therapy tolerance. Laboratory rodents are barely matching today's clinical standards in RT research. Yet domestic swine (Sus scrofa domestica) have previously proved suitable for various advanced tests in clinical research and training. We therefore investigated whether S. scrofa domestica is also appropriate for irradiation of the mandible. A common scheme for irradiation treatment of S. scrofa domestica mandibles in a split-mouth design was acquired by applying computed tomography (CT) scanning under sedation. Basing on close anatomic resemblance, a standard treatment plan comprising 2 opposed irradiation fields could be accomplished. RT was carried out in a clinical environment with 2 × 9 Gy. The resulting operating procedure facilitated complication-free sedation, transport, positioning, CT scanning, and effective irradiation. Based on common standards applied for RT in humans, domestic pigs can be employed to progress RT clinical research. Due to their human-like anatomy, physiology, size, and weight, the swine model is expedient for advancing experimental RT of the head and neck area. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The history of head transplantation: a review.

    PubMed

    Lamba, Nayan; Holsgrove, Daniel; Broekman, Marike L

    2016-12-01

    Since the turn of the last century, the prospect of head transplantation has captured the imagination of scientists and the general public. Recently, head transplant has regained attention in popular media, as neurosurgeons have proposed performing this procedure in 2017. Given the potential impact of such a procedure, we were interested in learning the history of the technical hurdles that need to be overcome, and determine if it is even technically possible to perform such a procedure on humans today. We conducted a historical review of available literature on the technical challenges and developments of head transplantation. The many social, psychological, ethical, religious, cultural, and legal questions of head transplantation were beyond the scope of this review. Our historical review identified the following important technical considerations related to performing a head transplant: maintenance of blood flow to an isolated brain via vessel anastomosis; availability of immunosuppressive agents; spinal anastomosis and fusion following cord transfection; pain control in the recipient. Several animal studies have demonstrated success in maintaining recipient cerebral perfusion and achieving immunosuppression. However, there is currently sparse evidence in favor of successful spinal anastomosis and fusion after transection. While recent publications by an Italian group offer novel approaches to this challenge, research on this topic has been sparse and hinges on procedures performed in animal models in the 1970s. How transferrable these older methods are to the human nervous system is unclear and warrants further exploration. Our review identified several important considerations related to performing a viable head transplantation. Besides the technical challenges that remain, there are important ethical issues to consider, such as exploitation of vulnerable patients and informed consent. Thus, besides the remaining technical challenges, these ethical issues will also need to be addressed before moving these studies to the clinic.

  8. Evaluation of possible head injuries ensuing a cricket ball impact.

    PubMed

    Mohotti, Damith; Fernando, P L N; Zaghloul, Amir

    2018-05-01

    The aim of this research is to study the behaviour of a human head during the event of an impact of a cricket ball. While many recent incidents were reported in relation to head injuries caused by the impact of cricket balls, there is no clear information available in the published literature about the possible threat levels and the protection level of the current protective equipment. This research investigates the effects of an impact of a cricket ball on a human head and the level of protection offered by the existing standard cricket helmet. An experimental program was carried out to measure the localised pressure caused by the impact of standard cricket balls. The balls were directed at a speed of 110 km/h on a 3D printed head model, with and without a standard cricket helmet. Numerical simulations were carried out using advanced finite element package LS-DYNA to validate the experimental results. The experimental and numerical results showed approximately a 60% reduction in the pressure on the head model when the helmet was used. Both frontal and side impact resulted in head acceleration values in the range of 225-250 g at a ball speed of 110 km/h. There was a 36% reduction observed in the peak acceleration of the brain when wearing a helmet. Furthermore, numerical simulations showed a 67% reduction in the force on the skull and a 95% reduction in the skull internal energy when introducing the helmet. (1) Upon impact, high localised pressure could cause concussion for a player without helmet. (2) When a helmet was used, the acceleration of the brain observed in the numerical results was at non-critical levels according to existing standards. (3) A significant increase in the threat levels was observed for a player without helmet, based on force, pressure, acceleration and energy criteria, which resulted in recommending the compulsory use of the cricket helmet. (4) Numerical results showed a good correlation with experimental results and hence, the numerical technique used in this study can be recommended for future applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Evidence from mitochondrial DNA that head lice and body lice of humans (Phthiraptera: Pediculidae) are conspecific.

    PubMed

    Leo, N P; Campbell, N J H; Yang, X; Mumcuoglu, K; Barker, S C

    2002-07-01

    The specific status of the head and body lice of humans has been debated for more than 200 yr. To clarify the specific status of head and body lice, we sequenced 524 base pairs (bp) of the cytochrome oxidase I (COI) gene of 28 head and 28 body lice from nine countries. Ten haplotypes that differed by 1-5 bp at 11 nucleotide positions were identified. A phylogeny of these sequences indicates that these head and body lice are not from reciprocally monophyletic lineages. Indeed, head and body lice share three of the 10 haplotypes we found. F(ST) values and exact tests of haplotype frequencies showed significant differences between head and body lice. However, the same tests also showed significant differences among lice from different countries. Indeed, more of the variation in haplotype frequencies was explained by differences among lice from different countries than by differences between head and body lice. Our results indicate the following: (1) head and body lice do not represent reciprocally monophyletic lineages and are conspecific; (2) gene flow among populations of lice from different countries is limited; and (3) frequencies of COI haplotypes can be used to study maternal gene flow among populations of head and body lice and thus transmission of lice among their human hosts.

  10. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation

    PubMed Central

    Bornstein, Sophia; White, Ruth; Malkoski, Stephen; Oka, Masako; Han, Gangwen; Cleaver, Timothy; Reh, Douglas; Andersen, Peter; Gross, Neil; Olson, Susan; Deng, Chuxia; Lu, Shi-Long; Wang, Xiao-Jing

    2009-01-01

    Smad4 is a central mediator of TGF-β signaling, and its expression is downregulated or lost at the malignant stage in several cancer types. In this study, we found that Smad4 was frequently downregulated not only in human head and neck squamous cell carcinoma (HNSCC) malignant lesions, but also in grossly normal adjacent buccal mucosa. To gain insight into the importance of this observation, we generated mice in which Smad4 was deleted in head and neck epithelia (referred to herein as HN-Smad4–/– mice) and found that they developed spontaneous HNSCC. Interestingly, both normal head and neck tissue and HNSCC from HN-Smad4–/– mice exhibited increased genomic instability, which correlated with downregulated expression and function of genes encoding proteins in the Fanconi anemia/Brca (Fanc/Brca) DNA repair pathway linked to HNSCC susceptibility in humans. Consistent with this, further analysis revealed a correlation between downregulation of Smad4 protein and downregulation of the Brca1 and Rad51 proteins in human HNSCC. In addition to the above changes in tumor epithelia, both normal head and neck tissue and HNSCC from HN-Smad4–/– mice exhibited severe inflammation, which was associated with increased expression of TGF-β1 and activated Smad3. We present what we believe to be the first single gene–knockout model for HNSCC, in which both HNSCC formation and invasion occurred as a result of Smad4 deletion. Our results reveal an intriguing connection between Smad4 and the Fanc/Brca pathway and highlight the impact of epithelial Smad4 loss on inflammation. PMID:19841536

  11. EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones.

    PubMed

    Hamblin, Denise L; Anderson, Vitas; McIntosh, Robert L; McKenzie, Ray J; Wood, Andrew W; Iskra, Steve; Croft, Rodney J

    2007-05-01

    This paper investigates the influence of EEG electrode caps on specific absorption rate (SAR) in the head from a GSM900 mobile phone (217-Hz modulation, peak power output 2 W). SAR measurements were recorded in an anthropomorphic phantom using a precision robotic system. Peak 10 g average SAR in the whole head and in just the temporal region was compared for three phantom arrangements; no cap, 64-electrode "Electro-Cap," and 64-electrode "Quick-Cap". Relative to the "no cap" arrangement, the Electro-Cap and Quick-Cap caused a peak SAR (10 g) reduction of 14% and 18% respectively in both the whole head and in the temporal region. Additional computational modeling confirmed that SAR (10 g) is reduced by the presence of electrode leads and that the extent of the effect varies according to the orientation of the leads with respect to the radiofrequency (RF) source. The modeling also indicated that the nonconductive shell between the electrodes and simulated head material does not significantly alter the electrode lead shielding effect. The observed SAR reductions are not likely to be sufficiently large to have accounted for null EEG findings in the past but should nonetheless be noted in studies aiming to measure and report human brain activity under similar exposure conditions.

  12. Immersive viewing engine

    NASA Astrophysics Data System (ADS)

    Schonlau, William J.

    2006-05-01

    An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.

  13. Clinical distinctions of radiation sickness with exposure of different parts of the human body to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nevskaya, G.F.; Abramova, G.M.; Volkova, M.A.

    1982-01-12

    The clinical picture of radiation sickness of 139 radiological patients exposed to local irradition of the head, chest, and stomach with efficient doses of 210 rad was examined. It was found that at fractionated local irraditions the clinical symptom-complex of radiation sickness was identifical to that seen as a result of total-body irradiation. During head irradiation the major symptom was headache and during stomach irradiation nausea. The severity level of radiation damage measured with respect to the clinical symptom-complex as a whole with the aid of the bioinformation model was similar during irradiations of the head and stomach, much highermore » during irradiation of the chest. During head and stomach irradiations the severity level of radiation damage was proportional to the efficient dose. During chest irradiation there was no correlation between the severity level and the exposure to doses of 210 rad.« less

  14. Finite element analysis for the evaluation of protective functions of helmets against ballistic impact.

    PubMed

    Lee, H P; Gong, S W

    2010-10-01

    The ballistic impact of a human head model protected by a Personnel Armor System Ground Troops Kevlar® helmet is analysed using the finite element method. The emphasis is to examine the effect of the interior cushioning system as a shock absorber in mitigating ballistic impact to the head. The simulations of the frontal and side impacts of the full metal jacket (FMJ) and fragment-simulating projectile (FSP) were carried out using LS-DYNA. It was found that the Kevlar® helmet with its interior nylon and leather strap was able to defeat both the FMJ and FSP without the projectiles penetrating the helmet. However, the head injuries caused by the FMJ impact can be fatal due to the high stiffness of the interior strap. The bulge section at the side of the Kevlar® helmet had more room for deformation that resulted in less serious head injuries.

  15. 45 CFR 1307.3 - Basis for determining whether a Head Start agency will be subject to an open competition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Align with the Head Start Child Development and Early Learning Framework, State early learning... Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM POLICIES AND PROCEDURES FOR...

  16. 45 CFR 1307.3 - Basis for determining whether a Head Start agency will be subject to an open competition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Align with the Head Start Child Development and Early Learning Framework, State early learning... Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM POLICIES AND PROCEDURES FOR...

  17. 45 CFR 1307.3 - Basis for determining whether a Head Start agency will be subject to an open competition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Align with the Head Start Child Development and Early Learning Framework, State early learning... Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM POLICIES AND PROCEDURES FOR...

  18. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma

    PubMed Central

    Fischer, Barbara; Mitteroecker, Philipp

    2015-01-01

    Compared with other primates, childbirth is remarkably difficult in humans because the head of a human neonate is large relative to the birth-relevant dimensions of the maternal pelvis. It seems puzzling that females have not evolved wider pelvises despite the high maternal mortality and morbidity risk connected to childbirth. Despite this seeming lack of change in average pelvic morphology, we show that humans have evolved a complex link between pelvis shape, stature, and head circumference that was not recognized before. The identified covariance patterns contribute to ameliorate the “obstetric dilemma.” Females with a large head, who are likely to give birth to neonates with a large head, possess birth canals that are shaped to better accommodate large-headed neonates. Short females with an increased risk of cephalopelvic mismatch possess a rounder inlet, which is beneficial for obstetrics. We suggest that these covariances have evolved by the strong correlational selection resulting from childbirth. Although males are not subject to obstetric selection, they also show part of these association patterns, indicating a genetic–developmental origin of integration. PMID:25902498

  19. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma.

    PubMed

    Fischer, Barbara; Mitteroecker, Philipp

    2015-05-05

    Compared with other primates, childbirth is remarkably difficult in humans because the head of a human neonate is large relative to the birth-relevant dimensions of the maternal pelvis. It seems puzzling that females have not evolved wider pelvises despite the high maternal mortality and morbidity risk connected to childbirth. Despite this seeming lack of change in average pelvic morphology, we show that humans have evolved a complex link between pelvis shape, stature, and head circumference that was not recognized before. The identified covariance patterns contribute to ameliorate the "obstetric dilemma." Females with a large head, who are likely to give birth to neonates with a large head, possess birth canals that are shaped to better accommodate large-headed neonates. Short females with an increased risk of cephalopelvic mismatch possess a rounder inlet, which is beneficial for obstetrics. We suggest that these covariances have evolved by the strong correlational selection resulting from childbirth. Although males are not subject to obstetric selection, they also show part of these association patterns, indicating a genetic-developmental origin of integration.

  20. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Near-Field Inductive-Coupling Link to Power a Three-Dimensional Millimeter-Size Antenna for Brain Implantable Medical Devices.

    PubMed

    Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin

    2018-01-01

    Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9  three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated   in the pig's head and   in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).

  2. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly

    PubMed Central

    Ke, Qiong; Li, Weiqiang; Lai, Xingqiang; Chen, Hong; Huang, Lihua; Kang, Zhuang; Li, Kai; Ren, Jie; Lin, Xiaofeng; Zheng, Haiqing; Huang, Weijun; Ma, Yunhan; Xu, Dongdong; Chen, Zheng; Song, Xinming; Lin, Xinyi; Zhuang, Min; Wang, Tao; Zhuang, Fengfeng; Xi, Jianzhong; Mao, Frank Fuxiang; Xia, Huimin; Lahn, Bruce T; Zhou, Qi; Yang, Shihua; Xiang, Andy Peng

    2016-01-01

    Gene editing in non-human primates may lead to valuable models for exploring the etiologies and therapeutic strategies of genetically based neurological disorders in humans. However, a monkey model of neurological disorders that closely mimics pathological and behavioral deficits in humans has not yet been successfully generated. Microcephalin 1 (MCPH1) is implicated in the evolution of the human brain, and MCPH1 mutation causes microcephaly accompanied by mental retardation. Here we generated a cynomolgus monkey (Macaca fascicularis) carrying biallelic MCPH1 mutations using transcription activator-like effector nucleases. The monkey recapitulated most of the important clinical features observed in patients, including marked reductions in head circumference, premature chromosome condensation (PCC), hypoplasia of the corpus callosum and upper limb spasticity. Moreover, overexpression of MCPH1 in mutated dermal fibroblasts rescued the PCC syndrome. This monkey model may help us elucidate the role of MCPH1 in the pathogenesis of human microcephaly and better understand the function of this protein in the evolution of primate brain size. PMID:27502025

  3. Synthesis of Speaker Facial Movement to Match Selected Speech Sequences

    NASA Technical Reports Server (NTRS)

    Scott, K. C.; Kagels, D. S.; Watson, S. H.; Rom, H.; Wright, J. R.; Lee, M.; Hussey, K. J.

    1994-01-01

    A system is described which allows for the synthesis of a video sequence of a realistic-appearing talking human head. A phonic based approach is used to describe facial motion; image processing rather than physical modeling techniques are used to create video frames.

  4. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-10-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  5. Effectiveness of isopropyl myristate/cyclomethicone D5 solution of removing cuticular hydrocarbons from human head lice (Pediculus humanus capitis)

    PubMed Central

    2012-01-01

    Background In the treatment of human head lice infestation, healthcare providers are increasingly concerned about lice becoming resistant to existing pesticide treatments. Traditional pesticides, used to control these pests, have a neurological mechanism of action. This publication describes a topical solution with a non-traditional mechanism of action, based on physical disruption of the wax layer that covers the cuticle of the louse exoskeleton. This topical solution has been shown clinically to cure 82% of patients with only a 10-minute treatment time, repeated once after 7 days. All insects, including human head lice, have a wax-covered exoskeleton. This wax, composed of hydrocarbons, provides the insect with protection against water loss and is therefore critical to its survival. When the protective wax is disrupted, water loss becomes uncontrollable and irreversible, leading to dehydration and death. A specific pattern of hydrocarbons has been found in all of the head louse cuticular wax studied. Iso-octane effectively removes these hydrocarbons from human head lice’s cuticular wax. Methods A method of head louse cuticle wax extraction and analysis by gas chromatography was developed. Human head lice (Pediculus humanus capitis) were collected from infested patients and subjected to any of three extraction solvents comprising either the test product or one of two solvents introduced as controls. A gas chromatograph equipped with a flame ionization detector (GC/FID) was used to determine the presence of hydrocarbons in the three head lice extracts. Results In the study reported herein, the test product isopropyl myristate/cyclomethicone D5 (IPM/D5) was shown to perform comparably with iso-octane, effectively extracting the target hydrocarbons from the cuticular wax that coats the human head louse exoskeleton. Conclusions Disruption of the integrity of the insect cuticle by removal of specific hydrocarbons found in the cuticular wax appears to offer a mechanism for killing lice without the likelihood of encountering genetic resistance. PMID:22943314

  6. Effectiveness of isopropyl myristate/cyclomethicone D5 solution of removing cuticular hydrocarbons from human head lice (Pediculus humanus capitis).

    PubMed

    Barnett, Eric; Palma, Kathleen G; Clayton, Bert; Ballard, Timothy

    2012-09-03

    In the treatment of human head lice infestation, healthcare providers are increasingly concerned about lice becoming resistant to existing pesticide treatments. Traditional pesticides, used to control these pests, have a neurological mechanism of action. This publication describes a topical solution with a non-traditional mechanism of action, based on physical disruption of the wax layer that covers the cuticle of the louse exoskeleton. This topical solution has been shown clinically to cure 82% of patients with only a 10-minute treatment time, repeated once after 7 days. All insects, including human head lice, have a wax-covered exoskeleton. This wax, composed of hydrocarbons, provides the insect with protection against water loss and is therefore critical to its survival. When the protective wax is disrupted, water loss becomes uncontrollable and irreversible, leading to dehydration and death. A specific pattern of hydrocarbons has been found in all of the head louse cuticular wax studied. Iso-octane effectively removes these hydrocarbons from human head lice's cuticular wax. A method of head louse cuticle wax extraction and analysis by gas chromatography was developed. Human head lice (Pediculus humanus capitis) were collected from infested patients and subjected to any of three extraction solvents comprising either the test product or one of two solvents introduced as controls. A gas chromatograph equipped with a flame ionization detector (GC/FID) was used to determine the presence of hydrocarbons in the three head lice extracts. In the study reported herein, the test product isopropyl myristate/cyclomethicone D5 (IPM/D5) was shown to perform comparably with iso-octane, effectively extracting the target hydrocarbons from the cuticular wax that coats the human head louse exoskeleton. Disruption of the integrity of the insect cuticle by removal of specific hydrocarbons found in the cuticular wax appears to offer a mechanism for killing lice without the likelihood of encountering genetic resistance.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takehiko; Nojima, Toshio; Yamada, Kenji

    A dry phantom material having the same electric properties in the UHF band as biological tissues is developed. The new composite material is composed of microwave ceramic powder, graphite powder, and bonding resin. This material overcomes the various problems inherent in the conventional jelly phantom material, such as dehydration and deterioration due to invasion of bacteria or mold. This innovation of the phantom material makes it possible to accomplish highly reliable and precise estimation of specific absorption rate (SAR) in biological systems. Dry phantom models of spheres and human heads are fabricated. Experiments are performed to estimate the SAR ofmore » human heads exposed to microwave sources by using the thermography method. Since this material removes the necessity of the phantom shell indispensable with the conventional jelly material, the surface SAR distribution can be readily obtained.« less

  8. From Complex B1 Mapping to Local SAR Estimation for Human Brain MR Imaging Using Multi-channel Transceiver Coil at 7T

    PubMed Central

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen

    2014-01-01

    Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259

  9. 78 FR 7435 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... children and their families. Respondents: Head Start and Early Head Start grantees and delegate agencies... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Submission for...-0148. Description: Head Start Program Performance Standards require Head Start and Early Head Start...

  10. The head and body lice of humans are genetically distinct (Insecta: Phthiraptera, Pediculidae): evidence from double infestations.

    PubMed

    Leo, N P; Hughes, J M; Yang, X; Poudel, S K S; Brogdon, W G; Barker, S C

    2005-07-01

    Little is known about the population genetics of the louse infestations of humans. We used microsatellite DNA to study 11 double infestations, that is, hosts infested with head lice and body lice simultaneously. We tested for population structure on a host, and for population structure among seven hosts that shared sleeping quarters. We also sought evidence of migration among louse populations. Our results showed that: (i) the head and body lice on these individual hosts were two genetically distinct populations; (ii) each host had their own populations of head and body lice that were genetically distinct to those on other hosts; and (iii) lice had migrated from head to head, and from body to body, but not between heads and bodies. Our results indicate that head and body lice are separate species.

  11. Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose

    NASA Astrophysics Data System (ADS)

    Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.

  12. Simulation of bone-conducted sound transmission in a three-dimensional finite-element model of a human skull

    NASA Astrophysics Data System (ADS)

    Chang, You; Kim, Namkeun; Stenfelt, Stefan

    2015-12-01

    Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.

  13. 45 CFR 1301.10 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... Human Subjects 45 CFR part 74 Administration of grants 45 CFR part 75 Informal grant appeals procedures...

  14. 45 CFR 1301.10 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... Human Subjects 45 CFR part 74 Administration of grants 45 CFR part 75 Informal grant appeals procedures...

  15. 45 CFR 1301.10 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... Human Subjects 45 CFR part 74 Administration of grants 45 CFR part 75 Informal grant appeals procedures...

  16. 45 CFR 1301.10 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... Human Subjects 45 CFR part 74 Administration of grants 45 CFR part 75 Informal grant appeals procedures...

  17. 45 CFR 1301.10 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... Human Subjects 45 CFR part 74 Administration of grants 45 CFR part 75 Informal grant appeals procedures...

  18. 45 CFR 1309.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START..., ACF means the Administration for Children and Families in the Department of Health and Human Services...

  19. 45 CFR 1309.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START..., ACF means the Administration for Children and Families in the Department of Health and Human Services...

  20. A new perspective on how humans assess their surroundings; derivation of head orientation and its role in ‘framing’ the environment

    PubMed Central

    Wilson, Gwendoline Ixia; Holton, Mark D.; Walker, James; Jones, Mark W.; Grundy, Ed; Davies, Ian M.; Clarke, David; Luckman, Adrian; Russill, Nick; Wilson, Vianney; Plummer, Rosie

    2015-01-01

    Understanding the way humans inform themselves about their environment is pivotal in helping explain our susceptibility to stimuli and how this modulates behaviour and movement patterns. We present a new device, the Human Interfaced Personal Observation Platform (HIPOP), which is a head-mounted (typically on a hat) unit that logs magnetometry and accelerometry data at high rates and, following appropriate calibration, can be used to determine the heading and pitch of the wearer’s head. We used this device on participants visiting a botanical garden and noted that although head pitch ranged between −80° and 60°, 25% confidence limits were restricted to an arc of about 25° with a tendency for the head to be pitched down (mean head pitch ranged between −43° and 0°). Mean rates of change of head pitch varied between −0.00187°/0.1 s and 0.00187°/0.1 s, markedly slower than rates of change of head heading which varied between −0.3141°/0.1 s and 0.01263°/0.1 s although frequency distributions of both parameters showed them to be symmetrical and monomodal. Overall, there was considerable variation in both head pitch and head heading, which highlighted the role that head orientation might play in exposing people to certain features of the environment. Thus, when used in tandem with accurate position-determining systems, the HIPOP can be used to determine how the head is orientated relative to gravity and geographic North and in relation to geographic position, presenting data on how the environment is being ‘framed’ by people in relation to environmental content. PMID:26157643

  1. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence.

    PubMed

    Finkel, Kelsey A; Warner, Kristy A; Kerk, Samuel; Bradford, Carol R; McLean, Scott A; Prince, Mark E; Zhong, Haihong; Hurt, Elaine M; Hollingsworth, Robert E; Wicha, Max S; Tice, David A; Nör, Jacques E

    2016-05-01

    Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. What's in a name: the taxonomic status of human head and body lice.

    PubMed

    Light, Jessica E; Toups, Melissa A; Reed, David L

    2008-06-01

    Human head lice (Anoplura: Pediculidae: Pediculus) are pandemic, parasitizing countless school children worldwide due to the evolution of insecticide resistance, and human body (clothing) lice are responsible for the deaths of millions as a result of vectoring several deadly bacterial pathogens. Despite the obvious impact these lice have had on their human hosts, it is unclear whether head and body lice represent two morphological forms of a single species or two distinct species. To assess the taxonomic status of head and body lice, we provide a synthesis of publicly available molecular data in GenBank, and we compare phylogenetic and population genetic methods using the most diverse geographic and molecular sampling presently available. Our analyses find reticulated networks, gene flow, and a lack of reciprocal monophyly, all of which indicate that head and body lice do not represent genetically distinct evolutionary units. Based on these findings, as well as inconsistencies of morphological, behavioral, and ecological variability between head and body lice, we contend that no known species concept would recognize these louse morphotypes as separate species. We recommend recognizing head and body lice as morphotypes of a single species, Pediculus humanus, until compelling new data and analyses (preferably analyses of fast evolving nuclear markers in a coalescent framework) indicate otherwise.

  3. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading

    NASA Astrophysics Data System (ADS)

    Iwaskiw, A. S.; Ott, K. A.; Armiger, R. S.; Wickwire, A. C.; Alphonse, V. D.; Voo, L. M.; Carneal, C. M.; Merkle, A. C.

    2018-01-01

    The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2-6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.

  4. Head injury assessment of non-lethal projectile impacts: A combined experimental/computational method.

    PubMed

    Sahoo, Debasis; Robbe, Cyril; Deck, Caroline; Meyer, Frank; Papy, Alexandre; Willinger, Remy

    2016-11-01

    The main objective of this study is to develop a methodology to assess this risk based on experimental tests versus numerical predictive head injury simulations. A total of 16 non-lethal projectiles (NLP) impacts were conducted with rigid force plate at three different ranges of impact velocity (120, 72 and 55m/s) and the force/deformation-time data were used for the validation of finite element (FE) NLP. A good accordance between experimental and simulation data were obtained during validation of FE NLP with high correlation value (>0.98) and peak force discrepancy of less than 3%. A state-of-the art finite element head model with enhanced brain and skull material laws and specific head injury criteria was used for numerical computation of NLP impacts. Frontal and lateral FE NLP impacts to the head model at different velocities were performed under LS-DYNA. It is the very first time that the lethality of NLP is assessed by axonal strain computation to predict diffuse axonal injury (DAI) in NLP impacts to head. In case of temporo-parietal impact the min-max risk of DAI is 0-86%. With a velocity above 99.2m/s there is greater than 50% risk of DAI for temporo-parietal impacts. All the medium- and high-velocity impacts are susceptible to skull fracture, with a percentage risk higher than 90%. This study provides tool for a realistic injury (DAI and skull fracture) assessment during NLP impacts to the human head. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of the fretting corrosion behavior, surface and debris from head-taper interface of two different modular hip prostheses.

    PubMed

    Dos Santos, Claudio T; Barbosa, Cassio; Monteiro, Maurício J; Abud, Ibrahim C; Caminha, Ieda M V; Roesler, Carlos R M

    2016-09-01

    Modular hip prostheses are flexible to match anatomical variations and to optimize mechanical and tribological properties of each part by using different materials. However, micromotions associated with the modular components can lead to fretting corrosion and, consequently, to release of debris which can cause adverse local tissue reactions in human body. In the present study, the surface damage and residues released during in vitro fretting corrosion tests were characterized by stereomicroscope, SEM and EDS. Two models of modular hip prosthesis were studied: Model SS/Ti Cementless whose stem was made of ASTM F136 Ti-6Al-4V alloy and whose metallic head was made of ASTM F138 austenitic stainless steel, and Model SS/SS Cemented with both components made of ASTM F138 stainless steel. The fretting corrosion tests were evaluated according to the criteria of ASTM F1875 standard. Micromotions during the test caused mechanical wear and material loss in the head-taper interface, resulting in fretting-corrosion. Model SS/SS showed higher grade of corrosion. Different morphologies of debris predominated in each model studied. Small and agglomerated particles were observed in the Model SS/Ti and irregular particles in the Model SS/SS. After 10 million cycles, the Model SS/Ti was more resistant to fretting corrosion than the Model SS/SS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Human Papilloma Virus (HPV) Induced Head & Neck Squamous Cell Carcinoma: A Comprehensive Retrospect

    PubMed Central

    Nishat, Roquaiya; Ramachandra, Sujatha; Kumar, Harish; Bandyopadhyay, Alokenath

    2015-01-01

    Head and Neck Squamous Cell Carcinoma accounts for the sixth most common malignancy occurring worldwide with tobacco and alcohol being the two well established risk factors. In the recent years, substantial evidence has been obtained that Human Papilloma Virus (HPV) associated head and neck cancers are on the rise. This article provides an insight into the structure of HPV genome, molecular pathogenesis, detection methods and clinical implications of HPV positive Head and Neck Squamous Cell Carcinoma. PMID:26266234

  7. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.

    PubMed

    Taylor, Paul A; Ford, Corey C

    2009-06-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  8. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship between CSDM - BrIC and MPS - BrIC respectively. AIS 3+, 4+ and 5+ field risk of anatomic brain injuries was also estimated using the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database for crash conditions similar to the frontal NCAP and side impact conditions that the ATDs were tested in. This was done to assess the risk curve ratios derived from HIC risk curves. The results of the study indicated that: (1) the two available human head models - SIMon and GHBMC - were found to be highly correlated when CSDMs and max principal strains were compared; (2) BrIC correlates best to both - CSDM and MPS, and rotational velocity (not rotational acceleration) is the mechanism for brain injuries; and (3) the critical values for angular velocity are directionally dependent, and are independent of the ATD used for measuring them. The newly developed brain injury criterion is a complement to the existing HIC, which is based on translational accelerations. Together, the two criteria may be able to capture most brain injuries and skull fractures occurring in automotive or any other impact environment. One of the main limitations for any brain injury criterion, including BrIC, is the lack of human injury data to validate the criteria against, although some approximation for AIS 2+ injury is given based on the angular velocities calculated at 50% probability of concussion in college football players instrumented with 5 DOF helmet system. Despite the limitations, a new kinematic rotational brain injury criterion - BrIC - may offer a way to capture brain injuries in situations when using translational accelerations based HIC alone may not be sufficient.

  9. Design and Experimental Evaluation of a Non-Invasive Microwave Head Imaging System for Intracranial Haemorrhage Detection

    PubMed Central

    Mobashsher, A. T.; Bialkowski, K. S.; Abbosh, A. M.; Crozier, S.

    2016-01-01

    An intracranial haemorrhage is a life threatening medical emergency, yet only a fraction of the patients receive treatment in time, primarily due to the transport delay in accessing diagnostic equipment in hospitals such as Magnetic Resonance Imaging or Computed Tomography. A mono-static microwave head imaging system that can be carried in an ambulance for the detection and localization of intracranial haemorrhage is presented. The system employs a single ultra-wideband antenna as sensing element to transmit signals in low microwave frequencies towards the head and capture backscattered signals. The compact and low-profile antenna provides stable directional radiation patterns over the operating bandwidth in both near and far-fields. Numerical analysis of the head imaging system with a realistic head model in various situations is performed to realize the scattering mechanism of haemorrhage. A modified delay-and-summation back-projection algorithm, which includes effects of surface waves and a distance-dependent effective permittivity model, is proposed for signal and image post-processing. The efficacy of the automated head imaging system is evaluated using a 3D-printed human head phantom with frequency dispersive dielectric properties including emulated haemorrhages with different sizes located at different depths. Scattered signals are acquired with a compact transceiver in a mono-static circular scanning profile. The reconstructed images demonstrate that the system is capable of detecting haemorrhages as small as 1 cm3. While quantitative analyses reveal that the quality of images gradually degrades with the increase of the haemorrhage’s depth due to the reduction of signal penetration inside the head; rigorous statistical analysis suggests that substantial improvement in image quality can be obtained by increasing the data samples collected around the head. The proposed head imaging prototype along with the processing algorithm demonstrates its feasibility for potential use in ambulances as an effective and low cost diagnostic tool to assure timely triaging of intracranial hemorrhage patients. PMID:27073994

  10. An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*

    PubMed Central

    Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.

    2014-01-01

    Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144

  11. The right way to kiss: directionality bias in head-turning during kissing.

    PubMed

    Karim, A K M Rezaul; Proulx, Michael J; de Sousa, Alexandra A; Karmaker, Chhanda; Rahman, Arifa; Karim, Fahria; Nigar, Naima

    2017-07-14

    Humans have a bias for turning to the right in a number of settings. Here we document a bias in head-turning to the right in adult humans, as tested in the act of kissing. We investigated head-turning bias in both kiss initiators and kiss recipients for lip kissing, and took into consideration differences due to sex and handedness, in 48 Bangladeshi heterosexual married couples. We report a significant male bias in the initiation of kissing and a significant bias in head-turning to the right in both kiss initiators and kiss recipients, with a tendency among kiss recipients to match their partners' head-turning direction. These interesting outcomes are explained by the influences of societal learning or cultural norms and the potential neurophysiological underpinnings which together offer novel insights about the mechanisms underlying behavioral laterality in humans.

  12. Investigations of primary blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  13. Automatic facial animation parameters extraction in MPEG-4 visual communication

    NASA Astrophysics Data System (ADS)

    Yang, Chenggen; Gong, Wanwei; Yu, Lu

    2002-01-01

    Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.

  14. The Role of Perfluorocarbons in Mitigating Traumatic Brain Injury

    DTIC Science & Technology

    2014-05-01

    the lesion. The effect of closed head trauma upon Glycolysis , as measured by the 2-Deoxyglucose method, is well known, and the findings in this...model accord quite closely with human TBI. However, the effect of Penetrating TBI upon glycolysis has never been studied, in any animal model, nor in...tested was seen upon VO2 in the PBBI model (Fig.17-18) However, significant improvements in glycolysis could be observed, especially with Perftec

  15. MODELING THE ANATOMICAL DISTRIBUTION OF SUNLIGHT

    EPA Science Inventory

    One of the major technical challenges in calculating solar irradiance on the human form has been the complexity of the surface geometry (i.e. the surface normal vis a vis the incident radiation. Over 80 percent of skin cancers occur on the face, head, and back of the hands. The...

  16. Response of Pediculus humanus capitis (Phthiraptera: Pediculidae) to Volatiles of Whole and Individual Components of the Human Scalp.

    PubMed

    Galassi, F G; Fronza, G; Toloza, A C; Picollo, M I; González-Audino, P

    2018-05-04

    The head louse Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) is a cosmopolitan human ectoparasite causing pediculosis, one of the most common arthropod parasitic conditions of humans. The mechanisms and/or chemicals involved in host environment recognition by head lice are still unknown. In this study, we evaluated the response of head lice to volatiles that emanate from the human scalp. In addition, we identified the volatile components of the odor and evaluated the attractive or repellent activity of their pure main components. The volatiles were collected by means of Solid Phase microextraction and the extract obtained was chemically analyzed by gas chromatograph-mass spectrometer. Twenty-four volatile were identified in the human scalp odor, with the main compounds being the following: nonanal, sulcatone, geranylacetone, and palmitic acid. Head lice were highly attracted by the blend human scalp volatiles, as well as by the individual major components. A significant finding of our study was to demonstrate that nonanal activity depends on the mass of the compound as it is repellent at high concentrations and an attractant at low concentrations. The results of this study indicate that head lice may use chemical signals in addition to other mechanisms to remain on the host.

  17. Infant phantom head circuit board for EEG head phantom and pediatric brain simulation

    NASA Astrophysics Data System (ADS)

    Almohsen, Safa

    The infant's skull differs from an adult skull because of the characteristic features of the human skull during early development. The fontanels and the conductivity of the infant skull influence surface currents, generated by neurons, which underlie electroencephalography (EEG) signals. An electric circuit was built to power a set of simulated neural sources for an infant brain activity simulator. Also, in the simulator, three phantom tissues were created using saline solution plus Agarose gel to mimic the conductivity of each layer in the head [scalp, skull brain]. The conductivity measurement was accomplished by two different techniques: using the four points' measurement technique, and a conductivity meter. Test results showed that the optimized phantom tissues had appropriate conductivities to simulate each tissue layer to fabricate a physical head phantom. In this case, the best results should be achieved by testing the electrical neural circuit with the sample physical model to generate simulated EEG data and use that to solve both the forward and the inverse problems for the purpose of localizing the neural sources in the head phantom.

  18. Evaluation of kinematics and injuries to restrained occupants in far-side crashes using full-scale vehicle and human body models.

    PubMed

    Arun, Mike W J; Umale, Sagar; Humm, John R; Yoganandan, Narayan; Hadagali, Prasanaah; Pintar, Frank A

    2016-09-01

    The objective of the current study was to perform a parametric study with different impact objects, impact locations, and impact speeds by analyzing occupant kinematics and injury estimations using a whole-vehicle and whole-body finite element-human body model (FE-HBM). To confirm the HBM responses, the biofidelity of the model was validated using data from postmortem human surrogate (PMHS) sled tests. The biofidelity of the model was validated using data from sled experiments and correlational analysis (CORA). Full-scale simulations were performed using a restrained Global Human Body Model Consortium (GHBMC) model seated on a 2001 Ford Taurus model using a far-side lateral impact condition. The driver seat was placed in the center position to represent a nominal initial impact condition. A 3-point seat belt with pretensioner and retractor was used to restrain the GHBMC model. A parametric study was performed using 12 simulations by varying impact locations, impacting object, and impact speed using the full-scale models. In all 12 simulations, the principal direction of force (PDOF) was selected as 90°. The impacting objects were a 10-in.-diameter rigid vertical pole and a movable deformable barrier. The impact location of the pole was at the C-pillar in the first case, at the B-pillar in the second case, and, finally, at the A-pillar in the third case. The vehicle and the GHBMC models were defined an initial velocity of 35 km/h (high speed) and 15 km/h (low speed). Excursion of the head center of gravity (CG), T6, and pelvis were measured from the simulations. In addition, injury risk estimations were performed on head, rib cage, lungs, kidneys, liver, spleen, and pelvis. The average CORA rating was 0.7. The shoulder belt slipped in B- and C-pillar impacts but somewhat engaged in the A-pillar case. In the B-pillar case, the head contacted the intruding struck-side structures, indicating higher risk of injury. Occupant kinematics depended on interaction with restraints and internal structures-especially the passenger seat. Risk analysis indicated that the head had the highest risk of sustaining an injury in the B-pillar case compared to the other 2 cases. Higher lap belt load (3.4 kN) may correspond to the Abbreviated Injury Scale (AIS) 2 pelvic injury observed in the B-pillar case. Risk of injury to other soft anatomical structures varied with impact configuration and restraint interaction. The average CORA rating was 0.7. In general, the results indicated that the high-speed impacts against the pole resulted in severe injuries, higher excursions followed by low-speed pole, high-speed moving deformable barrier (MDB), and low-speed MDB impacts. The vehicle and occupant kinematics varied with different impact setups and the latter kinematics were likely influenced by restraint effectiveness. Increased restraint engagement increased the injury risk to the corresponding anatomic structure, whereas ineffective restraint engagement increased the occupant excursion, resulting in a direct impact to the struck-side interior structures.

  19. Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals

    PubMed Central

    Genzel, Daria; Firzlaff, Uwe; Wiegrebe, Lutz

    2016-01-01

    Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating. PMID:27169504

  20. Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals.

    PubMed

    Genzel, Daria; Firzlaff, Uwe; Wiegrebe, Lutz; MacNeilage, Paul R

    2016-08-01

    Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating. Copyright © 2016 the American Physiological Society.

  1. Effects of recombinant human bone morphogenetic protein 7 (rhBMP-7) on the behaviour of oral squamous cell carcinoma: a preliminary in vitro study.

    PubMed

    Lappin, D F; Abu-Serriah, M; Hunter, K D

    2015-02-01

    We investigated the effects of recombinant human bone morphogenetic protein-7 (rhBMP-7) on the behaviour of oral keratinocytes and head and neck squamous cell carcinoma (SCC) cells in vitro. Expression of all three BMP receptors was high (p<0.01), and rhBMP-7 exhibited significant dose-related inhibitory effects on the doubling time and viability of cancer cells (p<0.01), but not on the proliferation or viability of oral keratinocytes. It elicited no significant effect on the invasion of Matrigel in SCC of the head and neck. Results indicate that in cell culture, rhBMP-7 exerts antineoplastic effects. This should be tested in an orthotopic animal model to more closely replicate in vivo effects. Copyright © 2014. Published by Elsevier Ltd.

  2. A priori mesh grading for the numerical calculation of the head-related transfer functions

    PubMed Central

    Ziegelwanger, Harald; Kreuzer, Wolfgang; Majdak, Piotr

    2017-01-01

    Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener’s head and pinnae. When an accurate model of a listener’s morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs. PMID:28239186

  3. A dictionary learning approach for human sperm heads classification.

    PubMed

    Shaker, Fariba; Monadjemi, S Amirhassan; Alirezaie, Javad; Naghsh-Nilchi, Ahmad Reza

    2017-12-01

    To diagnose infertility in men, semen analysis is conducted in which sperm morphology is one of the factors that are evaluated. Since manual assessment of sperm morphology is time-consuming and subjective, automatic classification methods are being developed. Automatic classification of sperm heads is a complicated task due to the intra-class differences and inter-class similarities of class objects. In this research, a Dictionary Learning (DL) technique is utilized to construct a dictionary of sperm head shapes. This dictionary is used to classify the sperm heads into four different classes. Square patches are extracted from the sperm head images. Columnized patches from each class of sperm are used to learn class-specific dictionaries. The patches from a test image are reconstructed using each class-specific dictionary and the overall reconstruction error for each class is used to select the best matching class. Average accuracy, precision, recall, and F-score are used to evaluate the classification method. The method is evaluated using two publicly available datasets of human sperm head shapes. The proposed DL based method achieved an average accuracy of 92.2% on the HuSHeM dataset, and an average recall of 62% on the SCIAN-MorphoSpermGS dataset. The results show a significant improvement compared to a previously published shape-feature-based method. We have achieved high-performance results. In addition, our proposed approach offers a more balanced classifier in which all four classes are recognized with high precision and recall. In this paper, we use a Dictionary Learning approach in classifying human sperm heads. It is shown that the Dictionary Learning method is far more effective in classifying human sperm heads than classifiers using shape-based features. Also, a dataset of human sperm head shapes is introduced to facilitate future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Non-Human Primate Experimental Glaucoma Model

    PubMed Central

    Burgoyne, Claude F.

    2015-01-01

    The purpose of this report is to summarize the current strengths and weaknesses of the non-human primate (NHP) experimental glaucoma (EG) model through sections devoted to its history, methods, important findings, alternative optic neuropathy models and future directions. NHP EG has become well established for studying human glaucoma in part because the NHP optic nerve head (ONH) shares a close anatomic association with the human ONH and because it provides the only means of systematically studying the very earliest visual system responses to chronic IOP elevation, i.e. the conversion from ocular hypertension to glaucomatous damage. However, NHPs are impractical for studies that require large animal numbers, demonstrate spontaneous glaucoma only rarely, do not currently provide a model of the neuropathy at normal levels of IOP, and cannot easily be genetically manipulated, except through tissue-specific, viral vectors. The goal of this summary is to direct NHP EG and non-NHP EG investigators to the previous, current and future accomplishment of clinically relevant knowledge in this model. PMID:26070984

  5. Influence of impact speed on head and brain injury outcome in vulnerable road user impacts to the car hood.

    PubMed

    Fredriksson, Rikard; Zhang, Liying; Boström, Ola; Yang, King

    2007-10-01

    EuroNCAP and regulations in Europe and Japan evaluate the pedestrian protection performance of cars. The test methods are similar and they all have requirements for the passive protection of the hood area at a pedestrian to car impact speed of 40 km/h. In Europe, a proposal for a second phase of the regulation mandates a brake-assist system along with passive requirements. The system assists the driver in optimizing the braking performance during panic braking, resulting in activation only when the driver brakes sufficiently. In a European study this was estimated to occur in about 50% of pedestrian accidents. A future system for brake assistance will likely include automatic braking, in response to a pre-crash sensor, to avoid or mitigate injuries of vulnerable road users. An important question is whether these systems will provide sufficient protection, or if a parallel, passive pedestrian protection system will be necessary. This study investigated the influence of impact speed on head and brain injury risk, in impacts to the carhood. One car model was chosen and a rigid adjustable plate was mounted under the hood. Free-flying headform impacts were carried out at 20 and 30 km/h head impact velocities at different under-hood distances, 20 to 100 mm; and were compared to earlier tests at 40 km/h. The EEVC WG17 adult pedestrian headform was used for non-rotating tests and a Hybrid III adult 50th percentile head was used for rotational tests where linear and rotational acceleration was measured. Data from the rotational tests was used as input to a validated finite element model of the human head, the Wayne State University Head Injury Model (WSUHIM). The model was utilized to assess brain injury risk and potential injury mechanism in a pedestrian-hood impact. Although this study showed that it was not necessarily true that a lower HIC value reduced the risk for brain injury, it appeared, for the tested car model, under-hood distances of 60 mm in 20 km/h and 80 mm in 30 km/h reduced head injury values for both skull fractures and brain injuries. An earlier study showed that the corresponding value for a test speed of 40 km/h is 100 mm. A 10 km/h reduction in head impact velocity, as in automatic braking, allowed 20 mm less under-hood clearance with maintained head protection of the vulnerable road user.

  6. Modelling and assessment of the electric field strength caused by mobile phone to the human head.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas

    2016-06-01

    Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.

  7. WHIPS seat and occupant motions during simulated rear crashes.

    PubMed

    Xiao, Ming; Ivancic, Paul C

    2010-10-01

    Objectives of this study were to investigate the motions of Volvo's Whiplash Protection System (WHIPS) seat and occupant during simulated rear crashes of a human model of the neck (HUMON). HUMON consisted of a human neck specimen (n = 6) mounted to the torso of BioRID II and carrying an anthropometric head stabilized with muscle force replication. HUMON was seated and secured in a 2005 Volvo XC90 minivan seat that included WHIPS and a fixed head restraint. Rear crashes of 9.9 g (ΔV 9.2 kph), 12.0 g (ΔV 11.4 kph), and 13.3 g (ΔV 13.4 kph) were simulated and WHIPS and occupant motions were monitored. Linear regression analyses (P < .05) were used to determine relationships between WHIPS and occupant motion peaks using data from all crashes combined. WHIPS motions consisted of simultaneous rearward and downward translations and extension of the seatback and plastic deformation of the bilateral WHIPS energy-absorbing components. Peak WHIPS motions were linearly correlated only with peak rearward occupant translations. Less rearward pelvis translation was required to cause WHIPS activation as compared to T1 translation. WHIPS reduced peak T1 horizontal acceleration by 39 percent compared to sled acceleration. This was within the range previously reported for WHIPS, between 30 and 60 percent, but higher than the 16 percent reduction previously reported due to active head restraint. Absorption of crash energy occurred during the initial 75 ms and the onset of head support occurred at 114 ms. Differential head-torso motions occurred prior to and during head support, indicating the potential for neck injury even with WHIPS.

  8. Biomechanical analyses of whiplash injuries using an experimental model.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Cusick, Joseph F

    2002-09-01

    Neck pain and headaches are the two most common symptoms of whiplash. The working hypothesis is that pain originates from excessive motions in the upper and lower cervical segments. The research design used an intact human cadaver head-neck complex as an experimental model. The intact head-neck preparation was fixed at the thoracic end with the head unconstrained. Retroreflective targets were placed on the mastoid process, anterior regions of the vertebral bodies, and lateral masses at every spinal level. Whiplash loading was delivered using a mini-sled pendulum device. A six-axis load cell and an accelerometer were attached to the inferior fixation of the specimen. High-speed video cameras were used to obtain the kinematics. During the initial stages of loading, a transient decoupling of the head occurs with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower column is in local extension. This establishes a reverse curvature to the head-neck complex. With continuing application of whiplash loading, the inertia of the head catches up with the neck. Later, the entire head-neck complex is under an extension mode with a single extension curvature. The lower cervical facet joint kinematics demonstrates varying local compression and sliding. While the anterior- and posterior-most regions of the facet joint slide, the posterior-most region of the joint compresses more than the anterior-most region. These varying kinematics at the two ends of the facet joint result in a pinching mechanism. Excessive flexion of the posterior upper cervical regions can be correlated to headaches. The pinching mechanism of the facet joints can be correlated to neck pain. The kinematics of the soft tissue-related structures explain the mechanism of these common whiplash associated disorders.

  9. Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

    NASA Astrophysics Data System (ADS)

    Martínez, Natividad; Psikuta, Agnes; Kuklane, Kalev; Quesada, José Ignacio Priego; de Anda, Rosa María Cibrián Ortiz; Soriano, Pedro Pérez; Palmer, Rosario Salvador; Corberán, José Miguel; Rossi, René Michel; Annaheim, Simon

    2016-12-01

    The most complete and realistic physiological data are derived from direct measurements during human experiments; however, they present some limitations such as ethical concerns, time and cost burden. Thermophysiological models are able to predict human thermal response in a wide range of environmental conditions, but their use is limited due to lack of validation. The aim of this work was to validate the thermophysiological model by Fiala for prediction of local skin temperatures against a dedicated database containing 43 different human experiments representing a wide range of conditions. The validation was conducted based on root-mean-square deviation (rmsd) and bias. The thermophysiological model by Fiala showed a good precision when predicting core and mean skin temperature (rmsd 0.26 and 0.92 °C, respectively) and also local skin temperatures for most body sites (average rmsd for local skin temperatures 1.32 °C). However, an increased deviation of the predictions was observed for the forehead skin temperature (rmsd of 1.63 °C) and for the thigh during exercising exposures (rmsd of 1.41 °C). Possible reasons for the observed deviations are lack of information on measurement circumstances (hair, head coverage interference) or an overestimation of the sweat evaporative cooling capacity for the head and thigh, respectively. This work has highlighted the importance of collecting details about the clothing worn and how and where the sensors were attached to the skin for achieving more precise results in the simulations.

  10. 'Goats that stare at men'--revisited: do dwarf goats alter their behaviour in response to eye visibility and head direction of a human?

    PubMed

    Nawroth, Christian; von Borell, Eberhard; Langbein, Jan

    2016-05-01

    Being able to recognise when one is being observed by someone else is thought to be adaptive during cooperative or competitive events. In particular for prey species, this ability should be of use in the context of predation. A previous study reported that goats (Capra aegagrus hircus) alter their behaviour according to the body and head orientation of a human experimenter. During a food anticipation task, an experimenter remained in a particular posture for 30 s before delivering a reward, and the goats' active anticipation and standing alert behaviour were analysed. To further evaluate the specific mechanisms at work, we here present two additional test conditions. In particular, we investigated the effects of the eye visibility and head orientation of a human experimenter on the behaviour of the goats (N = 7). We found that the level of the subjects' active anticipatory behaviour was highest in the conditions where the experimenter was directing his head and body towards the goat ('Control' and 'Eyes closed' conditions), but the anticipatory behaviour was significantly decreased when the body ('Head only') or the head and body of the experimenter were directed away from the subject ('Back' condition). For standing alert, we found no significant differences between the three conditions in which the experimenter was directing his head towards the subject ('Control', 'Eyes closed' and 'Head only'). This lack of differences in the expression of standing alert suggests that goats evaluate the direction of a human's head as an important cue in their anticipatory behaviour. However, goats did not respond to the visibility of the experimenter's eyes alone.

  11. Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment

    PubMed Central

    Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia; Hsu, Yih-Chih

    2016-01-01

    Photodynamic therapy (PDT) is believed to promote hypoxic conditions to tumor cells leading to overexpression of angiogenic markers such as vascular endothelial growth factor (VEGF). In this study, PDT was combined with lipid–calcium–phosphate nanoparticles (LCP NPs) to deliver VEGF-A small interfering RNA (siVEGF-A) to human head and neck squamous cell carcinoma (HNSCC) xenograft models. VEGF-A were significantly decreased for groups treated with siVEGF-A in human oral squamous cancer cell (HOSCC), SCC4 and SAS models. Cleaved caspase-3 and in situ TdT-mediated dUTP nick-end labeling assay showed more apoptotic cells and reduced Ki-67 expression for treated groups compared to phosphate buffered saline (PBS) group. Indeed, the combined therapy showed significant tumor volume decrease to ~70 and ~120% in SCC4 and SAS models as compared with untreated PBS group, respectively. In vivo toxicity study suggests no toxicity of such LCP NP delivered siVEGF-A. In summary, results suggest that PDT combined with targeted VEGF-A gene therapy could be a potential therapeutic modality to achieve enhanced therapeutic outcome for HNSCC. PMID:26373346

  12. Ellipsoidal head model for fetal magnetoencephalography: forward and inverse solutions

    NASA Astrophysics Data System (ADS)

    Gutiérrez, David; Nehorai, Arye; Preissl, Hubert

    2005-05-01

    Fetal magnetoencephalography (fMEG) is a non-invasive technique where measurements of the magnetic field outside the maternal abdomen are used to infer the source location and signals of the fetus' neural activity. There are a number of aspects related to fMEG modelling that must be addressed, such as the conductor volume, fetal position and orientation, gestation period, etc. We propose a solution to the forward problem of fMEG based on an ellipsoidal head geometry. This model has the advantage of highlighting special characteristics of the field that are inherent to the anisotropy of the human head, such as the spread and orientation of the field in relationship with the localization and position of the fetal head. Our forward solution is presented in the form of a kernel matrix that facilitates the solution of the inverse problem through decoupling of the dipole localization parameters from the source signals. Then, we use this model and the maximum likelihood technique to solve the inverse problem assuming the availability of measurements from multiple trials. The applicability and performance of our methods are illustrated through numerical examples based on a real 151-channel SQUID fMEG measurement system (SARA). SARA is an MEG system especially designed for fetal assessment and is currently used for heart and brain studies. Finally, since our model requires knowledge of the best-fitting ellipsoid's centre location and semiaxes lengths, we propose a method for estimating these parameters through a least-squares fit on anatomical information obtained from three-dimensional ultrasound images.

  13. 45 CFR 1301.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provides ongoing comprehensive child development services. Independent auditor means an individual... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  14. 45 CFR 1301.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provides ongoing comprehensive child development services. Independent auditor means an individual... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  15. 45 CFR 1311.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... individuals working in the field of child development and family services. ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  16. 45 CFR 1311.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... individuals working in the field of child development and family services. ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  17. 45 CFR 1311.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... individuals working in the field of child development and family services. ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  18. 45 CFR 1301.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provides ongoing comprehensive child development services. Independent auditor means an individual... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  19. 45 CFR 1311.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... individuals working in the field of child development and family services. ...

  20. 45 CFR 1311.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... individuals working in the field of child development and family services. ...

  1. Detection of Acinetobacter baumannii in human head and body lice from Ethiopia and identification of new genotypes.

    PubMed

    Kempf, Marie; Abdissa, Alemseged; Diatta, Georges; Trape, Jean-François; Angelakis, Emmanouil; Mediannikov, Oleg; La Scola, Bernard; Raoult, Didier

    2012-09-01

    Acinetobacter baumannii has previously been detected and genotyped in human body lice. The objectives of this study were to determine the presence of this bacterium in head and body lice collected from healthy individuals in Ethiopia by molecular methods and to characterize the genotype. Human lice from locations at different altitudes in Ethiopia were screened for the presence of Acinetobacter sp by targeting the rpoB gene. Acinetobacter baumannii was detected and genotyped using recA PCR amplification. A total of 115 head and 109 body lice were collected from 134 healthy individuals. Acinetobacter sp were found in 54 head (47%) and 77 body (71%) lice. The recA gene was sequenced for 60 of the Acinetobacter sp and 67% were positive for A. baumannii; genotype 1 was retrieved the most frequently. Our study is the first to show the presence of A. baumannii in human body lice, and also in head lice, in Ethiopia. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. 77 FR 48159 - Tribal Consultation Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... and Human Services, Administration for Children and Families, Office of Head Start leadership and the leadership of Tribal Governments operating Head Start (including Early Head Start) programs. The purpose of...

  3. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Tan, X. G.; Przekwas, A. J.; Gupta, R. K.

    2017-11-01

    The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

  4. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  5. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    NASA Technical Reports Server (NTRS)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  6. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy.

    PubMed

    Prasad, Sathya N; Muralidhara

    2014-01-01

    Chronic exposure of acrylamide (ACR) leads to neuronal damage in both experimental animals and humans. The primary focus of this study was to assess the ameliorative effect of geraniol, (a natural monoterpene) against ACR-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a Drosophila model and compare its efficacy to that of curcumin, a spice active principle with pleiotropic biological activity. Adult male flies (8-10 days) were exposed (7 days) to ACR (5 mM) with or without geraniol and curcumin (5-10 μM) in the medium. Both phytoconstituents significantly reduced the incidence of ACR-induced mortality, rescued the locomotor phenotype and alleviated the enhanced levels of oxidative stress markers in head/body regions. The levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ACR exposure was also restored with concomitant elevation in the activities of detoxifying enzymes. Interestingly, ACR induced mitochondrial dysfunctions (MTT reduction, activities of SDH and citrate synthase enzymes) were alleviated by both phytoconstituents. While ACR elevated the activity of acetylcholinesterase in head/body regions, marked diminution in enzyme activity ensued with co-exposure to phytoconstituents suggesting their potency to mitigate cholinergic function. Furthermore, phytoconstituents also restored the dopamine levels in head/body regions. The neuroprotective effect of geraniol was comparable to curcumin in terms of phenotypic and biochemical markers. Based on our evidences in fly model we hypothesise that geraniol possess significant neuromodulatory propensity and may be exploited for therapeutic application in human pathophysiology associated with neuropathy. However, the precise mechanism/s by which geraniol offers neuroprotection needs to be investigated in appropriate neuronal cell models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Convergence and stress analysis of the homogeneous structure of human femur bone during standing up condition

    NASA Astrophysics Data System (ADS)

    Izzawati, B.; Daud, R.; Afendi, M.; Majid, M. S. Abdul; Zain, N. A. M.

    2017-09-01

    Finite element models have been widely used to quantify the stress analysis and to predict the bone fractures of the human body. The present study highlights on the stress analysis of the homogeneous structure of human femur bone during standing up condition. The main objective of this study is to evaluate and understand the biomechanics for human femur bone and to prepare orthotropic homogeneous material models used for FE analysis of the global proximal femur. Thus, it is necessary to investigate critical stress on the human femur bone for future study on implantation of internal fixator and external fixator. The implication possibility to create a valid FE model by simply comparing the FE results with the actual biomechanics structures. Thus, a convergence test was performed by FE model of the femur and the stress analysis based on the actual biomechanics of the human femur bone. An increment of critical stress shows in the femur shaft as the increasing of load on the femoral head and decreasing the pulling force at greater trochanter.

  8. Multiple Drosophila Tracking System with Heading Direction

    PubMed Central

    Sirigrivatanawong, Pudith; Arai, Shogo; Thoma, Vladimiros; Hashimoto, Koichi

    2017-01-01

    Machine vision systems have been widely used for image analysis, especially that which is beyond human ability. In biology, studies of behavior help scientists to understand the relationship between sensory stimuli and animal responses. This typically requires the analysis and quantification of animal locomotion. In our work, we focus on the analysis of the locomotion of the fruit fly Drosophila melanogaster, a widely used model organism in biological research. Our system consists of two components: fly detection and tracking. Our system provides the ability to extract a group of flies as the objects of concern and furthermore determines the heading direction of each fly. As each fly moves, the system states are refined with a Kalman filter to obtain the optimal estimation. For the tracking step, combining information such as position and heading direction with assignment algorithms gives a successful tracking result. The use of heading direction increases the system efficiency when dealing with identity loss and flies swapping situations. The system can also operate with a variety of videos with different light intensities. PMID:28067800

  9. The 14th Annual Conference on Manual Control. [digital simulation of human operator dynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Human operator dynamics during actual manual control or while monitoring the automatic control systems involved in air-to-air tracking, automobile driving, the operator of undersea vehicles, and remote handling are examined. Optimal control models and the use of mathematical theory in representing man behavior in complex man machine system tasks are discussed with emphasis on eye/head tracking and scanning; perception and attention allocation; decision making; and motion simulation and effects.

  10. Fall Protection Characteristics of Safety Belts and Human Impact Tolerance.

    PubMed

    Hino, Yasumichi; Ohdo, Katsutoshi; Takahashi, Hiroki

    2014-08-23

    Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt 1) , which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness 2, 3) , which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference 4-9) to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model 10) was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls.

  11. Fall protection characteristics of safety belts and human impact tolerance.

    PubMed

    Hino, Yasumichi; Ohdo, Katsutoshi; Takahashi, Hiroki

    2014-01-01

    Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt, which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness, which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls.

  12. Fall Protection Characteristics of Safety Belts and Human Impact Tolerance

    PubMed Central

    HINO, Yasumichi; OHDO, Katsutoshi; TAKAHASHI, Hiroki

    2014-01-01

    Abstract: Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt1), which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness2, 3), which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference4,5,6,7,8,9) to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model10) was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls. PMID:25345426

  13. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    PubMed Central

    Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro

    2014-01-01

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions. PMID:24787636

  14. Evaluation of hypoxia in a feline model of head and neck cancer using 64Cu-ATSM positron emission tomography/computed tomography

    PubMed Central

    2013-01-01

    Background Human and feline head and neck squamous cell carcinoma (HNSCC) share histology, certain molecular features, as well as locally aggressive and highly recurrent clinical behavior. In human HNSCC, the presence of significant hypoxia within these tumors is considered an important factor in the development of a more aggressive phenotype and poor response to therapy. We hypothesized that feline head and neck tumors, particularly HNSCC, would exhibit hypoxia and that 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) would permit detection of intratumoral hypoxia. Methods 12 cats with measureable head and neck tumors were given 64Cu-ATSM and iodinated contrast for PET/CT scan. The presence or absence of hypoxia was also assessed using an intratumoral fluorescent life-time probe to quantitate pO2 and pimonidazole immunohistochemical staining in biopsy specimens. In two cats, intratumoral O2 and 64Cu-ATSM uptake was measured before and after treatment with anti-angiogenic agents to determine the effect of these agents on hypoxia. Results Eleven of twelve feline tumors demonstrated significant 64Cu-ATSM uptake, regardless of malignant or benign etiology. The presence (and absence) of hypoxia was confirmed using the fluorescent O2 detection probe in nine tumors, and using pimonidazole staining in three tumors. Squamous cell carcinomas (HNSCC) demonstrated the highest degree of hypoxia, with Tmax/M ratios ranging from 4.3 to 21.8. Additional non-neoplastic tissues exhibited 64Cu-ATSM uptake suggestive of hypoxia including reactive draining lymph nodes, non-malignant thyroid pathology, a tooth root abscess, and otitis media. In two cats with HNSCC that received anti-vascular agents, the pattern of 64Cu-ATSM uptake was altered after treatment, demonstrating the potential of the feline model to study the modulation of tumor oxygenation. Conclusion Feline HNSCC serves as a clinically relevant model for the investigation of intratumoral hypoxia including its measurement, modulation and targeting. PMID:23631652

  15. 77 FR 5027 - Tribal Consultation Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Tribal Consultation Meetings AGENCY: Administration for Children and Families' Office of Head Start (OHS). ACTION... the Department of Health and Human Services, Administration for Children and Families, Office of Head...

  16. 76 FR 20674 - Tribal Consultation Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Tribal Consultation Meetings AGENCY: Administration for Children and Families' Office of Head Start (OHS), HHS. ACTION... of Health and Human Services, Administration for Children and Families, Office of Head Start...

  17. Translation and Rotation Trade Off in Human Visual Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    We have previously shown that, during simulated curvilinear motion, humans can make reasonably accurate and precise heading judgments from optic flow without either oculomotor or static-depth cues about rotation. We now systematically investigate the effect of varying the parameters of self-motion. We visually simulated 400 ms of self-motion along curved paths (constant rotation and translation rates, fixed retinocentric heading) towards two planes of random dots at 10.3 m and 22.3 m at mid-trial. Retinocentric heading judgments of 4 observers (2 naive) were measured for 12 different combinations of translation (T between 4 and 16 m/s) and rotation (R either 8 or 16 deg/s). In the range tested, heading bias and uncertainty decrease quasilinearly with T/R, but the bias also appears to depend on R. If depth is held constant, the ratio T/R can account for much of the variation in the accuracy and precision of human visual heading estimation, although further experiments are needed to resolve whether absolute rotation rate, total flow rate, or some other factor can account for the observed -2 deg shift between the bias curves.

  18. Monte Carlo modeling of light propagation in the human head for applications in sinus imaging

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Mishra, Nikhil; You, Joon; Bhandarkar, Naveen; Wong, Brian J. F.

    2015-02-01

    Sinus blockages are a common reason for physician visits, affecting 1 out of 7 in the United States. Over 20 million cases of acute bacterial sinusitis become chronic and require medical treatment. Diagnosis in the primary care setting is challenging because symptom criteria (via detailed clinical history) plus objective imaging (CT or endoscopy) is recommended. Unfortunately, neither option is routinely available in primary care. Our previous work demonstrated that low-cost near infrared (NIR) transillumination instruments produced signals that correlated with the bulk findings of sinus opacity measured by CT. We have upgraded the technology, but questions remain such as finding the optimal arrangement of light sources, measuring the influence of specific anatomical structures, and determining detection limits. In order to begin addressing these questions, we have modeled NIR light propagation inside the adult human head using a mesh-based Monte Carlo algorithm (MMCLab) applied to a detailed anatomical head model constructed from CT images. In this application the sinus itself, which under healthy conditions is a void region (e.g., non-scattering), is the region of interest instead of an obstacle to other contrast mechanisms. We report preliminary simulations that characterize the changes in detected intensity due to clear (i.e., healthy) versus blocked sinuses. We also ran simulations for two of our clinical cases and compared results with the measurements. The simulations presented herein serve as a proof of concept that this approach could be used to understand contrast mechanisms and limitations of NIR imaging of the sinus cavities.

  19. 45 CFR 1304.2 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START... AGENCIES General § 1304.2 Effective date. Early Head Start and Head Start grantee and delegate agencies...

  20. Optics of the human cornea influence the accuracy of stereo eye-tracking methods: a simulation study.

    PubMed

    Barsingerhorn, A D; Boonstra, F N; Goossens, H H L M

    2017-02-01

    Current stereo eye-tracking methods model the cornea as a sphere with one refractive surface. However, the human cornea is slightly aspheric and has two refractive surfaces. Here we used ray-tracing and the Navarro eye-model to study how these optical properties affect the accuracy of different stereo eye-tracking methods. We found that pupil size, gaze direction and head position all influence the reconstruction of gaze. Resulting errors range between ± 1.0 degrees at best. This shows that stereo eye-tracking may be an option if reliable calibration is not possible, but the applied eye-model should account for the actual optics of the cornea.

  1. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation—A Computational Study

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-06-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort.

  2. Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.

    PubMed

    Poletti, Mark A; Svensson, U Peter

    2008-07-01

    Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.

  3. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines☆

    PubMed Central

    Truong, Dennis Q.; Magerowski, Greta; Blackburn, George L.; Bikson, Marom; Alonso-Alonso, Miguel

    2013-01-01

    Recent studies show that acute neuromodulation of the prefrontal cortex with transcranial direct current stimulation (tDCS) can decrease food craving, attentional bias to food, and actual food intake. These data suggest potential clinical applications for tDCS in the field of obesity. However, optimal stimulation parameters in obese individuals are uncertain. One fundamental concern is whether a thick, low-conductivity layer of subcutaneous fat around the head can affect current density distribution and require dose adjustments during tDCS administration. The aim of this study was to investigate the role of head fat on the distribution of current during tDCS and evaluate whether dosing standards for tDCS developed for adult individuals in general are adequate for the obese population. We used MRI-derived high-resolution computational models that delineated fat layers in five human heads from subjects with body mass index (BMI) ranging from “normal-lean” to “super-obese” (20.9 to 53.5 kg/m2). Data derived from these simulations suggest that head fat influences tDCS current density across the brain, but its relative contribution is small when other components of head anatomy are added. Current density variability between subjects does not appear to have a direct and/or simple link to BMI. These results indicate that guidelines for the use of tDCS can be extrapolated to obese subjects without sacrificing efficacy and/or treatment safety; the recommended standard parameters can lead to the delivery of adequate current flow to induce neuromodulation of brain activity in the obese population. PMID:24159560

  4. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques

    PubMed Central

    Simmons, Heather A.; Salamat, M. Shahriar; Thoong, Troy H.; Weiler, Andrea M.; Barry, Gabrielle L.; Weisgrau, Kim L.; Vosler, Logan J.; Mohns, Mariel S.; Breitbach, Meghan E.; Stewart, Laurel M.; Newman, Christina M.; Graham, Michael E.; Turski, Patrick A.; Post, Jennifer; Hayes, Jennifer M.; Schotzko, Michele L.; Permar, Sallie R.; Rakasz, Eva G.; Capuano, Saverio; Tarantal, Alice F.; Osorio, Jorge E.; O’Connor, Shelby L.

    2017-01-01

    Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10–12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated. PMID:28542585

  5. The six degrees of freedom motion of the human head, spine, and pelvis in a frontal impact.

    PubMed

    Lopez-Valdes, F J; Riley, P O; Lessley, D J; Arbogast, K B; Seacrist, T; Balasubramanian, S; Maltese, M; Kent, R

    2014-01-01

    The goal of this study is to characterize the in situ 6-degree-of-freedom kinematics of the head, 3 vertebrae (T1, T8, and L2), and the pelvis in a 40 km/h frontal impact. Three postmortem human surrogates (PMHS) were exposed to a deceleration of 15 g over 125 ms and the motion of selected anatomical structures (head, T1, T8, L2, and pelvis) was tracked at 1000 Hz using an optoelectric stereophotogrammetric system. Displacements of the analyzed structures are reported in the sagittal and the transverse planes. Rotations of the structures are described using the finite helical axis of the motion. Anterior displacements were 530.5 ± 39.4 mm (head), 434.7 ± 20.0 mm (T1), 353.3 ± 29.6 mm (T8), 219.9 ± 19.3 mm (L2), and 78.9 ± 22.1 mm (pelvis). The ratio between peak anterior and lateral displacement was up to 19 percent (T1) and 26 percent (head). Magnitudes of the rotation of the head (69.9 ± 1.5°), lumbar (66.5 ± 9.1°), and pelvis (63.8 ± 11.8°) were greater than that of the thoracic vertebrae (T1: 49.1 ± 7.8°; T8: 47.7 ± 6.3°). Thoracic vertebrae exhibited a complex rotation behavior caused by the asymmetric loading of the shoulder belt. Rotation of the lumbar vertebra and pelvis occurred primarily within the sagittal plane (flexion). Despite the predominance of the sagittal motion of the occupant in a pure (12 o'clock) frontal impact, the asymmetry of belt loading induced other relevant displacements and rotations of the head and thoracic spine. Attempts to model occupant kinematics in a frontal impact should consider these results to biofidelically describe the interaction of the torso with the belt.

  6. Visual perception of axes of head rotation

    PubMed Central

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into the SCC frame. PMID:23919087

  7. Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond.

    PubMed

    Winter, Lukas; Niendorf, Thoralf

    2016-06-01

    This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 (+) ) and RF power deposition of dipole antenna arrays for (1)H magnetic resonance of the human brain at 1 GHz (23.5 T). Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz. Our results demonstrate that transmission fields suitable for (1)H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B 1 (+) in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array. The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system.

  8. 78 FR 57858 - Tribal Consultation Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Tribal Consultation Meeting AGENCY: Administration for Children and Families' Office of Head Start (OHS), HHS. ACTION... Department of Health and Human Services, Administration for Children and Families, Office of Head Start...

  9. 77 FR 13338 - Tribal Consultation Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Tribal Consultation Meetings AGENCY: Office of Head Start (OHS), Administration for Children and Families, HHS. ACTION... Department of Health and Human Services, Administration for Children and Families, Office of Head Start...

  10. 78 FR 20658 - Tribal Consultation Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Tribal Consultation Meeting AGENCY: Administration for Children and Families' Office of Head Start (OHS), HHS. ACTION... Department of Health and Human Services, Administration for Children and Families, Office of Head Start...

  11. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.

    PubMed

    Yoganandan, Narayan; Chirvi, Sajal; Voo, Liming; Pintar, Frank A; Banerjee, Anjishnu

    2018-02-17

    The objective of this study was to determine the influence of age and injury mechanism on cervical spine tolerance to injury from head contact loading using survival analysis. This study analyzed data from previously conducted experiments using post mortem human subjects (PMHS). Group A tests used the upright intact head-cervical column experimental model. The inferior end of the specimen was fixed, the head was balanced by a mechanical system, and natural lordosis was removed. Specimens were placed on a testing device via a load cell. The piston applied loading at the vertex region. Spinal injuries were identified using medical images. Group B tests used the inverted head-cervical column experimental model. In one study, head-T1 specimens were fixed distally, and C7-T1 joints were oriented anteriorly, preserving lordosis. Torso mass of 16 kg was added to the specimen. In another inverted head-cervical column study, occiput-T2 columns were obtained, an artificial head was attached, T1-T2 was fixed, C4-C5 disc was maintained horizontal in the lordosis posture, and C7-T1 was unconstrained. The specimens were attached to the drop test carriage carrying a torso mass of 15 kg. A load cell at the inferior end measured neck loads in both studies. Axial neck force and age were used as the primary response variable and covariate to derive injury probability curves using survival analysis. Group A tests showed that age is a significant (P < .05) and negative covariate; that is, increasing age resulted in decreasing force for the same risk. Injuries were mainly vertebral body fractures and concentrated at one level, mid-to-lower cervical spine, and were attributed to compression-related mechanisms. However, age was not a significant covariate for the combined data from group B tests. Both group B tests produced many soft tissue injuries, at all levels, from C1 to T1. The injury mechanism was attributed to mainly extension. Multiple and noncontiguous injuries occurred. Injury probability curves, ±95% confidence intervals, and normalized confidence interval sizes representing the quality of the mean curve are given for different data sets. For compression-related injuries, specimen age should be used as a covariate or individual specimen data may be prescaled to derive risk curves. For distraction- or extension-related injuries, however, specimen age need not be used as a covariate in the statistical analysis. The findings from these tests and survival analysis indicate that the age factor modulates human cervical spine tolerance to impact injury.

  12. Determination of stimulation focality in heterogeneous head models during transcranial magnetic stimulation (TMS)

    NASA Astrophysics Data System (ADS)

    Lee, Erik; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial Magnetic Stimulation (TMS) is an increasingly popular tool used by both the scientific and medical community to understand and treat the brain. TMS has the potential to help people with a wide range of diseases such as Parkinson's, Alzheimer's, and PTSD, while currently being used to treat people with chronic, drug-resistant depression. Through computer simulations, we are able to see the electric field that TMS induces in anatomical human models, but there is no measure to quantify this electric field in a way that relates to a specific patient undergoing TMS therapy. We propose a way to quantify the focality of the induced electric field in a heterogeneous head model during TMS by relating the surface area of the brain being stimulated to the total volume of the brain being stimulated. This figure would be obtained by conducting finite element analysis (FEA) simulations of TMS therapy on a patient specific head model. Using this figure to assist in TMS therapy will allow clinicians and researchers to more accurately stimulate the desired region of a patient's brain and be more equipped to do comparative studies on the effects of TMS across different patients. This work was funded by the Carver Charitable Trust.

  13. Are juvenile domestic pigs (Sus scrofa domestica) sensitive to the attentive states of humans?--The impact of impulsivity on choice behaviour.

    PubMed

    Nawroth, Christian; Ebersbach, Mirjam; von Borell, Eberhard

    2013-06-01

    Previous studies have shown that apes, dogs and horses seem to be able to attribute attentive states to humans. Subjects had to choose between two persons: one who was able to see the animal and one who was not. Using a similar paradigm, we tested a species that does not rely strongly on visual cues, the domestic pig (Sus scrofa domestica). Subjects could choose between two unfamiliar persons, with only one showing attention, in three different conditions (body, head away, body turned - head front). Subjects (n=16) only showed a tendency towards the attentive human in the head away condition. However, by pooling those two conditions where the position of the human head was the only salient cue, we found a significant preference for the attentive person. Moreover, two approach styles could be distinguished - an impulsive style with short response times and a non-impulsive style where response times were relatively long. With the second approach style, pigs chose the attentive person significantly more often than expected by chance level, which was not the case when subjects chose impulsively. These first results suggest that pigs are able to use head cues to discriminate between different attentive states of humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Geometric dimension model of virtual astronaut body for ergonomic analysis of man-machine space system

    NASA Astrophysics Data System (ADS)

    Qianxiang, Zhou

    2012-07-01

    It is very important to clarify the geometric characteristic of human body segment and constitute analysis model for ergonomic design and the application of ergonomic virtual human. The typical anthropometric data of 1122 Chinese men aged 20-35 years were collected using three-dimensional laser scanner for human body. According to the correlation between different parameters, curve fitting were made between seven trunk parameters and ten body parameters with the SPSS 16.0 software. It can be concluded that hip circumference and shoulder breadth are the most important parameters in the models and the two parameters have high correlation with the others parameters of human body. By comparison with the conventional regressive curves, the present regression equation with the seven trunk parameters is more accurate to forecast the geometric dimensions of head, neck, height and the four limbs with high precision. Therefore, it is greatly valuable for ergonomic design and analysis of man-machine system.This result will be very useful to astronaut body model analysis and application.

  15. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  16. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter

    2008-04-15

    A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.

  17. The applicability of a computer model for predicting head injury incurred during actual motor vehicle collisions.

    PubMed

    Moran, Stephan G; Key, Jason S; McGwin, Gerald; Keeley, Jason W; Davidson, James S; Rue, Loring W

    2004-07-01

    Head injury is a significant cause of both morbidity and mortality. Motor vehicle collisions (MVCs) are the most common source of head injury in the United States. No studies have conclusively determined the applicability of computer models for accurate prediction of head injuries sustained in actual MVCs. This study sought to determine the applicability of such models for predicting head injuries sustained by MVC occupants. The Crash Injury Research and Engineering Network (CIREN) database was queried for restrained drivers who sustained a head injury. These collisions were modeled using occupant dynamic modeling (MADYMO) software, and head injury scores were generated. The computer-generated head injury scores then were evaluated with respect to the actual head injuries sustained by the occupants to determine the applicability of MADYMO computer modeling for predicting head injury. Five occupants meeting the selection criteria for the study were selected from the CIREN database. The head injury scores generated by MADYMO were lower than expected given the actual injuries sustained. In only one case did the computer analysis predict a head injury of a severity similar to that actually sustained by the occupant. Although computer modeling accurately simulates experimental crash tests, it may not be applicable for predicting head injury in actual MVCs. Many complicating factors surrounding actual MVCs make accurate computer modeling difficult. Future modeling efforts should consider variables such as age of the occupant and should account for a wider variety of crash scenarios.

  18. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  19. Directional and sectional ride comfort estimation using an integrated human biomechanical-seat foam model

    NASA Astrophysics Data System (ADS)

    Mohajer, Navid; Abdi, Hamid; Nahavandi, Saeid; Nelson, Kyle

    2017-09-01

    In the methodology of objective measurement of ride comfort, application of a Human Biomechanical Model (HBM) is valuable for Whole Body Vibration (WBV) analysis. In this study, using a computational Multibody System (MBS) approach, development of a 3D passive HBM for a seated human is considered. For this purpose, the existing MBS-based HBMs of seated human are briefly reviewed first. The Equations of Motion (EoM) for the proposed model are then obtained and the simulation results are shown and compared with idealised ranges of experimental results suggested in the literature. The human-seat interaction is established using a nonlinear vibration model of foam with respect to the sectional behaviour of the seat foam. The developed system is then used for ride comfort estimation offered by a ride dynamic model. The effects of human weight, road class, and vehicle speed on the vibration of the human body segments in different directions are studied. It is shown that the there is a high correlation (more than 99.2%) between the vibration indices of the proposed HBM-foam model and the corresponding ISO 2631 WBV indices. In addition, relevant ISO 2631 indices that show a high correlation with the directional vibration of the head are identified.

  20. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  1. The zebrafish eye—a paradigm for investigating human ocular genetics

    PubMed Central

    Richardson, R; Tracey-White, D; Webster, A; Moosajee, M

    2017-01-01

    Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182

  2. Blunt Criterion trauma model for head and chest injury risk assessment of cal. 380 R and cal. 22 long blank cartridge actuated gundog retrieval devices.

    PubMed

    Frank, Matthias; Bockholdt, Britta; Peters, Dieter; Lange, Joern; Grossjohann, Rico; Ekkernkamp, Axel; Hinz, Peter

    2011-05-20

    Blunt ballistic impact trauma is a current research topic due to the widespread use of kinetic energy munitions in law enforcement. In the civilian setting, an automatic dummy launcher has recently been identified as source of blunt impact trauma. However, there is no data on the injury risk of conventional dummy launchers. It is the aim of this investigation to predict potential impact injury to the human head and chest on the basis of the Blunt Criterion which is an energy based blunt trauma model to assess vulnerability to blunt weapons, projectile impacts, and behind-armor-exposures. Based on experimentally investigated kinetic parameters, the injury risk of two commercially available gundog retrieval devices (Waidwerk Telebock, Germany; Turner Richards, United Kingdom) was assessed using the Blunt Criterion trauma model for blunt ballistic impact trauma to the head and chest. Assessing chest impact, the Blunt Criterion values for both shooting devices were higher than the critical Blunt Criterion value of 0.37, which represents a 50% risk of sustaining a thoracic skeletal injury of AIS 2 (moderate injury) or AIS 3 (serious injury). The maximum Blunt Criterion value (1.106) was higher than the Blunt Criterion value corresponding to AIS 4 (severe injury). With regard to the impact injury risk to the head, both devices surpass by far the critical Blunt Criterion value of 1.61, which represents a 50% risk of skull fracture. Highest Blunt Criterion values were measured for the Turner Richards Launcher (2.884) corresponding to a risk of skull fracture of higher than 80%. Even though the classification as non-guns by legal authorities might implicate harmlessness, the Blunt Criterion trauma model illustrates the hazardous potential of these shooting devices. The Blunt Criterion trauma model links the laboratory findings to the impact injury patterns of the head and chest that might be expected. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. 45 CFR 1306.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... with the child's parents and family at home. (c) Days of operation means the planned days during which.... (h) Head Start parent means a Head Start child's mother or father, other family member who is a...

  4. Research and development of service robot platform based on artificial psychology

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake

    2007-12-01

    Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

  5. A global multiscale mathematical model for the human circulation with emphasis on the venous system.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-07-01

    We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. Copyright © 2014 John Wiley & Sons, Ltd.

  6. 45 CFR 1304.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START... low-income pregnant women and families with infants and toddlers, entitled “Early Head Start.” The...

  7. 45 CFR 1304.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START... low-income pregnant women and families with infants and toddlers, entitled “Early Head Start.” The...

  8. 45 CFR 1304.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START... low-income pregnant women and families with infants and toddlers, entitled “Early Head Start.” The...

  9. 45 CFR 1304.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START... low-income pregnant women and families with infants and toddlers, entitled “Early Head Start.” The...

  10. 45 CFR 1304.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START... low-income pregnant women and families with infants and toddlers, entitled “Early Head Start.” The...

  11. The unusual reproductive system of head and body lice (Pediculus humanus)

    PubMed Central

    ANDREWES, S.; CLARK, J. M.; ROSS, L.

    2017-01-01

    Abstract Insect reproduction is extremely variable, but the implications of alternative genetic systems are often overlooked in studies on the evolution of insecticide resistance. Both ecotypes of Pediculus humanus (Phthiraptera: Pediculidae), the human head and body lice, are human ectoparasites, the control of which is challenged by the recent spread of resistance alleles. The present study conclusively establishes for the first time that both head and body lice reproduce through paternal genome elimination (PGE), an unusual genetic system in which males transmit only their maternally derived chromosomes. Here, we investigate inheritance patterns of parental genomes using a genotyping approach across families of both ecotypes and show that heterozygous males exclusively or preferentially pass on one allele only, whereas females transmit both in a Mendelian fashion. We do however observe occasional transmission of paternal chromosomes through males, representing the first known case of PGE in which whole‐genome meiotic drive is incomplete. Finally, we discuss the potential implications of this finding for the evolution of resistance and invite the development of new theoretical models of how this knowledge might contribute to increasing the success of pediculicide‐based management schemes. PMID:29266297

  12. Pitot-tube flowmeter for quantification of airflow during sleep.

    PubMed

    Kirkness, J P; Verma, M; McGinley, B M; Erlacher, M; Schwartz, A R; Smith, P L; Wheatley, J R; Patil, S P; Amis, T C; Schneider, H

    2011-02-01

    The gold-standard pneumotachograph is not routinely used to quantify airflow during overnight polysomnography due to the size, weight, bulkiness and discomfort of the equipment that must be worn. To overcome these deficiencies that have precluded the use of a pneumotachograph in routine sleep studies, our group developed a lightweight, low dead space 'pitot flowmeter' (based on pitot-tube principle) for use during sleep. We aimed to examine the characteristics and validate the flowmeter for quantifying airflow and detecting hypopneas during polysomnography by performing a head-to-head comparison with a pneumotachograph. Four experimental paradigms were utilized to determine the technical performance characteristics and the clinical usefulness of the pitot flowmeter in a head-to-head comparison with a pneumotachograph. In each study (1-4), the pitot flowmeter was connected in series with a pneumotachograph under either static flow (flow generator inline or on a face model) or dynamic flow (subject breathing via a polyester face model or on a nasal mask) conditions. The technical characteristics of the pitot flowmeter showed that, (1) the airflow resistance ranged from 0.065 ± 0.002 to 0.279 ± 0.004 cm H(2)O L(-1) s(-1) over the airflow rates of 10 to 50 L min(-1). (2) On the polyester face model there was a linear relationship between airflow as measured by the pitot flowmeter output voltage and the calibrated pneumotachograph signal a (β(1) = 1.08 V L(-1) s(-1); β(0) = 2.45 V). The clinically relevant performance characteristics (hypopnea detection) showed that (3) when the pitot flowmeter was connected via a mask to the human face model, both the sensitivity and specificity for detecting a 50% decrease in peak-to-peak airflow amplitude was 99.2%. When tested in sleeping human subjects, (4) the pitot flowmeter signal displayed 94.5% sensitivity and 91.5% specificity for the detection of 50% peak-to-peak reductions in pneumotachograph-measured airflow. Our data validate the pitot flowmeter for quantification of airflow and detecting breathing reduction during polysomnographic sleep studies. We speculate that quantifying airflow during sleep can differentiate phenotypic traits related to sleep disordered breathing.

  13. The genetic evidence for human origin of Jivaroan shrunken heads in collections from the Polish museums.

    PubMed

    Piniewska, Danuta; Sanak, Marek; Wojtas, Marta; Polanska, Nina

    2017-05-01

    Advances in forensic identification using molecular genetics are helpful in resolving some historical mysteries. The aim of this study was to confirm the authenticity of shrunken-head artifacts exhibited by two Polish museums. Shrunken heads, known as tsantsas, were headhunting trophies of South American Indians (Jivaroan). A special preparation preserved their hair and facial appearance. However, it was quite common to offer counterfeit shrunken heads of sloths or monkeys to collectors of curiosities. We sampled small skin specimens of four shrunken-head skin from the museum collection from Warsaw and Krakow, Poland. Following genomic DNA isolation, highly polymorphic short tandem repeats were genotyped using a commercial chemistry and DNA sequencing analyzer. Haplogroups of human Y chromosome were identified. We obtained an informative genetic profile of genomic short tandem repeats from all the samples of shrunken heads. Moreover, amplification of amelogenin loci allowed for sex determination. All four studied shrunken heads were of human origin. In two ones, a shared Y-chromosome haplogroup Q characteristic for Indigenous Americans was detected. Another artifact was counterfeited because Y-chromosome haplogroup I2 was found, characteristic for the Southeastern European origin. Commercial genetic methods of identification can be applied successfully in studies on the origin and authenticity of some unusual collection items.

  14. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes

    PubMed Central

    Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768

  15. Spectral analysis of resting cardiovascular variables and responses to oscillatory LBNP before and after 6 degree head dowm bedrest

    NASA Technical Reports Server (NTRS)

    Knapp, Charles F.; Evans, J. M.; Patwardhan, A.; Levenhagen, D.; Wang, M.; Charles, John B.

    1991-01-01

    A major focus of our research program is to develop noninvasive procedures for determining changes in cardiovascular function associated with the null gravity environment. We define changes in cardiovascular function to be (1) the result of the regulatory system operating at values different from 'normal' but with an overall control system basically unchanged by the null gravity exposure, or (2) the result of operating with a control system that has significantly different regulatory characteristics after an exposure. To this end, we have used a model of weightlessness that consisted of exposing humans to 2 hrs. in the launch position, followed by 20 hrs. of 6 deg head down bedrest. Our principal objective was to use this model to measure cardiovascular responses to the 6 deg head down bedrest protocol and to develop the most sensitive 'systems identification' procedure for indicating change. A second objective, related to future experiments, is to use the procedure in combination with experiments designed to determine the degree to which a regulatory pathway has been altered and to determine the mechanisms responsible for the changes.

  16. Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    PubMed Central

    Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio

    2012-01-01

    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473

  17. Bone conduction responses of middle ear structures in Thiel embalmed heads

    NASA Astrophysics Data System (ADS)

    Arnold, Andreas; Stieger, Christof; Caversaccio, Marco; Kompis, Martin; Guignard, Jérémie

    2015-12-01

    Thiel-embalmed human whole-head specimens offer a promising alternative model for bone conduction (BC) studies of middle ear structures. In this work we present the Thiel model's linearity and stability over time as well as its possible use in the study of a fixed ossicle chain. Using laser Doppler vibrometry (LDV), the motion of the retroauricular skull, the promontory, the stapes footplate and the round window (RW) were measured. A bone-anchored hearing aid stimulated the ears with step sinus tones logarithmically spread between 0.1 and 10 kHz. Linearity of the model was verified using input levels in steps of 10 dBV. The stability of the Thiel model over time was examined with measurements repeated after hours and weeks. The influence of a cement-fixed stapes was assessed. The middle ear elements measured responded linearly in amplitude for the applied input levels (100, 32.6, and 10 mV). The variability of measurements for both short- (2 h) and long-term (4-16 weeks) repetitions in the same ear was lower than the interindividual difference. The fixation of the stapes induced a lowered RW displacement for frequencies near 750 Hz (-4 dB) and an increased displacement for frequencies above 1 kHz (max. +3.7 dB at 4 kHz). LDV assessment of BC-induced middle ear motion in Thiel heads can be performed with stable results. The vibratory RW response is affected by the fixation of the stapes, indicating a measurable effect of ossicle chain inertia on BC response in Thiel embalmed heads.

  18. The oblique effect is both allocentric and egocentric

    PubMed Central

    Mikellidou, Kyriaki; Cicchini, Guido Marco; Thompson, Peter G.; Burr, David C.

    2016-01-01

    Despite continuous movements of the head, humans maintain a stable representation of the visual world, which seems to remain always upright. The mechanisms behind this stability are largely unknown. To gain some insight on how head tilt affects visual perception, we investigate whether a well-known orientation-dependent visual phenomenon, the oblique effect—superior performance for stimuli at cardinal orientations (0° and 90°) compared with oblique orientations (45°)—is anchored in egocentric or allocentric coordinates. To this aim, we measured orientation discrimination thresholds at various orientations for different head positions both in body upright and in supine positions. We report that, in the body upright position, the oblique effect remains anchored in allocentric coordinates irrespective of head position. When lying supine, gravitational effects in the plane orthogonal to gravity are discounted. Under these conditions, the oblique effect was less marked than when upright, and anchored in egocentric coordinates. The results are well explained by a simple “compulsory fusion” model in which the head-based and the gravity-based signals are combined with different weightings (30% and 70%, respectively), even when this leads to reduced sensitivity in orientation discrimination. PMID:26129862

  19. A novel method to measure femoral component migration by computed tomography: a cadaver study.

    PubMed

    Boettner, Friedrich; Sculco, Peter; Lipman, Joseph; Renner, Lisa; Faschingbauer, Martin

    2016-06-01

    Radiostereometric analysis (RSA) is the most accurate technique to measure implant migration. However, it requires special equipment, technical expertise and analysis software and has not gained wide acceptance. The current paper analyzes a novel method to measure implant migration utilizing widely available computer tomography (CT). Three uncemented total hip replacements were performed in three human cadavers and six tantalum beads were inserted into the femoral bone similar to RSA. Six different 28 mm heads (-3, 0, 2.5, 5.0, 7.5 and 10 mm) were added to simulate five reproducible translations (maximum total point migration) of the center of the head. Implant migration was measured in a 3-D analysis software (Geomagic Studio 7). Repeat manual reconstructions of the center of the head were performed by two investigators to determine repeatability and accuracy. The accuracy of measurements between the centers of two head sizes was 0.11 mm with a CI 95 % of 0.22 mm. The intra-observer repeatability was 0.13 mm (CI 95 % 0.25 mm). The interrater-reliability was 0.943. CT based measurement of head displacement in a cadaver model were highly accurate and reproducible.

  20. 45 CFR 1310.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Purpose. 1310.1 Section 1310.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  1. 45 CFR 1310.10 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false General. 1310.10 Section 1310.10 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  2. 45 CFR 1310.10 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false General. 1310.10 Section 1310.10 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  3. 45 CFR 1310.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Purpose. 1310.1 Section 1310.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  4. 45 CFR 1310.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Purpose. 1310.1 Section 1310.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  5. 45 CFR 1310.10 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false General. 1310.10 Section 1310.10 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  6. 45 CFR 1310.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Definitions. 1310.3 Section 1310.3 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  7. 45 CFR 1306.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... factor in the growth and development of the child. (k) Home visits means the visits made to a child's...

  8. 45 CFR 1310.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Purpose. 1310.1 Section 1310.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  9. 45 CFR 1310.10 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false General. 1310.10 Section 1310.10 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  10. 45 CFR 1310.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Purpose. 1310.1 Section 1310.1 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  11. 45 CFR 1310.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Definitions. 1310.3 Section 1310.3 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  12. 45 CFR 1309.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Definitions. 1309.3 Section 1309.3 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  13. 45 CFR 1309.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Definitions. 1309.3 Section 1309.3 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  14. 45 CFR 1309.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Definitions. 1309.3 Section 1309.3 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START...

  15. Dynamic sound localization in cats

    PubMed Central

    Ruhland, Janet L.; Jones, Amy E.

    2015-01-01

    Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts. We trained cats with visual-auditory two-step tasks in which we presented a brief sound burst during saccadic eye-head gaze shifts toward a prior visual target. No consistent or significant differences in accuracy or precision were found between this dynamic task (2-step saccade) and the comparable static task (single saccade when the head is stable) in either horizontal or vertical direction. Cats appear to be able to process dynamic auditory cues and execute complex motor adjustments to accurately localize auditory targets during rapid eye-head gaze shifts. PMID:26063772

  16. Head-Mounted Display Technology for Low Vision Rehabilitation and Vision Enhancement

    PubMed Central

    Ehrlich, Joshua R.; Ojeda, Lauro V.; Wicker, Donna; Day, Sherry; Howson, Ashley; Lakshminarayanan, Vasudevan; Moroi, Sayoko E.

    2017-01-01

    Purpose To describe the various types of head-mounted display technology, their optical and human factors considerations, and their potential for use in low vision rehabilitation and vision enhancement. Design Expert perspective. Methods An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. Results Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low vision aids. Devices vary by their relationship to the user’s eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion and user interface. These optical and human factors considerations are important when selecting head-mounted displays for specific applications and patient groups. Conclusions Head-mounted display technologies may offer advantages over conventional low vision aids. Future research should compare head-mounted displays to commonly prescribed low vision aids in order to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations. PMID:28048975

  17. The science of shrinking human heads: tribal warfare and revenge among the South American Jivaro-Shuar.

    PubMed

    Jandial, Rahul; Hughes, Samuel A; Aryan, Henry E; Marshall, Lawrence F; Levy, Michael L

    2004-11-01

    THE PRACTICE OF "head-shrinking" has been the proper domain not of Africa but rather of the denizens of South America. Specifically, in the post-Columbian period, it has been most famously the practice of a tribe of indigenous people commonly called the Jivaro or Jivaro-Shuar. The evidence suggests that the Jivaro-Shuar are merely the last group to retain a custom widespread in northwestern South America. In both ceramic and textile art of the pre-Columbian residents of Peru, the motif of trophy heads smaller than normal life-size heads commonly recurs; the motif is seen even in surviving carvings in stone and shell. Moreover, although not true shrunken heads, trophy heads found in late pre-Columbian and even post-Columbian graves of the region demonstrate techniques of display very similar to those used by the Jivaro-Shuar, at least some of which are best understood in the context of head-shrinking. Regardless, the Jivaro-Shuar and their practices provide an illustrative counterexample to popular myth regarding the culture and science of the shrinking of human heads.

  18. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: Loop overlapping rediscovered.

    PubMed

    Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke

    2018-02-01

    To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Gold-standard for computer-assisted morphological sperm analysis.

    PubMed

    Chang, Violeta; Garcia, Alejandra; Hitschfeld, Nancy; Härtel, Steffen

    2017-04-01

    Published algorithms for classification of human sperm heads are based on relatively small image databases that are not open to the public, and thus no direct comparison is available for competing methods. We describe a gold-standard for morphological sperm analysis (SCIAN-MorphoSpermGS), a dataset of sperm head images with expert-classification labels in one of the following classes: normal, tapered, pyriform, small or amorphous. This gold-standard is for evaluating and comparing known techniques and future improvements to present approaches for classification of human sperm heads for semen analysis. Although this paper does not provide a computational tool for morphological sperm analysis, we present a set of experiments for comparing sperm head description and classification common techniques. This classification base-line is aimed to be used as a reference for future improvements to present approaches for human sperm head classification. The gold-standard provides a label for each sperm head, which is achieved by majority voting among experts. The classification base-line compares four supervised learning methods (1- Nearest Neighbor, naive Bayes, decision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu moments, Zernike moments and Fourier descriptors), reporting the accuracy and the true positive rate for each experiment. We used Fleiss' Kappa Coefficient to evaluate the inter-expert agreement and Fisher's exact test for inter-expert variability and statistical significant differences between descriptors and learning techniques. Our results confirm the high degree of inter-expert variability in the morphological sperm analysis. Regarding the classification base line, we show that none of the standard descriptors or classification approaches is best suitable for tackling the problem of sperm head classification. We discovered that the correct classification rate was highly variable when trying to discriminate among non-normal sperm heads. By using the Fourier descriptor and SVM, we achieved the best mean correct classification: only 49%. We conclude that the SCIAN-MorphoSpermGS will provide a standard tool for evaluation of characterization and classification approaches for human sperm heads. Indeed, there is a clear need for a specific shape-based descriptor for human sperm heads and a specific classification approach to tackle the problem of high variability within subcategories of abnormal sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz.

    PubMed

    Schmid, Gernot; Uberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-09-07

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 microW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely.

  1. Haemodilution and head-down tilting induce functional injury in the rat optic nerve: A model for peri-operative ischemic optic neuropathy.

    PubMed

    Roth, Steven; Dreixler, John; Newman, Nancy J

    2018-05-15

    Mechanisms of peri-operative ischaemic optic neuropathy remain poorly understood. Both specific pre-operative and intra-operative factors have been examined by retrospective studies, but no animal model currently exists. To develop a rodent model of peri-operative ischaemic optic neuropathy. In rats, we performed head-down tilt and/or haemodilution, theorising that the combination damages the optic nerve. Animal study. Laboratory. A total of 36 rats, in four groups, completed the functional examination of retina and optic nerve after the interventions. Anaesthetised groups (n>8) were supine (SUP) for 5 h, head-down tilted 70° for 5 h, head-down tilted/haemodiluted for 5 h or SUP/haemodiluted for 5 h. We measured blood pressure, heart rate, intra-ocular pressure and maintained constant temperature. Retinal function (electroretinography), scotopic threshold response (STR) (for retinal ganglion cells) and visual evoked potentials (VEP) (for transmission through the optic nerve). We imaged the optic nerve in vivo and evaluated retinal histology, apoptotic cells and glial activation in the optic nerve. Retinal and optic nerve function were followed to 14 and 28 days after experiments. At 28 days in head down tilted/haemodiluted rats, negative STR decreased (about 50% amplitude reduction, P = 0.006), VEP wave N2-P3 decreased (70% amplitude reduction, P = 0.01) and P2 latency increased (35%, P = 0.003), optic discs were swollen and glial activation was present in the optic nerve. SUP/haemodiluted rats had decreases in negative STR and increased VEP latency, but no glial activation. An injury partly resembling human ischaemic optic neuropathy can be produced in rats by combining haemodilution and head-down tilt. Significant functional changes were also present with haemodilution alone. Future studies with this partial optic nerve injury may enable understanding of mechanisms of peri-operative ischaemic optic neuropathy and could help discover preventive or treatment strategies.

  2. A three-dimensional digital atlas of the dura mater based on human head MRI.

    PubMed

    Yang, Zhirong; Guo, Zhilin

    2015-03-30

    The goal of this paper was to design a three-dimensional (3D) digital dural atlas of the human brain for assisting neurosurgeons during the planning of an operation, medical research and teaching activities in neurosurgical anatomy. The 176 sagittal head magnetic resonance(MR) images of a 54-year-old female who suffered from the left posterior fossa tumor were processed and outlined, based on which a 3D dural model was created using the softwares of 3ds-max and Mimics. Then the model and images/anatomy photos were matched using the softwares of Z-brush and Photoshop to form the 3-D dural atlas. Dural anatomic photographs were needed to produce the 3D atlas in dural vault and skull base areas. The 3D dural atlas of the brain and related structures was successfully constructed using 73 dural delineations, the contours of dural model match very well on the dural structures of the original images in three orthogonal (axial, coronal and sagittal view) MR cross-sections. The atlas can be arbitrarily rotated and viewed from any direction. It can also be zoomed in and out directly using the zoom function. We successfully generated a 3D dural atlas of human brain, which can be used for repeated observation and research without limitations of time and shortage of corpses. In addition, the atlas has many potential applications in operative planning, surgical training, teaching activities, and so on. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    PubMed

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  4. 10 CFR 745.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY PROTECTION OF HUMAN SUBJECTS § 745.102 Definitions. (a) Department or agency head means the head... by the Department of Labor). (f) Human subject means a living individual about whom an investigator... behavior that occurs in a context in which an individual can reasonably expect that no observation or...

  5. 10 CFR 745.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY PROTECTION OF HUMAN SUBJECTS § 745.102 Definitions. (a) Department or agency head means the head... by the Department of Labor). (f) Human subject means a living individual about whom an investigator... behavior that occurs in a context in which an individual can reasonably expect that no observation or...

  6. 10 CFR 745.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY PROTECTION OF HUMAN SUBJECTS § 745.102 Definitions. (a) Department or agency head means the head... by the Department of Labor). (f) Human subject means a living individual about whom an investigator... behavior that occurs in a context in which an individual can reasonably expect that no observation or...

  7. 45 CFR 1306.36 - Additional Head Start program option variations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Additional Head Start program option variations. 1306.36 Section 1306.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN...

  8. 45 CFR 1306.36 - Additional Head Start program option variations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Additional Head Start program option variations. 1306.36 Section 1306.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN...

  9. 45 CFR 1306.36 - Additional Head Start program option variations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Additional Head Start program option variations. 1306.36 Section 1306.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN...

  10. 45 CFR 1306.36 - Additional Head Start program option variations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Additional Head Start program option variations. 1306.36 Section 1306.36 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN...

  11. Head-turning asymmetries during kissing and their association with lateral preference.

    PubMed

    Ocklenburg, Sebastian; Güntürkün, Onur

    2009-01-01

    A head-turning bias to the right side is one of the earliest functional asymmetries in human development and is already present during the final weeks of gestation. To test whether head-turning preference is related to other lateral preferences in adults, kissing behaviour of participants towards a symmetrical doll was observed to assess their spontaneous head-turning preference. Additionally, participants' individual handedness, footedness, and eye preference were determined using questionnaires. A significant difference in handedness and footedness, but not eye preference, was found between left- and right-kissers, with right-kissers showing a stronger right-sided bias than left-kissers. These results support the assumption that the head-turning bias in humans may be able to induce or enhance other asymmetries of perception and action.

  12. Mechanical Evaluation of the Skeletal Structure and Tissue of the Woodpecker and Its Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    Oda, Juhachi; Sakamoto, Jiro; Sakano, Kenichi

    A woodpecker strikes its beak toward a tree repeatedly. But, the damage of brain or the brain concussion doesn’t occur by this action. Human cannot strike strongly the head without the damage of a brain. Therefore, it is predicted that the brain of a woodpecker is protected from the shock by some methods and that the woodpecker has the original mechanism to absorb a shock. In this study, the endoskeltal structure, especially head part structure of woodpecker is dissected and the impact-proof system is analyzed by FEM and model experiment. From the results, it is obvious that the woodpecker has the original impact-proof system as the unique states of hyoid bone, skull, tissue and brain. Moreover it is considered that woodpecker has the advanced impact-proof system relating with not only the head part but also with the whole body.

  13. Characterization of HPV and host genome interactions in primary head and neck cancers.

    PubMed

    Parfenov, Michael; Pedamallu, Chandra Sekhar; Gehlenborg, Nils; Freeman, Samuel S; Danilova, Ludmila; Bristow, Christopher A; Lee, Semin; Hadjipanayis, Angela G; Ivanova, Elena V; Wilkerson, Matthew D; Protopopov, Alexei; Yang, Lixing; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Ren, Xiaojia; Zhang, Jianhua; Pantazi, Angeliki; Santoso, Netty; Xu, Andrew W; Mahadeshwar, Harshad; Wheeler, David A; Haddad, Robert I; Jung, Joonil; Ojesina, Akinyemi I; Issaeva, Natalia; Yarbrough, Wendell G; Hayes, D Neil; Grandis, Jennifer R; El-Naggar, Adel K; Meyerson, Matthew; Park, Peter J; Chin, Lynda; Seidman, J G; Hammerman, Peter S; Kucherlapati, Raju

    2014-10-28

    Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.

  14. Experimental tests of a superposition hypothesis to explain the relationship between the vestibuloocular reflex and smooth pursuit during horizontal combined eye-head tracking in humans

    NASA Technical Reports Server (NTRS)

    Huebner, W. P.; Leigh, R. J.; Seidman, S. H.; Thomas, C. W.; Billian, C.; DiScenna, A. O.; Dell'Osso, L. F.

    1992-01-01

    1. We used a modeling approach to test the hypothesis that, in humans, the smooth pursuit (SP) system provides the primary signal for cancelling the vestibuloocular reflex (VOR) during combined eye-head tracking (CEHT) of a target moving smoothly in the horizontal plane. Separate models for SP and the VOR were developed. The optimal values of parameters of the two models were calculated using measured responses of four subjects to trials of SP and the visually enhanced VOR. After optimal parameter values were specified, each model generated waveforms that accurately reflected the subjects' responses to SP and vestibular stimuli. The models were then combined into a CEHT model wherein the final eye movement command signal was generated as the linear summation of the signals from the SP and VOR pathways. 2. The SP-VOR superposition hypothesis was tested using two types of CEHT stimuli, both of which involved passive rotation of subjects in a vestibular chair. The first stimulus consisted of a "chair brake" or sudden stop of the subject's head during CEHT; the visual target continued to move. The second stimulus consisted of a sudden change from the visually enhanced VOR to CEHT ("delayed target onset" paradigm); as the vestibular chair rotated past the angular position of the stationary visual stimulus, the latter started to move in synchrony with the chair. Data collected during experiments that employed these stimuli were compared quantitatively with predictions made by the CEHT model. 3. During CEHT, when the chair was suddenly and unexpectedly stopped, the eye promptly began to move in the orbit to track the moving target. Initially, gaze velocity did not completely match target velocity, however; this finally occurred approximately 100 ms after the brake onset. The model did predict the prompt onset of eye-in-orbit motion after the brake, but it did not predict that gaze velocity would initially be only approximately 70% of target velocity. One possible explanation for this discrepancy is that VOR gain can be dynamically modulated and, during sustained CEHT, it may assume a lower value. Consequently, during CEHT, a smaller-amplitude SP signal would be needed to cancel the lower-gain VOR. This reduction of the SP signal could account for the attenuated tracking response observed immediately after the brake. We found evidence for the dynamic modulation of VOR gain by noting differences in responses to the onset and offset of head rotation in trials of the visually enhanced VOR.(ABSTRACT TRUNCATED AT 400 WORDS).

  15. The origin and distribution of human lice in the world.

    PubMed

    Boutellis, Amina; Abi-Rached, Laurent; Raoult, Didier

    2014-04-01

    Two genera of lice parasitize humans: Pthirus and Pediculus. The latter is of significant public health importance and comprises two ecotypes: the body louse and the head louse. These ecotypes are morphologically and genetically notably similar; the body louse is responsible for three infectious diseases: Louse-borne epidemic typhus, relapsing fever, and trench fever. Mitochondrial DNA studies have shown that there are three obviously divergent clades of head lice (A, B and C), and only one clade of body lice is shared with head lice (clade A). Each clade has a unique geographic distribution. Lice have been parasitizing humans for millions of years and likely dispersed throughout the World with the human migrations out of Africa, so they can be good markers for studying human evolution. Here, we present an overview of the origin of human lice and their role in vector pathogenic bacteria that caused epidemics, and we review the association between lice clades and human migrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Does knowledge of seat design and whiplash injury mechanisms translate to understanding outcomes?

    PubMed

    Ivancic, Paul C

    2011-12-01

    Review of whiplash injury mechanisms and effects of anti-whiplash systems including active head restraint (AHR) and Whiplash Protection System (WHIPS). This article provides an overview of previous biomechanical and epidemiological studies of AHR and WHIPS and investigates whether seat design and biomechanical knowledge of proposed whiplash injury mechanisms translates to understanding outcomes of rear crash occupants. In attempt to reduce whiplash injuries, some newer automobiles incorporate anti-whiplash systems such as AHR or WHIPS. During a rear crash, mechanically based systems activate by occupant momentum pressing into the seatback whereas electronically based systems activate using crash sensors and an electronic control unit linked to the head restraint. To investigate the effects of AHR and WHIPS on occupant responses including head and neck loads and motions, biomechanical studies of simulated rear crashes have been performed using human volunteers, mathematical models, crash dummies, whole cadavers, and hybrid cadaveric/surrogate models. Epidemiological studies have evaluated the effects of AHR and WHIPS on reducing whiplash injury claims and lessening subjective complaints of neck pain after rear crashes. RESULTS.: Biomechanical studies indicate that AHR and WHIPS reduced the potential for some whiplash injuries but did not completely eliminate the injury risk. Epidemiological outcomes indicate reduced whiplash injury claims or subjective complaints of crash-related neck pain between 43 and 75% due to AHR and between 21% and 49% due to WHIPS as compared to conventional seats and head restraints. Yielding energy-absorbing seats aim to reduce occupant loads and accelerations whereas AHRs aim to provide early head support to minimize head and neck motions. Continued objective biomechanical and epidemiological studies of anti-whiplash systems together with industry, governmental, and clinical initiatives will ultimately lead to reduced whiplash injuries through improved prevention strategies.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul A.; Cooper, Candice Frances; Burnett, Damon J.

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates tomore » the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.« less

  18. Combined treatment with D-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer

    PubMed Central

    Hoshikawa, Hiroshi; Kamitori, Kazuyo; Indo, Kanako; Mori, Terushige; Kamata, Mizuna; Takahashi, Tomoko; Tokuda, Masaaki

    2018-01-01

    The present study was designed to evaluate the effect of one rare sugar, D-allose, on normal human cells and cutaneous tissue, and to investigate the radiosensitizing and chemosensitizing potential of D-allose in an in vivo model of head and neck cancer. Results indicated that D-allose did not inhibit the growth of normal human fibroblasts TIG-1 cells, and no apoptotic changes were observed after D-allose and D-glucose treatment. The mRNA expression levels of thioredoxin interacting protein (TXNIP) in TIG-1 cells after D-allose treatment increased by 2-fold (50.4 to 106.5). Conversely, the mRNA expression levels of TXNIP in HSC3 cancer cells increased by 74-fold (1.5 to 110.6), and the thioredoxin (TRX)/TXNIP ratio was markedly reduced from 61.7 to 1.4 following D-allose treatment. Combined multiple treatments with docetaxel, radiation and D-allose resulted in the greatest antitumor response in the in vivo model. Hyperkeratosis, epidermal thickening and tumor necrosis factor-α immunostaining were observed following irradiation treatment, but these pathophysiological reactions were reduced following D-allose administration. Thus, the present findings suggest that D-allose may enhance the antitumor effects of chemoradiotherapy whilst sparing normal tissues. PMID:29456721

  19. 45 CFR 1306.36 - Additional Head Start program option variations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN..., home-based, combination programs, and family child care options defined in this part, the Director of the Office of Head Start retains the right to fund alternative program variations to meet the unique...

  20. 45 CFR 1301.12 - Annual audit of Head Start programs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Annual audit of Head Start programs. 1301.12 Section 1301.12 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND...

  1. 45 CFR 1301.12 - Annual audit of Head Start programs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Annual audit of Head Start programs. 1301.12 Section 1301.12 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND...

  2. 45 CFR 1301.12 - Annual audit of Head Start programs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Annual audit of Head Start programs. 1301.12 Section 1301.12 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND...

  3. 32 CFR 219.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION OF HUMAN SUBJECTS § 219.102 Definitions. (a) Department or agency head means the head of any... by the Department of Labor). (f) Human subject means a living individual about whom an investigator... behavior that occurs in a context in which an individual can reasonably expect that no observation or...

  4. 45 CFR 1301.12 - Annual audit of Head Start programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Annual audit of Head Start programs. 1301.12 Section 1301.12 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND...

  5. 45 CFR 1301.12 - Annual audit of Head Start programs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Annual audit of Head Start programs. 1301.12 Section 1301.12 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND...

  6. Modelling the Species Distribution of Flat-Headed Cats (Prionailurus planiceps), an Endangered South-East Asian Small Felid

    PubMed Central

    Hearn, Andrew J.; Hesse, Deike; Mohamed, Azlan; Traeholdt, Carl; Cheyne, Susan M.; Sunarto, Sunarto; Jayasilan, Mohd-Azlan; Ross, Joanna; Shapiro, Aurélie C.; Sebastian, Anthony; Dech, Stefan; Breitenmoser, Christine; Sanderson, Jim; Duckworth, J. W.; Hofer, Heribert

    2010-01-01

    Background The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. Methodology/Principal Findings In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. Conclusion/Significance Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region. PMID:20305809

  7. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid.

    PubMed

    Wilting, Andreas; Cord, Anna; Hearn, Andrew J; Hesse, Deike; Mohamed, Azlan; Traeholdt, Carl; Cheyne, Susan M; Sunarto, Sunarto; Jayasilan, Mohd-Azlan; Ross, Joanna; Shapiro, Aurélie C; Sebastian, Anthony; Dech, Stefan; Breitenmoser, Christine; Sanderson, Jim; Duckworth, J W; Hofer, Heribert

    2010-03-17

    The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region.

  8. Technical Note: Construction of heterogeneous head phantom for quality control in stereotactic radiosurgery.

    PubMed

    Najafi, Mohsen; Teimouri, Javad; Shirazi, Alireza; Geraily, Ghazale; Esfahani, Mahbod; Shafaei, Mostafa

    2017-10-01

    Stereotactic radiosurgery is a high precision modality for conformally delivering high doses of radiation to the brain lesion with a large dose volume. Several studies for the quality control of this technique were performed to measure the dose delivered to the target with a homogenous head phantom and some dosimeters. Some studies were also performed with one or two instances of heterogeneity in the head phantom to measure the dose delivered to the target. But these studies assumed the head as a sphere and simple shape heterogeneity. The construction of an adult human head phantom with the same size, shape, and real inhomogeneity as an adult human head is needed. Only then is measuring the accurate dose delivered to the area of interest and comparison with the calculated dose possible. According to the ICRU Report 44, polytetrafluoroethylene (PTFE) and methyl methacrylate were selected as a bone and soft tissue, respectively. A set of computed tomography (CT) scans from a standard human head were taken, and simplification of the CT images was used to design the layers of the phantom. The parts of each slice were cut and attached together. Tests of density and CT number were done to compare the material of the phantom with tissues of the head. The dose delivered to the target was measured with an EBT3 film. The density of the PTFE and Plexiglas that were inserted in the phantom are in good agreement with bone and soft tissue. Also, the CT numbers of these materials have a low difference. The dose distribution from the EBT3 film and the treatment planning system is similar. The constructed phantom with a size and inhomogeneity like an adult human head is suitable to measure the dose delivered to the area of interest. It also helps make an accurate comparison with the calculated dose by the treatment planning system. By using this phantom, the actual dose delivered to the target was obtained. This anthropomorphic head phantom can be used in other modalities of radiosurgery as well. © 2017 American Association of Physicists in Medicine.

  9. Pullout strength of cancellous screws in human femoral heads depends on applied insertion torque, trabecular bone microarchitecture and areal bone mineral density.

    PubMed

    Ab-Lazid, Rosidah; Perilli, Egon; Ryan, Melissa K; Costi, John J; Reynolds, Karen J

    2014-12-01

    For cancellous bone screws, the respective roles of the applied insertion torque (TInsert) and of the quality of the host bone (microarchitecture, areal bone mineral density (aBMD)), in contributing to the mechanical holding strength of the bone-screw construct (FPullout), are still unclear. During orthopaedic surgery screws are tightened, typically manually, until adequate compression is attained, depending on surgeons' manual feel. This corresponds to a subjective insertion torque control, and can lead to variable levels of tightening, including screw stripping. The aim of this study, performed on cancellous screws inserted in human femoral heads, was to investigate which, among the measurements of aBMD, bone microarchitecture, and the applied TInsert, has the strongest correlation with FPullout. Forty six femoral heads were obtained, over which microarchitecture and aBMD were evaluated using micro-computed tomography and dual X-ray absorptiometry. Using an automated micro-mechanical test device, a cancellous screw was inserted in the femoral heads at TInsert set to 55% to 99% of the predicted stripping torque beyond screw head contact, after which FPullout was measured. FPullout exhibited strongest correlations with TInsert (R=0.88, p<0.001), followed by structure model index (SMI, R=-0.81, p<0.001), bone volume fraction (BV/TV, R=0.73, p<0.001) and aBMD (R=0.66, p<0.01). Combinations of TInsert with microarchitectural parameters and/or aBMD did not improve the prediction of FPullout. These results indicate that, for cancellous screws, FPullout depends most strongly on the applied TInsert, followed by microarchitecture and aBMD of the host bone. In trabecular bone, screw tightening increases the holding strength of the screw-bone construct. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 45 CFR 1301.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, HEAD START PROGRAM HEAD START... or political subdivisions) which provides a suitable organizational base and possesses the... services, including services to children with disabilities, as set forth and described in the Head Start...

  11. Electron Tomography Imaging of Surface Glycoproteins on Human Parainfluenza Virus 3: Association of Receptor Binding and Fusion Proteins before Receptor Engagement

    PubMed Central

    Gui, Long; Jurgens, Eric M.; Ebner, Jamie L.

    2015-01-01

    ABSTRACT In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a “heads-down” configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended “heads-up” form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN’s globular head does HN transmit its activating signal to F. PMID:25691596

  12. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes

    PubMed Central

    Alamo, Lorenzo; Ware, James S; Pinto, Antonio; Gillilan, Richard E; Seidman, Jonathan G; Seidman, Christine E; Padrón, Raúl

    2017-01-01

    Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10−19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.24634.001 PMID:28606303

  13. An automatic eye detection and tracking technique for stereo video sequences

    NASA Astrophysics Data System (ADS)

    Paduru, Anirudh; Charalampidis, Dimitrios; Fouts, Brandon; Jovanovich, Kim

    2009-05-01

    Human-computer interfacing (HCI) describes a system or process with which two information processors, namely a human and a computer, attempt to exchange information. Computer-to-human (CtH) information transfer has been relatively effective through visual displays and sound devices. On the other hand, the human-tocomputer (HtC) interfacing avenue has yet to reach its full potential. For instance, the most common HtC communication means are the keyboard and mouse, which are already becoming a bottleneck in the effective transfer of information. The solution to the problem is the development of algorithms that allow the computer to understand human intentions based on their facial expressions, head motion patterns, and speech. In this work, we are investigating the feasibility of a stereo system to effectively determine the head position, including the head rotation angles, based on the detection of eye pupils.

  14. Is the asymmetry in young infants' categorization of humans versus nonhuman animals based on head, body, or global gestalt information?

    PubMed

    Quinn, Paul C

    2004-02-01

    Quinn and Eimas (1998) reported an asymmetry in the exclusivity of the category representations that young infants form for humans and nonhuman animals: category representations for nonhuman animal species were found to exclude humans, whereas a category representation for humans was found to include nonhuman animal species (i.e., cats, horses). The present experiment utilized the familiarization/novelty-preference procedure with 3- and 4-month-olds to determine the perceptual cues (i.e., whole stimulus, head alone, body alone) that provided the basis for this asymmetry. The data revealed the asymmetry to be observable only with the whole animal stimuli and not when infants were provided with information from just the head or the body of the exemplars. The results indicate that the incorporation of nonhuman animal species into a category representation for humans is based on holistic information.

  15. Improving Cancer Detection and Dose Efficiency in Dedicated Breast Cancer CT

    DTIC Science & Technology

    2011-02-01

    17. A. E. Burgess, F. L. Jacobson, and P. F. Judy , “ Human observer detection experiments with mammograms and power-law noise,” Med. Phys., Vol. 28...Jacobson F L and Judy P F 2001 Human observer detection experiments with mammograms and power-law noise Med. Phys. 28 419–37 Crawford C R and Kak A C 1979...anthropomorphic head phantom was designed for realistically simulating human head [12], it features not only a natural human skeleton but also contrast

  16. Human Services Reauthorization Act of 1990. U.S. Senate, 101st Congress, 2d Session. Report (To Accompany H.R. 4151).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    The Committee on Labor and Human Resources recommends that the Human Services Reauthorization Act of 1990 be passed as amended. The Act authorizes appropriations for fiscal years 1991 through 1994 to carry out the Head Start Act, the Follow Through Act, and the Community Services Block Grant Act. Titles I through IX of the Act concern Head Start…

  17. What interests them in the pictures?--differences in eye-tracking between rhesus monkeys and humans.

    PubMed

    Hu, Ying-Zhou; Jiang, Hui-Hui; Liu, Ci-Rong; Wang, Jian-Hong; Yu, Cheng-Yang; Carlson, Synnöve; Yang, Shang-Chuan; Saarinen, Veli-Matti; Rizak, Joshua D; Tian, Xiao-Guang; Tan, Hen; Chen, Zhu-Yue; Ma, Yuan-Ye; Hu, Xin-Tian

    2013-10-01

    Studies estimating eye movements have demonstrated that non-human primates have fixation patterns similar to humans at the first sight of a picture. In the current study, three sets of pictures containing monkeys, humans or both were presented to rhesus monkeys and humans. The eye movements on these pictures by the two species were recorded using a Tobii eye-tracking system. We found that monkeys paid more attention to the head and body in pictures containing monkeys, whereas both monkeys and humans paid more attention to the head in pictures containing humans. The humans always concentrated on the eyes and head in all the pictures, indicating the social role of facial cues in society. Although humans paid more attention to the hands than monkeys, both monkeys and humans were interested in the hands and what was being done with them in the pictures. This may suggest the importance and necessity of hands for survival. Finally, monkeys scored lower in eye-tracking when fixating on the pictures, as if they were less interested in looking at the screen than humans. The locations of fixation in monkeys may provide insight into the role of eye movements in an evolutionary context.

  18. Source analysis of MEG activities during sleep (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iramina, K.

    1991-04-01

    The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.

  19. Calcium overloading in traumatic axonal injury by lateral head rotation: a morphological evidence in rat model.

    PubMed

    He, Xiao-Sheng; Xiang, Zhang; Zhou, Fei; Fu, Luo-An; Shuang, Wang

    2004-05-01

    The study investigated morphologically axonal calcium overloading and its relationship with axonal structural changes. Twelve SD rats were divided into an injury and a sham group. The rat model of traumatic axonal injury (TAI) by lateral head rotation was produced. The oxalate-pyroantimonate technique for calcium localization was used to process the rat's medulla oblongata tissues with thin sections observed electron-microscopically for axonal structure and calcium precipitates on it. The axonal damage in medulla oblongata appeared at 2 h post-injury, gradually became diffuse and severe, and continued to exist at 24 hours. At 2 hours, calcium precipitates were deposited on separated lamellae and axolemma, but were rarely distributed in the axoplasm. At 6 hours, calcium precipitates occurred on separated lamellae and axolemma in much higher density, but on axoplasm in extremely small amounts. Some axons, though lacking structural changes of the myelin sheath, sequestered plenty of calcium deposits on their swollen mitochondria. At 24 hours, damaged axons presented with much more severe lamellae separation and calcium deposits. Axonal calcium overloading developed in rat TAI model using lateral head rotation. This was significantly related to structural damage in the axons. These findings suggest the feasibility of using calcium antagonists in cope the management of human DAI in its very early stage.

  20. Modelling of temperature and perfusion during scalp cooling

    NASA Astrophysics Data System (ADS)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  1. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells

    PubMed Central

    Marullo, Rossella; Werner, Erica; Zhang, Hongzheng; Chen, Georgia Z.; Shin, Dong M.; Doetsch, Paul W.

    2015-01-01

    Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity. PMID:26354779

  2. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    PubMed

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  3. Effects of head down tilt upon cortisol and sex hormones

    NASA Astrophysics Data System (ADS)

    Strollo, Felice; Pecorelli, Lia; Uva, Bianca Maria; Masini, Maria Angela; More, Massimo; Strollo, Giovanna; Riondino, Giuseppe

    2005-08-01

    Real and modelled μG conditions seem to induce reversible testicular failure. Suitable onground simulation methods are anyway needed in order to better aim further studies in humans in space. A 5- hour head down tilt (5h-HDT) was therefore performed in 22 male and female healthy volunteers looking at adrenal and gonadal hormones as compared to 12 age- and gender- matched controls. Cortisol and A decreased significantly in both genders, being cortisol decrease less pronounced in women, while leptin, LH, testosterone, estradiol and estrone failed to do so. The authors conclude that a 5h-HDT is only acceptable for adrenal adaptation studies whole longer duration HDT protocols are needed for gonadal investigations.

  4. Functional aspects of metatarsal head shape in humans, apes, and Old World monkeys.

    PubMed

    Fernández, Peter J; Almécija, Sergio; Patel, Biren A; Orr, Caley M; Tocheri, Matthew W; Jungers, William L

    2015-09-01

    Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins. Published by Elsevier Ltd.

  5. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering

    NASA Astrophysics Data System (ADS)

    Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A.; Janeczek, Agnieszka A.; Kontouli, Nasia; Kanczler, Janos M.; Evans, Nicholas D.; Oreffo, Richard Oc

    2016-08-01

    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.

  6. Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest?

    PubMed

    O'Neill, Bridie; Bilal, Haris; Mahmood, Sarah; Waterworth, Paul

    2012-10-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest (DHCA)? Altogether more than 34 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question, 5 of which were animal studies, 1 was a theoretical laboratory study and 1 study looked at the ability to cool using circulating water 'jackets' in humans. There were no available human studies looking at the neurological outcome with or without topical head cooling with ice without further adjunct methods of cerebral protection. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four papers studied animals undergoing DHCA for 45 min-2 h depending on the study design, with or without packing the head with ice. The studies all demonstrated improved cerebral cooling when the head was packed with ice during DHCA. They also illustrated an improved neurological outcome, with better behavioural scores (P < 0.05), and in some, survival, when compared with animals whose heads were not packed in ice. One study examined selective head cooling with the use of packing the head with ice during rewarming after DHCA. However, they demonstrated worse neurological outcomes in these animals, possibly due to the loss of cerebral vasoregulation and cerebral oedema. One study involved a laboratory experiment showing improved cooling using circulating cool water in cryotherapy braces than by using packed ice. They extrapolated that newer devices to cool the head may improve cerebral cooling during DHCA. The final study discussed here demonstrated the use of circulating water to the head in humans undergoing pulmonary endarterectomy. They found that tympanic membrane temperatures could be maintained significantly lower than bladder or rectal temperatures when using circulating water to cool the head. We conclude that topical head cooling with ice is of use during DHCA but not during rewarming following DHCA and that it may be possible to advance topical head cooling techniques using circulating water rather than packed ice.

  7. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  8. [Ex vivo microCT analysis of possible microfractures of the femoral head during implantation of a cementless hip resurfacing femoral component].

    PubMed

    Lerch, M; Olender, G; von der Höh, N; Thorey, F; von Lewinski, G; Meyer-Lindenberg, A; Windhagen, H; Hurschler, C

    2009-01-01

    Microfractures of the femoral head during implantation of the femoral components are suspected to be a cause of fractures at the implant/neck junction which represent a common failure mode in hip resurfacing arthroplasty. Callus formation observed in femoral head retrievals suggests the occurrence of microfractures inside the femoral head, which might be inadvertently caused by the surgeon during implantation. The aim of this biomechanical study was to analyse whether or not the implantation of a cementless femoral component hip resurfacing system causes microfractures in the femoral head. After the preparation of 20 paired human cadaveric femoral heads, the cementless femoral component ESKA Typ BS (ESKA Implants GmbH & Co., Lübeck) was implanted on 9 specimens with an impaction device that generates 4.5 kN impaction force. On 9 specimens the femoral component was implanted by hand. One head was used as a fracture model, 1 specimen served as control without manipulation. The femoral component used for impaction was equipped with hinges to enable its removal without further interfering with the bone stock. Specimens were scanned with a microCT device before and after impaction and the microCT datasets before and after impaction were compared to identify possible microfractures. Twenty strikes per hand or with the impaction device provided sufficient implant seating. Neither the macroscopic examination nor the 2-dimensional microCT analysis revealed any fractures of the femoral heads after impaction. At least macroscopically and in the 2-dimensional microCT analysis, implantation of the cementless hip resurfacing femoral component ESKA Typ BS with 4.5 kN or by hand does not seem to cause fractures of the femoral head. Georg Thieme Verlag KG Stuttgart, New York.

  9. Electromagnetic Energy Deposition in a Concentric Spherical Model of the Human or Animal Head.

    DTIC Science & Technology

    1979-12-01

    by personnel of the Btomthm tics M4odeling Branch, Data Sciences Division, USAF School of Aerospace 4bd - icine, Aerogace Medical Division, AFSC...hood of S, then curl (A) is a vector field such that fcurl ) = A Tds , (22) S C where N and T are, respectively, the unit normals and the unit

  10. Effect of Human Model Height and Sex on Induced Current Dosimetry in Household Induction Heater Users

    NASA Astrophysics Data System (ADS)

    Tarao, Hiroo; Hayashi, Noriyuki; Isaka, Katsuo

    Induced currents in the high-resolution, anatomical human models are numerically calculated by the impedance method. The human models are supposed to be exposed to highly inhomogeneous 20.9 kHz magnetic fields from a household induction heater (IH). In the case of the adult models, the currents ranging from 5 to 19 mA/m2 are induced for between the shoulder and lower abdomen. Meanwhile, in the case of the child models, the currents ranging from 5 to 21 mA/m2 are induced for between the head and abdomen. In particular, the induced currents near the brain tissue are almost the same as those near the abdomen. When the induced currents in the central nervous system tissues are considered, the induced currents in the child model are 2.1 to 6.9 times as large as those in the adult model under the same B-field exposure environment. These results suggest the importance of further investigation intended for a pregnant female who uses the IH as well as for a child (or the IH users of small standing height).

  11. Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death.

    PubMed

    Shin, Yoo Seob; Cha, Hyun Young; Lee, Bok-Soon; Kang, Sung Un; Hwang, Hye Sook; Kwon, Hak Cheol; Kim, Chul-Ho; Choi, Eun Chang

    2016-04-01

    The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.

  12. 77 FR 65195 - Announcement of the Award of Four Single-Source Program Expansion Supplement Grants To Support...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ...: Head Start/Early Head Start, Tribal Child Care, and Tribal Maternal, Infant, and Early Childhood Home... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families [CFDA Number 93... for Children and Families, Health and Human Services. ACTION: Notice of award of four single-source...

  13. 45 CFR 1301.32 - Limitations on costs of development and administration of a Head Start program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE... 45 Public Welfare 4 2011-10-01 2011-10-01 false Limitations on costs of development and... and General Administration § 1301.32 Limitations on costs of development and administration of a Head...

  14. A two-dimensional analytical model for groundwater flow in a leaky aquifer extending finite distance under the estuary

    NASA Astrophysics Data System (ADS)

    Chuang, Mo-Hsiung; Hung, Chi-Tung; -Yen Lin, Wen; Ma, Kuo-chen

    2017-04-01

    In recent years, cities and industries in the vicinity of the estuarine region have developed rapidly, resulting in a sharp increase in the population concerned. The increasing demand for human activities, agriculture irrigation, and aquaculture relies on massive pumping of water in estuarine area. Since the 1950s, numerous studies have focused on the effects of tidal fluctuations on groundwater flow in the estuarine area. Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system considered is multi-layered with estuarine bank and the leaky aquifer extend finite distance under the estuary. The solution of the model describing the groundwater head distribution in such an estuarine aquifer system and subject to the tidal fluctuation effects from estuarine river is developed based on the method of separation of variables along with river boundary. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of leakage, hydraulic parameters, and loading effect on the groundwater head fluctuation due to tide are investigated and discussed. KEYWORDS: analytical model, estuarine river, groundwater fluctuation, leaky aquifer.

  15. 77 FR 66845 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Proposed... Children and Families, Office of Head Start, is proposing to renew, without changes, the authority to... provide to enrolled children and their families. Respondents: Head Start and Early Head Start grantees and...

  16. A Prediction of Response of the Head and Neck of the U.S. Adult Military Population to Dynamic Impact Acceleration from Selected Dynamic Test Subjects.

    DTIC Science & Technology

    1976-05-01

    to Review Grants for Clinical Research and Investigation Involving Human Beings, Medical School, The University of Michigan. 3 of biomechanical models...human volunteers in dynamic sled tests found no clinically observable effects. due to acceleration on a subject in which the peak mouth angular...minutes cf rest between trials , and the average fo-ce of each set computed. Figure 2.7 shows typi- cal forcc curves and the EMG signal resulting from

  17. Scripting human animations in a virtual environment

    NASA Technical Reports Server (NTRS)

    Goldsby, Michael E.; Pandya, Abhilash K.; Maida, James C.

    1994-01-01

    The current deficiencies of virtual environment (VE) are well known: annoying lag time in drawing the current view, drastically simplified environments to reduce that time lag, low resolution and narrow field of view. Animation scripting is an application of VE technology which can be carried out successfully despite these deficiencies. The final product is a smoothly moving high resolution animation displaying detailed models. In this system, the user is represented by a human computer model with the same body proportions. Using magnetic tracking, the motions of the model's upper torso, head and arms are controlled by the user's movements (18 degrees of freedom). The model's lower torso and global position and orientation are controlled by a spaceball and keypad (12 degrees of freedom). Using this system human motion scripts can be extracted from the user's movements while immersed in a simplified virtual environment. Recorded data is used to define key frames; motion is interpolated between them and post processing adds a more detailed environment. The result is a considerable savings in time and a much more natural-looking movement of a human figure in a smooth and seamless animation.

  18. [DESCRIPTION AND PRESENTATION OF THE RESULTS OF ELECTROENCEPHALOGRAM PROCESSING USING AN INFORMATION MODEL].

    PubMed

    Myznikov, I L; Nabokov, N L; Rogovanov, D Yu; Khankevich, Yu R

    2016-01-01

    The paper proposes to apply the informational modeling of correlation matrix developed by I.L. Myznikov in early 1990s in neurophysiological investigations, such as electroencephalogram recording and analysis, coherence description of signals from electrodes on the head surface. The authors demonstrate information models built using the data from studies of inert gas inhalation by healthy human subjects. In the opinion of the authors, information models provide an opportunity to describe physiological processes with a high level of generalization. The procedure of presenting the EEG results holds great promise for the broad application.

  19. Analytical display design for flight tasks conducted under instrument meteorological conditions. [human factors engineering of pilot performance for display device design in instrument landing systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.

  20. Emerging Phytochemicals for the Prevention and Treatment of Head and Neck Cancer.

    PubMed

    Katiyar, Santosh K

    2016-11-24

    Despite the development of more advanced medical therapies, cancer management remains a problem. Head and neck squamous cell carcinoma (HNSCC) is a particularly challenging malignancy and requires more effective treatment strategies and a reduction in the debilitating morbidities associated with the therapies. Phytochemicals have long been used in ancient systems of medicine, and non-toxic phytochemicals are being considered as new options for the effective management of cancer. Here, we discuss the growth inhibitory and anti-cell migratory actions of proanthocyanidins from grape seeds (GSPs), polyphenols in green tea and honokiol, derived from the Magnolia species. Studies of these phytochemicals using human HNSCC cell lines from different sub-sites have demonstrated significant protective effects against HNSCC in both in vitro and in vivo models. Treatment of human HNSCC cell lines with GSPs, (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic component of green tea or honokiol reduced cell viability and induced apoptosis. These effects have been associated with inhibitory effects of the phytochemicals on the epidermal growth factor receptor (EGFR), and cell cycle regulatory proteins, as well as other major tumor-associated pathways. Similarly, the cell migration capacity of HNSCC cell lines was inhibited. Thus, GSPs, honokiol and EGCG appear to be promising bioactive phytochemicals for the management of head and neck cancer.

Top