[Progress in genetic research of human height].
Chen, Kaixu; Wang, Weilan; Zhang, Fuchun; Zheng, Xiufen
2015-08-01
It is well known that both environmental and genetic factors contribute to adult height variation in general population. However, heritability studies have shown that the variation in height is more affected by genetic factors. Height is a typical polygenic trait which has been studied by traditional linkage analysis and association analysis to identify common DNA sequence variation associated with height, but progress has been slow. More recently, with the development of genotyping and DNA sequencing technologies, tremendous achievements have been made in genetic research of human height. Hundreds of single nucleotide polymorphisms (SNPs) associated with human height have been identified and validated with the application of genome-wide association studies (GWAS) methodology, which deepens our understanding of the genetics of human growth and development and also provides theoretic basis and reference for studying other complex human traits. In this review, we summarize recent progress in genetic research of human height and discuss problems and prospects in this research area which may provide some insights into future genetic studies of human height.
NASA Astrophysics Data System (ADS)
Iwata, Takaki; Yamazaki, Yoshihiro; Kuninaka, Hiroto
2013-08-01
In this study, we examine the validity of the transition of the human height distribution from the log-normal distribution to the normal distribution during puberty, as suggested in an earlier study [Kuninaka et al.: J. Phys. Soc. Jpn. 78 (2009) 125001]. Our data analysis reveals that, in late puberty, the variation in height decreases as children grow. Thus, the classification of a height dataset by age at this stage leads us to analyze a mixture of distributions with larger means and smaller variations. This mixture distribution has a negative skewness and is consequently closer to the normal distribution than to the log-normal distribution. The opposite case occurs in early puberty and the mixture distribution is positively skewed, which resembles the log-normal distribution rather than the normal distribution. Thus, this scenario mimics the transition during puberty. Additionally, our scenario is realized through a numerical simulation based on a statistical model. The present study does not support the transition suggested by the earlier study.
Camats, Núria; Fernández-Cancio, Mónica; Carrascosa, Antonio; Andaluz, Pilar; Albisu, M Ángeles; Clemente, María; Gussinyé, Miquel; Yeste, Diego; Audí, Laura
2012-10-01
Molecular causes of isolated severe growth hormone deficiency (ISGHD) in several genes have been established. The aim of this study was to analyse the contribution of growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to GH deficiency in a series of prepubertal ISGHD patients and to normal adult height. A systematic GHRHR gene sequence analysis was performed in 69 ISGHD patients and 60 normal adult height controls (NAHC). Four GHRHR single-nucleotide polymorphisms (SNPs) were genotyped in 248 additional NAHC. An analysis was performed on individual SNPs and combined genotype associations with diagnosis in ISGHD patients and with height-SDS in NAHC. Twenty-one SNPs were found. P3, P13, P15 and P20 had not been previously described. Patients and controls shared 12 SNPs (P1, P2, P4-P11, P16 and P21). Significantly different frequencies of the heterozygous genotype and alternate allele were detected in P9 (exon 4, rs4988498) and P12 (intron 6, rs35609199); P9 heterozygous genotype frequencies were similar in patients and the shortest control group (heights between -2 and -1 SDS) and significantly different in controls (heights between -1 and +2 SDS). GHRHR P9 together with 4 GH1 SNP genotypes contributed to 6·2% of height-SDS variation in the entire 308 NAHC. This study established the GHRHR gene sequence variation map in ISGHD patients and NAHC. No evidence of GHRHR mutation contribution to ISGHD was found in this population, although P9 and P12 SNP frequencies were significantly different between ISGHD and NAHC. Thus, the gene sequence may contribute to normal adult height, as demonstrated in NAHC. © 2012 Blackwell Publishing Ltd.
The Importance of Postural Cues for Determining Eye Height in Immersive Virtual Reality
Leyrer, Markus; Linkenauger, Sally A.; Bülthoff, Heinrich H.; Mohler, Betty J.
2015-01-01
In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height. PMID:25993274
The importance of postural cues for determining eye height in immersive virtual reality.
Leyrer, Markus; Linkenauger, Sally A; Bülthoff, Heinrich H; Mohler, Betty J
2015-01-01
In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N
2010-01-01
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways. PMID:20881960
Genetic determination of height-mediated mate choice.
Tenesa, Albert; Rawlik, Konrad; Navarro, Pau; Canela-Xandri, Oriol
2016-01-19
Numerous studies have reported positive correlations among couples for height. This suggests that humans find individuals of similar height attractive. However, the answer to whether the choice of a mate with a similar phenotype is genetically or environmentally determined has been elusive. Here we provide an estimate of the genetic contribution to height choice in mates in 13,068 genotyped couples. Using a mixed linear model we show that 4.1% of the variation in the mate height choice is determined by a person's own genotype, as expected in a model where one's height determines the choice of mate height. Furthermore, the genotype of an individual predicts their partners' height in an independent dataset of 15,437 individuals with 13% accuracy, which is 64% of the theoretical maximum achievable with a heritability of 0.041. Theoretical predictions suggest that approximately 5% of the heritability of height is due to the positive covariance between allelic effects at different loci, which is caused by assortative mating. Hence, the coupling of alleles with similar effects could substantially contribute to the missing heritability of height. These estimates provide new insight into the mechanisms that govern mate choice in humans and warrant the search for the genetic causes of choice of mate height. They have important methodological implications and contribute to the missing heritability debate.
Guo, Michael; Liu, Zun; Willen, Jessie; Shaw, Cameron P; Richard, Daniel; Jagoda, Evelyn; Doxey, Andrew C; Hirschhorn, Joel; Capellini, Terence D
2017-12-05
GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1 , we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.
Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994.
Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo; Yokoyama, Yoshie; Siribaddana, Sisira H; Hotopf, Matthew; Sumathipala, Athula; Rijsdijk, Fruhling; Tan, Qihua; Zhang, Dongfeng; Pang, Zengchang; Aaltonen, Sari; Heikkilä, Kauko; Öncel, Sevgi Y; Aliev, Fazil; Rebato, Esther; Tarnoki, Adam D; Tarnoki, David L; Christensen, Kaare; Skytthe, Axel; Kyvik, Kirsten O; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Cutler, Tessa L; Hopper, John L; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; Sung, Joohon; Song, Yun-Mi; Yang, Sarah; Lee, Kayoung; Franz, Carol E; Kremen, William S; Lyons, Michael J; Busjahn, Andreas; Nelson, Tracy L; Whitfield, Keith E; Kandler, Christian; Jang, Kerry L; Gatz, Margaret; Butler, David A; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Duncan, Glen E; Buchwald, Dedra; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth Jf; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Jeong, Hoe-Uk; Swan, Gary E; Krasnow, Ruth; Magnusson, Patrik Ke; Pedersen, Nancy L; Dahl-Aslan, Anna K; McAdams, Tom A; Eley, Thalia C; Gregory, Alice M; Tynelius, Per; Baker, Laura A; Tuvblad, Catherine; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Lichtenstein, Paul; Spector, Timothy D; Mangino, Massimo; Lachance, Genevieve; Bartels, Meike; van Beijsterveldt, Toos Cem; Willemsen, Gonneke; Burt, S Alexandra; Klump, Kelly L; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas Sevenius; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Corley, Robin P; Hjelmborg, Jacob V B; Goldberg, Jack H; Iwatani, Yoshinori; Watanabe, Mikio; Honda, Chika; Inui, Fujio; Rasmussen, Finn; Huibregtse, Brooke M; Boomsma, Dorret I; Sørensen, Thorkild I A; Kaprio, Jaakko; Silventoinen, Karri
2016-12-14
Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve.
Adult preferences for infantile facial features: an ethological approach.
Sternglanz, S H; Gray, J L; Murakami, M
1977-02-01
In 1943 Konrad Lorenz postulated that certain infantile cues served as releasers for caretaking behaviour in human adults. This study is an attempt to confirm this hypothesis and to identify relevant cues. The stimuli studied were variations in facial features, and the responses were ratings of the attractiveness of the resultant infant faces. Parametric variations of eye height, eye width, eye height and width, iris size, and vertical variations in feature position (all presented in full-face drawings) were tested for their effect on the ratings, and highly significant preferences for particular stimuli were found. In general these preferences are consistent across a wide variety of environmental factors such as social class and experience with children. These findings are consistent with an ethological interpretation of the data.
Jelenkovic, Aline; Ortega-Alonso, Alfredo; Rose, Richard J; Kaprio, Jaakko; Rebato, Esther; Silventoinen, Karri
2011-01-01
Human growth is a complex process that remains insufficiently understood. We aimed to analyze genetic and environmental influences on growth from late childhood to early adulthood. Two cohorts of monozygotic and dizygotic (same sex and opposite sex) Finnish twin pairs were studied longitudinally using self-reported height at 11-12, 14, and 17 years and adult age (FinnTwin12) and at 16, 17, and 18 years and adult age (FinnTwin16). Univariate and multivariate variance component models for twin data were used. From childhood to adulthood, genetic differences explained 72-81% of the variation of height in boys and 65-86% in girls. Environmental factors common to co-twins explained 5-23% of the variation of height, with the residual variation explained by environmental factors unique to each twin individual. Common environmental factors affecting height were highly correlated between the analyzed ages (0.72-0.99 and 0.91-1.00 for boys and girls, respectively). Genetic (0.58-0.99 and 0.70-0.99, respectively) and unique environmental factors (0.32-0.78 and 0.54-0.82, respectively) affecting height at different ages were more weakly, but still substantially, correlated. The genetic contribution to height is strong during adolescence. The high genetic correlations detected across the ages encourage further efforts to identify genes affecting growth. Common and unique environmental factors affecting height during adolescence are also important, and further studies are necessary to identify their nature and test whether they interact with genetic factors. Copyright © 2011 Wiley-Liss, Inc.
A rare variant in COL11A1 is strongly associated with adult height in Chinese Han population.
Shen, Changbing; Zheng, Xiaodong; Gao, Jing; Zhu, Caihong; Ko, Randy; Tang, Xianfa; Yang, Chao; Dou, Jinfa; Lin, Yan; Cheng, Yuyan; Liu, Lu; Xu, Shuangjun; Chen, Gang; Zuo, Xianbo; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Yang, Sen; Zhang, Xuejun; Zhou, Fusheng
2016-09-20
Human height is a highly heritable trait in which multiple genes are involved. Recent genome-wide association studies (GWASs) have identified that COL11A1 is an important susceptibility gene for human height. To determine whether the variants of COL11A1 are associated with adult and children height, we analyzed splicing and coding single-nucleotide variants across COL11A1 through exome-targeted sequencing and two validation stages with a total 20,426 Chinese Han samples. A total of 105 variants were identified by exome-targeted sequencing, of which 30 SNPs were located in coding region. The strongest association signal was Chr1_103380393 with P value of 4.8 × 10(-7). Chr1_103380393 also showed nominal significance in the validation stage (P = 1.21 × 10(-6)). Combined analysis of 16,738 samples strengthened the original association of chr1_103380393 with adult height (Pcombined = 3.1 × 10(-8)), with an increased height of 0.292sd (standard deviation) per G allele (95% CI: 0.19-0.40). There was no evidence (P = 0.843) showing that chr1_103380393 altered child height in 3688 child samples. Only the group of 12-15 years showed slight significance with P value of 0.0258. This study firstly shows that genetic variants of COL11A1 contribute to adult height in Chinese Han population but not to children height, which expand our knowledge of the genetic factors underlying height variation and the biological regulation of human height. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. All rights reserved.
Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994
Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo; Yokoyama, Yoshie; Siribaddana, Sisira H; Hotopf, Matthew; Sumathipala, Athula; Rijsdijk, Fruhling; Tan, Qihua; Zhang, Dongfeng; Pang, Zengchang; Aaltonen, Sari; Heikkilä, Kauko; Öncel, Sevgi Y; Aliev, Fazil; Rebato, Esther; Tarnoki, Adam D; Tarnoki, David L; Christensen, Kaare; Skytthe, Axel; Kyvik, Kirsten O; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Cutler, Tessa L; Hopper, John L; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; Sung, Joohon; Song, Yun-Mi; Yang, Sarah; Lee, Kayoung; Franz, Carol E; Kremen, William S; Lyons, Michael J; Busjahn, Andreas; Nelson, Tracy L; Whitfield, Keith E; Kandler, Christian; Jang, Kerry L; Gatz, Margaret; Butler, David A; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Duncan, Glen E; Buchwald, Dedra; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth JF; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Jeong, Hoe-Uk; Swan, Gary E; Krasnow, Ruth; Magnusson, Patrik KE; Pedersen, Nancy L; Dahl-Aslan, Anna K; McAdams, Tom A; Eley, Thalia C; Gregory, Alice M; Tynelius, Per; Baker, Laura A; Tuvblad, Catherine; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Lichtenstein, Paul; Spector, Timothy D; Mangino, Massimo; Lachance, Genevieve; Bartels, Meike; van Beijsterveldt, Toos CEM; Willemsen, Gonneke; Burt, S Alexandra; Klump, Kelly L; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas Sevenius; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Corley, Robin P; Hjelmborg, Jacob v B; Goldberg, Jack H; Iwatani, Yoshinori; Watanabe, Mikio; Honda, Chika; Inui, Fujio; Rasmussen, Finn; Huibregtse, Brooke M; Boomsma, Dorret I; Sørensen, Thorkild I A; Kaprio, Jaakko; Silventoinen, Karri
2016-01-01
Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886–1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve. DOI: http://dx.doi.org/10.7554/eLife.20320.001 PMID:27964777
The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.
Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R
2017-12-01
Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.
Yang, Jian; Bakshi, Andrew; Zhu, Zhihong; Hemani, Gibran; Vinkhuyzen, Anna A.E.; Lee, Sang Hong; Robinson, Matthew R.; Perry, John R.B.; Nolte, Ilja M.; van Vliet-Ostaptchouk, Jana V.; Snieder, Harold; Esko, Tonu; Milani, Lili; Mägi, Reedik; Metspalu, Andres; Hamsten, Anders; Magnusson, Patrik K.E.; Pedersen, Nancy L.; Ingelsson, Erik; Soranzo, Nicole; Keller, Matthew C.; Wray, Naomi R.; Goddard, Michael E.; Visscher, Peter M.
2015-01-01
We propose a method (GREML-LDMS) to estimate heritability for human complex traits in unrelated individuals using whole-genome sequencing (WGS) data. We demonstrate using simulations based on WGS data that ~97% and ~68% of variation at common and rare variants, respectively, can be captured by imputation. Using the GREML-LDMS method, we estimate from 44,126 unrelated individuals that all ~17M imputed variants explain 56% (s.e. = 2.3%) of variance for height and 27% (s.e. = 2.5%) for body mass index (BMI), and find evidence that height- and BMI-associated variants have been under natural selection. Considering imperfect tagging of imputation and potential overestimation of heritability from previous family-based studies, heritability is likely to be 60–70% for height and 30–40% for BMI. Therefore, missing heritability is small for both traits. For further gene discovery of complex traits, a design with SNP arrays followed by imputation is more cost-effective than WGS at current prices. PMID:26323059
Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan
2012-01-01
Genome-wide association studies (GWAS) have identified many common variants associated with complex traits in human populations. Thus far, most reported variants have relatively small effects and explain only a small proportion of phenotypic variance, leading to the issues of 'missing' heritability and its explanation. Using height as an example, we examined two possible sources of missing heritability: first, variants with smaller effects whose associations with height failed to reach genome-wide significance and second, allelic heterogeneity due to the effects of multiple variants at a single locus. Using a novel analytical approach we examined allelic heterogeneity of height-associated loci selected from SNPs of different significance levels based on the summary data of the GIANT (stage 1) studies. In a sample of 1,304 individuals collected from an island population of the Adriatic coast of Croatia, we assessed the extent of height variance explained by incorporating the effects of less significant height loci and multiple effective SNPs at the same loci. Our results indicate that approximately half of the 118 loci that achieved stringent genome-wide significance (p-value<5×10(-8)) showed evidence of allelic heterogeneity. Additionally, including less significant loci (i.e., p-value<5×10(-4)) and accounting for effects of allelic heterogeneity substantially improved the variance explained in height.
Wood, Andrew R; Esko, Tonu; Yang, Jian; Vedantam, Sailaja; Pers, Tune H; Gustafsson, Stefan; Chu, Audrey Y; Estrada, Karol; Luan, Jian'an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L; Croteau-Chonka, Damien C; Day, Felix R; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C; Scherag, André; Vinkhuyzen, Anna A E; Westra, Harm-Jan; Winkler, Thomas W; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Fraser, Ross M; Goel, Anuj; Gong, Jian; Justice, Anne E; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Nalls, Michael A; Nyholt, Dale R; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Arnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Buckley, Brendan M; Buyske, Steven; Caspersen, Ida H; Chines, Peter S; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E Warwick; De Jong, Pim A; Deelen, Joris; Delgado, Graciela; Denny, Josh C; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex S F; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C P G M; Groves, Christopher J; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K; Hillege, Hans L; Hlatky, Mark A; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J; Illig, Thomas; Isaacs, Aaron; James, Alan L; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik K E; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L; McKenzie, Colin A; McLachlan, Stela; McLaren, Paul J; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Nöthen, Markus M; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Robertson, Neil R; Rose, Lynda M; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Schunkert, Heribert; Scott, Robert A; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Stirrups, Kathleen; Stott, David J; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorleifsson, Gudmar; Tyrer, Jonathan P; van Dijk, Suzanne; van Schoor, Natasja M; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor V A; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan J L; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I; Bornstein, Stefan R; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J; Campbell, Harry; Caulfield, Mark J; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Heath, Andrew C; Hengstenberg, Christian; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hypponen, Elina; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kastelein, John J P; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kooner, Jaspal S; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela A F; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L; Montgomery, Grant W; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Ouwehand, Willem H; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter E H; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul I W; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hayes, M Geoffrey; Hui, Jennie; Hunter, David J; Hveem, Kristian; Jukema, J Wouter; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin N A; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M; Rivadeneira, Fernando; Rotter, Jerome I; Saaristo, Timo E; Saleheen, Danish; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Deloukas, Panos; Heid, Iris M; Lindgren, Cecilia M; Mohlke, Karen L; Speliotes, Elizabeth K; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S; North, Kari E; Strachan, David P; Beckmann, Jacques S; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; McCarthy, Mark I; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G; van Duijn, Cornelia M; Franke, Lude; Willer, Cristen J; Price, Alkes L; Lettre, Guillaume; Loos, Ruth J F; Weedon, Michael N; Ingelsson, Erik; O'Connell, Jeffrey R; Abecasis, Goncalo R; Chasman, Daniel I; Goddard, Michael E; Visscher, Peter M; Hirschhorn, Joel N; Frayling, Timothy M
2014-11-01
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Chu, Audrey Y; Estrada, Karol; Luan, Jian’an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L; Croteau-Chonka, Damien C; Day, Felix R; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C; Scherag, André; Vinkhuyzen, Anna AE; Westra, Harm-Jan; Winkler, Thomas W; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Fraser, Ross M; Goel, Anuj; Gong, Jian; Justice, Anne E; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Nalls, Michael A; Nyholt, Dale R; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Buckley, Brendan M; Buyske, Steven; Caspersen, Ida H; Chines, Peter S; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E Warwick; De Jong, Pim A; Deelen, Joris; Delgado, Graciela; Denny, Josh C; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex SF; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C.P.G.M.; Groves, Christopher J; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K; Hillege, Hans L; Hlatky, Mark A; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J; Illig, Thomas; Isaacs, Aaron; James, Alan L; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik KE; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L; McKenzie, Colin A; McLachlan, Stela; McLaren, Paul J; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Nöthen, Markus M; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Robertson, Neil R; Rose, Lynda M; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Schunkert, Heribert; Scott, Robert A; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Stirrups, Kathleen; Stott, David J; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorleifsson, Gudmar; Tyrer, Jonathan P; van Dijk, Suzanne; van Schoor, Natasja M; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor VA; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I; Bornstein, Stefan R; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J; Campbell, Harry; Caulfield, Mark J; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Heath, Andrew C; Hengstenberg, Christian; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hypponen, Elina; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kastelein, John JP; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kooner, Jaspal S; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela AF; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L; Montgomery, Grant W; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Ouwehand, Willem H; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul IW; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hayes, M Geoffrey; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Jukema, J Wouter; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M; Rivadeneira, Fernando; Rotter, Jerome I; Saaristo, Timo E; Saleheen, Danish; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Deloukas, Panos; Heid, Iris M; Lindgren, Cecilia M; Mohlke, Karen L; Speliotes, Elizabeth K; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S; North, Kari E; Strachan, David P; Beckmann, Jacques S.; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; McCarthy, Mark I; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G; van Duijn, Cornelia M; Franke, Lude; Willer, Cristen J; Price, Alkes L.; Lettre, Guillaume; Loos, Ruth JF; Weedon, Michael N; Ingelsson, Erik; O’Connell, Jeffrey R; Abecasis, Goncalo R; Chasman, Daniel I; Goddard, Michael E
2014-01-01
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explain one-fifth of heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured the majority (60%) of heritability. The 697 variants clustered in 423 loci enriched for genes, pathways, and tissue-types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin, and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants. PMID:25282103
Genome-wide genetic homogeneity between sexes and populations for human height and body mass index.
Yang, Jian; Bakshi, Andrew; Zhu, Zhihong; Hemani, Gibran; Vinkhuyzen, Anna A E; Nolte, Ilja M; van Vliet-Ostaptchouk, Jana V; Snieder, Harold; Esko, Tonu; Milani, Lili; Mägi, Reedik; Metspalu, Andres; Hamsten, Anders; Magnusson, Patrik K E; Pedersen, Nancy L; Ingelsson, Erik; Visscher, Peter M
2015-12-20
Sex-specific genetic effects have been proposed to be an important source of variation for human complex traits. Here we use two distinct genome-wide methods to estimate the autosomal genetic correlation (rg) between men and women for human height and body mass index (BMI), using individual-level (n = ∼44 000) and summary-level (n = ∼133 000) data from genome-wide association studies. Results are consistent and show that the between-sex genetic correlation is not significantly different from unity for both traits. In contrast, we find evidence of genetic heterogeneity between sexes for waist-hip ratio (rg = ∼0.7) and between populations for BMI (rg = ∼0.9 between Europe and the USA) but not for height. The lack of evidence for substantial genetic heterogeneity for body size is consistent with empirical findings across traits and species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yu, Tao; Zuo, Xiaomin; Xia, Chunliang; Li, Mingyuan; Huang, Cong; Mao, Tian; Zhang, Xiaoxin; Zhao, Biqiang; Liu, Libo
2017-04-01
A new method for estimating daily averaged peak height of the OH airglow layer from a ground-based meteor radar (MR) and a Fabry-Perot interferometer (FPI) is presented. The first results are derived from 4 year simultaneous measurements of winds by a MR and a FPI at two adjacent stations over center China and are compared with observations from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The OH airglow peak heights, which are derived by using correlation analysis between winds of the FPI and MR, are found to generally peak at an altitude of 87 km and frequently varied between 80 km and 90 km day to day. In comparison with SABER OH 1.6 μm observations, reasonable similarity of airglow peak heights is found, and rapid day-to-day variations are also pronounced. Lomb-Scargle analysis is used to determine cycles of temporal variations of airglow peak heights, and there are obvious periodic variations both in our airglow peak heights and in the satellite observations. In addition to the annual, semiannual, monthly, and three monthly variations, the shorter time variations, e.g., day-to-day and several days' variations, are also conspicuous. The day-to-day variations of airglow height obviously could reduce observation accuracy and lead to some deviations in FPI measurements. These FPI wind deviations arising from airglow height variations are also estimated to be about 3-5 m/s from 2011 to 2015, with strong positive correlation with airglow peak height variation. More attention should be paid to the wind deviations associated with airglow height variation when using and interpreting winds measured by FPI.
Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun
2016-01-01
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.
Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun
2016-01-01
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325
Yang, Jian; Bakshi, Andrew; Zhu, Zhihong; Hemani, Gibran; Vinkhuyzen, Anna A E; Lee, Sang Hong; Robinson, Matthew R; Perry, John R B; Nolte, Ilja M; van Vliet-Ostaptchouk, Jana V; Snieder, Harold; Esko, Tonu; Milani, Lili; Mägi, Reedik; Metspalu, Andres; Hamsten, Anders; Magnusson, Patrik K E; Pedersen, Nancy L; Ingelsson, Erik; Soranzo, Nicole; Keller, Matthew C; Wray, Naomi R; Goddard, Michael E; Visscher, Peter M
2015-10-01
We propose a method (GREML-LDMS) to estimate heritability for human complex traits in unrelated individuals using whole-genome sequencing data. We demonstrate using simulations based on whole-genome sequencing data that ∼97% and ∼68% of variation at common and rare variants, respectively, can be captured by imputation. Using the GREML-LDMS method, we estimate from 44,126 unrelated individuals that all ∼17 million imputed variants explain 56% (standard error (s.e.) = 2.3%) of variance for height and 27% (s.e. = 2.5%) of variance for body mass index (BMI), and we find evidence that height- and BMI-associated variants have been under natural selection. Considering the imperfect tagging of imputation and potential overestimation of heritability from previous family-based studies, heritability is likely to be 60-70% for height and 30-40% for BMI. Therefore, the missing heritability is small for both traits. For further discovery of genes associated with complex traits, a study design with SNP arrays followed by imputation is more cost-effective than whole-genome sequencing at current prices.
Epigenetic and genetic components of height regulation.
Benonisdottir, Stefania; Oddsson, Asmundur; Helgason, Agnar; Kristjansson, Ragnar P; Sveinbjornsson, Gardar; Oskarsdottir, Arna; Thorleifsson, Gudmar; Davidsson, Olafur B; Arnadottir, Gudny A; Sulem, Gerald; Jensson, Brynjar O; Holm, Hilma; Alexandersson, Kristjan F; Tryggvadottir, Laufey; Walters, G Bragi; Gudjonsson, Sigurjon A; Ward, Lucas D; Sigurdsson, Jon K; Iordache, Paul D; Frigge, Michael L; Rafnar, Thorunn; Kong, Augustine; Masson, Gisli; Helgason, Hannes; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F; Sulem, Patrick; Stefansson, Kari
2016-11-16
Adult height is a highly heritable trait. Here we identified 31.6 million sequence variants by whole-genome sequencing of 8,453 Icelanders and tested them for association with adult height by imputing them into 88,835 Icelanders. Here we discovered 13 novel height associations by testing four different models including parent-of-origin (|β|=0.4-10.6 cm). The minor alleles of three parent-of-origin signals associate with less height only when inherited from the father and are located within imprinted regions (IGF2-H19 and DLK1-MEG3). We also examined the association of these sequence variants in a set of 12,645 Icelanders with birth length measurements. Two of the novel variants, (IGF2-H19 and TET1), show significant association with both adult height and birth length, indicating a role in early growth regulation. Among the parent-of-origin signals, we observed opposing parental effects raising questions about underlying mechanisms. These findings demonstrate that common variations affect human growth by parental imprinting.
Long-Bone Injury Criteria for Use with the Articulated Total Body Model
1981-01-01
bone - human, canine, bovine, etc.; condition of bone - dry, wet , embalmed , fresh; subject variations - height, weight, health, sex, age, etc; whole bone...stress strain curves ob- tained by McElhaney for various strain rates in compression. This is for embalmed human compact bone. Ultimate stress, ultimate...reported for fresh human bone of 25,000 psi (see Table 1). Recall that the McElhaney data is from embalmed subjects. If it is assumed, for lack of any real
Mate choice and human stature: homogamy as a unified framework for understanding mating preferences.
Courtiol, Alexandre; Raymond, Michel; Godelle, Bernard; Ferdy, Jean-Baptiste
2010-08-01
Assortative mating for human height has long attracted interest in evolutionary biology, and the phenomenon has been demonstrated in numerous human populations. It is often argued that mating preferences generate this pattern, but other processes can also induce trait correlations between mates. Here, we present a methodology tailored to quantify continuous preferences based on choice experiments between pairs of stimuli. In particular, it is possible to explore determinants of interindividual variations in preferences, such as the height of the chooser. We collected data from a sample of 200 individuals from France. Measurements obtained show that the perception of attractiveness depends on both the height of the stimuli and the stature of the individual who judged them. Therefore, this study demonstrates that homogamy is present at the level of preferences for both sexes. We also show that measurements of the function describing this homogamy are concordant with several distinct mating rules proposed in the literature. In addition, the quantitative approach introduced here fulfills metrics that can be used to compare groups of individuals. In particular, our results reveal an important disagreement between sexes regarding height preferences in the context of mutual mate choice. Finally, both women and men prefer individuals who are significantly taller than average. All major findings are confirmed by a reanalysis of previously published data.
How long bones grow children: Mechanistic paths to variation in human height growth.
Lampl, Michelle; Schoen, Meriah
2017-03-01
Eveleth and Tanner's descriptive documentation of worldwide variability in human growth provided evidence of the interaction between genetics and environment during development that has been foundational to the science of human growth. There remains a need, however, to describe the mechanistic foundations of variability in human height growth patterns. A review of research documenting cellular activities at the endochondral growth plate aims to show how the unique microenvironment and cell functions during the sequential phases of the chondrocyte lifecycle affect long bone elongation, a fundamental source of height growth. There are critical junctures within the chondrocytic differentiation cascade at which environmental influences are integrated and have the ability to influence progression to the hypertrophic chondrocyte phase, the primary driver of long bone elongation. Phenotypic differences in height growth patterns reflect variability in amplitude and frequency of discretely timed hypertrophic cellular expansion events, the cellular basis of saltation and stasis growth biology. Final height is a summary of the dynamic processes carried out by the growth plate cellular machinery. As these cell-level mechanisms unfold in an individual, time-specific manner, there are many critical points at which a genetic growth program can be enhanced or perturbed. Recognizing both the complexity and fluidity of this adaptive system questions the likelihood of a single, optimal growth pattern and instead identifies a larger bandwidth of saltatory frequencies for "normal" growth. Further inquiry into mechanistic sources of variability acting at critical organizational points of chondrogenesis can provide new opportunities for growth interventions. © 2017 Wiley Periodicals, Inc.
Empirical correction for earth sensor horizon radiance variation
NASA Technical Reports Server (NTRS)
Hashmall, Joseph A.; Sedlak, Joseph; Andrews, Daniel; Luquette, Richard
1998-01-01
A major limitation on the use of infrared horizon sensors for attitude determination is the variability of the height of the infrared Earth horizon. This variation includes a climatological component and a stochastic component of approximately equal importance. The climatological component shows regular variation with season and latitude. Models based on historical measurements have been used to compensate for these systematic changes. The stochastic component is analogous to tropospheric weather. It can cause extreme, localized changes that for a period of days, overwhelm the climatological variation. An algorithm has been developed to compensate partially for the climatological variation of horizon height and at least to mitigate the stochastic variation. This method uses attitude and horizon sensor data from spacecraft to update a horizon height history as a function of latitude. For spacecraft that depend on horizon sensors for their attitudes (such as the Total Ozone Mapping Spectrometer-Earth Probe-TOMS-EP) a batch least squares attitude determination system is used. It is assumed that minimizing the average sensor residual throughout a full orbit of data results in attitudes that are nearly independent of local horizon height variations. The method depends on the additional assumption that the mean horizon height over all latitudes is approximately independent of season. Using these assumptions, the method yields the latitude dependent portion of local horizon height variations. This paper describes the algorithm used to generate an empirical horizon height. Ideally, an international horizon height database could be established that would rapidly merge data from various spacecraft to provide timely corrections that could be used by all.
Silventoinen, Karri; Jelenkovic, Aline; Sund, Reijo; Honda, Chika; Aaltonen, Sari; Yokoyama, Yoshie; Tarnoki, Adam D; Tarnoki, David L; Ning, Feng; Ji, Fuling; Pang, Zengchang; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Burt, S Alexandra; Klump, Kelly L; Medland, Sarah E; Montgomery, Grant W; Kandler, Christian; McAdams, Tom A; Eley, Thalia C; Gregory, Alice M; Saudino, Kimberly J; Dubois, Lise; Boivin, Michel; Haworth, Claire M A; Plomin, Robert; Öncel, Sevgi Y; Aliev, Fazil; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Craig, Jeffrey M; Saffery, Richard; Siribaddana, Sisira H; Hotopf, Matthew; Sumathipala, Athula; Spector, Timothy; Mangino, Massimo; Lachance, Genevieve; Gatz, Margaret; Butler, David A; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Freitas, Duarte L; Maia, José Antonio; Harden, K Paige; Tucker-Drob, Elliot M; Christensen, Kaare; Skytthe, Axel; Kyvik, Kirsten O; Hong, Changhee; Chong, Youngsook; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; He, Mingguang; Ding, Xiaohu; Chang, Billy; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Cutler, Tessa L; Hopper, John L; Aujard, Kelly; Magnusson, Patrik K E; Pedersen, Nancy L; Aslan, Anna K Dahl; Song, Yun-Mi; Yang, Sarah; Lee, Kayoung; Baker, Laura A; Tuvblad, Catherine; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Heikkilä, Kauko; Tan, Qihua; Zhang, Dongfeng; Swan, Gary E; Krasnow, Ruth; Jang, Kerry L; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Lichtenstein, Paul; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Tynelius, Per; Duncan, Glen E; Buchwald, Dedra; Corley, Robin P; Huibregtse, Brooke M; Nelson, Tracy L; Whitfield, Keith E; Franz, Carol E; Kremen, William S; Lyons, Michael J; Ooki, Syuichi; Brandt, Ingunn; Nilsen, Thomas Sevenius; Inui, Fujio; Watanabe, Mikio; Bartels, Meike; van Beijsterveldt, Toos C E M; Wardle, Jane; Llewellyn, Clare H; Fisher, Abigail; Rebato, Esther; Martin, Nicholas G; Iwatani, Yoshinori; Hayakawa, Kazuo; Rasmussen, Finn; Sung, Joohon; Harris, Jennifer R; Willemsen, Gonneke; Busjahn, Andreas; Goldberg, Jack H; Boomsma, Dorret I; Hur, Yoon-Mi; Sørensen, Thorkild I A; Kaprio, Jaakko
2015-08-01
For over 100 years, the genetics of human anthropometric traits has attracted scientific interest. In particular, height and body mass index (BMI, calculated as kg/m2) have been under intensive genetic research. However, it is still largely unknown whether and how heritability estimates vary between human populations. Opportunities to address this question have increased recently because of the establishment of many new twin cohorts and the increasing accumulation of data in established twin cohorts. We started a new research project to analyze systematically (1) the variation of heritability estimates of height, BMI and their trajectories over the life course between birth cohorts, ethnicities and countries, and (2) to study the effects of birth-related factors, education and smoking on these anthropometric traits and whether these effects vary between twin cohorts. We identified 67 twin projects, including both monozygotic (MZ) and dizygotic (DZ) twins, using various sources. We asked for individual level data on height and weight including repeated measurements, birth related traits, background variables, education and smoking. By the end of 2014, 48 projects participated. Together, we have 893,458 height and weight measures (52% females) from 434,723 twin individuals, including 201,192 complete twin pairs (40% monozygotic, 40% same-sex dizygotic and 20% opposite-sex dizygotic) representing 22 countries. This project demonstrates that large-scale international twin studies are feasible and can promote the use of existing data for novel research purposes.
Silventoinen, Karri; Jelenkovic, Aline; Sund, Reijo; Honda, Chika; Aaltonen, Sari; Yokoyama, Yoshie; Tarnoki, Adam D; Tarnoki, David L; Ning, Feng; Ji, Fuling; Pang, Zengchang; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Burt, S Alexandra; Klump, Kelly L; Medland, Sarah E; Montgomery, Grant W; Kandler, Christian; McAdams, Tom A; Eley, Thalia C; Gregory, Alice M; Saudino, Kimberly J; Dubois, Lise; Boivin, Michel; Haworth, Claire MA; Plomin, Robert; Öncel, Sevgi Y; Aliev, Fazil; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Craig, Jeffrey M; Saffery, Richard; Siribaddana, Sisira H; Hotopf, Matthew; Sumathipala, Athula; Spector, Timothy; Mangino, Massimo; Lachance, Genevieve; Gatz, Margaret; Butler, David A; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Freitas, Duarte L; Maia, José Antonio; Harden, K Paige; Tucker-Drob, Elliot M; Christensen, Kaare; Skytthe, Axel; Kyvik, Kirsten O; Hong, Changhee; Chong, Youngsook; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth JF; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; He, Mingguang; Ding, Xiaohu; Chang, Billy; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Cutler, Tessa L; Hopper, John L; Aujard, Kelly; Magnusson, Patrik KE; Pedersen, Nancy L; Dahl-Aslan, Anna K; Song, Yun-Mi; Yang, Sarah; Lee, Kayoung; Baker, Laura A; Tuvblad, Catherine; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Heikkilä, Kauko; Tan, Qihua; Zhang, Dongfeng; Swan, Gary E; Krasnow, Ruth; Jang, Kerry L; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Lichtenstein, Paul; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Tynelius, Per; Duncan, Glen E; Buchwald, Dedra; Corley, Robin P; Huibregtse, Brooke M; Nelson, Tracy L; Whitfield, Keith E; Franz, Carol E; Kremen, William S; Lyons, Michael J; Ooki, Syuichi; Brandt, Ingunn; Nilsen, Thomas Sevenius; Inui, Fujio; Watanabe, Mikio; Bartels, Meike; van Beijsterveldt, Toos CEM; Wardle, Jane; Llewellyn, Clare H; Fisher, Abigail; Rebato, Esther; Martin, Nicholas G; Iwatani, Yoshinori; Hayakawa, Kazuo; Rasmussen, Finn; Sung, Joohon; Harris, Jennifer R; Willemsen, Gonneke; Busjahn, Andreas; Goldberg, Jack H; Boomsma, Dorret I; Hur, Yoon-Mi; Sørensen, Thorkild IA; Kaprio, Jaakko
2015-01-01
For over one hundred years, the genetics of human anthropometric traits has attracted scientific interest. In particular, height and body mass index (BMI, calculated as kg/m2) have been under intensive genetic research. However, it is still largely unknown whether and how heritability estimates vary between human populations. Opportunities to address this question have increased recently because of the establishment of many new twin cohorts and the increasing accumulation of data in established twin cohorts. We started a new research project to analyze systematically 1) the variation of heritability estimates of height, BMI and their trajectories over the life course between birth cohorts, ethnicities and countries, and 2) to study the effects of birth related factors, education and smoking on these anthropometric traits and whether these effects vary between twin cohorts. We identified 67 twin projects including both monozygotic and dizygotic twins using various sources. We asked for individual level data on height and weight including repeated measurements, birth related traits, background variables, education and smoking. By the end of 2014, 48 projects participated. Together, we have 893,458 height and weight measures (52% females) from 434,723 twin individuals, including 201,192 complete twin pairs (40% monozygotic, 40% same-sex dizygotic and 20% opposite-sex dizygotic) representing 22 countries. This project demonstrates that large-scale international twin studies are feasible and can promote the use of existing data for novel research purposes. PMID:26014041
URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.
2015-01-01
Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793
Chuo, Yu-Jung
2014-01-01
Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048
Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California
NASA Technical Reports Server (NTRS)
Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel
2015-01-01
Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.
Buretic-Tomljanovic, Alena; Giacometti, Jasminka; Ostojic, Sasa; Kapovic, Miljenko
2007-01-01
Craniometric variation in humans reflects different genetic and environmental influences. Long-term climatic adaptation is less likely to show an impact on size and shape variation in a small local area than at the global level. The aim of this work was to assess the contribution of the particular environmental factors to body height and craniofacial variability in a small geographic area of Croatia. A total of 632 subjects, aged 18-21, participated in the survey. Body height, head length, head breadth, head height, head circumference, cephalic index, morphological face height, face breadth, and facial index were analysed regarding geographic, climatic and dietary conditions in different regions of the country, and correlated with the specific climatic variables (cumulative multiyear sunshine duration, cumulative multiyear average precipitation, multiyear average air temperatures) and calcium concentrations in drinking water. Significant differences between groups classified according to geographic, climatic or dietary affiliation, and the impact of the environmental predictors on the variation in the investigated traits were assessed using multiple forward stepwise regression analyses. Higher body height measures in both sexes were significantly correlated with Mediterranean diet type. Mediterranean diet type also contributed to higher head length and head circumference measures in females. Cephalic index values correlated to geographic regions in both sexes, showing an increase from southern to eastern Croatia. In the same direction, head length significantly decreased in males and head breadth increased in females. Mediterranean climate was associated with higher and narrower faces in females. The analysis of the particular climatic variables did not reveal a significant influence on body height in either sex. Concurrently, climatic features influenced all craniofacial traits in females and only head length and facial index in males. Mediterranean climate, characterized by higher average sunshine duration, higher average precipitation and higher average air temperatures, was associated with longer, higher and narrower skulls, higher head circumference, lower cephalic index, and higher and narrower faces (lower facial index). Calcium concentrations in drinking water did not correlate significantly with any dependent variable. A significant effect of environmental factors on body height and craniofacial variability was found in Croatian young adult population. This effect was more pronounced in females, revealing sex-specific craniofacial differentiation. However, the impact of environment was low and may explain only 1.0-7.32% variation of the investigated traits.
Variation of growth in height and weight of children. II. After infancy.
Sorva, R; Lankinen, S; Tolppanen, E M; Perheentupa, J
1990-05-01
To provide for early detection of abnormal changes in growth, we propose the monitoring of all children for changes in relative height and relative weight as indirect indicators of growth velocity. To this end we analyzed the growth of 2,156 children, as recorded by the child health surveillance services at ages 2 to 19 years. From their data we constructed growth standards on charts of a novel type, which allow direct reading of relative height (SD score, SDS) and relative weight (percentage deviation of weight from median weight for height and sex, %DW). Variation in height explained most (mean 60%) of the variation in weight, and age did not contribute significantly. Hence, our weight charts are height-based. Next, we defined the variations of changes in (delta) SDS and %DW during the different periods of growth. The group means of changes in each period were zero. Variation in delta SDS is widest at the earliest ages, then decreases until year 9-10 (girls) and 10-11 (boys), and again increases. For delta %DW the picture is similar. We present these variations as diagrams for use in growth screening.
Urlacher, Samuel S; Blackwell, Aaron D; Liebert, Melissa A; Madimenos, Felicia C; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh; Sugiyama, Lawrence S
2016-01-01
Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal measures of height, weight, and body mass index (BMI) were collected from Shuar participants (n = 2,463; age: 0-29 years). Centile growth curves and tables were created for each anthropometric variable of interest using Generalized Additive Models for Location, Scale, and Shape (GAMLSS). Pseudo-velocity and Lambda-Mu-Sigma curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with United States Center for Disease Control and Prevention and multinational World Health Organization growth references. The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. © 2015 Wiley Periodicals, Inc.
Mullin, Lucy P; Sillett, Stephen C; Koch, George W; Tu, Kevin P; Antoine, Marie E
2009-08-01
This study examined relationships between foliar morphology and gas exchange characteristics as they vary with height within and among crowns of Sequoia sempervirens D. Don trees ranging from 29 to 113 m in height. Shoot mass:area (SMA) ratio increased with height and was less responsive to changes in light availability as height increased, suggesting a transition from light to water relations as the primary determinant of morphology with increasing height. Mass-based rates of maximum photosynthesis (A(max,m)), standardized photosynthesis (A(std,m)) and internal CO(2) conductance (g(i,m)) decreased with height and SMA, while the light compensation point, light saturation point, and mass and area-based rates of dark respiration (R(m)) increased with height and SMA. Among foliage from different heights, much of the variation in standardized photosynthesis was explained by variation in g(i,) consistent with increasing limitation of photosynthesis by internal conductance in foliage with higher SMA. The syndrome of lower internal and stomatal conductance to CO(2) and higher respiration may contribute to reductions in upper crown growth efficiency with increasing height in S. sempervirens trees.
Estimating vehicle height using homographic projections
Cunningham, Mark F; Fabris, Lorenzo; Gee, Timothy F; Ghebretati, Jr., Frezghi H; Goddard, James S; Karnowski, Thomas P; Ziock, Klaus-peter
2013-07-16
Multiple homography transformations corresponding to different heights are generated in the field of view. A group of salient points within a common estimated height range is identified in a time series of video images of a moving object. Inter-salient point distances are measured for the group of salient points under the multiple homography transformations corresponding to the different heights. Variations in the inter-salient point distances under the multiple homography transformations are compared. The height of the group of salient points is estimated to be the height corresponding to the homography transformation that minimizes the variations.
NASA Astrophysics Data System (ADS)
Rendall, Drew; Kollias, Sophie; Ney, Christina; Lloyd, Peter
2005-02-01
Key voice features-fundamental frequency (F0) and formant frequencies-can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length. .
Early life mortality and height in Indian states
Coffey, Diane
2014-01-01
Height is a marker for health, cognitive ability and economic productivity. Recent research on the determinants of height suggests that postneonatal mortality predicts height because it is a measure of the early life disease environment to which a cohort is exposed. This article advances the literature on the determinants of height by examining the role of early life mortality, including neonatal mortality, in India, a large developing country with a very short population. It uses state level variation in neonatal mortality, postneonatal mortality, and pre-adult mortality to predict the heights of adults born between 1970 and 1983, and neonatal and postneonatal mortality to predict the heights of children born between 1995 and 2005. In contrast to what is found in the literature on developed countries, I find that state level variation in neonatal mortality is a strong predictor of adult and child heights. This may be due to state level variation in, and overall poor levels of, pre-natal nutrition in India. PMID:25499239
Dargel, Jens; Michael, Joern W P; Feiser, Janna; Ivo, Roland; Koebke, Juergen
2011-04-01
This study investigates differences in the anatomy of male and female knee joints to contribute to the current debate on sex-specific total knee implants. Morphometric data were obtained from 60 human cadaver knees, and sex differences were calculated. All data were corrected for height, and male and female specimens presenting with an identical length of the femur were analyzed as matched pairs. Male linear knee joint dimensions were significantly larger when compared with females. When corrected for differences in height, medial-lateral dimensions of male knees were significantly larger than female; however, matched paired analysis did not prove these differences to be consistent. Although implant design should focus interindividual variations in knee joint anatomy, our data do not support the concept of a female-specific implant design. Copyright © 2011 Elsevier Inc. All rights reserved.
The genetic architecture of maize height.
Peiffer, Jason A; Romay, Maria C; Gore, Michael A; Flint-Garcia, Sherry A; Zhang, Zhiwu; Millard, Mark J; Gardner, Candice A C; McMullen, Michael D; Holland, James B; Bradbury, Peter J; Buckler, Edward S
2014-04-01
Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formidable challenge. To address this challenge, we measured the plant height, ear height, flowering time, and node counts of plants grown in >64,500 plots across 13 environments. These plots contained >7300 inbreds representing most publically available maize inbreds in the United States and families of the maize Nested Association Mapping (NAM) panel. Joint-linkage mapping of quantitative trait loci (QTL), fine mapping in near isogenic lines (NILs), genome-wide association studies (GWAS), and genomic best linear unbiased prediction (GBLUP) were performed. The heritability of maize height was estimated to be >90%. Mapping NAM family-nested QTL revealed the largest explained 2.1 ± 0.9% of height variation. The effects of two tropical alleles at this QTL were independently validated by fine mapping in NIL families. Several significant associations found by GWAS colocalized with established height loci, including brassinosteroid-deficient dwarf1, dwarf plant1, and semi-dwarf2. GBLUP explained >80% of height variation in the panels and outperformed bootstrap aggregation of family-nested QTL models in evaluations of prediction accuracy. These results revealed maize height was under strong genetic control and had a highly polygenic genetic architecture. They also showed that multiple models of genetic architecture differing in polygenicity and effect sizes can plausibly explain a population's variation in maize height, but they may vary in predictive efficacy.
NASA Astrophysics Data System (ADS)
Semenov, A. I.; Shefov, N. N.
2003-04-01
On the basis of the measurement data of temperature by rocket and ground-based spectrophotometric (nightglow emissions of hydroxyl,sodium and atomic oxygen of 557.7 nm) methods obtained during 21 and 22 cycles of solar activity, the distributions with height of mean monthly temperature of an atmosphere for region of altitudes Z from 60 to 100 km have been constructed. The periods of maxima and minima of solar activity (1980 and 1991, F10.7=198 and 208; 1976 and 1986, F10.7=73 and 75) were considered. On the basis of these distributions with height of the seasonal variations of dependence of temperature from solar activity S = deltaT(Z)/deltaF, K/100 sfu have been analyzed. It was revealed, that character of seasonal variations essentially changes with growth of height. Mean annual solar response S at heights lower than 70 km is negative, and at higher heights is positive. This solar response S in mesopause region reaches 3 (sigma=1). Such character of influence of solar activity on temperature of the upper atmosphere is caused by features of mean annual and seasonal variations of its distributions with height. The distributions with height of amplitudes and phases of three harmonics of seasonal variations S are presented. This work was supported by the Grant N 2274 of ISTC.
Gonçalves, Nathan B; Nettesheim, Felipe C; Conde, Marilena M S
2018-01-01
Associating description of unrecorded tropical tree community structure to sampling approaches that can help determine mechanisms behind floristic variation is important to further the comprehension of how plant species coexist at tropical forests. Thus, this study had the goals of (i) evaluating tree community structure on the continental island of Marambaia (23°4'37.09"S; 43°59'2.15"W) and (ii) testing the prediction that there are local scale changes in a tropical tree community structure between slopes facing different geographic orientation and with distinct human interference history. We established 60 (0.6 ha) sampling units in three different slope sites with distinct predominant geographic orientation and human interference. We sampled all woody trees with diameter at breast height (dbh) ≥ 5 cm. We found a total of 1.170 individuals representing 220 species, 120 genera and 50 families. The overall tree community structure and structural descriptors (abundance of individuals, basal area, species richness and diversity) varied extensively between the sites. The evidence presented here supports that local scale topography variations and human interference history can be important factors contributing to the known floristic heterogeneity of the Atlantic Rainforest. Future work on the study area should focus on disentangling effects from distinct causal factors over tree community variation and species occurrence.
Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.
Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi
2014-05-01
Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.
Parfitt, E.A.; Wilson, L.; Neal, C.A.
1995-01-01
The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983-1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of ???0.32 wt.% H2O. However, the gas content of the magma apparently declined by ???0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height. ?? 1995 Springer-Verlag.
Probabilistic multi-resolution human classification
NASA Astrophysics Data System (ADS)
Tu, Jun; Ran, H.
2006-02-01
Recently there has been some interest in using infrared cameras for human detection because of the sharply decreasing prices of infrared cameras. The training data used in our work for developing the probabilistic template consists images known to contain humans in different poses and orientation but having the same height. Multiresolution templates are performed. They are based on contour and edges. This is done so that the model does not learn the intensity variations among the background pixels and intensity variations among the foreground pixels. Each template at every level is then translated so that the centroid of the non-zero pixels matches the geometrical center of the image. After this normalization step, for each pixel of the template, the probability of it being pedestrian is calculated based on the how frequently it appears as 1 in the training data. We also use periodicity gait to verify the pedestrian in a Bayesian manner for the whole blob in a probabilistic way. The videos had quite a lot of variations in the scenes, sizes of people, amount of occlusions and clutter in the backgrounds as is clearly evident. Preliminary experiments show the robustness.
Lehmann, A; Scheffler, Ch; Hermanussen, M
2010-02-01
Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.
Climate and Edaphic Controls on Humid Tropical Forest Tree Height
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.
2014-12-01
Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.
Seedling-sapling growth variation in a southern Illinios black walnut provenance/progeny test
George Rink; J. W. Van Sambeek
1987-01-01
Nursery root and shoot measurements and annual height, basal diameter and survival data for the 5 years after outplanting were used to describe black walnut growth variation in southern Illinois. At age 5 sapling height narrow-sense heritability was found to be 0.49 for 131 open-pollinated families from across the black walnut comercial range. Greatest height and...
Kuroe, Kazuto; Rosas, Antonio; Molleson, Theya
2004-04-01
The aim of this study was to analyse the effects of cranial base orientation on the morphology of the craniofacial system in human populations. Three geographically distant populations from Europe (72), Africa (48) and Asia (24) were chosen. Five angular and two linear variables from the cranial base component and six angular and six linear variables from the facial component based on two reference lines of the vertical posterior maxillary and Frankfort horizontal planes were measured. The European sample presented dolichofacial individuals with a larger face height and a smaller face depth derived from a raised cranial base and facial cranium orientation which tended to be similar to the Asian sample. The African sample presented brachyfacial individuals with a reduced face height and a larger face depth as a result of a lowered cranial base and facial cranium orientation. The Asian sample presented dolichofacial individuals with a larger face height and depth due to a raised cranial base and facial cranium orientation. The findings of this study suggest that cranial base orientation and posterior cranial base length appear to be valid discriminating factors between different human populations.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1988-01-01
Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.
A parametric ribcage geometry model accounting for variations among the adult population.
Wang, Yulong; Cao, Libo; Bai, Zhonghao; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen
2016-09-06
The objective of this study is to develop a parametric ribcage model that can account for morphological variations among the adult population. Ribcage geometries, including 12 pair of ribs, sternum, and thoracic spine, were collected from CT scans of 101 adult subjects through image segmentation, landmark identification (1016 for each subject), symmetry adjustment, and template mesh mapping (26,180 elements for each subject). Generalized procrustes analysis (GPA), principal component analysis (PCA), and regression analysis were used to develop a parametric ribcage model, which can predict nodal locations of the template mesh according to age, sex, height, and body mass index (BMI). Two regression models, a quadratic model for estimating the ribcage size and a linear model for estimating the ribcage shape, were developed. The results showed that the ribcage size was dominated by the height (p=0.000) and age-sex-interaction (p=0.007) and the ribcage shape was significantly affected by the age (p=0.0005), sex (p=0.0002), height (p=0.0064) and BMI (p=0.0000). Along with proper assignment of cortical bone thickness, material properties and failure properties, this parametric ribcage model can directly serve as the mesh of finite element ribcage models for quantifying effects of human characteristics on thoracic injury risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Midlatitude D region variations measured from broadband radio atmospherics
NASA Astrophysics Data System (ADS)
Han, Feng
The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.
Pan, Lei; Thackeray, John Francis; Dumoncel, Jean; Zanolli, Clément; Oettlé, Anna; de Beer, Frikkie; Hoffman, Jakobus; Duployer, Benjamin; Tenailleau, Christophe; Braga, José
2017-08-01
The aim of this study is to compare the degree and patterning of inter- and intra-individual metameric variation in South African australopiths, early Homo and modern humans. Metameric variation likely reflects developmental and taxonomical issues, and could also be used to infer ecological and functional adaptations. However, its patterning along the early hominin postcanine dentition, particularly among South African fossil hominins, remains unexplored. Using microfocus X-ray computed tomography (µXCT) and geometric morphometric tools, we studied the enamel-dentine junction (EDJ) morphology and we investigated the intra- and inter-individual EDJ metameric variation among eight australopiths and two early Homo specimens from South Africa, as well as 32 modern humans. Along post-canine dentition, shape changes between metameres represented by relative positions and height of dentine horns, outlines of the EDJ occlusal table are reported in modern and fossil taxa. Comparisons of EDJ mean shapes and multivariate analyses reveal substantial variation in the direction and magnitude of metameric shape changes among taxa, but some common trends can be found. In modern humans, both the direction and magnitude of metameric shape change show increased variability in M 2 -M 3 compared to M 1 -M 2 . Fossil specimens are clustered together showing similar magnitudes of shape change. Along M 2 -M 3 , the lengths of their metameric vectors are not as variable as those of modern humans, but they display considerable variability in the direction of shape change. The distalward increase of metameric variation along the modern human molar row is consistent with the odontogenetic models of molar row structure (inhibitory cascade model). Though much remains to be tested, the variable trends and magnitudes in metamerism in fossil hominins reported here, together with differences in the scale of shape change between modern humans and fossil hominins may provide valuable information regarding functional morphology and developmental processes in fossil species. © 2017 Wiley Periodicals, Inc.
Structure and seasonal variations of the nocturnal mesospheric K layer at Arecibo
NASA Astrophysics Data System (ADS)
Yue, Xianchang; Friedman, Jonathan S.; Wu, Xiongbin; Zhou, Qihou H.
2017-07-01
We present the seasonal variations of the nocturnal mesospheric potassium (K) layer at Arecibo, Puerto Rico (18.35°N, 66.75°W) from 160 nights of K Doppler lidar observations between December 2003 and January 2010, during which the solar activity is mostly low. The background temperature is also measured simultaneously by the lidar and shows a strong semiannual oscillation with maxima occurring during equinoxes at all altitudes. The annual mean K density profile is approximately Gaussian with a peak altitude of 91.7 km. The K column abundance and the centroid height have strong semiannual variations, with maxima at the solstices. Both parameters are negatively correlated to the mean background temperature with a correlation coefficient < -0.5. The root-mean-square (RMS) width has a distinct annual oscillation with the largest width occurring in May. The seasonal variation of the centroid height is similar to that of the Fe layer at the same site. The seasonal temperature variation indicates significant enhanced wave-induced downward transport for both species during spring and autumn. This explains the metal layer centroid height and column abundance variations at Arecibo and provides a general mechanism to account for the seasonal variations in the centroid height of all metal species measured at low-latitude and midlatitude sites.
Grillet, M E; Basáñez, M G; Vivas-Martínez, S; Villamizar, N; Frontado, H; Cortez, J; Coronel, P; Botto, C
2001-07-01
We investigated some entomological factors underlying altitudinal prevalence variation in the Venezuelan Amazonia human onchocerciasis focus. Spatial and temporal variation in relative abundance, daily biting rate, proportion of parous flies, and monthly parous biting rate were studied for the three main simuliid vectors (based on their vectorial competence: Simulium oyapockense s.l. Floch & Abonnenc approximately = S. incrustatum Lutz < S. guianense s.l. Wise). Yanomami villages were selected among sentinel communities of the ivermectin control program, representing hypo- to hyperendemicity conditions of infection. Spatial variation was explored via increasing village altitude on two river systems (A: Ocamo-Putaco and B: Orinoco-Orinoquito). Temporal variation was studied between 1995 and 1999 by sampling the biting population during dry and rainy mouths. Environmental variables included monthly rainfall and maximum river height. Simuliid species composition itself varied along the altitudinal and prevalence gradient. S. oyapockense s.l. prevailed below 150 m. Above this altitude and up to 240 m, S. incrustatum and S. guianense s.l. became more frequently and evenly collected along A but not along B, where S. incrustatum remained absent. The daily biting rate of S. oyapockense s.l. was higher during the dry season along A, whereas the converse took place along B. Daily biting rate of S. incrustatum was lowest during early rains. By contrast, the daily biting rate of S. guianense s.l. was highest during this period. There was a significant negative cross-correlation between proportion of parous of S. oyapockense s.l. and river height (2 and 3 mo lagged), whereas this variable (1 and 2 mo lagged) was positively correlated with the proportion of parous flies for S. incrustatum. Monthly parous biting rate values suggest that the months contributing most to onchocerciasis transmission in the area are likely to be the dry season and the transition periods between seasons.
Common determinants of body size and eye size in chickens from an advanced intercross line.
Prashar, Ankush; Hocking, Paul M; Erichsen, Jonathan T; Fan, Qiao; Saw, Seang Mei; Guggenheim, Jeremy A
2009-06-15
Myopia development is characterised by an increased axial eye length. Therefore, identifying factors that influence eye size may provide new insights into the aetiology of myopia. In humans, axial length is positively correlated to height and weight, and in mice, eye weight is positively correlated with body weight. The purpose of this study was to examine the relationship between eye size and body size in chickens from a genetic cross in which alleles with major effects on eye and body size were segregating. Chickens from a cross between a layer line (small body size and eye size) and a broiler line (large body and eye size) were interbred for 10 generations so that alleles for eye and body size would have the chance to segregate independently. At 3 weeks of age, 510 chicks were assessed using in vivo high resolution A-scan ultrasonography and keratometry. Equatorial eye diameter and eye weight were measured after enucleation. The variations in eye size parameters that could be explained by body weight (BW), body length (BL), head width (HW) and sex were examined using multiple linear regression. It was found that BW, BL and HW and sex together predicted 51-56% of the variation in eye weight, axial length, corneal radius, and equatorial eye diameter. By contrast, the same variables predicted only 22% of the variation in lens thickness. After adjusting for sex, the three body size parameters predicted 45-49% of the variation in eye weight, axial length, corneal radius, and eye diameter, but only 0.4% of the variation in lens thickness. In conclusion, about half of the variation in eye size in the chickens of this broiler-layer advanced intercross line is likely to be determined by pleiotropic genes that also influence body size. Thus, mapping the quantitative trait loci (QTL) that determine body size may be useful in understanding the genetic determination of eye size (a logical inference of this result is that the 20 or more genetic variants that have recently been shown to influence human height may also be found to influence axial eye length). Furthermore, adjusting for body size will be essential in mapping pure eye size QTL in this chicken population, and may also have value in mapping eye size QTL in humans.
Jelenkovic, Aline; Sund, Reijo; Hur, Yoon-Mi; Yokoyama, Yoshie; Hjelmborg, Jacob V B; Möller, Sören; Honda, Chika; Magnusson, Patrik K E; Pedersen, Nancy L; Ooki, Syuichi; Aaltonen, Sari; Stazi, Maria A; Fagnani, Corrado; D'Ippolito, Cristina; Freitas, Duarte L; Maia, José Antonio; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rebato, Esther; Busjahn, Andreas; Kandler, Christian; Saudino, Kimberly J; Jang, Kerry L; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; Gao, Wenjing; Yu, Canqing; Li, Liming; Corley, Robin P; Huibregtse, Brooke M; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Heikkilä, Kauko; Wardle, Jane; Llewellyn, Clare H; Fisher, Abigail; McAdams, Tom A; Eley, Thalia C; Gregory, Alice M; He, Mingguang; Ding, Xiaohu; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Tarnoki, Adam D; Tarnoki, David L; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Burt, S Alexandra; Klump, Kelly L; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Gatz, Margaret; Butler, David A; Bartels, Meike; van Beijsterveldt, Toos C E M; Craig, Jeffrey M; Saffery, Richard; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Swan, Gary E; Krasnow, Ruth; Tynelius, Per; Lichtenstein, Paul; Haworth, Claire M A; Plomin, Robert; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Harden, K Paige; Tucker-Drob, Elliot M; Spector, Timothy; Mangino, Massimo; Lachance, Genevieve; Baker, Laura A; Tuvblad, Catherine; Duncan, Glen E; Buchwald, Dedra; Willemsen, Gonneke; Skytthe, Axel; Kyvik, Kirsten O; Christensen, Kaare; Öncel, Sevgi Y; Aliev, Fazil; Rasmussen, Finn; Goldberg, Jack H; Sørensen, Thorkild I A; Boomsma, Dorret I; Kaprio, Jaakko; Silventoinen, Karri
2016-06-23
Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180,520 paired measurements at ages 1-19 years. The proportion of height variation explained by shared environmental factors was greatest in early childhood, but these effects remained present until early adulthood. Accordingly, the relative genetic contribution increased with age and was greatest in adolescence (up to 0.83 in boys and 0.76 in girls). Comparing geographic-cultural regions (Europe, North-America and Australia, and East-Asia), genetic variance was greatest in North-America and Australia and lowest in East-Asia, but the relative proportion of genetic variation was roughly similar across these regions. Our findings provide further insights into height variation during childhood and adolescence in populations representing different ethnicities and exposed to different environments.
Influence of ethnicity, geography and climate on the variation of stature among Indian populations.
Bharati, Susmita; Mukherji, Dipak; Pal, Manoranjan; Som, Suparna; Kumar Adak, Dipak; Vasulu, T S; Bharati, Premananda
2010-12-01
This paper analyzes the variation in the mean stature of adult males of a variety of population groups in India and examines the influence of geographical, climatic and ethnic factors on it. A considerable variation in mean stature has been found with respect to these three attributes. Variation "between" ethnic groups compared with "within" ethnic groups was found to be much more than that of geographical and climatic zones. Scheduled Castes (SC) and Scheduled Tribes (ST) populations have much low average height than that of General Castes (GC). Climatically dry and semiarid zones have a tendency to have higher stature than in the Monsoon areas. The mean height has been found to be the highest in north India. It is closely followed by west India. An interesting feature is that as one goes towards east and south the mean height gradually decreases. It is the lowest in islands. The mean heights have been regressed on geographical, climatic and ethnic factors, after converting these factors into binary variables. The regression analysis has strengthened the findings, that there is a highly significant relationship between height and geographical, climatic and ethnic factors.
Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Rudan, Dusko; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan
2011-01-01
Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia. In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20~50 SNPs reported by the remaining individual GWA studies explained 3~5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent. We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent. © 2011 Zhang et al.
Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W
2010-07-01
Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.
NASA Astrophysics Data System (ADS)
Huang, Tai-Yin
2018-06-01
Variations of airglow intensity, Volume Emission Rate (VER), and VER peak height induced by the CO2 increase, and by the F10.7 solar cycle variation and geomagnetic activity were investigated to quantitatively assess their influences on airglow. This study is an extension of a previous study by Huang (2016) covering a time period of 55 years from 1960 to 2015 and includes geomagnetic variability. Two airglow models, OHCD-90 and MACD-90, are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow for this study. Overall, our results demonstrate that airglow intensity and the peak VER variations of the three airglow emissions are strongly correlated, and in phase, with the F10.7 solar cycle variation. In addition, there is a linear trend, be it increasing or decreasing, existing in the airglow intensities and VERs due to the CO2 increase. On other hand, airglow VER peak heights are strongly correlated, and out of phase, with the Ap index variation of geomagnetic activity. The CO2 increase acts to lower the VER peak heights of OH(8,3) airglow and O(1S) greenline by 0.2 km in 55 years and it has no effect on the VER peak height of O2(0,1) atmospheric band.
Lionel Penrose and the concept of normal variation in human intelligence.
Valles, Sean A
2012-03-01
Lionel Penrose (1898-1972) was an important leader during the mid-20th century decline of eugenics and the development of modern medical genetics. However, historians have paid little attention to his radical theoretical challenges to mainline eugenic concepts of mental disease. Working from a classification system developed with his colleague, E. O. Lewis, Penrose developed a statistically sophisticated and clinically grounded refutation of the popular position that low intelligence is inherently a disease state. In the early 1930s, Penrose advocated dividing "mental defect" (low intelligence) into two categories: "pathological mental defect," which is a disease state that can be traced to a distinct genetic or environmental cause, and "subcultural mental defect," which is not an inherent disease state, but rather a statistically necessary manifestation of human variation in intelligence. I explore the historical context and theoretical import of this contribution, discussing its rejection of typological thinking and noting that it preceded Theodosius Dobzhansky's better-known defense of human diversity. I illustrate the importance of Penrose's contribution with a discussion of an analogous situation in contemporary medicine, the controversial practice of using human growth hormone injections to treat "idiopathic short stature" (mere diminutive height, with no distinct cause). I show how Penrose's contributions to understanding human variation make such treatments appear quite misguided. Copyright © 2011 Elsevier Ltd. All rights reserved.
The morphology of human hyoid bone in relation to sex, age and body proportions.
Urbanová, P; Hejna, P; Zátopková, L; Šafr, M
2013-06-01
Morphological aspects of the human hyoid bone are, like many other skeletal elements in human body, greatly affected by individual's sex, age and body proportions. Still, the known sex-dependent bimodality of a number of body size characteristics overshadows the true within-group patterns. Given the ambiguity of the causal effects of age, sex and body size upon hyoid morphology the present study puts the relationship between shape of human hyoid bone and body proportions (height and weight) under scrutiny of a morphological study. Using 211 hyoid bones and landmark-based methods of geometric morphometrics, it was shown that the size of hyoid bones correlated positively with measured body dimensions but showed no correlation if the individual's sex was controlled for. For shape variables, our results revealed that hyoid morphology is clearly related to body size as expressed in terms of the height and weight. Yet, the hyoid shape was shown to result primarily from the sex-related bimodal distribution of studied body size descriptors which, in the case of the height-dependent model, exhibited opposite trends for males and females. Apart from the global hyoid shape given by spatial arrangements of the greater horns, body size dependency was translated into size and position of the hyoid body. None of the body size characters had any impact on hyoid asymmetry. Ultimately, sexually dimorphic variation was revealed for age-dependent changes in both size and shape of hyoid bones as male hyoids tend to be more susceptible to modifications with age than female bones. Copyright © 2013 Elsevier GmbH. All rights reserved.
Hodges-Simeon, Carolyn R; Gurven, Michael; Puts, David A; Gaulin, Steven J C
2014-07-01
Fundamental and formant frequencies influence perceived pitch and are sexually dimorphic in humans. The information content of these acoustic parameters can illuminate the forces of sexual selection shaping vocal sex differences as well as the mechanisms that ensure signal reliability. We use multiple regression to examine the relationships between somatic (height, adiposity, and strength) and acoustic (fundamental frequency [ F 0 ], formant position [ P f ], and fundamental frequency variation [ F 0 -SD]) characteristics in a sample of peripubertal Bolivian Tsimane. Results indicate that among males-but not females-strength is the strongest predictor of F 0 and P f and that F 0 and P f are independent predictors of strength when height and adiposity are controlled. These findings suggest that listeners may attend to vocal frequencies because they signal honest, nonredundant information about male strength and threat potential, which are strongly related to physical maturity and which cannot be ascertained from visual or other indicators of height or adiposity alone.
Bas-relief generation using adaptive histogram equalization.
Sun, Xianfang; Rosin, Paul L; Martin, Ralph R; Langbein, Frank C
2009-01-01
An algorithm is presented to automatically generate bas-reliefs based on adaptive histogram equalization (AHE), starting from an input height field. A mesh model may alternatively be provided, in which case a height field is first created via orthogonal or perspective projection. The height field is regularly gridded and treated as an image, enabling a modified AHE method to be used to generate a bas-relief with a user-chosen height range. We modify the original image-contrast-enhancement AHE method to use gradient weights also to enhance the shape features of the bas-relief. To effectively compress the height field, we limit the height-dependent scaling factors used to compute relative height variations in the output from height variations in the input; this prevents any height differences from having too great effect. Results of AHE over different neighborhood sizes are averaged to preserve information at different scales in the resulting bas-relief. Compared to previous approaches, the proposed algorithm is simple and yet largely preserves original shape features. Experiments show that our results are, in general, comparable to and in some cases better than the best previously published methods.
The correlation of VLF propagation variations with atmospheric planetary-scale waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.
1973-01-01
Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.
Raichlen, David A
2008-09-01
The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.
Syndromes associated with Homo sapiens pol II regulatory genes.
Bina, M; Demmon, S; Pares-Matos, E I
2000-01-01
The molecular basis of human characteristics is an intriguing but an unresolved problem. Human characteristics cover a broad spectrum, from the obvious to the abstract. Obvious characteristics may include morphological features such as height, shape, and facial form. Abstract characteristics may be hidden in processes that are controlled by hormones and the human brain. In this review we examine exaggerated characteristics presented as syndromes. Specifically, we focus on human genes that encode transcription factors to examine morphological, immunological, and hormonal anomalies that result from deletion, insertion, or mutation of genes that regulate transcription by RNA polymerase II (the Pol II genes). A close analysis of abnormal phenotypes can give clues into how sequence variations in regulatory genes and changes in transcriptional control may give rise to characteristics defined as complex traits.
The first Seriatum study of growth by R. E. Scammon.
Miller, Elizabeth M
2018-03-01
Richard E. Scammon's article, "The First Seriatim Study of Human Growth," provided one of the best-known visuals in the field of human biology. Scammon resurrected longitudinal height data of one child from Buffon's Histoire Naturelle, converted them to metric, and plotted these measurements as a function of age. The result was the first graph of one individual's growth curve from birth to 18 years of age. This image was subsequently reproduced in numerous texts on human growth and biology. Published in 1927, Scammon's article provides a snapshot of the state of growth research at the time and gives a (literal) picture of the future of human biology. The graph of the growth of one child symbolizes the importance of process and variation in biological anthropology. © 2018 Wiley Periodicals, Inc.
The Effect of Adolescent Experience on Labor Market Outcomes: The Case of Height.
ERIC Educational Resources Information Center
Persico, Nicola; Postlewaite, Andrew; Silverman, Dan
2004-01-01
Taller workers receive a wage premium. Net of differences in family background, the disparity is similar in magnitude to the race and gender gaps. We exploit variation in an individual's height over time to explore how height affects wages. Controlling for teen height essentially eliminates the effect of adult height on wages for white men. The…
Jelenkovic, Aline; Sund, Reijo; Hur, Yoon-Mi; Yokoyama, Yoshie; Hjelmborg, Jacob v. B.; Möller, Sören; Honda, Chika; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Ooki, Syuichi; Aaltonen, Sari; Stazi, Maria A.; Fagnani, Corrado; D’Ippolito, Cristina; Freitas, Duarte L.; Maia, José Antonio; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rebato, Esther; Busjahn, Andreas; Kandler, Christian; Saudino, Kimberly J.; Jang, Kerry L.; Cozen, Wendy; Hwang, Amie E.; Mack, Thomas M.; Gao, Wenjing; Yu, Canqing; Li, Liming; Corley, Robin P.; Huibregtse, Brooke M.; Derom, Catherine A.; Vlietinck, Robert F.; Loos, Ruth J. F.; Heikkilä, Kauko; Wardle, Jane; Llewellyn, Clare H.; Fisher, Abigail; McAdams, Tom A.; Eley, Thalia C.; Gregory, Alice M.; He, Mingguang; Ding, Xiaohu; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Tarnoki, Adam D.; Tarnoki, David L.; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Burt, S. Alexandra; Klump, Kelly L.; Silberg, Judy L.; Eaves, Lindon J.; Maes, Hermine H.; Krueger, Robert F.; McGue, Matt; Pahlen, Shandell; Gatz, Margaret; Butler, David A.; Bartels, Meike; van Beijsterveldt, Toos C. E. M.; Craig, Jeffrey M.; Saffery, Richard; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Swan, Gary E.; Krasnow, Ruth; Tynelius, Per; Lichtenstein, Paul; Haworth, Claire M. A.; Plomin, Robert; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Harden, K. Paige; Tucker-Drob, Elliot M.; Spector, Timothy; Mangino, Massimo; Lachance, Genevieve; Baker, Laura A.; Tuvblad, Catherine; Duncan, Glen E.; Buchwald, Dedra; Willemsen, Gonneke; Skytthe, Axel; Kyvik, Kirsten O.; Christensen, Kaare; Öncel, Sevgi Y.; Aliev, Fazil; Rasmussen, Finn; Goldberg, Jack H.; Sørensen, Thorkild I. A.; Boomsma, Dorret I.; Kaprio, Jaakko; Silventoinen, Karri
2016-01-01
Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180,520 paired measurements at ages 1–19 years. The proportion of height variation explained by shared environmental factors was greatest in early childhood, but these effects remained present until early adulthood. Accordingly, the relative genetic contribution increased with age and was greatest in adolescence (up to 0.83 in boys and 0.76 in girls). Comparing geographic-cultural regions (Europe, North-America and Australia, and East-Asia), genetic variance was greatest in North-America and Australia and lowest in East-Asia, but the relative proportion of genetic variation was roughly similar across these regions. Our findings provide further insights into height variation during childhood and adolescence in populations representing different ethnicities and exposed to different environments. PMID:27333805
Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis
Bogin, Barry; Hermanussen, Michael; Blum, Werner F.; Aßmann, Christian
2015-01-01
We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1) levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions. PMID:25946190
Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis.
Bogin, Barry; Hermanussen, Michael; Blum, Werner F; Aßmann, Christian
2015-05-04
We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1) levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions.
Antarctic meteor observations using the Davis MST and meteor radars
NASA Astrophysics Data System (ADS)
Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.
2008-07-01
This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.
Chtourou, Hamdi; Aloui, Asma; Hammouda, Omar; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar
2013-01-01
Purpose The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ) and countermovement-jump (CMJ). We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day. Methods Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD) completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching) for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]). Results The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01) after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01) to 1.81±4.39% (not-significant) for SJ and from 3.99±3.43% (p<0.01) to 1.51±3.83% (not-significant) for CMJ) after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ). However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed. Conclusion Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height. PMID:23940589
NASA Astrophysics Data System (ADS)
Marghany, Maged; Ibrahim, Zelina; Van Genderen, Johan
2002-11-01
The present work is used to operationalize the azimuth cut-off concept in the study of significant wave height. Three ERS-1 images have been used along the coastal waters of Terengganu, Malaysia. The quasi-linear transform was applied to map the SAR wave spectra into real ocean wave spectra. The azimuth cut-off was then used to model the significant wave height. The results show that azimuth cut-off varied with the different period of the ERS-1 images. This is because of the fact that the azimuth cut-off is a function of wind speed and significant wave height. It is of interest to find that the significant wave height modeled from azimuth cut-off is in good relation with ground wave conditions. It can be concluded that ERS-1 can be used as a monitoring tool in detecting the significant wave height variation. The azimuth cut-off can be used to model the significant wave height. This means that the quasi-linear transform could be a good application to significant wave height variation during different seasons.
Steven A. Knowe; G. Sam Foster; Randall J. Rousseau; Warren L Nance
1998-01-01
Data from an eastern cottonwood clonal mixing study in Mississippi and Kentucky, USA, were used to test the effects of planting locations and genetics (clonal proportions) on height-age and height-d.b.h. functions. Planting locations, which accounted for 5.6 percent of the variation in observed dominant height growth (p = 0.0001), were more important than clonal...
NASA Astrophysics Data System (ADS)
Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo
In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.
Short and long periodic atmospheric variations between 25 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.
NASA Technical Reports Server (NTRS)
Loeb, N. G.; Varnai, Tamas; Winker, David M.
1998-01-01
Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the topmost portions of the cloud. While reflectance deviations from 1D theory are much larger for bumpy clouds than for flat clouds with variable cloud extinction, differences in cloud albedo are comparable for these two cases.
Varying selection differential throughout the climatic range of Norway spruce in Central Europe.
Kapeller, Stefan; Dieckmann, Ulf; Schueler, Silvio
2017-01-01
Predicting species distribution changes in global warming requires an understanding of how climatic constraints shape the genetic variation of adaptive traits and force local adaptations. To understand the genetic capacity of Norway spruce populations in Central Europe, we analyzed the variation in tree heights at the juvenile stage in common garden experiments established from the species' warm-dry to cold-moist distribution limits. We report the following findings: First, 47% of the total tree height variation at trial sites is attributable to the tree populations irrespective of site climate. Second, tree height variation within populations is higher at cold-moist trial sites than at warm-dry sites and higher within populations originating from cold-moist habitats than from warm-dry habitats. Third, for tree ages of 7-15 years, the variation within populations increases at cold-moist trial sites, whereas it remains constant at warm-dry sites. Fourth, tree height distributions are right-skewed at cold-moist trial sites, whereas they are nonskewed, but platykurtic at warm-dry sites. Our results suggest that in cold environments, climatic conditions impose stronger selection and probably restrict the distribution of spruce, whereas at the warm distribution limit, the species' realized niche might rather be controlled by external drivers, for example, forest insects.
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... landings of all Types 1, 2, and 3 stairways shall be of solid steel construction. Risers shall be of... width of the stairs, the depth of the tread, or the height of the risers in any flight. Where variation in height of riser or depth of tread in different flights is necessary, such variations shall be...
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... landings of all Types 1, 2, and 3 stairways shall be of solid steel construction. Risers shall be of... width of the stairs, the depth of the tread, or the height of the risers in any flight. Where variation in height of riser or depth of tread in different flights is necessary, such variations shall be...
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... landings of all Types 1, 2, and 3 stairways shall be of solid steel construction. Risers shall be of... width of the stairs, the depth of the tread, or the height of the risers in any flight. Where variation in height of riser or depth of tread in different flights is necessary, such variations shall be...
Semiannual and annual variations in the height of the ionospheric F2-peak
NASA Astrophysics Data System (ADS)
Rishbeth, H.; Sedgemore-Schulthess, K. J. F.; Ulich, T.
2000-03-01
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric , in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric . The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.
Small-scale open ocean currents have large effects on wind wave heights
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen
2017-06-01
Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>
Thomas B. Lynch; Jeffrey H. Gove
2013-01-01
Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...
NASA Astrophysics Data System (ADS)
Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing
2017-10-01
In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.
NASA Astrophysics Data System (ADS)
Zhao, Biqiang
2017-04-01
In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an a-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E×B) drift in the equatorial ionosphere.
PLAG1 and NCAPG-LCORL in livestock.
Takasuga, Akiko
2016-02-01
A recent progress on stature genetics has revealed simple genetic architecture in livestock animals in contrast to that in humans. PLAG1 and/or NCAPG-LCORL, both of which are known as a locus for adult human height, have been detected for association with body weight/height in cattle and horses, and for selective sweep in dogs and pigs. The findings indicate a significant impact of these loci on mammalian growth or body size and usefulness of the natural variants for selective breeding. However, association with an unfavorable trait, such as late puberty or risk for a neuropathic disease, was also reported for the respective loci, indicating an importance to discriminate between causality and association. Here I review the recent findings on quantitative trait loci (QTL) for stature in livestock animals, mainly focusing on the PLAG1 and NCAPG-LCORL loci. I also describe our recent efforts to identify the causative variation for the third major locus for carcass weight in Japanese Black cattle. © 2015 The Authors. Animal Science Journal published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Animal Science.
Intralocus sexual conflict over human height
Stulp, Gert; Kuijper, Bram; Buunk, Abraham P.; Pollet, Thomas V.; Verhulst, Simon
2012-01-01
Intralocus sexual conflict (IASC) occurs when a trait under selection in one sex constrains the other sex from achieving its sex-specific fitness optimum. Selection pressures on body size often differ between the sexes across many species, including humans: among men individuals of average height enjoy the highest reproductive success, while shorter women have the highest reproductive success. Given its high heritability, IASC over human height is likely. Using data from sibling pairs from the Wisconsin Longitudinal Study, we present evidence for IASC over height: in shorter sibling pairs (relatively) more reproductive success (number of children) was obtained through the sister than through the brother of the sibling pair. By contrast, in average height sibling pairs most reproductive success was obtained through the brother relative to the sister. In conclusion, we show that IASC over a heritable, sexually dimorphic physical trait (human height) affects Darwinian fitness in a contemporary human population. PMID:22875819
NASA Astrophysics Data System (ADS)
Wise, Michael J.; Abrahamson, Warren G.
2010-07-01
While storms can have obvious ecological impacts on plants, plants' potential to respond evolutionarily to selection for increased resistance to storm damage has received little study. We took advantage of a thunderstorm with strong wind and hail to examine genetic variation for resistance to stem breakage in the herbaceous perennial Solidago altissima. The storm broke the apex of nearly 10% of 1883 marked ramets in a common-garden plot containing 26 genets of S. altissima. Plant genets varied 20-fold in resistance to breakage. Stem height was strongly correlated with resistance to breakage, with taller stems being significantly more susceptible. A stem's growth form (erect versus nodding) had no detectable effect on its resistance to breakage. Therefore, we rejected the hypothesis that a function of the nodding, or "candy-cane," morphology is protection of the apex from storm damage. The significant genetic variation in S. altissima for stem breakage suggests that this plant has the capacity to respond to selection imposed by storms - particularly through changes in mean stem height. Tradeoffs between breakage resistance and competition for light and pollinators may act to maintain a large amount of genetic variation in stem height.
Effect of using truncated versus total foot length to calculate the arch height ratio.
McPoil, Thomas G; Cornwall, Mark W; Vicenzino, Bill; Teyhen, Deydre S; Molloy, Joseph M; Christie, Douglas S; Collins, Natalie
2008-12-01
The purpose of this study was to determine the arch height ratio in a large cohort of subjects as well as to assess the reliability and validity of the foot measurements utilized in the study. Eight hundred and fifty subjects, 393 women and 457 men, consented to participate in the study. The dorsal arch height, total foot length, and the truncated foot length were used to calculate two variations of the arch height ratio. In addition to determining within- and between-rater measurement reliability, radiographs were used to establish validity. The truncated arch height ratio can be estimated using the total foot length, unless toe deformities are present in the individual being assessed. All foot measurements had high levels of intra- and inter-rater reliability and the validity of measuring the dorsal arch height while standing with equal weight on both feet was established. This investigation provides normative values from a large cohort of healthy female and male subjects for two variations of the arch height ratio. The arch height ratio is a reliable and valid measurement that may prove useful to clinicians and researchers for the classification of foot posture.
Scaling left ventricular mass in adolescent boys aged 11-15 years.
Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Ferraz, António; Castanheira, Joaquim; Ronque, Enio R; Sherar, Lauren B; Elferink-Gemser, Marije T; Malina, Robert M
2014-01-01
Normalizing left ventricular mass (LVM) for inter-individual variation in body size is a central issue in human biology. During the adolescent growth spurt, variability in body size descriptors needs to be interpreted in combination with biological maturation. To examine the contribution of biological maturation, stature, sitting height, body mass, fat-free mass (FFM) and fat mass (FM) to inter-individual variability in LVM in boys, using proportional allometric modelling. The cross-sectional sample included 110 boys of 11-15 years (12.9-1.0 years). Stature, sitting height, body mass, cardiac chamber dimensions and LVM were measured. Age at peak height velocity (APHV) was predicted and used as an indicator of biological maturation. Percentage fat was estimated from triceps and subscapular skinfolds; FM and FFM were derived. Exponents for body size descriptors were k = 2.33 for stature, k = 2.18 for sitting height, k = 0.68 for body mass, k = 0.17 for FM and k = 0.80 for FFM (adjusted R(2 )= 19-62%). The combination of body descriptors and APHV increased the explained variance in LVM (adjusted R(2)( )= 56-69%). Stature, FM and FFM are the best combination for normalizing LVM in adolescent boys; when body composition is not available, an indicator of biological maturity should be included with stature.
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
Hoyle, J; Yentis, S M
2015-04-01
There are multiple methods of assessing the height of block before caesarean section under regional anaesthesia, and surveys of practice suggest considerable variation in practice. So far, little emphasis has been placed on the guidance to be gained from published research literature or textbooks. We therefore set out to investigate the methods of block assessment documented in published articles and textbooks over the past 30 years. We performed two searches of PubMed for randomised clinical trials with caesarean section and either spinal anaesthesia or epidural anaesthesia as major Medical Subject Headings. A total of 284 papers, from 1984 to 2013, were analysed for methods of assessment of sensory and motor block, and the height of block deemed adequate for surgery. We also examined 45 editions of seven anaesthetic textbooks spanning 1950-2014 for recommended methods of assessment and height of block required for caesarean section. Analysis of published papers demonstrated a wide variation in techniques, though there has been a trend towards the increased use of touch, and an increased use of a block height of T5 over the study period. Only 115/284 (40.5%) papers described the method of assessing motor block, with most of those that did (102/115; 88.7%) describing it as the 'Bromage scale', although only five of these (4.9%) matched the original description by Bromage. The required height of block recommended by textbooks has risen over the last 30 years to T4, although only four textbooks made any recommendation about the preferred sensory modality. The variation in methods suggested by surveys of practice is reflected in variation in published trials, and there is little consensus or guidance in anaesthetic textbooks. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Seasonal variation of the stratospheric circulation
NASA Technical Reports Server (NTRS)
Hirota, I.; Shiotani, M.
1985-01-01
An extensive analysis is made of the extratropical stratospheric circulation in terms of the seasonal variation of large-scale motion fields, with the aid of height and temperature data obtained from the TIROS satellite. Special attention is paid to a comparison of climatological aspects between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In order to see the general picture of the annual mach of the upper stratosphere, the zonal mean values of geopotential height of the 1 mb level at 70 deg N and 70 deg S were plotted on the daily basis throughout a year. It is observed that, during the winter, the zonal mean 1 mb height in the NH is much more variable than that in the SH. It is also notable that the SH height is rather oscillatory throughout the longer period from midwinter to early summer. Since the zonal mean height in the polar latitude is a rough measure of the mean zonal flow in extratropical latitudes, the difference of the seasonal variation between the two hemispheres mentioned above is considered to be due mainly to the planetary wave-mean flow interaction in the middle atmosphere. The wave activity in the middle atmosphere is represented more rigorously by the Eliassen-Palm flux associated with vertically propagating planetary waves forced from below. The day-to-day variation of the EP flux in the upper stratosphere shows that the wave activity varies intermittently with a characteristic time scale of about two weeks.
Scale Height variations with solar cycle in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis
2015-04-01
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.
Human impact on wild firewood species in the rural Andes community of Apillapampa, Bolivia.
Thomas, Evert; Douterlungne, David; Vandebroek, Ina; Heens, Frieke; Goetghebeur, Paul; Van Damme, Patrick
2011-07-01
Firewood is the basic fuel source in rural Bolivia. A study was conducted in an Andean village of subsistence farmers to investigate human impact on wild firewood species. A total of 114 different fuel species was inventoried during fieldtrips and transect sampling. Specific data on abundance and growth height of wild firewood species were collected in thirty-six transects of 50 ×2 m(2). Information on fuel uses of plants was obtained from 13 local Quechua key participants. To appraise the impact of fuel harvest, the extraction impact value (EIV) index was developed. This index takes into account local participants' appreciation of (1) decreasing plant abundance; (2) regeneration capacity of plants; (3) impact of root harvesting; and (4) quality of firewood. Results suggest that several (sub-)woody plant species are negatively affected by firewood harvesting. We found that anthropogenic pressure, expressed as EIV, covaried with density of firewood species, which could entail higher human pressure on more abundant and/or more accessible species. The apparent negative impact of anthropogenic pressure on populations of wild fuel species is corroborated by our finding that, in addition to altitude, several anthropogenic variables (i.e. site accessibility, cultivation of exotics and burning practices) explain part of the variation in height of firewood species in the surroundings of Apillapampa.
Photo-anthropometric study on face among Garo adult females of Bangladesh.
Akhter, Z; Banu, M L A; Alam, M M; Hossain, S; Nazneen, M
2013-08-01
Facial anthropometry has well-known implications in health-related fields. Measurement of human face is used in identification of person in Forensic medicine, Plastic surgery, Orthodontics, Archeology, Hair-style design and examination of the differences between races and ethnicities. Facial anthropometry provides an indication of the variations in facial shape in a specified population. Bangladesh harbours many cultures and people of different races because of the colonial rules of the past regimes. Standards based on ethnic or racial data are desirable because these standards reflect the potentially different patterns of craniofacial growth resulting from racial, ethnic and sexual differences. In the above context, the present study was attempted to establish ethnic specific anthropometric data for the Christian Garo adult females of Bangladesh. The study was an observational, cross-sectional and primarily descriptive in nature with some analytical components and it was carried out with a total number of 100 Christian Garo adult females aged between 25-45 years. Three vertical facial dimensions such as facial height from 'trichion' to 'gnathion', nasal length and total vermilion height were measured by photographic method. Though these measurements were taken by photographic method but they were converted into actual size using one of the physically measured variables between two angles of the mouth (chilion to chilion). The data were then statistically analyzed by computation to find out its normatic value. The study also observed the possible 'correlation' between the facial height from 'trichion' to 'gnathion' with nasal length and total vermilion height. Multiplication factors were estimated for estimating facial height from nasal length and total vermilion height. Comparison were made between 'estimated' values with the 'measured' values by using't' test. The mean (+/- SD) of nasal length and total vermilion height were 4.53 +/- 0.36 cm and 1.63 +/- 0.23 cm respectively and the mean (+/- SD) of facial height from 'trichion' to 'gnathion' was 16.88 +/- 1.11 cm. Nasal length and total vermilion height showed also a significant positive correlation with facial height from 'trichion' to 'gnathion'. No significant difference was found between the 'measured' and 'estimated' facial height from 'trichion' to 'gnathion' for nasal length and total vermilion height.
The latitude-height structure of 40-50 day variations in atmospheric angular momentum
NASA Technical Reports Server (NTRS)
Anderson, J. R.; Rosen, R. D.
1983-01-01
Using five years of U.S. National Meteorological Center twice-daily global analyses, a description of the two-dimensional latitude-height structure of the winds responsible for quasi-periodic variations in the relative angular momentum of the atmosphere observed by Langley et al. (1981) is constructed. Cross-spectral and amplitude phase eigenvector techniques indicate that these variations are associated with wave-like motions in the tropical upper troposphere which propagate poleward and downward in phase within the tropics. The tropical component is suggested to be the zonally averaged part of the motions described by Madden and Julian (1971, 1972), while a Northern Hemisphere midlatitude component whose phase is essentially independent of height may be a direct response to the tropical motions. Alternatively, both motions may be the common response to an as yet unidentified tropical forcing.
NASA Astrophysics Data System (ADS)
Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na
2018-04-01
Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.
Analyzing pitch chroma and pitch height in the human brain.
Warren, Jason D; Uppenkamp, Stefan; Patterson, Roy D; Griffiths, Timothy D
2003-11-01
The perceptual pitch dimensions of chroma and height have distinct representations in the human brain: chroma is represented in cortical areas anterior to primary auditory cortex, whereas height is represented posterior to primary auditory cortex.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Reddy, A.
2017-12-01
Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.
NASA Astrophysics Data System (ADS)
Godah, Walyeldeen; Szelachowska, Małgorzata; Krynski, Jan
2017-12-01
The dedicated gravity satellite missions, in particular the GRACE (Gravity Recovery and Climate Experiment) mission launched in 2002, provide unique data for studying temporal variations of mass distribution in the Earth's system, and thereby, the geometry and the gravity fi eld changes of the Earth. The main objective of this contribution is to estimate physical height (e.g. the orthometric/normal height) changes over Central Europe using GRACE satellite mission data as well as to analyse them and model over the selected study area. Physical height changes were estimated from temporal variations of height anomalies and vertical displacements of the Earth surface being determined over the investigated area. The release 5 (RL05) GRACE-based global geopotential models as well as load Love numbers from the Preliminary Reference Earth Model (PREM) were used as input data. Analysis of the estimated physical height changes and their modelling were performed using two methods: the seasonal decomposition method and the PCA/ EOF (Principal Component Analysis/Empirical Orthogonal Function) method and the differences obtained were discussed. The main fi ndings reveal that physical height changes over the selected study area reach up to 22.8 mm. The obtained physical height changes can be modelled with an accuracy of 1.4 mm using the seasonal decomposition method.
Stojanowski, Christopher M; Euber, Julie K
2011-09-01
Archival sources of data are critical anthropological resources that inform inferences about human biology and evolutionary history. Craniometric data are one of the most widely available sources of information on human population history because craniometrics were critical in early 20th century debates about race and biological variation. As such, extensive databases of raw craniometric data were published at the same time that the field was working to standardize measurement protocol. Hrdlička published between 10 and 16 raw craniometric variables for over 8,000 individuals in a series of seven catalogs throughout his career. With a New World emphasis, Hrdlička's data complement those of Howells (1973, 1989) and the two databases have been combined in the past. In this note we verify the consistency of Hrdlička's measurement protocol throughout the Catalog series and compare these definitions to those used by Howells. We conclude that 12 measurements are comparable throughout the Catalogs, with five of these equivalent to Howells' measurements: maximum cranial breadth (XCB), basion-bregma height (BBH), maximum bizygomatic breadth (ZYB), nasal breadth (NLB), and breadth of the upper alveolar arch (MAB). Most of Hrdlička's measurements are not strictly comparable to those of Howells, thus limiting the utility of combined datasets for multivariate analysis. Four measurements are inconsistently defined by Hrdlička and we recommend not using these data: nasal height, orbit breadth, orbit height, and menton-nasion height. This note promotes Hrdlička's tireless efforts at data collection and re-emphasizes observer error as a legitimate concern in craniometry as the field shifts to morphometric digital data acquisition. 2011 Wiley-Liss, Inc.
Soil compaction and initial height growth of planted ponderosa pine.
P. H. Cochran; Terry. Brock
1985-01-01
Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...
The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects
Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah
2016-01-01
Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898
Numerical Assessment of Four-Port Through-Flow Wave Rotor Cycles with Passage Height Variation
NASA Technical Reports Server (NTRS)
Paxson, D. E.; Lindau, Jules W.
1997-01-01
The potential for improved performance of wave rotor cycles through the use of passage height variation is examined. A Quasi-one-dimensional CFD code with experimentally validated loss models is used to determine the flowfield in the wave rotor passages. Results indicate that a carefully chosen passage height profile can produce substantial performance gains. Numerical performance data are presented for a specific profile, in a four-port, through-flow cycle design which yielded a computed 4.6% increase in design point pressure ratio over a comparably sized rotor with constant passage height. In a small gas turbine topping cycle application, this increased pressure ratio would reduce specific fuel consumption to 22% below the un-topped engine; a significant improvement over the already impressive 18% reductions predicted for the constant passage height rotor. The simulation code is briefly described. The method used to obtain rotor passage height profiles with enhanced performance is presented. Design and off-design results are shown using two different computational techniques. The paper concludes with some recommendations for further work.
Genetic control of plant height in European winter wheat cultivars.
Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H
2015-05-01
Plant height variation in European winter wheat cultivars is mainly controlled by the Rht - D1 and Rht - B1 semi-dwarfing genes, but also by other medium- or small-effect QTL and potentially epistatic QTL enabling fine adjustments of plant height. Plant height is an important goal in wheat (Triticum aestivum L.) breeding as it affects crop performance and thus yield and quality. The aim of this study was to investigate the genetic control of plant height in European winter wheat cultivars. To this end, a panel of 410 winter wheat varieties from across Europe was evaluated for plant height in multi-location field trials and genotyped for the candidate loci Rht-B1, Rht-D1, Rht8, Ppd-B1 copy number variation and Ppd-D1 as well as by a genotyping-by-sequencing approach yielding 23,371 markers with known map position. We found that Rht-D1 and Rht-B1 had the largest effects on plant height in this cultivar collection explaining 40.9 and 15.5% of the genotypic variance, respectively, while Ppd-D1 and Rht8 accounted for 3.0 and 2.0% of the variance, respectively. A genome-wide scan for marker-trait associations yielded two additional medium-effect QTL located on chromosomes 6A and 5B explaining 11.0 and 5.7% of the genotypic variance after the effects of the candidate loci were accounted for. In addition, we identified several small-effect QTL as well as epistatic QTL contributing to the genetic architecture of plant height. Taken together, our results show that the two Rht-1 semi-dwarfing genes are the major sources of variation in European winter wheat cultivars and that other small- or medium-effect QTL and potentially epistatic QTL enable fine adjustments in plant height.
NASA Astrophysics Data System (ADS)
Olurotimi, E. O.; Sokoya, O.; Ojo, J. S.; Owolawi, P. A.
2018-03-01
Rain height is one of the significant parameters for prediction of rain attenuation for Earth-space telecommunication links, especially those operating at frequencies above 10 GHz. This study examines Three-parameter Dagum distribution of the rain height over Durban, South Africa. 5-year data were used to study the monthly, seasonal, and annual variations using the parameters estimated by the maximum likelihood of the distribution. The performance estimation of the distribution was determined using the statistical goodness of fit. Three-parameter Dagum distribution shows an appropriate distribution for the modeling of rain height over Durban with the Root Mean Square Error of 0.26. Also, the shape and scale parameters for the distribution show a wide variation. The probability exceedance of time for 0.01% indicates the high probability of rain attenuation at higher frequencies.
Indirect Phase Height Measurements in Central and Eastern Europe for Monitoring D Region Plasma
NASA Technical Reports Server (NTRS)
Cossart, G. V.; Pakhomov, S. V.
1984-01-01
Low-frequency propagation experiments for the investigation of the lower part of the ionospheric D region were at first used by BRACEWELL et al. (1951) in the early fifties. Among these was the method of indirect phase height measurements for continuous monitoring of the lower ionosphere. It is based upon field strength measurements of commercial radio transmitters in the frequency range between 50 and 200 kHz at distances from 500 to 1500 km. The field strength records show characteristic diurnal variations with maxima and minima, produced by interference between the ground wave and the ionospherically reflected sky wave, the phase difference between varies in correspondence to the diurnal variation of the reflection height. In order to check the validity of interpretations of indirect phase height data, comparisons were made with simultaneous rocket soundings. Results are summarized.
Lin, Ying-Ju; Liao, Wen-Ling; Wang, Chung-Hsing; Tsai, Li-Ping; Tang, Chih-Hsin; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Liang, Wen-Miin; Hsieh, Ai-Ru; Cheng, Chi-Fung; Chen, Jin-Hua; Chien, Wen-Kuei; Lin, Ting-Hsu; Wu, Chia-Ming; Liao, Chiu-Chu; Huang, Shao-Mei; Tsai, Fuu-Jen
2017-07-25
Human height can be described as a classical and inherited trait model. Genome-wide association studies (GWAS) have revealed susceptible loci and provided insights into the polygenic nature of human height. Familial short stature (FSS) represents a suitable trait for investigating short stature genetics because disease associations with short stature have been ruled out in this case. In addition, FSS is caused only by genetically inherited factors. In this study, we explored the correlations of FSS risk with the genetic loci associated with human height in previous GWAS, alone and cumulatively. We systematically evaluated 34 known human height single nucleotide polymorphisms (SNPs) in relation to FSS in the additive model (p < 0.00005). A cumulative effect was observed: the odds ratios gradually increased with increasing genetic risk score quartiles (p < 0.001; Cochran-Armitage trend test). Six affected genes-ZBTB38, ZNF638, LCORL, CABLES1, CDK10, and TSEN15-are located in the nucleus and have been implicated in embryonic, organismal, and tissue development. In conclusion, our study suggests that 13 human height GWAS-identified SNPs are associated with FSS risk both alone and cumulatively.
Variation in Anthropometric Status and Growth Failure in Low- and Middle-Income Countries.
Mejía-Guevara, Iván; Corsi, Daniel J; Perkins, Jessica M; Kim, Rockli; Subramanian, S V
2018-02-22
Addressing anthropometric failure in low- and middle-income countries can have 2 targets of inference: addressing differences between individuals within populations (W pop ) or differences between populations (B pop ). We present a multilevel framework to apply both targets of inference simultaneously and quantify the extent to which variation in anthropometric status and growth failure is reflective of undernourished children or undernourished populations. Cross-sectional data originated from the Demographic and Health Surveys program, covering children under age 5 from 57 countries surveyed between 2001 and 2015. A majority of variation in child anthropometric status and growth failure was attributable to W pop -associated differences, accounting for 89%, 83%, and 85% of the variability in z scores for height for age, weight for age, and weight for height. B pop -associated differences (communities, regions, and countries combined) were associated with 11%, 17%, and 15% of the variation in height-for-age z score, weight-for-age z score, and weight-for-height z score. Prevalence of anthropometric failure was closely correlated with mean levels of height and weight. Approximately 1% of W pop variability, compared with 30% to 50% of the B pop variability, was explained by mean values of maternal correlates of anthropometric status and failure. Although there is greater explanatory power B pop , this varied because of modifiability of what constitutes population. Our results suggest that universal strategies to prevent future anthropometric failure in populations combined with targeted strategies to address both the impending and existing burden among children are needed. Copyright © 2018 by the American Academy of Pediatrics.
Rip currents, mega-cusps, and eroding dunes
Thornton, E.B.; MacMahan, J.; Sallenger, A.H.
2007-01-01
Dune erosion is shown to occur at the embayment of beach mega-cusps O(200 m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Monterey Bay, California. This section of the bay consists of a sandy shoreline backed by extensive dunes, rising to heights exceeding 40 m. There is a large increase in wave height going from small wave heights in the shadow of a headland, to the center of the bay where convergence of waves owing to refraction over the Monterey Bay submarine canyon results in larger wave heights. The large alongshore gradient in wave height results in a concomitant alongshore gradient in morphodynamic scale. The strongly refracted waves and narrow bay aperture result in near normal wave incidence, resulting in well-developed, persistent rip currents along the entire shoreline. The alongshore variations of the cuspate shoreline are found significantly correlated with the alongshore variations in rip spacing at 95% confidence. The alongshore variations of the volume of dune erosion are found significantly correlated with alongshore variations of the cuspate shoreline at 95% confidence. Therefore, it is concluded the mega-cusps are associated with rip currents and that the location of dune erosion is associated with the embayment of the mega-cusp.
Variation in lung volumes and capacities among young males in relation to height.
Bhatti, Urooj; Rani, Keenjher; Memon, Muhammad Qasim
2014-01-01
Vital Capacity (VC) is defined as a change in volume of lung after maximal inspiration followed by maximal expiration is called Vital Capacity of lungs. It is the sum of tidal volume, inspiratory reserve volume .and expiratory reserve volume. Vital capacity of normal adults ranges between 3 to 5 litres. A number of physiological factors like age, gender, height and ethnicity effect lung volumes. The reference values of lung volume and capacities were calculated previously and those studies played pivotal role in establishing the fact that air volume capacities measured in an individual fall within a wide range among healthy persons of same age, gender and height buit with different ethnicity. The objective of this study was to evaluate the changes in vital capacity in with height and gender. This cross-sectional study included 74 male students in the Department of Physiology, Liaquat University of Medical and Health Sciences, Jamshoro during January-March, 2014. The volunteers were divided into 2 groups of height ≤ 167.4 cm and > 167.4 cm. The volunteers' height was measured in cm. Vital capacity of the subjects was measured using standard protocol. Mean ± SD of age, height and vital capacity were calculated. Mean vital capacity in students with height > 167.4 cm was higher than average vital capacity of students with height ≤ 167.4 cm. It might be due to the increased surface area of the lungs in relation with increasing height. There are variations in vital capacity of individuals in relation to their heights, within the same ethnic and age groups.
Yanxiang Zhang; Quanshui Zheng; Melvin T. Tyree
2012-01-01
Physiological ecologists have been fascinated by height- or position-linked differences of leaf morphology within tall trees >25 m, but the exact cause is still debated, i.e., is it due to light or height-induced water stress? The aim of this study was to demonstrate that relatively small trees (
Variations in height-over-age curves for young longleaf pine plantations
William D. Boyer
1983-01-01
Abstract.Some environmental factors related to height growth of longleaf pine (Pinus palustris Mill.) plantations were identified by analyses of data from remeasured plots. A total of 660 plots, mostly from the Southwide Pine Seed Source Study, provided 2,737 height-over-age observations from age 3 through ages 15 or 20 to 22. A...
Mayhew, Jessica A; Gómez, Juan-Carlos
2015-08-01
Human eye morphology is considered unique among the primates in that humans possess larger width/height ratios (WHR), expose a greater amount of visible sclera (SSI; width of exposed eyeball/width of visible iris), and critically, have a white sclera due to a lack of pigmentation. White sclera in humans amplifies gaze direction, whereas the all-dark eyes of apes are hypothesized to conceal gaze from others. This study examines WHR and SSI in humans (N = 13) and gorillas (N = 85) engaged in direct and averted gazes and introduces a qualitative assessment of sclera color to evaluate variations in sclera pigmentation. The results confirm previous findings that humans possess a larger WHR than gorillas but indicate that humans and gorillas display similar amounts of visible sclera. Additionally, 72% (N = 124) of gorilla eyes in this sample deviated from the assumed all-dark eye condition. This questions whether gaze camouflage is the primary function of darkened sclera in non-human primates or whether other functional roles can be ascribed to the sclera, light or dark. We argue that white sclera evolved to amplify direct gazes in humans, which would have played a significant role in the development of ostensive communication, which is communication that both shows something and shows the intention to show something. We conclude that the horizontal elongation of the human eye, rather than sclera color, more reliably distinguishes human from great ape eyes, represented here by gorillas. © 2015 Wiley Periodicals, Inc.
Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height.
Xu, Peipei; Zhou, Tao; Yi, Chuixiang; Luo, Hui; Zhao, Xiang; Fang, Wei; Gao, Shan; Liu, Xia
2018-06-13
Global climate change is leading to an increase in the frequency, intensity, and duration of drought events, which can affect the functioning of forest ecosystems. Because human activities such as afforestation and forest attributes such as canopy height may exhibit considerable spatial differences, such differences may alter the recovery paths of drought-impacted forests. To accurately assess how climate affects forest recovery, a quantitative evaluation on the effects of forest attributes and their possible interaction with the intensity of water stress is required. Here, forest recovery following extreme drought events was analyzed for Yunnan Province, southwest China. The variation in the recovery of forests with different water availability and canopy heights was quantitatively assessed at the regional scale by using canopy height data based on light detection and ranging (LiDAR) measurements, enhanced vegetation index data, and standardized precipitation evapotranspiration index (SPEI) data. Our results indicated that forest recovery was affected by water availability and canopy height. Based on the enhanced vegetation index measures, shorter trees were more likely to recover than taller ones after drought. Further analyses demonstrated that the effect of canopy height on recovery rates after drought also depends on water availability—the effect of canopy height on recovery diminished as water availability increased after drought. Additional analyses revealed that when the water availability exceeded a threshold (SPEI > 0.85), no significant difference in the recovery was found between short and tall trees ( p > 0.05). In the context of global climate change, future climate scenarios of RCP2.6 and RCP8.5 showed more frequent water stress in Yunnan by the end of the 21st century. In summary, our results indicated that canopy height casts an important influence on forest recovery and tall trees have greater vulnerability and risk to dieback and mortality from drought. These results may have broad implications for policies and practices of forest management.
Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F
2017-01-01
This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.
An investigation of the solar zenith angle variation of D-region ionization
NASA Technical Reports Server (NTRS)
Ratnasiri, P. A. J.; Sechrist, C. F., Jr.
1975-01-01
Model calculations are carried out with a view to interpreting the solar zenith angle variation of D-region ionization. A model is developed for the neutral chemistry including the transport terms relating to molecular and eddy diffusion. The diurnal behavior is described of the minor neutral constituents formed in an oxygen-hydrogen-nitrogen atmosphere, in the height interval between 30 and 120 km. Computations carried out for two cases of the eddy diffusion coefficients models indicate that the constituents which are important for the D-region positive-ion chemistry do not show a significant variation with zenith angle for values up to 75 deg over the D-region heights. In the ion chemistry model, ion-pair production rates are calculated for solar X-rays between 1 A and 100 A, EUV radiations from 100 A up to the Lyman-alpha line, precipitating electrons, and galactic cosmic rays. The solar zenith angle variation of the positive-ion composition, negative-ion composition, and the electron densities are described up to 75 deg zenith angle, in the height interval between 60 and 100 km.
[Influence of disc height on outcome of posterolateral fusion].
Drain, O; Lenoir, T; Dauzac, C; Rillardon, L; Guigui, P
2008-09-01
Experimentally, posterolateral fusion only provides incomplete control of flexion-extension, rotation and lateral inclination forces. The stability deficit increases with increasing height of the anterior intervertebral space, which for some warrants the adjunction of an intersomatic arthrodesis in addition to the posterolateral graft. Few studies have been devoted to the impact of disc height on the outcome of posterolateral fusion. The purpose of this work was to investigate the spinal segment immobilized by the posterolateral fusion: height of the anterior intervertebral space, the clinical and radiographic impact of changes in disc height, and the short- and long-term impact of disc height measured preoperatively on clinical and radiographic outcome. In order to obtain a homogeneous group of patients, the series was limited to patients undergoing posterolateral arthrodesis for degenerative spondylolisthesis, in combination with radicular release. This was a retrospective analysis of a consecutive series of 66 patients with mean 52 months follow-up (range 3-63 months). A dedicated self-administered questionnaire was used to collect data on pre- and postoperative function, the SF-36 quality of life score, and patient satisfaction. Pre- and postoperative (early, one year, last follow-up) radiographic data were recorded: olisthesic level, disc height, intervertebral angle, intervertebral mobility (angular, anteroposterior), and global measures of sagittal balance (thoracic kyphosis, lumbar lordosis, T9 sagittal tilt, pelvic version, pelvic incidence, sacral slope). SpineView was used for all measures. Univariate analysis searched for correlations between variation in disc height and early postoperative function and quality of fusion at last follow-up. Multivariate analysis was applied to the following preoperative parameters: intervertebral angle, disc height, intervertebral mobility, sagittal balance parameters, use of osteosynthesis or not. At the olisthesic level, there was a 30% mean decrease in disc height and intervertebral angle. These variations were not correlated with functional outcome or quality of fusion observed at last follow-up. Disc height preoperatively did not affect these variations. The only factor correlated with decreased disc height was T9 sagittal tilt: disc height decreased more when T9 sagittal tilt approached 0 degrees . In this very restricted context (retrospective study, short arthrodesis for degenerative spondylolisthesis), we were unable to find any evidence supporting the notion that high disc height is an argument which should favor complementary intersomatic arthrodesis in combination with posterolateral fusion. Analysis of the spinal balance in the sagittal plane would probably allow a more pertinent assessment of the specific needs of individual patients.
Morris, E J A; Birch, R; West, N P; Finan, P J; Forman, D; Fairley, L; Quirke, P
2011-07-01
Wide variation, independent of disease extent and case mix, has been observed in the rate of use of abdominoperineal excision (APE) for rectal cancer. Previous analyses have, however, been confounded by failure to adjust for the location of the tumour within the rectum. This population-based study sought to examine whether variations in tumour height explained differences in APE use. Information was obtained on all individuals who underwent a major resection for a rectal tumour diagnosed between 1998 and 2005 across the Northern and Yorkshire regions of the UK. Median distances from the dentate line were calculated for all tumours excised by APE and compared with rates of use of APE between specialists and nonspecialist surgeons and across hospital trusts. The completeness of pathological reporting of height of tumour within the rectum was variable. A low rate of APE use was associated with a lower median distance of tumours from the dentate line. Specialist colorectal cancer surgeons performed fewer APEs on patients with a tumour located lower in the rectum than nonspecialist surgeons. Variations in the height of tumour did not explain the variation in APE use. Specialist high-volume surgeons undertook fewer APEs and those they performed were closer to the dentate line than low-volume nonspecialist surgeons. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.
Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama
Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.
2005-01-01
Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.
Analysis of the weekly cycle in the atmosphere near Moscow
NASA Astrophysics Data System (ADS)
Gruzdev, A. N.
2013-03-01
Using the spectral method and the method of grouping by days of week, we analyzed the weekly cycles by standard air sounding data obtained at the Dolgoprudny station near Moscow and by the results of measurements of NO2 content in the stratosphere and the atmospheric boundary layer at the Zvenigorod Research Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, in 1990-2010. We revealed weekly cycles of the NO2 content in the vertical column of the stratosphere, temperature, geopotential, meridional wind velocity in the troposphere and lower stratosphere, and the tropopause height in the warm half of the year (mid-April to mid-October). The weekly variations in temperature in the troposphere are positive in the first half of the week and negative in the second half, and the variations in temperature in the tropopause layer and in the lower stratosphere are opposite in sign to the tropospheric variations. The weekly cycle of the tropopause height is approximately in phase with the cycle of tropospheric temperature, and the weekly cycle of the NO2 content in the stratospheric column is opposite in phase to the cycle of the tropopause height. Weekly variations were also observed in the total ozone content over Moscow. This finding was confirmed by calculations based on regression relationships between the vertical distribution of ozone and tropopause height. Conceptual mechanisms of weekly cycles were proposed.
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
NASA Astrophysics Data System (ADS)
Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang
2018-02-01
The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.
Zhang, Pei-Feng; Hu, Yuan-Man; Xiong, Zai-Ping; Liu, Miao
2011-02-01
Based on the 1:10000 aerial photo in 1997 and the three QuickBird images in 2002, 2005, and 2008, and by using Barista software and GIS and RS techniques, the three-dimensional information of the residential community in Tiexi District of Shenyang was extracted, and the variation pattern of the three-dimensional landscape in the district during its reconstruction in 1997-2008 and related affecting factors were analyzed with the indices, ie. road density, greening rate, average building height, building height standard deviation, building coverage rate, floor area rate, building shape coefficient, population density, and per capita GDP. The results showed that in 1997-2008, the building area for industry decreased, that for commerce and other public affairs increased, and the area for residents, education, and medical cares basically remained stable. The building number, building coverage rate, and building shape coefficient decreased, while the floor area rate, average building height, height standard deviation, road density, and greening rate increased. Within the limited space of residential community, the containing capacity of population and economic activity increased, and the environment quality also improved to some extent. The variation degree of average building height increased, but the building energy consumption decreased. Population growth and economic development had positive correlations with floor area rate, road density, and greening rate, but negative correlation with building coverage rate.
Laurence Mott; Les Groom; Stephen Shaler
2002-01-01
This paper reports variations in mechanical properties of individual southern pine fibers and compares engineering properties of earlywood and latewood tracheids with respect to tree height and juvenility. Results indicate that latewood fibers exhibit greater strength and stiffness than earlywood fibers irrespective of tree height or juvenility. Average earlywood...
Leslie H. Groom; Stephen Shaler; Laurence Mott
2002-01-01
This paper repons variations in mechanical properties of individual southern pine fibers and compares engineering properties of earlywood and latewood tracheids with respect to tree height and juvenility. Results indicate that latewood fibers exhibit greater strength and stiffness than earlywood fibers irrespective of tree height or juvenility. Average earlywood...
Age trends in Douglas-fir genetic parameters and implications for optimum selection age.
G.R. Johnson; R.A. Sniezko; N.L. Mandel
1997-01-01
rends in genetic variation were examined over 51 progeny test sites throughout western Oregon. Narrow sense heritabilities for height and diameter showed an increasing trend to age 25, the oldest age examined. Before age 10, height heritabilities were relatively unstable. Type B site-site genetic correlations increased slowly with age for height and remained relatively...
Glenoid version and size: does gender, ethnicity, or body size play a role?
Piponov, Hristo Ivanov; Savin, David; Shah, Neal; Esposito, Domenic; Schwartz, Brian; Moretti, Vincent; Goldberg, Benjamin
2016-11-01
Variations in glenoid morphology among patients of different gender, body habitus, and ethnicity have been of interest for surgeons. Understanding these anatomical variations is a critical step in restoring normal glenohumeral structure during shoulder reconstruction surgery. Retrospective review of 108 patient shoulder CT scans was performed and glenoid version, AP diameter and height were measured. Statistical multiple regression models were used to investigate the ability of gender and ethnicity to predict glenoid AP diameter, height, and version independently of patient weight and height. The mean glenoid AP diameter was 24.7 ± 3.5, the mean glenoid height was 31.7 ± 3.7, and the mean glenoid version was 0.05 ± 9.05. According to our regression models, males would be expected to exhibit 8.4° more glenoid retroversion than females (p = 0.003) and have 2.9 mm larger glenoid height compared to females (p = 0.002). The predicted male glenoid AP diameter was 3.4 mm higher than that in females (p < 0.001). Hispanics demonstrated 6.4° more glenoid anteversion compared to African-Americans (p = 0.04). Asians exhibited 4.1 mm smaller glenoid AP diameters than African-Americans (p = 0.002). An increase of 25 kg in patient weight resulted in 1 mm increase in AP diameter (p = 0.01). Gender is the strongest independent predictor of glenoid size and version. Males exhibited a larger size and more retroverted glenoid. Patient height was found to be predictive of glenoid size only in patients of the same gender. Although variations in glenoid size and version are observed among ethnicities, larger sample size ethnic groups will be necessary to explore the precise relations. Surgeons should consider gender and ethnic variations in the pre-operative planning and surgical restoration of the native glenohumeral relationship. Anatomic Study.
NASA Astrophysics Data System (ADS)
Visheratin, K. N.
2016-01-01
We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.
Fajardo, A
2018-05-01
The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Individual variation in nest size and nest site features of the Bornean orangutans (Pongo pygmaeus).
Rayadin, Yaya; Saitoh, Takashi
2009-05-01
Nest construction is a daily habit of independent orangutans for sleeping or resting. Data on their nests have been used in various ecological studies (e.g., density estimation, ranging behavior, evolution of material culture) because they are the most observable field signs. We investigated nest size and nest site features of Bornean orangutans in the wild during 10 months' fieldwork at three sites in East Kalimantan, Indonesia: Kutai National Park, Birawa, and Meratus. To examine individual variation, we followed 31 individual orangutans and recorded the 92 nests they made for nest size (diameter) and nest site features (height of nest above ground, tree species used for the nest site, the diameter and height of the tree, whether the nest was new or reused, and nest location within the tree). Analyses taking age-sex classes of the focal individuals into consideration showed significant age-sex differences in nest size and location, but not in nest height or nest tree features (diameter, height of tree, and height of lowest branch). Mature orangutans (adult females, unflanged and flanged males) made larger nests than immatures (juveniles and adolescents). Flanged male orangutans with larger nests used stable locations for nesting sites and reused old nests more frequently than immatures. The overall proportion of nests in open (exposed) locations was higher than in closed (sheltered) locations. Flanged males and immatures frequently made open nests, whereas adult females with an infant preferred closed locations. The good correspondence between nest size and age-sex classes indicates that nest size variation may reflect body size and therefore age-sex variation in the population. (c) 2009 Wiley-Liss, Inc.
Sex-related shape dimorphism in the human radiocarpal and midcarpal joints.
Kivell, Tracy L; Guimont, Isabelle; Wall, Christine E
2013-01-01
Previous research has revealed significant size differences between human male and female carpal bones but it is unknown if there are significant shape differences as well. This study investigated sex-related shape variation and allometric patterns in five carpal bones that make up the radiocarpal and midcarpal joints in modern humans. We found that many aspects of carpal shape (76% of all variables quantified) were similar between males and females, despite variation in size. However, 10 of the shape ratios were significantly different between males and females, with at least one significant shape difference observed in each carpal bone. Within-sex standard major axis regressions (SMA) of the numerator (i.e., the linear variables) on the denominator (i.e., the geometric mean) for each significantly different shape ratio indicated that most linear variables scaled with positive allometry in both males and females, and that for eight of the shape ratios, sex-related shape variation is associated with statistically similar sex-specific scaling relationships. Only the length of the scaphoid body and the height of the lunate triquetrum facet showed a significantly higher SMA slope in females compared with males. These findings indicate that the significant differences in the majority of the shape ratios are a function of subtle (i.e., not statistically significant) scaling differences between males and females. There are a number of potential developmental, functional, and evolutionary factors that may cause sex-related shape differences in the human carpus. The results highlight the potential for subtle differences in scaling to result in functionally significant differences in shape. Copyright © 2012 Wiley Periodicals, Inc.
Developmental variation in ecogeographic body proportions.
Cowgill, Libby W; Eleazer, Courtney D; Auerbach, Benjamin M; Temple, Daniel H; Okazaki, Kenji
2012-08-01
While ecogeographic variation in adult human body proportions has been extensively explored, relatively less attention has been paid to the effect of Bergmann's and Allen's rules on human body shape during growth. The relationship between climate and immature body form is particularly important, as immature mortality is high, mechanisms of thermoregulation differ between young and mature humans, and immature body proportions fluctuate due to basic parameters of growth. This study explores changes in immature ecogeographic body proportions via analyses of anthropometric data from children included in Eveleth and Tanner's (1976) Worldwide Variation in Human Growth, as well as limb proportion measurements in eight different skeletal samples. Moderate to strong correlations exist between climatic data and immature stature, weight, BMI, and bi-iliac breadth; these relationships are as strong, if not stronger, in immature individuals as they are in adults. Correlations between climate and trunk height relative to stature are weak or nonexistent. Altitude also has significant effects on immature body form, with children from higher altitudes displaying smaller statures and lower body weights. Brachial and crural indices remain constant over the course of growth and display consistent, moderate correlations with latitude across ontogeny that are just as high as those detected in adults. The results of this study suggest that while some features of immature body form, such as bi-iliac breadth and intralimb indices, are strongly dictated by ecogeographic principles, other characteristics of immature body proportions are influenced by intrinsic and extrinsic factors such as nutrition and basic constraints of growth. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.
2018-03-01
The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.
Lidar measurements of thermal structure
NASA Technical Reports Server (NTRS)
Jenkins, D. B.; Wareing, D. P.; Thomas, L.; Vaughan, G.
1986-01-01
Rayleigh backscatter observations at 532 nm and 355 nm of relative atmospheric density above Aberystwyth on a total of 93 nights between Dec. 1982 and Feb. 1985 were used to derive the height variation of temperature in the upper stratosphere and mesosphere. Preliminary results for height up to about 25 km were also obtained from observations of Raman backscattering from nitrogen molecules. Comparisons were carried out for stratospheric heights with satellite borne measurements; good agreement was found between equivalent black body temperatures derived from the lidar observations and those obtained from nadir measurements in three channels of the stratosphere sounder units on NOAA satellites; the lidar based atmospheric temperatures have shown general agreement with but a greater degree of structure than the limb sounding measurements obtained using the SAMS experiment on the NOAA-7 satellite. In summer, stratospheric and mesospheric temperatures showed a smooth height variation similar to that of the CIRA model atmosphere. In contrast, the winter data showed a great variability with height, and marked temperature changes both from night to night and within a given night.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
Yemataw, Zerihun; Chala, Alemayehu; Grant, Murray R.
2017-01-01
Enset (Ensete ventricosum (Welw.) Cheesman) is Ethiopia’s most important root crop. A total of 387 accessions collected from nine different regions of Ethiopia were evaluated for 15 quantitative traits at Areka Agricultural Research Centre to determine the extent and pattern of distribution of morphological variation. The variations among the accessions and regions were significant (p ≤ 0.01) for all the 15 traits studied. Mean for plant height, central shoot weight before grating, and fermented squeezed kocho yield per hectare per year showed regional variation along an altitude gradient and across cultural differences related to the origin of the collection. Furthermore, there were significant correlations among most of the characters. This included the correlation among agronomic characteristics of primary interest in enset breeding such as plant height, pseudostem height, and fermented squeezed kocho yield per hectare per year. Altitude of the collection sites also significantly impacted the various characteristics studied. These results reveal the existence of significant phenotypic variations among the 387 accessions as a whole. Regional differentiations were also evident among the accessions. The implication of the current results for plant breeding, germplasm collection, and in situ and ex situ genetic resource conservation are discussed. PMID:29210979
Human growth hormone (GH1) gene polymorphism map in a normal-statured adult population
Esteban, Cristina; Audí, Laura; Carrascosa, Antonio; Fernández-Cancio, Mónica; Pérez-Arroyo, Annalisa; Ulied, Angels; Andaluz, Pilar; Arjona, Rosa; Albisu, Marian; Clemente, María; Gussinyé, Miquel; Yeste, Diego
2007-01-01
Objective GH1 gene presents a complex map of single nucleotide polymorphisms (SNPs) in the entire promoter, coding and noncoding regions. The aim of the study was to establish the complete map of GH1 gene SNPs in our control normal population and to analyse its association with adult height. Design, subjects and measurements A systematic GH1 gene analysis was designed in a control population of 307 adults of both sexes with height normally distributed within normal range for the same population: −2 standard deviation scores (SDS) to +2 SDS. An analysis was performed on individual and combined genotype associations with adult height. Results Twenty-five SNPs presented a frequency over 1%: 11 in the promoter (P1 to P11), three in the 5′UTR region (P12 to P14), one in exon 1 (P15), three in intron 1 (P16 to P18), two in intron 2 (P19 and P20), two in exon 4 (P21 and P22) and three in intron 4 (P23 to P25). Twenty-nine additional changes with frequencies under 1% were found in 29 subjects. P8, P19, P20 and P25 had not been previously described. P6, P12, P17 and P25 accounted for 6·2% of the variation in adult height (P = 0·0007) in this population with genotypes A/G at P6, G/G at P6 and A/G at P12 decreasing height SDS (−0·063 ± 0·031, −0·693 ± 0·350 and −0·489 ± 0·265, Mean ± SE) and genotypes A/T at P17 and T/G at P25 increasing height SDS (+1·094 ± 0·456 and +1·184 ± 0·432). Conclusions This study established the GH1 gene sequence variation map in a normal adult height control population confirming the high density of SNPs in a relatively small gene. Our study shows that the more frequent SNPs did not significantly contribute to height determination, while only one promoter and two intronic SNPs contributed significantly to it. Studies in larger populations will have to confirm the associations and in vitro functional studies will elucidate the mechanisms involved. Systematic GH1 gene analysis in patients with growth delay and suspected GH deficiency/insufficiency will clarify whether different SNP frequencies and/or the presence of different sequence changes may be associated with phenotypes in them. PMID:17223997
ERIC Educational Resources Information Center
Georgeton, Laurianne; Antolík, Tanja Kocjancic; Fougeron, Cécile
2016-01-01
Purpose: Phonetic variation due to domain initial strengthening was investigated with respect to the acoustic and articulatory distinctiveness of vowels within a subset of the French oral vowel system /i, e, ?, a, o, u/, organized along 4 degrees of height for the front vowels and 2 degrees of backness at the close and midclose height levels.…
Wood Specific Gravity Variation with Height and Its Implications for Biomass Estimation
Michael C. Wiemann; G. Bruce Williamson
2014-01-01
Wood specific gravity (SG) is widely employed by ecologists as a key variable in estimates of biomass. When it is important to have nondestructive methods for sampling wood for SG measurements, cores are extracted with an increment borer. While boring is a relatively difficult task even at breast height sampling, it is impossible at ground level and arduous at heights...
Jim Hamlin; Angelia Kegley; Richard Sniezko
2011-01-01
A three year common garden study was conducted on whitebark pine (Pinus albicaulis) which included 215 families from the eight provenances or seed zones in Oregon and Washington. Total height and needle color were assessed. Height differed significantly among provenances and families, and was primarily associated with source elevation, longitude, and precipitation. A...
A preliminary study of thermosphere and mesosphere wind observed by Fabry-Perot over Kelan, China
NASA Astrophysics Data System (ADS)
Yu, Tao; Huang, Cong; Zhao, Guangxin; Mao, Tian; Wang, Yungang; Zeng, Zhongcao; Wang, Jingsong; Xia, Chunliang
2014-06-01
A Fabry-Perot interferometer (FPI) system was deployed in Kelan (38.7°N, 111.6°E), center China in November 2011, which observes the airglows at wavelengths of 892.0 nm, 557.7 nm, and 630.0 nm from OH and OI emissions in the upper atmosphere, to derive the wind and temperature at heights around 87 km, 97 km, and 250 km, respectively. From late 2011 through 2013 a series of more than 4500 measurements at each height are validated according to manufacture data quality criteria. By using these data, the morphology of wind in the mesosphere and thermosphere is investigated in this study. Preliminary results are as follows: (1) As for the diurnal variation, meridional and zonal winds at heights of 87 km and 97 km, which are derived through 892.0 nm and 557.7 nm airglows, usually range from -50 m/s to 30 m/s and -50 m/s to 50 m/s, respectively, with typical random errors of about 6-10 m/s at 87 km and 2-3 m/s at 97 km. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, westward at middle night, and back to eastward at dawn. The monthly mean winds are in good agreement with those of HWM93 results. Meridional and zonal winds at a height of 250 km, which are derived through 630.0 nm nightglow, range from -110 m/s to 80 m/s with typical random errors of about 8-10 m/s. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, zero at middle night, and westward at dawn; and they are also well consistent with HWM93 results. (2) As for the seasonal variation, meridional winds at the heights of 87 km and 97 km have a visible annual variation at 12-17 LT and with a little semiannual variation at all other hours, but the zonal winds at the heights of 87 km and 97 km have a semiannual variation all night. The seasonal dependence of the winds, both meridional and zonal winds, at the height of 250 km is generally annual, but isolated cases of semiannual variation are observed. (3) The horizontal winds at 250 km evidently respond to the two storms of July 2012, apparent enhancement of the velocity of the southwestward wind. But no other obvious storm effects can be found from the winds at 87 km and 97 km during the same period.
Irregular topography at the Earth’s inner core boundary
Dai, Zhiyang; Wang, Wei; Wen, Lianxing
2012-01-01
Compressional seismic wave reflected off the Earth’s inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth’s ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4–8 km with a lateral length scale of 2–4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable. PMID:22547788
Irregular topography at the Earth's inner core boundary.
Dai, Zhiyang; Wang, Wei; Wen, Lianxing
2012-05-15
Compressional seismic wave reflected off the Earth's inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth's ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4-8 km with a lateral length scale of 2-4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable.
Kozieł, Sławomir M; Malina, Robert M
2018-01-01
Predicted maturity offset and age at peak height velocity are increasingly used with youth athletes, although validation studies of the equations indicated major limitations. The equations have since been modified and simplified. The objective of this study was to validate the new maturity offset prediction equations in independent longitudinal samples of boys and girls. Two new equations for boys with chronological age and sitting height and chronological age and stature as predictors, and one equation for girls with chronological age and stature as predictors were evaluated in serial data from the Wrocław Growth Study, 193 boys (aged 8-18 years) and 198 girls (aged 8-16 years). Observed age at peak height velocity for each youth was estimated with the Preece-Baines Model 1. The original prediction equations were included for comparison. Predicted age at peak height velocity was the difference between chronological age at prediction and maturity offset. Predicted ages at peak height velocity with the new equations approximated observed ages at peak height velocity in average maturing boys near the time of peak height velocity; a corresponding window for average maturing girls was not apparent. Compared with observed age at peak height velocity, predicted ages at peak height velocity with the new and original equations were consistently later in early maturing youth and earlier in late maturing youth of both sexes. Predicted ages at peak height velocity with the new equations had reduced variation compared with the original equations and especially observed ages at peak height velocity. Intra-individual variation in predicted ages at peak height velocity with all equations was considerable. The new equations are useful for average maturing boys close to the time of peak height velocity; there does not appear to be a clear window for average maturing girls. The new and original equations have major limitations with early and late maturing boys and girls.
Profilometry In The Angstrom Region
NASA Astrophysics Data System (ADS)
Politch, Jacob
1989-01-01
An interferometric system, based on heterodyne principle is described and which enables profile measurements of a surface with a high accuracy. It is possible to measure height variations of 4 Angstroms with a spatial resolution of 1 micrometer. Fran the surface height measurements, there were calculated its statistical properties, such as the R of the heights, the slopes and also its spectral density. The last one identifies the spatial frequencies of the surface, caused for example by the diamond turning mad-line and also by the measuring maChine. For an electro-magnetic wave with a Gaussian profile, which is incident the surface under test, the reflected complex field amplitude (CFA) near the focal region was calculated. jibe have defined the "Macroscopic wavelength" A, which was found to be constant for variations ▵z of the focal distance from the plane under test, for variations of the bean diameter wo in the focal region, while the complex index of refraction (CIF) of the surface under test was kept constant.
Grunauer, Michelle; Jorge, Alexander A L
2018-02-01
Adult height and growth patterns are largely genetically programmed. Studies in twins have indicated that the heritability of height is high (>80%), suggesting that genetic variation is the main determinant of stature. Height exhibits a normal (Gaussian) distribution according to sex, age, and ancestry. Short stature is usually defined as a height which is 2 standard deviations (S.D.) less than the mean height of a specific population. This definition includes 2.3% of the population and usually includes healthy individuals. In this group of short stature non-syndromic conditions, the genetic influence occurs polygenically or oligogenically. As a rule, each common genetic variant accounts for a small effect (1mm) on individual height variation. Recently, several studies demonstrated that some rare variants can cause greater effect on height, without causing a syndromic condition. In more extreme cases, height SDS below 2.5 or 3 (which would comprise approximately 0.6 and 0.1% of the population, respectively) is frequently associated with syndromic conditions and are usually caused by a monogenic defect. More than 1,000 inherited/genetic diseases have growth disorder as an important phenotype. These conditions are usually responsible for syndromic short stature. In the coming years, we expect to discover several genetic causes of short stature, thereby explaining the phenotype of what we currently classify as short stature of unknown cause. These discoveries will have a profound impact on the follow-up and treatment of these children. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Xin-Xin; Lin, Zhan; Jin, Hong-Lin; Chen, Hua-Ran; Jiao, Li-Guo
2017-11-01
In this study, the distribution characteristics of scale height at various solar activity levels were statistically analyzed using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation data for 2007-2013. The results show that: (1) in the mid-high latitude region, the daytime (06-17LT) scale height exhibits annual variations in the form of a single peak structure with the crest appearing in summer. At the high latitude region, an annual variation is also observed for nighttime (18-05LT) scale height; (2) changes in the spatial distribution of the scale height occur. The crests are deflected towards the north during daytime (12-14LT) at a geomagnetic longitude of 60°W-180°W, and they are distributed roughly along the geomagnetic equator at 60°W-180°E. In the approximate region of 120°W-150°E and 50°S-80°S, the scale height values are significantly higher than those in other mid-latitude areas. This region enlarges with increased solar activity, and shows an approximately symmetric distribution about 0° geomagnetic longitude. Nighttime (00-02LT) scale height values in the high-latitude region are larger than those in the low-mid latitude region. These results could serve as reference for the study of ionosphere distribution and construction of the corresponding profile model.
The eye lens: age-related trends and individual variations in refractive index and shape parameters.
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-10-13
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.
The eye lens: age-related trends and individual variations in refractive index and shape parameters
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-01-01
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418
Tree height-diameter allometry across the United States.
Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D
2015-03-01
The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.
VERCELLOTTI, GIUSEPPE; PIPERATA, BARBARA A.
2012-01-01
Variation in height and body proportions is relatively well understood at the inter-population level, but less is known about intra-population variation. This study explores intra-population variation in body proportions among 172 (88 female; 84 male) adult rural Amazonians. We test the hypotheses that: 1) stunting is associated with changes in proportions and fatness; 2) the sexes express different proportions in response to similar environmental stress and 3) female growth is negatively affected by the costs of reproduction. We examined height, sitting height and total leg length in subsamples based on sex and nutritional status (stunted/non-stunted) in relation to biocultural factors including access to food and healthcare and female reproductive history parameters. Differences in proportions were examined using the Quick-Test (Tsutakawa and Hewett, 1977); correlation analyses were employed to detect associations between anthropometric data and body fatness, and female reproductive history parameters. We found significantly higher rates of stunting among females (X2=5.31; p=0.02; RR=1.4). Stunted individuals exhibited relatively shorter legs than non-stunted individuals (p=0.02), although this was not found in within-sex analyses. A significant negative correlation was found between leg length index and fatness (p<0.01). Lastly, females exhibited relatively shorter legs than males (p=0.0003) and, among females, height and leg length were significantly positively correlated with age-at-first-birth (p<0.02) suggesting that adolescent pregnancy may negatively affect growth in this population. Our findings provide insights for the study of intra-population variation in body proportions and highlight the importance of biocultural data in interpreting the pattern of variation observed in living and past populations. PMID:22120650
Vercellotti, Giuseppe; Piperata, Barbara A
2012-01-01
Variation in height and body proportions is relatively well-understood at the inter-population level, but less is known about intra-population variation. This study explores intra-population variation in body proportions among 172 (88 female; 84 male) adult rural Amazonians. We test the hypotheses that: (1) stunting is associated with changes in proportions and fatness; (2) the sexes express different proportions in response to similar environmental stress; and (3) female growth is negatively affected by the costs of reproduction. We examined height, sitting height, and total leg length in subsamples based on sex and nutritional status (stunted/nonstunted) in relation to biocultural factors including access to food and healthcare and female reproductive history parameters. Differences in proportions were examined using the Quick-Test (Tsutakawa and Hewett: Biometrics 33 (1977) 215-219); correlation analyses were used to detect associations between anthropometric data and body fatness, and female reproductive history parameters. We found significantly higher rates of stunting among females (X(2) = 5.31; P = 0.02; RR = 1.4). Stunted individuals exhibited relatively shorter legs than nonstunted individuals (P = 0.02), although this was not found in within-sex analyses. A significant negative correlation was found between leg length index and fatness (P < 0.01). Lastly, females exhibited relatively shorter legs than males (P = 0.0003) and, among females, height and leg length were significantly positively correlated with age-at-first-birth (P < 0.02) suggesting that adolescent pregnancy may negatively affect growth in this population. Our findings provide insights for the study of intra-population variation in body proportions and highlight the importance of biocultural data in interpreting the pattern of variation observed in living and past populations. Copyright © 2011 Wiley Periodicals, Inc.
Shufran, K A; Mornhinweg, D W; Baker, C A; Porter, D R
2007-10-01
Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.
Dimensions of the scala tympani in the human and cat with reference to cochlear implants.
Hatsushika, S; Shepherd, R K; Tong, Y C; Clark, G M; Funasaka, S
1990-11-01
The width, height, and cross-sectional area of the scala tympani in both the human and cat were measured to provide dimensional information relevant to the design of scala tympani electrode arrays. Both the height and width of the human scala tympani decreased rapidly within the first 1.5 mm from the round window. Thereafter, they exhibit a gradual reduction in their dimension with increasing distance from the round window. The cross-sectional area of the human scala tympani reflects the changes observed in both the height and width. In contrast, the cat scala tympani exhibits a rapid decrease in its dimensions over the first 6 to 8 mm from the round window. However, beyond this point the cat scala tympani also exhibits a more gradual decrease in its dimensions. Finally, the width of the scala tympani, in both human and cat, is consistently greater than the height.
NASA Astrophysics Data System (ADS)
Sathyanadh, A.; Karipot, A.; Prabhakaran, T.
2016-12-01
Planetary boundary layer (PBL) height and its controlling factors undergo large variations at different spatio-temporal scales over land regions. In the present study, Modern Era Retrospective analysis for Research and Applications (MERRA) data products are used to investigate variations of PBL height and its controls in relation to different phases of Indian monsoon. MERRA PBL height validations carried out against those estimated from radiosonde and Global Positioning System Radio Occultation atmospheric profiles revealed fairly good agreement. Different PBL patterns are identified in terms of maximum height, its time of occurrence and growth rate, and they vary with respect to geographical locations, terrain characteristics and monsoon circulation. The pre-monsoon boundary layers are the deepest over the region, often exceeding 4 km and grow at a rate of approximately 400 m hr-1. Large nocturnal BL depths, possibly related to weakly convective residual layers, are another feature noted during dry conditions. Monsoon BLs are generally shallower, except where rainfall is scanty. The break-monsoon periods have slightly deeper BLs than the active monsoon phase. The controlling factors for the observed boundary layer behaviour are investigated using supplementary MERRA datasets. Evaporative fraction is found to have dominant control on the PBL height varying with seasons and regions. The characteristics and controls of wet and dry boundary layer regimes over inland and coastal locations are different. The fractional diffusion (ratio of non-local and total diffusion) coefficient analyses indicated that enhanced entrainment during monsoon contributes to reduction in PBLH unlike in the dry period. The relationship between controls and PBLH are better defined over inland than coastal regions. The wavelet cross spectral analysis revealed temporal variations in dominant contributions from the controlling factors at different periodicities during the course of the year.
de Jesus Machado Amorim, Rosemary; de Carvalho Lima, Marilia; Cabral de Lira, Pedro Israel; Emond, Alan Martin
2011-07-01
Birthweight is recognized to be a determinant of a full term infant's early growth pattern; however, few studies have explored whether this effect is sustained into school age, especially in developing countries. We have used a cohort study from North East Brazil to investigate factors determining the anthropometric status of eight-year-old children born at full-term with low or appropriate weight. A cohort of 375 full-term infants was recruited at birth in six maternity hospitals between 1993 and 1994, in a poor region of the interior of the State of Pernambuco. At the age of 8 years, 86 born with low birthweight and 127 with appropriate birthweight were traced. Multivariable linear regression analyses were used to identify the net effect of socioeconomic conditions, maternal nutritional status and child factors on weight-for-age and height-for-age. An enter approach was used to estimate the contribution of different factors on child anthropometry. Birthweight had little influence on child nutritional status at school age. Maternal BMI and height together were the biggest contributors to variation in child weight-for-age (12.3%) and height-for-age (13.2%), followed by family socioeconomic conditions. Maternal height as a proxy of maternal constraint was the single factor that best explained the variation in both indices (6.2% for weight-for-age and 11.1% for height-for-age). Haemoglobin level measured at eight years made a small but significant contribution to variation in height-for-age (5.6%) and weight for age (1.4%). Maternal nutritional status, reflecting genetic inheritance and the poor socioeconomic conditions of this population, was the most important determinant of the nutritional status of children at school age, rather than birthweight. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu
2017-04-01
Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.
Slow deformation of intervertebral discs.
Broberg, K B
1993-01-01
Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.
NASA Technical Reports Server (NTRS)
Neugebauer, G. T.; Wilcox, William R.
1992-01-01
Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.
As tall as my peers - similarity in body height between migrants and hosts.
Bogin, Barry; Hermanussen, Michael; Scheffler, Christiane
2018-01-12
Background: We define migrants as people who move from their place of birth to a new place of residence. Migration usually is directed by "Push-Pull" factors, for example to escape from poor living conditions or to find more prosperous socio-economic conditions. Migrant children tend to assimilate quickly, and soon perceive themselves as peers within their new social networks. Differences exist between growth of first generation and second generation migrants. Methods: We review body heights and height distributions of historic and modern migrant populations to test two hypotheses: 1) that migrant and adopted children coming from lower social status localities to higher status localities adjust their height growth toward the mean of the dominant recipient social network, and 2) social dominant colonial and military migrants display growth that significantly surpasses the median height of both the conquered population and the population of origin. Our analytical framework also considered social networks. Recent publications indicate that spatial connectedness (community effects) and social competitiveness can affect human growth. Results: Migrant children and adolescents of lower social status rapidly adjust in height towards average height of their hosts, but tend to mature earlier, and are prone to overweight. The mean height of colonial/military migrants does surpass that of the conquered and origin population. Conclusion: Observations on human social networks, non-human animal strategic growth adjustments, and competitive growth processes strengthen the concept of social connectedness being involved in the regulation of human migrant growth.
A morphometric study of the human ear.
Alexander, K Skaria; Stott, David J; Sivakumar, Branavan; Kang, Norbert
2011-01-01
We examined variations in the shape of the human ear according to age, sex and ethnic group with particular attention to ear prominence. 420 volunteers were recruited. Measurements included; head height and length, ear height and axis, antihelix taken off angle, earlobe length and width, ear width at the helical root and tragus. Prominence was measured at the helical root and tragus (conchomastoid angle, conchal bowl depth and helical-mastoid distance). Good symmetry was shown for all measurements. Ethnically Indian volunteers had the largest ears (both length and width), followed by Caucasians, and Afro-Caribbeans. This trend was significant in males (p<0.001), but not significant in females (p=0.087). Ears increased in size throughout life. Subjectively, only 2% of volunteers felt their ears were prominent compared to 10% in the opinion of the principal investigator. No objective measurements were identified that accurately predicted subjective perceptions of prominence. We found consistent trends in ear morphology depending on ethnic group, age and sex. Our study was unable to define an objective method for assessing ear prominence. Decisions about what constitutes a prominent ear should be left to personal and aesthetic choice. Copyright © 2010 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Ergonomically Adjustable School Furniture for Male Students
ERIC Educational Resources Information Center
Al-Saleh, Khalid S.; Ramadan, Mohamed Z.; Al-Ashaikh, Riyad A.
2013-01-01
The need for adjustability in school furniture, in order to accommodate the variation in anthropometric measures of different genders, cultures and ages is becoming increasingly important. Four chair-table combinations, different in dimensions, with adjustable chair seating heights and table heights were designed, manufactured and distributed to…
SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER
The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...
Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan
2012-01-01
Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, J. T.; Priya, T. G.; Liu, Y.
At present, there have been few extreme ultraviolet (EUV) imaging observations of spatial variations of the density perturbations due to the slow magnetoacoustic waves (SMWs) propagating along the solar coronal magnetic fields. In this paper, we present such observations taken from the polar region of the corona with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and investigate the amplitude of quasi-periodic propagating disturbances that increase with height in the lower corona (0-9 Mm over the solar limb). We statistically determined the following parameters associated with the disturbances: pressure scale height, period, and wavelength in AIA 171more » Å, 193 Å, and 211 Å channels. The scale height and wavelength are dependent of temperature, while the period is independent of temperature. The acoustic velocities inferred from the scale height highly correlate with the ratios of wavelength to period, i.e., phase speeds. They provide evidence that the propagating disturbances in the lower corona are likely SMWs and the spatial variations in EUV intensity in the polar region likely reflects the density compressional effect by the propagating SMWs.« less
Establishing storm thresholds for the Spanish Gulf of Cádiz coast
NASA Astrophysics Data System (ADS)
Del Río, Laura; Plomaritis, Theocharis A.; Benavente, Javier; Valladares, María; Ribera, Pedro
2012-03-01
In this study critical thresholds are defined for storm impacts along the Spanish coast of the Gulf of Cádiz. The thresholds correspond to the minimum wave and tide conditions necessary to produce significant morphological changes on beaches and dunes and/or damage on coastal infrastructure or human occupation. Threshold definition was performed by computing theoretical sea-level variations during storms and comparing them with the topography of the study area and the location of infrastructure at a local level. Specifically, the elevations of the berm, the dune foot and the entrance of existing washovers were selected as threshold parameters. The total sea-level variation generated by a storm event was estimated as the sum of the tidal level, the wind-induced setup, the barometric setup and the wave-associated sea-level variation (wave setup and runup), assuming a minimum interaction between the different processes. These components were calculated on the basis of parameterisations for significant wave height (Hs) obtained for the oceanographic and environmental conditions of the Gulf of Cadiz. For this purpose real data and reanalysis time-series (HIPOCAS project) were used. Validation of the obtained results was performed for a range of coastal settings over the study area. The obtained thresholds for beach morphological changes in spring tide conditions range between a significant wave height of 1.5 m and 3.7 m depending on beach characteristics, while for dune foot erosion are around 3.3 to 3.7 m and for damage to infrastructure around 7.2 m. In case of neap tide conditions these values are increased on average by 50% over the areas with large tidal range. Furthermore, records of real damage in coastal infrastructure caused by storms were collected at a regional level from newspapers and other bibliographic sources and compared with the hydrodynamic conditions that caused the damage. These were extracted from the hindcast database of the HIPOCAS project, including parameters such as storm duration, mean and maximum wave height and wave direction. Results show that the duration of the storm is not critical in determining the occurrence of coastal damage in the regional study area. This way, the threshold would be defined as a duration ≥30 h, with moderate average wave height (≥3.3 m) and high maximum wave height (≥4.1 m) approaching from the 3rd and 4th quadrants, during mean or spring tide situation. The calculated thresholds constitute snapshots of risk conditions within a certain time framework. Beach and nearshore zones are extremely dynamic, and also the characteristics of occupation on the coast change over time, so critical storm thresholds will change accordingly and therefore will need to be updated.
Stimulus-Dependent Flexibility in Non-Human Auditory Pitch Processing
ERIC Educational Resources Information Center
Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.
2012-01-01
Songbirds and humans share many parallels in vocal learning and auditory sequence processing. However, the two groups differ notably in their abilities to recognize acoustic sequences shifted in absolute pitch (pitch height). Whereas humans maintain accurate recognition of words or melodies over large pitch height changes, songbirds are…
Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam
2010-04-15
High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.
Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.
Terhune, Claire E; Ritzman, Terrence B; Robinson, Chris A
2018-04-27
As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
An Alternate Method for Estimating Dynamic Height from XBT Profiles Using Empirical Vertical Modes
NASA Technical Reports Server (NTRS)
Lagerloef, Gary S. E.
1994-01-01
A technique is presented that applies modal decomposition to estimate dynamic height (0-450 db) from Expendable BathyThermograph (XBT) temperature profiles. Salinity-Temperature-Depth (STD) data are used to establish empirical relationships between vertically integrated temperature profiles and empirical dynamic height modes. These are then applied to XBT data to estimate dynamic height. A standard error of 0.028 dynamic meters is obtained for the waters of the Gulf of Alaska- an ocean region subject to substantial freshwater buoyancy forcing and with a T-S relationship that has considerable scatter. The residual error is a substantial improvement relative to the conventional T-S correlation technique when applied to this region. Systematic errors between estimated and true dynamic height were evaluated. The 20-year-long time series at Ocean Station P (50 deg N, 145 deg W) indicated weak variations in the error interannually, but not seasonally. There were no evident systematic alongshore variations in the error in the ocean boundary current regime near the perimeter of the Alaska gyre. The results prove satisfactory for the purpose of this work, which is to generate dynamic height from XBT data for coanalysis with satellite altimeter data, given that the altimeter height precision is likewise on the order of 2-3 cm. While the technique has not been applied to other ocean regions where the T-S relation has less scatter, it is suggested that it could provide some improvement over previously applied methods, as well.
The mountains of giants: an anthropometric survey of male youths in Bosnia and Herzegovina
Popović, Stevo; Bokuvka, Dominik; Davidović, Ivan; Hřebíčková, Sylva; Ingrová, Pavlína; Potpara, Predrag; Prce, Stipan; Stračárová, Nikola
2017-01-01
The aim of this anthropometric survey, conducted between 2015 and 2016 in Bosnia and Herzegovina (BiH), was to map local geographical differences in male stature and some other anthropometric characteristics (sitting height, arm span). In addition, to investigate the main environmental factors influencing physical growth, the documented values of height would be compared with available nutritional and socioeconomic statistics. Anthropometric data were collected in 3192 boys aged approximately 18.3 years (17–20 years), from 97 schools in 37 towns. When corrected for population size in the examined regions, the average height of young males in BiH is 181.2 cm (181.4 cm in the Bosniak-Croat Federation, 180.9 cm in Republika Srpska). The regional variation is considerable—from 179.7 cm in the region of Doboj to 184.5 cm in the region of Trebinje. These results fill a long-term gap in the anthropological research of the Western Balkans and confirm older reports that the population of the Dinaric Alps is distinguished by extraordinary physical stature. Together with the Dutch, Montenegrins and Dalmatians, men from Herzegovina (183.4 cm) can be regarded as the tallest in the world. Because both nutritional standards and socioeconomic conditions are still deeply suboptimal, the most likely explanation of this exceptional height lies in specific genetic factors associated with the spread of Y haplogroup I-M170. The genetic potential for height in this region could then be the greatest in the world. Future studies should further elucidate the roots of this intriguing phenomenon, which touches an important aspect of human biodiversity. PMID:28484621
Characterization of relief printing
NASA Astrophysics Data System (ADS)
Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan
2014-03-01
Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.
Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli
2016-03-07
In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM_S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.
Pouch, Alison M; Vergnat, Mathieu; McGarvey, Jeremy R; Ferrari, Giovanni; Jackson, Benjamin M; Sehgal, Chandra M; Yushkevich, Paul A; Gorman, Robert C; Gorman, Joseph H
2014-01-01
The basis of mitral annuloplasty ring design has progressed from qualitative surgical intuition to experimental and theoretical analysis of annular geometry with quantitative imaging techniques. In this work, we present an automated three-dimensional (3D) echocardiographic image analysis method that can be used to statistically assess variability in normal mitral annular geometry to support advancement in annuloplasty ring design. Three-dimensional patient-specific models of the mitral annulus were automatically generated from 3D echocardiographic images acquired from subjects with normal mitral valve structure and function. Geometric annular measurements including annular circumference, annular height, septolateral diameter, intercommissural width, and the annular height to intercommissural width ratio were automatically calculated. A mean 3D annular contour was computed, and principal component analysis was used to evaluate variability in normal annular shape. The following mean ± standard deviations were obtained from 3D echocardiographic image analysis: annular circumference, 107.0 ± 14.6 mm; annular height, 7.6 ± 2.8 mm; septolateral diameter, 28.5 ± 3.7 mm; intercommissural width, 33.0 ± 5.3 mm; and annular height to intercommissural width ratio, 22.7% ± 6.9%. Principal component analysis indicated that shape variability was primarily related to overall annular size, with more subtle variation in the skewness and height of the anterior annular peak, independent of annular diameter. Patient-specific 3D echocardiographic-based modeling of the human mitral valve enables statistical analysis of physiologically normal mitral annular geometry. The tool can potentially lead to the development of a new generation of annuloplasty rings that restore the diseased mitral valve annulus back to a truly normal geometry. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli
2016-03-01
In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Shao, Yun-Chuan; Chen, Yu-Chen
2011-09-01
The forcing effect of channel width variations on free bars is investigated in this study using a two-dimensional depth-averaged morphodynamic model. The novel feature of the model is the incorporation of a characteristic dissipative Galerkin (CDG) upwinding scheme in the bed evolution module. A correction for the secondary flows induced by streamline curvature is also included, allowing for simulations of bar growth and migration in channels with width variations beyond the small-amplitude regimes. The model is tested against a variety of experimental data ranging from purely forced and free bars to coexisting bed forms in the variable-width channel. The CDG scheme effectively dissipates local bed oscillations, thus sustains numerical stabilities. The results show that the global effect of width variations on bar height is invariably suppressive. Such effect increases with the dimensionless amplitude AC and wave number λC of width variations. For small AC, λC has little effects on bar height; for AC beyond small amplitudes, however, the suppressing effect depends on both AC and λC. The suppressing effect on bar length increases also with both AC and λC, but is much weaker than that on bar height. The global effect of width variations on bar celerity can be suppressive or enhancive, depending on the combination of AC and λC. For smaller λC, the effect on bar celerity is enhancive; for larger λC, bar celerity tends to increase at small AC but decreases for AC beyond small amplitudes. We present herein an unprecedented data set verifying the theoretical prediction on celerity enhancement. Full suppression of bar growth above the theoretically predicted threshold AC was not observed, regardless of the adopted amplitude of initial bed perturbation A. The global effects of width variations on free bars can be quantified using a forcing factor FC that integrates the effects of AC and λC. The suppressing effects on bar height and length are both proportional to FC2.16; the global effect on bar celerity is, however, a parabolic function of FC.
Compressive strength of human openwedges: a selection method
NASA Astrophysics Data System (ADS)
Follet, H.; Gotteland, M.; Bardonnet, R.; Sfarghiu, A. M.; Peyrot, J.; Rumelhart, C.
2004-02-01
A series of 44 samples of bone wedges of human origin, intended for allograft openwedge osteotomy and obtained without particular precautions during hip arthroplasty were re-examined. After viral inactivity chemical treatment, lyophilisation and radio-sterilisation (intended to produce optimal health safety), the compressive strength, independent of age, sex and the height of the sample (or angle of cut), proved to be too widely dispersed [ 10{-}158 MPa] in the first study. We propose a method for selecting samples which takes into account their geometry (width, length, thicknesses, cortical surface area). Statistical methods (Principal Components Analysis PCA, Hierarchical Cluster Analysis, Multilinear regression) allowed final selection of 29 samples having a mean compressive strength σ_{max} =103 MPa ± 26 and with variation [ 61{-}158 MPa] . These results are equivalent or greater than average materials currently used in openwedge osteotomy.
John F. Caratti
2006-01-01
The FIREMON Density (DE) method is used to assess changes in plant species density and height for a macroplot. This method uses multiple quadrats and belt transects (transects having a width) to sample within plot variation and quantify statistically valid changes in plant species density and height over time. Herbaceous plant species are sampled with quadrats while...
Code of Federal Regulations, 2011 CFR
2011-07-01
...° from horizontal. (3) Riser height and tread depth shall be uniform within each flight of stairs, including any foundation structure used as one or more treads of the stairs. Variations in riser height or... having four or more risers or rising more than 30 inches (76 cm), whichever is less, shall be equipped...
Code of Federal Regulations, 2012 CFR
2012-07-01
...° from horizontal. (3) Riser height and tread depth shall be uniform within each flight of stairs, including any foundation structure used as one or more treads of the stairs. Variations in riser height or... having four or more risers or rising more than 30 inches (76 cm), whichever is less, shall be equipped...
Code of Federal Regulations, 2010 CFR
2010-07-01
...° from horizontal. (3) Riser height and tread depth shall be uniform within each flight of stairs, including any foundation structure used as one or more treads of the stairs. Variations in riser height or... having four or more risers or rising more than 30 inches (76 cm), whichever is less, shall be equipped...
Code of Federal Regulations, 2013 CFR
2013-07-01
...° from horizontal. (3) Riser height and tread depth shall be uniform within each flight of stairs, including any foundation structure used as one or more treads of the stairs. Variations in riser height or... having four or more risers or rising more than 30 inches (76 cm), whichever is less, shall be equipped...
Code of Federal Regulations, 2014 CFR
2014-07-01
...° from horizontal. (3) Riser height and tread depth shall be uniform within each flight of stairs, including any foundation structure used as one or more treads of the stairs. Variations in riser height or... having four or more risers or rising more than 30 inches (76 cm), whichever is less, shall be equipped...
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An atmospheric model developed by Jacchia, quite accurate but requiring a large amount of computer storage and execution time, was found to be ill-suited for the space shuttle onboard program. The development of a simple atmospheric density model to simulate the Jacchia model was studied. Required characteristics including variation with solar activity, diurnal variation, variation with geomagnetic activity, semiannual variation, and variation with height were met by the new atmospheric density model.
NASA Technical Reports Server (NTRS)
Head, James W., III; Wilson, Lionel
1987-01-01
Factors most important in determining fountain height in Hawaiian-type basaltic eruptions were assessed on the basis of theoretical calculations and observations at Pu'u 'O'o vent, east rift zone of Kilauea, Hawaii. It is shown that fountain height is very sensitive to changes in exsolved gas content (and, thus, can be used to estimate variability in exsolved gas content) and relatively insensitive to large variations in volume flux. Volume flux was found to be the most important parameter determining the equilibrium vent diameter. The results of calculations also indicate that there was a general increase in magma gas content over the first 20 episodes of the Pu'u 'O'o eruption and that gas depletion took place in the conduit beneath the vent during repose periods.
Evaluating potential sources of variation in Chironomidae catch rates on sticky traps
Smith, Joshua T.; Muehlbauer, Jeffrey D.; Kennedy, Theodore A.
2016-01-01
Sticky traps are a convenient tool for assessing adult aquatic insect population dynamics, but there are many practical questions about how trap sampling artefacts may affect observed results. Utilising study sites on the Colorado River and two smaller streams in northern Arizona, USA, we evaluated whether catch rates and sex ratios of Chironomidae, a ubiquitous aquatic insect, were affected by spraying traps with insecticide, placing traps at different heights above ground, and placing traps at different locations within a terrestrial habitat patch. We also evaluated temporal variation in Chironomidae counts monthly over a 9-month growing season. We found no significant variation in catch rates or sex ratios between traps treated versus untreated with insecticide, nor between traps placed at the upstream or downstream end of a terrestrial habitat patch. Traps placed near ground level did have significantly higher catch rates than traps placed at 1.5 m, although sex ratios were similar across heights. Chironomidae abundance and sex ratios also varied from month-to-month and seemed to be related to climatic conditions. Our results inform future sticky trap studies by demonstrating that trap height, but not insecticide treatment or precise trap placement within a habitat patch, is an important source of variation influencing catch rates.
Refractivity variations and propagation at Ultra High Frequency
NASA Astrophysics Data System (ADS)
Alam, I.; Najam-Ul-Islam, M.; Mujahid, U.; Shah, S. A. A.; Ul Haq, Rizwan
Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD) and ITU (International Telecommunication Union) refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research.
Physical stature of adult Tsimane' Amerindians, Bolivian Amazon in the 20th century.
Godoy, Ricardo A; Leonard, William R; Reyes-García, Victoria; Goodman, Elizabeth; McDade, Thomas; Huanca, Tomás; Tanner, Susan; Vadez, Vincent
2006-06-01
We examine the association between exposure to the market and Western society on the height of adult Tsimane', a foraging-farming society in the Bolivian Amazon. As with other contemporary native peoples, we find little evidence of a significant secular change in height during 1920-1980. Female height bore a positive association with own schooling and fluency in spoken Spanish and with maternal modern human capital (schooling, writing ability, and fluency in spoken Spanish), but male heights bore no association with parental height or with modern human capital. The absence of a secular change likely reflects the persistence of traditional forms of social organization and production that protect health.
Control of bed height in a fluidized bed gasification system
Mehta, Gautam I.; Rogers, Lynn M.
1983-12-20
In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.
NASA Astrophysics Data System (ADS)
Blanch, E.; Altadill, D.
2009-04-01
Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.
Assortative mating for human height: A meta‐analysis
Simons, Mirre J.P.; Grasman, Sara; Pollet, Thomas V.
2016-01-01
Abstract Objectives The study of assortative mating for height has a rich history in human biology. Although the positive correlation between the stature of spouses has often been noted in western populations, recent papers suggest that mating patterns for stature are not universal. The objective of this paper was to review the published evidence to examine the strength of and universality in assortative mating for height. Methods We conducted an extensive literature review and meta‐analysis. We started with published reviews but also searched through secondary databases. Our search led to 154 correlations of height between partners. We classified the populations as western and non‐western based on geography. These correlations were then analyzed via meta‐analytic techniques. Results 148 of the correlations for partner heights were positive and the overall analysis indicates moderate positive assortative mating (r = .23). Although assortative mating was slightly stronger in countries that can be described as western compared to non‐western, this difference was not statistically significant. We found no evidence for a change in assortative mating for height over time. There was substantial residual heterogeneity in effect sizes and this heterogeneity was most pronounced in western countries. Conclusions Positive assortative mating for height exists in human populations, but is modest in magnitude suggesting that height is not a major factor in mate choice. Future research is necessary to understand the underlying causes of the large amount of heterogeneity observed in the degree of assortative mating across human populations, which may stem from a combination of methodological and ecological differences. PMID:27637175
Wind tunnel test results of a 1/8-scale fan-in-wing model
NASA Technical Reports Server (NTRS)
Wilson, John C.; Gentry, Garl L.; Gorton, Susan A.
1996-01-01
A 1/8-scale model of a fan-in-wing concept considered for development by Grumman Aerospace Corporation for the U.S. Army was tested in the Langley 14- by 22-Foot Subsonic Tunnel. Hover testing, which included height above a pressure-instrumented ground plane, angle of pitch, and angle of roll for a range of fan thrust, was conducted in a model preparation area near the tunnel. The air loads and surface pressures on the model were measured for several configurations in the model preparation area and in the tunnel. The major hover configuration change was varying the angles of the vanes attached to the exit of the fans for producing propulsive force. As the model height above the ground was decreased, there was a significant variation of thrust-removed normal force with constant fan speed. The greatest variation was generally for the height-to-fan exit diameter ratio of less than 2.5; the variation was reduced by deflecting fan exit flow outboard with the vanes. In the tunnel angles of pitch and sideslip, height above the tunnel floor, and wind speed were varied for a range of fan thrust and different vane angle configurations. Other configuration features such as flap deflections and tail incidence were evaluated as well. Though the V-tail empennage provided an increase in static longitudinal stability, the total model configuration remained unstable.
Optimal leveling of flow over one-dimensional topography by Marangoni stresses
NASA Astrophysics Data System (ADS)
Gramlich, C. M.; Kalliadasis, Serafim; Homsy, G. M.; Messer, C.
2002-06-01
A thin viscous film flowing over a step down in topography exhibits a capillary ridge preceding the step. In applications, a planar liquid surface is often desired and hence there is a need to level the ridge. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. The differential equation for the free surface based on lubrication theory and incorporating the effects of topography and temperature gradients is solved numerically for steps down in topography with different temperature profiles. Both rectangular "top-hat" and parabolic profiles, chosen to model physically realizable heaters, were found to be effective in reducing the height of the capillary ridge. Leveling the ridge is formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. With the optimized heaters, the variation in surface height is reduced by more than 50% compared to the original isothermal ridge. For more effective leveling, we consider an asymmetric n-step temperature distribution. The optimal n-step heater in this case results in (n+1) ridges of equal size; 2- and 3-step heaters reduce the variation in surface height by about 70% and 77%, respectively. Finally, we explore the potential of coolers and step temperature profiles for still more effective leveling.
Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.
1990-01-01
We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.
A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry
Bakken, Trygve E.; Dale, Anders M.; Schork, Nicholas J.
2011-01-01
Background Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown. Methods We used two independent data sets to characterize variation in skull and brain morphology among individuals of European ancestry. The first data set is a historical sample of 1,170 male skulls with 37 shape measurements drawn from 27 European populations. The second data set includes 626 North American individuals of European ancestry participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with magnetic resonance imaging, height and weight, neurological diagnosis, and genome-wide single nucleotide polymorphism (SNP) data. Results We found that both skull and brain morphological variation exhibit a population-genetic fingerprint among individuals of European ancestry. This fingerprint shows a Northwest to Southeast gradient, is independent of body size, and involves frontotemporal cortical regions. Conclusion Our findings are consistent with prior evidence for gene flow in Europe due to historical population movements and indicate that genetic background should be considered in studies seeking to identify genes involved in human cortical development and neuropsychiatric disease. PMID:21849792
NASA Astrophysics Data System (ADS)
Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.
2014-07-01
We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.
Variations in phenology and growth of European white birch (Betula pendula) clones.
Rousi, Matti; Pusenius, Jyrki
2005-02-01
Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.
England, Jacqueline R; Attiwill, Peter M
2007-08-01
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.
Sea Level Variations in Gulf of Thailand.
1981-03-01
the astrono - mical tides alone. One purpose of thesis is to assess the importance of some of the non-astronomical factors in the Gulf of Thailand. 14...diurnal and diurnal tide components from the non-harmonic components of the hourly height. Then the non- astrono - mical part of the height change can be seen
Active numerical model of human body for reconstruction of falls from height.
Milanowicz, Marcin; Kędzior, Krzysztof
2017-01-01
Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated injuries overlap with the real injuries sustained by the casualty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Microgravity Geyser and Flow Field Prediction
NASA Technical Reports Server (NTRS)
Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.
2006-01-01
Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.
A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care.
Maji, Debnath; Suster, Michael A; Kucukal, Erdem; Gurkan, Umut A; Stavrou, Evi X; Mohseni, Pedram
2016-08-01
This paper describes the design and construct of a fully biocompatible, microfluidic, dielectric sensor targeted at monitoring human whole blood coagulation at the point-of-care (POC). The sensor assembly procedure involves using sputtered electrodes in a microfluidic channel with a physiologically relevant height of 50μm to create a three-dimensional (3D), parallel-plate, capacitive sensing area. The sensor is constructed with biocompatible materials of polymethyl methacrylate (PMMA) for the substrate and titanium nitride (TiN) for the sensing and floating electrodes. The real part of the complex relative dielectric permittivity of human whole blood is measured from 10kHz to 100MHz using an impedance analyzer and under static conditions. The temporal variation in dielectric permittivity at 1MHz for human whole blood undergoing coagulation shows a peak in permittivity at 5 minutes, which closely matches our previously established results. This sensor can pave the way for monitoring blood coagulation under physiologically relevant shear flow rates in the future.
Adult height, nutrition, and population health
Perkins, Jessica M.; Subramanian, S.V.; Davey Smith, George
2016-01-01
In this review, the potential causes and consequences of adult height, a measure of cumulative net nutrition, in modern populations are summarized. The mechanisms linking adult height and health are examined, with a focus on the role of potential confounders. Evidence across studies indicates that short adult height (reflecting growth retardation) in low- and middle-income countries is driven by environmental conditions, especially net nutrition during early years. Some of the associations of height with health and social outcomes potentially reflect the association between these environmental factors and such outcomes. These conditions are manifested in the substantial differences in adult height that exist between and within countries and over time. This review suggests that adult height is a useful marker of variation in cumulative net nutrition, biological deprivation, and standard of living between and within populations and should be routinely measured. Linkages between adult height and health, within and across generations, suggest that adult height may be a potential tool for monitoring health conditions and that programs focused on offspring outcomes may consider maternal height as a potentially important influence. PMID:26928678
Study of Semi-Span Model Testing Techniques
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; McGhee, Robert J.
1996-01-01
An investigation has been conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel in order to further the development of semi-span testing capabilities. A twin engine, energy efficient transport (EET) model with a four-element wing in a takeoff configuration was used for this investigation. Initially a full span configuration was tested and force and moment data, wing and fuselage surface pressure data, and fuselage boundary layer measurements were obtained as a baseline data set. The semi-span configurations were then mounted on the wind tunnel floor, and the effects of fuselage standoff height and shape as well as the effects of the tunnel floor boundary layer height were investigated. The effectiveness of tangential blowing at the standoff/floor juncture as an active boundary-layer control technique was also studied. Results indicate that the semi-span configuration was more sensitive to variations in standoff height than to variations in floor boundary layer height. A standoff height equivalent to 30 percent of the fuselage radius resulted in better correlation with full span data than no standoff or the larger standoff configurations investigated. Undercut standoff leading edges or the use of tangential blowing in the standoff/ floor juncture improved correlation of semi-span data with full span data in the region of maximum lift coefficient.
Li, Wei; Wang, Hongbo; Feng, Zhihua
2016-04-01
This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.
McKerracher, Luseadra J; Collard, Mark; Altman, Rachel M; Sellen, Daniel; Nepomnaschy, Pablo A
2017-04-01
The causes of variation in breastfeeding duration in humans are poorly understood, but life history factors related to maternal energetics drive much of the variation in lactation duration in nonhuman animals. With this in mind, we investigated whether four energy-related factors influence variation in breastfeeding duration in a non-industrial human population: (1) mortality risk during mother's development (assessed via mother's adult height), (2) reliance on nutrient-dense weaning foods, (3) access to and need for help with infant feeding and care ("allomaternal care"), and (4) maternal tradeoffs between current and future reproduction (measured via child's birth order). The data pertain to 51 Kakchiquel-speaking Maya mothers and 283 children from a village in rural Guatemala. We developed a linear mixed model to evaluate the relationships between breastfeeding duration and the energy-related factors. Duration of breastfeeding was associated with two of the energy-related factors in the ways we predicted but not with the other two. Contrary to predictions, taller mothers breastfed for shorter periods and we found no evidence that weanling diet quality impacts breastfeeding duration. As predicted, women who had more help with infants breastfed for shorter periods, and later-born infants breastfed longer than earlier-born ones. The results regarding allomaternal care suggest that help reduces mothers' lactation demands. The energy saved may be redirected to increasing fecundity or investment in other children. The birth order result suggests that children born to mothers nearing reproductive senescence receive higher levels of investment, which likely impacts children's fitness. © 2016 Wiley Periodicals, Inc.
SU-G-206-11: The Effect of Table Height On CTDIvol and SSDE in CT Scanning: A Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R; Silosky, M
2016-06-15
Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and calculation of the Size Specific Dose Estimate (SSDE). Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). Consequently, variations in scanner table height may affect both CTDIvol and the calculated size-corrected dose index (SSDE). This study sought to characterize these effects. Methods: An anthropomorphic phantom was imaged using an AP localizer, followed by a diagnostic scan using ATCM and our institution’smore » routine abdomen protocol. This was repeated at various scanner table heights, recording the scanner-reported CTDIvol for each diagnostic scan. The width of the phantom was measured from the localizer and diagnostic images using in-house software. The measured phantom width and scanner-reported CTDIvol were used to calculate SSDE. This was repeated using PA localizers followed by diagnostic scans. Results: 1) The localizer-based phantom width varied by up to 54% of the nominal phantom width between minimum and maximum table heights. 2) Changing the table height caused a variation in scanner-reported CTDIvol of a factor greater than 4.6 when using a PA localizer and almost 2 when using an AP localizer. 3) SSDE, calculated from measured phantom size and scanner-reported CTDIvol, varied by a factor of more than 2.8 when using a PA localizer and almost 1.5 when using an AP localizer. Conclusion: Our study demonstrates that off-center patient positioning affects the efficacy of ATCM, more severely when localizers are acquired in the PA rather than AP projection. Further, patient positioning errors can cause a large variation in the calculated SSDE. This hinders interpretation of SSDE for individual patients and aggregate SSDE data when evaluating CT protocols and clinical practices.« less
Mark, Quentin J
2014-01-01
Human height is a heritable trait that is known to be influenced by environmental factors and general standard of living. Individual and population stature is correlated with health, education and economic achievement. Strong sexual selection pressures for stature have been observed in multiple diverse populations, however; there is significant global variance in gender equality and prohibitions on female mate selection. This paper explores the contribution of general standard of living and gender inequality to the variance in global female population heights. Female population heights of 96 nations were culled from previously published sources and public access databases. Factor analysis with United Nations international data on education rates, life expectancy, incomes, maternal and childhood mortality rates, ratios of gender participation in education and politics, the Human Development Index (HDI) and the Gender Inequality Index (GII) was run. Results indicate that population heights vary more closely with gender inequality than with population health, income or education.
Lång, Elisabeth; Nystedt, Paul
2018-02-01
Adult height is a function of genetic predispositions and environmental influences during childhood. Hence, any variation in height among monozygotic twins, who share genetic predispositions, is bound to reflect differences in their environmental exposure. Therefore, a height premium in earnings among monozygotic twins also reflects such exposure. In this study, we analyze the height premium over the life cycle among Swedish twins, 10,000 of whom are monozygotic. The premium is relatively constant over the life cycle, amounting to 5-6% higher earnings per decimeter for men and less for women, suggesting that environmental conditions in childhood and youth affect earnings over most of the adult life course. The premium is larger below median height for men and above median height for young women. The estimates are similar for monozygotic and dizygotic twins, indicating that environmentally and genetically induced height differences are similarly associated with earnings. Copyright © 2017 Elsevier B.V. All rights reserved.
The relationship of Polish students' height, weight and BMI with some socioeconomic variables.
Krzyzanowska, Monika; Umławska, Wioleta
2010-09-01
The aim of this study was to assess the variation in student body height, weight and BMI in relation to several socioeconomic factors. Data (collected in 1998) were obtained through a structured questionnaire from 2800 students (1023 men and 1777 women) from Wrocław Universities, Poland. Information on students' age, reported height and weight and their place of residence prior to starting university, the number of siblings and parents' education were collected. Students with mothers or fathers with higher education had, on average, higher mean heights, but after correcting for other socioeconomic variables only place of residence showed a significant association with height and BMI, with those living in medium or large urban centres having a higher mean height and those living in small or medium urban areas having a lower mean BMI.
Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew
2004-01-01
Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.
Pulse height response of an optical particle counter to monodisperse aerosols
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Grice, S. S.; Cuda, V.
1976-01-01
The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.
Holder, J P; Benedetti, L R; Bradley, D K
2016-11-01
Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.
Climatic influences on human body size and proportions: ecological adaptations and secular trends.
Katzmarzyk, P T; Leonard, W R
1998-08-01
This study reevaluates the long-standing observation that human morphology varies with climate. Data on body mass, the body mass index [BMI; mass (kg)/stature (m)2], the surface area/body mass ratio, and relative sitting height (RSH; sitting height/stature) were obtained for 223 male samples and 195 female samples derived from studies published since D.F. Roberts' landmark paper "Body weight, race, and climate" in 1953 (Am. J. Phys. Anthropol. 11:533-558). Current analyses indicate that body mass varies inversely with mean annual temperature in males (r=-0.27, P < 0.001) and females (r=-0.28, P < 0.001), as does the BMI (males: r=-0.22, P=0.001; females: r=-0.30, P < 0.001). The surface area/body mass ratio is positively correlated with temperature in both sexes (males: r=0.29, P < 0.001; females: r=0.34, P < 0.001), whereas the relationship between RSH and temperature is negative (males: r=-0.37, P < 0.001; females: r=-0.46, P < 0.001). These results are consistent with previous work showing that humans follow the ecological rules of Bergmann and Allen. However, the slope of the best-fit regressions between measures of body mass (i.e., mass, BMI, and surface area/mass) and temperature are more modest than those presented by Roberts. These differences appear to be attributable to secular trends in mass, particularly among tropical populations. Body mass and the BMI have increased over the last 40 years, whereas the surface area/body mass ratio has decreased. These findings indicate that, although climatic factors continue to be significant correlates of world-wide variation in human body size and morphology, differential changes in nutrition among tropical, developing world populations have moderated their influence.
Foster, Dean; Karloff, Howard; Shirley, Kenneth E
2016-02-01
The objective was twofold: (1) to estimate for each individual the body mass index (BMI) which is associated with the lowest risk of death, and (2) to study variants of the BMI formula to determine which gives the best predictions of death. Treating BMI = mass/height(2) as a continuous variable and estimating its interaction effects with several other variables, this study analyzed the NIH-AARP study data set of approximately 566,000 individuals and fit Cox proportional hazards models to the survival times. For each individual, a "personalized optimal BMI," the BMI for that individual which, according to the model, is associated with the lowest risk of death, is estimated. The average personalized optimal BMI is approximately 26, which is in the current "overweight" category. In fact, mass/height is a better predictor of death on the data set than BMI itself. The model suggests that an individual's "optimal" BMI depends on his or her features; "one-size-fits-all" recommendations may be not best. © 2016 The Obesity Society.
Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut
2016-02-01
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim
2011-01-01
The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399
Anne Timm; Eric Hallerman; Andy Dolloff; Mark Hudy; Randall Kolka
2016-01-01
The overall goal of the study was to evaluate effects of landscape features, barriers, on Brook Trout Salvelinus fontinalis population genetics and to identify a potential barrier height threshold where genetic diversity was reduced upstream of the barrier and differentiation and relatedness increase. We screened variation at eight...
Genetic variation in ponderosa pine: A 15-year test of provenances in the Great Plains
David F. Van Haverbeke
1986-01-01
Survival was highest and height growth greatest in ponderosa pine provenances from northcentral Nebraska, southwest South Dakota, and the High Plains region. Genotype x environment interaction was minimal in central and northern Great Plains plantations. Age/age correlations indicate provenances expressing superior height growth can be identified after 5 or 10 years....
Site and stand factors affecting height growth curves of longleaf pine plantations
William D. Boyer
1981-01-01
Abstract Some factors related to the form of height-over- age curves in longleaf pine plantations were identified from analyses of 660 periodically remeasured plots.Seventy percent of the variation among 32 plantations in form the growth curve was accounted for by stratifying planting sites into old fields, mechanically prepared and unprepared cut-...
Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height.
Andrew T. Hudak; Michael A. Lefsky; Warren B. Cohen; Mercedes Berterretche
2002-01-01
Light detection and ranging (LIDAR) data provide accurate measurements of forest canopy structure in the vertical plane; however, current LIDAR sensors have limited coverage in the horizontal plane. Landsat data provide extensive coverage of generalized forest structural classes in the horizontal plane but are relatively insensitive to variation in forest canopy height...
Yang, De-Long; Zhang, Guo-Hong; Li, Xing-Mao; Xing, Hua; Cheng, Hong-Bo; Ni, Sheng-Li; Chen, Xiao-Ping
2012-06-01
A total of 120 recombinant inbred lines (RIL) derived from Chinese winter wheat cultivars Longjian 19xQ9086 and the two parents were taken as test materials to study the quantitative genetics characteristics of their plant height at different development stages, thousand-grain mass, as well as the correlations between the two traits under rainfed (drought stress) and well-watered conditions, and evaluate the genetic variation of the RIL. Under the two water conditions, the target traits of the RIL showed substantial transgressive segregation and great sensitivity to water condition. The drought stress coefficient of the plant height was higher at jointing stage, being up to 0.851. There was a significant positive correlation between the plant height at different development stages and the thousand-grain mass, and comparing with that at other growth stages, the plant height at jointing stage had a higher correlation coefficient with the thousand-grain mass (R2DS = 0.32, R2WW = 0.28). The plant height at both jointing and flowering stages had significant positive and direct effect but negative and indirect gross effect on the thousand-grain mass, while the plant height at heading and maturing stages was in adverse. The target traits showed a lower heritability ranged from 0.27 to 0.60. The numbers of the gene pairs controlling the thousand-grain mass were 10 under rainfed and 13 under well-watered conditions, while those of the gene pairs controlling the plant height at different development stages were 3-7 under rainfed and 4-14 under well-watered conditions, respectively. According to the clustering of the drought stress coefficient of plant height, the RIL could be classified into five subgroups, showing the abundant variation of the RIL in their phe- notypes and in the sensitivity to water condition. It was considered that the test RIL were appropriate for the study of the quantitative genetics of wheat drought resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pupyshev, V.I.; Scherbinin, A.V.; Stepanov, N.F.
1997-11-01
The approach based on the multiplicative form of a trial wave function within the framework of the variational method, initially proposed by Kirkwood and Buckingham, is shown to be an effective analytical tool in the quantum mechanical study of atoms and molecules. As an example, the elementary proof is given to the fact that the ground state energy of a molecular system placed into the box with walls of finite height goes to the corresponding eigenvalue of the Dirichlet boundary value problem when the height of the walls is growing up to infinity. {copyright} {ital 1997 American Institute of Physics.}
Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F
2014-04-01
A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured.
[Sports-anthropological analysis of Tunisian elite karateka].
Raschka, Christoph; Bouzommita, Salem; Preiss, Rüdiger
2005-12-01
This study is based on a careful sport anthropological investigation (ca. 15 min) of 25 Tunisian athletes of the Karate team (aged 18 - 31 years) with special permission of the Tunisian Ministry of Youth and Sports. Considering the height of the Tunisian elite athletes (175.6 +/- 4.9 cm), heavier kareteka are bigger (178.9 +/- 2.2 cm vs. 171.4 +/- 3.9 cm). The mean weight was 73.1 +/- 8.2 kg (heavier athletes 78.7 +/- 5.9 kg vs. lighter athletes 66.0 +/- 4.1 kg). On Conrad's chessboard diagram all the Tunisian karateka were placed in the leptomorph half, only two in the metromorph corridor, but most of them in the middle between hypoplastic and hyperplastic poles. The AKS index diagram demonstrates a faint diagonal positioning of the single weight categories, with progression of body mass from the lower to the upper right area. None of the athletes surpasses a body height of 184 cm. The variation of the AKS index is higher than the variation of body height. The constitutional analysis according to Knussmann (1961) reveals an orientation of heavier weight classes towards macrosomia and pyknomorphism. The proportional figures of the athletes show a small variation of joint heights in lower extremities. In Parnell's somatochart (1954, 1958) the concentration of Tunisian karateka is found in the mesoectomorph third as well as in the somatochart of Heath & Carter (1967). Further sport anthropological karate studies should focus on adolescents and females as well as on physiological and biomechanic parameters.
Analysis of photoconductive mechanisms of organic-on-inorganic photodiodes
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Soylu, M.; Yakuphanoglu, F.
2017-09-01
In this work, it is shown that choosing an organic-on-inorganic Schottky diode for photoconductive sensing by a using a power law exponent (PLE or γ) determined at a single bias point is a limited approach. The standard literature approach does not highlight any bias voltage effects on the distribution of interface state density and other operationally important parameters. In this paper we suggest a new empirical method that holistically highlights the variation of γ with voltage, irradiance and temperature to reach a more informed choice of photosensor for real applications. We obtain a simple, plausible relation of the variation of barrier height, Φ, with voltage, irradiance and temperature. The method is evaluated with data collected previously for Schottky diodes of structure Al/p-Si/organic-semiconductor (OSC)/Au, where OSC is Coumarin-doped with graphene oxide (GO), Cobalt Phthacyanine (CoPC) doped with GO or PCBM doped with GO, respectively. The method reproduces published data for the three diodes reported at specific bias and provides for the first time some qualitative evidence of barrier height variation with light intensity, for which a possible physical basis is also given. Typically, Schottky barrier height is characterized using dark current leading to an under reporting of the effect of illumination on barrier height. Finally, since recombination mechanisms are gauged on the basis of the magnitude of PLE, the method facilitates the identification of the recombination mechanism at a given bias.
Spin-Polarization in Quasi-Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Xie, Zheng-Wei; Li, Ling
2017-05-01
Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.
NASA Astrophysics Data System (ADS)
Kuhlbusch, T. A. J.; John, A. C.; Fissan, H.
PM10, PM2.5, and Black Carbon (BC) mass concentrations as well as number size distributions were measured quasi-online at a rural sampling site from 18 September to 17 October 1997. Average PM10, PM2.5, and BC mass concentrations were 37 ± 25, 25 ± 23, and 2 ± 1 μgm -3, respectively. All determined aerosol characteristics showed significant diurnal variations with generally higher concentrations during daytime compared to nights. Maxima in mass concentrations were around 11 AM and 8 PM during weekdays, most likely caused by commuter traffic. Decreased mass concentrations, changes in chemical composition and size distribution have been observed for the time from 12 to 5 PM. Diurnal variations of the BC/PM2.5 mass ratio revealed a minimum between 12 and 4 PM. The ratio of particle volume (0.5-2.5 μm) to particle mass (PM2.5) called 'potential density' also showed significant diurnal changes. These changes could be attributed to increasing in mixing height and windspeed. The determined diurnal variations in particle mass, composition, and size distribution may be relevant for epidemiological studies. We propose that diurnally weighted averages of relevant aerosol characteristics, which take diurnal patterns of human activities into account, should be used in epidemiological studies.
Final height and intrauterine growth retardation.
Tauber, Maïthé
2017-06-01
Approximately 10% of small for gestational age (SGA) children maintain a small body size throughout childhood and often into adult life with a decreased pubertal spurt. Growth hormone (GH) therapy increases short-term growth in a dose-dependent manner and adult height had now been well documented. Shorter children might benefit from a higher dose at start (50μg/kg/day). The response to GH treatment was similar for both preterm and term short SGA groups and the effect of GH treatment on adult height showed a wide variation in growth response. As a whole, mean adult height is higher than -2 SDS in 60% of patients and 70% reached an adult height in their target height with better results with higher doses and combined GnRH analog therapy in those who were short at onset of puberty. Copyright © 2017. Published by Elsevier Masson SAS.
Tsunoda, T; Tatsuzawa, S
2004-05-01
The questing height (i.e. ambush height) of ticks on a plant plays an important role in host selection. To test the hypothesis that the questing height of ticks in a locality had adapted to the body size of the host in that locality, we examined the questing height of nymphs of the ticks, Haemaphysalis longicornis and H. mageshimaensis, at 7 locations in Japan. Sika deer, Cervus nippon, is the primary host of these ticks and there is considerable geographical variation in the body size of sika deer. Multiple regression analysis revealed that the questing height in the field was influenced by the height of the plants and by the body size of deer at a location. However, the questing height of ticks at some locations may have been constrained by the height of the plants and might not be the same as their intrinsic questing height. When ticks were placed in vertical glass tubes in the laboratory, the questing height of ticks from a locality was correlated with the mean body size of deer at that locality. Therefore, the prominent cue determining the questing height of H. longicornis and H. mageshimaensis seems to be the body size of the host deer.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1986-01-01
The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.
NASA Astrophysics Data System (ADS)
Song, Lei; Wu, Renguang; Jiao, Yang
2018-06-01
The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.
Feature selection gait-based gender classification under different circumstances
NASA Astrophysics Data System (ADS)
Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah
2014-05-01
This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.
QTLs for heading date and plant height under multiple environments in rice.
Han, Zhongmin; Hu, Wei; Tan, Cong; Xing, Yongzhong
2017-02-01
Both heading date and plant height are important traits related to grain yield in rice. In this study, a recombinant inbred lines (RILs) population was used to map quantitative trait loci (QTLs) for both traits under 3 long-day (LD) environments and 1 short-day (SD) environment. A total of eight QTLs for heading date and three QTLs for plant height were detected by composite interval mapping under LD conditions. Additional one QTL for heading date and three QTLs for plant height were identified by Two-QTL model under LD conditions. Among them, major QTLs qHd7.1, qHd7.2 and qHd8 for heading date, and qPh1 and qPh7.1 for plant height were commonly detected. qHd7.1 and qHd7.2 were mapped to small regions of less than 1 cM. Genome position comparison of previously cloned genes with QTLs detected in this study revealed that qHd5 and qPh3.1 were two novel QTLs. The alleles of these QTLs increasing trait values were dispersed in both parents, which well explained the transgressive segregation observed in this population. In addition, the interaction between qHd7.1 and qHd8 was detected under all LD conditions. Multiple-QTL model analysis revealed that all QTLs and their interactions explained over 80% of heading date variation and 50% of plant height variation. Two heading date QTLs were detected under SD condition. Of them, qHd10 were commonly identified under LD condition. The difference in QTL detection between LD and SD conditions indicated most heading date QTLs are sensitive to photoperiod. These findings will benefit breeding design for heading date and plant height in rice.
NASA Astrophysics Data System (ADS)
Zerbini, S.; Raicich, F.; Richter, B.; Gorini, V.; Errico, M.
2010-04-01
This work describes a study of GPS heights, gravity and hydrological time series collected by stations located in northeastern Italy. During the last 12 years, changes in the long-term behaviors of the GPS heights and gravity time series are observed. In particular, starting in 2004-2005, a height increase is observed over the whole area. The temporal and spatial variability of these parameters has been studied as well as those of key hydrological variables, namely precipitation, hydrological balance and water table by using the Empirical Orthogonal Functions (EOF) analysis. The coupled variability between the GPS heights and the hydrological balance and precipitation data has been investigated by means of the Singular Value Decomposition (SVD) approach. Significant common patterns in the spatial and temporal variability of these parameters have been recognized. In particular, hydrology-induced variations are clearly observable starting in 2002-2003 in the southern part of the Po Plain for the longest time series, and from 2004-2005 over the whole area. These findings, obtained by means of purely mathematical approaches, are supported by sound physical interpretation suggesting that the climate-related fluctuations in the regional/local hydrological regime are one of the main contributors to the observed variations. A regional scale signal has been identified in the GPS station heights; it is characterized by the opposite behavior of the southern and northern stations in response to the hydrological forcing. At Medicina, in the southern Po Plain, the EOF analysis has shown a marked common signal between the GPS heights and the Superconducting Gravimeter (SG) data both over the long and the short period.
Intra-annual height increment of Pinus sylvestris at high latitudes in Finland.
Salminen, Hannu; Jalkanen, Risto
2007-09-01
Intra-annual height growth of Scots pine (Pinus sylvestris L.) in four stands was followed for up to four growing seasons (2000-2003) in the northern boreal zone in Lapland. Elongation of the leader shoot correlated with temperature sum expressed as degree-days. Total length of the leader shoot correlated with growth rate but not with duration of the height-growth period. The longer the annual shoot at the end of the season, the greater the height increment per degree- and growing day. Height-growth cessation was defined as the date when 95% of the total shoot length was achieved. In all stands and all years, height growth ceased when, on average, 41% of the relative temperature sum of the site was achieved (range of variation 38-43%). The relative temperature sum was calculated by dividing the actual temperature sum by the long-term mean for the site. Our results suggest that annual height growth is finished when a location-specific temperature sum threshold is attained.
Personality and gender differences in global perspective.
Schmitt, David P; Long, Audrey E; McPhearson, Allante; O'Brien, Kirby; Remmert, Brooke; Shah, Seema H
2017-12-01
Men's and women's personalities appear to differ in several respects. Social role theories of development assume gender differences result primarily from perceived gender roles, gender socialization and sociostructural power differentials. As a consequence, social role theorists expect gender differences in personality to be smaller in cultures with more gender egalitarianism. Several large cross-cultural studies have generated sufficient data for evaluating these global personality predictions. Empirically, evidence suggests gender differences in most aspects of personality-Big Five traits, Dark Triad traits, self-esteem, subjective well-being, depression and values-are conspicuously larger in cultures with more egalitarian gender roles, gender socialization and sociopolitical gender equity. Similar patterns are evident when examining objectively measured attributes such as tested cognitive abilities and physical traits such as height and blood pressure. Social role theory appears inadequate for explaining some of the observed cultural variations in men's and women's personalities. Evolutionary theories regarding ecologically-evoked gender differences are described that may prove more useful in explaining global variation in human personality. © 2016 International Union of Psychological Science.
Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach
NASA Astrophysics Data System (ADS)
Wong, Colman Ching Chi; Liu, Chun-Ho
2013-04-01
Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.
W. Lopushlnsky; D. Zabowskl; T.D. Anderson
1992-01-01
Logging residues were broadcast burned, piled and burned, removed, or left in place after clearcutting in a high-elevation subalpine fir (Abies lasiocarpa (Hook.) Nutt.) lodgepole pine (Pinus contorta Dougl. ex Loud.) forest in north-central Washington. Survival, height growth and foliar nutrient content of planted Douglas-fir...
C. Dana Nelson; C. A. Mohn
1989-01-01
Significant family variation in female strobili incidence, ripeness-to-flower and production were found in a Minnesota black spruce (Picea mariana (Mill.) B.S.P.) population tested at four locations. Heritability estimates indicated that gain in early flowering from selection would be possible. Height growth through age 12 years was positively correlated (genetic and...
Ronald C. Wilkinson; Paul G. Schaberg
1992-01-01
Differences in 10-year heights, 4-year growth from 1987 through 1990, relative timing of budbreak and damage by the balsam twig aphid (Mindarus abietinus Koch.) among balsam fir (Abies balsamea (L.) Mill.) from 6 Vermont seed sources originating from different elevations were examined. Height differences among seed sources were...
Height and diameter variation in twelve white ash provenance/progeny tests in eastern United States
G. Rink; F.H. Kung
1991-01-01
Results from 12- and 13-year old rangewide provenance/progeny tests of white ash (Fraxinus americana L.) planted at 12 locations throughout the eastern United States are reported. Although heritability of white ash tree height and dbh is high at both the provenance and family levels, the trend in variance components is for increasing provenance and...
[Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].
Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan
2012-04-01
To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.
Computational study of the vortex path variation with the VG height
NASA Astrophysics Data System (ADS)
Fernández-Gámiz, U.; Zamorano, G.; Zulueta, E.
2014-06-01
An extensive range of conventional, vane-type, passive vortex generators (VGs) are in use for successful applications of flow separation control. In most cases, the VG height is designed with the same thickness as the local boundary layer at the VG position. However, in some applications, these conventional VGs may produce excess residual drag. The so-called low-profile VGs can reduce the parasitic drag associated to this kind of passive control devices. As suggested by many authors, low-profile VGs can provide enough momentum transfer over a region several times their own height for effective flow-separation control with much lower drag. The main objective of this work is to study the variation of the path and the development of the primary vortex generated by a rectangular VG mounted on a flat plate with five different device heights h = δ, h1 = 0.8δ, h2 = 0.6δ, h3 = 0.4δ and h4 = 0.25m, where 5 is the local boundary layer thickness. For this purpose, computational simulations have been carried out at Reynolds number Re = 1350 based on the height of the conventional VG h = 0.25m with the angle of attack of the vane to the oncoming flow β = 18.5°. The results show that the VG scaling significantly affects the vortex trajectory and the peak vorticity generated by the primary vortex.
Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B
2015-09-02
In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Methods for Measuring LiDAR
NASA Astrophysics Data System (ADS)
Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.
2017-12-01
The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and tested against one another using 28 different sites and over 42 different LiDAR acquisitions. The optimal model will then be used to generate regional wall-to-wall forest inventories at a 10 m resolution.
A population genetic interpretation of GWAS findings for human quantitative traits
Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy
2018-01-01
Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID:29547617
Variation of Specific Gravity in Plantation-Grown Trees of Bigleaf Mahogany
C. B. Briscoe; J. B. Harris; D. Wyckoff
1963-01-01
As a prelude to tree improvement work in the genus Swietenia, a study was made of specific gravity variation within the bole of six plantation-grown trees of bigleaf mahogany. Variation was appreciable, from 0.36 to 0.65 , and several patterns were determined. Specific gravity of the tree increased with growth rate, as expressed in diameter at breast height, but not...
Body height affects the strength of immune response in young men, but not young women.
Krams, Indrikis A; Skrinda, Ilona; Kecko, Sanita; Moore, Fhionna R; Krama, Tatjana; Kaasik, Ants; Meija, Laila; Lietuvietis, Vilnis; Rantala, Markus J
2014-08-28
Body height and other body attributes of humans may be associated with a diverse range of social outcomes such as attractiveness to potential mates. Despite evidence that each parameter plays a role in mate choice, we have little understanding of the relative role of each, and relationships between indices of physical appearance and general health. In this study we tested relationships between immune function and body height of young men and women. In men, we report a non-linear relationship between antibody response to a hepatitis-B vaccine and body height, with a positive relationship up to a height of 185 cm, but an inverse relationship in taller men. We did not find any significant relationship between body height and immune function in women. Our results demonstrate the potential of vaccination research to reveal costly traits that govern evolution of mate choice in humans and the importance of trade-offs among these traits.
Body height affects the strength of immune response in young men, but not young women
Krams, Indrikis A.; Skrinda, Ilona; Kecko, Sanita; Moore, Fhionna R.; Krama, Tatjana; Kaasik, Ants; Meija, Laila; Lietuvietis, Vilnis; Rantala, Markus J.
2014-01-01
Body height and other body attributes of humans may be associated with a diverse range of social outcomes such as attractiveness to potential mates. Despite evidence that each parameter plays a role in mate choice, we have little understanding of the relative role of each, and relationships between indices of physical appearance and general health. In this study we tested relationships between immune function and body height of young men and women. In men, we report a non-linear relationship between antibody response to a hepatitis-B vaccine and body height, with a positive relationship up to a height of 185 cm, but an inverse relationship in taller men. We did not find any significant relationship between body height and immune function in women. Our results demonstrate the potential of vaccination research to reveal costly traits that govern evolution of mate choice in humans and the importance of trade-offs among these traits. PMID:25164474
Reliability of bounce drop jump parameters within elite male rugby players.
Costley, Lisa; Wallace, Eric; Johnston, Michael; Kennedy, Rodney
2017-07-25
The aims of the study were to investigate the number of familiarisation sessions required to establish reliability of the bounce drop jump (BDJ) and subsequent reliability once familiarisation is achieved. Seventeen trained male athletes completed 4 BDJs in 4 separate testing sessions. Force-time data from a 20 cm BDJ was obtained using two force plates (ensuring ground contact < 250 ms). Subjects were instructed to 'jump for maximal height and minimal contact time' while the best and average of four jumps were compared. A series of performance variables were assessed in both eccentric and concentric phases including jump height, contact time, flight time, reactive strength index (RSI), peak power, rate of force development (RFD) and actual dropping height (ADH). Reliability was assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV) while familiarisation was assessed using a repeated measures analysis of variance (ANOVA). The majority of DJ parameters exhibited excellent reliability with no systematic bias evident, while the average of 4 trials provided greater reliability. With the exception of vertical stiffness (CV: 12.0 %) and RFD (CV: 16.2 %) all variables demonstrated low within subject variation (CV range: 3.1 - 8.9 %). Relative reliability was very poor for ADH, with heights ranging from 14.87 - 29.85 cm. High levels of reliability can be obtained from the BDJ with the exception of vertical stiffness and RFD, however, extreme caution must be taken when comparing DJ results between individuals and squads due to large discrepancies between actual drop height and platform height.
Variations in Transport Derived from Satellite Altimeter Data over the Gulf Stream
NASA Technical Reports Server (NTRS)
Molinelli, Eugene; Lambert, Richard B., Jr.
1981-01-01
Variations in total change of sea surface height (delta h) across the Gulf Stream are observed using Seasat radar altimeter data. The sea surface height is related to transport within the stream by a two layer model. Variations in delta h are compared with previously observed changes in transport found to increase with distance downstream. No such increase is apparent since the satellite transports show no significant dependence on distance. Though most discrepancies are less than 50 percent, a few cases differ by about 100 percent and more. Several possible reasons for these discrepancies are advanced, including geoid error, but only two oceanographic contributions to the variability are examined, namely, limitations in the two layer model and meanders in the current. It is concluded that some of the discrepancies could be explained as changes in the density structure not accounted for by the two layer model.
Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Lee, W.; Sheen, D.; Seo, K.; Yun, S.
2009-12-01
The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period
Variation in height growth and growth
Knud E. Clausen
1968-01-01
Yellow birch (Betula alleghaniensis Britt.) is an important hardwood species in the Lake States, northeastern United States, and eastern Canada. Since it produces valuable timber, the species is a logical candidate for genetic improvement. An understanding of the variation pattern in a species is, however, basic to any improvement program. In 1963...
Errors in Site Index Determination Caused by Tree Age Variation in Even-Aged Oak Stands
Robert A. McQuilkin
1975-01-01
Age deviations of individual trees in even-aged oak stands in Missouri caused variations in the height growth patterns and site index estimates of these younger or older trees. A correction factor for site index estimates on these age-deviant trees is given.
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1975-01-01
The diurnal component in meridional wind was observed for each season at twelve rocket stations. Amplitudes and phases are presented as a function of height-latitude or as vertical profiles. Many of the gross features of the tide persist throughout the year, but as they migrate in height and latitude the amplitude or phase at a given location may undergo large changes with season. Longitudinal variations in the diurnal tide are found in the mid-stratosphere, and it is suggested they are coupled with longitudinal variations in the tropospheric temperature structure.
NASA Technical Reports Server (NTRS)
Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.
1989-01-01
The lower thermospheric nightglow in the Southern Hemisphere was observed with the Atmospheric Emissions Photometric Imager during the Spacelab 1 mission in December, 1983. Observations of emission from O(1S) at 2972 and 5577A, O2 at 7620 A, OH near 6300 A, and the combined emission from the three upper states of O2 which lead to the Herzberg I and II and Chamberlain band emissions in B and near UV are discussed. The altitudes of peak emission heights are determined, showing that the peak heights are not constant with latitude. It is found that airglow heights varied with latitude by as much as 8 km. The observed airglow height pattern near the equator is similar to that of Wasser and Donahue (1979).
Zietsch, Brendan P.; Verweij, Karin J. H.; Heath, Andrew C.; Martin, Nicholas G.
2012-01-01
Human mate choice is central to individuals’ lives and to the evolution of the species, but the basis of variation in mate choice is not well understood. Here we look at a large community-based sample of twins and their partners and parents (N > 20,000 individuals) to test for genetic and family environmental influences on mate choice, with and without controlling for the effects of assortative mating. Key traits are analyzed, including height, body mass index, age, education, income, personality, social attitudes, and religiosity. This revealed near-zero genetic influences on male and female mate choice over all traits and no significant genetic influences on mate choice for any specific trait. A significant family environmental influence was found for the age and income of females’ mate choices, possibly reflecting parental influence over mating decisions. We also tested for evidence of sexual imprinting, where individuals acquire mate-choice criteria during development by using their opposite-sex parent as the template of a desirable mate; there was no such effect for any trait. The main discernable pattern to mate choice was assortative mating; we found that partner similarity was due to initial choice rather than convergence and also due at least in part to phenotypic matching. PMID:21508607
Zietsch, Brendan P; Verweij, Karin J H; Heath, Andrew C; Martin, Nicholas G
2011-05-01
Human mate choice is central to individuals' lives and to the evolution of the species, but the basis of variation in mate choice is not well understood. Here we looked at a large community-based sample of twins and their partners and parents ([Formula: see text] individuals) to test for genetic and family environmental influences on mate choice, while controlling for and not controlling for the effects of assortative mating. Key traits were analyzed, including height, body mass index, age, education, income, personality, social attitudes, and religiosity. This revealed near-zero genetic influences on male and female mate choice over all traits and no significant genetic influences on mate choice for any specific trait. A significant family environmental influence was found for the age and income of females' mate choices, possibly reflecting parental influence over mating decisions. We also tested for evidence of sexual imprinting, where individuals acquire mate-choice criteria during development by using their opposite-sex parent as the template of a desirable mate; there was no such effect for any trait. The main discernible pattern of mate choice was assortative mating; we found that partner similarity was due to initial choice rather than convergence and also at least in part to phenotypic matching.
NASA Technical Reports Server (NTRS)
Woods, Andrew W.; Self, Stephen
1992-01-01
Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.
Thermal Infrared Hot Spot and Dependence on Canopy Geometry
NASA Technical Reports Server (NTRS)
Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)
2001-01-01
We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.
Timasheva, Y; Putku, M; Kivi, R; Kožich, V; Männik, J; Laan, M
2013-11-01
Given the physiological role of placental growth hormone (PGH) during intrauterine development and growth, genetic variation in the coding Growth hormone 2 (GH2) gene may modulate developmental programming of adult stature. Two major GH2 variants were described worldwide, determined by single polymorphism (rs2006123; c.171 + 50C > A). We sought to study whether GH2 variants may contribute to adult anthropometric measurements. Genotyping of GH2 SNP rs2006123 by RFLP, testing its genetic association with adult height and Body Mass Index (BMI) by linear regression analysis, and combining the results of three individual study samples in meta-analysis. HYPEST (Estonia), n = 1464 (506 men/958 women), CADCZ (Czech), n = 871 (518/353); UFA (Bashkortostan), n = 954 (655/299); meta-analysis, n = 3289 (1679/1610). Meta-analysis across HYPEST, CADCZ and UFA samples (n = 3289) resulted in significant association of GH2 rs2006123 with height (recessive model: AA-homozygote effect: beta (SE) = 1.26 (0.46), P = 5.90 × 10⁻³; additive model: A-allele effect: beta (SE) = 0.45 (0.18), P = 1.40 × 10⁻²). Among men (n = 1679), the association of the A-allele with taller stature remained significant after multiple-testing correction (additive effect: beta = 0.86 (0.28), P = 1.83 × 10⁻³). No association was detected with BMI. Notably, rs2006123 was in strong LD (r² ≥ 0.87) with SNPs significantly associated with height (rs2665838, rs7209435, rs11658329) and mapped near GH2 in three independent meta-analyses of GWA studies. This is the first study demonstrating a link between a placental gene variant and programming of growth potential in adulthood. The detected association between PGH encoding GH2 and adult height promotes further research on the role of placental genes in prenatal programming of human metabolism. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Endocrine diseases in dogs and cats: similarities and differences with endocrine diseases in humans.
Rijnberk, Ad; Kooistra, Hans S; Mol, Jan A
2003-08-01
Over several millennia, humans have created hundreds of dog and cat breeds by selective breeding, including fixation of mutant genes. The domestic dog is unique in the extent of its variation in height, weight and shape as well as its behavior. It is primarily the relatively long persistence of high levels of growth hormone (GH) release at a young age that accounts for the large body size in giant breeds of dogs. Several of the endocrine diseases of humans are also known to occur as similar entities in dogs and cats. With some variations, this is true for conditions such as diabetes mellitus and the hypofunction syndromes of the thyroid and adrenal cortex. Also, the hyperfunction syndromes of hypercortisolism and hyperparathyroidism in dogs and cats have many similarities with their human counterparts. The exception seems to be Graves' disease. This condition, which is due to production of thyroid-stimulating hormone (TSH)-receptor antibodies, has not been observed in dogs and cats. The very common form of hyperthyroidism in cats is due to toxic adenomas. In the 1980s it was discovered that in dogs exogenous progestins and endogenous progesterone can induce GH excess. This GH excess originates form the mammary gland and may give rise to acromegaly and insulin resistance. GH production by the mammary gland is not unique to the dog. It has become clear that cats and humans also express the GH gene in the mammary gland. There is increasing evidence that this locally produced GH not only plays a role in the morphologic changes of the mammary gland associated with the ovarian cycle and gestation, but that it is also involved in the development of breast cancer. In dogs, induction of mammary GH production by progestin administration allows for treatment of GH deficiency.
NASA Astrophysics Data System (ADS)
Huijuan, L.
2015-12-01
Based on the observed hourly meterological data, atmospheric composition data, and the Micro-Pulse Lidar (MPL) detecting data over Suzhou during 2010 to 2014, this study concentrates on revealing the characteristics of haze weather and the atmospheric boundary layer height during the periods with different category of haze over Suzhou. The main results are shown as follows: The haze frequency over Suzhou is 30.9% with the frequency of 18% for the slight haze, 7.8% for the light haze, 3.1% for the moderate haze and 2.0% for the heavy haze. The haze frequency shows an obvious diurnal variation with a peak (valley) value at the local solar time around 08:00~09:00 am (14:00~16:00pm).The haze happens much more frequent in nighttime than in daytime. The atmospheric boundary layer height (ABLH) associated with haze also shows a clear diurnal variation. The mean ABLH over Suzhou during the period of haze is more (less) than 1000m (500m) in daytime (nighttime). Meanwhile, the ABLH during the period of haze is higher in summer than in winter. In addition, the mean ABLH during the period without (with) haze is around 700m (500m) in winter. The diurnal variation of the ABLH during the period of moderate to heavy haze in winter ranges from 350m to 500m, which is less than the winter mean ABLH by 50~150m. KEY WORDS: Micro-Pulse Lidar; haze frequency; moderate and heavy haze;atmospheric boundary layer height
Heaton, Chase M; Goldberg, Andrew N; Pletcher, Steven D; Glastonbury, Christine M
2012-07-01
Anatomic variations in skull base anatomy may predispose the surgeon to inadvertent skull base injury with resultant cerebrospinal fluid (CSF) leak during functional endoscopic sinus surgery (ESS). Our objective was to compare preoperative sinus imaging of patients who underwent FESS with and without CSF leak to elucidate these variations. In this retrospective case-control study, 18 patients with CSF leak following FESS for chronic rhinosinusitis (CRS) from 2000 to 2011 were compared to 18 randomly selected patients who underwent preoperative imaging for FESS for CRS. Measurements were obtained from preoperative computed tomography images with specific attention to anatomic differences in cribriform plate and ethmoid roof heights in the coronal plane, and the skull base angle in the sagittal plane. Mean values of measured variables were compared using a nonparametric Mann-Whitney test. When compared to controls, patients with CSF leak demonstrated a greater angle of the skull base in the sagittal plane (P < .001) and a greater slope of the skull base in the coronal plane (P < .006). A lower cribriform height relative to ethmoid roof height was also noted in cases of CSF leak as compared to controls (P < .04). A steep skull base angle in the sagittal plane, a greater slope of the skull base in the coronal plane, and a low cribriform height relative to the ethmoid roof predispose the patient to CSF leak during FESS. Preoperative review of imaging with specific attention paid to these anatomic variations may help to prevent iatrogenic CSF leak. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir.
G.R. Johnson; B.L. Gartner
2006-01-01
Douglas-fir trees from 39 open-pollinated families at four test locations were assessed to estimate heritability of modulus of elasticity (MOE) and basic density. Heritability estimates of MOE (across-site h = 0.55) were larger than those for total height (0.15) and diameter at breast height (DBH; 0.29), and similar to those for density (0.59)....
ERIC Educational Resources Information Center
Shin, Heeju
2007-01-01
In developing countries, height and weight are good indicators of children's health and nutritional status. Maternal education has been accepted as one of the most important influences on child health. Using the 2000 Demographic and Health Survey of Peru, however, I find that the effect of maternal education varies as a function of region. In the…
Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina
Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John w. Edwards; Gary F. McCracken
2005-01-01
We conipared bat activity levels in the Coaslal Plain of South Carolina atnong 5 habitat types: forested riparian areas, clearcuts, young pine plantations, ature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 mj in each habitat type. Variation in...
Addressing FinFET metrology challenges in 1X node using tilt-beam CD-SEM
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxiao; Zhou, Hua; Ge, Zhenhua; Vaid, Alok; Konduparthi, Deepasree; Osorio, Carmen; Ventola, Stefano; Meir, Roi; Shoval, Ori; Kris, Roman; Adan, Ofer; Bar-Zvi, Maayan
2014-04-01
At 1X node, 3D FinFETS raise a number of new metrology challenges. Gate height and fin height are two of the most important parameters for process control. At present there is a metrology gap in inline in-die measurement of these parameters. In order to fill this metrology gap, in-column beam tilt has been developed and implemented on Applied Materials V4i+ top-down CD-SEM for height measurement. A low tilt (5°) beam and a high tilt (14°) beam have been calibrated to obtain two sets of images providing measurement of sidewall edge width to calculate height in the host. Evaluations are done with applications in both gate height and fin height. TEM correlation with R2 being 0.89 and precision of 0.81nm have been achieved on various in-die features in gate height application. Fin height measurement shows less accuracy (R2 being 0.77) and precision (1.49 nm) due to challenges brought by fin geometry, yet still promising as first attempt. Sensitivity to DOE offset, die-to-die and in-die variation is demonstrated in both gate height and fin height. Process defect is successfully captured from inline wafers with gate height measurement implemented in production. This is the first successful demonstration of inline in-die gate height measurement for 14nm FinFET process control.
Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs
Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano
2016-01-01
Absract The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects. PMID:27847394
Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian
2016-07-16
The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.
Paleobiology and comparative morphology of a late Neandertal sample from El Sidron, Asturias, Spain.
Rosas, Antonio; Martínez-Maza, Cayetana; Bastir, Markus; García-Tabernero, Antonio; Lalueza-Fox, Carles; Huguet, Rosa; Ortiz, José Eugenio; Julià, Ramón; Soler, Vicente; de Torres, Trinidad; Martínez, Enrique; Cañaveras, Juan Carlos; Sánchez-Moral, Sergio; Cuezva, Soledad; Lario, Javier; Santamaría, David; de la Rasilla, Marco; Fortea, Javier
2006-12-19
Fossil evidence from the Iberian Peninsula is essential for understanding Neandertal evolution and history. Since 2000, a new sample approximately 43,000 years old has been systematically recovered at the El Sidrón cave site (Asturias, Spain). Human remains almost exclusively compose the bone assemblage. All of the skeletal parts are preserved, and there is a moderate occurrence of Middle Paleolithic stone tools. A minimum number of eight individuals are represented, and ancient mtDNA has been extracted from dental and osteological remains. Paleobiology of the El Sidrón archaic humans fits the pattern found in other Neandertal samples: a high incidence of dental hypoplasia and interproximal grooves, yet no traumatic lesions are present. Moreover, unambiguous evidence of human-induced modifications has been found on the human remains. Morphologically, the El Sidrón humans show a large number of Neandertal lineage-derived features even though certain traits place the sample at the limits of Neandertal variation. Integrating the El Sidrón human mandibles into the larger Neandertal sample reveals a north-south geographic patterning, with southern Neandertals showing broader faces with increased lower facial heights. The large El Sidrón sample therefore augments the European evolutionary lineage fossil record and supports ecogeographical variability across Neandertal populations.
Le, Pichon Alexis; Garcés, Milton; Blanc, Elisabeth; Barthélémy, Maud; Drob, Doug P
2002-01-01
Infrasonic signals generated by daily supersonic Concorde flights between North America and Europe have been consistently recorded by an array of microbarographs in France. These signals are used to investigate the effects of atmospheric variability on long-range sound propagation. Statistical analysis of wave parameters shows seasonal and daily variations associated with changes in the wind structure of the atmosphere. The measurements are compared to the predictions obtained by tracing rays through realistic atmospheric models. Theoretical ray paths allow a consistent interpretation of the observed wave parameters. Variations in the reflection level, travel time, azimuth deviation and propagation range are explained by the source and propagation models. The angular deviation of a ray's azimuth direction, due to the seasonal and diurnal fluctuations of the transverse wind component, is found to be approximately 5 degrees from the initial launch direction. One application of the seasonal and diurnal variations of the observed phase parameters is the use of ground measurements to estimate fluctuations in the wind velocity at the reflection heights. The simulations point out that care must be taken when ascribing a phase velocity to a turning height. Ray path simulations which allow the correct computation of reflection heights are essential for accurate phase identifications.
Jarvis, Joseph P.; Ferwerda, Bart; Froment, Alain; Bodo, Jean-Marie; Beggs, William; Hoffman, Gabriel; Mezey, Jason; Tishkoff, Sarah A.
2012-01-01
African Pygmy groups show a distinctive pattern of phenotypic variation, including short stature, which is thought to reflect past adaptation to a tropical environment. Here, we analyze Illumina 1M SNP array data in three Western Pygmy populations from Cameroon and three neighboring Bantu-speaking agricultural populations with whom they have admixed. We infer genome-wide ancestry, scan for signals of positive selection, and perform targeted genetic association with measured height variation. We identify multiple regions throughout the genome that may have played a role in adaptive evolution, many of which contain loci with roles in growth hormone, insulin, and insulin-like growth factor signaling pathways, as well as immunity and neuroendocrine signaling involved in reproduction and metabolism. The most striking results are found on chromosome 3, which harbors a cluster of selection and association signals between approximately 45 and 60 Mb. This region also includes the positional candidate genes DOCK3, which is known to be associated with height variation in Europeans, and CISH, a negative regulator of cytokine signaling known to inhibit growth hormone-stimulated STAT5 signaling. Finally, pathway analysis for genes near the strongest signals of association with height indicates enrichment for loci involved in insulin and insulin-like growth factor signaling. PMID:22570615
Topside Ionospheric Response to Solar EUV Variability
NASA Astrophysics Data System (ADS)
Anderson, P. C.; Hawkins, J.
2015-12-01
We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.
NASA Astrophysics Data System (ADS)
Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel
2015-03-01
Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan
2016-08-01
Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.
Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.
Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran
2014-05-01
Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Sathyanadh, Anusha; Prabhakaran, Thara; Patil, Chetana; Karipot, Anandakumar
2017-10-01
Planetary boundary layer (PBL) height characteristics over the Indian sub-continent at diurnal to seasonal scales and its controlling factors in relation to monsoon are investigated. The reanalysis (Modern Era Retrospective analysis for Research and Applications, MERRA) PBL heights (PBLH) used for the study are validated against those derived from radiosonde observations and radio occultation air temperature and humidity profiles. The radiosonde observations include routine India Meteorological Department observations at two locations (coastal and an inland) for one full year and campaign based early afternoon radiosonde observations at six inland locations over the study region for selected days from May-September 2011. The temperature and humidity profiles from radio occultations spread over the sub-continent at irregular timings during the year 2011. The correlations and root mean square errors are in the range 0.74-0.83 and 407 m-643 m, respectively. Large pre-monsoon, monsoon and post-monsoon variations in PBL maximum height (1000 m-4000 m), time of occurrence of maximum height (11:00 LST-17:00 LST) and growth rate (100 to 400 m h- 1) are noted over the land, depending on geographical location and more significantly on the moisture availability which influences the surface sensible and latent heat fluxes. The PBLH variations associated with active-break intra-seasonal monsoon oscillations are up to 1000 m over central Indian locations. Inter relationship between the PBLH and the controlling factors, i.e. Evaporative Fraction, net radiation, friction velocity, surface Richardson number, and scalar diffusivity fraction, show significant variation between dry and wet PBL regimes, which also varies with geographical location. Evaporative fraction has dominant influence on the PBLH over the region. Enhanced entrainment during monsoon contributes to reduction in PBLH, whereas the opposite effect is noted during dry period. Linear regression, cross wavelet and Analysis of Variance (ANOVA) methods are used to elucidate the role of controlling factors and interactions on PBLH in relation to monsoon.
Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu
2017-01-01
Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests. Copyright © 2016 Elsevier B.V. All rights reserved.
Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François
2015-10-01
Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the Δh-Δc allocation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lu, Zeqin; Jhoja, Jaspreet; Klein, Jackson; Wang, Xu; Liu, Amy; Flueckiger, Jonas; Pond, James; Chrostowski, Lukas
2017-05-01
This work develops an enhanced Monte Carlo (MC) simulation methodology to predict the impacts of layout-dependent correlated manufacturing variations on the performance of photonics integrated circuits (PICs). First, to enable such performance prediction, we demonstrate a simple method with sub-nanometer accuracy to characterize photonics manufacturing variations, where the width and height for a fabricated waveguide can be extracted from the spectral response of a racetrack resonator. By measuring the spectral responses for a large number of identical resonators spread over a wafer, statistical results for the variations of waveguide width and height can be obtained. Second, we develop models for the layout-dependent enhanced MC simulation. Our models use netlist extraction to transfer physical layouts into circuit simulators. Spatially correlated physical variations across the PICs are simulated on a discrete grid and are mapped to each circuit component, so that the performance for each component can be updated according to its obtained variations, and therefore, circuit simulations take the correlated variations between components into account. The simulation flow and theoretical models for our layout-dependent enhanced MC simulation are detailed in this paper. As examples, several ring-resonator filter circuits are studied using the developed enhanced MC simulation, and statistical results from the simulations can predict both common-mode and differential-mode variations of the circuit performance.
Courtiol, Alexandre; Ferdy, Jean Baptiste; Godelle, Bernard; Raymond, Michel; Claude, Julien
2010-05-01
Many studies use representations of human body outlines to study how individual characteristics, such as height and body mass, affect perception of body shape. These typically involve reality-based stimuli (e.g., pictures) or manipulated stimuli (e.g., drawings). These two classes of stimuli have important drawbacks that limit result interpretations. Realistic stimuli vary in terms of traits that are correlated, which makes it impossible to assess the effect of a single trait independently. In addition, manipulated stimuli usually do not represent realistic morphologies. We describe and examine a method based on elliptic Fourier descriptors to automatically predict and represent body outlines for a given set of predicted variables (e.g., sex, height, and body mass). We first estimate whether these predictive variables are significantly related to human outlines. We find that height and body mass significantly influence body shape. Unlike height, the effect of body mass on shape differs between sexes. Then, we show that we can easily build a regression model that creates hypothetical outlines for an arbitrary set of covariates. These statistically computed outlines are quite realistic and may be used as stimuli in future studies.
Kobluk, C N; Schnurr, D; Horney, F D; Sumner-Smith, G; Willoughby, R A; Dekleer, V; Hearn, T C
1989-01-01
High-speed cinematography with computer aided analysis was used to study equine hindlimb kinematics. Eight horses were filmed at the trot or the pace. Filming was done from the side (lateral) and the back (caudal). Parameters measured from the lateral filming included the heights of the tuber coxae and tailhead, protraction and retraction of the hoof and angular changes of the tarsus and stifle. Abduction and adduction of the limb and tarsal height changes were measured from the caudal filming. The maximum and minimum values plus the standard deviations and coefficients of variations are presented in tabular form. Three gait diagrams were constructed to represent stifle angle versus tarsal angle, metatarsophalangeal height versus protraction-retraction (fetlock height diagram) and tuber coxae and tailhead height versus stride (pelvic height diagram). Application of the technique to the group of horses revealed good repeatability of the gait diagrams within a limb and the diagrams appeared to be sensitive indicators of left/right asymmetries.
A weighted-means ordination of riparian birds in southeastern Wyoming
Deborah M. Finch
1985-01-01
Variation among habitat associations of 31 riparian bird species in southeastern Wyoming was analyzed using a weighted-means ordination. Three principal components explained 86.7% of the variation among habitat associations of bird species. The components showed high positive loadings for variables associated with canopy, shrub size, and vegetation height.
Height growth of ponderosa pine progenies
R. Z. Callaham; A. A. Hasel
1957-01-01
Research at the Institute of Forest Genetics at Plaeerville, California since its inception in 1925, has been concerned with the variation in individual trees of a speices. We are interested in this variation as a guide to selection of outstanding individuals. Western forests have considerable diversity in soils, topography, species composition, and distribution of age...
Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi
2006-07-01
Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
NASA Technical Reports Server (NTRS)
Mulugeta, Lealem; Chappell, Steven P.
2009-01-01
Drawing from the experiences of the Apollo missions, it is evident that the off nominal center of gravity (CG) induced by the portable life support system (PLSS) had significant impact on the locomotion stability of the crew. This in turn is believed to have been a major contributor to the high numbers of falls and high metabolic rates experienced by the crew, and thus significantly hampered the crew s performance. With this in mind, the EVA Physiology, Systems and Performance (EPSP) group at the NASA Johnson Space Center (JSC) has been conducting tests to assess how spacesuit CG location impacts human performance in simulated lunar and Mars gravity. The results acquired to date show correlations between CG location and performance. However, noticeable variations in the performance data have been observed across subjects for fixed CG configurations. Consequently, it was hypothesized that this variability may be attributed to the anthropometrics of the different test subjects. It was further hypothesized that trunk-to-height ratio (THR) may be directly correlated to performance in reduced gravity; i.e. subjects with increased THR may have increased performance. To test this hypothesis, lunar and Mars gravity test data acquired over three years during NASA Neural Buoyancy Lab (NBL) tests and NASA Extreme Environment Missions Operation (NEEMO) missions were analyzed against THR, height, trunk length, and subject body mass/weight. The results of the study supported the hypothesis relating THR and performance, while the other three anthropometric parameters did not provide consistent correlations with performance. This in turn suggests that human performance in reduced gravity may be more dependent on anthropometric proportions than on body segment lengths and mass/weight.
Lewis Jordon; Rechum Re; Daniel B. Hall; Alexander Clark; Richard F. Daniels
2006-01-01
The effect of height and physiographic region on whole disk cross-sectional microfibril angle (CSMFA) in loblolly pine (Pinus raeda L.) in the southern United States was evaluated. Whole disk CSMFA was determined at 1.4, 4.6, 7.6, 10.7, and 13.7 m up the stem of 59 trees, representing five physiographic regions. A mixed-effects analysis of variance was performed to...
F. Antony; L. R. Schimleck; R. F. Daniels; Alexander Clark; D. B. Hall
2010-01-01
Loblolly pine (Pinus taeda L.) is a major plantation species grown in the southern United States, producing wood having a multitude of uses including pulp and lumber production. Specific gravity (SG) is an important property used to measure the quality of wood produced, and it varies regionally and within the tree with height and radius. SG at different height levels...
1993-04-14
flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion
Height perception influenced by texture gradient.
Tozawa, Junko
2012-01-01
Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.
Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L
2018-01-01
An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.
Roberts, Patrick; Blumenthal, Scott A; Dittus, Wolfgang; Wedage, Oshan; Lee-Thorp, Julia A
2017-06-01
Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ 13 C), nitrogen (δ 15 N), and oxygen (δ 18 O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ 13 C and δ 18 O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ 15 N of measured plants. While the plant part effect is particularly pronounced in δ 13 C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ 13 C and δ 18 O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Anzenhofer, M.; Gruber, T.
1998-04-01
Global mean sea level observations are necessary to answer the urgent questions about climate changes and their impact on socio-economy. At GeoForschungsZentrum/Geman Processing and Archiving Facility ERS altimeter data is used to systematically generate geophysical products such as sea surface topography, high-resolution geoid and short- and long-period sea surface height models. On the basis of this experience, fully reprocessed ERS-1 altimeter data is used to generated a time series of monthly sea surface height models from April 1992 to April 1995. The reprocessing consists of improved satellite ephemerides, merging of Grenoble tidal model, and application of range corrections due to timing errors. With the new data set the TOPEX/POSEIDON prelaunch accuracy requirements are fulfilled. The 3-year time series is taken to estimate the rate of change of global mean sea level. A careful treatment of seasonal effects is considered. A masking of continents, sea ice, and suspect sea surface heights is chosen that is common for all sea surface height models. The obtained rate of change is compared to external results from tide gauge records and TOPEX/POSEIDON data. The relation of sea level changes and sea surface temperature variations is examined by means of global monthly sea surface temperature maps. Both global wind speed and wave height maps are investigated and correlated with sea surface heights and sea surface temperatures in order to find other indicators of climate variations. The obtained rate of changes of the various global maps is compared to an atmospheric CO2 anomaly record, which is highly correlated to El Niño events. The relatively short period of 3 years, however, does not allow definite conclusions with respect to possible long-term climate changes.
Dynamical behavior of the correlation between meteorological factors
NASA Astrophysics Data System (ADS)
You, Cheol-Hwan; Chang, Ki-Ho; Lee, Jun-Ho; Kim, Kyungsik
2017-12-01
We study the temporal and spatial variation characteristics of meteorological factors (temperature, humidity, and wind velocity) at a meteorological tower located on Bosung-gun of South Korea. We employ the detrended cross-correlation analysis (DCCA) method to extract the overall tendency of the hourly variation from data of meteorological factors. The relationships between meteorological factors are identified and quantified by using DCCA coefficients. From our results, we ascertain that the DCCA coefficient between temperature and humidity at time lag m = 24 has the smallest value at the height of 10 m of the measuring tower. Particularly, the DCCA coefficient between temperature and wind speed at time lag m = 24 has the largest value at a height of 10 m of the measuring tower
NASA Technical Reports Server (NTRS)
Shiau, Jyh-Jen; Wahba, Grace; Johnson, Donald R.
1986-01-01
A new method, based on partial spline models, is developed for including specified discontinuities in otherwise smooth two- and three-dimensional objective analyses. The method is appropriate for including tropopause height information in two- and three-dimensinal temperature analyses, using the O'Sullivan-Wahba physical variational method for analysis of satellite radiance data, and may in principle be used in a combined variational analysis of observed, forecast, and climate information. A numerical method for its implementation is described and a prototype two-dimensional analysis based on simulated radiosonde and tropopause height data is shown. The method may also be appropriate for other geophysical problems, such as modeling the ocean thermocline, fronts, discontinuities, etc.
Unification of height systems in the frame of GGOS
NASA Astrophysics Data System (ADS)
Sánchez, Laura
2015-04-01
Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.
The relationship between nephron number, kidney size and body weight in two inbred mouse strains.
Murawski, Inga J; Maina, Rita W; Gupta, Indra R
2010-01-01
While some reports in humans have shown that nephron number is positively correlated with height, body weight or kidney weight, other studies have not reproduced these findings. To understand the impact of genetic and environmental variation on these relationships, we examined whether nephron number correlates with body weight, kidney planar surface area, or kidney weight in two inbred mouse strains with contrasting kidney sizes but no overt renal pathology: C3H/HeJ and C57BL/6J. C3H/HeJ mice had smaller kidneys at birth and larger kidneys by adulthood, however there was no significant difference in nephron number between the two strains. We did observe a correlation between kidney size and body weight at birth and at adulthood for both strains. However, there was no relationship between nephron number and body weight or between nephron number and kidney size. From other studies, it appears that a greater than two-fold variation is required in each of these parameters in order to demonstrate these relationships, suggesting they are highly dependent on scale. Our results are therefore not surprising since there was a less than two-fold variation in each of the parameters examined. In summary, the relationship between nephron number and body or kidney size is most likely to be demonstrated when there is greater phenotypic variation either from genetic and/or environmental factors.
Genetic Variants Related to Height and Risk of Atrial Fibrillation
Rosenberg, Michael A.; Kaplan, Robert C.; Siscovick, David S.; Psaty, Bruce M.; Heckbert, Susan R.; Newton-Cheh, Christopher; Mukamal, Kenneth J.
2014-01-01
Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥65 years) enrolled in 1989–1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10−8). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. PMID:24944287
Variation of facial features among three African populations: Body height match analyses.
Taura, M G; Adamu, L H; Gudaji, A
2017-01-01
Body height is one of the variables that show a correlation with facial craniometry. Here we seek to discriminate the three populations (Nigerians, Ugandans and Kenyans) using facial craniometry based on different categories of body height of adult males. A total of 513 individuals comprising 234 Nigerians, 169 Ugandans and 110 Kenyans with mean age of 25.27, s=5.13 (18-40 years) participated. Paired and unpaired facial features were measured using direct craniometry. Multivariate and stepwise discriminate function analyses were used for differentiation of the three populations. The result showed significant overall facial differences among the three populations in all the body height categories. Skull height, total facial height, outer canthal distance, exophthalmometry, right ear width and nasal length were significantly different among the three different populations irrespective of body height categories. Other variables were sensitive to body height. Stepwise discriminant function analyses included maximum of six variables for better discrimination between the three populations. The single best discriminator of the groups was total facial height, however, for body height >1.70m the single best discriminator was nasal length. Most of the variables were better used with function 1, hence, better discrimination than function 2. In conclusion, adult body height in addition to other factors such as age, sex, and ethnicity should be considered in making decision on facial craniometry. However, not all the facial linear dimensions were sensitive to body height. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sanabria-Medina, Cesar; González-Colmenares, Gretel; Restrepo, Hadaluz Osorio; Rodríguez, Juan Manuel Guerrero
2016-09-01
Several authors who have discussed human variability and its impact on the forensic identification of bodies pose the need for regional studies documenting the global variation of the attributes analyzed osteological characteristics that aid in establishing biological profile (sex, ancestry, biological age and height). This is primarily accomplished by studying documented human skeletal collections in order to investigate secular trends in skeletal development and aging, among others in the Colombian population. The purpose of this paper is to disclose the details of the new "Contemporary Colombian Skeletal Reference Collection" that currently comprises 600 identified skeletons of both sexes, who died between 2005 and 2008; and which contain information about their cause of death. This collection has infinite potential for research, open to the national and international community, and still has pending opportunities to address a variety of topics such as studies on osteopathology, bone trauma and taphonomic studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tidally modulated eruptions on Enceladus: Cassini ISS observations and models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimmo, Francis; Porco, Carolyn; Mitchell, Colin, E-mail: carolyn@ciclops.org
2014-09-01
We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion;more » (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.« less
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix
2018-06-01
A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.
Shiyan, Huang; Xu, Qian; Shuhao, Xu; Nanquan, Rao; Xiaobing, Li
2016-05-01
To determine the effect of varying the transverse cant of the anterior teeth on orthodontists' and laypeople's perceptions of smile aesthetics, and the influence that smile height has on this perception. A 20-year-old Chinese female with an aesthetic smile and normal occlusion was chosen and agreed to participate. Digital pictures of her posed smile were taken and manipulated to create three smile height variations: low, medium, or high. Each variation was further manipulated to create varying degrees of transverse anterior tooth cant. Fifty-six laypeople and 40 orthodontists participated as raters of the dental and facial impact of the altered smile images. The orthodontists more commonly and precisely identified the transverse cants of the anterior teeth and the detracting influence on smile aesthetics compared with laypersons. The orthodontists accepted a lesser range of anterior transverse cant. Increased smile heights enhanced the capability of all raters to detect a transverse cant and reduced the acceptable cant range. In addition, an increased smile height worsened the detracting effects of the transverse anterior cant in all raters' perceptions of smile aesthetics. An increased display of teeth and angulation of an anterior cant increased the ability of raters in both groups to detect differences. Transverse cants of anterior teeth can affect orthodontists' and laypeople's perceptions of smile aesthetics. Smile height and incisor display were significant factors that affected the orthodontist's and layperson's perceptions of smile aesthetics, and suggested that a description of the detracting effect of an anterior transverse cant should also consider smile height. A transverse occlusal cant is an important aesthetic factor used by clinicians during orthodontic diagnosis and review. It is important to appreciate that there is a difference in perception between orthodontic professionals and patients (laypeople). The extent of this perceptual difference and influencing factors could help the clinician set more appropriate treatment goals.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean
NASA Technical Reports Server (NTRS)
Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.
Geographical variation in relationships between parental body size and offspring phenotype at birth
Leary, Sam; Fall, Caroline; Osmond, Clive; Lovel, Hermione; Campbell, Doris; Eriksson, Johan; Forrester, Terrence; Godfrey, Keith; Hill, Jacqui; Jie, Mi; Law, Catherine; Newby, Rachel; Robinson, Sian; Yajnik, Chittaranjan
2009-01-01
Background Size and body proportions at birth are partly determined by maternal body composition, but most studies of mother-baby relationships have only considered the effects of maternal height and weight on offspring birthweight, and few have examined the size of effects. Paternal size and body composition also play a role, primarily through the fetal genome, although few studies have investigated relationships with neonatal phenotype. Methods Data from the UK, Finland, India, Sri Lanka, China, DR Congo, Nigeria and Jamaica were used to investigate the effects of maternal measures including estimates of muscle and fat (derived at 30-weeks gestation, N=16 418), and also paternal size (N=3 733) on neonatal phenotype, for singleton, liveborn, term births. Results After accounting for variation in maternal size and shape across populations, differences in neonatal phenotype were markedly reduced. Mother-baby relationships were similar across populations, although some were stronger in developing countries. Maternal height was generally the strongest predictor of neonatal length, maternal head circumference of neonatal head circumference, and maternal skinfold thickness of neonatal skinfolds. Relationships with maternal arm muscle area were generally weak. Data from fathers were limited to height and body mass index, but when compared with maternal height and body mass index, paternal effects were weaker in most studies. Conclusions Differences in maternal body composition account for a large part of the geographical variation in neonatal phenotype. The size of the effects of all maternal measures on neonatal phenotype suggests that nutrition at every stage of the mother's life cycle may influence fetal growth. Further research is needed into father-baby relationships and the genetic mechanisms which influence fetal growth. PMID:16929411
Scholz, Timo; Zech, Astrid; Wegscheider, Karl; Lezius, Susanne; Braumann, Klaus-Michael; Sehner, Susanne; Hollander, Karsten
2017-09-01
Measurement of the medial longitudinal foot arch in children is a controversial topic, as there are many different methods without a definite standard procedure. The purpose of this study was to 1) investigate intraday and interrater reliability regarding dynamic arch index and static arch height, 2) explore the correlation between both arch indices, and 3) examine the variation of the medial longitudinal arch at two different times of the day. Eighty-six children (mean ± SD age, 8.9 ± 1.9 years) participated in the study. Dynamic footprint data were captured with a pedobarographic platform. For static arch measurements, a specially constructed caliper was used to assess heel-to-toe length and dorsum height. A mixed model was established to determine reliability and variation. Reliability was found to be excellent for the static arch height index in sitting (intraday, 0.90; interrater, 0.80) and standing positions (0.88 and 0.85) and for the dynamic arch index (both 1.00). There was poor correlation between static and dynamic assessment of the medial longitudinal arch (standing dynamic arch index, r = -0.138; sitting dynamic arch index, r = -0.070). Static measurements were found to be significantly influenced by the time of day (P < .001), whereas the dynamic arch index was unchanged (P = .845). This study revealed some further important findings. The static arch height index is influenced by gender (P = .004), whereas dynamic arch index is influenced by side (P = .011) and body mass index (P < .001). Dynamic and static foot measurements are reliable for medial longitudinal foot arch assessment in children. The variation of static arch measurements during the day has to be kept in mind. For clinical purposes, static and dynamic arch data should be interpreted separately.
Ulrich Kohnle; Sebastian Hein; Frank C. Sorensen; Aaron R. Weiskittel
2012-01-01
Provenance-specific variation in bark thickness in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is important for accurate volume calculations and might carry ecological implications as well. To investigate variation, diameter at breast height (dbh) and double bark thickness (dbt) were measured in 10 experiments in southwestern Germany (16...
Massart, Francesco; Bizzi, Martina; Baggiani, Angelo; Miccoli, Mario
2013-04-01
Patients with mutations or deletions of the SHOX gene present variable growth impairment, with or without mesomelic skeletal dysplasia. If untreated, short patients with SHOX haplodeficiency (SHOXD) remain short into adulthood. Although recombinant human growth hormone (rhGH) treatment improves short-term linear growth, there are episodic data on the final height of treated SHOXD subjects. After a thorough search of the published literature for pertinent studies, we undertook a meta-analysis evaluation of the efficacy and safety of rhGH treatment in SHOXD patients. In SHOXD patients, administration of rhGH progressively improved the height deficit from baseline to 24 months, although the major catch-up growth was detected after 12 months. The rhGH-induced growth appeared constant until final height. Our meta-analysis suggested rhGH therapy improves height outcome of SHOXD patients, though future studies using carefully titrated rhGH protocols are needed. Original submitted 29 October 2012; Revision submitted 22 February 2013.
Global effects of income and income inequality on adult height and sexual dimorphism in height.
Bogin, Barry; Scheffler, Christiane; Hermanussen, Michael
2017-03-01
Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Crunteanu, D. E.; Constantinescu, S. G.; Niculescu, M. L.
2013-10-01
The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. In contrast to these wind turbines, the Darrieus wind turbines are simpler and their price is lower. Unfortunately, their blades run at high variations of angles of attack, in stall and post-stall regimes, which can induce significant vibrations, fatigue and even the wind turbine failure. For this reason, the present paper deals with a blade with sine variation of chord length along the height because it has better behavior in stall and post-stall regimes than the classic blade with constant chord length.
NASA Astrophysics Data System (ADS)
Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars
2014-05-01
Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.
Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations
NASA Astrophysics Data System (ADS)
Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.
2018-02-01
We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.
Root and shoot responses of Taxodium distichum seedlings subjected to saline flooding
Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Luse, B.P.; DeBosier, A.S.
1999-01-01
Variation among progeny of five half-sib family collections of baldcypress (Taxodium distichum) from three freshwater and two brackish-water seed sources subjected to saline flooding was evaluated Mini-rhizotrons (slant tubes) were used to monitor root elongation for a period of 99 days. Salinity level produced significant effects across all baldcypress half-sib families, with root elongation averaging 1594.0, 956.8, and 382.1 mm, respectively, for the 0, 4, and 6 g l-1 treatments. Combined mean root elongation for families from brackish-water seed sources was greater (1236.7 mm) than for families from freshwater seed sources (794.6 mm). Considerable variation occurred at the highest salinity treatment, however, with one freshwater family maintaining more than 28% more root growth than the average of the two brackish-water collections. Hence, results indicate that short-term evaluation of root elongation at these salinity concentrations may not be a reliable method for salt tolerance screening of baldcypress. Species-level effects for height and diameter, which were measured at day 62, were significant for both parameters. Height increment in the control (7.4 cm), for example, was approximately five times greater than height increment in the 6 g l-1 salinity treatment (1.5 cm). Family-level variation was significant only for diameter, which had an incremental range of 0.2 to 1.5 mm across all salinity levels.
Crustal Movements and Gravity Variations in the Southeastern Po Plain, Italy
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wilmes, H.; Wziontek, H.
2014-12-01
At the Medicina observatory, in the southeastern Po Plain, in Italy, we have started a project of continuous GPS and gravity observations in mid 1996. The experiment, focused on a comparison between height and gravity variations, is still ongoing; these uninterrupted time series certainly constitute a most important data base to observe and estimate reliably long-period behaviors but also to derive deeper insights on the nature of the crustal deformation. Almost two decades of continuous GPS observations from two closely located receivers have shown that the coordinate time series are characterized by linear and non-linear variations as well as by sudden jumps. Both over long- and short-period time scales, the GPS height series show signals induced by different phenomena, for example, those related to mass transport in the Earth system. Seasonal effects are clearly recognizable and are mainly associated with the water table seasonal behavior. To understand and separate the contribution of different forcings is not an easy task; to this end, the information provided by the superconducting gravimeter observations and also by absolute gravity measurements offers a most important means to detect and understand mass contributions. In addition to GPS and gravity data, at Medicina, a number of environmental parameters time series are also regularly acquired, among them water table levels. We present the results of study investigating correlations between height, gravity and environmental parameters time series.
Spectra of Baroclinic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1996-01-01
Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.
Atmospheric pressure, density, temperature and wind variations between 50 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1972-01-01
Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.
Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments
NASA Astrophysics Data System (ADS)
Thurairajah, Brentha; Thomas, Gary E.; von Savigny, Christian; Snow, Martin; Hervig, Mark E.; Bailey, Scott M.; Randall, Cora E.
2017-09-01
Polar Mesospheric Cloud (PMC) observations from the Solar Occultation for Ice Experiment (SOFIE) and the Cloud Imaging and Particle Size (CIPS) experiment are used to investigate the response of PMCs to forcing associated with the 27-day solar rotation. We quantify the PMC response in terms of sensitivity values. Analysis of PMC data from 14 seasons indicate a large seasonal variability in sensitivity with both correlation and anti-correlation between PMC properties and Lyman-alpha irradiance for individual seasons. However, a superposed epoch analysis reveals the expected anti-correlation between variations in solar Lyman-alpha and variations in PMC ice water content, albedo, and frequency of occurrence. The PMC height is found to significantly correlate with 27-day variations in solar Lyman-alpha in the Southern Hemisphere (SH), but not in the Northern hemisphere (NH). Depending on instrument and property, the time lag between variations in PMC properties and solar Lyman-alpha ranges from 0 to 3 days in the NH and from 6 to 7 days in the SH. These hemispheric differences in PMC height and time lag are not understood, but it is speculated that they result from dynamical forcing that is controlled by the 27-day solar cycle.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402
NASA Astrophysics Data System (ADS)
Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.
2011-07-01
Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also been calculated with the 18 anthropometric phantoms. The results show that SAFs decrease with increasing height and increase with increasing body mass. The calculated data suggest that changes of the body mass may have a significant effect on equivalent doses, primarily for external exposure to organs and tissue located below the adipose tissue layer, while for superficial organs, for changes of height and for internal exposures the effects on equivalent dose are small to moderate.
Wilson, V.; Lefevre, C. E.; Morton, F. B.; Brosnan, S. F.; Paukner, A.; Bates, T. C.
2013-01-01
Personality has important links to health, social status, and life history outcomes (e.g. longevity and reproductive success). Human facial morphology appears to signal aspects of one’s personality to others, raising questions about the evolutionary origins of such associations (e.g. signals of mate quality). Studies in non-human primates may help to achieve this goal: for instance, facial width-to-height ratio (fWHR) in the male face has been associated with dominance not only in humans but also in capuchin monkeys. Here we test the association of personality (assertiveness, openness, attentiveness, neuroticism, and sociability) with fWHR, face width/lower-face height, and lower face/face height ratio in 64 capuchins (Sapajus apella). In a structural model of personality and facial metrics, fWHR was associated with assertiveness, while lower face/face height ratio was associated with neuroticism (erratic vs. stable behaviour) and attentiveness (helpfulness vs. distractibility). Facial morphology thus appears to associate with three personality domains, which may act as a signal of status in capuchins. PMID:24347756
Global and local Joule heating effects seen by DE 2
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Coley, W. R.
1988-01-01
In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.
Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery
NASA Technical Reports Server (NTRS)
Inomata, Yasushi; Feind, R. E.; Welch, R. M.
1996-01-01
A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.
Diversity of human lip prints: a collaborative study of ethnically distinct world populations.
Sharma, Namita Alok; Eldomiaty, Magda Ahmed; Gutiérrez-Redomero, Esperanza; George, Adekunle Olufemi; Garud, Rajendra Somnath; Sánchez-Andrés, Angeles; Almasry, Shaima Mohamed; Rivaldería, Noemí; Al-Gaidi, Sami Awda; Ilesanmi, Toyosi
2014-01-01
Cheiloscopy is a comparatively recent counterpart to the long established dactyloscopic studies. Ethnic variability of these lip groove patterns has not yet been explored. This study was a collaborative effort aimed at establishing cheiloscopic variations amongst modern human populations from four geographically and culturally far removed nations: India, Saudi Arabia, Spain and Nigeria. Lip prints from a total of 754 subjects were collected and each was divided into four equal quadrants. The patterns were classified into six regular types (A-F), while some patterns which could not be fitted into the regular ones were segregated into G groups (G-0, G-1, G-2). Furthermore, co-dominance of more than one pattern type in a single quadrant forced us to identify the combination (COM, G-COM) patterns. The remarkable feature noted after compilation of the data included pattern C (a bifurcate/branched prototype extending the entire height of the lip) being a frequent feature of the lips of all the populations studied, save for the Nigerian population in which it was completely absent and which showed a tendency for pattern A (a vertical linear groove) and a significantly higher susceptibility for combination (COM) patterns. Chi-square test and correspondence analysis applied to the frequency of patterns appearing in the defined topographical areas indicated a significant variation for the populations studied.
Kinematic Analysis of Four Plyometric Push-Up Variations
MOORE, LAURA H.; TANKOVICH, MICHAEL J.; RIEMANN, BRYAN L.; DAVIES, GEORGE J.
2012-01-01
Plyometric research in the upper extremity is limited, with the effects of open-chain plyometric exercises being studied most. Kinematic and ground reaction force data concerning closed-chain upper extremity plyometrics has yet to be examined. Twenty-one recreationally active male subjects performed four variations of plyometric push-ups in a counterbalanced order. These included box drop push-ups from 3.8 cm, 7.6 cm, 11.4 cm heights, and clap push-ups. Kinematics of the trunk, dominant extremity and both hands were collected to examine peak flight, elbow flexion at ground contact, elbow displacement, and hand separation. Additionally peak vertical ground reaction force was measured under the dominant extremity. The 11.4 cm and clap push-ups had significantly higher peak flight than the other variations (P<.001). At ground contact, the elbow was in significantly greater flexion for the 3.8 cm and clap push-up compared to the other variations (P<.001). The clap push-up had significantly more elbow displacement than the other variations (P<.001) while hand separation was not significantly different between variations (P=.129). Peak vertical ground reaction force was significantly greater for the clap push-ups than for all other variations (P< .001). Despite similar flight heights between the 11.4 cm and clap push-ups, the greater peak vertical ground reaction force and elbow displacement of the clap push-ups indicates the clap push-up is the most intense of the variations examined. Understanding the kinematic variables involved will aid in the creation of a closed chain upper-extremity plyometric progression. PMID:27182390
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.
2002-05-01
Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can largely be attributed to enhanced growth of the forest. The uncertainties are large because the record is short relative to boreal carbon residence time. There is also a possibility of long-term changes in the mixed layer dynamics which affect the diurnal variation pattern at the measurement height.
2018-01-01
Reports an error in "Facing Humanness: Facial Width-to-Height Ratio Predicts Ascriptions of Humanity" by Jason C. Deska, E. Paige Lloyd and Kurt Hugenberg ( Journal of Personality and Social Psychology , Advanced Online Publication, Aug 28, 2017, np). In the article, there is a data error in the Results section of Study 1c. The fourth sentence of the fourth paragraph should read as follows: High fWHR targets (M= 74.39, SD=18.25) were rated as equivalently evolved as their low fWHR counterparts (M=79.39, SD=15.91). (The following abstract of the original article appeared in record 2017-36694-001.) The ascription of mind to others is central to social cognition. Most research on the ascription of mind has focused on motivated, top-down processes. The current work provides novel evidence that facial width-to-height ratio (fWHR) serves as a bottom-up perceptual signal of humanness. Using a range of well-validated operational definitions of humanness, we provide evidence across 5 studies that target faces with relatively greater fWHR are seen as less than fully human compared with their relatively lower fWHR counterparts. We then present 2 ancillary studies exploring whether the fWHR-to-humanness link is mediated by previously established fWHR-trait links in the literature. Finally, 3 additional studies extend this fWHR-humanness link beyond measurements of humanness, demonstrating that the fWHR-humanness link has consequences for downstream social judgments including the sorts of crimes people are perceived to be guilty of and the social tasks for which they seem helpful. In short, we provide evidence for the hypothesis that individuals with relatively greater facial width-to-height ratio are routinely denied sophisticated, humanlike minds. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Molecular genetic variation in whitebark pine (Pinus albicaulis Engelm.) in the Inland West
Mary F. Mahalovich; Valerie D. Hipkins
2011-01-01
Levels of genetic variation within and among 163 individual- tree collections and one bulk lot of whitebark pine were estimated using isozymes, mitochondrial DNA and chloroplast DNA; 79 of the samples are also part of a common garden study evaluating survival, rust resistance, late winter cold hardiness, and early height-growth. Within the species, 100 percent of the...
A continuous scale-space method for the automated placement of spot heights on maps
NASA Astrophysics Data System (ADS)
Rocca, Luigi; Jenny, Bernhard; Puppo, Enrico
2017-12-01
Spot heights and soundings explicitly indicate terrain elevation on cartographic maps. Cartographers have developed design principles for the manual selection, placement, labeling, and generalization of spot height locations, but these processes are work-intensive and expensive. Finding an algorithmic criterion that matches the cartographers' judgment in ranking the significance of features on a terrain is a difficult endeavor. This article proposes a method for the automated selection of spot heights locations representing natural features such as peaks, saddles and depressions. A lifespan of critical points in a continuous scale-space model is employed as the main measure of the importance of features, and an algorithm and a data structure for its computation are described. We also introduce a method for the comparison of algorithmically computed spot height locations with manually produced reference compilations. The new method is compared with two known techniques from the literature. Results show spot height locations that are closer to reference spot heights produced manually by swisstopo cartographers, compared to previous techniques. The introduced method can be applied to elevation models for the creation of topographic and bathymetric maps. It also ranks the importance of extracted spot height locations, which allows for a variation in the size of symbols and labels according to the significance of represented features. The importance ranking could also be useful for adjusting spot height density of zoomable maps in real time.
Medium, Long and Very Long Wave Propagation (at Frequencies Less than 3000 kHz)
1982-02-01
height profile ua variation of VAl (16klh) phase height of for 60 0 N latitude. reflection for the Rugby -Cambridge transmission in December and July...Electron Precipitation Associated with Substorms" EOS, Trans. Am. Geophys. Union , 62, 366, 1981. King, J. H., "Solar Proton Influences for 1977-1983... Rugby , Englqnd, when received on a submerged aerial on a submarine. These measurements are compared with similar measure- ment!; made above the sea
Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan
2016-01-01
This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests. PMID:27176218
Variation of z-height of the molecular clouds on the Galactic Plane
NASA Astrophysics Data System (ADS)
Lee, Y.; Stark, A. A.
2002-12-01
Using the Bell Laboratories Galactic plane in the J=1-0 transition of 13CO, (l, b) = (-5o to 117o, -1o to +1o), and cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature. Distance estimates to the identified clouds have been made with several criteria. Minimum and maximum distances to each identified cloud are determined from a set of all the possible distances of a cloud. Several physical parameters can be determined with distances, such as z-height [D sin (b)], CO luminosity, virial mass and so forth. We select the clouds with a ratio of maximum and minimum of CO luminosities less than 3. The number of selected clouds is 281 out of 1400 identified clouds with 1 K threshold temperature. These clouds are mostly located on the tangential positions in the inner Galaxy, and some are in the Outer Galaxy. It is found that the z-height of lower luminosity clouds (less massive clouds) is systimatically larger than that of high-luminosity clouds (more massive clouds). We claim that this is the first observational evidence of the z-height variation depending on the luminosities (or masses) of molecular clouds on the Galactic plane. Our results could be a basis explaining the formation mechanism of massive clouds, such as giant molecular clouds.
Singh, Minerva; Evans, Damian; Coomes, David A; Friess, Daniel A; Suy Tan, Boun; Samean Nin, Chan
2016-01-01
This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.
Sekiyama, Makiko; Roosita, Katrin; Ohtsuka, Ryutaro
2018-03-01
This study aimed to assess changes in physical growth and diets of school children in rural West Java, Indonesia, between 2001 and 2015, a period of rapid socioeconomic change. In 2001 and 2015, anthropometric measurements (height, weight, mid-upper arm circumference, skin-fold thickness), food consumption surveys, and questionnaires on socioeconomic status were completed by fourth-grade school children in a rural village in West Java. Height increments of 5.9 cm for boys and 4.7 cm for girls during this 14-year period were calculated as 4.21 cm per decade for boys and 3.36 cm per decade for girls, which is equivalent to height increments observed during rapid economic development periods in other countries. Weights also increased by 3.8 kg for boys and 2.0 kg for girls during this period. Variations in weight status significantly increased in 2015; while 98% of the children were within the 'normal' range in 2001, the prevalence of overweight increased from 2.4% in 2001 to 13.7% in 2015 and that of thinness was 4.3% in 2015. Energy, protein, and fat intakes significantly increased in 2015. In 2015, a significant correlation between nutritional intake and weight status was observed, especially among boys. Socioeconomic changes between 2001 and 2015 caused increased heights and weights and greater variation in weight status, especially among boys. © 2017 Wiley Periodicals, Inc.
Wang, Yongji; Wang, Jianjian; Lai, Liming; Jiang, Lianhe; Zhuang, Ping; Zhang, Lehua; Zheng, Yuanrun; Baskin, Jerry M; Baskin, Carol C
2014-01-01
Seed mass and morphology are plant life history traits that influence seed dispersal ability, seeding establishment success, and population distribution pattern. Southeastern Tibet is a diversity center for Rhododendron species, which are distributed from a few hundred meters to 5500 m above sea level. We examined intra- and interspecific variation in seed mass and morphology in relation to altitude, habitat, plant height, and phylogeny. Seed mass decreased significantly with the increasing altitude and increased significantly with increasing plant height among populations of the same species. Seed mass differed significantly among species and subsections, but not among sections and subgenera. Seed length, width, surface area, and wing length were significantly negative correlated with altitude and significantly positive correlated with plant height. Further, these traits differed significantly among habitats and varied among species and subsection, but not among sections and subgenera. Species at low elevation had larger seeds with larger wings, and seeds became smaller and the wings of seeds tended to be smaller with the increasing altitude. Morphology of the seed varied from flat round to long cylindrical with increasing altitude. We suggest that seed mass and morphology have evolved as a result of both long-term adaptation and constraints of the taxonomic group over their long evolutionary history. PMID:24963385
Separating Mass and Height Contributions in Gravity Variations at Medicina, Italy
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wziontek, H.
2016-12-01
During 1996, at the Medicina station, a GPS and a superconducting gravimeter (SG) were installed in the framework of an experiment focused on the comparison between height and gravity variations. Absolute gravity observations are also performed twice a year and environmental parameters, among others water table levels, are recorded continuously. The station is also equipped with a second GPS system, the two antennas are very close to each other, and both are located in close proximity to the VLBI dish. Two decades of continuous height and gravity observations are now available which allow investigating both long and short period signals and the relevant correlations between the two measured quantities. Long period signatures are observed, a principal component is due to subsidence which is well known to occur in the area; however, also non-linear long-period behaviors are observed. Seasonal effects are also clearly recognizable in the time series and are mainly associated with the water table seasonal behavior. The station is characterized by clayey soil which is subject to consolidation effects when the water table lowers during the summer period. This effect is particularly recognizable in the SG data since the instrument is installed on a shallow foundation pillar which may suffer for height decreases in the order of 2,5-3 cm for water table lowering of 2 m.
Kanawati, Andrew James
2014-11-01
Variations of the sciatic nerve anatomy and blood supply are complex and largely not dealt with in common anatomy texts. Variations of the sciatic nerve anatomy can be divided into the height of division of its branches, relation of the branches to the piriformis muscle, and its blood supply. These variations should be well known to any surgeon operating in this anatomical region. It is unknown whether these variations increase the risk of surgical injury and consequent morbidity. This paper will review the current knowledge regarding anatomical variations of the sciatic nerve and its blood supply. © 2014 Royal Australasian College of Surgeons.
Variations in thermospheric composition: A model based on mass-spectrometer and satellite-drag data
NASA Technical Reports Server (NTRS)
Jacchia, L. G.
1973-01-01
The seasonal-latitudinal and the diurnal variations of composition observed by mass spectrometers on the OGO 6 satellite are represented by two simple empirical formulae, each of which uses only one numerical parameter. The formulae are of a very general nature and predict the behavior of these variations at all heights and for all levels of solar activity; they yield a satisfactory representation of the corresponding variations in total density as derived from satellite drag. It is suggested that a seasonal variation of hydrogen might explain the abnormally low hydrogen densities at high northern latitudes in July 1964.
NASA Astrophysics Data System (ADS)
Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.
2017-07-01
Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.
Stereoscopic, thermal, and true deep cumulus cloud top heights
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.
2004-05-01
We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.
Agreement between different methods of measuring height in elderly patients.
Frid, H; Adolfsson, E Thors; Rosenblad, A; Nydahl, M
2013-10-01
The present study aimed to examine the agreement between measurements of standing height and self-reported height, height measured with a sliding caliper, and height estimated from either demispan or knee height in elderly patients. Fifty-five patients (mean age 79 years) at a Swedish hospital were included in this observational study. The participants' heights were evaluated as the standing height, self-reported height, height measured in a recumbent position with a sliding caliper, and height estimated from the demispan or knee height. The measurements made with a sliding caliper in the recumbent position agreed most closely with the standing height. Ninety-five percent of the individuals' differences from standing height were within an interval of +1.1 to -4.8 cm (limits of agreement). Self-reported height and height estimated from knee height differed relatively strongly from standing height. The limits of agreement were +5.2 to -9.8 cm and +9.4 to -6.2 cm, respectively. The widest distribution of differences was found in the height estimated from the demispan, with limits of agreements from +11.2 to -9.3 cm. When measuring the height of patients who find it difficult to stand upright, a sliding caliper should be the method of choice, and the second choice should be self-reported height or the height estimated from knee height. Estimating height from the demispan should be the method of last resort. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Chan, Yingleong; Salem, Rany M; Hsu, Yu-Han H; McMahon, George; Pers, Tune H; Vedantam, Sailaja; Esko, Tonu; Guo, Michael H; Lim, Elaine T; Franke, Lude; Smith, George Davey; Strachan, David P; Hirschhorn, Joel N
2015-05-07
Human height is a composite measurement, reflecting the sum of leg, spine, and head lengths. Many common variants influence total height, but the effects of these or other variants on the components of height (body proportion) remain largely unknown. We studied sitting height ratio (SHR), the ratio of sitting height to total height, to identify such effects in 3,545 African Americans and 21,590 individuals of European ancestry. We found that SHR is heritable: 26% and 39% of the total variance of SHR can be explained by common variants in European and African Americans, respectively, and global European admixture is negatively correlated with SHR in African Americans (r(2) ≈ 0.03). Six regions reached genome-wide significance (p < 5 × 10(-8)) for association with SHR and overlapped biological candidate genes, including TBX2 and IGFBP3. We found that 130 of 670 height-associated variants are nominally associated (p < 0.05) with SHR, more than expected by chance (p = 5 × 10(-40)). At these 130 loci, the height-increasing alleles are associated with either a decrease (71 loci) or increase (59 loci) in SHR, suggesting that different height loci disproportionally affect either leg length or spine/head length. Pathway analyses via DEPICT revealed that height loci affecting SHR, and especially those affecting leg length, show enrichment of different biological pathways (e.g., bone/cartilage/growth plate pathways) than do loci with no effect on SHR (e.g., embryonic development). These results highlight the value of using a pair of related but orthogonal phenotypes, in this case SHR with height, as a prism to dissect the biology underlying genetic associations in polygenic traits and diseases. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Separating pitch chroma and pitch height in the human brain
Warren, J. D.; Uppenkamp, S.; Patterson, R. D.; Griffiths, T. D.
2003-01-01
Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas. PMID:12909719
Separating pitch chroma and pitch height in the human brain.
Warren, J D; Uppenkamp, S; Patterson, R D; Griffiths, T D
2003-08-19
Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas.
Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere
NASA Astrophysics Data System (ADS)
Kozlovsky, Alexander; Turunen, Tauno; Ulich, Thomas
2013-08-01
2007, the Sodankylä Geophysical Observatory routinely performs vertical ionosphere soundings once per minute, using a frequency-modulated continuous-wave chirp at the rate of 500 kHz/s from 500 kHz to 16 MHz. We used these data to study traveling ionospheric disturbances (TIDs) during 10-16 local time. The observations were made between April 2007 and June 2012, mostly during low solar activity. The TIDs were studied in five bands of periods corresponding to the following: infrasonic (acoustic) waves and the buoyancy cutoff (periods from 5 to 10 min); small-scale gravity waves (GWs; 10-15 min); medium-scale (MS; 15-30 min) GWs; medium-large scale (MS-LS; 30-60 min) GWs; and large-scale (LS; 60-120 min) GWs. Relative contribution (with respect to LS TIDs) of the short-period (5-15 min) and MS (15-30 min) TIDs shows minima in winter and maxima in summer. These annual variations anticorrelate with variations of true height, namely, the largest relative amplitudes occur in summer, when TIDs were observed at minimal heights. We suggest that the summer increase of shorter-period TIDs is due to lowering reflection to the height where the Brunt-Väisälä period is smaller and, hence, shorter-period gravity waves exist. The summer maxima were most prominent during the 3 years of minimal solar activity (2008-2010). In 2011, when solar activity increased, the annual variation seems less prominent. Annual variations of the longer-period (30-120 min) TIDs are essentially less significant. For all TIDs, no obvious dependences on the AE and Ap indices of magnetic activity were found.
A sibling method for identifying vQTLs
Domingue, Ben; Dawes, Christopher; Boardman, Jason; Siegal, Mark
2018-01-01
The propensity of a trait to vary within a population may have evolutionary, ecological, or clinical significance. In the present study we deploy sibling models to offer a novel and unbiased way to ascertain loci associated with the extent to which phenotypes vary (variance-controlling quantitative trait loci, or vQTLs). Previous methods for vQTL-mapping either exclude genetically related individuals or treat genetic relatedness among individuals as a complicating factor addressed by adjusting estimates for non-independence in phenotypes. The present method uses genetic relatedness as a tool to obtain unbiased estimates of variance effects rather than as a nuisance. The family-based approach, which utilizes random variation between siblings in minor allele counts at a locus, also allows controls for parental genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to generate variation. Simulations show that the approach performs equally well as two existing methods (squared Z-score and DGLM) in controlling type I error rates when there is no unobserved confounding, and performs significantly better than these methods in the presence of small degrees of confounding. Using height and BMI as empirical applications, we investigate SNPs that alter within-family variation in height and BMI, as well as pathways that appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene, replicated. Pathway analysis revealed one gene set, encoding members of several signaling pathways related to gap junction function, which appears significantly enriched for associations with within-family height variation in both datasets (while not enriched in analysis of mean levels). We recommend approximating laboratory random assignment of genotype using family data and more careful attention to the possible conflation of mean and variance effects. PMID:29617452
NASA Technical Reports Server (NTRS)
Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.
1991-01-01
Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.
Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min
2015-05-06
Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishan, Amar U., E-mail: aukishan@mednet.ucla.edu; Lamb, James M.; Jani, Shyam S.
2015-03-15
Purpose: To determine whether image guidance with rigid registration (RR) to intraprostatic markers (IPMs) yields acceptable coverage of the pelvic lymph nodes in the context of a stereotactic body radiation therapy (SBRT) regimen. Methods and Materials: Four to seven kilovoltage cone-beam CTs (CBCTs) from 12 patients with high-risk prostate cancer were analyzed, allowing approximation of an SBRT regimen. The nodal clinical target volume (CTV{sub N}) and bladder were contoured on all kilovoltage CBCTs. The V{sub 100} CTV{sub N}, expressed as a ratio to the same parameter on the initial plan, and the magnitude of translational shift between RR to themore » IPMs versus RR to the pelvic bones, were computed. The ability of a multimodality bladder filling protocol to minimize bladder height variation was assessed in a separate cohort of 4 patients. Results: Sixty-five CBCTs were assessed. The average V{sub 100} CTV{sub N} was 92.6%, but for a subset of 3 patients the average was 80.0%, compared with 97.8% for the others (P<.0001). The average overall and superior–inferior axis magnitudes of the bony-to-fiducial translations were significantly larger in the subgroup with suboptimal nodal coverage (8.1 vs 3.9 mm and 5.8 vs 2.4 mm, respectively; P<.0001). Relative bladder height changes were also significantly larger in the subgroup with suboptimal nodal coverage (42.9% vs 18.5%; P<.05). Use of a multimodality bladder-filling protocol minimized bladder height variation (P<.001). Conclusion: A majority of patients had acceptable nodal coverage after RR to IPMs, even when approximating SBRT. However, a subset of patients had suboptimal nodal coverage. These patients had large bony-to-fiducial translations and large variations in bladder height. Nodal coverage should be excellent if the superior–inferior axis bony-to-fiducial translation and the relative bladder height change (both easily measured on CBCT) are kept to a minimum. Implementation of a strict bladder filling protocol may achieve this goal.« less
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marks, Frank D.
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1' half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the off-nadir angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving toward 330 deg at about 5 m/s. Individual waves up to 18 m height were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the eye, and made five eye penetrations. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft flight lines included segments near and along the shoreline as well as far offshore. Animations of the directional wave spectrum spatial variation along the aircraft tracks on the two flights will be presented using a 100: 1 time compression.
Kaplanoglu, Hatice; Kaplanoglu, Veysel; Dilli, Alper; Toprak, Ugur; Hekimoğlu, Baki
2013-01-01
Objective: To determine the Keros classification and asymmetrical distribution rates of the ethmoid roof and the frequency of anatomic variations of the paranasal sinuses. Materials and Methods: Paranasal sinus scans of 500 patients obtained using computed tomography were evaluated retrospectively. Measurements were performed using a coronal plan with right-left comparison and with distance measurement techniques. The depth of the lateral lamella was calculated by subtracting the depth of the cribriform plate from the depth of the medial ethmoid roof. The results were classified according to their Keros classification. Any asymmetries in the ethmoid roof depth and fovea ethmoidalis configuration were examined. The anatomic variations frequently encountered in paranasal sinuses (pneumatized middle concha, paradoxical middle concha, agger nasi cells, Haller cells, Onodi cells, etc.) were defined. Results: The mean height of the lateral lamella cribriform plate (LLCP) was 4.92±1.70 mm. The cases were classified as 13.4% Keros Type I, 76.1% Keros Type II, and 10.5% Keros Type III. There was asymmetry in the LLCP depths of 80% of the cases, and a configuration asymmetry in the fovea in 35% of the cases. In 32% of the cases with fovea configuration asymmetry, there was also asymmetry in the height of the right and left LLCP. The most frequent variations were nasal septum deviation (81.8%), agger nasi cells (63.8%), intralamellar air cells (45%), and concha bullosa (30%). Conclusion: Using the Keros classification for LLCP height, higher rates of Keros Type I were found in other studies than in our study. The most frequent classification was Keros Type II. The paranasal sinus variations in each patient should be carefully evaluated. The data obtained from these evaluations can prevent probable complications by informing rhinologists performing endoscopic sinus surgery about preoperative and intraoperative processes. PMID:25610263
Ziemińska, Kasia; Westoby, Mark; Wright, Ian J
2015-01-01
Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38-0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05). However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P < 0.001). Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component. Overall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation.
Akachi, Yoko; Canning, David
2011-01-01
We investigate trends in cohort infant mortality rates and adult heights in 39 developing countries since 1960. In most regions of the world improved nutrition, and reduced childhood exposure to disease, have lead to improvements in both infant mortality and adult stature. In Sub-Saharan Africa, however, despite declining infant mortality rates, adult heights have not increased. We argue that in Sub-Saharan Africa the decline in infant mortality may have been due to interventions that prevent infant deaths rather than improved nutrition and childhood morbidity. Despite declining infant mortality, Sub-Saharan Africa may not be experiencing increases in health human capital. PMID:20634153
Brolly, Matthew; Woodhouse, Iain H.; Niklas, Karl J.; Hammond, Sean T.
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100. PMID:22457800
Brolly, Matthew; Woodhouse, Iain H; Niklas, Karl J; Hammond, Sean T
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H₁₀₀.
Rare and low-frequency coding variants alter human adult height
Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas GD; Ng, Maggie CY; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Borst, Gert J.; de Denus, Simon; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G. Kees; Howson, Joanna MM; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela AF; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R.B.; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; Hart, Leen M ‘t; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth JF; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume
2016-01-01
Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. PMID:28146470
Growth charts for Australian children with achondroplasia.
Tofts, Louise; Das, Sandeep; Collins, Felicity; Burton, Karen L O
2017-08-01
Achondroplasia is an autosomal dominant disorder, the most common genetic cause of short stature in humans. Reference curves for head circumference, weight, height, and BMI are needed in clinical practice but none exist for the Australian population. This study aimed to produce head circumference, height, weight, and BMI reference percentile curves for Australian children and adolescents with achondroplasia. Measurements of head circumference, height and weight taken at clinical visits were retrospectively extracted from the electronic medical record. Age was corrected for prematurity. Patients were excluded from head circumference analysis if they had significant neurosurgical complications and from the weight and BMI analysis when they had a clinical diagnosis of overweight. Measurements were available on 138 individuals (69 males and 69 females) taken between 1970 and 2015, with over 50% collected since 2005. A total of 3,352 data points were available. The LMS method was used to produce growth charts with estimated centiles (10, 25, 50, 75, and 90th) separately for males and females. For females birth weight was 3 kg (2.5-3.5 kg), birth length 48 cm (44-50 cm) and head circumference 37.5 cm (36-39 cm), adult height was 125 cm (116-132 cm), weight 42 kg (34-54 kg), and head circumference 58 cm (55.5-60.5 cm) all 50th centile (10-90th). For males birth weight was 3.5 kg (3-4 kg), length 49 cm (46-52 cm) and head circumference 38.5 cm (36-41 cm), adult height was 134 cm (125-141 cm), weight 41 kg (24.5-57 kg) and head circumference 61 cm (58-64 cm). The curves are similar to previously published reference data from the USA and have expected population wide variation from curves from an Argentinian population. Despite limitations of our curves for adolescents (12 years and older) due to data paucity, these Australian growth charts for children and adolescents with achondroplasia will be a useful reference in clinical practice. © 2017 Wiley Periodicals, Inc.
An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
Mao, Jingna; Yang, Huazhong; Zhao, Bo
2017-08-01
Utilizing the body surface as the signal transmission medium, capacitive coupling human body communication (CC-HBC) can achieve a much higher energy efficiency than conventional wireless communications in future wireless body area network (WBAN) applications. Under the CC-HBC scheme, the body surface serves as the forward signal path, whereas the backward path is formed by the capacitive coupling between the ground electrodes (GEs) of transmitter (TX) and receiver (RX). So the type of communication benefits from a low forward loss, while the backward loss depending on the GE coupling strength dominates the total transmission loss. However, none of the previous works have shown a complete research on the effects of GEs. In this paper, all kinds of GE effects on CC-HBC are investigated by both finite element method (FEM) analysis and human body measurement. We set the TX GE and RX GE at different heights, separation distances, and dimensions to study the corresponding influence on the overall signal transmission path loss. In addition, we also investigate the effects of GEs with different shapes and different TX-to-RX relative angles. Based on all the investigations, an analytical model is derived to evaluate the GE related variations of channel loss in CC-HBC.
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans.
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-08-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. © 2014 Anatomical Society.
Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans
Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio
2014-01-01
The auditory ossicles in primates have proven to be a reliable source of phylogenetic information. Nevertheless, to date, very little data have been published on the metric dimensions of the ear ossicles in African apes and humans. The present study relies on the largest samples of African ape ear ossicles studied to date to address questions of taxonomic differences and the evolutionary transformation of the ossicles in gorillas, chimpanzees and humans. Both African ape taxa show a malleus that is characterized by a long and slender manubrium and relatively short corpus, whereas humans show the opposite constellation of a short and thick manubrium and relatively long corpus. These changes in the manubrium are plausibly linked with changes in the size of the tympanic membrane. The main difference between the incus in African apes and humans seems to be related to changes in the functional length. Compared with chimpanzees, human incudes are larger in nearly all dimensions, except articular facet height, and show a more open angle between the axes. The gorilla incus resembles humans more closely in its metric dimensions, including functional length, perhaps as a result of the dramatically larger body size compared with chimpanzees. The differences between the stapedes of humans and African apes are primarily size-related, with humans being larger in nearly all dimensions. Nevertheless, some distinctions between the African apes were found in the obturator foramen and head height. Although correlations between metric variables in different ossicles were generally lower than those between variables in the same bone, variables of the malleus/incus complex appear to be more strongly correlated than those of the incus/stapes complex, perhaps reflecting the different embryological and evolutionary origins of the ossicles. The middle ear lever ratio for the African apes is similar to other haplorhines, but humans show the lowest lever ratio within primates. Very low levels of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. PMID:24845949
Variability of plasma-line enhancement in ionospheric modification experiments.
NASA Technical Reports Server (NTRS)
Fejer, J. A.
1972-01-01
A simple explanation for the variations of plasma-line intensity is suggested. The explanation is based on the fact that the plasma waves responsible for scattering the radar waves occur over a very limited range of heights. The explanation further makes use of the fact that the position of these height ranges of generation depends primarily on the gradient of the number density and to a lesser extent on the temperature and the orientation of the diagnostic radar beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Finally, results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry.
2013-07-25
EOF . SVD 1 Introduction Mesoscale eddies are abundant in the ocean. Chelton et al. ( 2007 ), based on 10 years of altimetry sea surface height anomaly...transport. The dynamic height has a strong annual signal due to steric variations (Wang and Koblinsky 1996; Stammer 1997). Since our study is...JOE.2004.838334 Chelton DB, Schlax MG, Samelson RM, deSzoeke RA ( 2007 ) Global observations of large oceanic eddies. Geophys Res Lett 34, L15606. doi
Early developmental gene enhancers affect subcortical volumes in the adult human brain.
Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E
2016-05-01
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rapid morphological change in living humans: implications for modern human origins.
Bogin, Barry; Rios, Luis
2003-09-01
Human body size and body proportions are interpreted as markers of ethnicity, 'race,' adaptation to temperature, nutritional history and socioeconomic status. Some studies emphasize only one of these indicators and other studies consider combinations of indicators. To better understand the biocultural nature of human size and proportions a new study of the growth of Maya-American youngsters was undertaken in 1999 and 2000. One purpose of this research is to assess changes in body proportion between Maya growing up in the US and Maya growing up in Guatemala. Height and sitting height of 6-12-year-old boys and girls (n=360) were measured and the sitting height ratio [sitting height/height]x100, a measure of proportion, was calculated. These data are compared with a sample of Maya of the same ages living in Guatemala and measured in 1998 (n=1297). Maya-American children are currently 10.24 cm taller, on average, and have a significantly lower sitting height ratio, (i.e. relatively longer legs, averaging 7.02 cm longer) than the Guatemala Maya. Maya-American children have body proportions more like those of white children in the US than like Maya children in Guatemala. Improvements in the environment for growth, in terms of nutrition and health, seem to explain both the trends in greater stature and relatively longer legs for the Maya-Americans. These findings are applied to the problem of modern human origins as assessed from fossil skeletons. It has been proposed that heat adapted, relatively long-legged Homo sapiens from Africa replaced the cold adapted, relatively short-legged Homo neandertalensis of the Levant and Europe [J Hum Evol 32 (1997a) 423]. Skeletal samples of Maya adults from rural Guatemala have body proportions similar to adult Neandertals and to skeletal samples from Europe with evidence of nutritional and disease stress. Just as nutrition and health status explains the differences in the body proportions of living Maya children, these factors, along with adaptation to climate, may also explain much of the differences between the Neandertal and African hominid samples.
Genetic variants related to height and risk of atrial fibrillation: the cardiovascular health study.
Rosenberg, Michael A; Kaplan, Robert C; Siscovick, David S; Psaty, Bruce M; Heckbert, Susan R; Newton-Cheh, Christopher; Mukamal, Kenneth J
2014-07-15
Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥ 65 years) enrolled in 1989-1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10(-8)). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Variational Assimilation Method for Satellite and Conventional Data: a Revised Basic Model 2B
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Scott, Robert W.; Chen, J.
1991-01-01
A variational objective analysis technique that modifies observations of temperature, height, and wind on the cyclone scale to satisfy the five 'primitive' model forecast equations is presented. This analysis method overcomes all of the problems that hindered previous versions, such as over-determination, time consistency, solution method, and constraint decoupling. A preliminary evaluation of the method shows that it converges rapidly, the divergent part of the wind is strongly coupled in the solution, fields of height and temperature are well-preserved, and derivative quantities such as vorticity and divergence are improved. Problem areas are systematic increases in the horizontal velocity components, and large magnitudes of the local tendencies of the horizontal velocity components. The preliminary evaluation makes note of these problems but detailed evaluations required to determine the origin of these problems await future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriott, O K
1960-04-01
The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less
International Reference Ionosphere -2010
NASA Astrophysics Data System (ADS)
Bilitza, Dieter; Reinisch, Bodo
The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.
Birth month associations with height, head circumference, and limb lengths among Peruvian children.
Pomeroy, Emma; Wells, Jonathan C K; Stanojevic, Sanja; Miranda, J Jaime; Cole, Tim J; Stock, Jay T
2014-05-01
Associations between season of birth and body size, morbidity, and mortality have been widely documented, but it is unclear whether different parts of the body are differentially sensitive, and if such effects persist through childhood. This may be relevant to understanding the relationship between early life environment and body size and proportions. We investigated associations between birth month and anthropometry among rural highland (n = 162) and urban lowland (n = 184) Peruvian children aged 6 months to 8 years. Stature; head-trunk height; total limb, ulna, tibia, hand, and foot lengths; head circumference; and limb measurements relative to head-trunk height were converted to internal age-sex-specific z scores. Lowland and highland datasets were then analyzed separately for birth month trends using cosinor analysis, as urban conditions likely provide a more consistent environment compared with anticipated seasonal variation in the rural highlands. Among highland children birth month associations were significant most strongly for tibia length, followed by total lower limb length and stature, with a peak among November births. Results were not significant for other measurements or among lowland children. The results suggest a prenatal or early postnatal environmental effect on growth that is more marked in limb lengths than trunk length or head size, and persists across the age range studied. We suggest that the results may reflect seasonal variation in maternal nutrition in the rural highlands, but other hypotheses such as variation in maternal vitamin D levels cannot be excluded. Copyright © 2014 Wiley Periodicals, Inc.
Tree height–diameter allometry across the United States
Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D
2015-01-01
The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325
Variation in light intensity with height and time from subsequent lightning return strokes
NASA Technical Reports Server (NTRS)
Jordan, D. M.; Uman, M. A.
1983-01-01
Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).
Coppola, Michela
2013-12-01
The biological standard of living in Central Italy at the beginning of the 19th century is analyzed using newly collected data on the height of recruits in the army of the Papal States. The results reveal a decline in height for the cohorts born under French rule (1796-1815). Although this trend was common to many parts of Europe, the estimated magnitude of the decline suggests a worsening of the biological standard of living of the working classes in the Papal States even relative to that of other countries. Despite the differences in the economic systems within the Papal States, no significant geographical variation in height has been found: even the most dynamic and advanced regions experienced a dramatic height decline. Mortality also increased during the period under consideration. Copyright © 2012 Elsevier B.V. All rights reserved.
Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds.
Webster, Matthew T; Kamgari, Nona; Perloski, Michele; Hoeppner, Marc P; Axelsson, Erik; Hedhammar, Åke; Pielberg, Gerli; Lindblad-Toh, Kerstin
2015-06-23
The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants. We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves. We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals.
NASA Astrophysics Data System (ADS)
Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George
2010-07-01
Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight) with those for the RPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated.
Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George
2012-01-01
Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999–2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals’ size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight)with those for theRPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated. PMID:20551505
Jones, Stephen C; Easley, Kirk A; Radinsky, Carol R; Chyatte, Douglas; Furlan, Anthony J; Perez-Trepichio, Alejandro D
2003-09-01
Variations in the height of the CBF response to hypotension have been described recently in normal animals. The authors evaluated the effects of nitric oxide synthase (NOS) inhibition on these variations in height using laser Doppler flowmetry in 42 anesthetized (halothane and N2O) male Sprague-Dawley rats prepared with a superfused closed cranial window. In four groups (time control, enantiomer control, NOS inhibition, and reinfusion control) exsanguination to MABPs from 100 to 40 mm Hg was used to produce autoregulatory curves. For each curve the lower limit of autoregulation (the MABP at the first decrease in CBF) was identified; the pattern of autoregulation was classified as "peak" (15% increase in %CBF), "classic" (plateau with a decrease at the lower limit of autoregulation), or "none" (15% decrease in %CBF); and the autoregulatory height as the %CBF at 70 mm Hg (%CBF(70)) was determined. NOS inhibition decreased %CBF(70) in the NOS inhibition group (P = 0.014), in the control (combined time and enantiomer control) group (P = 0.015), and in the reinfusion control group (P = 0.025). NOS inhibition via superfusion depressed the autoregulatory pattern (P = 0.02, McNemar test on changes in autoregulatory pattern) compared with control (P = 0.375). Analysis of covariance showed that changes induced by NOS inhibition in the parameters of autoregulatory height are not related to changes in the lower limit, but are strongly (P < 0.001) related to each other. NOS inhibition depressed the autoregulatory pattern, decreasing the seemingly paradoxical increase in CBF as blood pressure decreases. These results suggest that nitric oxide increases CBF near the lower limit and augments the hypotensive portion of the autoregulatory curve.
Lehmann, Andreas; Floris, Joël; Woitek, Ulrich; Rühli, Frank J; Staub, Kaspar
2017-02-01
We analyse temporal trends and regional variation among the most recent available anthropometric data from German conscription in the years 2008-2010 and their historical contextualization since 1956. Design/setting/subjects The overall sample included German conscripts (N 13 857 313) from 1956 to 2010. German conscripts changed from growing in height to growing in breadth. Over the analysed 54 years, average height of 19-year-old conscripts increased by 6·5 cm from 173·5 cm in 1956 (birth year 1937) to 180·0 cm in 2010 (birth year 1991). This increase plateaued since the 1990s (1970s birth years). The increase in average weight, however, did not lessen during the last two decades but increased in two steps: at the end of the 1980s and after 1999. The weight and BMI distributions became increasingly right-skewed, the prevalence of overweight and obesity increased from 11·6 % and 2·1 % in 1984 to 19·9 % and 8·5 % in 2010, respectively. The north-south gradient in height (north = taller) persisted during our observations. Height and weight of conscripts from East Germany matched the German average between the early 1990s and 2009. Between the 1980s and the early 1990s, the average chest circumference increased, the average difference between chest circumference when inhaling and exhaling decreased, as did leg length relative to trunk length. Measuring anthropometric data for military conscripts yielded year-by-year monitoring of the health status of young men at a proscribed age. Such findings contribute to a more precise identification of groups at risk and thus help with further studies and to target interventions.
Determinants of nutritional status of pre-school children in India.
Bharati, Susmita; Pal, Manoranjan; Bharati, Premananda
2008-11-01
The aim of this paper is to assess the spatial distribution of nutritional status of children of less than three years through Z-scores of weight-for-age, height-for-age and weight-for-height using data collected by the National Family Health Survey (NFHS-2, 1998-99), India. The nutritional status of pre-school children was regressed on different socio-demographic factors after eliminating the effect of age. The data show that there are gender differences and spatial variations in the nutritional status of children in India. Gender difference is not very pronounced and almost disappears when the effects of age and socio-demographic variables are removed. The spatial difference, especially the rural-urban difference, was found to be very large and decreased substantially when the effects of age and socioeconomic variables were removed. However, the differences were not close to zero. All the variables were found to affect significantly the nutritional status of children. However, the literacy of mothers did not affect height-for-age significantly. The weight-for-age and height-for-age scores showed a dismal picture of the health condition of children in almost all states in India. The worst affected states are Bihar, Madhya Pradesh, Orissa and Uttar Pradesh. Assam and Rajasthans are also lagging behind. Weight-for-height scores do not give a clear picture of state-wise variation. Goa, Kerala and Punjab are the three most developed states in India and also have the lowest percentages of underweight children according to the Z-scores. Along with these three states come the north-eastern states where women are well educated. Thus overall development, enhancement of level of education and low gender inequality are the key factors for improvement in the health status of Indian children.
Regional-scale drivers of forest structure and function in northwestern Amazonia.
Higgins, Mark A; Asner, Gregory P; Anderson, Christopher B; Martin, Roberta E; Knapp, David E; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso
2015-01-01
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.
Effect of Body Composition Methodology on Heritability Estimation of Body Fatness
Elder, Sonya J.; Roberts, Susan B.; McCrory, Megan A.; Das, Sai Krupa; Fuss, Paul J.; Pittas, Anastassios G.; Greenberg, Andrew S.; Heymsfield, Steven B.; Dawson-Hughes, Bess; Bouchard, Thomas J.; Saltzman, Edward; Neale, Michael C.
2014-01-01
Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods – body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8–43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental interactions in the etiology of weight gain and the obesity epidemic. PMID:25067962
Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong
2015-01-01
Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.
HTO and OBT concentrations in a wetland ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S. B.; Workman, W. J. G.; Davis, P. A.
2008-07-15
Tritiated water (HTO) and organically bound tritium (OBT) concentrations in the non-human biota inhabiting Duke Swamp were measured during the 2005 growing season. Samples of surface water, soil, plants, precipitation, wild animals and air moisture were collected from 2005 May to October at five locations in the swamp and analyzed for their tritium content. HTO concentrations in air moisture decreased with height since the tritium source is in the ground. Soil HTO concentrations were not closely related to the concentrations in nearby surface water and the HTO concentration in balsam fir needles showed no clear pattern with height. HTO concentrationsmore » in moss, grass and alder leaves decreased in September, which is the time when metabolic activity is reduced. OBT concentrations in a given compartment showed less variation than the HTO concentrations in that compartment. The OBT/HTO ratio was approximately one for soil and less than one for plants, with the exception of lichen. The OBT/HTO ratio in most wild animals was also less than one, but increased to more than 2.0 for mice. Although the tritium concentrations varied substantially in space and time in Duke Swamp, the fact that OBT/HTO <1 for most compartments suggests that equilibrium conditions hold locally. (authors)« less
Raya, José G; Arnoldi, Andreas P; Weber, Daniel L; Filidoro, Lucianna; Dietrich, Olaf; Adam-Neumair, Silvia; Mützel, Elisabeth; Melkus, Gerd; Putz, Reinhard; Reiser, Maximilian F; Jakob, Peter M; Glaser, Christian
2011-08-01
To investigate the relationship of the different diffusion tensor imaging (DTI) parameters (ADC, FA, and first eigenvector (EV)) to the constituents (proteoglycans and collagen), the zonal arrangement of the collagen network, and mechanical loading of articular cartilage. DTI of eight cartilage-on-bone samples of healthy human patellar cartilage was performed at 17.6 T. Three samples were additionally imaged under indentation loading. After DTI, samples underwent biomechanical testing, safranin-O staining for semiquantitative proteoglycan estimation, and scanning electron microscopy (SEM) for depicting collagen architecture. From the articular surface to the bone-cartilage interface, ADC continuously decreased and FA increased. Cartilage zonal heights calculated from EVs strongly correlated with SEM-derived zonal heights (P < 0.01, r (2)=0.87). Compression reduced ADC in the superficial 30% of cartilage and increased FA in the superficial 5% of cartilage. Reorientation of the EVs indicative of collagen fiber reorientation under the indenter was observed. No significant correlation was found between ADC, FA, and compressive stiffness. Correlating ADC and FA with proteoglycan and collagen content suggests that diffusion is dominated by different depth-dependent mechanisms within cartilage. Knowledge of the spatial distribution of the DTI parameters and their variation contributes to form a database for future analysis of defective cartilage.
NASA Technical Reports Server (NTRS)
Zapp, E. N.; Townsend, L. W.; Cucinotta, F. A.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
An investigation of airborne allergenic pollen at different heights.
Xiao, Xiaojun; Fu, Aixiang; Xie, Xiongjie; Kang, Minxiong; Hu, Dongsheng; Yang, Pingchang; Liu, Zhigang
2013-01-01
Airborne pollen is an important source of allergens in a number of allergic diseases. Data on the concentrations of pollen at different heights in the air are scarce. The aim of the present study was to investigate different types and numbers of airborne pollen and their seasonal variation at different heights in the urban area of Shenzhen (China) and their associations with meteorological factors. The concentration of airborne pollen at different heights was monitored with Burkard traps from July 1, 2006, to June 30, 2007, in Shenzhen; the results were analyzed with SAS 9.13 software. In total, 1,095 films (at 3 heights, 365 films at each height) were exposed throughout the year, and 48 families and 85 genera of pollen taxa were identified. The total pollen count was 55,830 grains (25,204 grains at 1.5 m; 16,218 grains at 35 m, and 14,408 grains at 70 m); pollen grains were present in the atmosphere throughout the year, with two peaks of airborne pollen: one peak in February to April and the other in September to November. On the basis of our local investigations, the pollen concentrations and the pollen types in the air decrease gradually with increasing height. The distribution and concentrations of airborne pollen at different heights in the atmosphere were influenced by composite factors such as the season and meteorological factors. Copyright © 2012 S. Karger AG, Basel.
Pastorino, Roberta; Puggina, Anna; Carreras-Torres, Robert; Lagiou, Pagona; Holcátová, Ivana; Richiardi, Lorenzo; Kjaerheim, Kristina; Agudo, Antonio; Castellsagué, Xavier; Macfarlane, Tatiana V; Barzan, Luigi; Canova, Cristina; Thakker, Nalin S; Conway, David I; Znaor, Ariana; Healy, Claire M; Ahrens, Wolfgang; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Ioan Nicolae; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Brennan, Paul; Gaborieau, Valérie; McKay, James D; Boccia, Stefania
2018-03-14
With the aim to dissect the effect of adult height on head and neck cancer (HNC), we use the Mendelian randomization (MR) approach to test the association between genetic instruments for height and the risk of HNC. 599 single nucleotide polymorphisms (SNPs) were identified as genetic instruments for height, accounting for 16% of the phenotypic variation. Genetic data concerning HNC cases and controls were obtained from a genome-wide association study. Summary statistics for genetic association were used in complementary MR approaches: the weighted genetic risk score (GRS) and the inverse-variance weighted (IVW). MR-Egger regression was used for sensitivity analysis and pleiotropy evaluation. From the GRS analysis, one standard deviation (SD) higher height (6.9 cm; due to genetic predisposition across 599 SNPs) raised the risk for HNC (Odds ratio (OR), 1.14; 95% Confidence Interval (95%CI), 0.99-1.32). The association analyses with potential confounders revealed that the GRS was associated with tobacco smoking (OR = 0.80, 95% CI (0.69-0.93)). MR-Egger regression did not provide evidence of overall directional pleiotropy. Our study indicates that height is potentially associated with HNC risk. However, the reported risk could be underestimated since, at the genetic level, height emerged to be inversely associated with smoking.
He, Meian; Xu, Min; Zhang, Ben; Liang, Jun; Chen, Peng; Lee, Jong-Young; Johnson, Todd A; Li, Huaixing; Yang, Xiaobo; Dai, Juncheng; Liang, Liming; Gui, Lixuan; Qi, Qibin; Huang, Jinyan; Li, Yanping; Adair, Linda S; Aung, Tin; Cai, Qiuyin; Cheng, Ching-Yu; Cho, Myeong-Chan; Cho, Yoon Shin; Chu, Minjie; Cui, Bin; Gao, Yu-Tang; Go, Min Jin; Gu, Dongfeng; Gu, Weiqiong; Guo, Huan; Hao, Yongchen; Hong, Jie; Hu, Zhibin; Hu, Yanling; Huang, Jianfeng; Hwang, Joo-Yeon; Ikram, Mohammad Kamran; Jin, Guangfu; Kang, Dae-Hee; Khor, Chiea Chuen; Kim, Bong-Jo; Kim, Hung Tae; Kubo, Michiaki; Lee, Jeannette; Lee, Juyoung; Lee, Nanette R; Li, Ruoying; Li, Jun; Liu, JianJun; Longe, Jirong; Lu, Wei; Lu, Xiangfeng; Miao, Xiaoping; Okada, Yukinori; Ong, Rick Twee-Hee; Qiu, Gaokun; Seielstad, Mark; Sim, Xueling; Song, Huaidong; Takeuchi, Fumihiko; Tanaka, Toshihiro; Taylor, Phil R; Wang, Laiyuan; Wang, Weiqing; Wang, Yiqin; Wu, Chen; Wu, Ying; Xiang, Yong-Bing; Yamamoto, Ken; Yang, Handong; Liao, Ming; Yokota, Mitsuhiro; Young, Terri; Zhang, Xiaomin; Kato, Norihiro; Wang, Qing K; Zheng, Wei; Hu, Frank B; Lin, Dongxin; Shen, Hongbing; Teo, Yik Ying; Mo, Zengnan; Wong, Tien Yin; Lin, Xu; Mohlke, Karen L; Ning, Guang; Tsunoda, Tatsuhiko; Han, Bok-Ghee; Shu, Xiao-Ou; Tai, E Shyong; Wu, Tangchun; Qi, Lu
2015-03-15
Human height is associated with risk of multiple diseases and is profoundly determined by an individual's genetic makeup and shows a high degree of ethnic heterogeneity. Large-scale genome-wide association (GWA) analyses of adult height in Europeans have identified nearly 180 genetic loci. A recent study showed high replicability of results from Europeans-based GWA studies in Asians; however, population-specific loci may exist due to distinct linkage disequilibrium patterns. We carried out a GWA meta-analysis in 93 926 individuals from East Asia. We identified 98 loci, including 17 novel and 81 previously reported loci, associated with height at P < 5 × 10(-8), together explaining 8.89% of phenotypic variance. Among the newly identified variants, 10 are commonly distributed (minor allele frequency, MAF > 5%) in Europeans, with comparable frequencies with in Asians, and 7 single-nucleotide polymorphisms are with low frequency (MAF < 5%) in Europeans. In addition, our data suggest that novel biological pathway such as the protein tyrosine phosphatase family is involved in regulation of height. The findings from this study considerably expand our knowledge of the genetic architecture of human height in Asians. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mapping the zone of eye-height utility for seated and standing observers
NASA Technical Reports Server (NTRS)
Wraga, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2000-01-01
In a series of experiments, we delimited a region within the vertical axis of space in which eye height (EH) information is used maximally to scale object heights, referred to as the "zone of eye height utility" (Wraga, 1999b Journal of Experimental Psychology, Human Perception and Performance 25 518-530). To test the lower limit of the zone, linear perspective (on the floor) was varied via introduction of a false perspective (FP) gradient while all sources of EH information except linear perspective were held constant. For seated (experiment 1a) observers, the FP gradient produced overestimations of height for rectangular objects up to 0.15 EH tall. This value was taken to be just outside the lower limit of the zone. This finding was replicated in a virtual environment, for both seated (experiment 1b) and standing (experiment 2) observers. For the upper limit of the zone, EH information itself was manipulated by lowering observers' center of projection in a virtual scene. Lowering the effective EH of standing (experiment 3) and seated (experiment 4) observers produced corresponding overestimations of height for objects up to about 2.5 EH. This zone of approximately 0.20-2.5 EH suggests that the human visual system weights size information differentially, depending on its efficacy.
McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.
2017-01-01
Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.
Partial-reflection studies of D-region winter variability. [electron density measurements
NASA Technical Reports Server (NTRS)
Denny, B. W.; Bowhill, S. A.
1973-01-01
D-region electron densities were measured from December, 1972, to July, 1973, at Urbana, Illinois (latitude 40.2N) using the partial-reflection technique. During the winter, electron densities at altitudes of 72, 76.5, and 81 km show cyclical changes with a period of about 5 days that are highly correlated between these altitudes, suggesting that the mechanism responsible for the winter anomaly in D-region ionization applies throughout this height region. From January 13 to February 3, a pronounced wave-like variation occurred in the partial-reflection measurements, apparently associated with a major stratospheric warming that developed in that period. During the same time period, a traveling periodic variation is observed in the 10-mb height; it is highly correlated with the partial-reflection measurements. Electron density enhancements occur approximately at the same time as increases in the 10-mb height. Comparison of AL and A3 absorption measurements with electron density measurements below 82 km indicates that the winter anomaly in D-region ionization is divided into two types. Type 1, above about 82 km, extends horizontally for about 200 km while type 2, below about 82 km, extends for a horizontal scale of at least 1000 km.
Tall Amazonian forests are less sensitive to precipitation variability
NASA Astrophysics Data System (ADS)
Giardina, Francesco; Konings, Alexandra G.; Kennedy, Daniel; Alemohammad, Seyed Hamed; Oliveira, Rafael S.; Uriarte, Maria; Gentine, Pierre
2018-06-01
Climate change is altering the dynamics, structure and function of the Amazon, a biome deeply connected to the Earth's carbon cycle. Climate factors that control the spatial and temporal variations in forest photosynthesis have been well studied, but the influence of forest height and age on this controlling effect has rarely been considered. Here, we present remote sensing observations of solar-induced fluorescence (a proxy for photosynthesis), precipitation, vapour-pressure deficit and canopy height, together with estimates of forest age and aboveground biomass. We show that photosynthesis in tall Amazonian forests, that is, forests above 30 m, is three times less sensitive to precipitation variability than in shorter (less than 20 m) forests. Taller Amazonian forests are also found to be older, have more biomass and deeper rooting systems1, which enable them to access deeper soil moisture and make them more resilient to drought. We suggest that forest height and age are an important control of photosynthesis in response to interannual precipitation fluctuations. Although older and taller trees show less sensitivity to precipitation variations, they are more susceptible to fluctuations in vapour-pressure deficit. Our findings illuminate the response of Amazonian forests to water stress, droughts and climate change.
Huang, Li; Ren, Xiaoping; Wu, Bei; Li, Xinping; Chen, Weigang; Zhou, Xiaojing; Chen, Yuning; Pandey, Manish K; Jiao, Yongqing; Luo, Huaiyong; Lei, Yong; Varshney, Rajeev K; Liao, Boshou; Jiang, Huifang
2016-12-20
Plant height is one of the most important architecture traits in crop plants. In peanut, the genetic basis of plant height remains ambiguous. In this context, we genotyped a recombinant inbred line (RIL) population with 140 individuals developed from a cross between two peanut varieties varying in plant height, Zhonghua 10 and ICG 12625. Genotyping data was generated for 1,175 SSR and 42 transposon polymorphic markers and a high-density genetic linkage map was constructed with 1,219 mapped loci covering total map length of 2,038.75 cM i.e., accounted for nearly 80% of the peanut genome. Quantitative trait locus (QTL) analysis using genotyping and phenotyping data for three environments identified 8 negative-effect QTLs and 10 positive-effect QTLs for plant height. Among these QTLs, 8 QTLs had a large contribution to plant height that explained ≥10% phenotypic variation. Two major-effect consensus QTLs namely cqPHA4a and cqPHA4b were identified with stable performance across three environments. Further, the allelic recombination of detected QTLs proved the existence of the phenomenon of transgressive segregation for plant height in the RIL population. Therefore, this study not only successfully reported a high-density genetic linkage map of peanut and identified genomic region controlling plant height but also opens opportunities for further gene discovery and molecular breeding for plant height in peanut.
17 Years of Cloud Heights from Terra, and Beyond
NASA Astrophysics Data System (ADS)
Davies, R.
2017-12-01
The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.
Wind regime peculiarities in the lower thermosphere in the winter of 1983/84
NASA Technical Reports Server (NTRS)
Lysenko, I. A.; Makarov, N. A.; Portnyagin, Yu. I.; Petrov, B. I.; Greisiger, K. M.; Schminder, R.; Kurschner, D.
1987-01-01
Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds.
VLF phase and amplitude: daytime ionospheric parameters
NASA Astrophysics Data System (ADS)
McRae, W. M.; Thomson, N. R.
2000-05-01
Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth-ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H' and /β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H' and /β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10-25 kHz.
A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.
1990-01-01
Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.
Determinants of height and biological inequality in Mediterranean Spain, 1859-1967.
Ayuda, María-Isabel; Puche-Gil, Javier
2014-12-01
This article analyses not only the determinants of the height of Spain's male populations between 1859 and 1960 but also the influence that social inequality had upon biological well-being. The height data of 82,039 conscripts constitute the principal source for this analysis. The study area comprises the current Valencian region, located in central Mediterranean Spain. During the period under study, the average height of conscripts increased by 7.5cm, while the coefficient of variation decreased by 0.6 between the 1870s and 1930 indicating that height inequality declined, although it increased by 0.2 among the cohorts born during the period of Francoist regime. Our results show that, in the long run, the height and biological well-being of the populations conscripted in Mediterranean Spain were determined by socioeconomic status and environmental contexts: that there was a close correlation among education, occupation, income, and stature. Literate conscripts were always taller than illiterate ones (by nearly 1cm), and agricultural workers, with fewer economic resources, were significantly shorter (by 3.6cm) than highly qualified non-manual workers. Copyright © 2014 Elsevier B.V. All rights reserved.
Relative effects of posture and activity on human height estimation from surveillance footage.
Ramstrand, Nerrolyn; Ramstrand, Simon; Brolund, Per; Norell, Kristin; Bergström, Peter
2011-10-10
Height estimations based on security camera footage are often requested by law enforcement authorities. While valid and reliable techniques have been established to determine vertical distances from video frames, there is a discrepancy between a person's true static height and their height as measured when assuming different postures or when in motion (e.g., walking). The aim of the research presented in this report was to accurately record the height of subjects as they performed a variety of activities typically observed in security camera footage and compare results to height recorded using a standard height measuring device. Forty-six able bodied adults participated in this study and were recorded using a 3D motion analysis system while performing eight different tasks. Height measurements captured using the 3D motion analysis system were compared to static height measurements in order to determine relative differences. It is anticipated that results presented in this report can be used by forensic image analysis experts as a basis for correcting height estimations of people captured on surveillance footage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions
NASA Astrophysics Data System (ADS)
Tomer, Dushyant
Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect smooth interface fails to explain such behavior, hence, we apply a modified emission theory with Gaussian distribution of Schottky barrier heights. The modified theory, applicable to inhomogeneous interfaces, explains the temperature dependent behavior of our Schottky junctions and gives a temperature independent mean barrier height. We attribute the inhomogeneous barrier height to the presence of graphene ripples and ridges in case of SiC and MoS2 while surface states and trapped charges at the interface is dominating in Si and GaAs. Additionally, we observe bias dependent current and barrier height in reverse bias regime also for all Schottky junctions. To explain such behavior, we consider two types of reverse bias conduction mechanisms; Poole-Frenkel and Schottky emission. We find that Poole-Frenkel emission explains the characteristics of graphene/SiC junctions very well. However, both the mechanism fails to interpret the behavior of graphene/Si and graphene/GaAs Schottky junctions. These findings provide insight into the fundamental physics at the interface of graphene/semiconductor junctions.
NASA Astrophysics Data System (ADS)
Nishi, N.; Hamada, A.
2012-12-01
Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little lower cloud top height (6-10 km) is kept within one-two days. A typical example is observed on 5 January 2011 in a dissipating cloud system with 1000-km scale. This cluster located between 0-10N just west of the International Date Line and moved westward with keeping relatively lower cloud top (6-10 km) over one day. This top height is lower than the ubiquitous upper-tropospheric stratiform clouds but higher than the so-called 'congestus cloud' whose top height is around 0C. CloudSat data show the presence of convective rainfall. It suggests that this cloud system continuously kept making new anvil clouds in a little lower height than usual. We examined the seasonal variation of the distribution of cloud systems with a little lower cloud top height (6-11 km) during 2010-11. The number of such cloud systems is not constant with seasons but frequently increased in some specific seasons. Over the equatorial ocean region (east of 150E), they were frequently observed during the northern winter.
Facial cues to perceived height influence leadership choices in simulated war and peace contexts.
Re, Daniel E; DeBruine, Lisa M; Jones, Benedict C; Perrett, David I
2013-01-31
Body size and other signs of physical prowess are associated with leadership hierarchies in many social species. Here we (1) assess whether facial cues associated with perceived height and masculinity have different effects on leadership judgments in simulated wartime and peacetime contexts and (2) test how facial cues associated with perceived height and masculinity influence dominance perceptions. Results indicate that cues associated with perceived height and masculinity in potential leaders‟ faces are valued more in a wartime (vs. peacetime) context. Furthermore, increasing cues of apparent height and masculinity in faces increased perceived dominance. Together, these findings suggest that facial cues of physical stature contribute to establishing leadership hierarchies in humans.
The distribution of large volcanoes on Venus as a function of height and altitude
NASA Technical Reports Server (NTRS)
Keddie, S. T.; Head, J. W.
1993-01-01
Theory predicts that the slower cooling of lava flows on Venus should result in lava flows that are typically 20 percent longer than their terrestrial counterparts and that the development of neutral buoyancy zones (NBZ) on Venus may be strongly influenced by altitude-controlled variations in surface pressure. Observations that support these predictions would include relatively low heights for Venus volcanoes, and an increase in both the number and development of large edifices with increasing basal altitude. The results of an analysis of the height and altitude distribution of 123 large (diameter greater than 100 km) volcanoes made using Magellan image and altimetry data are presented and these results are used to begin to test the predications of the above theories.
Li, Lin; Han, Yunping; Liu, Junxin
2013-01-01
Airborne bacteria emissions from oxidation ditch with rotating aeration brushes were investigated in a municipal wastewater treatment plant in Beijing, China. Microbial samples were collected at different distances from the rotating brushes, different heights above the water surface, and different operation state over a 3-month period (April, May, and June) in order to estimate the seasonal variation and site-related distribution characteristics of the microorganisms present. The concentration of bacterial aerosol was analyzed by culture methods, while their dominant species, genetic structure and diversity were assayed using bio-molecular tools. Results showed that total microbial concentrations were highest in June and lowest in April. The mechanical rotation caused remarkable variation in concentration and diversity of culturable airborne bacteria before and after the rotating brushes. The highest concentration was observed near the rotating brushes (931 ± 129-3,952 ± 730 CFU/m(3)), with concentration decreasing as distance and height increased. Bacterial community polymerase chain reaction and denaturing gradient gel electrophoresis indicated that diversity decreased gradually with increasing height above the water surface but remained relatively constant at the same height. All dominant bacteria identified by DNA sequence analysis belonged to Firmicutes. Pathogenic species such as Moraxella nonliquefaciens and Flavobacterium odoratum were isolated from the bioaerosols. Due to the serious health risks involved, exposure of sewage workers to airborne microorganisms caused by brush aerators should be monitored and controlled.
Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood.
Piispanen, R; Saranpää, P
2002-06-01
Variations in the concentration and composition of triacylglycerols, free fatty acids and phospholipids were analyzed in Scots pine (Pinus sylvestris L.) trees at five sites. Disks were taken at breast height or at a height of 4 m from the stems of 81 trees differing in diameter and growth rate. The mean concentration of triacylglycerols in sapwood was 26 mg g(-1) dry mass; however, variation among trees was large (16-51 mg g(dm)(-1)). The concentration of triacylglycerols was slightly larger at 4 m height in the stem than at breast height. Concentrations of triacylglycerols did not differ between the sapwood of young and small-diameter stems (DBH < 12 cm) and the sapwood of old stems (DBH > 36 cm). Concentrations of free fatty acids were negligible in the outer sapwood, but ranged between 5 and 18 mg g(dm)(-1) in the heartwood. The most abundant fatty acids of triacylglycerols were oleic (18:1), linoleic (18:2omega6, 18:2Delta5,9), linolenic (pinolenic, 18:3Delta5,9,12 and 18:3omega3) and eicosatrienoic acid (20:3Delta5,11,14 and 20:3omega6). The concentration of linoleic acid comprised 39-46% of the triacylglycerol fatty acids and the concentration was higher in the slow-growing stem from northern Finland than in the stems from southern Finland. Major phospholipids were detected only in sapwood, and only traces of lipid phosphorus were detected in heartwood.
NASA Astrophysics Data System (ADS)
Choi, Yongjoo; Ghim, Young Sung
2016-11-01
Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.
Electromagnetic wave scattering from rough terrain
NASA Astrophysics Data System (ADS)
Papa, R. J.; Lennon, J. F.; Taylor, R. L.
1980-09-01
This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.
Using a Bayesian network to predict barrier island geomorphologic characteristics
Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron
2015-01-01
Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.
Gravity and Height Variations at Medicina, Italy
NASA Astrophysics Data System (ADS)
Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio; Wziontek, Hartmut
2017-04-01
Since 1996, at the Medicina station, height and gravity variations are monitored continuously by means of GPS, VLBI and superconducting gravimeter (SG) data. Additionally, absolute gravity observations are performed twice a year and environmental parameters, among others water table levels, are regularly acquired. Levelling between the different monuments at the site area is also carried out repeatedly to constrain local ties in the vertical position. Two GPS systems are located very close to each other, and both are in close proximity to the VLBI antenna. Twenty years of data are now available, which allow investigating both long- and short-period height and gravity signals together with their relevant correlations. Natural land subsidence, which is well known to occur in the area, is a major component of the observed long-term behavior; however, non-linear long-period signatures are also present in the time series. On a shorter time scale, fingerprints of the water table seasonal oscillations can be recognized in the data. The Medicina site is characterized by clayey soil subjected to consolidation effects when the water table lowers during summer periods. The pillar on which the SG is installed is especially affected because of its shallow foundation, causing height decreases in the order of 2.5-3 cm for water table lowering of 2 m. This study presents a comparative analysis of the different data sets with the aim of separating mass and deformation contributions in the SG gravity record.
Application of satellite data in variational analysis for global cyclonic systems
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1987-01-01
The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.
NASA Astrophysics Data System (ADS)
Holland, A.; Moses, C.; Sear, D. A.; Cope, S.
2016-12-01
As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.
NASA Astrophysics Data System (ADS)
Houser, Chris; Wernette, Phil; Weymer, Bradley A.
2018-02-01
The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.
Aerodynamic Parameters of a UK City Derived from Morphological Data
NASA Astrophysics Data System (ADS)
Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.
2013-03-01
Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.
Leg length, body proportion, and health: a review with a note on beauty.
Bogin, Barry; Varela-Silva, Maria Inês
2010-03-01
Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature x 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility.
Leg Length, Body Proportion, and Health: A Review with a Note on Beauty
Bogin, Barry; Varela-Silva, Maria Inês
2010-01-01
Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature × 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility. PMID:20617018
Pavlova, Anastasia V; Saunders, Fiona R; Muthuri, Stella G; Gregory, Jennifer S; Barr, Rebecca J; Martin, Kathryn R; Hardy, Rebecca J; Cooper, Rachel; Adams, Judith E; Kuh, Diana; Aspden, Richard M
2017-08-01
The anatomical shape of bones and joints is important for their proper function but quantifying this, and detecting pathological variations, is difficult to do. Numerical descriptions would also enable correlations between joint shapes to be explored. Statistical shape modelling (SSM) is a method of image analysis employing pattern recognition statistics to describe and quantify such shapes from images; it uses principal components analysis to generate modes of variation describing each image in terms of a set of numerical scores after removing global size variation. We used SSM to quantify the shapes of the hip and the lumbar spine in dual-energy x-ray absorptiometry (DXA) images from 1511 individuals in the MRC National Survey of Health and Development at ages 60-64 years. We compared shapes of both joints in men and women and hypothesised that hip and spine shape would be strongly correlated. We also investigated associations with height, weight, body mass index (BMI) and local (hip or lumber spine) bone mineral density. In the hip, all except one of the first 10 modes differed between men and women. Men had a wider femoral neck, smaller neck-shaft angle, increased presence of osteophytes and a loss of the femoral head/neck curvature compared with women. Women presented with a flattening of the femoral head and greater acetabular coverage of the femoral head. Greater weight was associated with a shorter, wider femoral neck and larger greater and lesser trochanters. Taller height was accompanied by a flattening of the curve between superior head and neck and a larger lesser trochanter. Four of the first eight modes describing lumbar spine shape differed between men and women. Women tended to have a more lordotic spine than men with relatively smaller but caudally increasing anterior-posterior (a-p) vertebral diameters. Men were more likely to have a straighter spine with larger vertebral a-p diameters relative to vertebral height than women, increasing cranially. A weak correlation was found between body weight and a-p vertebral diameter. No correlations were found between shape modes and height in men, whereas in women there was a weak positive correlation between height and evenness of spinal curvature. Linear relationships between hip and spine shapes were weak and inconsistent in both sexes, thereby offering little support for our hypothesis. In conclusion, men and women entering their seventh decade have small but statistically significant differences in the shapes of their hips and their spines. Associations with height, weight, BMI and BMD are small and correspond to subtle variations whose anatomical significance is not yet clear. Correlations between hip and spine shapes are small. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Extraction and Classification of Human Gait Features
NASA Astrophysics Data System (ADS)
Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi
In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.
Effects of Isometric Scaling on Vertical Jumping Performance
Bobbert, Maarten F.
2013-01-01
Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494
Variation in Foot Strike Patterns among Habitually Barefoot and Shod Runners in Kenya.
Lieberman, Daniel E; Castillo, Eric R; Otarola-Castillo, Erik; Sang, Meshack K; Sigei, Timothy K; Ojiambo, Robert; Okutoyi, Paul; Pitsiladis, Yannis
2015-01-01
Runners are often categorized as forefoot, midfoot or rearfoot strikers, but how much and why do individuals vary in foot strike patterns when running on level terrain? This study used general linear mixed-effects models to explore both intra- and inter-individual variations in foot strike pattern among 48 Kalenjin-speaking participants from Kenya who varied in age, sex, body mass, height, running history, and habitual use of footwear. High speed video was used to measure lower extremity kinematics at ground contact in the sagittal plane while participants ran down 13 meter-long tracks with three variables independently controlled: speed, track stiffness, and step frequency. 72% of the habitually barefoot and 32% of the habitually shod participants used multiple strike types, with significantly higher levels of foot strike variation among individuals who ran less frequently and who used lower step frequencies. There was no effect of sex, age, height or weight on foot strike angle, but individuals were more likely to midfoot or forefoot strike when they ran on a stiff surface, had a high preferred stride frequency, were habitually barefoot, and had more experience running. It is hypothesized that strike type variation during running, including a more frequent use of forefoot and midfoot strikes, used to be greater before the introduction of cushioned shoes and paved surfaces.
Gálvez, Dumas; Añino, Yostin; De la O, Jorge M
2018-02-26
Spiders show a repertoire of strategies to increase their foraging success. In particular, some orb-weaver spiders use attractive body colorations to lure prey. Interestingly, coloration varies with age in many species, which may result in ontogenetic variation of foraging success. By using field observations, laboratory experiments and spectrophotometric analysis, we investigated whether pale juveniles and bright adults of the orb-weaver Alpaida tuonabo use different foraging strategies due to ontogenetic variation in coloration. Field observations revealed that foraging success of juveniles and adults was influenced by web properties. However, foraging success increased with body size only in adults, supporting the idea that larger individuals produce a stronger visual signal for prey. The attractiveness of the adult coloration for prey was confirmed in the laboratory with frame-web-choice experiments, in which webs bearing a spider intercepted more bees than empty webs. Our spectrophotometric analysis suggests that the yellow coloration may produce the deceiving signal for prey. Moreover, we identified potential alternative foraging strategies: cryptic juveniles at higher heights and 'attractive' adults at lower heights. This study reveals how ontogenetic colour variation may favour the use of alternative foraging strategies in orb-weaver spiders and reduces intraspecific competition.
Heymsfield, Steven B; Pietrobelli, Angelo
2010-01-01
Mammalian resting energy expenditure (REE) increases as approximately weight(0.75) while mass-specific REE scales as approximately weight(-0.25). Energy needs for replacing resting losses are thus less relative to weight (W) in large compared with small mammals, a classic observation with biological implications. Human weight scales as approximately height(2) and tall adults thus have a greater weight than their short counterparts. However, it remains unknown if mass-specific energy requirements are less in tall adults; allometric models linking total energy expenditure (TEE) and weight with height (H) are lacking. We tested the hypothesis that mass-specific energy requirements scale inversely to height in adults by evaluating TEE (doubly labeled water) data collected by the National Academy of Sciences. Activity energy expenditure (AEE) was calculated from TEE, REE (indirect calorimetry), and estimated diet-induced energy expenditure. Main analyses focused on nonmorbidly obese subjects < or =50 yrs of age with non-negative AEE values (n = 404), although results were directionally similar for all samples. Allometric models, including age as a covariate, revealed significantly (P < 0.05) greater REE, AEE, and TEE as a function of height (range H(1.5-1.7)) in both men and women. TEE/W scaled negatively to height ( approximately H(-0.7), P < 0.01) with predicted mass-specific TEE (kcal/kg/d) at +/-2 SD for US height lower in tall compared with short men (40.3 vs. 46.5) and women (37.7 vs. 42.7). REE/W also scaled negatively to height in men (P < 0.001) and women (P < 0.01). Results were generally robust across several different analytic strategies. These observations reveal previously unforeseen associations between human stature and energy requirements that have implications for modeling efforts and provide new links to mammalian biology as a whole.
Ionospheric E-region electron density and neutral atmosphere variations
NASA Technical Reports Server (NTRS)
Stick, T. L.
1976-01-01
Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.
Threat effects on human oculo-motor function.
Naranjo, E N; Cleworth, T W; Allum, J H J; Inglis, J T; Lea, J; Westerberg, B D; Carpenter, M G
2017-09-17
Neuro-anatomical evidence supports the potential for threat-related factors, such as fear, anxiety and vigilance, to influence brainstem motor nuclei controlling eye movements, as well as the vestibular nuclei. However, little is known about how threat influences human ocular responses, such as eye saccades (ES), smooth pursuit eye tracking (SP), and optokinetic nystagmus (OKN), and whether these responses can be facilitated above normal baseline levels with a natural source of threat. This study was designed to examine the effects of height-induced postural threat on the gain of ES, SP and OKN responses in humans. Twenty participants stood at two different surface heights while performing ES (ranging from 8° to 45° from center), SP (15, 20, 30°/s) and OKN (15, 30, 60°/s) responses in the horizontal plane. Height did not significantly increase the slope of the relationship between ES peak velocity and initial amplitude, or the gain of ES amplitude. In contrast height significantly increased SP and OKN gain. Significant correlations were found between changes in physiological arousal and OKN gain. Observations of changes with height in OKN and SP support neuro-anatomical evidence of threat-related mechanisms influencing both oculo-motor nuclei and vestibular reflex pathways. Although further study is warranted, the findings suggest that potential influences of fear, anxiety and arousal/alertness should be accounted for, or controlled, during clinical vestibular and oculo-motor testing. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Predicting the limits to tree height using statistical regressions of leaf traits.
Burgess, Stephen S O; Dawson, Todd E
2007-01-01
Leaf morphology and physiological functioning demonstrate considerable plasticity within tree crowns, with various leaf traits often exhibiting pronounced vertical gradients in very tall trees. It has been proposed that the trajectory of these gradients, as determined by regression methods, could be used in conjunction with theoretical biophysical limits to estimate the maximum height to which trees can grow. Here, we examined this approach using published and new experimental data from tall conifer and angiosperm species. We showed that height predictions were sensitive to tree-to-tree variation in the shape of the regression and to the biophysical endpoints selected. We examined the suitability of proposed end-points and their theoretical validity. We also noted that site and environment influenced height predictions considerably. Use of leaf mass per unit area or leaf water potential coupled with vulnerability of twigs to cavitation poses a number of difficulties for predicting tree height. Photosynthetic rate and carbon isotope discrimination show more promise, but in the second case, the complex relationship between light, water availability, photosynthetic capacity and internal conductance to CO(2) must first be characterized.
Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device
NASA Astrophysics Data System (ADS)
Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.
2018-05-01
The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.
NASA Technical Reports Server (NTRS)
Parker, T. J.; Gorsline, D. S.
1993-01-01
The use of photoclinometry and shadow measurements to determine the basin volume without linking the measurements to a global datum is described. Since the boundary, or shoreline, of the basin cannot be tied to the datum and typically has no useful local relative height to measure, what is needed is a number of measurements of the height of the paleoshorelines distributed across the basin. Photoclinometric profiles are being compiled from Viking Orbiter images of the Cydonia Mensae region, which includes images with high sun elevations, necessary to avoid shadows, and images with low sun elevations, to enable the use of shadow measurements as an independent check, at high resolution (40 to 100 m/pixel). Both asymmetric and symmetric photoclinometric profile models are being used, and the results cross checked with one another to minimize errors. An apron-height map, potentially a paleobathymetric map of part of the margin of Oceanus Borealis, can be compiled from this data to determine whether variations in apron height are consistent with a lacustrine interpretation.
An investigation of cloud base height in Chiang Mai
NASA Astrophysics Data System (ADS)
Peengam, S.; Tohsing, K.
2017-09-01
Clouds play very important role in the variation of surface solar radiation and rain formation. To understand this role, it is necessary to know the physical and geometrical of properties of cloud. However, clouds vary with location and time, which lead to a difficulty to obtain their properties. In this work, a ceilometer was installed at a station of the Royal Rainmaking and Agricultural Aviation Department in Chiang Mai (17.80° N, 98.43° E) in order to measure cloud base height. The cloud base height data from this instrument were compared with those obtained from LiDAR, a more sophisticated instrument installed at the same site. It was found that the cloud base height from both instruments was in reasonable agreement, with root mean square difference (RMSD) and mean bias difference (MBD) of 19.21% and 1.58%, respectively. Afterward, a six-month period (August, 2016-January, 2017) of data from the ceilometer was analyzed. The results show that mean cloud base height during this period is 1.5 km, meaning that most clouds are in the category of low-level cloud.
Hermanussen, Michael; Scheffler, Christiane
2016-11-01
Background: There is a common perception that tall stature results in social dominance. Evidence in meerkats suggests that social dominance itself may be a strong stimulus for growth. Relative size serves as the signal for individuals to induce strategic growth adjustments . Aim: We construct a thought experiment to explore the potential consequences of the question: is stature a social signal also in humans? We hypothesize that (1) upward trends in height in the lower social strata are perceived as social challenges yielding similar though attenuated upward trends in the dominant strata, and that (2) democratization, but also periods of political turmoil that facilitate upward mobility of the lower strata, are accompanied by upward trends in height. Material and methods: We reanalyzed large sets of height data of European conscripts born between 1856-1860 and 1976-1980; and annual data of German military conscripts, born between 1965 and 1985, with information on height and school education. Results: Taller stature is associated with higher socioeconomic status. Historic populations show larger height differences between social strata that tend to diminish in the more recent populations. German height data suggest that both democratization, and periods of political turmoil facilitating upward mobility of the lower social strata are accompanied by a general upward height spiral that captures the whole population. Discussion: We consider stature as a signal. Nutrition, health, general living conditions and care giving are essential prerequisites for growth, yet not to maximize stature, but to allow for its function as a lifelong social signal. Considering stature as a social signal provides an elegant explanation of the rapid height adjustments observed in migrants, of the hitherto unexplained clustering of body height in modern and historic cohorts of military conscripts, and of the parallelism between changes in political conditions, and secular trends in adult human height since the 19 th century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Chang, Grace; Magalen, Jason
A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presencemore » of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .« less
Characterizing acoustic shocks in high-performance jet aircraft flyover noise.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Downing, J Micah; James, Michael M; Wall, Alan T; McInerny, Sally Anne
2018-03-01
Acoustic shocks have been previously documented in high-amplitude jet noise, including both the near and far fields of military jet aircraft. However, previous investigations into the nature and formation of shocks have historically concentrated on stationary, ground run-up measurements, and previous attempts to connect full-scale ground run-up and flyover measurements have omitted the effect of nonlinear propagation. This paper shows evidence for nonlinear propagation and the presence of acoustic shocks in acoustical measurements of F-35 flyover operations. Pressure waveforms, derivatives, and statistics indicate nonlinear propagation, and the resulting shock formation is significant at high engine powers. Variations due to microphone size, microphone height, and sampling rate are considered, and recommendations for future measurements are made. Metrics indicating nonlinear propagation are shown to be influenced by changes in sampling rate and microphone size, and exhibit less variation due to microphone height.
Design of landfill daily cells.
Panagiotakopoulos, D; Dokas, I
2001-08-01
The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill.
Optimal leveling of flow over one-dimensional topography by Marangoni stresses
NASA Astrophysics Data System (ADS)
Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim
2001-11-01
A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).
Height biases and scale variations in VLBI networks due to antenna gravitational deformations
NASA Astrophysics Data System (ADS)
Abbondanza, Claudio; Sarti, Pierguido; Petrov, Leonid; Negusini, Monia
2010-05-01
The impact of signal path variations (SPVs) caused by antenna gravity deformations on geodetic VLBI results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models, estimates of the antenna reference point (ARP) positions are shifted upward by 8.9 mm and 6.7 mm, respectively. The impact on other parameters is negligible. To infer the impact of antenna gravity deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects are changes in VLBI heights in the range [-3,73] mm and a significant net scale increase of 0.3 - 0.8 ppb. This demonstrates the need to include SPV models in routine VLBI data analysis.
Rare and low-frequency coding variants alter human adult height.
Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas G D; Ng, Maggie C Y; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul I W; de Borst, Gert J; de Denus, Simon; de Groot, Mark C H; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela A F; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; 't Hart, Leen M; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume
2017-02-09
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio
2007-01-01
Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.
A numerical study of three-dimensional diurnal variations within the thermosphere.
NASA Technical Reports Server (NTRS)
Volland, H.; Mayr, H. G.
1973-01-01
A thermosphere model with a realistic temperature profile is assumed. Heat conduction waves are introduced in addition to gravity waves. The temporal and spatial distribution of ion-neutral collisions is taken into account. However, the influence of viscosity waves is neglected. Viscosity-wave effects are simulated by an effective height-dependent collision number. Numerical calculations are conducted of the generation and propagation of two of the most important symmetric tidal waves at thermospheric heights. The influence of the solar EUV-heat upon the generation of the two tidal modes is investigated.
Synoptic analyses, 5-, 2-, and 0.4-millibar surfaces for July 1974 through June 1976
NASA Technical Reports Server (NTRS)
1978-01-01
Meteorological rocketsonde and satellite radiance data were employed for analyses of a continuing series of high altitude constant pressure charts. The methods of processing, the various types of data utilized and the analysis procedure are described. Broad-scale analyses of temperature and geopotential height for the Northern Hemisphere 5, 2, and 0.4 mb surfaces are presented for each week of the period July 1974 through June 1976. Brief discussions of the variations of the temperature and height fields throughout the two year period are also given.
MULTICHANNEL PULSE-HEIGHT ANALYZER
Russell, J.T.; Lefevre, H.W.
1958-01-21
This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.
Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation
NASA Astrophysics Data System (ADS)
Tomizawa, H.; Suzuki, K.; Yamaguchi, T.; Akita, S.; Ishibashi, K.
2017-04-01
We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.
Haemmerli, Sarah; Thill, Corinne; Amici, Federica; Cacchione, Trix
2018-05-01
From early infancy, humans reason about the external world in terms of identifiable, solid, cohesive objects persisting in space and time. This is one of the most fundamental human skills, which may be part of our innate conception of object properties. Although object permanence has been extensively studied across a variety of taxa, little is known about how non-human animals reason about other object properties. In this study, we therefore tested how domestic horses (Equus ferus caballus) intuitively reason about object properties like solidity and height, to locate hidden food. Horses were allowed to look for a food reward behind two opaque screens, only one of which had either the proper height or inclination to hide food rewards. Our results suggest that horses could not intuitively reason about physical object properties, but rather learned to select the screen with the proper height or inclination from the second set of 5 trials.
Xing, Anqi; Gao, Yufeng; Ye, Lingfeng; Zhang, Weiping; Cai, Lichun; Ching, Ada; Llaca, Victor; Johnson, Blaine; Liu, Lin; Yang, Xiaohong; Kang, Dingming; Yan, Jianbing; Li, Jiansheng
2015-07-01
Plant height has long been an important agronomic trait in maize breeding. Many plant height QTLs have been reported, but few of these have been cloned. In this study, a major plant height QTL, qph1, was mapped to a 1.6kb interval in Brachytic2 (Br2) coding sequence on maize chromosome 1. A naturally occurring rare SNP in qph1, which resulted in an amino acid substitution, was validated as the causative mutation. QPH1 protein is located in the plasma membrane and polar auxin transport is impaired in the short near-isogenic line RIL88(qph1). Allelism testing showed that the SNP variant in qph1 reduces longitudinal cell number and decreases plant height by 20% in RIL88(qph1) compared to RIL88(QPH1), and is milder than known br2 mutant alleles. The effect of qph1 on plant height is significant and has no or a slight influence on yield in four F2 backgrounds and in six pairs of single-cross hybrids. Moreover, qph1 could reduce plant height when heterozygous, allowing it to be easily employed in maize breeding. Thus, a less-severe allele of a known dwarf mutant explains part of the quantitative variation for plant height and has great potential in maize improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Shriner, Daniel; Adeyemo, Adebowale; Gerry, Norman P.; Herbert, Alan; Chen, Guanjie; Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Christman, Michael F.; Rotimi, Charles N.
2009-01-01
Human height is the prototypical polygenic quantitative trait. Recently, several genetic variants influencing adult height were identified, primarily in individuals of East Asian (Chinese Han or Korean) or European ancestry. Here, we examined 152 genetic variants representing 107 independent loci previously associated with adult height for transferability in a well-powered sample of 1,016 unrelated African Americans. When we tested just the reported variants originally identified as associated with adult height in individuals of East Asian or European ancestry, only 8.3% of these loci transferred (p-values≤0.05 under an additive genetic model with directionally consistent effects) to our African American sample. However, when we comprehensively evaluated all HapMap variants in linkage disequilibrium (r 2≥0.3) with the reported variants, the transferability rate increased to 54.1%. The transferability rate was 70.8% for associations originally reported as genome-wide significant and 38.0% for associations originally reported as suggestive. An additional 23 loci were significantly associated but failed to transfer because of directionally inconsistent effects. Six loci were associated with adult height in all three groups. Using differences in linkage disequilibrium patterns between HapMap CEU or CHB reference data and our African American sample, we fine-mapped these six loci, improving both the localization and the annotation of these transferable associations. PMID:20027299
Thermally tailored gradient topography surface on elastomeric thin films.
Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata
2014-05-14
We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.
Groesbeck, Amy S.; Rowell, Kirsten; Lepofsky, Dana; Salomon, Anne K.
2014-01-01
Maintaining food production while sustaining productive ecosystems is among the central challenges of our time, yet, it has been for millennia. Ancient clam gardens, intertidal rock-walled terraces constructed by humans during the late Holocene, are thought to have improved the growing conditions for clams. We tested this hypothesis by comparing the beach slope, intertidal height, and biomass and density of bivalves at replicate clam garden and non-walled clam beaches in British Columbia, Canada. We also quantified the variation in growth and survival rates of littleneck clams (Leukoma staminea) we experimentally transplanted across these two beach types. We found that clam gardens had significantly shallower slopes than non-walled beaches and greater densities of L. staminea and Saxidomus giganteus, particularly at smaller size classes. Overall, clam gardens contained 4 times as many butter clams and over twice as many littleneck clams relative to non-walled beaches. As predicted, this relationship varied as a function of intertidal height, whereby clam density and biomass tended to be greater in clam gardens compared to non-walled beaches at relatively higher intertidal heights. Transplanted juvenile L. staminea grew 1.7 times faster and smaller size classes were more likely to survive in clam gardens than non-walled beaches, specifically at the top and bottom of beaches. Consequently, we provide strong evidence that ancient clam gardens likely increased clam productivity by altering the slope of soft-sediment beaches, expanding optimal intertidal clam habitat, thereby enhancing growing conditions for clams. These results reveal how ancient shellfish aquaculture practices may have supported food security strategies in the past and provide insight into tools for the conservation, management, and governance of intertidal seascapes today. PMID:24618748
Macé, Aurélien; Tuke, Marcus A; Deelen, Patrick; Kristiansson, Kati; Mattsson, Hannele; Nõukas, Margit; Sapkota, Yadav; Schick, Ursula; Porcu, Eleonora; Rüeger, Sina; McDaid, Aaron F; Porteous, David; Winkler, Thomas W; Salvi, Erika; Shrine, Nick; Liu, Xueping; Ang, Wei Q; Zhang, Weihua; Feitosa, Mary F; Venturini, Cristina; van der Most, Peter J; Rosengren, Anders; Wood, Andrew R; Beaumont, Robin N; Jones, Samuel E; Ruth, Katherine S; Yaghootkar, Hanieh; Tyrrell, Jessica; Havulinna, Aki S; Boers, Harmen; Mägi, Reedik; Kriebel, Jennifer; Müller-Nurasyid, Martina; Perola, Markus; Nieminen, Markku; Lokki, Marja-Liisa; Kähönen, Mika; Viikari, Jorma S; Geller, Frank; Lahti, Jari; Palotie, Aarno; Koponen, Päivikki; Lundqvist, Annamari; Rissanen, Harri; Bottinger, Erwin P; Afaq, Saima; Wojczynski, Mary K; Lenzini, Petra; Nolte, Ilja M; Sparsø, Thomas; Schupf, Nicole; Christensen, Kaare; Perls, Thomas T; Newman, Anne B; Werge, Thomas; Snieder, Harold; Spector, Timothy D; Chambers, John C; Koskinen, Seppo; Melbye, Mads; Raitakari, Olli T; Lehtimäki, Terho; Tobin, Martin D; Wain, Louise V; Sinisalo, Juha; Peters, Annette; Meitinger, Thomas; Martin, Nicholas G; Wray, Naomi R; Montgomery, Grant W; Medland, Sarah E; Swertz, Morris A; Vartiainen, Erkki; Borodulin, Katja; Männistö, Satu; Murray, Anna; Bochud, Murielle; Jacquemont, Sébastien; Rivadeneira, Fernando; Hansen, Thomas F; Oldehinkel, Albertine J; Mangino, Massimo; Province, Michael A; Deloukas, Panos; Kooner, Jaspal S; Freathy, Rachel M; Pennell, Craig; Feenstra, Bjarke; Strachan, David P; Lettre, Guillaume; Hirschhorn, Joel; Cusi, Daniele; Heid, Iris M; Hayward, Caroline; Männik, Katrin; Beckmann, Jacques S; Loos, Ruth J F; Nyholt, Dale R; Metspalu, Andres; Eriksson, Johan G; Weedon, Michael N; Salomaa, Veikko; Franke, Lude; Reymond, Alexandre; Frayling, Timothy M; Kutalik, Zoltán
2017-09-29
There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m 2 ). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m 2 for each Mb of total deletion burden (P = 2.5 × 10 -10 , 6.0 × 10 -5 , and 2.9 × 10 -3 ). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Individual SNPs have small effects on anthropometric traits, yet the impact of CNVs has remained largely unknown. Here, Kutalik and co-workers perform a large-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.
Paramedian vertical palatal bone height for mini-implant insertion: a systematic review.
Winsauer, H; Vlachojannis, C; Bumann, A; Vlachojannis, J; Chrubasik, S
2014-10-01
Paramedian insertion of orthodontic mini-implants is increasingly used to anchor molar distalizers. The aim of this review was to systematically examine the available measurements of vertical palatal bone height (VBH). PUBMED, MEDLINE and the Cochrane Controlled Trials Register were searched using specific search terms. Hand searches of bibliographies of articles were also performed to identify studies measuring VBH or bone thickness in the human palate. Sixteen studies were included, arising from 19 published articles. Repeat presentations were excluded. Ten of the 11 computed tomogram (CT)-based studies presented data from 956 orthodontic patients on average VBH and its variation at a range of palatal sites. Individual data were not available, and pooling of data was not feasible because of heterogeneity of subjects, different measurement sites, different CT methods and their associated software. The compilation of data did indicate that the region 3-4mm behind the incisive foramen and 3-9mm lateral to the midpalatal suture should normally provide sufficient VBH to anchor molar distalizers. The risks of unwanted effects during distalization should be small, but the limitations listed above and the small numbers of studies available impair the precision of the estimates and do not allow the results to be generalized. Paramedian anchorage in the anterior palate can be recommended for molar distalization but, given the great inter-individual variability of the palatal bone height, it must be preceded by reliable CT-based imaging in patients identified by routine investigations as being at risk. © The Author 2012. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Held, Gerhard; Cruz, Felipe
2014-05-01
Continuous Sodar observations from Bauru, located in the central State of São Paulo, are presented in this paper for a 4-year period (January 2010 - December 2013). The data were collected at the Meteorological Research Institute (IPMet) of the Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Bauru, which is situated at the southeastern outskirts of the town, in a pristine environment with mostly indigenous vegetation. The medium-sized Sodar was programmed to record 60-minute averages of the vertical wind profiles (u, v, w) between 30 and 800 m above ground level (AGL, station height 624 m above mean sea level) at 30-minute intervals with a vertical resolution of 10 m. The data recovery was almost 100% in the first 160 m, subsequently diminishing gradually to 50% at 370 m, 20% at 500 m and then tailing off to only 1% at 800 m AGL. Since the Sodar is an acoustic sensor, the reception of the backscattered signals is strongly dependent on meteorological conditions. The maximum height of 800 m was maintained, despite the low recovery rate, because it is important for individual case studies. However, mean wind roses will only be presented up to 500 m AGL, to avoid a possible bias in sampling wind directions. In this paper wind roses at selected heights are presented to document the variation of the wind direction and speed with height, as well as their seasonal variation. Besides the standard primary data of the 3 wind components, the scalar hourly mean wind speed and the mean vector direction, the Sodar also generates their standard deviations. Furthermore, a variety of derived parameters, such as shear, shear direction, sigma speed, sigma Phi, sigma Theta, turbulence intensity, Pasquill-Gifford (PG) stability class, turbulent kinetic energy and eddy dissipation rate are generated as hourly means at each height level and recorded as sliding means every 30 min. The Software also offers the facility to generate a separate daily file with so called Non-Profile Variables, providing a single value for every vertical profile of the following variables: PG stability, surface heat flux, Monin Obukov Length and friction velocity. These are important input data for dispersion modeling, but only being calculated under convective conditions (mostly mid-day & early afternoon). Furthermore, the maximum range of the backscatter signal, as well as estimates of the lowest inversion height and the mixing height, if detected, are also being recorded for every profile. However, the last two variables mentioned are only estimated from the backscatter profile and thus not very reliable. Nevertheless, since there is no RASS attached to this Sodar, the statistics of all these parameters do provide a good record of the diurnal variation of the nocturnal stable Planetary Boundary Layer and daytime instability. Finally, the seasonal variation and characteristics of the nocturnal Low-Level-Jets (LLJs), developing on top of the surface radiation inversion, will be presented. These LLJs generally form during late evening at altitudes ranging from 200-500 m AGL, with maximum speeds of 12-25 m/s from east-south-east. They usually last until 08:00-09:00 LT (Local Time), when the inversion has been eroded by the solar radiation. LLJs could be identified on about 30-70 % of the days per month throughout the year. The practical importance of the LLJ lies in the rapid transport of moisture and pollutants in a narrow vertical band above the radiation inversion.
Zhang, Rebecca; Undurraga, Eduardo A.; Zeng, Wu; Reyes-García, Victoria; Tanner, Susan; Leonard, William R.; Behrman, Jere R.; Godoy, Ricardo A.
2017-01-01
Background Childhood growth stunting is negatively associated with cognitive and health outcomes, claimed to be irreversible after age 2. Aim To estimate growth rates for children 2 ≤ age ≤ 7 who were stunted (sex-age standardized z-score [HAZ] <−2), marginally-stunted (−2≤ HAZ ≤ −1), or not-stunted (HAZ >−1) at baseline and tracked annually until age 11; frequency of movement among height categories; and variation in height predicted by early childhood height. Participants/methods We used a nine-year annual panel (2002–2010) from a native Amazonian society of horticulturalists-foragers (Tsimane’; n=174 girls; 179 boys at baseline) is used. We used descriptive statistics and random-effect regressions. Results We found some evidence of catch-up growth in HAZ but persistent height deficits. Children stunted at baseline improved 1 HAZ unit by age 11, and had higher annual growth rates than non-stunted children. Marginally-stunted boys had a 0.1 HAZ units higher annual growth rate than non-stunted boys. Despite some catch up, ~80% of marginally-stunted children at baseline remained marginally-stunted by age 11. The height deficit increased from age 2 to11. We found modest year-to-year movement between height categories. Conclusions The prevalence of growth faltering among the Tsimane’ has declined, but hurdles still substantially lock children into height categories. PMID:27251215
Kiserud, Torvid; Benachi, Alexandra; Hecher, Kurt; Perez, Rogelio González; Carvalho, José; Piaggio, Gilda; Platt, Lawrence D
2018-02-01
Ultrasound biometry is an important clinical tool for the identification, monitoring, and management of fetal growth restriction and development of macrosomia. This is even truer in populations in which perinatal morbidity and mortality rates are high, which is a reason that much effort is put onto making the technique available everywhere, including low-income societies. Until recently, however, commonly used reference ranges were based on single populations largely from industrialized countries. Thus, the World Health Organization prioritized the establishment of fetal growth charts for international use. New fetal growth charts for common fetal measurements and estimated fetal weight were based on a longitudinal study of 1387 low-risk pregnant women from 10 countries (Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) that provided 8203 sets of ultrasound measurements. The participants were characterized by median age 28 years, 58% nulliparous, normal body mass index, with no socioeconomic or nutritional constraints (median caloric intake, 1840 calories/day), and had the ability to attend the ultrasound sessions, thus essentially representing urban populations. Median gestational age at birth was 39 weeks, and birthweight was 3300 g, both with significant differences among countries. Quantile regression was used to establish the fetal growth charts, which also made it possible to demonstrate a number of features of fetal growth that previously were not well appreciated or unknown: (1) There was an asymmetric distribution of estimated fetal weight in the population. During early second trimester, the distribution was wider among fetuses <50th percentile compared with those above. The pattern was reversed in the third trimester, with a notably wider variation >50th percentile. (2) Although fetal sex, maternal factors (height, weight, age, and parity), and country had significant influence on fetal weight (1-4.5% each), their effect was graded across the percentiles. For example, the positive effect of maternal height on fetal weight was strongest on the lowest percentiles and smallest on the highest percentiles for estimated fetal weight. (3) When adjustment was made for maternal covariates, there was still a significant effect of country as covariate that indicated that ethnic, cultural, and geographic variation play a role. (4) Variation between populations was not restricted to fetal size because there were also differences in growth trajectories. (5) The wide physiologic ranges, as illustrated by the 5th-95th percentile for estimated fetal weight being 2205-3538 g at 37 weeks gestation, signify that human fetal growth under optimized maternal conditions is not uniform. Rather, it has a remarkable variation that largely is unexplained by commonly known factors. We suggest this variation could be part of our common biologic strategy that makes human evolution extremely successful. The World Health Organization fetal growth charts are intended to be used internationally based on low-risk pregnancies from populations in Africa, Asia, Europe, and South America. We consider it prudent to test and monitor whether the growth charts' performance meets the local needs, because refinements are possible by a change in cut-offs or customization for fetal sex, maternal factors, and populations. In the same line, the study finding of variations emphasizes the need for carefully adjusted growth charts that reflect optimal local growth when public health issues are addressed. Copyright © 2017 Elsevier Inc. All rights reserved.
Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia
Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso
2015-01-01
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602
Zhu, Meiling; Worthington, Emma; Tiwari, Ashutosh
2010-01-01
This paper presents a design study on the geometric parameters of a cantilever-based piezoelectric energy-harvesting devices (EHD), which harvest energy from motion (vibration), for the purpose of scavenging more energy from ambient vibration energy sources. The design study is based on the coupled piezoelectric-circuit finite element method (CPCFEM), previously presented by Dr. Zhu. This model can calculate the power output of piezoelectric EHDS directly connected to a load resistor and is used in this paper to obtain the following simulation results for variations in geometric parameters such as the beam length, width and thickness, and the mass length, width, and height: 1) the current flowing through and the voltage developed across the load resistor, 2) the power dissipated by the resistor and the corresponding vibrational displacement amplitude, and 3) the resonant frequency. By studying these results, straightforward design strategies that enable the generation of more power are obtained for each geometric parameter, and a physical understanding of how each parameter affects the output power is given. It is suggested that, in designing with the aim of generating more power, the following strategies be used: 1) for the beam, a shorter length, larger width, and lower ratio of piezoelectric layer thickness to total beam thickness are preferred in the case of a fixed mass; 2) for the mass, a shortened mass length and a higher mass height are preferred in the case of variation in the mass length and the mass height with mass width and mass value remain fixed, and a wider width and small mass height are preferred in the case of variation in mass width and height (mass length and value remain fixed; and 3) for the case of a fixed total length, a shorter beam length and longer mass length are preferred. With the design strategies, output powers from the device can reach above 1 to 2 mW/cm(3), much higher than the 200 microW/cm(3) currently achieved in the published literature. This is an encouraging prospect for enabling a wider range of applications of the EHDs. In addition, physical insights into how each parameter influences output power are also discussed in detail.
Ali, Arshad; Mattsson, Eskil
2017-01-01
Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry zone homegarden agroforestry systems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Nwadike, E. V.; Sinha, S. E.
1982-01-01
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.
Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study.
Stanković, Kristina; Booth, Brian G; Danckaers, Femke; Burg, Fien; Vermaelen, Philippe; Duerinck, Saartje; Sijbers, Jan; Huysmans, Toon
2018-01-01
Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape. The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression. The complex nature of a foot's 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height. A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be obtained from 2D footprints. These insights could be applied in various scientific disciplines, including orthotics and shoe design.
Ziemińska, Kasia; Westoby, Mark; Wright, Ian J.
2015-01-01
Objectives Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Methods Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38–0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Results Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05). However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P < 0.001). Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component. Conclusions Overall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation. PMID:25906320
Calvo-Alvarado, J C; McDowell, N G; Waring, R H
2008-11-01
We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.
Evaluation of nature and extent of injuries during Dahihandi festival.
Nemade, P; Wade, R; Patwardhan, A R; Kale, S
2012-01-01
Injuries related to the Hindu festival of Dahihandi where a human pyramid is formed and a pot of money kept at a height is broken, celebrated in the state of Maharashtra, have seen a significant rise in the past few years. The human pyramid formed is multi-layered and carries with it a high risk of injury including mortality. To evaluate the nature, extent and influencing factors of injuries related to Dahihandi festival. We present a retrospective analysis of patients who presented in a tertiary care center with injuries during the Dahihandi festival in the year 2010. 124 patients' records were evaluated for timing of injury, height of the Dahihandi pyramid, position of the patient in the multi-layered pyramid, mode of pyramid collapse and mechanism of an injury. A binary regression logistic analysis for risk factors was done at 5% significance level. Univariate and multi-variate binary logistic regression of the risk factors for occurrence of a major or minor injury was done using Minitab™ version 16.0 at 5% significance. Out of 139 patients presented to the center, 15 were not involved directly in the formation of pyramid, rest 124 were included in the analysis. A majority of the patients were above 15 years of age [110 (83.6%)]. 46 (37.1%) patients suffered major injuries. There were 39 fractures, 3 cases of chest wall trauma with 10 cases of head injuries and 1 death. More than half of the patients [78 (56.1%)] were injured after 1800 hours. 73 (58.9%) injured participants were part of the pyramid constructed to reach the Dahihandi placed at 30 feet or more above the ground. 72 (51.8%) participants were part of the middle layers of the pyramid. Fall of a participant from upstream layers on the body was the main mechanism of injury, and majority [101 (81.5%)] of the patients suffered injury during descent phase of the pyramid. There is a considerable risk of serious, life-threatening injuries inherent to human pyramid formation and descent in the Dahihandi festival. Safety guidelines are urgently needed to minimize risk and prevent loss of human life.
Automatic rice crop height measurement using a field server and digital image processing.
Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit
2014-01-07
Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es
Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results showmore » that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.« less
Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi; Xiong, Zai-ping; Liu, Miao
2010-12-01
In this paper, three-dimensional building information was extracted from high resolution satellite image based on Barista software. Combined with ArcGIS software, the dynamic changes of the building landscape in Tiexi District of Shenyang City during urban renewal process were analyzed from the conversion contribution rate, building density, average building height, and built-up area rate. It was found that during this urban renewal process, four dominant landscape types (vacant lot, residential building, industrial building, and road) were the main parts of the landscape changes. The areas of vacant lot, residential building, commercial building, and road increased, while that of industrial building decreased. The building density decreased, while the average building height increased. There was an obvious regional variation in building landscape. The building density in industrial district was higher than that in residential district, while the average building height was in adverse. The further from the city center, the lower the building density and building average height.
Child height, health and human capital: Evidence using genetic markers
von Hinke Kessler Scholder, Stephanie; Davey Smith, George; Lawlor, Debbie A.; Propper, Carol; Windmeijer, Frank
2013-01-01
Height has long been recognized as being associated with better outcomes: the question is whether this association is causal. We use children's genetic variants as instrumental variables to deal with possible unobserved confounders and examine the effect of child/adolescent height on a wide range of outcomes: academic performance, IQ, self-esteem, depression symptoms and behavioral problems. OLS findings show that taller children have higher IQ, perform better in school, and are less likely to have behavioral problems. The IV results differ: taller girls (but not boys) have better cognitive performance and, in contrast to the OLS, greater height appears to increase behavioral problems. PMID:25673883
Child height, health and human capital: Evidence using genetic markers.
von Hinke Kessler Scholder, Stephanie; Davey Smith, George; Lawlor, Debbie A; Propper, Carol; Windmeijer, Frank
2013-01-01
Height has long been recognized as being associated with better outcomes: the question is whether this association is causal. We use children's genetic variants as instrumental variables to deal with possible unobserved confounders and examine the effect of child/adolescent height on a wide range of outcomes: academic performance, IQ, self-esteem, depression symptoms and behavioral problems. OLS findings show that taller children have higher IQ, perform better in school, and are less likely to have behavioral problems. The IV results differ: taller girls (but not boys) have better cognitive performance and, in contrast to the OLS, greater height appears to increase behavioral problems.
NASA Astrophysics Data System (ADS)
Gireesh Kumar, Pala; Jayalekshmi, S.
2018-03-01
Wheel-soil Interaction studies are gaining momentum in the field of Terramechanics, but the basis is Terzaghi’s bearing capacity equation. For the current study, on a lunar soil simulant TRI – 1, two plain rigid wheels are considered, i.e., small wheel (dia. of 210 mm and width of 50 mm) and large wheel (dia. 160 mm and width 32 mm). Also, different number of lugs (N = 8, 12, 16) with various lug heights (h = 5 mm, 10 mm, 15 mm) are used. In this paper, the variation of wheel sinkages from experiments obtained for various wheel weights are examined and presented. The parameter, Coefficient of rolling resistance (CRR) is determined for various cases. Hence, rolling resistance was determined and examined from the obtained CRR for all cases. Among the cases examined, the large wheel with weight 67.44 N for plain wheels and weight 67.85 N for lugged wheel (no. of lugs = 16, and height of lugs = 5 mm) registered better mobility. Similarly, for small wheel with weight 52.189 N for plain wheel and weight 52.481 N for lugged wheel (no. of lugs = 16, and height of lugs = 5 mm) registered better mobility, a lesser rolling resistance for these cases.
Normalized GNSS Interference Pattern Technique for Altimetry
Ribot, Miguel Angel; Kucwaj, Jean-Christophe; Botteron, Cyril; Reboul, Serge; Stienne, Georges; Leclère, Jérôme; Choquel, Jean-Bernard; Farine, Pierre-André; Benjelloun, Mohammed
2014-01-01
It is well known that reflected signals from Global Navigation Satellite Systems (GNSS) can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR) measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT). In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals. PMID:24922453
Su, Rina; Cheng, Junhui; Chen, Dima; Bai, Yongfei; Jin, Hua; Chao, Lumengqiqige; Wang, Zhijun; Li, Junqing
2017-02-28
Grasslands worldwide are suffering from overgrazing, which greatly alters plant community structure and ecosystem functioning. However, the general effects of grazing on community structure and ecosystem function at spatial and temporal scales has rarely been examined synchronously in the same grassland. Here, during 2011-2013, we investigated community structure (cover, height, and species richness) and aboveground biomass (AGB) using 250 paired field sites (grazed vs. fenced) across three vegetation types (meadow, typical, and desert steppes) on the Inner Mongolian Plateau. Grazing, vegetation type, and year all had significant effects on cover, height, species richness, and AGB, although the primary factor influencing variations in these variables was vegetation type. Spatially, grazing significantly reduced the measured variables in meadow and typical steppes, whereas no changes were observed in desert steppe. Temporally, both linear and quadratic relationships were detected between growing season precipitation and cover, height, richness, or AGB, although specific relationships varied among observation years and grazing treatments. In each vegetation type, the observed community properties were significantly correlated with each other, and the shape of the relationship was unaffected by grazing treatment. These findings indicate that vegetation type is the most important factor to be considered in grazing management for this semi-arid grassland.
Hurricane Directional Wave Spectrum Spatial Variation at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Hurricane Directional Wave Spectrum Spatial Variation at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Variations of radon concentration in the atmosphere. Gamma dose rate
NASA Astrophysics Data System (ADS)
Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.
2018-02-01
The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.
Mesospheric temperatures estimated from the meteor radar observations at Mohe, China
NASA Astrophysics Data System (ADS)
Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang
2017-02-01
In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.
Phylogenetic estimates of diversification rate are affected by molecular rate variation.
Duchêne, D A; Hua, X; Bromham, L
2017-10-01
Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong
2018-04-01
Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
Look up: Human adults use vertical height cues in reorientation.
Du, Yu; Spetch, Marcia L; Mou, Weimin
2016-11-01
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
Early-life conditions and child development: Evidence from a violent conflict.
Duque, Valentina
2017-12-01
This paper investigates how the exposure to violent conflicts in utero and in early and late childhood affect human capital formation. I focus on a wide range of child development outcomes, including novel cognitive and non-cognitive indicators. Using monthly and municipality-level variation in the timing and severity of massacres in Colombia from 1999 to 2007, I show that children exposed to terrorist attacks in utero and in childhood achieve lower height-for-age (0.09 SD) and cognitive outcomes (PPVT falls by 0.18SD and math reasoning and general knowledge fall by 0.16SD), and that these results are robust to controlling for mother fixed-effects. The timing of these exposures matters and differs by type of skill. In terms of parental investments, I find some evidence that parents reinforce the negative effects of violence by increasing their frequency of physical aggression.
The life-history trade-off between fertility and child survival
Lawson, David W.; Alvergne, Alexandra; Gibson, Mhairi A.
2012-01-01
Evolutionary models of human reproduction argue that variation in fertility can be understood as the local optimization of a life-history trade-off between offspring quantity and ‘quality’. Child survival is a fundamental dimension of quality in these models as early-life mortality represents a crucial selective bottleneck in human evolution. This perspective is well-rehearsed, but current literature presents mixed evidence for a trade-off between fertility and child survival, and little empirical ground to evaluate how socioecological and individual characteristics influence the benefits of fertility limitation. By compiling demographic survey data, we demonstrate robust negative relationships between fertility and child survival across 27 sub-Saharan African countries. Our analyses suggest this relationship is primarily accounted for by offspring competition for parental investment, rather than by reverse causal mechanisms. We also find that the trade-off increases in relative magnitude as national mortality declines and maternal somatic (height) and extrasomatic (education) capital increase. This supports the idea that socioeconomic development, and associated reductions in extrinsic child mortality, favour reduced fertility by increasing the relative returns to parental investment. Observed fertility, however, falls considerably short of predicted optima for maximizing total offspring survivorship, strongly suggesting that additional unmeasured costs of reproduction ultimately constrain the evolution of human family size. PMID:23034700
NASA Technical Reports Server (NTRS)
De Hon, R. A.
1980-01-01
Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.
Tube Bulge Process : Theoretical Analysis and Finite Element Simulations
NASA Astrophysics Data System (ADS)
Velasco, Raphael; Boudeau, Nathalie
2007-05-01
This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress.
Ramanna, C; Kamath, Venkatesh V; Sharada, C; Srikanth, N
2016-01-01
Dental morphometrics is a subject of great significance in forensic odontology in identification of an individual. Use of teeth to represent a physical profile is valuable for identification of an individual. The present study aims to assess the clinical crown length (CL) of erupted deciduous teeth and height of the child. A correlation of these parameters was attempted to arrive at a mathematical equation which would formulate a ratio of tooth CL to individual height that would support in estimating the probable height of the child. About 60 children (30 males and 30 females) of age ranged from 3-6 years were included in this study. Clinical vertical CLs of the deciduous dentition (tooth numbers 51, 52, 53, 54, and 55) were calculated using digital Vernier calipers (Aerospace Ltd., Bengaluru, Karnataka, India) on the cast models. Child height was measured using a standard measuring tape. Ratios of deciduous CL to height of the child were recorded. Linear stepwise forward regression analysis was applied to predict the probability of CL of a tooth most likely to support in prediction of physical height of the child. Tabulated results showed a probable correlation between tooth CL and height of the child. Tooth CLs of deciduous upper right second molar (55) among the males, lateral incisor (52) among females, and canine (53) using the combined male and female data were statistically significant, and they approximately predicted the child height with minimal variations. Mathematically derived equations based on linear stepwise forward regression analysis using sixty children data are height prediction (derived from combined data of male and female children) = 400.558 + 90.264 (53 CL), male child height prediction (derived from data of male children) = 660.290 + 72.970 (55 CL), and female child height prediction (derived from data of female children) = -187.942 + 194.818 (52 CL). In conclusion, clinical vertical CL is an important parameter in prediction of individual height and possible identification of the individual. An extension of the similar technique to all the deciduous dentition using a larger group of children would probably give us the best options available among vertical CLs for prediction of the child height.
Rail height effects on safety performance of Midwest Guardrail System.
Asadollahi Pajouh, Mojdeh; Julin, Ramen D; Stolle, Cody S; Reid, John D; Faller, Ronald K
2018-02-17
Guardrail heights play a crucial role in the way that errant vehicles interact with roadside barriers. Low rail heights increase the propensity of vehicle rollover and override, whereas excessively tall rails promote underride. Further, rail mounting heights and post embedment depths may be altered by variations in roadside terrain. An increased guardrail height may be desirable to accommodate construction tolerances, soil erosion, frost heave, and future roadway overlays. This study aimed to investigate and identify a maximum safe installation height for the Midwest Guardrail System that would be robust and remain crashworthy before and after pavement overlays. A research investigation was performed to evaluate the safety performance of increased mounting heights for the standard 787-mm (31-in.)-tall Midwest Guardrail System (MGS) through crash testing and computer simulation. Two full-scale crash tests with small passenger cars were performed on the MGS with top-rail mounting heights of 864 and 914 mm (34 and 36 in.). Test results were then used to calibrate computer simulation models. In the first test, a small car impacted the MGS with 864-mm (34-in.) rail height at 102 km/h (63.6 mph) and 25.0° and was successfully redirected. In the second test, another small car impacted the MGS with a 914-mm (36-in.) rail height at 103 km/h (64.1 mph) and 25.6° and was successful. Both system heights satisfied the Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) evaluation criteria. Test results were then used to calibrate computer simulation models. A mounting height of 36 in. was determined to be the maximum guardrail height that would safely contain and redirect small car vehicles. Simulations confirmed that taller guardrail heights (i.e., 37 in.) would likely result in small car underride. In addition, simulation results indicated that passenger vehicle models were successfully contained by the 34- and 36-in.-tall MGS installed on approach slopes as steep as 6:1. A mounting height of 914 mm (36 in.) was determined to be the maximum guardrail height that would safely contain and redirect 1100C vehicles and not allow underride or excessive vehicle snag on support posts. Recommendations were also provided regarding the safety performance of the MGS with increased height.
Periodic variations in stratospheric-mesospheric temperature from 20-65 km at 80 N to 30 S
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1975-01-01
Results on large-scale periodic variations of the stratospheric-mesospheric temperature field based on Meteorological Rocket Network (MRN) measurements are reported for a long-term (12-year) mean, the quasi-biennial oscillation (QBO), and the first three harmonics of the annual wave (annual wave, semi-annual wave, and terannual wave or 4-month variation). Station-to-station comparisons are tabulated and charted for amplitude and phase of periodic variations in the temperature field. Masking and biasing factors, such as diurnal tides, solar radiation variations, mean monthly variations, instrument lag, aerodynamic heating, are singled out for attention. Models of the stratosphere will have to account for these oscillations of different periods in the thermal field and related properties of the wind fields, with multilayered horizontal stratification with height taken into account.-
IRIS Observations of Spicules and Structures Near the Solar Limb
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Vial, J.-C.; Koukras, A.; Buchlin, E.; Chane-Yook, M.
2018-02-01
We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of 2''. We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O i and fast-moving bright features in C ii. Finally, we compare the Mg ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d' Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of {˜} 8000 K at small heights to {˜} 20 000 K at large heights, electron densities from 1.1× 10^{11} to 4× 10^{10} cm^{-3} and a turbulent velocity of {˜} 24 km s^{-1}.
Stommel, Manfred; Schoenborn, Charlotte A
2009-11-19
The Body Mass Index (BMI) based on self-reported height and weight ("self-reported BMI") in epidemiologic studies is subject to measurement error. However, because of the ease and efficiency in gathering height and weight information through interviews, it remains important to assess the extent of error present in self-reported BMI measures and to explore possible adjustment factors as well as valid uses of such self-reported measures. Using the combined 2001-2006 data from the continuous National Health and Nutrition Examination Survey, discrepancies between BMI measures based on self-reported and physical height and weight measures are estimated and socio-demographic predictors of such discrepancies are identified. Employing adjustments derived from the socio-demographic predictors, the self-reported measures of height and weight in the 2001-2006 National Health Interview Survey are used for population estimates of overweight & obesity as well as the prediction of health risks associated with large BMI values. The analysis relies on two-way frequency tables as well as linear and logistic regression models. All point and variance estimates take into account the complex survey design of the studies involved. Self-reported BMI values tend to overestimate measured BMI values at the low end of the BMI scale (< 22) and underestimate BMI values at the high end, particularly at values > 28. The discrepancies also vary systematically with age (younger and older respondents underestimate their BMI more than respondents aged 42-55), gender and the ethnic/racial background of the respondents. BMI scores, adjusted for socio-demographic characteristics of the respondents, tend to narrow, but do not eliminate misclassification of obese people as merely overweight, but health risk estimates associated with variations in BMI values are virtually the same, whether based on self-report or measured BMI values. BMI values based on self-reported height and weight, if corrected for biases associated with socio-demographic characteristics of the survey respondents, can be used to estimate health risks associated with variations in BMI, particularly when using parametric prediction models.
Effects of plant phenology and vertical height on accuracy of radio-telemetry locations
Grovenburg, Troy W.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Lehman, Chad P.; Brinkman, Todd J.; Robling, Kevin A.; Rupp, Susan P.; Jenks, Jonathan A.
2013-01-01
The use of very high frequency (VHF) radio-telemetry remains wide-spread in studies of wildlife ecology and management. However, few studies have evaluated the influence of vegetative obstruction on accuracy in differing habitats with varying transmitter types and heights. Using adult and fawn collars at varying heights above the ground (0, 33, 66 and 100 cm) to simulate activities (bedded, feeding and standing) and ages (neonate, juvenile and adult) of deer Odocoileus spp., we collected 5,767 bearings and estimated 1,424 locations (28-30 for each of 48 subsamples) in three habitat types (pasture, grassland and forest), during two stages of vegetative growth (spring and late summer). Bearing error was approximately twice as large at a distance of 900 m for fawn (9.9°) than for adult deer collars (4.9°). Of 12 models developed to explain the variation in location error, the analysis of covariance model (HT*D + C*D + HT*TBA + C*TBA) containing interactions of height of collar above ground (HT), collar type (C), vertical height of understory vegetation (D) and tree basal area (TBA) was the best model (wi = 0.92) and explained ∼ 71% of the variation in location error. Location error was greater for both collar types at 0 and 33 cm above the ground compared to 66 and 100 cm above the ground; however, location error was less for adult than fawn collars. Vegetation metrics influenced location error, which increased with greater vertical height of understory vegetation and tree basal area. Further, interaction of vegetation metrics and categorical variables indicated significant effects on location error. Our results indicate that researchers need to consider study objectives, life history of the study animal, signal strength of collar (collar type), distance from transmitter to receiver, topographical changes in elevation, habitat composition and season when designing telemetry protocols. Bearing distances in forested habitat should be decreased (approximately 23% in our study) compared to bearing distances in open habitat to maintain a consistent bearing error across habitats. Additionally, we believe that field biologists monitoring neonate ungulates for habitat selection should rely on visual locations rather than using VHF-collars and triangulation.
Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels
2011-01-01
Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm à 25.4 mm à 406.4...
The effect of dust charge variation, due to ion flow and electron depletion, on dust levitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, Victor; Douglass, Angela; Qiao Ke
2011-11-29
Using a fluid model, the plasma densities, electron temperature and ion Mach number in front of a powered electrode in different plasma discharges is computed. The dust charge is computed using OML theory for Maxwellian electrons and ions distributed according to a shifted-Maxwellian. By assuming force balance between gravity and the electrostatic force, the dust levitation height is obtained. The importance of the dust charge variation is investigated.
Vertical profiles of wind and temperature by remote acoustical sounding
NASA Technical Reports Server (NTRS)
Fox, H. L.
1969-01-01
An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the vertical variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the vertical variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.
Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K.; Thomas, Venetta; Ambrosone, Christine B.; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J.; Cheng, Iona; Chu, Lisa; Deming, Sandra L.; Driver, W. Ryan; Goodman, Phyllis; Hayes, Richard B.; Hennis, Anselm J. M.; Hsing, Ann W.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Kittles, Rick A.; Kolb, Suzanne; Leske, M. Cristina; Monroe, Kristine R.; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F.; Rodriguez-Gil, Jorge L.; Rybicki, Ben A.; Schumacher, Fredrick; Stanford, Janet L.; Signorello, Lisa B.; Strom, Sara S.; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S.; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G.; Stram, Alexander H.; Kolonel, Laurence N.; Marchand, Loïc Le; Henderson, Brian E.; Haiman, Christopher A.; Stram, Daniel O.
2015-01-01
Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious. PMID:26125186
Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K; Thomas, Venetta; Ambrosone, Christine B; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J; Cheng, Iona; Chu, Lisa; Deming, Sandra L; Driver, W Ryan; Goodman, Phyllis; Hayes, Richard B; Hennis, Anselm J M; Hsing, Ann W; Hu, Jennifer J; Ingles, Sue A; John, Esther M; Kittles, Rick A; Kolb, Suzanne; Leske, M Cristina; Millikan, Robert C; Monroe, Kristine R; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F; Rodriguez-Gil, Jorge L; Rybicki, Ben A; Schumacher, Fredrick; Stanford, Janet L; Signorello, Lisa B; Strom, Sara S; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G; Stram, Alexander H; Kolonel, Laurence N; Le Marchand, Loïc; Henderson, Brian E; Haiman, Christopher A; Stram, Daniel O
2015-01-01
Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious.