Science.gov

Sample records for human liver chlordecone

  1. Localization and in situ absolute quantification of chlordecone in the mouse liver by MALDI imaging.

    PubMed

    Lagarrigue, Mélanie; Lavigne, Régis; Tabet, Elise; Genet, Valentine; Thomé, Jean-Pierre; Rondel, Karine; Guével, Blandine; Multigner, Luc; Samson, Michel; Pineau, Charles

    2014-06-17

    Chlordecone is an organochlorine pesticide that was extensively used in the French West Indies to fight weevils in banana plantations from 1973 to 1993. This has led to a persistent pollution of the environment and to the contamination of the local population for several decades with effects demonstrated on human health. Chlordecone accumulates mainly in the liver where it is known to potentiate the action of hepatotoxic agents. However, there is currently no information on its in situ localization in the liver. We have thus evaluated a matrix-assisted laser desorption ionization (MALDI) imaging quantification method based on labeled normalization for the in situ localization and quantification of chlordecone. After validating the linearity and the reproducibility of this method, quantitative MALDI imaging was used to study the accumulation of chlordecone in the mouse liver. Our results revealed that normalized intensities measured by MALDI imaging could be first converted in quantitative units. These quantities appeared to be different from absolute quantities of chlordecone determined by gas chromatography (GC), but they were perfectly correlated (R(2) = 0.995). The equation of the corresponding correlation curve was thus efficiently used to convert quantities measured by MALDI imaging into absolute quantities. Our method combining labeled normalization and calibration with an orthogonal technique allowed the in situ absolute quantification of chlordecone by MALDI imaging. Finally, our results obtained on the pathological mouse liver illustrate the advantages of quantitative MALDI imaging which preserves information on in situ localization without radioactive labeling and with a simple sample preparation.

  2. Chlordecone (Kepone)

    Integrated Risk Information System (IRIS)

    Chlordecone ( Kepone ) ; CASRN 143 - 50 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  3. Ultra-trace quantification method for chlordecone in human fluids and tissues.

    PubMed

    Bichon, Emmanuelle; Guiffard, Ingrid; Vénisseau, Anaïs; Marchand, Philippe; Antignac, Jean-Philippe; Le Bizec, Bruno

    2015-08-21

    Chlordecone is an organochlorine pesticide (OCP) considered as a Persistent Organic Pollutant (POP) as it persists in the environment, bio-accumulates through the food web, causes adverse effects to human health and the environment and transports across international boundaries far from its sources. The atypical physico-chemical properties of chlordecone make its inclusion in classical analytical approaches non applicable. The aim of our work was to include chlordecone in a multi organochlorine residue method preventing any degradation during the analytical process and thus allowing quantification at ppt (ngkg(-1) or ngL(-1)) levels for a wide range of OCPs in breast milk, human serum and adipose tissue. After GC-HRMS vs. MS/MS and EI vs. APCI comparisons, the major improvement in terms of sensitivity was found in decreasing the length and film thickness of the gas chromatography column. Thanks to a linear correlation between relative response and quantity of chlordecone injected, LC-(ESI-)-MS/MS was finally preferred. An acetonitrile based gradient optimized on a C30 coreshell HPLC column has led to reaching limits of quantification as low as 8ngL(-1), 25pgmL(-1) and 0.2ngg(-1) fat for breast milk, serum and adipose tissue, respectively, allowing multiresidue OCP quantification at concentration levels compatible with biomonitoring purposes and pre-requisites. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Organochlorine (chlordecone) uptake by root vegetables.

    PubMed

    Florence, Clostre; Philippe, Letourmy; Magalie, Lesueur-Jannoyer

    2015-01-01

    Chlordecone, an organochlorine insecticide, continues to pollute soils in the French West Indies. The main source of human exposure to this pollutant is food. Root vegetables, which are staple foods in tropical regions, can be highly contaminated and are thus a very effective lever for action to reduce consumer exposure. We analyzed chlordecone contamination in three root vegetables, yam, dasheen and sweet potato, which are among the main sources of chlordecone exposure in food in the French West Indies. All soil types do not have the same potential for the contamination of root vegetables, allophanic andosols being two to ten times less contaminating than non-allophanic nitisols and ferralsols. This difference was only partially explained by the higher OC content in allophanic soils. Dasheen corms were shown to accumulate more chlordecone than yam and sweet potato tubers. The physiological nature of the root vegetable may explain this difference. Our results are in good agreement with the hypothesis that chlordecone uptake by root vegetables is based on passive and diffusive processes and limited by transport and dilution during growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Chlordecone altered hepatic disposition of [{sup 14}C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2008-06-15

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [{sup 14}C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [{sup 14}C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [{sup 14}C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [{sup 14}C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [{sup 14}C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [{sup 14}C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.

  6. Localization of multiple human dihydrodiol dehydrogenase (DDH1 and DDH2) and chlordecone reductase (CHDR) genes in chromosome 10 by the polymerase chain reaction and fluorescence in situ hybridization

    SciTech Connect

    Khanna, M.; Qin, K.N.; Belkin, S.

    1995-01-20

    Multiple human dihydrodiol dehydrogenases and human chlordecone reductase belong to the aldo-keto reductase superfamily. These two enzymes are involved in the metabolism of xenobiotics, such as polycyclic aromatic hydrocarbons and pesticides. Recently we have isolated three closely related genes encoding two dihydrodiol dehydrogenases (DDH1 and DDH2) and the chlordecone reductase (CHDR). Mapping of the location of the genes was performed using the polymerase chain reaction using gene-specific primers to amplify gene sequences in human/hamster hybrid DNA. All three genes were found to be located on chromosome 10. In situ hybridization using a lambda clone as the probe further confirmed regional localization at 10p14-p15. 13 refs., 2 figs.

  7. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants.

    PubMed

    Boucher, Olivier; Simard, Marie-Noëlle; Muckle, Gina; Rouget, Florence; Kadhel, Philippe; Bataille, Henri; Chajès, Véronique; Dallaire, Renée; Monfort, Christine; Thomé, Jean-Pierre; Multigner, Luc; Cordier, Sylvaine

    2013-03-01

    Chlordecone is a persistent organochlorine pesticide that was used in the French West Indies until the early 1990s for banana weevil borer control. Human exposure to this chemical in this area still occurs nowadays due to consumption of contaminated food. Although adverse effects on neurodevelopment, including tremors and memory deficits, have been documented in experimental studies conducted with rodents exposed during the gestational and neonatal periods, no study has been conducted yet to determine if chlordecone alters child development. This study examines the relation of gestational and postnatal exposure to chlordecone to infant development at 18 months of age in a birth-cohort of Guadeloupean children. In a prospective longitudinal study conducted in Guadeloupe (Timoun mother-child cohort study), exposure to chlordecone was measured at birth from an umbilical cord blood sample (n=141) and from a breast milk sample collected at 3 months postpartum (n=75). Toddlers were assessed using an adapted version of the Ages and Stages Questionnaire. Higher chlordecone concentrations in cord blood were associated with poorer fine motor scores. When analyses were conducted separately for boys and girls, this effect was only observed among boys. These results suggest that prenatal exposure to chlordecone is associated with specific impairments in fine motor function in boys, and add to the growing evidence that exposure to organochlorine pesticides early in life impairs child development.

  8. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone

    PubMed Central

    Chaussonnerie, Sébastien; Saaidi, Pierre-Loïc; Ugarte, Edgardo; Barbance, Agnès; Fossey, Aurélie; Barbe, Valérie; Gyapay, Gabor; Brüls, Thomas; Chevallier, Marion; Couturat, Loïc; Fouteau, Stéphanie; Muselet, Delphine; Pateau, Emilie; Cohen, Georges N.; Fonknechten, Nuria; Weissenbach, Jean; Le Paslier, Denis

    2016-01-01

    Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C10Cl10O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1) as well as two minor metabolites C10Cl9HO (named A1) and C9Cl4H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process. PMID:28066351

  9. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone.

    PubMed

    Chaussonnerie, Sébastien; Saaidi, Pierre-Loïc; Ugarte, Edgardo; Barbance, Agnès; Fossey, Aurélie; Barbe, Valérie; Gyapay, Gabor; Brüls, Thomas; Chevallier, Marion; Couturat, Loïc; Fouteau, Stéphanie; Muselet, Delphine; Pateau, Emilie; Cohen, Georges N; Fonknechten, Nuria; Weissenbach, Jean; Le Paslier, Denis

    2016-01-01

    Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C10Cl10O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1) as well as two minor metabolites C10Cl9HO (named A1) and C9Cl4H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.

  10. Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone.

    PubMed

    Dallaire, Renée; Muckle, Gina; Rouget, Florence; Kadhel, Philippe; Bataille, Henri; Guldner, Laurence; Seurin, Sophie; Chajès, Véronique; Monfort, Christine; Boucher, Olivier; Thomé, Jean Pierre; Jacobson, Sandra W; Multigner, Luc; Cordier, Sylvaine

    2012-10-01

    The insecticide chlordecone was extensively used in the French West Indies to control banana root borer. Its persistence in soils has led to the widespread pollution of the environment, and human beings are still exposed to this chemical. Chlordecone has been shown to impair neurological and behavioural functions in rodents when exposed gestationally or neonatally. The aim of the study was to evaluate the impact of prenatal and postnatal exposure to chlordecone on the cognitive, visual, and motor development of 7-month-old infants from Guadeloupe. Infants were tested at 7 months (n=153). Visual recognition memory and processing speed were assessed with the Fagan Tests of Infant Intelligence (FTII), visual acuity with the Teller Acuity Card, and fine motor development with the Brunet-Lezine. Samples of cord blood and breast milk at 3 months (n=88) were analyzed for chlordecone concentrations. Postnatal exposure was determined through breast feeding and frequency of contaminated food consumption by the infants. Cord chlordecone concentrations in tertiles were associated with reduced novelty preference on the FTII in the highly exposed group (β=-0.19, p=0.02). Postnatal exposure through contaminated food consumption was marginally related to reduced novelty preference (β=-0.14, p=0.07), and longer processing speed (β=0.16, p=0.07). Detectable levels of chlordecone in cord blood were associated with higher risk of obtaining low scores on the fine motor development scale (OR=1.25, p<0.01). These results suggest that pre- and postnatal low chronic exposure to chlordecone is associated with negative effects on cognitive and motor development during infancy. Copyright © 2012. Published by Elsevier Inc.

  11. Mice with human livers.

    PubMed

    Grompe, Markus; Strom, Stephen

    2013-12-01

    Animal models are used to study many aspects of human disease and to test therapeutic interventions. However, some very important features of human biology cannot be replicated in animals, even in nonhuman primates or transgenic rodents engineered with human genes. Most human microbial pathogens do not infect animals and the metabolism of many xenobiotics is different between human beings and animals. The advent of transgenic immune-deficient mice has made it possible to generate chimeric animals harboring human tissues and cells, including hepatocytes. The liver plays a central role in many human-specific biological processes and mice with humanized livers can be used to model human metabolism, liver injury, gene regulation, drug toxicity, and hepatotropic infections.

  12. Human liver nucleolar antigens.

    PubMed

    Busch, R K; Busch, H

    1981-10-01

    In an extension of previous studies on the antigens in rat liver nucleoli (R. K. Busch, R. C. Reddy, D. H. Henning, and H. Busch, Proc. Soc. Exp. Biol. Med. 160, 185 (1979); R. K. Busch and H. Busch, Tumori 63, 347 (1977); F. M. Davis, R. K. Busch, L. C. Yeoman, and H. Busch, Cancer Res. 38, 1906 (1978), rabbit antibodies were elicited to human liver nucleoli isolated by the sucrose--Mg2+ method (10). Fluorescent nucleoli were found in liver cryostat sections treated with rabbit anti-human liver nucleolar antibodies followed by fluorescein-conjugated goat anti-rabbit antibodies. In HeLa cells, fluorescence was distributed throughout the nucleus and in a nuclear network but was not localized to the nucleolus. In placental cryostat sections, an overall nuclear fluorescence was observed with some localization to nucleoli. Immunodiffusion analysis revealed two immunoprecipitin bands which appeared to be liver specific. Other immunoprecipitin bands were common to liver, placenta, and HeLa nuclear extracts. Rocket immunoelectrophoresis revealed two liver-specific antigens, one migrating to the cathode and the other to the anode Other rockets exhibited identity to antigens of other nuclear extracts. These results demonstrate the presence of human liver nucleolar-specific antigens which were not found in the HeLa and placental cells.

  13. Soil microstructure and organic matter: keys for chlordecone sequestration.

    PubMed

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Human liver flukes.

    PubMed

    Harrington, David; Lamberton, Poppy H L; McGregor, Alastair

    2017-09-01

    Liver fluke infections occur in people worldwide. In some low-income regions, a combination of ecological, agricultural, and culinary factors leads to a very high prevalence of infection but, in higher-income regions, infections are uncommon. Infection is associated with substantial morbidity and several liver fluke species are recognised as biological carcinogens. Here, we review the epidemiology, clinical significance, and diagnostic and treatment strategies of human infection with these pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of home food processing on chlordecone (organochlorine) content in vegetables.

    PubMed

    Clostre, Florence; Letourmy, Philippe; Thuriès, Laurent; Lesueur-Jannoyer, Magalie

    2014-08-15

    Decades after their use and their ban, organochlorine pesticides still pollute soil, water and food and lead to human and ecosystem exposure. In the case of chlordecone, human exposure is mainly due to the consumption of polluted food. We studied the effect of preparation and cooking in five vegetable products, three root vegetables (yam, dasheen and sweet potato) and two cucurbits (cucumber and pumpkin), among the main contributors to exposure to chlordecone in food in the French West Indies. Boiling the vegetables in water had no effect on chlordecone content of the vegetables and consequently on consumer exposure. The peel was three to 40-fold more contaminated than the pulp except cucumber, where the difference was less contrasted. The edible part is thus significantly less contaminated and peeling is recommended after rinsing to reduce consumer exposure, particularly for food grown in home gardens with contaminated soils. The type of soil had no consistent effect on CLD distribution but plot did. Peel and pulp composition (lipids and fibers) appear to partially account for CLD distribution in the product. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chlordecone impaired biliary excretion: In vivo and in vitro correlates

    SciTech Connect

    Rochelle, L.G.

    1989-01-01

    The focus of this research was to investigate mechanisms of impaired biliary excretion localized to the bile canaliculus. Two modes of chlordecone (CD) action were investigated: (1) direct effects on organic anion transport at the bile canaliculus; and/or (2) general membrane perturbation, indirectly affecting anion transport proteins. Bile canaliculi-enriched fractions (BCEF) were isolated from rat livers in order to characterize effects of CD on this domain of the plasma membranes. CD inhibited the initial rate leading to a peak Na{sup +}-stimulated ({sup 3}H)L-glutamate uptake in BCEF CD inhibition of the initial or Na{sup +}-gradient driven phase of ({sup 3}H)L-glutamate uptake suggested that CD was affecting maintenance of the Na{sup +}-gradient by the BCEF membrane vesicles. In vivo PG anion excretion was inhibited as well as in vitro ({sup 3}H)L-glutamate transport at 24 hr following in vivo CD treatment of rats. Seventy-two hr following CD treatment, rats recovered to control PG excretion levels. PG excretory performance was regained in 72 hr pretreated rats despite an increase in liver CD concentration. Liver CD concentrations in 24 hr pretreated rats were approximately 50% of the concentrations in 72 hr pretreated rats. At low CD concentrations, there was no evidence of general membrane perturbation in terms of immobilization of the lipid electron spin resonance probe, 16-doxyl stearate, in BCEF. Mobility of 16-doxyl stearate in BCEF was reduced at in vitro CD concentrations of 0.20 {mu}mol/mg protein or greater. CD did reduce hepatobiliary permeability to ({sup 14}C)mannitol in 24 and 72 hr pretreated rats; perhaps restricting movement through membrane aqueous pores.

  17. LIVER BIOPSY IN HUMAN LEPTOSPIROSIS.

    DTIC Science & Technology

    LEPTOSPIRA, DISEASES), (*LIVER, BIOPSY), LEPTOSPIRA ICTEROHAEMORRHAGIAE, HUMANS, PATHOLOGY, CELL STRUCTURE, MITOCHONDRIA, NECROSIS, ENZYMES, TOXINS AND ANTITOXINS, KIDNEYS, PARASITES, ELECTRON MICROSCOPY, BRAZIL

  18. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS).

    PubMed

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Rangon, Luc; Barthès, Bernard G

    2009-11-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R(2) = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg(-1) or when the sample set was rather homogeneous (Q(2) = 0.91, R(2) = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg(-1), nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone.

  19. Chlordecone Transfer and Distribution in Maize Shoots.

    PubMed

    Pascal-Lorber, Sophie; Létondor, Clarisse; Liber, Yohan; Jamin, Emilien L; Laurent, François

    2016-01-20

    Chlordecone (CLD) is a persistent organic pollutant (POP) that was mainly used as an insecticide against banana weevils in the French West Indies (1972-1993). Transfer of CLD via the food chain is now the major mechanism for exposure of the population to CLD. The uptake and the transfer of CLD were investigated in shoots of maize, a C4 model plant growing under tropical climates, to estimate the exposure of livestock via feed. Maize plants were grown on soils contaminated with [(14)C]CLD under controlled conditions. The greatest part of the radioactivity was associated with roots, nearly 95%, but CLD was detected in whole shoots, concentrations in old leaves being higher than those in young ones. CLD was thus transferred from the base toward the plant top, forming an acropetal gradient of contaminant. In contrast, results evidenced the existence of a basipetal gradient of CLD concentration within leaves whose extremities accumulated larger amounts of CLD because of evapotranspiration localization. Extractable residues accounted for two-thirds of total residues both in roots and in shoots. This study highlighted the fact that the distribution of CLD contamination within grasses resulted from a conjunction between the age and evapotranspiration rate of tissues. CLD accumulation in fodder may be the main route of exposure for livestock.

  20. Chlordecone exposure and adverse effects in French West Indies populations.

    PubMed

    Multigner, Luc; Kadhel, Philippe; Rouget, Florence; Blanchet, Pascal; Cordier, Sylvaine

    2016-01-01

    Chlordecone (Kepone) is an organochlorine insecticide that has been used as insecticide and fungicide. In the French West Indies, Guadeloupe and Martinique, it was intensively applied to banana fields from 1973 to 1993 to control root borers. This pesticide undergoes no significant biotic or abiotic degradation in the environment and is still present in soils where it was applied. It was only in 1999 that health and environmental authorities became aware of the extent of the chlordecone pollution of environmental media, including soils, waterways, and the food chain. Earlier observations and toxicological studies have demonstrated that chlordecone is a reproductive and developmental toxicant, neurotoxic and carcinogenic in rodents, and is an endocrine-disrupting chemical because of its estrogenic properties both in vitro and in vivo. Several surveys have confirmed that the French West Indian population continues to be exposed to this chemical though consumption of contaminated foodstuffs. Here, we report the findings of various epidemiological studies conducted in the French West Indies to assess the impact of environmental exposure to chlordecone on the health of the population.

  1. Distinct bacterial community structure of 3 tropical volcanic soils from banana plantations contaminated with chlordecone in Guadeloupe (French West Indies).

    PubMed

    Mercier, Anne; Dictor, Marie-Christine; Harris-Hellal, Jennifer; Breeze, Dominique; Mouvet, Christophe

    2013-08-01

    In the French West Indies (FWI), the soil, andosols, ferralsols and nitisols, is highly polluted by chlordecone, although this organochlorine insecticide extensively applied to banana crops has been banned for 20years. This contamination has led to a major human health concern inducing the need for remediation of the contaminated soils. Work was conducted to help to evaluate the impact of remediation processes on the microbial communities from these soils. Microbial biomass was estimated after direct DNA extraction from three chlordecone-contaminated soils (an andosol, a ferralsol and a nitisol) and the bacterial community analyzed using t-RFLP. The FWI volcanic andosol was particularly recalcitrant to usual direct DNA extraction protocols hampering analysis of soil microbial communities until now, in contrast with the 2 other soils. For the first time, DNA was directly extracted from a FWI andosol based on yeast RNA addition at the lysis step. Differences in microbial biomass were thus observed between the 3 FWI soils. Moreover, the bacterial community structure was significantly distinct from each other's and related to soil physico-chemical characteristics. Interestingly, differences in bacterial diversity could not be exclusively attributed to the level of chlordecone contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone.

    PubMed

    Lafontaine, Anne; Hanikenne, Marc; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2016-10-01

    Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.

  3. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    PubMed

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  4. Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound.

    PubMed

    Legeay, Samuel; Billat, Pierre-André; Clere, Nicolas; Nesslany, Fabrice; Bristeau, Sébastien; Faure, Sébastien; Mouvet, Christophe

    2017-02-16

    Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames's technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.

  5. Human liver caudate lobe and liver segment.

    PubMed

    Murakami, Gen; Hata, Fumitake

    2002-12-01

    Recently, the caudate lobe has seemed to be the final target for aggressive cancer surgery of the liver. This lobe has five surfaces: the dorsal, left and hilar-free surfaces and the right and ventral-border planes. Surgeons have divided the caudate lobe into three parts: Spiegel's lobe, which is called the 'caudate lobe and papillary process' by anatomists, the caudate process, viewed as almost the same entity by anatomists, and the paracaval portion corresponding to the dorsally located parenchyma in front of the inferior vena cava. All three parts are supplied by primary branches originating from the left and right portal veins, including the hilar bifurcation area. The hilar bifurcation branch often (50%) supplies the paracaval portion and it sometimes (29%) extends its territory to Spiegel's lobe. It was postulated by Couinaud that the paracaval portion or the S9 is not defined by its supplying portal vein branch but by its 'dorsal location' in the liver. Couinaud's caudate lobe or dorsal-liver concept cause, and still now causes, great logical confusion for surgeons. We attempt here to describe the margins of the lobe, border branches of the portal vein, the left/right territorial border of the portal vein or Cantile's line and other topics closely relating to the surgery within these contexts. Finally, the caudate lobe as a liver segment will be discussed.

  6. Chlordecone disappearance in tissues of growing goats after a one month decontamination period--effect of body fatness on chlordecone retention.

    PubMed

    Lastel, Marie-Laure; Lerch, Sylvain; Fournier, Agnès; Jurjanz, Stefan; Mahieu, Maurice; Archimède, Harry; Feidt, Cyril; Rychen, Guido

    2016-02-01

    Chlordecone (CLD) is an organochlorine pesticide whose extended use led to the contamination of at least 20% of agricultural soils from the French West Indies. Livestock reared on polluted areas are involuntary contaminated by CLD and their level of contamination may exceed the threshold values set by the European Union. Thus, characterizing the CLD behaviour in farm animals appear as a real issue in terms of food safety for local populations. The aim of this experiment was (i) to characterize the CLD disappearance in various tissues after exposure cessation and (ii) to evaluate the potential effect of body fatness on this process. Two groups of eight growing goats were submitted to either a basal diet or a high energy diet for 50 days before being intravenously contaminated with 1 mg CLD kg(-1) body weight. Two days after CLD contamination, half of the kids of each experimental group were slaughtered in order to determine pollutant levels in the serum, liver, adipose tissues, and empty carcass. The remaining animals were submitted to a 30-day decontamination period before slaughtering and measurements as described above. The implemented nutritional plan resulted in both groups of kids with significant differences in terms of body fatness. CLD was mainly concentrated in the liver of animals as described in the literature. It was found also in kids' empty carcass and adipose tissues; however its levels in the empty carcass (muscles and bones) were unexpected since they were higher than in fat. These results indicate that the lipophilic pollutant CLD is found mainly in liver but also in muscles and fat. Concerning the animals' depuration, a 30-d decontamination period was sufficient to observe a decrease of CLD levels by more than 75% in both experimental groups and neither CLD concentrations nor CLD amounts were significantly affected by kids' body fatness.

  7. Humanized mice with ectopic artificial liver tissues.

    PubMed

    Chen, Alice A; Thomas, David K; Ong, Luvena L; Schwartz, Robert E; Golub, Todd R; Bhatia, Sangeeta N

    2011-07-19

    "Humanized" mice offer a window into aspects of human physiology that are otherwise inaccessible. The best available methods for liver humanization rely on cell transplantation into immunodeficient mice with liver injury but these methods have not gained widespread use due to the duration and variability of hepatocyte repopulation. In light of the significant progress that has been achieved in clinical cell transplantation through tissue engineering, we sought to develop a humanized mouse model based on the facile and ectopic implantation of a tissue-engineered human liver. These human ectopic artificial livers (HEALs) stabilize the function of cryopreserved primary human hepatocytes through juxtacrine and paracrine signals in polymeric scaffolds. In contrast to current methods, HEALs can be efficiently established in immunocompetent mice with normal liver function. Mice transplanted with HEALs exhibit humanized liver functions persistent for weeks, including synthesis of human proteins, human drug metabolism, drug-drug interaction, and drug-induced liver injury. Here, mice with HEALs are used to predict the disproportionate metabolism and toxicity of "major" human metabolites using multiple routes of administration and monitoring. These advances may enable manufacturing of reproducible in vivo models for diverse drug development and research applications.

  8. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ER{alpha}) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-12-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [{sup 14}C]CD or [{sup 14}C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor {alpha} (ER{alpha}) in a concentration-dependent manner (0-50 {mu}M). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.

  9. Human immunodeficiency virus infection and the liver.

    PubMed

    Crane, Megan; Iser, David; Lewin, Sharon R

    2012-03-27

    Liver disease in human immunodeficiency virus (HIV)-infected individuals encompasses the spectrum from abnormal liver function tests, liver decompensation, with and without evidence of cirrhosis on biopsy, to non-alcoholic liver disease and its more severe form, non-alcoholic steatohepatitis and hepatocellular cancer. HIV can infect multiple cells in the liver, leading to enhanced intrahepatic apoptosis, activation and fibrosis. HIV can also alter gastro-intestinal tract permeability, leading to increased levels of circulating lipopolysaccharide that may have an impact on liver function. This review focuses on recent changes in the epidemiology, pathogenesis and clinical presentation of liver disease in HIV-infected patients, in the absence of co-infection with hepatitis B virus or hepatitis C virus, with a specific focus on issues relevant to low and middle income countries.

  10. Comparative Study of Human Liver Ferritin and Chicken Liver by Mössbauer Spectroscopy. Preliminary Results

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Milder, O. B.; Semionkin, V. A.; Prokopenko, P. G.; Malakheeva, L. I.

    2004-12-01

    A comparative study of normal human liver ferritin and livers from normal chicken and chicken with Marek disease was made by Mössbauer spectroscopy. Small differences of quadrupole splitting and isomer shift were found for human liver ferritin and chicken liver. Mössbauer parameters for liver from normal chicken and chicken with Marek disease were the same.

  11. HEMOGLOBIN PRODUCTION FACTORS IN THE HUMAN LIVER

    PubMed Central

    Whipple, G. H.; Robscheit-Robbins, F. S.

    1942-01-01

    Human liver tissue has been assayed to determine the amount of hemoglobin production factors in normal and abnormal states. Standardized dogs made anemic by blood removal have been used in this biological assay. Normal animal liver as control is rated as 100 per cent. Normal human liver tissue as compared with the normal animal control contains more of these hemoglobin production factors—a biological assay ratio of 120 to 160 per cent. Infections, acute and chronic, do not appear to modify these values, the concentration of hemoglobin-producing factors falling within the normal range. Pernicious anemia and aplastic anemia both show large liver stores of hemoglobin-producing factors—a biological assay ratio of 200 to 240 per cent. Therapy in pernicious anemia reduces these liver stores as new red cells are formed. Secondary anemia presents a low normal or subnormal liver store of hemoglobin-producing factors—an assay of 60 to 130 per cent. Hemochromatosis, erythroblastic anemia, and hemolytic icterus in spite of large iron deposits in the liver usually show a biological assay which is normal or close to normal. Polycythemia shows low reserve stores of hemoglobin-producing factors. Leukemias present a wide range of values discussed above. Hypoproteinemia almost always is associated with low reserve stores of hemoglobin-producing factors in the liver—biological assays of 60 to 80 per cent. Hypoproteinemia means a depletion of body protein reserve stores including the labile protein liver reserves—a strong indication that the prehemoglobin material (or globin) is related to these liver stores. Pregnancy, eclampsia, and lactation all may present subnormal liver stores of hemoglobin-producing factors. Exhaustion of protein stores lowers the barrier to infection and renders the liver very susceptible to many toxic substances. It should not be difficult to correct hypoproteinemia under these conditions and thus relieve the patient of a real hazard. PMID:19871236

  12. Enzymes of fructose metabolism in human liver

    PubMed Central

    Heinz, Fritz; Lamprecht, Walther; Kirsch, Joachim

    1968-01-01

    The enzyme activities involved in fructose metabolism were measured in samples of human liver. On the basis of U/g of wet-weight the following results were found: ketohexokinase, 1.23; aldolase (substrate, fructose-1-phosphate), 2.08; aldolase (substrate, fructose-1,6-diphosphate), 3.46; triokinase, 2.07; aldehyde dehydrogenase (substrate, D-glyceraldehyde), 1.04; D-glycerate kinase, 0.13; alcohol dehydrogenase (nicotinamide adenine dinucleotide [NAD]) substrate, D-glyceraldehyde), 3.1; alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate [NADP]) (substrate, D-glyceraldehyde), 3.6; and glycerol kinase, 0.62. Sorbitol dehydrogenases (25.0 U/g), hexosediphosphatase (4.06 U/g), hexokinase (0.23 U/g), and glucokinase (0.08 U/g) were also measured. Comparing these results with those of the rat liver it becomes clear that the activities of alcohol dehydrogenases (NAD and NADP) in rat liver are higher than those in human liver, and that the values of ketohexokinase, sorbitol dehydrogenases, and hexosediphosphatase in human liver are lower than those values found in rat liver. Human liver contains only traces of glycerate kinase. The rate of fructose uptake from the blood, as described by other investigators, can be based on the activity of ketohexokinase reported in the present paper. In human liver, ketohexokinase is present in a four-fold activity of glucokinase and hexokinase. This result may explain the well-known fact that fructose is metabolized faster than glucose. PMID:4385849

  13. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  14. Digitalis metabolism and human liver alcohol dehydrogenase.

    PubMed Central

    Frey, W A; Vallee, B L

    1980-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD" oxidoreductase, EC 1.1.1.1) catalyzes the oxidation of the 3 beta-OH group of digitoxigenin, digoxigenin, and gitoxigenin to their 3-keto derivatives, which have been characterized by high performance liquid chromatography and mass spectrometry. These studies have identified human liver alcohol dehydrogenase as the unknown NAD(H)-dependent liver enzyme specific for the free hydroxyl group at C3 of the cardiac genins; this hydroxyl is the critical site of the genins' enzymatic oxidation and concomitant pharmacological inactivation in humans. Several kinetic approaches have demonstrated that ethanol and the pharmacologically active components of the digitalis glycosides are oxidized with closely similar kcat/Km values at the same site on human liver alcohol dehydrogenase, for which they compete. Human liver alcohol dehydrogenase thereby becomes an important biochemical link in the metabolism, pharmacology, and toxicology of ethanol and these glycosides, structurally unrelated agents that are both used widely. Both the competition of ethanol with these cardiac sterols and the narrow margin of safety in the therapeutic use of digitalis derivatives would seem to place at increased risk those individuals who receive digitalis and simultaneously consume large amounts of ethanol or whose alcohol dehydrogenase function is impaired. PMID:6987673

  15. Obesity accelerates epigenetic aging of human liver.

    PubMed

    Horvath, Steve; Erhart, Wiebke; Brosch, Mario; Ammerpohl, Ole; von Schönfels, Witigo; Ahrens, Markus; Heits, Nils; Bell, Jordana T; Tsai, Pei-Chien; Spector, Tim D; Deloukas, Panos; Siebert, Reiner; Sipos, Bence; Becker, Thomas; Röcken, Christoph; Schafmayer, Clemens; Hampe, Jochen

    2014-10-28

    Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.

  16. Liver glucose metabolism in humans

    PubMed Central

    Adeva-Andany, María M.; Pérez-Felpete, Noemi; Fernández-Fernández, Carlos; Donapetry-García, Cristóbal; Pazos-García, Cristina

    2016-01-01

    Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis). PMID:27707936

  17. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    PubMed

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  18. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices.

    PubMed

    Vickers, Alison E M; Ulyanov, Anatoly V; Fisher, Robyn L

    2017-03-07

    Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM), diclofenac (DCF, 1 mM) and etomoxir (ETM, 100 μM). Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM) and cyclosporin A (CSA, 10 μM), while GSH was affected more than ATP by methimazole (MMI, 500 μM), terbinafine (TBF, 100 μM), and carbamazepine (CBZ 100 μM). Oxidative stress genes were affected by TBF (18%), CBZ, APAP, and ETM (12%-11%), and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%-6%). Apoptosis genes were affected by DCF (14%), while apoptosis plus necrosis were altered by APAP and ETM (15%). Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%), ETM (66%), DCF, TBF, MMI (61%-60%), APAP, CBZ (57%-56%), and DTL (48%). Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%), CBZ and ETM (44%-43%), APAP and DCF (40%-38%), MMI, TBF and CSA (37%-35%). This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects.

  19. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices

    PubMed Central

    Vickers, Alison E. M.; Ulyanov, Anatoly V.; Fisher, Robyn L.

    2017-01-01

    Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM), diclofenac (DCF, 1 mM) and etomoxir (ETM, 100 μM). Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM) and cyclosporin A (CSA, 10 μM), while GSH was affected more than ATP by methimazole (MMI, 500 μM), terbinafine (TBF, 100 μM), and carbamazepine (CBZ 100 μM). Oxidative stress genes were affected by TBF (18%), CBZ, APAP, and ETM (12%–11%), and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%–6%). Apoptosis genes were affected by DCF (14%), while apoptosis plus necrosis were altered by APAP and ETM (15%). Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%), ETM (66%), DCF, TBF, MMI (61%–60%), APAP, CBZ (57%–56%), and DTL (48%). Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%), CBZ and ETM (44%–43%), APAP and DCF (40%–38%), MMI, TBF and CSA (37%–35%). This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects. PMID:28272341

  20. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation

    PubMed Central

    Mazza, Giuseppe; Rombouts, Krista; Rennie Hall, Andrew; Urbani, Luca; Vinh Luong, Tu; Al-Akkad, Walid; Longato, Lisa; Brown, David; Maghsoudlou, Panagiotis; Dhillon, Amar P.; Fuller, Barry; Davidson, Brian; Moore, Kevin; Dhar, Dipok; De Coppi, Paolo; Malago, Massimo; Pinzani, Massimo

    2015-01-01

    Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development. PMID:26248878

  1. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers?

    PubMed

    Lafontaine, Anne; Baiwir, Dominique; Joaquim-Justo, Célia; De Pauw, Edwin; Lemoine, Soazig; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2017-07-01

    The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CHLORDECONE (KEPONE) (2009 FINAL)

    EPA Science Inventory

    EPA is announcing the release of the final report, Toxicological Review of Chlorodecone (kepone): in support of the Integrated Risk Information System (IRIS). The updated Summary for Chlordecone (kepone) and accompanying Quickview have also been added to the IRIS Database....

  3. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CHLORDECONE (KEPONE) (2009 FINAL)

    EPA Science Inventory

    EPA is announcing the release of the final report, Toxicological Review of Chlorodecone (kepone): in support of the Integrated Risk Information System (IRIS). The updated Summary for Chlordecone (kepone) and accompanying Quickview have also been added to the IRIS Database....

  4. In vivo mechanical characterization of human liver.

    PubMed

    Nava, A; Mazza, E; Furrer, M; Villiger, P; Reinhart, W H

    2008-04-01

    The mechanical behavior of human liver has been characterized with aspiration experiments. Measurements have been performed in vivo under sterile conditions during open surgery. Twenty-three measurements on six healthy human livers were performed using the same loading history for each test, so to allow a direct comparison of the measured deformations. The measurement results are reported and the experimental uncertainties evaluated. One of the main objectives of the present paper is to share information on the in vivo mechanical response of human liver with the biomechanics research community: the present data can be used for mechanical model development and validation purposes. The parameters of a quasi-linear viscoelastic model have been determined from the experimental data by means of inverse finite element calculations. The corresponding linear elastic modulus is compared with values from the literature. In particular, a significant discrepancy has been found with respect to the values proposed by Carter et al. [Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A., 2001. Measurement and modelling of the compliance of human and porcine organs. Medical Image Analysis 5, 231-236] and the reasons for this difference are discussed. The predictive capabilities of the quasi-linear viscoelastic model and the Rubin Bodner non-linear elastic-viscoplastic model are compared with respect to the tissue response in repeated aspiration cycles. Finally, for demonstration purposes, the constitutive model corresponding to the "average" liver response has been implemented into a finite element whole liver model and used for simulations related to liver surgery.

  5. Acute chlordecone toxicity in rats: a relationship between tremor and ATPase activities.

    PubMed

    Jordan, J E; Grice, T; Mishra, S K; Desaiah, D

    1981-10-01

    Since we have demonstrated that ATPase system was sensitive to chlordecone, it was decided to examine the relationship between physiological and biochemical responses to this neurotoxin. Male Sprague-Dawley rats were fed with chlordecone by gastric intubation at 10, 25 and 50 mg/kg/day for three days. Control rats received 0.3 ml of corn oil. Complete body movements (including tremors) were monitored for a period of 12 hr at 24, 48 and 72 hr after treatment by a piezoelectric crystal attached to the bottom of a plastic rodent cage. The output of the crystal was recorded by a Grass model of EEG machine and magnetic tape. For biochemical study chlordecone treated rats were killed, the brain synaptosomes were prepared and Na+-K+ ATPase, oligomycin-sensitive and insensitive Mg2+ ATPases were determined. Rats receiving chlordecone showed an increased tremor activity which was significant and dose- dependent with a correlation coefficient of the regression line of 0.96. The onset of tremors was evident as early as 2 hr in 50 mg/kg dosed rats. Behavioral abnormalities include startling response to external stimuli like sound, etc. The brain synaptosomal Na+-K+ and oligomycin-sensitive Mg2+ ATPases were significantly decreased in chlordecone treated rats as compared to controls and the decrease was dose-dependent. A linear relationship was observed between the decreases in ATPase activities and physiological (tremor) activity with an r value of 0.96. These results suggest that the inhibition of ATPase system in brain may be related to the production of the neurotoxic symptoms.

  6. Peculiar magnetic observations in pathological human liver

    NASA Astrophysics Data System (ADS)

    Felner, I.; Alenkina, I. V.; Vinogradov, A. V.; Oshtrakh, M. I.

    2016-02-01

    DC magnetic measurements confirm presence of (i) diamagnetic, (ii) ferri-magnetic (probably magnetite) and (iii) paramagnetic components in human liver tissues obtained from a normal person and two patients with hematological malignancies. The main observation is that patients' liver tissues show a pronounced magnetic peak at 54(1) K in their zero-field-cooled (ZFC) branches; its origin is not known. One sample shows unusual magnetic features: (i) this peak is irreversible and totally suppressed in the second ZFC sweep, (ii) around the peak position the field-cooled (FC) curve crosses the ZFC one (ZFC>FC). The two phenomena are related to each other.

  7. Native fluorescence characterization of human liver abnormalities

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Madhuri, S.; Aruna, Prakasa R.; Suchitra, S.; Srinivasan, T. G.

    1999-05-01

    Fluorescence spectroscopy of intrinsic biomolecules has been extensively used in biology and medicine for the past several decades. In the present study, we report the native fluorescence characteristics of blood plasma from normal human subjects and patients with different liver abnormalities such as hepatitis, leptospirosis, jaundice, cirrhosis and liver cell failure. Native fluorescence spectra of blood plasma -- acetone extract were measured at 405 nm excitation. The average spectrum of normal blood plasma has a prominent emission peak around 464 nm whereas in the case of liver diseased subjects, the primary peak is red shifted with respect to normal. In addition, liver diseased cases show distinct secondary emission peak around 615 nm, which may be attributed to the presence of endogenous porphyrins. The red shift of the prominent emission peak with respect to normal is found to be maximum for hepatitis and minimum for cirrhosis whereas the secondary emission peak around 615 nm was found to be more prominent in the case of cirrhosis than the rest. The ratio parameter I465/I615 is found to be statistically significant (p less than 0.001) in discriminating liver abnormalities from normal.

  8. The Chlordecone crisis in the French West Indies : Its fate in soils and water

    NASA Astrophysics Data System (ADS)

    Voltz, Marc; Cattan, Philippe; Saison, Carine; Berns, Anne E.; Colin, François; Crabit, Armand; Crevoisier, David; Fernandez-Bayo, Jesus; Levillain, Joseph; Pak, Lai-Ting; Samouelian, Anatja; Cabidoche, Yves-Marie

    2013-04-01

    In the French West Indies, chlordecone (CLD), an organochlorine pesticide, which is highly persistent in the environment, was applied in banana plantations from 1972 to 1993 against the banana weevil Cosmopolites sordidus. Pollution surveys conducted in 2001 by the French Department of Health revealed the presence of chlordecone in soils, rivers, springs over large areas in Guadeloupe and Martinique islands. Contamination of drinking water, food crops, aquatic species by CLD has been observed as well as its presence in blood of men, pregnant women and newborns. There is therefore a large social concern about the extent and evolution of CLD pollution in the French West Indies and its impact on human health and ecosystems. From 2008 to 2012 a multidisciplinary project CHLORDEXCO took place to study the CLD fate in water, soils and the contamination characteristics of aquatic species and food crops. Here, we summarize results obtained on the processes controlling the spatial and temporal patterns of soil and water contamination at the scale of the banana cropping area in Guadeloupe and of the Perou catchment. The main soils in the contaminated areas are andosols and nitisols and formed from the weathering of volcanic ashes. They have a high organic carbon content and high content of secondary minerals, allophane for andosols and halloysite for nitisols. An analysis of the spatial distribution of CLD in soil over 1045 field plots showed that the soil type had a strong impact. Andosols, with a high sorption capacity (Koc 20 000 L/kg), had the highest CLD concentrations and stocks, unlike Nitisols, which had 10-fold lower sorption capacities. A significant « farm effect », due to between-farm variations of application times and amounts, was also noticed. The observed stocks of CLD clearly correspond to the accumulation in soil of successive treatments and thereby confirm the high persistence of CLD in soil also observed in incubation studies in soil microcosms. Soil

  9. Towards a Humanized Mouse Model of Liver Stage Malaria Using Ectopic Artificial Livers

    PubMed Central

    Ng, Shengyong; March, Sandra; Galstian, Ani; Gural, Nil; Stevens, Kelly R.; Mota, Maria M.; Bhatia, Sangeeta N.

    2017-01-01

    The malaria liver stage is an attractive target for antimalarial development, and preclinical malaria models are essential for testing such candidates. Given ethical concerns and costs associated with non‐human primate models, humanized mouse models containing chimeric human livers offer a valuable alternative as small animal models of liver stage human malaria. The best available human liver chimeric mice rely on cellular transplantation into mice with genetically engineered liver injury, but these systems involve a long and variable humanization process, are expensive, and require the use of breeding-challenged mouse strains which are not widely accessible. We previously incorporated primary human hepatocytes into engineered polyethylene glycol (PEG)-based nanoporous human ectopic artificial livers (HEALs), implanted them in mice without liver injury, and rapidly generated human liver chimeric mice in a reproducible and scalable fashion. By re-designing the PEG scaffold to be macroporous, we demonstrate the facile fabrication of implantable porous HEALs that support liver stage human malaria (P. falciparum) infection in vitro, and also after implantation in mice with normal liver function, 60% of the time. This proof-of-concept study demonstrates the feasibility of applying a tissue engineering strategy towards the development of scalable preclinical models of liver stage malaria infection for future applications. PMID:28361899

  10. Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies.

    PubMed

    Merlin, Chloé; Devers, Marion; Crouzet, Olivier; Heraud, Cécile; Steinberg, Christian; Mougin, Christian; Martin-Laurent, Fabrice

    2014-04-01

    The insecticide chlordecone is a contaminant found in most of the banana plantations in the French West Indies. This study aims to search for fungal populations able to grow on it. An Andosol heavily contaminated with chlordecone, perfused for 1 year in a soil-charcoal system, was used to conduct enrichment cultures. A total of 103 fungal strains able to grow on chlordecone-mineral salt medium were isolated, purified, and deposited in the MIAE collection (Microorganismes d'Intérêt Agro-Environnemental, UMR Agroécologie, Institut National de la Recherche Agronomique, Dijon, France). Internal transcribed spacer sequencing revealed that all isolated strains belonged to the Ascomycota phylum and gathered in 11 genera: Metacordyceps, Cordyceps, Pochonia, Acremonium, Fusarium, Paecilomyces, Ophiocordyceps, Purpureocillium, Bionectria, Penicillium, and Aspergillus. Among predominant species, only one isolate, Fusarium oxysporum MIAE01197, was able to grow in a liquid culture medium that contained chlordecone as sole carbon source. Chlordecone increased F. oxysporum MIAE01197 growth rate, attesting for its tolerance to this organochlorine. Moreover, F. oxysporum MIAE01197 exhibited a higher EC50 value than the reference strain F. oxysporum MIAE00047. This further suggests its adaptation to chlordecone tolerance up to 29.2 mg l(-1). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that 40 % of chlordecone was dissipated in F. oxysporum MIAE01197 suspension culture. No chlordecone metabolite was detected by GC-MS. However, weak amount of (14)CO2 evolved from (14)C10-chlordecone and (14)C10-metabolites were observed. Sorption of (14)C10-chlordecone onto fungal biomass followed a linear relationship (r (2) = 0.99) suggesting that it may also account for chlordecone dissipation in F. oxysporum MIAE01197 culture.

  11. Dietary exposure of 18-month-old Guadeloupian toddlers to chlordecone.

    PubMed

    Seurin, Sophie; Rouget, Florence; Reninger, Jean-Cédric; Gillot, Nadège; Loynet, Claire; Cordier, Sylvaine; Multigner, Luc; Leblanc, Jean-Charles; Volatier, Jean-Luc; Héraud, Fanny

    2012-08-01

    Chlordecone is an organochlorine insecticide used in the French West Indies until 1993. Toddlers are expected to be differently exposed than older children and adults. The dietary exposure to chlordecone of 18-month-old Guadeloupian toddlers was assessed through different scenarios depending on whether the subjects live on a soil-contaminated place or not and on their supply habits. Food contamination data came from the RESO study performed in 2005-2006. Consumption data derived from a dietary survey conducted in 2005-2008. Results were compared to those of other age groups. Chronic dietary exposures to chlordecone were estimated in a range of 0.018-0.051 μg/kg bw/day (P95: 0.044-0.096) for toddlers living in a non contaminated area and between 0.045-0.078 μg/kg bw/day (P95: 0.110-0.144) for toddlers living in a contaminated area. The probability of exceeding the chronic health-based value of 0.5 μg/kg bw/day was null. These results suggest that 18-month-old toddlers are less exposed than groups aged over 3 years old. This can be explained by their consumption pattern mostly based on milk and fruits, which are not highly contaminated by chlordecone. The acute health-based value of 10 μg/kg bw/day could be exceeded when consuming of highly contaminated taros, showing the importance of regulatory maximum limit. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Fibroblast Growth Factor Signaling Controls Liver Size in Mice With Humanized Livers

    PubMed Central

    Naugler, Willscott E.; Tarlow, Branden D.; Fedorov, Lev M.; Taylor, Matthew; Pelz, Carl; Li, Bin; Darnell, Jennifer; Grompe, Markus

    2015-01-01

    Background & Aims The ratio of liver size to body weight (hepatostat) is tightly controlled, but little is known about how the physiologic functions of the liver help determine its size. Livers of mice repopulated with human hepatocytes (humanized livers) grow to larger than normal; the human hepatocytes do not recognize fibroblast growth factor-15 (FGF15) produced by mouse intestine. This results in upregulation of bile acid synthesis in the human hepatocytes and enlargement of the bile acid pool. We investigated whether abnormal bile acid signaling affects the hepatostat in mice. Methods We crossed Fah−/−, Rag2−/−, Il2r−/− mice with NOD mice to create FRGN mice, whose livers can be fully repopulated with human hepatocytes. We inserted the gene for human FGF19 (ortholog to mouse Fgf15), including regulatory sequences, into the FRGN mice to create FRGN19+ mice. Livers of FRGN19+ mice and their FRGN littermates were fully repopulated with human hepatocytes. Liver tissues were collected and bile acid pool sizes and RNA sequences were analyzed and compared with those of mice without humanized livers (controls). Results Livers were larger in FRGN mice with humanized livers (13% of body weight), compared to control FRGN mice; they also had much larger bile acid pools and aberrant bile acid signaling. Livers from FRGN19+ normalized to 7.8% of body weight, and their bile acid pool and signaling more closely resembled that of control FRGN19+ mice. RNA sequence analysis showed activation of the Hippo pathway, and immunohistochemical and transcription analyses revealed increased hepatocyte proliferation, but not apoptosis, in the enlarged humanized livers of FRGN mice. Cell sorting experiments showed that although healthy human liver does not produce FGF19, non-parenchymal cells from cholestatic livers produce FGF19. Conclusions In mice with humanized livers, expression of an FGF19 transgene corrects bile acid signaling defects, resulting in normalization of bile

  13. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  14. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  15. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies

    PubMed Central

    Martínez, Allyson K.; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T.; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S.

    2014-01-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  16. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice.

    PubMed

    Mikolajczak, Sebastian A; Vaughan, Ashley M; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E; Adams, John H; Sattabongkot, Jetsumon; Prachumsri, Jetsumon; Kappe, Stefan H I

    2015-04-08

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.

  17. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice

    PubMed Central

    Mikolajczak, Sebastian A.; Vaughan, Ashley M.; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E.; Adams, John H.; Prachumsri, Jetsumon; Kappe, Stefan H.I.

    2017-01-01

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites -hypnozoites. The lack of tractable animal models for P. vivax constitutes a severe obstacle to investigate this unique aspect of its biology and to test drug efficacy against liver stages. We show that the FRG KO huHep liver-humanized mice support P. vivax sporozoite infection, development of liver stages, and the formation of small non-replicating hypnozoites. Cellular characterization of P. vivax liver stage development in vivo demonstrates complete maturation into infectious exo-erythrocytic merozoites and continuing persistence of hypnozoites. Primaquine prophylaxis or treatment prevents and eliminates liver stage infection. Thus, the P. vivax/FRG KO huHep mouse infection model constitutes an important new tool to investigate the biology of liver stage development and dormancy and might aid in the discovery of new drugs for the prevention of relapsing malaria. PMID:25800544

  18. Long Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers.

    PubMed

    Irudayaswamy, Antony; Muthiah, Mark; Zhou, Lei; Hung, Hau; Jumat, Nur Halisah Bte; Haque, Jamil; Teoh, Narcissus; Farrell, Geoffrey; Riehle, Kimberly J; Lin, Jaymie Siqi; Su, Lin Lin; Chan, Jerry Ky; Choolani, Mahesh; Wong, P C; Wee, Aileen; Lim, Seng Gee; Campbell, Jean; Fausto, Nelson; Dan, Yock Young

    2017-09-28

    Liver progenitor cells have the potential to repair and regenerate a diseased liver. The success of any translational efforts, however, hinges on thorough understanding of the fate of these cells after transplant, especially in terms of long-term safety and efficacy. Here we report transplantation of a liver progenitor population isolated from human fetal livers into immune-permissive mice with follow-up up to 36 weeks after transplant. We found that human progenitor cells engraft and differentiate into functional human hepatocytes in the mouse, producing albumin, alpha-1-antitrypsin, and glycogen. They create tight junctions with mouse hepatocytes, with no evidence of cell fusion. Interestingly, they also differentiate into functional endothelial cell and bile duct cells. Transplantation of progenitor cells abrogated carbon tetrachloride-induced fibrosis in recipient mice, with down-regulation of procollagen and anti-smooth muscle actin. Paradoxically, the degree of engraftment of human hepatocytes correlated negatively with the anti-fibrotic effect. Progenitor cell expansion was most prominent in cirrhotic animals, and correlated with transcript levels of pro-fibrotic genes. Animals that had resolution of fibrosis had quiescent native progenitor cells in their livers. No evidence of neoplasia was observed, even up to 9 months after transplantation. Human fetal liver progenitor cells successfully attenuate liver fibrosis in mice. They are activated in the setting of liver injury, but become quiescent when injury resolves, mimicking the behavior of de novo progenitor cells. Our data suggest that liver progenitor cells transplanted into injured livers maintain a functional role in the repair and regeneration of the liver. This article is protected by copyright. All rights reserved. © 2017 AlphaMed Press.

  19. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  20. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury.

    PubMed

    Kakuni, Masakazu; Morita, Mayu; Matsuo, Kentaro; Katoh, Yumiko; Nakajima, Miki; Tateno, Chise; Yokoi, Tsuyoshi

    2012-10-02

    Troglitazone (Tro) is a thiazolidinedione antidiabetic drug that was withdrawn from the market due to its association with idiosyncratic severe liver injury. Tro has never induced liver injury in experimental animals in vivo. It was assumed that the species differences between human and experimental animals in the pharmaco- or toxicokinetics of Tro might be associated with these observations. In this study, we investigated whether a chimeric mouse with a humanized liver that we previously established, whose replacement index with human hepatocytes is up to 92% can reproduce Tro-induced liver injury. When the chimeric mice were orally administered Tro for 14 or 23 days (1000mg/kg/day), serum alanine aminotransferase (ALT) was significantly increased by 2.1- and 3.6-fold, respectively. Co-administration of l-buthionine sulfoximine (10mM in drinking water), an inhibitor of glutathione (GSH) synthesis, unexpectedly prevented the Tro-dependent increase of ALT, which suggests that the GSH scavenging pathway will not be involved in Tro-induced liver injury. To elucidate the mechanism of the onset of liver injury, hepatic GSH content, the level of oxidative stress markers and phase I and phase II drug metabolizing enzymes were determined. However, these factors were not associated with Tro-induced liver injury. An immune-mediated reaction may be associated with Tro-induced liver toxicity in vivo, because the chimeric mouse is derived from an immunodeficient SCID mouse. In conclusion, we successfully reproduced Tro-induced liver injury using chimeric mice with a humanized liver, which provides a new animal model for studying idiosyncratic drug-induced liver injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  2. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    USDA-ARS?s Scientific Manuscript database

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  3. Regeneration of Human Liver After Hepatic Lobectomy Studied by Repeated Liver Scanning and Repeated Needle Biopsy

    PubMed Central

    Lin, Tien-Yu; Lee, Chue-Shue; Chen, Chiou-Chiang; Liau, Kuong-Yi; Lin, Wen-Shih-Jen

    1979-01-01

    Regeneration of the residual lobe of the liver after hepatic lobectomy in humans was studied by repeated liver scanning in seven noncirrhotic and three cirrhotic patients. Each patient was studied for several months during the study which lasted from 1-12 years. Regeneration was apparent in noncirrhotic liver remnants following hepatic lobectomy. In the case of a long standing, space occupying lesions such as benign giant cysts, the liver remnant would complete its regeneration process rather early, usually within a few months of hepatic lobectomy. In hepatoma cases, however, regeneration of the residual lobe after hepatic resection usually took five or six months for completion. On the contrary, no definite increase in the size of the liver remnant was seen on repeated liver scanning in cirrhotic patients. Histologic study of the residual lobe was repeated on needle biopsy specimens in two noncirrhotic and four cirrhotic patients. Regenerative hyperplasia of liver cells with large hyperchromatic, or double nuclei never seen in the preresection liver appeared in the liver remnant five, 11, and 27 days after hepatic lobectomy in noncirrhotic patients. In cirrhotics, however, there were no histologic changes between the preresection liver and the postresection remnant studied three, five, 15, 40 days or even two years and 8 months after hepatic lobectomy. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:464678

  4. Human liver chimeric mouse model based on diphtheria toxin-induced liver injury

    PubMed Central

    Ren, Xiao-Nan; Ren, Rong-Rong; Yang, Hua; Qin, Bo-Yin; Peng, Xiu-Hua; Chen, Li-Xiang; Li, Shun; Yuan, Meng-Jiao; Wang, Chao; Zhou, Xiao-Hui

    2017-01-01

    AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liver-humanized mice. METHODS We crossed three mouse strains, including albumin (Alb)-cre transgenic mice, inducible diphtheria toxin receptor (DTR) transgenic mice and severe combined immune deficient (SCID)-beige mice, to create Alb-cre/DTR/SCID-beige (ADSB) mice, which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb (encoding ALB), the DTR stop signal flanked by two loxP sites can be deleted in the ADSB mice, resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally (i.p.) with diphtheria toxin (DT) and liver damage was assessed by serum alanine aminotransferase (ALT) level. Two days later, mouse livers were sampled for histological analysis, and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7, 14, 21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation. RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2, increased on day 7, and was lowest on day 4 (range, 10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/mL on day 4, then returned to background values on day 7. After transplantation of human liver cells, peripheral blood human ALB level was 1580 ± 454.8 ng/mL (range, 750.2-3064.9 ng/mL) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice. CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications, such as hepatocyte transplantation, hepatic

  5. Contamination of marine fauna by chlordecone in Guadeloupe: evidence of a seaward decreasing gradient.

    PubMed

    Dromard, Charlotte R; Guéné, Mathilde; Bouchon-Navaro, Yolande; Lemoine, Soazig; Cordonnier, Sébastien; Bouchon, Claude

    2017-04-14

    Chlordecone is an organochlorine pesticide, used in the Lesser Antilles from 1972 to 1993 to fight against a banana weevil. That molecule is very persistent in the natural environment and ends up in the sea with runoff waters. The objective of the present study is to evaluate the level of contamination in several trophic groups of marine animals according to their distance from the source of pollution. Samples of suspended matter, macroalgae, herbivorous fishes, detrivorous crustaceans, zooplanktivorous fishes, first- and second-order of carnivorous fishes, and piscivorous fishes have been collected in two sites, located downstream the contaminated sites (Goyave and Petit-Bourg), in three marine habitats (coastal mangroves, seagrass beds located 1.5 km from the shoreline, and coral reefs at 3 km offshore). Animals collected in mangroves were the most contaminated (mean concentrations 193 μg kg(-1) in Goyave and 213 μg kg(-1) in Petit-Bourg). Samples from seagrass beds presented intermediate concentrations of chlordecone (85 μg kg(-1) in Goyave and 107 μg kg(-1) in Petit-Bourg). Finally, samples from coral reefs were the less contaminated (71 μg kg(-1) in Goyave and 74 μg kg(-1) in Petit-Bourg). Reef samples, collected 3 km offshore, were two to three times less contaminated than those collected in mangroves.

  6. The invasive lionfish, Pterois volitans, used as a sentinel species to assess the organochlorine pollution by chlordecone in Guadeloupe (Lesser Antilles).

    PubMed

    Charlotte, Dromard R; Yolande, Bouchon-Navaro; Cordonnier, Sebastien; Claude, Bouchon

    2016-06-15

    In Guadeloupe, many marine organisms are affected by an organochlorine pollution used in the past by the banana industry to fight against the banana weevil. In the present study, we evaluated the level of contamination of the invasive Indo-Pacific lionfish, Pterois volitans, all around the island. Concentrations of chlordecone varied from 3 to 144μg.kg(-1) wet weight. The highest concentrations were recorded when samples were captured in the marine zones located downstream of the previous banana plantations. This contamination seemed to decrease rapidly with the distance from the coast. Mean concentration of chlordecone in Pterois volitans was higher than that of five other fish species collected in similar sites. Due to its position at the top of the trophic web, lionfish was affected by bioaccumulation of chlordecone and can be used as a sentinel species to assess and control the level of contamination of the marine environment by chlordecone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Collagen polymorphism in normal and cirrhotic human liver.

    PubMed Central

    Seyer, J M; Hutcheson, E T; Kang, A H

    1977-01-01

    Collagens in normal human liver and in alcoholic cirrhotic liver were investigated. Collagens were solubilized by limited proteolysis with pepsin under nondenaturing conditions, and after purification, were fractionated into types I and III by selective precipitation with NaCl. After carboxymethyl cellulose and agarose chromatography, the resulting alpha-chains from each of the collagen types were analyzed with respect to their amino acid and carbohydrate compositions. A comparison of the results obtained from normal liver with those from the diseases organ revealed no significant differences. The isolated human liver alpha1(I) and alpha1(III) chains were digested with CNBr and the generated peptides were separated and purified by a combination of ion-exchange and molecular sieve chromatography. The molecular weight and the amino acid and the carbohydrate compositions of each of the peptides were identical to those of the corresponding human skin peptides except for the slightly higher content of hydroxylysine in some of the peptides. The relative content of type III in relation to type I collagen in both normal anc cirrhotic liver was determined by digesting washed liver homogenates directly with CNBr and quantitating the resultant alpha1(I) and alpha 1(III) peptides after chromatographic separation. The relative quantities of these peptides indicated that normal human liver contained an average of 47% type III, with the remainder being type I. Cirrhotic liver, on the other hand, contained a significantly smaller proportion of type III, ranging from 18 to 34% in different samples, with a corresponding increase in type I. These findings indicate that although the amino acid and carbohydrate compositions of collagens deposited in cirrhotic liver are normal, the fibrotic process of alcoholic liver disease in humans is accompanied by an alteration in tissue collagen polymorphism, and suggest that the observed alterations may have pathogenetic implications. PMID:833273

  8. Multilineage communication regulates human liver bud development from pluripotency.

    PubMed

    Camp, J Gray; Sekine, Keisuke; Gerber, Tobias; Loeffler-Wirth, Henry; Binder, Hans; Gac, Malgorzata; Kanton, Sabina; Kageyama, Jorge; Damm, Georg; Seehofer, Daniel; Belicova, Lenka; Bickle, Marc; Barsacchi, Rico; Okuda, Ryo; Yoshizawa, Emi; Kimura, Masaki; Ayabe, Hiroaki; Taniguchi, Hideki; Takebe, Takanori; Treutlein, Barbara

    2017-06-22

    Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.

  9. The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver.

    PubMed

    Lee, J-H; Park, H-J; Kim, Y-A; Lee, D-H; Noh, J-K; Kwon, C H D; Jung, S-M; Lee, S-K

    2012-05-01

    Liver transplantation is the only effective treatment for end-stage liver disease. Because of the limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult liver contains hepatic stem cells is highly controversial. Several studies have suggested the presence of stem cells in the adult normal human liver. However, a population with stem cell properties has not yet been isolated. The purpose of this study was to identify and characterize progenitor cells in normal adult human liver. We isolated and expanded human liver stem cells (HLSCs) from a donated liver not suitable for liver transplantation or characterizing them by fluorescence-activated cell sorter, polymerase chain reaction, and immunofluorescence assay. HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, CD90, CD105, and CD166 but not the hematopoietic stem cell markers CD34, CD45, and CD117. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin-19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed CD26, and in a small percentage of cells, cytokeratin-8 and cytokeratin-18, indicating a partial commitment to hepatic cells. We concluded that HLSCs expressed several mesenchymal but not hematopoietic stem cell markers as well as CD26 and CK18, indicating a partial commitment to hepatic cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A comparative study of aldolase from human muscle and liver

    PubMed Central

    Eagles, Peter A. M.; Iqbal, Muzaffar

    1973-01-01

    Aldolase was purified from human skeletal muscle and human liver by techniques capable of processing large quantities (10–20kg) of tissue. The methods used also proved convenient for isolating aldolase on a large scale from other mammalian and avian sources. Aldolase from both human liver and muscle was crystallized; each gave two crystalline forms, depending on the conditions of crystallization. X-ray studies on the muscle aldolase crystals suggest a close structural similarity between human and rabbit muscle aldolase. Aldolases from human muscle and liver have similar pH optima and pH stability but their stability to heat treatment differs. The effect of heat on the enzymes may therefore provide an easy means of distinguishing them. The kinetic constants Km and kcat. for these aldolases are similar to other mammalian aldolases. Amino acid analyses and tryptic peptide `mapping' show that the primary structures of the two aldolases differ greatly. ImagesPLATE 1PLATE 2 PMID:4733235

  12. Human liver proteome project: plan, progress, and perspectives.

    PubMed

    He, Fuchu

    2005-12-01

    The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.

  13. Human platelets inhibit liver fibrosis in severe combined immunodeficiency mice

    PubMed Central

    Takahashi, Kazuhiro; Murata, Soichiro; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2013-01-01

    AIM: To investigate the role of human platelets in liver fibrosis. METHODS: Severe combined immunodeficiency (SCID) mice were administered CCl4 and either phosphate-buffered saline (PBS group) or human platelet transfusions (hPLT group). Concentrations of hepatocyte growth factor (HGF), matrix metallopeptidases (MMP)-9, and transforming growth factor-β (TGF-β) in the liver tissue were compared between the PBS and the hPLT groups by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effects of a human platelet transfusion on liver fibrosis included the fibrotic area, hydroxyproline content, and α-smooth muscle actin (α-SMA) expression, which were evaluated by picrosirius red staining, ELISA, and immunohistochemical staining using an anti-mouse α-SMA antibody, respectively. Phosphorylations of mesenchymal-epithelial transition factor (Met) and SMAD3, downstream signals of HGF and TGF-β, were compared between the two groups by Western blotting and were quantified using densitometry. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Furthermore, the accumulation of human platelets in the liver 2 h after platelet transfusion was compared between normal and fibrotic livers by immunohistochemical staining using an anti-human CD41 antibody. RESULTS: The fibrotic area and hydroxyproline content in the liver were both significantly lower in the hPLT group when compared to the PBS group (fibrotic area, 1.7% ± 0.6% vs 2.5% ± 0.6%, P = 0.03; hydroxyproline content, 121 ± 26 ng/g liver vs 156 ± 47 ng/g liver, P = 0.04). There was less α-smooth muscle actin staining in the hPLT group than in the PBS group (0.5% ± 0.1% vs 0.8% ± 0.3%, P = 0.02). Hepatic expression levels of mouse HGF and MMP-9 were significantly higher in the hPLT group than in the PBS group (HGF, 109 ± 13 ng/g liver vs 88 ± 22 ng/g liver, P = 0.03; MMP-9, 113% ± 7%/GAPDH vs 92% ± 11%/GAPDH, P = 0.04). In contrast, the

  14. Human Immunodeficiency Virus and Liver Disease Forum 2010: Conference Proceedings

    PubMed Central

    Sherman, Kenneth E.; Thomas, David L.; Chung, Raymond T.

    2013-01-01

    Liver disease continues to represent a critical mediator of morbidity and mortality in those with human immunodeficiency virus (HIV) infection. The frequent presence and overlap of concomitant injurious processes, including hepatitis C virus and hepatitis B virus infections, hepatoxicity associated with antiretroviral therapeutic agents, alcohol, and other toxins, in the setting of immunosuppression lead to rapid fibrotic progression and early development of end-stage liver disease. This conference summary describes the proceedings of a state-of-the-art gathering of international experts designed to highlight the status of current research in epidemiology, natural history, pathogenesis, and treatment of HIV and liver disease. PMID:21898501

  15. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    PubMed

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P < 0.05). UC-MSC therapy also significantly improved liver function, as indicated by the increase of serum albumin levels, decrease in total serum bilirubin levels, and decrease in the sodium model for end-stage liver disease scores. UC-MSC transfusion is clinically safe and could improve liver function and reduce ascites in patients with decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  16. Human liver territories: Think beyond the 8-segments scheme.

    PubMed

    Fasel, Jean H D

    2017-10-01

    Worldwide, compartmentalization of the human liver into portal venous territories today follows the eight-segments scheme credited to Couinaud. However, there are increasing reports of anatomical, radiological and surgical observations that contradict this concept. This paper presents a viewpoint that enhances understanding of these inconsistencies and can serve as a basis for customized liver interventions. Clin. Anat. 30:974-977, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases.

    PubMed

    Wang, Yini; Yu, Xiaopeng; Chen, Ermei; Li, Lanuan

    2016-05-12

    Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases.

  18. Opisthorchis viverrini: The carcinogenic human liver fluke

    PubMed Central

    Kaewpitoon, Natthawut; Kaewpitoon, Soraya J; Pengsaa, Prasit; Sripa, Banchob

    2008-01-01

    Opisthorchiasis caused by Opisthorchis viverrini remains a major public health problem in many parts of Southeast Asia, including Thailand, Lao PDR, Vietnam and Cambodia. The infection is associated with a number of hepatobiliary diseases, including cholangitis, obstructive jaundice, hepatomegaly, cholecystitis and cholelithiasis. Multi-factorial etiology of cholangiocarcinoma, mechanical damage, parasite secretions, and immunopathology may enhance cholangiocarcinogenesis. Moreover, both experimental and epidemiological evidences strongly implicate liver fluke infection as the major risk factor in cholangiocarcinoma, cancer of the bile ducts. The liver fluke infection is induced by eating raw or uncooked fish products that is the tradition and popular in the northeastern and northern region, particularly in rural areas, of Thailand. The health education programs to prevent and control opisthorchiasis are still required in the high-risk areas. PMID:18205254

  19. ADV36 adipogenic adenovirus in human liver disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  20. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    SciTech Connect

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  1. Human germline hedgehog pathway mutations predispose to fatty liver.

    PubMed

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2(+/-)) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2(+/-) mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2(+/-) mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  2. Gene Expression Patterns in Human Liver Cancers

    PubMed Central

    Chen, Xin; Cheung, Siu Tim; So, Samuel; Fan, Sheung Tat; Barry, Christopher; Higgins, John; Lai, Kin-Man; Ji, Jiafu; Dudoit, Sandrine; Ng, Irene O.L.; van de Rijn, Matt; Botstein, David; Brown, Patrick O.

    2002-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression. PMID:12058060

  3. Real-time confocal laser endomicroscopic evaluation of primary liver cancer based on human liver autofluorescence.

    PubMed

    Maki, Harufumi; Kawaguchi, Yoshikuni; Arita, Junichi; Akamatsu, Nobuhisa; Kaneko, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Harihara, Yasushi; Kokudo, Norihiro

    2017-02-01

    Confocal laser endomicroscopy (CLE) is available for real-time microscopic examination. This study aims to evaluate the usefulness of intraoperative CLE examination as a modality to evaluate surgical margins in surgery for primary liver cancer. A probe-based CLE system (Cellvizio 100, Mauna Kea Technologies, Paris, France) was used. The subjects comprised seven specimens obtained from six patients with primary liver cancer in November 2015. The probe was manually attached to the surfaces of specimens, and images were collected without external fluorophores. CLE images were compared with hematoxylin and eosin-stained slides. Fluorescence intensity (FI) values of the CLE images were assessed using luminance-analyzing software. CLE examination visualized non-cancerous regions in the background liver as regular structures with high fluorescence because of human liver autofluorescence. Conversely, hepatocellular carcinoma and intrahepatic cholangiocarcinoma were depicted as irregular structures with low fluorescence. The median FI values of the non-cancerous regions and the cancerous regions were 104 (79.8-156) and 74.9 (60.6-106), respectively, and were significantly different (P = 0.031). The probe-based CLE enables real-time differentiation of cancerous regions from non-cancerous tissues in surgical specimens because of human liver autofluorescence. CLE can be used to confirm negative surgical margins in the operating room. J. Surg. Oncol. 2017;115:151-157. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Liver Stem Cells: Experimental Findings and Implications for Human Liver Disease.

    PubMed

    Michalopoulos, George K; Khan, Zahida

    2015-10-01

    Evidence from human histopathology and experimental studies with rodents and zebrafish has shown that hepatocytes and cholangiocytes may function as facultative stem cells for each other in conditions of impaired regeneration. The interpretation of the findings derived from these studies has generated considerable discussion and some controversies. This review examines the evidence obtained from the different experimental models and considers implications that these studies may have for human liver disease.

  5. Immunocytochemical localization of peroxisomal enzymes in human liver biopsies.

    PubMed Central

    Litwin, J. A.; Völkl, A.; Müller-Höcker, J.; Hashimoto, T.; Fahimi, H. D.

    1987-01-01

    The immunocytochemical localization of catalase and three enzymes of the peroxisomal lipid beta-oxidation system--acyl-CoA oxidase, the bifunctional protein enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase--in human liver biopsies was investigated by means of light and electron microscopy. The antisera raised against all four enzymes from rat liver cross-reacted with the corresponding proteins in homogenates of human liver as revealed by immunoblotting. For light-microscopic localization in glutaraldehyde-fixed Epon-embedded material, the removal of resin and controlled digestion with trypsin was necessary. At the ultrastructural level specific labeling for all four antigens was found by the protein A-gold technique in peroxisomes of liver parenchymal cells fixed with formaldehyde-low glutaraldehyde concentrations and embedded in Lowicryl K4M. In biopsies fixed with glutaraldehyde and embedded in Epon, treatment with metaperiodate or etching with sodium ethoxide improved the immunolabeling. After such treatment catalase showed the most intense labeling and acyl-CoA oxidase the weakest, the two other proteins exhibiting an intermediate immunoreaction. In material postfixed with osmium only catalase could be visualized in peroxisomes. The immunocytochemical investigation of peroxisomal proteins in human liver biopsies provides a simple and highly promising approach for further elucidation of the pathophysiology of peroxisomal disorders. Images Figures 2 and 3 Figure 4-7 Figures 9-12 Figure 1 Figure 8 Figure 13 Figure 14 Figure 15 Figure 16 PMID:2886050

  6. [Molecular and metabolic changes in human clear cell liver foci].

    PubMed

    Ribback, S; Calvisi, D F; Cigliano, A; Rausch, J; Heidecke, C-D; Birth, M; Dombrowski, F

    2015-11-01

    Activation of the AKT/mTOR and Ras/MAPK pathways and the lipogenic phenotype are evident both in human hepatocellular carcinoma and in the rat model of insulin-induced hepatocarcinogenesis in the earliest preneoplastic lesions, i.e. clear cell foci (CCF) of altered hepatocytes. These CCFs have also been described in the human liver but characterization of molecular and metabolic changes are still pending. In this study, human sporadic CCFs were investigated in a collection of human non-cirrhotic liver specimens using histology, histochemistry, immunohistochemistry, electron microscopy and molecular pathological analysis. Human CCFs occurred in approximately 33 % of non-cirrhotic livers and stored masses of glycogen in the cytoplasm, largely due to reduced activity of glucose-6-phosphatase. Hepatocytes revealed an upregulation of the AKT/mTOR and the Ras/MAPK pathways, the insulin receptor, glucose transporters and enzymes of glycolysis and de novo lipogenesis. Proliferative activity was 2-fold higher than in extrafocal tissue. The CCFs of altered hepatocytes are metabolically and proliferatively active lesions even in humans. They resemble the well-known preneoplastic lesions from experimental models in terms of morphology, glycogen storage, overexpression of protooncogenic signaling pathways and activation of the lipogenic phenotype, which are also known in human hepatocellular carcinoma. This suggests that hepatic CCFs also represent very early lesions of hepatocarcinogenesis in humans.

  7. Role of human liver microsomes in in vitro metabolism of drugs-a review.

    PubMed

    Asha, Sepuri; Vidyavathi, Maravajhala

    2010-03-01

    Drug metabolism studies are essential and necessary during the evaluation of drugs. This review discusses the in vitro human liver models to estimate the drug metabolic fates in vivo. Different approaches are provided and emphasis is placed on the potential of human liver microsomes for drug metabolism and inhibition studies. The methodology for these studies using human liver microsomes, applications of human liver microsomes, and the drugs studied by human liver microsomes are listed. Human liver microsomes represent a critical experimental model for the evaluation of drug metabolites with a high probability of clinical success.

  8. Cultivation of human liver cell lines with microcarriers acting as biological materials of bioartificial liver

    PubMed Central

    Gao, Yi; Xu, Xiao-Ping; Hu, Huan-Zhang; Yang, Ji-Zhen

    1999-01-01

    AIM: To improve the cultivation efficiency and yield of human liver cell line Cl-1. METHODS: High-density cultivation of Cl-1 on microcarriers was carried out with periodic observation of their growth and proliferation. The specific functions of human liver cell were also determined. RESULTS: Cells of Cl-1 cell line grew well on microcarrier Cytodex-3 and on the 7th day the peak was reached. The amount of Cl-1 cells was 2.13 × 108 and the total amount of albumin synthesis reached 71.23 μg, urea synthesis 23.32 mg and diazepam transformation 619.7 μg respectively. The yield of Cl-1 on microcarriers was 49.3 times that of conventional cultivation. The amounts of albumin synthesis, urea synthesis and diazepam transformation were 39.8 times, 41.6 times and 33.3 times those of conventional cultivation, respectively. CONCLUSION: The human liver cell line Cl-1 can be cultivated to a high density with Cytodex-3 and has better biological functions. High-density cultivation of Cl-1 on microcarriers can act as the biological material of bioartificial liver. PMID:11819434

  9. Purification and properties of arginase from human liver and erythrocytes.

    PubMed Central

    Berüter, J; Colombo, J P; Bachmann, C

    1978-01-01

    Arginase was isolated from human liver and erythrocytes. The purification procedure used acetone precipitation, heat-treatment, (NH4)2SO4 precipitation, DEAE-cellulose chromatography and gel filtration on Sephadex G-200 in the presence of 2-mercaptoethanol. Both enzymes migrated to the anode at pH8.3 on polyacrylamide-gel electrophoresis. After incubation at pH8.0 and 37 degrees C the purified anionic liver arginase migrated to the cathode on polyacrylamide-gel electrophoresis. It is assumed that the multiple forms of the enzyme reported in the literature are partly artifacts of the purification procedure. The liver arginase showed a mol.wt. of 107000 determined by gel filtration and a sedimentation coefficient of 5.9S. Treatment of the liver enzyme with 0.25% sodium dodecyl sulphate at pH10 demonstrated an oligomeric structure of the enzyme with a mol.wt. of the subunit of 35000. The kinetic properties determined for the purified liver arginase showed an optimum pH of 9.3 and an optimal MnCl2 concentration of 2mM. The Km for L-arginine was 10.5 mM and for L-canavanine 50mM, and L-lysine exhibited a competitive type of inhibition with a Ki of 4.4mM. L-Homoarginine was not a substrate for liver arginase. PMID:743206

  10. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes.

    PubMed Central

    Doecke, C J; Veronese, M E; Pond, S M; Miners, J O; Birkett, D J; Sansom, L N; McManus, M E

    1991-01-01

    1. The metabolic interaction of phenytoin and tolbutamide in human liver microsomes was investigated. 2. Phenytoin 4-hydroxylation (mean Km 29.6 microM, n = 3) was competitively inhibited by tolbutamide (mean Ki 106.2 microM, n = 3) and tolbutamide methylhydroxylation (mean Km 85.6 microM, n = 3) was competitively inhibited by phenytoin (mean Ki 22.6 microM, n = 3). 3. A significant correlation was obtained between phenytoin and tolbutamide hydroxylations in microsomes from 18 human livers (rs = 0.82, P less than 0.001). 4. Sulphaphenazole was a potent inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values of 0.4 microM and 0.6 microM, respectively. 5. Mephenytoin was a poor inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values greater than 400 microM for both reactions. 6. Anti-rabbit P450IIC3 IgG inhibited both phenytoin and tolbutamide hydroxylations in human liver microsomes by 62 and 68%, respectively. 7. These in vitro studies are consistent with phenytoin 4-hydroxylation and tolbutamide methylhydroxylation being catalysed by the same cytochrome P450 isozyme(s) in human liver microsomes. PMID:2049228

  11. Perivascular mesenchymal progenitors in human fetal and adult liver.

    PubMed

    Gerlach, Jörg C; Over, Patrick; Turner, Morris E; Thompson, Robert L; Foka, Hubert G; Chen, William C W; Péault, Bruno; Gridelli, Bruno; Schmelzer, Eva

    2012-12-10

    The presence of mesenchymal stem cells (MSCs) has been described in various organs. Pericytes possess a multilineage differentiation potential and have been suggested to be one of the developmental sources for MSCs. In human liver, pericytes have not been defined. Here, we describe the identification, purification, and characterization of pericytes in human adult and fetal liver. Flow cytometry sorting revealed that human adult and fetal liver contains 0.56%±0.81% and 0.45%±0.39% of CD146(+)CD45(-)CD56(-)CD34(-) pericytes, respectively. Of these, 41% (adult) and 30% (fetal) were alkaline phosphatase-positive (ALP(+)). In situ, pericytes were localized around periportal blood vessels and were positive for NG2 and vimentin. Purified pericytes could be cultured extensively and had low population doubling times. Immunofluorescence of cultures demonstrated that cells were positive for pericyte and mesenchymal cell markers CD146, NG2, CD90, CD140b, and vimentin, and negative for endothelial, hematopoietic, stellate, muscle, or liver epithelial cell markers von Willebrand factor, CD31, CD34, CD45, CD144, CD326, CK19, albumin, α-fetoprotein, CYP3A7, glial fibrillary acid protein, MYF5, and Pax7 by gene expression; myogenin and alpha-smooth muscle actin expression were variable. Fluorescence-activated cell sorting analysis of cultures confirmed surface expression of CD146, CD73, CD90, CD10, CD13, CD44, CD105, and ALP and absence of human leukocyte antigen-DR. In vitro differentiation assays demonstrated that cells possessed robust osteogenic and myogenic, but low adipogenic and low chondrogenic differentiation potentials. In functional in vitro assays, cells had typical mesenchymal strong migratory and invasive activity. In conclusion, human adult and fetal livers harbor pericytes that are similar to those found in other organs and are distinct from hepatic stellate cells.

  12. Biomechanical Response of Human Liver in Tensile Loading

    PubMed Central

    Kemper, Andrew R.; Santago, Anthony C.; Stitzel, Joel D.; Sparks, Jessica L.; Duma, Stefan M.

    2010-01-01

    Motor vehicle collisions commonly result in serious life threatening liver injuries. Although finite element models are becoming an integral tool in the reduction of automotive related liver injuries, the establishment of accurate material models and tissue level tolerance values is critical for accurate injury risk assessment. This study presents a total of 51 tension tests performed on human liver parenchyma at various loading rates in order to characterize the viscoelastic and failure properties of human liver. Standard dog-bone coupons were obtained from fresh human livers and tested within 48 hours of death. Each coupon was tested once to failure at one of four loading rates (0.008 s–1, 0.089 s–1, 0.871 s–1, and 9.477 s–1) to investigate the effects of rate dependence. Load and acceleration data were obtained from each of the specimen grips. High-speed video and optical markers placed on the specimens were used to measure local displacement. Failure stress and strain were calculated at the location of failure in the gage length of the coupon. The results of the study showed that liver parenchyma is rate dependent, with higher rate tests giving higher failure stresses and lower failure strains. The failure strains for all tests ranged from 11% to 54% and the failure stresses ranged from 7 kPa to 95 kPa. This study provides novel biomechanical data that can be used in the development of both rate dependent material models and tissue level tolerance values critical for the validation of finite element models used to assess injury risk in automobile collisions. PMID:21050588

  13. Distribution of elastic system fibres in human fetal liver.

    PubMed Central

    Monte, A; Costa, A; Porto, L C

    1996-01-01

    Elastic system fibres are extracellular matrix components found in different organs for which they provide elasticity and some mechanical resistance. Oxytalan, elaunin and elastic fibres, which possess graduated amounts of elastin, are the 3 forms of elastic system fibres that are identifiable by their tinctorial and ultrastructural features. The distribution of these fibres in adult human liver is well-established but little, if anything, is known about them in fetal liver. The distribution of elastic system fibres was therefore investigated in human fetal liver, and the process of elastogenesis characterised. Specimens of liver from 24 human fetuses ranging in age from 13 to 38 wk postfertilisation were studied. The results are presented in relation to gestational age and the size of the portal tracts. Portal tracts exhibited a network of oxytalan fibres at 13 wk; elaunin fibres appeared later after 20 wk postfertilisation. Elastogenesis occurred more rapidly in venous than in arterial walls, and in veins it was more evident in the adventitia. A microfibrillar network of oxytalan fibres was observed around biliary ducts from the outset of their development. Elastogenesis follows the sequence oxytalan, elaunin and elastic fibres, but the elastogenetic process only completes its maturation in arterial walls, thus leading to the internal elastic lamina. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8763481

  14. Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution.

    PubMed

    Clostre, Florence; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Letourmy, Philippe; Cabidoche, Yves-Marie; Cattan, Philippe

    2014-02-01

    When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.

  15. Biological and immunological characterization of a human liver immunoregulatory protein.

    PubMed

    Schrempf-Decker, G E; Baron, D P; Brattig, N W; Bockhorn, H; Berg, P A

    1983-01-01

    The liver immunoregulatory protein (LIP) was originally characterized as human liver-derived soluble factor which inhibited the alloantigen and phytohemagglutinin-induced proliferation of human lymphocytes (1). Soluble extracts prepared under the same experimental conditions from kidney, spleen, heart, lymph nodes, and erythrocytes did not exert any inhibitory activity (2). The purpose of this study was to characterize the immunobiological properties of LIP. In the primary one-way mixed lymphocyte culture, LIP depressed the generation of suppressor T cells which inhibited the lymphocyte proliferation induced by phytohemagglutinin or alloantigens. In addition, LIP suppressed in primary mixed lymphocyte culture the induction of cytotoxic T cells and memory cells as determined by cell-mediated lympholysis and secondary mixed lymphocyte culture, respectively. In the presence of LIP, the concanavalin A-mediated induction of suppressor T cells, the pokeweed mitogen-induced IgG synthesis in vitro and the cytolytic activity of K cells reacting in the antibody-dependent cell-mediated cytotoxicity were also inhibited. Cytotoxic effects could be excluded since the viability of human lymphoblastoid cells, hepatocytes, and allogeneically stimulated lymphocytes was not affected by LIP. LIP was shown to be different from other liver-derived substances like acute phase proteins, immunoregulatory alpha-globulins, C-reactive protein, lipoproteins, and F antigen. Furthermore, LIP is not identical to other serum components like the immunoregulatory rosette inhibition factor and the serum inhibitory factor (3). However, the characteristics described herein strongly indicate that LIP is very similar to the liver extract described by Chisari (4) and the liver-derived inhibitory protein (LIP) described by Grol and Schumacher (5).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Isolation of human liver angiotensin-converting enzyme by chromatofocusing.

    PubMed

    Sakharov IYu; Danilov, S M; Sukhova, N V

    1987-10-01

    Angiotensin-converting enzyme (EC 3.4.15.1) has been isolated from human liver by chromatofocusing. The isolation procedure permitted us to obtain a 9000-fold purified enzyme with a 22% yield. Specific activity of the angiotensin-converting enzyme was 10 units/mg of protein. The molecular mass of enzyme determined by polyacrylamide gel electrophoresis under denaturing conditions was 150,000. The isoelectric point (4.2-4.3) was also determined by chromatofocusing. The Km values of the enzyme for hippuryl-L-histidyl-L-leucine and N-benzyloxycarbonyl-L-phenylalanyl-L-histidyl-L-leucine are 5000 and 125 microM, respectively. The human liver angiotensin-converting enzyme is inhibited by bradykinin-potentiating factor SQ 20881 (IC50 = 18 nM).

  17. [Metabolism of mitomycin C by human liver microsomes in vitro].

    PubMed

    Hao, Fu-rong; Yan, Min-fen; Hu, Zhuo-han; Jin, Yi-zun

    2007-02-01

    To provide the profiles of metabolism of mitomycin C (MMC) by human liver microsomes in vitro, MMC was incubated with human liver microsomes, then the supernatant component was isolated and detected by HPLC. Types of metabolic enzymes were estimated by the effect of NADPH or dicumarol (DIC) on metabolism of MMC. Standard, reaction, background control (microsomes was inactivated), negative control (no NADPH), and inhibitor group (adding DIC) were assigned, the results were analyzed by Graphpad Prism 4. 0 software. Reaction group compared with background control and negative control groups, 3 NADPH-dependent absorption peaks were additionally isolated by HPLC after MMC were incubated with human liver microsomes. Their retention times were 10. 0, 14. 0, 14. 8 min ( named as Ml, M2, M3) , respectively. Their formation was kept as Sigmoidal dose-response and their Km were 0. 52 (95% CI, 0. 40 - 0.67) mmol x L(-1), 0. 81 (95% CI, 0. 59 - 1. 10) mmol x L(-1), 0. 54 (95% CI, 0. 41 -0. 71) mmol x L(-1) , respectively. The data indicated that the three absorption peaks isolated by HPLC were metabolites of MMC. DIC can inhibit formation of M2, it' s dose-effect fitted to Sigmoidal curve and it' s IC50 was 59. 68 (95% CI, 40. 66 - 87. 61) micromol x L(-1) , which indicated DT-diaphorase could take part in the formation of M2. MMC can be metabolized by human liver microsomes in vitro, and at least three metabolites of MMC could be isolated by HPLC in the experiment, further study showed DT-diaphorase participated in the formation of M2.

  18. Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors.

    PubMed

    Zurbuchen, Urte; Poch, Franz; Gemeinhardt, Ole; Kreis, Martin E; Niehues, Stefan M; Vahldieck, Janis L; Lehmann, Kai S

    2017-02-01

    Background Radiofrequency ablation is used to induce thermal necrosis in the treatment of liver metastases. The specific electrical conductivity of a liver metastasis has a distinct influence on the heat formation and resulting tumor ablation within the tissue. Purpose To examine the electrical conductivity σ of human colorectal liver metastases and of tumor-free liver tissue in surgical specimens. Material and Methods Surgical specimens from patients with resectable colorectal liver metastases were used for measurements (size of metastases <30 mm). A four-needle measuring probe was used to determine the electrical conductivity σ of human colorectal liver metastasis (n = 8) and tumor-free liver tissue (n = 5) in a total of five patients. All measurements were performed at 470 kHz, which is the relevant frequency for radiofrequency ablation. The tissue temperature was also measured. Hepatic resections were performed in accordance with common surgical standards. Measurements were performed in the operating theater immediately after resection. Results The median electrical conductivity σ was 0.57 S/m in human colorectal liver metastases at a median temperature of 35.1℃ and 0.35 S/m in tumor-free liver tissue at a median temperature of 34.9℃. The electrical conductivity was significantly higher in tumor tissue than in tumor-free liver tissue ( P = 0.005). There were no differences in tissue temperature between the two groups ( P = 0.883). Conclusion The electrical conductivity is significantly higher in human colorectal liver metastases than in tumor-free liver tissue at a frequency of 470 kHz.

  19. Human liver catalase: cloning, expression and characterization of monoclonal antibodies.

    PubMed

    Jin, Li Hua; Kim, Dae Won; Eum, Won Sik; Yoon, Chang Sik; Jang, Sang Ho; Choi, Hee Soon; Choi, Soo Hyun; Kim, Young Hoon; Kim, So Young; Jung, Mi Ryoung; Kang, Tae-Cheon; Won, Moo Ho; Lee, Hyeon Yong; Kang, Jung Hoon; Kwon, Oh-Shin; Cho, Sung-Woo; Lee, Kil Soo; Park, Jinseu; Choi, Soo Young

    2003-06-30

    We isolated a cDNA encoding liver catalase from a human liver cDNA library. The cDNA had a high degree of sequence similarity to the corresponding enzyme from other sources. It was expressed in E. coli using the pET15b vector. The protein produced was enzymatically active after purification, and its kinetic parameters closely resembled those of other mammalian catalases. Monoclonal antibodies were generated against the purified catalase; six antibodies recognizing different epitopes were obtained, one of which inhibited the enzyme. The cross reactions of the antibodies with brain catalases from human and other mammalian tissues were investigated, and all the immunoreactive bands obtained on Western blots had molecular masses of about 58 kDa. Similarly fractionated extracts of several mammalian cell lines all gave a single band of molecular mass 58 kDa. These results indicate that mammalian livers and human cell lines contain only one major type of immunologically reactive catalase, even though some of catalases have been previously reported to differ in certain properties.

  20. Role of liver transplantation in human immunodeficiency virus positive patients

    PubMed Central

    Joshi, Deepak; Agarwal, Kosh

    2015-01-01

    End-stage liver disease (ESLD) is a leading cause of morbidity and mortality amongst human immunodeficiency virus (HIV)-positive individuals. Chronic hepatitis B and hepatitis C virus (HCV) infection, drug-induced hepatotoxicity related to combined anti-retro-viral therapy, alcohol related liver disease and non-alcohol related fatty liver disease appear to be the leading causes. It is therefore, anticipated that more HIV-positive patients with ESLD will present as potential transplant candidates. HIV infection is no longer a contraindication to liver transplantation. Key transplantation outcomes such as rejection and infection rates as well as medium term graft and patient survival match those seen in the non-HIV infected patients in the absence of co-existing HCV infection. HIV disease does not seem to be negatively impacted by transplantation. However, HIV-HCV co-infection transplant outcomes remain suboptimal due to recurrence. In this article, we review the key challenges faced by this patient cohort in the pre- and post-transplant period. PMID:26604639

  1. Liver stem cells: Experimental findings and implications for human liver disease

    PubMed Central

    2015-01-01

    Evidence from human histopathology and experimental studies with rodents and zebrafish has shown that hepatocytes and cholangiocytes may function as facultative stem cells for each other in conditions of impaired regeneration. The interpretation of the findings derived from these studies has generated considerable discussion and some controversies. This review examines the evidence obtained from the different experimental models and considers implications that these studies may have for human liver disease. Few topics of liver tissue biology have attracted as much attention as the existence of liver-specific tissue stem cells. Routine liver histology reveals two types of epithelial cells, hepatocytes and cholangiocytes (also known as biliary epithelial cells). Endothelial cells line the hepatic capillaries (sinusoids), with macrophages (Kupffer cells) interspersed along the sinusoid lumen. Stellate cells exist under the sinusoids and in close proximity to hepatocytes. None of these cells appears to have functions of a fully committed tissue specific stem cell, analogous to the cells of the intestinal crypts, the basal layer of the epidermis, bone marrow stem cells, etc. Hepatocytes and cholangiocytes can be easily identified based on their morphology and cell-specific biomarkers. Hepatocytes and cholangiocytes, however, often have mutually mixed expression of biomarkers in pathologic conditions. In patients with fulminant hepatic failure (FHF), there is rampant proliferation of cholangiocytes organized in ductular structures (“ductular reaction”1, 2). Many of these cholangiocytes (known as ductular hepatocytes) express biomarkers associated with hepatocytes, (HNF4, albumin, HEPPAR3, etc.). They are seen surrounding cells ranging in size from small to typical hepatocytes, and with a gradient of expression of cholangiocyte-associated biomarkers (e.g. EpCAM) decreasing from the periphery to the center (Regenerative Clusters: see Figure 1). It is not clear in FHF

  2. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

    SciTech Connect

    Loh, Jing Wen; Yeoh, George; Saunders, Martin; Lim, Lee-Yong

    2010-12-01

    Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4 h of exposure to 0.5% w/v of chitosan nanoparticles (18 {+-} 1 nm, 7.5 {+-} 1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4 h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.

  3. Cultures of human liver cells in simulated microgravity environment.

    PubMed

    Yoffe, B; Darlington, G J; Soriano, H E; Krishnan, B; Risin, D; Pellis, N R; Khaoustov, V I

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  4. Interaction of rocuronium with human liver cytochromes P450.

    PubMed

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  5. Cultures of human liver cells in simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  6. Oxidation of hydrogen sulfide by human liver mitochondria.

    PubMed

    Helmy, Nada; Prip-Buus, Carina; Vons, Corinne; Lenoir, Véronique; Abou-Hamdan, Abbas; Guedouari-Bounihi, Hala; Lombès, Anne; Bouillaud, Frédéric

    2014-09-15

    Hydrogen sulfide (H2S) is the third gasotransmitter discovered. Sulfide shares with the two others (NO and CO) the same inhibiting properties towards mitochondrial respiration. However, in contrast with NO or CO, sulfide at concentrations lower than the toxic (μM) level is an hydrogen donor and a substrate for mitochondrial respiration. This is due to the activity of a sulfide quinone reductase found in a large majority of mitochondria. An ongoing study of the metabolic state of liver in obese patients allowed us to evaluate the sulfide oxidation capacity with twelve preparations of human liver mitochondria. The results indicate relatively high rates of sulfide oxidation with a large variability between individuals. These observations made with isolated mitochondria appear in agreement with the main characteristics of sulfide oxidation as established before with the help of cellular models.

  7. Radionuclide imaging of the liver in human fascioliasis

    SciTech Connect

    Rivera, J.V.; Bermudez, R.H.

    1984-08-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested.

  8. Toxicokinetics of chlordecone in goats: Implications for risk management in French West Indies.

    PubMed

    Fournier, Agnès; Feidt, Cyril; Lastel, Marie-Laure; Archimede, Harry; Thome, Jean-Pierre; Mahieu, Maurice; Rychen, Guido

    2017-03-01

    The former use of chlordecone (CLD) in the French West Indies has resulted in long-term pollution of soils. CLD is known to be potentially transferred towards animal products of animals reared outdoors, mainly through accidental soil ingestion. Several studies indicate that soil bound CLD is bioavailable when administered to farm animals. Currently there is a need to quantify the level of CLD absorption and its toxicokinetic characteristics in the ruminant and particularly in the goat. These are considered as important farm species in the French West Indies. The objective of this study was to evaluate the absorption rate and the half-life of CLD in the non-lactating goat. The goats were administered either intravenously (i.v., n = 6) or orally (p.o., n = 6) one dose (1 mg kg(-1) body weight) of CLD. Blood samples were collected at defined times up to 160 days post-dosing. CLD was analyzed in serum by high-resolution gas chromatography. A comparison of the area under the serum concentration-time curves (AUC) showed that the i.v. route is equivalent to the oral route. Thus, CLD is considered almost completely absorbed after p.o. administration, as shown by the mean absolute bioavailability. The comparison between the pharmacokinetic profiles of CLD following oral and intravenous dose showed a difference during the first 14 days and a similar kinetic after this period. The half-life of CLD in serum was close to 20 days. These results highlight a possible strategy of decontamination due to the short half-life of CLD, obtained in dry goats that did not excrete fat matter.

  9. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Tolle, Matthieu; Rivière, Lise; Valentin, Tanguy; Neuveut, Christine; Hernandez-Cuevas, Nora; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Guillen, Nancy

    2016-01-01

    Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better

  10. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection.

    PubMed

    Petropolis, Debora B; Faust, Daniela M; Tolle, Matthieu; Rivière, Lise; Valentin, Tanguy; Neuveut, Christine; Hernandez-Cuevas, Nora; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Guillen, Nancy

    2016-01-01

    Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better

  11. Liver X receptor (LXR) regulates human adipocyte lipolysis.

    PubMed

    Stenson, Britta M; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M L; Mairal, Aline; Aström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W E; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-07

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression.

  12. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  13. Stoichiometries of Transferrin Receptors 1 and 2 in Human Liver

    PubMed Central

    Chloupková, Maja; Zhang, An-Sheng; Enns, Caroline A.

    2009-01-01

    Mutations in either the hereditary hemochromatosis protein, HFE, or transferrin receptor 2, TfR2, result in a similarly severe form of the most common type of iron overload disease called hereditary hemochromatosis. Models of the interactions between HFE, TfR1, and TfR2 imply that these proteins are present in different molar concentrations in the liver, where they control expression of the iron regulatory hormone, hepcidin, in response to body iron loading. The aim of this study was to determine in vivo levels of mRNA by quantitative RT-PCR and concentrations of these proteins by quantitative immunoblotting in human liver tissues. The level of TfR2 mRNA was 21- and 63- fold higher than that of TfR1 and HFE, respectively. Molar concentration of TfR2 protein was the highest and determined to be 1.95 nmoles/g protein in whole cell lysates and 10.89 nmoles/g protein in microsomal membranes. Molar concentration of TfR1 protein was 4.5- and 6.1-fold lower than that of TfR2 in whole cell lysates and membranes, respectively. The level of HFE protein was below 0.53 nmoles/g of total protein. HFE is thus present in substoichiometric concentrations with respect to both TfR1 and TfR2 in human liver tissue. This finding supports a model, in which availability of HFE is limiting for formation of complexes with TfR1 or TfR2. PMID:19819738

  14. Effect of benidipine on simvastatin metabolism in human liver microsomes.

    PubMed

    Sugiyama, Yuka; Mimura, Nobuhito; Kuwabara, Takashi; Kobayashi, Hiroyuki; Ushiki, Junko; Fuse, Eiichi

    2007-06-01

    Benidipine, which is a calcium channel blocker that has clinical advantages in the treatment of hypertension, is metabolized by CYP3A4 in humans. The effect of benidipine on the metabolism of simvastatin by human liver microsomes was investigated in order to predict the potential of in vivo drug-drug interactions between benidipine and other substrates of CYP3A4. The results were compared with data generated with azelnidipine, which is also metabolized by CYP3A4. Both benidipine and azelnidipine inhibited simvastatin metabolism in vitro in a concentration-dependent manner. Assuming competitive inhibition, the K(i) values based on the unbound concentrations, were calculated to be 0.846 and 0.0181 microM for benidipine and azelnidipine, respectively. If simvastatin (10 mg) and benidipine (8 mg, the clinically recommended highest dose) were to be administered concomitantly, the ratio of the areas under the concentration-time curves of simvastatin with and without benidipine (AUC((+I))/AUC) was predicted to be 1.01. On the other hand, if simvastatin (10 mg) and azelnidipine (8 mg) were co-administered, the AUC((+I))/AUC for simvastatin was predicted to be 1.72, which is close to the observed value (1.9) in healthy volunteers. These data suggest that benidipine is unlikely to cause a drug interaction by inhibiting CYP3A4 activity in the liver.

  15. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    PubMed

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  16. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  17. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  18. Interaction of human lactoferrin with the rat liver

    SciTech Connect

    Debanne, M.T.; Regoeczi, E.; Sweeney, G.D.; Krestynski, F.

    1985-04-01

    Binding of human lactoferrin (hLf) by purified rat liver plasma membranes was studied to clarify whether the liver possesses specific hLf receptors. The binding was rapid between 4 degrees and 37 degrees C, with a pH optimum close to 5.0. At 22 degrees C and in glycine-NaOH (5 mM, pH 7.4) containing 150 mM NaCl and 0.5% albumin, 1 microgram of membrane bound a maximum of 11.8 ng hLf. The dissociation constant of the interaction was 1.6 X 10(-7) M. Other proteins of high isoelectric points (lactoperoxidase, lysozyme, and particularly salmine sulfate) and a piperazine derivative inhibited hLf binding in a concentration- dependent manner. In contrast, monosaccharides (galactose, N- acetylgalactosamine, mannose, and fucose) were ineffective. By omitting NaCl from the incubation buffer, binding was increased 3.6-fold. Erythrocyte ghosts bound hLf less firmly and alveolar macrophages more firmly than hepatic plasma membranes. Liver cell fractionations performed after the intravenous injection of labeled hLf showed that approximately 88% of the hepatic radioligand was associated with parenchymal cells. When binding was expressed per unit of cell volume, however, more hLf was present in nonparenchymal than in parenchymal cells, implying that the above value was determined by the relative cell masses rather than affinities alone. It is concluded that the binding of hLf by hepatic plasma membranes is electrostatic, i.e., is mediated by the cationic nature of the ligand, and that it is explicable in terms of a ''specific nonreceptor interaction'' of the generalized type proposed by Cuatrecasas and Hollenberg.

  19. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver*

    PubMed Central

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-01-01

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. PMID:26719341

  1. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    PubMed

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions.

  2. Development of in silico models for human liver microsomal stability

    NASA Astrophysics Data System (ADS)

    Lee, Pil H.; Cucurull-Sanchez, Lourdes; Lu, Jing; Du, Yuhua J.

    2007-12-01

    We developed highly predictive classification models for human liver microsomal (HLM) stability using the apparent intrinsic clearance (CLint, app) as the end point. HLM stability has been shown to be an important factor related to the metabolic clearance of a compound. Robust in silico models that predict metabolic clearance are very useful in early drug discovery stages to optimize the compound structure and to select promising leads to avoid costly drug development failures in later stages. Using Random Forest and Bayesian classification methods with MOE, E-state descriptors, ADME Keys, and ECFP_6 fingerprints, various highly predictive models were developed. The best performance of the models shows 80 and 75% prediction accuracy for the test and validation sets, respectively. A detailed analysis of results will be shown, including an assessment of the prediction confidence, the significant descriptors, and the application of these models to drug discovery projects.

  3. Chromosome Studies of Virus-infected Semi-continuous Human Embryonic Liver Cells

    PubMed Central

    Zuckerman, A. J.; Taylor, P. E.; Jacobs, J. P.; Jones, C. A.

    1970-01-01

    Semi-continuous human embryonic liver cells infected with San Carlos virus 3 exhibited an increased frequency of chromosomal breaks and other chromosomal abnormalities when compared with uninoculated control cultures. The chromosomes of cells inoculated with AR-17 virus retained their normal structure. The strain of liver cells used in this study is essentially diploid. It represents the first strain of diploid cells so far described from human liver. ImagesFigs. 2-3Fig. 1 PMID:4985032

  4. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  5. Extensive double humanization of both liver and hematopoiesis in FRGN mice.

    PubMed

    Wilson, Elizabeth M; Bial, J; Tarlow, Branden; Bial, G; Jensen, B; Greiner, D L; Brehm, M A; Grompe, M

    2014-11-01

    Preclinical research in animals often fails to adequately predict the outcomes observed in human patients. Chimeric animals bearing individual human tissues have been developed to provide improved models of human-specific cellular processes. Mice transplanted with human hematopoietic stem cells can be used to study human immune responses, infections of blood cells and processes of hematopoiesis. Animals with humanized livers are useful for modeling hepatotropic infections as well as drug metabolism and hepatotoxicity. However, many pathophysiologic processes involve both the liver and the hematolymphoid system. Examples include hepatitis C/HIV co-infection, immune mediated liver diseases, liver injuries with inflammation such as steatohepatitis and alcoholic liver disease. We developed a robust protocol enabling the concurrent double-humanization of mice with mature hepatocytes and human blood. Immune-deficient, fumarylacetoacetate hydrolase (Fah(-/-)), Rag2(-/-) and Il2rg(-/-) deficient animals on the NOD-strain background (FRGN) were simultaneously co-transplanted with adult human hepatocytes and hematopoietic stem cells after busulfan and Ad:uPA pre-conditioning. Four months after transplantation the average human liver repopulation exceeded 80% and hematopoietic chimerism also was high (40-80% in bone marrow). Importantly, human macrophages (Kupffer cells) were present in the chimeric livers. Double-chimeric FRGN mice will serve as a new model for disease processes that involve interactions between hepatocytes and hematolymphoid cells.

  6. The impact of PPARα activation on whole genome gene expression in human precision cut liver slices.

    PubMed

    Janssen, Aafke W F; Betzel, Bark; Stoopen, Geert; Berends, Frits J; Janssen, Ignace M; Peijnenburg, Ad A; Kersten, Sander

    2015-10-08

    Studies in mice have shown that PPARα is an important regulator of lipid metabolism in liver and key transcription factor involved in the adaptive response to fasting. However, much less is known about the role of PPARα in human liver. Here we set out to study the function of PPARα in human liver via analysis of whole genome gene regulation in human liver slices treated with the PPARα agonist Wy14643. Quantitative PCR indicated that PPARα is well expressed in human liver and human liver slices and that the classical PPARα targets PLIN2, VLDLR, ANGPTL4, CPT1A and PDK4 are robustly induced by PPARα activation. Transcriptomics analysis indicated that 617 genes were upregulated and 665 genes were downregulated by PPARα activation (q value < 0.05). Many genes induced by PPARα activation were involved in lipid metabolism (ACSL5, AGPAT9, FADS1, SLC27A4), xenobiotic metabolism (POR, ABCC2, CYP3A5) or the unfolded protein response, whereas most of the downregulated genes were involved in immune-related pathways. Among the most highly repressed genes upon PPARα activation were several chemokines (e.g. CXCL9-11, CCL8, CX3CL1, CXCL6), interferon γ-induced genes (e.g. IFITM1, IFIT1, IFIT2, IFIT3) and numerous other immune-related genes (e.g. TLR3, NOS2, and LCN2). Comparative analysis of gene regulation by Wy14643 between human liver slices and primary human hepatocytes showed that down-regulation of gene expression by PPARα is much better captured by liver slices as compared to primary hepatocytes. In particular, PPARα activation markedly suppressed immunity/inflammation-related genes in human liver slices but not in primary hepatocytes. Finally, several putative new target genes of PPARα were identified that were commonly induced by PPARα activation in the two human liver model systems, including TSKU, RHOF, CA12 and VSIG10L. Our paper demonstrates the suitability and superiority of human liver slices over primary hepatocytes for studying the functional

  7. Steroid metabolism in chimeric mice with humanized liver.

    PubMed

    Lootens, Leen; Van Eenoo, Peter; Meuleman, Philip; Pozo, Oscar J; Van Renterghem, Pieter; Leroux-Roels, Geert; Delbeke, Frans T

    2009-11-01

    Anabolic androgenic steroids are considered to be doping agents and are prohibited in sports. Their metabolism needs to be elucidated to allow for urinary detection by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Steroid metabolism was assessed using uPA(+/+) SCID mice with humanized livers (chimeric mice). This study presents the results of 19-norandrost-4-ene-3,17-dione (19-norAD) administration to these in vivo mice. As in humans, 19-norandrosterone and 19-noretiocholanolone are the major detectable metabolites of 19-norAD in the urine of chimeric mice.A summary is given of the metabolic pathways found in chimeric mice after administration of three model steroid compounds (methandienone, androst-4-ene-3,17-dione and 19-norandrost-4-ene-3,17-dione). From these studies we can conclude that all major metabolic pathways for anabolic steroids in humans are present in the chimeric mouse. It is hoped that, in future, this promising chimeric mouse model might assist the discovery of new and possible longer detectable metabolites of (designer) steroids.

  8. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    PubMed Central

    Sipahi, Mesut; Şahin, Sevinç; Arslan, Ergin; Börekci, Hasan; Metin, Bayram; Cantürk, Nuh Zafer

    2015-01-01

    Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations. PMID:26457000

  9. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  10. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  11. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  12. Chimeric TK-NOG Mice: A Predictive Model for Cholestatic Human Liver Toxicity

    PubMed Central

    Xu, Dan; Wu, Manhong; Nishimura, Sachiko; Nishimura, Toshihiko; Michie, Sara A.; Zheng, Ming; Yang, Zicheng; Yates, Alexander John; Day, Jeffrey S.; Hillgren, Kathleen M.; Takeda, Saori Takedai; Guan, Yuan; Guo, Yingying

    2015-01-01

    Due to the substantial interspecies differences in drug metabolism and disposition, drug-induced liver injury (DILI) in humans is often not predicted by studies performed in animal species. For example, a drug (bosentan) used to treat pulmonary artery hypertension caused unexpected cholestatic liver toxicity in humans, which was not predicted by preclinical toxicology studies in multiple animal species. In this study, we demonstrate that NOG mice expressing a thymidine kinase transgene (TK-NOG) with humanized livers have a humanized profile of biliary excretion of a test (cefmetazole) drug, which was shown by an in situ perfusion study to result from interspecies differences in the rate of biliary transport and in liver retention of this drug. We also found that readily detectable cholestatic liver injury develops in TK-NOG mice with humanized livers after 1 week of treatment with bosentan (160, 32, or 6 mg/kg per day by mouth), whereas liver toxicity did not develop in control mice after 1 month of treatment. The laboratory and histologic features of bosentan-induced liver toxicity in humanized mice mirrored that of human subjects. Because DILI has become a significant public health problem, drug safety could be improved if preclinical toxicology studies were performed using humanized TK-NOG. PMID:25424997

  13. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  14. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue.

    PubMed

    Cabidoche, Y-M; Achard, R; Cattan, P; Clermont-Dauphin, C; Massat, F; Sansoulet, J

    2009-05-01

    Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (K(oc)). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, K(oc) increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol.

  15. Non-dioxin-like Polychlorinated Biphenyls (PCBs) and Chlordecone Release from Adipose Tissue to Blood in Response to Body Fat Mobilization in Ewe (Ovis aries).

    PubMed

    Lerch, Sylvain; Guidou, Côme; Thomé, Jean-Pierre; Jurjanz, Stefan

    2016-02-10

    Understanding how persistent organic pollutants (POPs) are released from adipose tissue (AT) to blood is a critical step in proposing rearing strategies hastening the removal of POPs from contaminated livestock. The current study aimed to determine in nonlactating ewes whether polychlorinated biphenyls (PCBs) and chlordecone are released from AT to blood along with lipids during body fat mobilization achieved through β-agonist challenges or undernutrition. β-Agonist challenges did not affect serum POP concentrations, whereas serum PCBs 138, 153, and 180 were readily increased in response to undernutrition. After 21 days of depuration in undernutrition, AT PCB 153 and 180 concentrations were increased concomitantly with a decrease in adipocyte volume, whereas AT chlordecone concentration was not different from that observed at the end of the well-fed contamination period. Thus, undernutrition may be of practical relevance for accelerating POP depuration unless it is combined with a strategy increasing their excretion pool.

  16. Using human-induced pluripotent stem cells to model monogenic metabolic disorders of the liver.

    PubMed

    Ordonez, Maria Paulina; Goldstein, Lawrence S B

    2012-11-01

    A crucial problem in liver disease biology and a major obstacle to the development of new therapies is the inability to conduct mechanistic studies of live human hepatocytes. Liver tissue from patients is difficult to obtain and only reveals the disease aftermath, while animal models lack the significant genetic diversity of humans. Monogenic metabolic disorders of the liver are an ideal platform to explore the complex gene-environment interactions and the role of genetic variation in the onset and progression of liver disease. Human induced pluripotent stem cell (hIPSC) technology provides an unprecedented opportunity to generate live cellular models of disease for therapeutic candidate discovery and cell replacement therapy. In this review, we discuss the potential of hIPSC to increase our understanding of human disease with a focus on the current efforts to model metabolic diseases of the liver and to generate suitable populations of human hepatocytes for cell transplantation.

  17. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    PubMed

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  19. Hepatic glucokinase expression is associated with lipogenesis and fatty liver in humans.

    PubMed

    Peter, Andreas; Stefan, Norbert; Cegan, Alexander; Walenta, Mareike; Wagner, Silvia; Königsrainer, Alfred; Königsrainer, Ingmar; Machicao, Fausto; Schick, Fritz; Häring, Hans-Ulrich; Schleicher, Erwin

    2011-07-01

    Glucokinase (GCK) phosphorylates glucose to form glucose 6-phosphate and thereby regulates hepatic glucose disposal and activates hepatic lipogenesis. Hepatic GCK activity is regulated on the level of GCK mRNA expression and by the inhibitory glucokinase regulatory protein. In this study, we aimed to investigate the relation between GCK mRNA expression and markers of lipogenesis as well as liver fat content in human liver biopsies. Additionally, we investigated whether genetic variation in the liver specific GCK promoter determines liver fat content in humans. Hepatic mRNA expression and liver triglyceride content was analyzed in 50 human liver biopsies. In a second cohort of 330 individuals, liver fat was precisely measured by 1H magnetic resonance spectroscopy. Hepatic GCK mRNA expression is associated with triglyceride content in human liver biopsies (r = 0.50, P = 0.0002). Furthermore, hepatic GCK mRNA expression is associated with lipogenic gene expression (fatty acid synthase, r = 0.49, P = 0.0003; acetyl-coenzyme A carboxylase-α, r = 0.44, P = 0.0015, and acetyl-coenzyme A carboxylase-β, r = 0.48, P = 0.0004) and the de novo lipogenesis index (r = 0.36, P = 0.01). In support of these findings, the single-nucleotide polymorphism rs2041547 in the liver-specific GCK promoter is associated with liver fat content in prediabetic individuals (P = 0.047). In this study, we demonstrate for the first time that GCK mRNA expression is associated with markers of de novo lipogenesis and liver triglyceride content in humans. This suggests that increased GCK activity may induce fatty liver and its metabolic and hepatic consequences in humans. Thus, the widely used approach to nonspecifically activate β-cell and hepatic GCK to treat diabetes mellitus is therefore questionable and may cause serious side effects.

  20. Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury.

    PubMed

    Sell, S

    1998-02-01

    The ultrastructural characteristics of liver progenitor cell types of human atypical ductular reactions seen in chronic cholestasis, in regenerating human liver after submassive necrosis, in alcoholic liver disease, and in focal nodular hyperplasia are compared with liver progenitor cell types seen during experimental cholangiocarcinogenesis in hamsters; during hepatocarcinogenesis in rats; and in response to periportal liver injury induced by allyl alcohol in rats. Three types of progenitor cells have been identified in human atypical ductular reactions: type I: primitive, has an oval shape, marginal chromatin, few cellular organelles, rare tonofilaments, and forms desmosomal junctions with adjacent liver cells; type II: bile duct-like, is located within ducts, has few organelles, and forms lateral membrane interdigitations with other duct-like cells; and type III: hepatocyte-like, is located in hepatic cords, forms a bile canaliculus, has tight junctions with other hepatocyte-like cells, prominent mitochondria and rough endoplasmic reticulum, and some have lysosomes and a poorly developed Golgi apparatus. Each type is seen during cholangiocarcinogenesis in hamsters, but the most prominent cell type is type II, duct-like. A more primitive cell type ("type 0 cell"), as well as type I cells, are seen in the intraportal zone of the liver within 1 to 2 days after carcinogen exposure or periportal injury in the rat, but both type II and type III are seen later as the progenitor cells expand into the liver lobule. After allyl alcohol injury, type 0 cells precede the appearance of type I and type III cells, but most of the cells that span the periportal necrotic zone are type III hepatocyte-like cells showing different degrees of hepatocytic differentiation. Some type II cells are also seen, but these are essentially limited to ducts. It is concluded that there is a primitive stem cell type in the liver (type 0) that may differentiate directly into type I and then into

  1. First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database.

    PubMed

    2010-01-01

    Herein, we report proteome and transcriptome profiles of the human adult liver and present an initial analysis. Overall, the human liver proteome (HLP) data set comprises 6788 identified proteins with at least two peptides matches at 95% confidence, including 3721 proteins newly identified in liver. The human liver transcriptome (HLT) data set consists of 11 205 expressed genes. The HLP is the largest proteome data set for a human organ and is the first direct association between a proteome and its transcriptome derived from the same sample. Although it is hard to approach complete coverage of the HLP currently, several conclusions based on this data set are clearly reached: (1) The 5816 protein-encoding genes (PEGs) represented by the HLP and the 11 104 PEGs represented in the HLT have been identified from 20 070 PEGs in IPI Human v3.07 and 19 478 PEGs in the integrated human transcriptome database, respectively. (2) The patterns of chromosomal distribution of the genes corresponding to the HLP are highly consistent with those of the HLT. Some chromosomal regions, such as 16p13.3, 19q13.31, 19q13.42, and Xq28, exhibit particularly high densities of liver-specific genes, which perform the important functions related to normal physiology or/and pathology in this organ. (3) The HLP spans 6 orders of magnitude in relative protein abundance and 78% of the proteins fall in the middle of this range. Of newly identified liver proteins, 82.5% are of low abundance. (4) Proteins involving in metabolism, transport, and coagulation and those containing active domains for metabolism, transport, and biosynthesis are significantly enriched in liver. (5) All 94 metabolic pathways in KEGG are touched to different extent. Of which, for 48 pathways, particularly those involved in metabolism of carbohydrates and amino acids, more than 80% of the component proteins have been detected. The liver-specific pathways, such as those participating in metabolism of bile acid and bilirubin and

  2. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver.

    PubMed

    Kitamura, Shigeyuki; Sugihara, Kazumi

    2014-01-01

    1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.

  3. Development of multiple activities of UDP-glucuronyltransferase in human liver.

    PubMed Central

    Leakey, J E; Hume, R; Burchell, B

    1987-01-01

    UDP-glucuronyltransferase activities towards eight substrates were assayed in samples of foetal, term and adult human liver. Activities towards bilirubin, androsterone, testosterone, 1-naphthol, 4-nitrophenol and 2-aminophenol were present in foetal and term liver samples at less than 14% of adult values, whereas activity towards 5-hydroxytryptamine was present in foetal and term liver at 109 and 121% of adult values respectively. Thus a 'foetal' form of UDP-glucuronyltransferase may exist in human liver that is more restricted in substrate specificity than are those of the rat or rhesus monkey. PMID:3117034

  4. Discoidin domain receptor 1: isoform expression and potential functions in cirrhotic human liver.

    PubMed

    Song, Sunmi; Shackel, Nicholas A; Wang, Xin M; Ajami, Katerina; McCaughan, Geoffrey W; Gorrell, Mark D

    2011-03-01

    Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell-collagen interactions in chronic liver injury.

  5. Campylobacter spp. in New Zealand raw sheep liver and human campylobacteriosis cases.

    PubMed

    Cornelius, A J; Nicol, C; Hudson, J A

    2005-03-01

    Sheep liver samples were tested for the presence and numbers of Campylobacter jejuni and C. coli during both spring and autumn. Over the same period, isolates were obtained from human clinical cases from the same geographical area as where the food samples were purchased. A subset of the C. jejuni isolates was typed by both Penner serotyping and pulsed field gel electrophoresis using the restriction enzyme SmaI, to estimate the proportion of liver isolate types that were also isolated from human cases of campylobacteriosis. Of the 272 liver samples tested, 180 (66.2%) contained Campylobacter. Most of the positive samples contained <3 MPN/g of the organism, and only 12 (6.7%) were contaminated at a level exceeding 100 MPN/g. A total of 180 C. jejuni isolates were obtained from sheep liver and another 200 from human faeces. Of these, 212 isolates were randomly selected for typing, half from raw liver and half from human faeces. More than half (61.1%) of the 106 C. jejuni isolates from liver were of subtypes that were also isolated from human cases. While the C. jejuni present in sheep liver were mostly of subtypes also isolated from human cases, the significance of this food as a vehicle of human campylobacteriosis needs to be examined further in respect to other factors such as dose-response information, consumption data, frequency of undercooking and cross contamination.

  6. Characterisation of theophylline metabolism in human liver microsomes.

    PubMed Central

    Robson, R A; Matthews, A P; Miners, J O; McManus, M E; Meyer, U A; Hall, P M; Birkett, D J

    1987-01-01

    1. A radiometric high performance liquid chromatographic method is described for the assay of theophylline metabolism in vitro by the microsomal fraction of human liver. 2. Formation of the three metabolites of theophylline (3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid) were linear with protein concentrations to 4 mg ml-1 and with incubation times up to 180 min. 3. The coefficients of variation for the formation of 3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid were 1.2%, 1% and 1.6%, respectively. 4. Theophylline is metabolised by microsomal enzymes with a requirement for NADPH. 5. The mean (n = 7) Km values for 1-demethylation, 3-demethylation and 8-hydroxylation were 545, 630 and 788 microM, respectively, and the mean Vmax values were 2.65, 2.84 and 11.23 pmol min-1 mg-1, respectively. 6. There was a high correlation between the Km and Vmax values for the two demethylation pathways suggesting that the demethylations are performed by the same enzyme. 7. Overall the in vitro studies are consistent with the in vivo results which suggest the involvement of two cytochrome P-450 isozymes in the metabolism of theophylline. PMID:3663445

  7. Role of Chymase in the Development of Liver Cirrhosis and Its Complications: Experimental and Human Data

    PubMed Central

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Novo, Erica; Parola, Maurizio

    2016-01-01

    Background Tissue Angiotensin II (Ang-II), produced through local non ACE-dependent pathways, stimulates liver fibrogenesis, renal vasoconstriction and sodium retention. Aim To highlight chymase-dependent pathway of Ang-II production in liver and kidney during cirrhosis development. Methods Liver histology, portal pressure, liver and kidney function, and hormonal status were investigated in rat liver cirrhosis induced through 13 weeks of CCl4, with or without chymase inhibitor SF2809E, administered between 4th and 13th CCl4 weeks; liver and kidney chymase immunolocation and Ang-II content were assessed. Chymase immunohistochemistry was also assessed in normal and cirrhotic human liver, and chymase mRNA transcripts were measured in human HepG2 cells and activated hepatic stellate cells (HSC/MFs) in vitro. Results Rats receiving both CCl4 and SF2809E showed liver fibrotic septa focally linking portal tracts but no cirrhosis, as compared to ascitic cirrhotic rats receiving CCl4. SF2809E reduced portal pressure, plasma bilirubin, tissue content of Ang-II, plasma renin activity, norepinephrine and vasopressin, and increased glomerular filtration rate, water clearance, urinary sodium excretion. Chymase tissue content was increased and detected in α-SMA-positive liver myofibroblasts and in kidney tubular cells of cirrhotic rats. In human cirrhosis, chymase was located in hepatocytes of regenerative nodules. Human HepG2 cells and HSC/MFs responded to TGF-β1 by up-regulating chymase mRNA transcription. Conclusions Chymase, through synthesis of Ang-II and other mediators, plays a role in the derangement of liver and kidney function in chronic liver diseases. In human cirrhosis, chymase is well-represented and apt to become a future target of pharmacological treatment. PMID:27637026

  8. Treatment of surgically induced acute liver failure with transplantation of highly differentiated immortalized human hepatocytes.

    PubMed

    Kobayashi, N; Miyazaki, M; Fukaya, K; Inoue, Y; Sakaguchi, M; Noguchi, H; Matsumura, T; Watanabe, T; Totsugawa, T; Tanaka, N; Namba, M

    2000-01-01

    Primary human hepatocytes are an ideal source of hepatic function in bioartficial liver (BAL), but the shortage of human livers available for hepatocyte isolation limits this modality. To resolve this issue, primary human fetal hepatocytes were immortalized using simian virus 40 large T antigen. One of the immortal cell lines, OUMS-29, showed highly differentiated liver functions. Intrasplenic transplantation of OUMS-29 cells protected 90% hepatectomized rats from hyperammonemia and significantly prolonged their survival. Essentially unlimited availability of OUMS-29 cells supports their clinical use for BAL treatment.

  9. Liver stiffness predicts clinical outcome in human immunodeficiency virus/hepatitis C virus-coinfected patients with compensated liver cirrhosis.

    PubMed

    Merchante, Nicolás; Rivero-Juárez, Antonio; Téllez, Francisco; Merino, Dolores; José Ríos-Villegas, Maria; Márquez-Solero, Manuel; Omar, Mohamed; Macías, Juan; Camacho, Angela; Pérez-Pérez, Montserrat; Gómez-Mateos, Jesús; Rivero, Antonio; Antonio Pineda, Juan

    2012-07-01

    Our aim was to assess the predictive value of liver stiffness (LS), measured by transient elastography (TE), for clinical outcome in human immunodeficiency virus / hepatitis C virus (HIV/HCV)-coinfected patients with compensated liver cirrhosis. This was a prospective cohort study of 239 consecutive HIV/HCV-coinfected patients with a new diagnosis of cirrhosis, done by TE, and no previous decompensation of liver disease. The time from diagnosis to the first liver decompensation and death from liver disease, as well as the predictors of these outcomes, were evaluated. After a median (Q1-Q3) follow-up of 20 (9-34) months, 31 (13%, 95% confidence interval [CI]: 9%-17%) patients developed a decompensation. The incidence of decompensation was 6.7 cases per 100 person-years (95% CI, 4.7-9-6). Fourteen (8%) out of 181 patients with a baseline LS < 40 kPa developed a decompensation versus 17 (29%) out of 58 with LS ≥ 40 kPa (P = 0.001). Factors independently associated with decompensation were Child-Turcotte-Pugh (CTP) class B versus A (hazard ratio [HR] 7.7; 95% CI 3.3-18.5; P < 0.0001), log-plasma HCV RNA load (HR 2.1; 95% CI 1.2-3.6; P = 0.01), hepatitis B virus coinfection (HR, 10.3; 95% CI, 2.1-50.4; P = 0.004) and baseline LS (HR 1.03; 95% CI 1.01-1.05; P = 0.02). Fifteen (6%, 95% CI: 3.5%-9.9%) patients died, 10 of them due to liver disease, and one underwent liver transplantation. CTP class B (HR 16.5; 95% CI 3.4-68.2; P < 0.0001) and previous exposure to HCV therapy (HR 7.4; 95% CI 1.7-32.4, P = 0.007) were independently associated with liver-related death; baseline LS (HR 1.03; 95% CI 0.98-1.07; P = 0.08) was of borderline significance. LS predicts the development of hepatic decompensations and liver-related mortality in HIV/HCV-coinfection with compensated cirrhosis and provides additional prognostic information to that provided by the CTP score. Copyright © 2012 American Association for the Study of Liver Diseases.

  10. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  11. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  12. Breast Milk Jaundice: Effect of 3α 20β-pregnanediol on Bilirubin Conjugation by Human Liver

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    The effect of 3α,20β-pregnanediol and other steroids on bilirubin conjugation was examined using liver tissue from human and four other species. Neither 3α,20β-pregnanediol nor 3α,20β-pregnanediol inhibited conjugation by human liver slices or by solubilized human liver microsomes. 3α,20β-pregnanediol is unlikely to be the inhibitor causing breast milk jaundice. Oestriol inhibited conjugation by human liver slices. A comparison of species indicated that the response of the human liver slice system to steroids resembles that of the rabbit and guinea-pig rather than the rat or mouse. PMID:4246186

  13. Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe).

    PubMed

    Crabit, A; Cattan, P; Colin, F; Voltz, M

    2016-05-01

    The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Pérou Catchment (12 km(2)) characterized by heavy rainfall (5686 mm year(-1)). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009-2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Pérou Catchment (3400 μg kg(-1)) than in the entire banana cropping area in Guadeloupe (2100 μg kg(-1)). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha(-1)), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha(-1)); and the greatest stocks are observed in SC2 on Andosols (12 kg ha(-1)) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Pérou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river. Copyright © 2016 Elsevier Ltd. All

  14. Metabolism of zaleplon by human liver: evidence for involvement of aldehyde oxidase.

    PubMed

    Lake, B G; Ball, S E; Kao, J; Renwick, A B; Price, R J; Scatina, J A

    2002-10-01

    1. The metabolism of Zaleplon (CL-284,846; ZAL) has been studied in precision-cut human liver slices and liver cytosol preparations. 2. Human liver slices metabolized ZAL to a number of products including 5-oxo-ZAL (M2), N-desethyl-5-oxo-ZAL (M1) and N-desethyl-ZAL (DZAL), the latter metabolite being known to be formed by CYP3A forms. 3. Human liver cytosol preparations catalysed the metabolism of ZAL to M2. Kinetic analysis of three cytosol preparations revealed mean (+/- SEM) K(m) and V(max) of 93 +/- 18 mm and 317 +/- 241 pmol/min/mg protein, respectively. 4. Using 16 individual human liver cytosol preparations a 33-fold variability in the metabolism of 80 micro M ZAL to M2 was observed. Correlations were observed between M2 formation and the metabolism of the aldehyde oxidase substrates phenanthridine (r(2) = 0.774) and phthalazine (r(2) = 0.460). 5. The metabolism of 80 micro M ZAL to M2 in liver cytosol preparations was markedly inhibited by the aldehyde oxidase inhibitors chlorpromazine, promethazine, hydralazine and menadione. Additional kinetic analysis suggested that chlorpromazine and promethazine were non-competitive inhibitors of M2 formation with K(i) of 2.3 and 1.9 micro M, respectively. ZAL metabolism to M2 was also inhibited by cimetidine. 6. Incubations conducted with human liver cytosol and H(2)(18)O demonstrated that the oxygen atom incorporated into ZAL and DZAL to form M2 and M1, respectively, was derived from water and not from molecular oxygen. 7. In summary, by correlation analysis, chemical inhibition and H(2)(18)O incorporation studies, ZAL metabolism to M2 in human liver appears to be catalysed by aldehyde oxidase. With human liver slices, ZAL was metabolized to products dependent on both aldehyde oxidase and CYP3A forms.

  15. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Lundberg, Emma; Pontén, Fredrik; Nielsen, Jens; Uhlen, Mathias

    2014-07-01

    Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. © FASEB.

  16. Fixation methods for electron microscopy of human and other liver

    PubMed Central

    Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter

    2010-01-01

    For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830

  17. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2011-09-01

    Our previous study revealed that CYP2C9 played a central role in sesamin monocatecholization. In this study, we focused on the metabolism of sesamin monocatechol that was further converted into the dicatechol form by cytochrome P450 (P450) or the glucuronide by UDP-glucuronosyltransferase (UGT). Catecholization of sesamin monocatechol enhances its antioxidant activity, whereas glucuronidation strongly reduces its antioxidant activity. In human liver microsomes, the glucuronidation activity was much higher than the catecholization activity toward sesamin monocatechol. In contrast, in rat liver microsomes, catecholization is predominant over glucuronidation. In addition, rat liver produced two isomers of the glucuronide, whereas human liver produced only one glucuronide. These results suggest a significant species-based difference in the metabolism of sesamin between humans and rats. Kinetic studies using recombinant human UGT isoforms identified UGT2B7 as the most important UGT isoform for glucuronidation of sesamin monocatechol. In addition, a good correlation was observed between the glucuronidation activity and UGT2B7-specific activity in in vitro studies using 10 individual human liver microsomes. These results strongly suggest that UGT2B7 plays an important role in glucuronidation of sesamin monocatechol. Interindividual difference among the 10 human liver microsomes is approximately 2-fold. These results, together with our previous results on the metabolism of sesamin by human P450, suggest a small interindividual difference in sesamin metabolism. We observed the methylation activity toward sesamin monocatechol by catechol O-methyl transferase (COMT) in human liver cytosol. On the basis of these results, we concluded that CYP2C9, UGT2B7, and COMT played essential roles in the metabolism of sesamin in the human liver.

  18. Blocking porcine sialoadhesin improves extracorporeal porcine liver xenoperfusion with human blood

    PubMed Central

    Waldman, Joshua P.; Vogel, Thomas; Burlak, Christopher; Coussios, Constantin; Dominguez, Javier; Friend, Peter; Rees, Michael A.

    2013-01-01

    Patients in fulminant hepatic failure currently do not have a temporary means of support while awaiting liver transplantation. A potential therapeutic approach for such patients is the use of extracorporeal perfusion with porcine livers as a form of “liver dialysis”. During a 72-hour extracorporeal perfusion of porcine livers with human blood, porcine Kupffer cells bind to and phagocytose human red blood cells (hRBC) causing the hematocrit to decrease to 2.5% of the original value. Our laboratory has identified porcine sialoadhesin expressed on Kupffer cells as the lectin responsible for binding N-acetylneuraminic acid on the surface of the hRBC. We evaluated whether blocking porcine sialoadhesin prevents the recognition and subsequent destruction of hRBCs seen during extracorporeal porcine liver xenoperfusion. Ex vivo studies were performed using wild type pig livers perfused with isolated hRBCs for 72-hours in the presence of an anti-porcine sialoadhesin antibody or isotype control. The addition of an anti-porcine sialoadhesin antibody to an extracorporeal porcine liver xenoperfusion model reduces the loss of hRBC over a 72 hour period. Sustained liver function was demonstrated throughout the perfusion. This study illustrates the role of sialoadhesin in mediating the destruction of hRBCs in an extracorporeal porcine liver xenoperfusion model. PMID:23822217

  19. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans

    PubMed Central

    Alzaid, Fawaz; Lagadec, Floriane; Albuquerque, Miguel; Ballaire, Raphaëlle; Orliaguet, Lucie; Hainault, Isabelle; Blugeon, Corinne; Lemoine, Sophie; Lehuen, Agnès; Saliba, David G.; Udalova, Irina A.; Paradis, Valérie; Foufelle, Fabienne

    2016-01-01

    Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease. PMID:27942586

  20. Fractionation of human liver mitochondria: enzymic and morphological characterization of the inner and outer membranes as compared to rat liver mitochondria.

    PubMed

    Benga, G; Hodarnau, A; Tilinca, R; Porutiu, D; Dancea, S; Pop, V; Wrigglesworth, J

    1979-02-01

    The fractionation of human liver mitochondria into inner membrane, outer membrane and matrix material is reported. Compared with rat, human liver mitochondria are more fragile. Fractionation can be achieved in only 2 steps, a digitonin treatment for removal of the outer membrane and centrifugation of the inner membrane plus matrix particles through a linear sucrose gradient resulting in purified inner membranes and matrix.

  1. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: First North American results.

    PubMed

    Selzner, Markus; Goldaracena, Nicolas; Echeverri, Juan; Kaths, Johan M; Linares, Ivan; Selzner, Nazia; Serrick, Cyril; Marquez, Max; Sapisochin, Gonzalo; Renner, Eberhard L; Bhat, Mamatha; McGilvray, Ian D; Lilly, Leslie; Greig, Paul D; Tsien, Cynthia; Cattral, Mark S; Ghanekar, Anand; Grant, David R

    2016-11-01

    The European trial investigating normothermic ex vivo liver perfusion (NEVLP) as a preservation technique for liver transplantation (LT) uses gelofusine, a non-US Food and Drug Administration-approved, bovine-derived, gelatin-based perfusion solution. We report a safety and feasibility clinical NEVLP trial with human albumin-based Steen solution. Transplant outcomes of 10 human liver grafts that were perfused on the Metra device at 37 °C with Steen solution, plus 3 units of erythrocytes were compared with a matched historical control group of 30 grafts using cold storage (CS) as the preservation technique. Ten liver grafts were perfused for 480 minutes (340-580 minutes). All livers cleared lactate (final lactate 1.46 mmol/L; 0.56-1.74 mmol/L) and produced bile (61 mL; 14-146 mL) during perfusion. No technical problems occurred during perfusion, and all NEVLP-preserved grafts functioned well after LT. NEVLP versus CS had lower aspartate aminotransferase and alanine aminotransferase values on postoperative days 1-3 without reaching significance. No difference in postoperative graft function between NEVLP and CS grafts was detected as measured by day 7 international normalized ratio (1.1 [1-1.56] versus 1.1 [1-1.3]; P = 0.5) and bilirubin (1.5; 1-7.7 mg/dL versus 2.78; 0.4-15 mg/dL; P = 0.5). No difference was found in the duration of intensive care unit stay (median, 1 versus 2 days; range, 0-8 versus 0-23 days; P = 0.5) and posttransplant hospital stay (median, 11 versus 13 days; range, 8-17 versus 7-89 days; P = 0.23). Major complications (Dindo-Clavien ≥ 3b) occurred in 1 patient in the NEVLP group (10%) compared with 7 (23%) patients in the CS group (P = 0.5). No graft loss or patient death was observed in either group. Liver preservation with normothermic ex vivo perfusion with the Metra device using Steen solution is safe and results in comparable outcomes to CS after LT. Using US Food and Drug Administration-approved Steen

  2. Comparative metabolism of mycophenolic acid by glucuronic acid and glucose conjugation in human, dog, and cat liver microsomes.

    PubMed

    Slovak, J E; Mealey, K; Court, M H

    2017-04-01

    Use of the immunosuppressant mycophenolic acid (MPA) in cats is limited because MPA elimination depends on glucuronidation, which is deficient in cats. We evaluated formation of major (phenol glucuronide) and minor (acyl glucuronide, phenol glucoside, and acyl glucoside) MPA metabolites using liver microsomes from 16 cats, 26 dogs, and 48 humans. All MPA metabolites were formed by human liver microsomes, while dog and cat liver microsomes formed both MPA glucuronides, but only one MPA glucoside (phenol glucoside). Intrinsic clearance (CLint) of MPA for phenol glucuronidation by cat liver microsomes was only 15-17% that of dog and human liver microsomes. However, CLint for acyl glucuronide and phenol glucoside formation in cat liver microsomes was similar to or greater than that for dog and human liver microsomes. While total MPA conjugation CLint was generally similar for cat liver microsomes compared with dog and human liver microsomes, relative contributions of each pathway varied between species with phenol glucuronidation predominating in dog and human liver microsomes and phenol glucosidation predominating in cat liver microsomes. MPA conjugation variation between cat liver microsomes was threefold for total conjugation and for phenol glucosidation, sixfold for phenol glucuronidation, and 11-fold for acyl glucuronidation. Our results indicate that total MPA conjugation is quantitatively similar between liver microsomes from cats, dogs, and humans despite large differences in the conjugation pathways that are utilized by these species.

  3. Tumor lipids and liver lipid metabolism in the model human lung carcinoma/nude mice.

    PubMed

    de Antueno, R J; Niedfeld, G; De Tomás, M E; Mercuri, O F; Quintans, C

    1987-06-01

    Tumor lipids were studied in the experimental model Human Lung Carcinoma/nude mice as well as the effect of this human neoplasm on the host liver lipid metabolism. Fatty acid profiles from tumoral lipids revealed the loss of specificity for fatty acid composition in triglycerides. Host liver fatty acid composition and cholesterol metabolism were affected by the implanted human lung tissue. A noticeable increase ratio between saturated/unsaturated fatty acids was observed in host liver fatty acid phospholipids (1.17 +/- 0.17) in comparison to control liver (0.84 +/- 0.04). Cholesterol synthesis was assessed "in vivo" by means of [14C]acetate incorporation. The specific radioactivity of [14C] cholesterol was increased by a factor of about 6 in host liver as compared with control liver. This observation along with the marked decrease in the cholesterol content of host liver and the hypocholesterolemia detected in the host mice led us to suggest an increase in the liver cholesterol catabolism promoted by the presence of the tumor.

  4. Metabolism and Metabolic Inhibition of Xanthotoxol in Human Liver Microsomes

    PubMed Central

    Shi, Xianbao; Zhang, Gang; Guo, Feng

    2016-01-01

    Cytochrome p450 (CYP450) enzymes are predominantly involved in Phase I metabolism of xenobiotics. In this study, the CYP450 isoforms involved in xanthotoxol metabolism were identified using recombinant CYP450s. In addition, the inhibitory effects of xanthotoxol on eight CYP450 isoforms and its pharmacokinetic parameters were determined using human liver microsomes. CYP1A2, one of CYP450s, played a key role in the metabolism of xanthotoxol compared to other CYP450s. Xanthotoxol showed stronger inhibition on CYP3A4 and CYP1A2 compared to other isoenzymes with the IC50 of 7.43 μM for CYP3A4 and 27.82 μM for CYP1A2. The values of inhibition kinetic parameters (Ki) were 21.15 μM and 2.22 μM for CYP1A2 and CYP3A4, respectively. The metabolism of xanthotoxol obeyed the typical monophasic Michaelis-Menten kinetics and Vmax, Km, and CLint values were calculated as 0.55 nmol·min−1·mg−1, 8.46 μM, and 0.06 mL·min−1·mg−1. In addition, the results of molecular docking showed that xanthotoxol was bound to CYP1A2 with hydrophobic and π-π bond and CYP3A4 with hydrogen and hydrophobic bond. We predicted the hepatic clearance (CLH) and the CLH value was 15.91 mL·min−1·kg−1 body weight. These data were significant for the application of xanthotoxol and xanthotoxol-containing herbs. PMID:27034690

  5. HEMOGLOBIN PRODUCTION FACTORS IN THE HUMAN LIVER : ANEMIAS, HYPOPROTEINEMIA, CIRRHOSIS, PIGMENT ABNORMALITIES, AND PREGANCY.

    PubMed

    Whipple, G H; Robscheit-Robbins, F S

    1942-09-01

    Human liver tissue has been assayed to determine the amount of hemoglobin production factors in normal and abnormal states. Standardized dogs made anemic by blood removal have been used in this biological assay. Normal animal liver as control is rated as 100 per cent. Normal human liver tissue as compared with the normal animal control contains more of these hemoglobin production factors-a biological assay ratio of 120 to 160 per cent. Infections, acute and chronic, do not appear to modify these values, the concentration of hemoglobin-producing factors falling within the normal range. Pernicious anemia and aplastic anemia both show large liver stores of hemoglobin-producing factors-a biological assay ratio of 200 to 240 per cent. Therapy in pernicious anemia reduces these liver stores as new red cells are formed. Secondary anemia presents a low normal or subnormal liver store of hemoglobin-producing factors-an assay of 60 to 130 per cent. Hemochromatosis, erythroblastic anemia, and hemolytic icterus in spite of large iron deposits in the liver usually show a biological assay which is normal or close to normal. Polycythemia shows low reserve stores of hemoglobin-producing factors. Leukemias present a wide range of values discussed above. Hypoproteinemia almost always is associated with low reserve stores of hemoglobin-producing factors in the liver-biological assays of 60 to 80 per cent. Hypoproteinemia means a depletion of body protein reserve stores including the labile protein liver reserves-a strong indication that the prehemoglobin material (or globin) is related to these liver stores. Pregnancy, eclampsia, and lactation all may present subnormal liver stores of hemoglobin-producing factors. Exhaustion of protein stores lowers the barrier to infection and renders the liver very susceptible to many toxic substances. It should not be difficult to correct hypoproteinemia under these conditions and thus relieve the patient of a real hazard.

  6. Selenium chemoprevention of liver cancer in animals and possible human applications.

    PubMed

    Yu, S Y; Chu, Y J; Li, W G

    1988-01-01

    An inverse correlation between geographic distribution of liver cancer incidence and the selenium (Se) contents of whole blood and grains was observed in Qidong county, Jiangsu province, a high liver cancer area of the People's Republic of China. Animal experiments demonstrated that supplementation of Se reduced the incidence of liver cancer in rats exposed to aflatoxin B1. Se was also shown to inhibit the growth of transplanted tumors. A lower incidence of liver preneoplastic alterations and reduction of hepatitis B virus infection in ducks by Se-supplementation was observed, and three pilot studies for a Se-intervention trial on human liver cancer were carried out on the residents of Qidong county. A protective effect on the cellular DNA damage induced by aflatoxin B1 was observed in lympocytes from human with Se-supplements.

  7. Assessment of liver function in chronic liver diseases and regional function of irradiated liver by means of 99mTc-galactosyl-human serum albumin liver scintigraphy and quantitative spectral analysis.

    PubMed

    Fukui, A; Murase, K; Tsuda, T; Fujii, T; Ikezoe, J

    2000-12-01

    Scintigraphy with 99mTc-diethylenetriamine pentaacetic acid galactosyl human serum albumin (99mTc-GSA) was performed on 102 patients, then the hepatic extraction fraction (HEF), the rate constant for liver uptake of the tracer from the blood (K1) and the hepatic blood flow index (HBFI) were determined by spectral analysis. The HEF, K1 and HBFI values correlated moderately or closely with various indices of hepatic function, and the HEF and K1 values decreased according to the stage of liver dysfunction. The HEF and K1 values linearly and nonlinearly correlated with HH15 and LHL15, respectively. The HEF, K1 and HBFI values for the irradiated portion of 20 patients before and alter irradiation were compared. The HEF value in patients with a cirrhotic liver significantly (p < 0.002) decreased compared with that in patients with a normal liver at a dose of less than 40 Gy, whereas the HBFI value in patients with a normal liver significantly (p < 0.05) decreased compared with that in patients with a cirrhotic liver at a dose of 40 Gy or greater. This method appears to be a simple, non-invasive and useful tool with which to quantitatively evaluate liver function and it also helps clarify changes in regional function of the irradiated liver.

  8. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice.

    PubMed

    Sakai, Yusuke; Yamanouchi, Kosho; Ohashi, Kazuo; Koike, Makiko; Utoh, Rie; Hasegawa, Hideko; Muraoka, Izumi; Suematsu, Takashi; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Eguchi, Susumu

    2015-10-01

    Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.

  9. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.

    PubMed

    Zhang, Miaoyue; Engelhardt, Irina; Šimůnek, Jirka; Bradford, Scott A; Kasel, Daniela; Berns, Anne E; Vereecken, Harry; Klumpp, Erwin

    2017-02-01

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two (14)C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1-10 mg L(-1)) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil.

  10. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.

    PubMed

    Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-04-01

    The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics.

  11. Variations in human liver fucosyltransferase activities in hepatobiliary diseases.

    PubMed

    Jezequel-Cuer, M; Dalix, A M; Flejou, J F; Durand, G

    1992-06-01

    The hyperfucosylation of a number of glycoconjugates observed in liver diseases involves the action of several specific fucosyltransferases (F.T.) notably responsible for synthesizing histo-blood group antigens. We determined the activities of alpha 3, alpha 2 and alpha 3/4 F.T. in 35 liver biopsy samples from patients with fatty liver, alcoholic or post-hepatic liver cirrhosis, primary or secondary biliary cirrhosis, acute hepatitis or a normal liver. F.T. activities were measured by transfer of GDP [14C] fucose to asialotransferrin for alpha 3 F.T., to phenyl beta-D-galactoside for alpha 2 F.T. and to 2' fucosyllactose for alpha 3/4 F.T. The diseased liver extracts showed an early increase in non-Le gene-associated alpha 3 F.T. activity (p = 0.001), which was related to the number of steatosic hepatocytes and the degree of intralobular inflammatory infiltration. Overexpression of this alpha 3 F.T. provides an explanation for the strong expression of 3-fucosyl lactosamine structures described in several hepatobiliary diseases. alpha 2 F.T. levels were significantly elevated in the two groups of liver cirrhosis and acute hepatitis (p = 0.05), but not enough to consider alpha 2 F.T. as a sensitive feature of mesenchymal cell injury. All Lewis-positive biopsies displaying biliary alterations showed increased Le gene-encoded alpha 3/4 F.T. activity (p = 0.001), which was related to the intensity of neoductular proliferation. Elevated levels of alpha 3/4 F.T. may be a very early sign of biliary regeneration.

  12. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera.

    PubMed

    Meuleman, Philip; Libbrecht, Louis; De Vos, Rita; de Hemptinne, Bernard; Gevaert, Kris; Vandekerckhove, Joël; Roskams, Tania; Leroux-Roels, Geert

    2005-04-01

    A small animal model harboring a functional human liver cell xenograft would be a useful tool to study human liver cell biology, drug metabolism, and infections with hepatotropic viruses. Here we describe the repopulation, organization, and function of human hepatocytes in a mouse recipient and the infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) of the transplanted cells. Homozygous urokinase plasminogen activator (uPA)-SCID mice underwent transplantation with primary human hepatocytes, and at different times animals were bled and sacrificed to analyze plasma and liver tissue, respectively. The plasma of mice that were successfully transplanted contained albumin and an additional 21 human proteins. Liver histology showed progressive and massive replacement of diseased mouse tissue by human hepatocytes. These cells were accumulating glycogen but appeared otherwise normal and showed no signs of damage or death. They formed functional bile canaliculi that connected to mouse canaliculi. Besides mature hepatocytes, human hepatic progenitor cells that were differentiating into mature hepatocytes could be identified within liver parenchyma. Infection of chimeric mice with HBV or HCV resulted in an active infection that did not alter the liver function and architecture. Electron microscopy showed the presence of viral and subviral structures in HBV infected hepatocytes. In conclusion, human hepatocytes repopulate the uPA(+/+)-SCID mouse liver in a very organized fashion with preservation of normal cell function. The presence of human hepatic progenitor cells in these chimeric animals necessitates a critical review of the observations and conclusions made in experiments with isolated "mature" hepatocytes. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html).

  13. Alterations of the human gut microbiome in liver cirrhosis.

    PubMed

    Qin, Nan; Yang, Fengling; Li, Ang; Prifti, Edi; Chen, Yanfei; Shao, Li; Guo, Jing; Le Chatelier, Emmanuelle; Yao, Jian; Wu, Lingjiao; Zhou, Jiawei; Ni, Shujun; Liu, Lin; Pons, Nicolas; Batto, Jean Michel; Kennedy, Sean P; Leonard, Pierre; Yuan, Chunhui; Ding, Wenchao; Chen, Yuanting; Hu, Xinjun; Zheng, Beiwen; Qian, Guirong; Xu, Wei; Ehrlich, S Dusko; Zheng, Shusen; Li, Lanjuan

    2014-09-04

    Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we characterize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245 genes that differ in abundance between the patients and healthy individuals (false discovery rate < 0.0001) and can be grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals. Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases.

  14. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    SciTech Connect

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  15. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    SciTech Connect

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  16. Expression, purification and bioactivity of human augmenter of liver regeneration

    PubMed Central

    Zhang, Yang-De; Zhou, Jian; Zhao, Jin-Feng; Peng, Jian; Liu, Xiao-Dong; Liu, Xin-Sheng; Jia, Ze-Ming

    2006-01-01

    AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity. METHODS: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2. The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109. The positively selected clone was induced by the expression of GST-hALR fusion protein with IPTG, then the fusion protein was purified by glutathine s-transferase (GST) sepharose 4B affinity chromatography, cleaved by thrombin and the hALR monomer was obtained and detected by measuring H thymidine incorporation. RESULTS: The product of PCR from plasmid pGEM-T-hALR was examined by 1.5% sepharose electrophoresis. The specific strap was coincident with the theoretical one. The sequence was accurate and pGEX-4T-hALP digested by enzymes was coincident with the theoretical one. The sequence was accurate and the fragment was inserted in the positive direction. The recombinant vector was transformed into E coli JM109. SDS-PAGE proved that the induced expressive fusion protein showed a single band with a molecular weight of 41 kDa. The product was purified and cleaved. The molecular weights of GST and hALR were 26 kDa, 15 kDa respectively. The recombinant fusion protein accounted for 31% of the total soluble protein of bacterial lysate. HALR added to the culture medium of adult rat hepatocytes in primary culture and HepG2 cell line could significantly enhance the rate of DNA synthesis compared to the relevant control groups (P < 0.01). CONCLUSION: Purified hALR has the ability to stimulate DNA synthesis of adult rat hepatocytes in primary culture and HepG2 cells in vitro, and can provide evidence for its clinical application. PMID:16865786

  17. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  18. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    PubMed

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  19. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells

    PubMed Central

    Sakiyama, Ryoichi; Blau, Brandon J; Miki, Toshio

    2017-01-01

    There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell source for developing bioartificial liver (BAL) support systems has yet to be determined. Recent advancements in stem cell technology allow researchers to generate highly functional hepatocyte-like cells from human pluripotent stem cells (hPSCs). In this mini-review, we summarize previous clinical trials with different BAL systems, and discuss advantages of and potential obstacles to utilizing hPSC-derived hepatic cells in clinical-scale BAL systems. PMID:28373763

  20. Involvement of human liver cytochrome P4502B6 in the metabolism of propofol

    PubMed Central

    Oda, Yutaka; Hamaoka, Naoya; Hiroi, Toyoko; Imaoka, Susumu; Hase, Ichiro; Tanaka, Kazuo; Funae, Yoshihiko; Ishizaki, Takashi; Asada, Akira

    2001-01-01

    Aims To determine the cytochrome P450 (CYP) isoforms involved in the oxidation of propofol by human liver microsomes. Methods The rate constant calculated from the disappearance of propofol in an incubation mixture with human liver microsomes and recombinant human CYP isoforms was used as a measure of the rate of metabolism of propofol. The correlation of these rate constants with rates of metabolism of CYP isoform-selective substrates by liver microsomes, the effect of CYP isoform-selective chemical inhibitors and monoclonal antibodies on propofol metabolism by liver microsomes, and its metabolism by recombinant human CYP isoforms were examined. Results The mean rate constant of propofol metabolism by liver microsomes obtained from six individuals was 4.2 (95% confidence intervals 2.7, 5.7) nmol min−1 mg−1 protein. The rate constants of propofol by microsomes were significantly correlated with S-mephenytoin N-demethylation, a marker of CYP2B6 (r = 0.93, P < 0.0001), but not with the metabolic activities of other CYP isoform-selective substrates. Of the chemical inhibitors of CYP isoforms tested, orphenadrine, a CYP2B6 inhibitor, reduced the rate constant of propofol by liver microsomes by 38% (P < 0.05), while other CYP isoform-selective inhibitors had no effects. Of the recombinant CYP isoforms screened, CYP2B6 produced the highest rate constant for propofol metabolism (197 nmol min−1 nmol P450−1). An antibody against CYP2B6 inhibited the disappearance of propofol in liver microsomes by 74%. Antibodies raised against other CYP isoforms had no effect on the metabolism of propofol. Conclusions CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes. PMID:11298076

  1. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  2. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells

    PubMed Central

    Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P.; Walles, Heike

    2015-01-01

    In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions. PMID:26488607

  3. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    PubMed

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  4. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis.

    PubMed

    Westra, Inge M; Mutsaers, Henricus A M; Luangmonkong, Theerut; Hadi, Mackenzie; Oosterhuis, Dorenda; de Jong, Koert P; Groothuis, Geny M M; Olinga, Peter

    2016-09-01

    Liver fibrosis is the progressive accumulation of connective tissue ultimately resulting in loss of organ function. Currently, no effective antifibrotics are available due to a lack of reliable human models. Here we investigated the fibrotic process in human precision-cut liver slices (PCLS) and studied the efficacy of multiple putative antifibrotic compounds. Our results demonstrated that human PCLS remained viable for 48h and the early onset of fibrosis was observed during culture, as demonstrated by an increased gene expression of Heat Shock Protein 47 (HSP47) and Pro-Collagen 1A1 (PCOL1A1) as well as increased collagen 1 protein levels. SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (MAPK) showed a marked decrease in HSP47 and PCOL1A1 gene expression, whereas specific inhibitors of Smad 3 and Rac-1 showed no or only minor effects. Regarding the studied antifibrotics, gene levels of HSP47 and PCOL1A1 could be down-regulated with sunitinib and valproic acid, while PCOL1A1 expression was reduced following treatment with rosmarinic acid, tetrandrine and pirfenidone. These results are in contrast with prior data obtained in rat PCLS, indicating that antifibrotic drug efficacy is clearly species-specific. Thus, human PCLS is a promising model for liver fibrosis. Moreover, MAPK signaling plays an important role in the onset of fibrosis in this model and transforming growth factor beta pathway inhibitors appear to be more effective than platelet-derived growth factor pathway inhibitors in halting fibrogenesis in PCLS.

  5. Metabolic profiling during ex vivo machine perfusion of the human liver.

    PubMed

    Bruinsma, Bote G; Sridharan, Gautham V; Weeder, Pepijn D; Avruch, James H; Saeidi, Nima; Özer, Sinan; Geerts, Sharon; Porte, Robert J; Heger, Michal; van Gulik, Thomas M; Martins, Paulo N; Markmann, James F; Yeh, Heidi; Uygun, Korkut

    2016-03-03

    As donor organ shortages persist, functional machine perfusion is under investigation to improve preservation of the donor liver. The transplantation of donation after circulatory death (DCD) livers is limited by poor outcomes, but its application may be expanded by ex vivo repair and assessment of the organ before transplantation. Here we employed subnormothermic (21 °C) machine perfusion of discarded human livers combined with metabolomics to gain insight into metabolic recovery during machine perfusion. Improvements in energetic cofactors and redox shifts were observed, as well as reversal of ischemia-induced alterations in selected pathways, including lactate metabolism and increased TCA cycle intermediates. We next evaluated whether DCD livers with steatotic and severe ischemic injury could be discriminated from 'transplantable' DCD livers. Metabolomic profiling was able to cluster livers with similar metabolic patterns based on the degree of injury. Moreover, perfusion parameters combined with differences in metabolic factors suggest variable mechanisms that result in poor energy recovery in injured livers. We conclude that machine perfusion combined with metabolomics has significant potential as a clinical instrument for the assessment of preserved livers.

  6. Flexible transgastric endoscopic liver cyst fenestration: A feasibility study in humans (with video).

    PubMed

    Wang, Dong; Liu, Yaping; Chen, Danlei; Li, Xi; Wu, Renpei; Liu, Weifen; Leung, Joseph W; Zhang, Chuansen; Li, Zhaoshen

    2016-12-01

    There is no clinical report on the use of natural orifice transluminal endoscopic surgery (NOTES) for the management of patients with large liver cysts.This study aims to evaluate the feasibility and safety of NOTES for liver cyst fenestration in humans using a currently available technique.From February 2009 to June 2010, 4 cases of transgastric endoscopic liver cyst fenestration were performed; in which 3 cases received NOTES only, while 1 case received additional laparoscopic assistance.Mean time to endoscopically locate the liver cyst was 16 minutes (5-22 minutes). Cysts that were present in the left lobe or on the liver surface were easier to locate endoscopically. Transgastric endoscopic liver cyst fenestration was successful in all patients. The use of an occlusion balloon helped in the endoscopic clipping of the gastrotomy incision. Mean operative time was 101.3 minutes (range, 90-112 minutes), and there were no intra- or postoperative complications including infections. All patients recovered well after the surgery, with only minor postoperative throat pain. There was no recurrence at a mean follow-up of 12 months (range, 6-48 months).Small sample size.It may be technically feasible and safe to perform transgastric endoscopic liver cyst fenestration in humans with no recurrence at follow up.

  7. A New Human 3D-Liver Model Unravels the Role of Galectins in Liver Infection by the Parasite Entamoeba histolytica

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Deep Jhingan, Gagan; Guillen, Nancy

    2014-01-01

    Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. PMID:25211477

  8. A new human 3D-liver model unravels the role of galectins in liver infection by the parasite Entamoeba histolytica.

    PubMed

    Petropolis, Debora B; Faust, Daniela M; Deep Jhingan, Gagan; Guillen, Nancy

    2014-09-01

    Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica.

  9. Diffuse reflectance spectroscopy as a possible tool to complement liver biopsy for grading hepatic fibrosis in paraffin-preserved human liver specimens.

    PubMed

    Fabila-Bustos, Diego A; Arroyo-Camarena, Ursula D; López-Vancell, María D; Durán-Padilla, Marco A; Azuceno-García, Itzel; Stolik-Isakina, Suren; Ibarra-Coronado, Elizabeth; Brown, Blair; Escobedo, Galileo; de la Rosa-Vázquez, José Manuel

    2014-01-01

    A diffuse reflectance spectroscopy-based method to score fibrosis in paraffin-preserved human liver specimens has been developed and is reported here. Paraffin blocks containing human liver tissue were collected from the General Hospital of Mexico and included in the study with the patients' written consent. The score of liver fibrosis was determined in each sample by two experienced pathologists in a single-blind fashion. Spectral measurements were acquired at 450-750 nm by establishing surface contact between the optical probe and the preserved tissue. According to the histological evaluation, four liver samples showed no evidence of fibrosis and were categorized as F0, four hepatic specimens exhibited an initial degree of fibrosis (F1-F2), five liver specimens showed a severe degree of fibrosis (F3), and six samples exhibited cirrhosis (F4). The human liver tissue showed a characteristic diffuse reflectance spectrum associated with the progressive stages of fibrosis. In the F0 liver samples, the diffuse reflection intensity gradually increased in the wavelength range of 450-750 nm. In contrast, the F1-F2, F3, and F4 specimens showed corresponding 1.5-, 2-, and 5.5-fold decreases in the intensity of diffuse reflectance compared to the F0 liver specimens. At 650 nm, all the stages of liver fibrosis were clearly distinguished from each other with high sensitivity and specificity (92-100%). To our knowledge, this is the first study reporting a distinctive diffuse reflectance spectrum for each stage of fibrosis in paraffin-preserved human liver specimens. These results suggest that diffuse reflectance spectroscopy may represent a complementary tool to liver biopsy for grading fibrosis.

  10. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice

    PubMed Central

    Itaba, Noriko; Matsumi, Yoshiaki; Okinaka, Kaori; Ashla, An Afida; Kono, Yohei; Osaki, Mitsuhiko; Morimoto, Minoru; Sugiyama, Naoyuki; Ohashi, Kazuo; Okano, Teruo; Shiota, Goshi

    2015-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentration-dependent manner. Hexachlorophene rapidly induced hepatic differentiation of human MSCs judging from expression of liver-specific genes and proteins, PAS staining, and urea production. The effect of orthotopic transplantation of human mesenchymal stem cell-engineered hepatic cell sheets against acute liver injury was examined in one-layered to three-layered cell sheets system. Transplantation of human mesenchymal stem cell-engineered hepatic cell sheets enhanced liver regeneration and suppressed liver injury. The survival rates of the mice were significantly improved. High expression of complement C3 and its downstream signals including C5a, NF-κB, and IL-6/STAT-3 pathway was observed in hepatic cell sheets-grafted tissues. Expression of phosphorylated EGFR and thioredoxin is enhanced, resulting in reduction of oxidative stress. These findings suggest that orthotopic transplantation of hepatic cell sheets manufactured from MSCs accelerates liver regeneration through complement C3, EGFR and thioredoxin. PMID:26553591

  11. Ultrastructure of Ebola virus particles in human liver.

    PubMed Central

    Ellis, D S; Simpson, I H; Francis, D P; Knobloch, J; Bowen, E T; Lolik, P; Deng, I M

    1978-01-01

    Electron microscopy of tissues from two necropsies carried out in the Sudan on patients with Ebola virus infection identified virus particles in lung and spleen, but the main concentrations of Ebola particles were seen in liver sections. Viral precursor proteins and cores were found in functional liver cells, often aligned in membrane-bound aggregations. Complete virions, usually found only extracellularly, were mainly seen as long tubular forms, some without cores. Many tubular forms had 'enlarged heads' or 'spores' and some branched and torus forms were identified. The size and structure of the Ebola virus forms appear to be virtually indistinguishable from those of Marburg virus. Images Figs 6, 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:641193

  12. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  13. Why do most human liver cytosol preparations lack xanthine oxidase activity?

    PubMed

    Barr, John T; Choughule, Kanika V; Nepal, Sahadev; Wong, Timothy; Chaudhry, Amarjit S; Joswig-Jones, Carolyn A; Zientek, Michael; Strom, Stephen C; Schuetz, Erin G; Thummel, Kenneth E; Jones, Jeffrey P

    2014-04-01

    When investigating the potential for xanthine oxidase (XO)-mediated metabolism of a new chemical entity in vitro, selective chemical inhibition experiments are typically used. Most commonly, these inhibition experiments are performed using the inhibitor allopurinol (AP) and commercially prepared human liver cytosol (HLC) as the enzyme source. For reasons detailed herein, it is also a common practice to perfuse livers with solutions containing AP prior to liver harvest. The exposure to AP in HLC preparations could obviously pose a problem for measuring in vitro XO activity. To investigate this potential problem, an HPLC-MS/MS assay was developed to determine whether AP and its primary metabolite, oxypurinol, are retained within the cytosol for livers that were treated with AP during liver harvest. Differences in enzymatic activity for XO and aldehyde oxidase (AO) in human cytosol that can be ascribed to AP exposure were also evaluated. The results confirmed the presence of residual AP (some) and oxypurinol (all) human liver cytosol preparations that had been perfused with an AP-containing solution. In every case where oxypurinol was detected, XO activity was not observed. In contrast, the presence of AP and oxypurinol did not appear to have an impact on AO activity. Pooled HLC that was purchased from a commercial source also contained residual oxypurinol and did not show any XO activity. In the future, it is recommended that each HLC batch is screened for oxypurinol and/or XO activity prior to testing for XO-mediated metabolism of a new chemical entity.

  14. Numerical Analysis of Human Sample Effect on RF Penetration and Liver MR Imaging at Ultrahigh Field.

    PubMed

    Pang, Yong; Wu, Bing; Wang, Chunsheng; Vigneron, Daniel B; Zhang, Xiaoliang

    2011-10-01

    Magnetic resonance imaging (MRI) can provide clinically-valuable images for hepatic diseases and has become one of the most promising noninvasive methods in evaluating liver lesions. To facilitate the ultrahigh field human liver MRI, in this work, the RF penetration behavior in the conductive and high dielectric human body at the ultrahigh field of 7 Tesla (7T) is investigated and evaluated using the finite-difference time-domain numerical analysis. The study shows that in brain imaging at the ultrahigh field of 7T, the "dielectric resonance" effect dominates among other factors, resulting in improved B(1) penetration; while in liver imaging, due to its irregular geometry of the liver, the "dielectric resonance" effect is not readily to be established, leading to a reduced B(1) penetration or limited image coverage comparing to that in the brain. Therefore, it is necessary to build a large size coil to have deeper penetration to image human liver although the coil design may become more challenging due to the required high frequency. Based on this study, a bisected microstrip coil operating at 300 MHz range is designed and constructed. Three-dimensional in vivo liver images in axial, sagittal and coronal orientations are then acquired from healthy volunteers using this dedicated RF coil on a 7T whole body MR scanner.

  15. Biomonitoring perfluorinated compounds in Catalonia, Spain: concentrations and trends in human liver and milk samples.

    PubMed

    Kärrman, Anna; Domingo, José L; Llebaria, Xavier; Nadal, Martí; Bigas, Esther; van Bavel, Bert; Lindström, Gunilla

    2010-03-01

    Perfluorinated compounds (PFCs) are global environmental pollutants that bioaccumulate in wildlife and humans. Laboratory experiments have revealed toxic effects such as delayed development, humoral suppression, and hepatotoxicity. Although numerous human blood levels have been reported, little is known about distribution in the human body. Knowledge about PFC distribution and accumulation in the human body is crucial to understanding uptake and subsequent effects as well as to conduct risk assessments. The present study reports PFC levels in human liver and breast milk from a general population living in Catalonia, Spain. Liver and milk levels are compared to previously reported levels in blood from the same geographic area as well as to other existing reports on human liver and milk levels in other countries. Human liver (n = 12) and milk (n = 10) samples were collected in 2007 and 2008 in Catalonia, Spain. Liver samples were taken postmortem from six males and six females aged 27-79 years. Milk samples were from healthy primipara women (30-39 years old). Both liver and milk were analyzed by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry. Six PFCs were detected in liver, with perfluorooctanesulfonate (PFOS, 26.6 ng/g wet weight) being the chemical with the highest mean concentration. Other PFCs such as perfluorohexanesulfonate (PFHxS), perfluorooctanoic acid (PFOA), and acids with chain lengths up to C11 were also detected, with mean levels ranging between 0.50 and 1.45 ng/g wet weight. On the other hand, PFOS and PFHxS were the only PFCs detected in human milk, with mean concentrations of 0.12 and 0.04 ng/mL, respectively. While milk concentrations were similar to reported levels from other countries, liver samples contained more PFCs above quantification limits and higher PFOS concentrations compared to the only two other reports found in the literature. Differences between the results of the present study and those

  16. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.

    PubMed

    Yoshii, K; Kobayashi, K; Tsumuji, M; Tani, M; Shimada, N; Chiba, K

    2000-01-01

    Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.

  17. Statistical modeling of human liver incorporating the variations in shape, size, and material properties.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Gayzik, Scott; Untaroiu, Costin D; Beillas, Philippe

    2013-11-01

    The liver is one of the most frequently injured abdominal organs during motor vehicle crashes. Realistic numerical assessments of liver injury risk for the entire occupant population require incorporating inter-subject variations into numerical models. The main objective of this study was to quantify the shape variations of human liver in a seated posture and the statistical distributions of its material properties. Statistical shape analysis was applied to construct shape models of the livers of 15 adult human subjects, recorded in a typical seated (occupant) posture. The principal component analysis was then utilized to obtain the modes of variation, the mean model, and 95% statistical boundary shape models. In addition, a total of 52 tensile tests were performed on the parenchyma of three fresh human livers at four loading rates (0.01, 0.1, 1, and 10 s^-1) to characterize the rate-dependent and failure properties of the human liver. A FE-based optimization approach was employed to identify the material parameters of an Ogden material model for each specimen. The mean material parameters were then determined for each loading rate from the characteristic averages of the stress-strain curves, and a stochastic optimization approach was utilized to determine the standard deviations of the material parameters. Results showed that the first five modes of the human liver shape models account for more than 60% of the overall anatomical variations. The distributions of the material parameters combined with the mean and statistical boundary shape models could be used to develop probabilistic finite element (FE) models, which may help to better understand the variability in biomechanical responses and injuries to the abdominal organs under impact loading.

  18. Reelin Expression in Human Liver of Patients with Chronic Hepatitis C Infection

    PubMed Central

    Carotti, Simone; Perrone, Giuseppe; Amato, Michelina; Gentilucci, Umberto Vespasiani; Righi, Daniela; Francesconi, Maria; Pellegrini, Claudio; Zalfa, Francesca; Zingariello, Maria; Picardi, Antonio; Muda, Andrea Onetti; Morini, Sergio

    2017-01-01

    Reelin is a secreted extracellular glyco-protein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by colocalization experiments (Reelin +CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data. PMID:28348420

  19. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis.

    PubMed

    Li, Tingfen; Yan, Yongmin; Wang, Bingying; Qian, Hui; Zhang, Xu; Shen, Li; Wang, Mei; Zhou, Ying; Zhu, Wei; Li, Wei; Xu, Wenrong

    2013-03-15

    Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.

  20. Alcohol Cirrhosis Alters Nuclear Receptor and Drug Transporter Expression in Human Liver

    PubMed Central

    More, Vijay R.; Cheng, Qiuqiong; Donepudi, Ajay C.; Buckley, David B.; Lu, Zhenqiang James; Cherrington, Nathan J.

    2013-01-01

    Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, with cirrhosis contributing to 16.6% of reported deaths. Serum insulin levels are often elevated in alcoholism and may result in diabetes, which is why alcoholic liver disease and diabetes often are present together. Because there is a sizable population with these diseases alone or in combination, the purpose of this study was to determine whether transporter expression in human liver is affected by alcoholic cirrhosis, diabetes, and alcoholic cirrhosis coexisting with diabetes. Transporters aid in hepatobiliary excretion of many drugs and toxic chemicals and can be determinants of drug-induced liver injury. Drug transporter expression and transcription factor–relative mRNA and protein expression in normal, diabetic, cirrhotic, and cirrhosis with diabetes human livers were quantified. Cirrhosis significantly increased ABCC4, 5, ABCG2, and solute carrier organic anion (SLCO) 2B1 mRNA expression and decreased SLCO1B3 mRNA expression in the liver. ABCC1, 3–5, and ABCG2 protein expression was also upregulated by alcoholic cirrhosis. ABCC3-5 and ABCG2 protein expression was also upregulated in diabetic cirrhosis. Cirrhosis increased nuclear factor E2–related factor 2 mRNA expression, whereas it decreased pregnane-X-receptor and farnesoid-X-receptor mRNA expression in comparison with normal livers. Hierarchical cluster analysis indicated that expressions of ABCC2, 3, and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were more closely related in the livers from this cohort. Overall, alcoholic cirrhosis altered transporter expression in human liver. PMID:23462698

  1. Alcohol cirrhosis alters nuclear receptor and drug transporter expression in human liver.

    PubMed

    More, Vijay R; Cheng, Qiuqiong; Donepudi, Ajay C; Buckley, David B; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2013-05-01

    Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, with cirrhosis contributing to 16.6% of reported deaths. Serum insulin levels are often elevated in alcoholism and may result in diabetes, which is why alcoholic liver disease and diabetes often are present together. Because there is a sizable population with these diseases alone or in combination, the purpose of this study was to determine whether transporter expression in human liver is affected by alcoholic cirrhosis, diabetes, and alcoholic cirrhosis coexisting with diabetes. Transporters aid in hepatobiliary excretion of many drugs and toxic chemicals and can be determinants of drug-induced liver injury. Drug transporter expression and transcription factor-relative mRNA and protein expression in normal, diabetic, cirrhotic, and cirrhosis with diabetes human livers were quantified. Cirrhosis significantly increased ABCC4, 5, ABCG2, and solute carrier organic anion (SLCO) 2B1 mRNA expression and decreased SLCO1B3 mRNA expression in the liver. ABCC1, 3-5, and ABCG2 protein expression was also upregulated by alcoholic cirrhosis. ABCC3-5 and ABCG2 protein expression was also upregulated in diabetic cirrhosis. Cirrhosis increased nuclear factor E2-related factor 2 mRNA expression, whereas it decreased pregnane-X-receptor and farnesoid-X-receptor mRNA expression in comparison with normal livers. Hierarchical cluster analysis indicated that expressions of ABCC2, 3, and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were more closely related in the livers from this cohort. Overall, alcoholic cirrhosis altered transporter expression in human liver.

  2. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  3. Esterase detoxication of acetylcholinesterase inhibitors using human liver samples in vitro.

    PubMed

    Moser, Virginia C; Padilla, Stephanie

    2016-04-15

    Organophosphorus (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxication can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are considered factors underlying age-related sensitivity differences. We used an in vitro system to measure detoxication of AChE-inhibiting pesticides mediated via these esterases. Recombinant human AChE was used as a bioassay of inhibitor concentration following incubation with detoxifying tissue: liver plus Ca(+2) (to stimulate PON1s, measuring activity of both esterases) or EGTA (to inhibit PON1s, thereby measuring CaE activity). AChE inhibitory concentrations of aldicarb, chlorpyrifos oxon, malaoxon, methamidophos, oxamyl, paraoxon, and methylparaoxon were incubated with liver homogenates from adult male rat or one of 20 commercially provided human (11-83 years of age) liver samples. Detoxication was defined as the difference in inhibition produced by the pesticide alone and inhibition measured in combination with liver plus Ca(+2) or liver plus EGTA. Generally, rat liver produced more detoxication than did the human samples. There were large detoxication differences across human samples for some pesticides (especially malaoxon, chlorpyrifos oxon) but not for others (e.g., aldicarb, methamidophos); for the most part these differences did not correlate with age or sex. Chlorpyrifos oxon was fully detoxified only in the presence of Ca(+2) in both rat and human livers. Detoxication of paraoxon and methylparaoxon in rat liver was greater with Ca(+2), but humans showed less differentiation than rats between Ca(+2) and EGTA conditions. This suggests the importance of PON1 detoxication for these three OPs in the rat, but mostly only for chlorpyrifos oxon in human samples. Malaoxon was detoxified similarly with Ca(+2) or EGTA, and the differences across humans correlated with metabolism of p

  4. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact

    PubMed Central

    Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista

    2015-01-01

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204

  5. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation.

    PubMed

    Bruinsma, B G; Yeh, H; Ozer, S; Martins, P N; Farmer, A; Wu, W; Saeidi, N; Op den Dries, S; Berendsen, T A; Smith, R N; Markmann, J F; Porte, R J; Yarmush, M L; Uygun, K; Izamis, M-L

    2014-06-01

    To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11-1.94] to 6.74 [4.15-8.16] mL O2 /min kg liver), lactate levels (4.04 [3.70-5.99] to 2.29 [1.20-3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6-87.5] pmol/mg preperfusion to 167.5 [151.5-237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.

  6. Antibody-Mediated Rejection of Human Orthotopic Liver Allografts

    PubMed Central

    Demetris, A. Jake; Jaffe, Ron; Tzakis, A.; Ramsey, Glenn; Todo, S.; Belle, Steven; Esquivel, Carlos; Shapiro, Ron; Markus, Bernd; Mroczek, Elizabeth; Van Thiel, D. H.; Sysyn, Greg; Gordon, Robert; Makowka, Leonard; Starzl, Tom

    1988-01-01

    A clinicopathologic analysis of liver transplantation across major ABO blood group barriers was carried out 1) to determine if antibody-mediated (humoral) rejection was a cause of graft failure and if humoral rejection can be identified, 2) to propose criteria for establishing the diagnosis, and 3) to describe the clinical and pathologic features of humoral rejection. A total of 51 (24 primary) ABO-incompatible (ABO-I) liver grafts were transplanted into 49 recipients. There was a 46% graft failure rate during the first 30 days for primary ABO-I grafts compared with an 11% graft failure rate for primary ABO compatible (ABO-C), crossmatch negative, age, sex and priority-matched control patients (P < 0.02). A similarly high early graft failure rate (60%) was seen for nonprimary ABO-I grafts during the first 30 days. Clinically, the patients experienced a relentless rise in serum transaminases, hepatic failure, and coagulopathy during the first weeks after transplant. Pathologic examination of ABO-I grafts that failed early demonstrated widespread areas of geographic hemorrhagic necrosis with diffuse intraorgan coagulation. Prominent arterial deposition of antibody and complement components was demonstrated by immunoflourescent staining. Elution studies confirmed the presence of tissue-bound, donor-specific isoagglutinins within the grafts. No such deposition was seen in control cases. These studies confirm that antibody mediated rejection of the liver occurs and allows for the development of criteria for establishing the diagnosis. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:3046369

  7. Squamous cell carcinoma antigen in human liver carcinogenesis.

    PubMed

    Guido, M; Roskams, T; Pontisso, P; Fassan, M; Thung, S N; Giacomelli, L; Sergio, A; Farinati, F; Cillo, U; Rugge, M

    2008-04-01

    Squamous cell carcinoma antigen (SCCA) is a serine protease inhibitor that can be overexpressed in hepatocellular carcinoma (HCC) at both molecular and protein level, but no data are available on its expression in pre-malignant stages. To assess SCCA expression by immunohistochemistry in HCC and its nodular precursors in cirrhotic livers. 55 nodules from 42 explanted livers were evaluated: 7 large regenerative nodules (LRNs), 7 low-grade dysplastic nodules (LG-DNs), 10 high-grade DNs (HG-DNs), and 31 HCC. SCCA expression was semiquantitatively scored on a four-tiered scale. SCCA hepatocyte immunostaining was always restricted to the cytoplasm, mainly exhibiting a granular pattern. Stain intensity varied, ranging from weak to very strong. Within the nodules, positive cells were unevenly distributed, either scattered or in irregular clusters. The prevalence of SCCA expression was 29% in LRNs, 100% in DNs and 93% in HCC. A significant difference emerged in both prevalence and score for LRNs versus LG-DNs (p<0.039), HG-DNs (p = 0.001), and HCC (p = 0.000). A barely significant difference (p = 0.49) was observed between LG-DNs and HG-DNs, while no difference in SCCA expression was detected between HG-DNs and HCC. Cirrhotic tissue adjacent to the nodules was positive in 96% of cases, with a significant difference in the score (p = 0.000) between hepatocytes adjacent to HCC and those surrounding LRNs. This study provides the first evidence that aberrant SCCA expression is an early event in liver cell carcinomatous transformation.

  8. Human liver tumors in relation to steroidal usage.

    PubMed Central

    Barrows, G H; Christopherson, W M

    1983-01-01

    Since 1973 a number of investigators have reported an association between liver neoplasia and steroid usage. Through referral material we have examined the histology of over 250 cases of hepatic neoplasia, most in patients receiving steroid medications. The majority have been benign, predominantly focal nodular hyperplasia (55%) and hepatocellular adenoma (39%). The average age was 31.4 years; 83% had significant steroid exposure with an average duration of 71 months for focal nodular hyperplasia and 79.6 months for hepatocellular adenoma. The type of estrogenic agent was predominantly mestranol; however, during the period mestranol was the most frequently used synthetic steroid. A distinct clinical entity of life threatening hemorrhage from the lesion occurred in 31% of patients with hepatocellular adenoma and 9% of patients with focal nodular hyperplasia. Recurrence of benign tumors has occurred in some patients who continued using steroids and regression has been observed in patients who had incomplete tumor removal but discontinued steroid medication. Medial and intimal vascular changes have been present in a large number of the benign tumors. The relationship of these vascular changes to oncogenesis is unclear, but similar lesions have been described in the peripheral vasculature associated with steroid administration. A number of hepatocellular carcinomas have also been seen. Of significance is the young age of these patients and lack of abnormal histology in adjacent nonneoplastic liver. A striking number of the malignant hepatocellular tumors have been of the uncommon type described as "eosinophilic hepatocellular carcinoma with lamellar fibrosis." The epidemiology of liver lesions within this series is difficult to assess, since the material has been referred from very diverse locations. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. PMID:6307679

  9. Hydration of arene and alkene oxides by epoxide hydrase in human liver microsomes.

    PubMed

    Kapitulnik, J; Levin, W; Morecki, R; Dansette, P M; Jerina, D M; Conney, A H

    1977-02-01

    The comparative hydration of styrene 7,8-oxide, octene 1,2-oxide, naphthalene 1,2-oxide, phenanthrene 9,10-oxide, benzo[a]anthracene 5,6-oxide, 3-methylcholanthrene 11,12-oxide, dibenzo[a,h]anthracene 5,6-oxide, and benzo[a, 7,8-, 9,10-, and 11,12-oxides to their respective dihydrodiols was investigated in microsomes from nine human autopsy livers. The substrate specificity of the epoxide hydrase in human liver microsomes was very similar to that of the epoxide hydrase in rat liver microsomes. Phenanthrene 9,10-oxide was the best substrate for the human and rat epoxide hydrases and dibenzo[a,h]anthracene 5,6-oxide and benzo[a-a)pyrene 11, 12-oxide were the poorest substrates. Plotting epoxide hydrase activity obtained with one substrate against epoxide hydrase activity for another substrate for each of the nine human livers revealed excellent correlations for all combinations of the 11 substrates studied (r = 0.87 to 0.99). The data suggest the presence in human liver of a single epoxide hydrase with broad substrate specificity. However, the results do not exclude the possible presence in human liver of several epoxide hydrases that are under similar regulatory control. These results suggest the need for further investigation to determine whether there is a safe epoxide of a drug whose in vivo metabolism is predictive of the capacity of different individuals to metabolize a wide variety of epoxides of drugs and environmental chemicals.

  10. Absolute Quantification of Aldehyde Oxidase Protein in Human Liver Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Barr, John T.; Jones, Jeffrey P.; Joswig-Jones, Carolyn A.; Rock, Dan A.

    2013-01-01

    The function of the enzyme human aldehyde oxidase (AOX1) is uncertain, however, recent studies have implicated significant biochemical involvement in humans. AOX1 has also rapidly become an important drug metabolizing enzyme. Until now, quantitation of AOX1 in complex matrices such as tissue has not been achieved. Herein, we developed and employed a trypsin digest and subsequent liquid chromatography tandem mass spectrometry analysis to determine absolute amounts of AOX1 in human liver. E. coli expressed human purified AOX1 was used to validate the linearity, sensitivity, and selectivity of the method. Overall, the method is highly efficient and sensitive for determination of AOX1 in cytosolic liver fractions. Using this method, we observed substantial batch-to-batch variation in AOX1 content (21-40 pmol AOX1/mg total protein) between various pooled human liver cytosol preparations. We also observed inter batch variation in Vmax (3.3-4.9 nmol min−1 mg−1) and a modest correlation between enzyme concentration and activity. In addition, we measured a large difference in kcat/Km, between purified (kcat/Km of 1.4) and human liver cytosol (kcat/Km of 15-20) indicating cytosol to be 11-14 times more efficient in the turnover of DACA than the E. coli expressed purified enzyme. Finally, we discussed the future impact of this method for the development of drug metabolism models and understanding the biochemical role of this enzyme. PMID:24006961

  11. Metabolic difference of CZ48 in human and mouse liver microsomes.

    PubMed

    Liu, Xing; Dejesus, Albert; Cao, Zhisong; Vardeman, Dana; Giovanella, Beppino

    2012-01-01

    CZ48, chemically camptothecin-20-O-propionate hydrate, is currently under clinical investigation. The kinetics of the metabolite camptothecin (CPT) formation and of CZ48 depletion in mouse and human liver microsomes in the presence or absence of NADPH was examined. The formation rate of camptothecin in human liver microsomes was significantly higher than that in mouse with mean K(m)s of 1.9 and 0.5 nM and V(max)s of 9.3 and 2.2 pmol/min/mg, respectively. However, the apparent intrinsic clearance (V(max)/K(m)) ratios for camptothecin in human and mouse liver microsomes were not significantly different from each other (4.9 versus 4.4) in the presence of NADPH. The depletion of CZ48 in human microsomes was four times faster with 4.55% of CZ48 remaining intact while in mouse 19.11% of the drug remained unchanged after 60 min. These results suggest that there is a remarkable species difference of CZ48 biotransformation between human and mouse. The depletion rate of CZ48 in human liver microsomes is considerably higher than that in the mouse.

  12. Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells.

    PubMed

    Schmelzer, Eva; Triolo, Fabio; Turner, Morris E; Thompson, Robert L; Zeilinger, Katrin; Reid, Lola M; Gridelli, Bruno; Gerlach, Jörg C

    2010-06-01

    The ability of human fetal liver cells to survive, expand, and form functional tissue in vitro is of high interest for the development of bioartificial extracorporeal liver support systems, liver cell transplantation therapies, and pharmacologic models. Conventional static two-dimensional culture models seem to be inadequate tools. We focus on dynamic three-dimensional perfusion technologies and developed a scaled-down bioreactor, providing decentralized mass exchange with integral oxygenation. Human fetal liver cells were embedded in a hyaluronan hydrogel within the capillary system to mimic an in vivo matrix and perfusion environment. Metabolic performance was monitored daily, including glucose consumption, lactate dehydrogenase activity, and secretion of alpha-fetoprotein and albumin. At culture termination cells were analyzed for proliferation and liver-specific lineage-dependent cytochrome P450 (CYP3A4/3A7) gene expression. Occurrence of hepatic differentiation in bioreactor cultures was demonstrated by a strong increase in CYP3A4/3A7 gene expression ratio, lower alpha-fetoprotein, and higher albumin secretion than in conventional Petri dish controls. Cells in bioreactors formed three-dimensional structures. Viability of cells was higher in bioreactors than in control cultures. In conclusion, the culture model implementing three-dimensionality, constant perfusion, and integral oxygenation in combination with a hyaluronan hydrogel provides superior conditions for liver cell survival and differentiation compared to conventional culture.

  13. PEDIATRIC LIVER TRANSPLANTATION WITH EX-SITU LIVER TRANSECTION AND THE APPLICATION OF THE HUMAN FIBRINOGEN AND THROMBIN SPONGE IN THE WOUND AREA

    PubMed Central

    VICENTINE, Fernando Pompeu Piza; GONZALEZ, Adriano Miziara; de AZEVEDO, Ramiro Anthero; BENINI, Barbara Burza; LINHARES, Marcelo Moura; LOPES-FILHO, Gaspar de Jesus; MARTINS, Jose Luiz; SALZEDAS-NETTO, Alcides Augusto

    2016-01-01

    ABSTRACT Background: Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Aim: Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Methods: Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). Results: The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). Conclusion: There was a lower number of reoperations due to bleeding of the wound area of ​​the hepatic graft when the human fibrinogen and thrombin sponge were used. PMID:28076477

  14. Polymorphic acetylation of 7-amino-clonazepam in human liver cytosol.

    PubMed

    Peng, D R; Birgersson, C; von Bahr, C; Rane, A

    1984-01-01

    The N-acetylation of the reduced metabolite of clonazepam 7-amino-clonazepam was studied in cytosolic preparation from human fetal and adult livers. The metabolite formed 7-acetamido-clonazepam was measured with high performance liquid chromatography. A bimodal distribution of the N-acetyltransferase activities was observed in cytosols from human adult livers. These activities were 117 +/- 11 and 27 +/- 16 pmoles X mg-1 X min-1 for rapid and slow acetylators, respectively. The data observed in the fetal specimens did not allow any conclusion about bimodality because of a low number of samples.

  15. HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins.

    PubMed

    Dansette, P M; Jaoen, M; Pons, C

    2000-05-01

    The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).

  16. Dacarbazine (DTIC)-induced human liver damage light and electron-microscopic findings.

    PubMed

    Dancygier, H; Runne, U; Leuschner, U; Milbradt, R; Classen, M

    1983-06-01

    The first electron-microscopic description of DTIC-induced human liver injury is presented. A 61-year-old man developed signs of hepatic failure during the second treatment cycle with DTIC for malignant melanoma. Light-microscopic examination revealed extensive centrilobular liver necrosis. Terminal hepatic venules did not show any signs of vasculitis or thrombosis and there was a lack of inflammatory infiltration. At the ultrastructural level intracytoplasmic, membrane-bound, organelle-free vacuoles were found in the hepatocytes. Liver cells showed bleb formation. Bile canaliculi were dilated and their microvilli flattened. In the pericanalicular exoplasm electron-dense fibrillary material, thought to be of microfilamentous origin, accumulated. The patient received 250 mg methylprednisolone i.v. at the very onset of symptoms and was discharged 12 days after the peak rise of transaminases with normal liver parameters.

  17. High resolution proton magnetic resonance spectroscopy of human brain and liver

    SciTech Connect

    Barany, M.; Spigos, D.G.; Mok, E.; Venkatasubramanian, P.N.; Wilbur, A.C.; Langer, B.G.

    1987-01-01

    Water-suppressed and slice-selective proton spectra of live human brain exhibited several resonances that were tentatively assigned to metabolites such as N-acetylaspartate, glutamate, phosphocreatine and creatine, choline derivatives, and taurine. In the liver spectrum of a healthy volunteer, the major resonance was tentatively assigned to a fatty acyl methylene and the minor resonances to protons in carnitine, taurine, glutamate, and glutamine. In the spectrum of a cancerous liver, resonances in addition to those present in the normal liver were seen. Protein degradation in the liver with cancer was indicated by resonances from urea and from the ring protons in tryptophan, tyrosine, and phenylalanine. Furthermore, increased nucleic acid synthesis was indicated by resonances from nucleotide protons.

  18. Transcriptional networks implicated in human nonalcoholic fatty liver disease.

    PubMed

    Ye, Hua; Liu, Wei

    2015-10-01

    The transcriptome of nonalcoholic fatty liver disease (NAFLD) was investigated in several studies. However, the implications of transcriptional networks in progressive NAFLD are not clear and mechanisms inducing transition from nonalcoholic simple fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) are still elusive. The aims of this study were to (1) construct networks for progressive NAFLD, (2) identify hub genes and functional modules in these networks and (3) infer potential linkages among hub genes, transcription factors and microRNAs (miRNA) for NAFLD progression. A systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA) was utilized to dissect transcriptional profiles in 19 normal, 10 NAFL and 16 NASH patients. Based on this framework, 3 modules related to chromosome organization, proteasomal ubiquitin-dependent protein degradation and immune response were identified in NASH network. Furthermore, 9 modules of co-expressed genes associated with NAFL/NASH transition were found. Further characterization of these modules defined 13 highly connected hub genes in NAFLD progression network. Interestingly, 11 significantly changed miRNAs were predicted to target 10 of the 13 hub genes. Characterization of modules and hub genes that may be regulated by miRNAs could facilitate the identification of candidate genes and pathways responsible for NAFL/NASH transition and lead to a better understanding of NAFLD pathogenesis. The identified modules and hub genes may point to potential targets for therapeutic interventions.

  19. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.

    PubMed

    Tsui, Po-Hsiang; Zhou, Zhuhuang; Lin, Ying-Hsiu; Hung, Chieh-Ming; Chung, Shih-Jou; Wan, Yung-Liang

    2017-01-01

    The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1). However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05) for 2 MHz, 0.93 (0.89-0.98) for 2.3 MHz, 0.87 (0.84-0.92) for 2.5 MHz, 0.82 (0.77-0.88) for 3.3 MHz, and 0.81 (0.76-0.88) for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p < 0.0001). However, the effect of ultrasound frequency on the statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727). The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.

  20. Identification of CYP3A7 for glyburide metabolism in human fetal livers.

    PubMed

    Shuster, Diana L; Risler, Linda J; Prasad, Bhagwat; Calamia, Justina C; Voellinger, Jenna L; Kelly, Edward J; Unadkat, Jashvant D; Hebert, Mary F; Shen, Danny D; Thummel, Kenneth E; Mao, Qingcheng

    2014-12-15

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u=37.1, 13.0, and 8.7ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4'-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. All-Trans-Retinoic Acid Enhances Mitochondrial Function in Models of Human Liver.

    PubMed

    Tripathy, Sasmita; Chapman, John D; Han, Chang Y; Hogarth, Cathryn A; Arnold, Samuel L M; Onken, Jennifer; Kent, Travis; Goodlett, David R; Isoherranen, Nina

    2016-05-01

    All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialβ-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1βand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedβ-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARβ, and PPARδrevealed that the enhancement of mitochondrial biogenesis andβ-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidβ-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Hepatitis B Virus Infection and Immunopathogenesis in a Humanized Mouse Model: Induction of Human-Specific Liver Fibrosis and M2-Like Macrophages

    PubMed Central

    Bility, Moses T.; Cheng, Liang; Zhang, Zheng; Luan, Yan; Li, Feng; Chi, Liqun; Zhang, Liguo; Tu, Zhengkun; Gao, Yanhang; Fu, Yangxin; Niu, Junqi; Wang, Fusheng; Su, Lishan

    2014-01-01

    The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology. PMID:24651854

  3. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages.

    PubMed

    Bility, Moses T; Cheng, Liang; Zhang, Zheng; Luan, Yan; Li, Feng; Chi, Liqun; Zhang, Liguo; Tu, Zhengkun; Gao, Yanhang; Fu, Yangxin; Niu, Junqi; Wang, Fusheng; Su, Lishan

    2014-03-01

    The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.

  4. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver

    PubMed Central

    Strauss, Otto; Phillips, Anthony; Ruggiero, Katya; Bartlett, Adam; Dunbar, P. Rod

    2017-01-01

    As well as systemic vascular endothelial cells, the liver has specialised sinusoidal endothelial cells (LSEC). LSEC dysfunction has been documented in many diseased states yet their phenotype in normal human liver has not been comprehensively assessed. Our aim was to improve characterisation of subsets of endothelial cells and associated pericytes in the human liver. Immunofluorescence microscopy was performed on normal human liver tissue samples to assess endothelial and structural proteins in a minimum of three donors. LSEC are distributed in an acinar pattern and universally express CD36, but two distinctive subsets of LSEC can be identified in different acinar zones. Type 1 LSEC are CD36hiCD32−CD14−LYVE-1− and are located in acinar zone 1 of the lobule, while Type 2 LSEC are LYVE-1+CD32hiCD14+CD54+CD36mid-lo and are located in acinar zones 2 and 3 of the lobule. Portal tracts and central veins can be identified using markers for systemic vascular endothelia and pericytes, none of which are expressed by LSEC. In areas of low hydrostatic pressure LSEC are lined by stellate cells that express the pericyte marker CD146. Our findings identify distinctive populations of LSEC and distinguish these cells from adjacent stellate cells, systemic vasculature and pericytes in different zones of the liver acinus. PMID:28287163

  5. Human erythrocytes are not suitable for determination of intravascular volume of perfused rat liver.

    PubMed

    Karabey, Y; Sahin, S

    2006-01-01

    Homologous or heterologous erythrocytes have been widely used for the estimation of intravascular volume of the liver. However, cross-species blood mediates immune response in the organ, and foreign cells are rapidly cleared from the plasma, indicating that heterologous erythrocytes may not be a suitable marker for determination of vascular space. This aspect was investigated in the perfused rat liver preparation following bolus administration of human (heterologous) erythrocytes into the portal vein. To compare the extent of its distribution within the liver, rat (homologous) erythrocytes and Evans blue were chosen as the reference vascular and extracellular markers, respectively. Hepatic distribution of human erythrocytes was influenced by the perfusion medium (with and without protein) and injection number (first and second injections). Mean transit time and hence volume of distribution decreased in the presence of protein and repetition of the injection. Even in the presence of protein, the volume of distribution obtained for human erythrocytes was larger than that of the extracellular volume of the liver obtained with Evans blue (0.22 +/- 0.01 vs. 0.20 +/- 0.02 ml/g), indicating that they are not suitable for determination of intravascular volume of the perfused rat liver preparation.

  6. Criteria for Viability Assessment of Discarded Human Donor Livers during Ex Vivo Normothermic Machine Perfusion

    PubMed Central

    Karimian, Negin; Weeder, Pepijn D.; de Boer, Marieke T.; Wiersema-Buist, Janneke; Gouw, Annette S. H.; Leuvenink, Henri G. D.; Lisman, Ton; Porte, Robert J.

    2014-01-01

    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37°C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial. PMID:25369327

  7. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion.

    PubMed

    Sutton, Michael E; op den Dries, Sanna; Karimian, Negin; Weeder, Pepijn D; de Boer, Marieke T; Wiersema-Buist, Janneke; Gouw, Annette S H; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2014-01-01

    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37 °C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥ 30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial.

  8. Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver.

    PubMed

    Sato, Yuichiro; Miyashita, Aiji; Iwatsubo, Takafumi; Usui, Takashi

    2012-05-01

    The aim of this study was to conclusively determine the enzyme responsible for the hydrolysis of oxybutynin in human liver. Hydrolysis in human liver microsomes (HLMs) and human liver cytosol (HLC) followed Michaelis-Menten kinetics with similar K(m) values. In recombinant human carboxylesterase (CES)-expressing microsomes, CES1 was much more efficient than CES2 and yielded a K(m) value more comparable with that found in HLMs or HLC than did CES2. A correlation analysis using a set of individual HLMs, in which both CESs acted independently showed that the hydrolysis rate of oxybutynin, correlated significantly with a CES1 marker reaction, clopidogrel hydrolysis, but not with a CES2 marker reaction, irinotecan (CPT-11) hydrolysis. Chemical inhibition studies using bis-(p-nitrophenyl) phosphate, clopidogrel, nordihydroguaiaretic acid, procainamide, physostigmine, and loperamide revealed that the effects of these compounds in HLMs, HLC, and recombinant CES1-expressing microsomes were similar, whereas those in CES2-expressing microsomes were clearly different. These results strongly suggest that CES1, rather than CES2, is the principal enzyme responsible for the hydrolysis of oxybutynin in human liver.

  9. Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans

    PubMed Central

    2013-01-01

    Although the process of drug development requires efficacy and toxicity testing in animals prior to human testing, animal models have limited ability to accurately predict human responses to xenobiotics and other insults. Societal pressures are also focusing on reduction of and, ultimately, replacement of animal testing. However, a variety of in vitro models, explored over the last decade, have not been powerful enough to replace animal models. New initiatives sponsored by several US federal agencies seek to address this problem by funding the development of physiologically relevant human organ models on microscopic chips. The eventual goal is to simulate a human-on-a-chip, by interconnecting the organ models, thereby replacing animal testing in drug discovery and development. As part of this initiative, we aim to build a three-dimensional human liver chip that mimics the acinus, the smallest functional unit of the liver, including its oxygen gradient. Our liver-on-a-chip platform will deliver a microfluidic three-dimensional co-culture environment with stable synthetic and enzymatic function for at least 4 weeks. Sentinel cells that contain fluorescent biosensors will be integrated into the chip to provide multiplexed, real-time readouts of key liver functions and pathology. We are also developing a database to manage experimental data and harness external information to interpret the multimodal data and create a predictive platform. PMID:24565476

  10. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.

    PubMed

    Noor, Fozia

    2015-12-01

    Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.

  11. Three-dimensional growth dynamics of the liver in the human fetus.

    PubMed

    Szpinda, Michał; Paruszewska-Achtel, Monika; Woźniak, Alina; Badura, Mateusz; Mila-Kierzenkowska, Celestyna; Wiśniewski, Marcin

    2015-07-01

    The fetal liver is indubitably the earliest and the most severely affected organ by abnormal fetal growth. The size of the fetal liver assessed by three-dimensional ultrasonography is indispensable in determining the status of fetal growth, nutrition and maturity, and in the early recognition and monitoring fetal micro- and macrosomias. The aim of the present study was to measure the human fetal liver length, transverse and sagittal diameters to establish their age-specific reference intervals, the 3rd, 10th, 50th, 90th, and 97th smoothed centile curves, and the relative growth of the liver calculated for the 50th centile. Using anatomical, digital (NIS-Elements AR 3.0, Nikon) and statistical methods (one-way ANOVA test for paired data and post hoc RIR Tukey test, Shapiro-Wilk test, Fisher's test, Student's t test, the Altman-Chitty method), length, transverse and sagittal diameters of the liver for the 3rd, 10th, 50th, 90th, and 97th centiles were assessed in 69 human fetuses of both sexes (32 males and 37 females) aged 18-30 weeks, derived from spontaneous abortions or stillbirths. No male-female differences (P > 0.05) concerning the three parameters studied were found. During the study period, the fetal liver increased tri-dimensionally: in length from 19.51 ± 1.02 to 39.65 ± 7.05 mm, in transverse diameter from 29.44 ± 3.73 to 53.13 ± 5.31 mm, and in sagittal diameter from 22.97 ± 3.79 to 43.22 ± 5.49 mm. The natural logarithmic models were found to fit the data with gestational age (P < 0.001) in the following five cutoff points: 3rd, 10th, 50th, 90th and 97th centiles. The values of liver parameters in relation to gestational age in weeks were calculated by the following logarithmic regressions: y = -82.778 + 35.752 × ln(age) ± Z × (-2.778 + 0.308 × age) for liver length, y = -123.06 + 52.668 × ln(age) ± Z × (3.156 + 0.049 × age) for liver transverse diameter, and y = -108.94 + 46.052 × ln(age) ± Z × (-0.541 + 0.188 × age) for liver sagittal

  12. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini

    PubMed Central

    Laha, Thewarach; Pinlaor, Porntip; Mulvenna, Jason; Sripa, Banchob; Sripa, Manop; Smout, Michael J; Gasser, Robin B; Brindley, Paul J; Loukas, Alex

    2007-01-01

    Background Cholangiocarcinoma (CCA) – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum) than to free-living (Schmidtea mediterranea) flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. Conclusion This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions, drugs and vaccines, to

  13. Prediction of Liver Injury Induced by Chemicals in Human With a Multiparametric Assay on Isolated Mouse Liver Mitochondria

    PubMed Central

    Porceddu, Mathieu; Buron, Nelly; Borgne-Sanchez, Annie

    2012-01-01

    Drug-induced liver injury (DILI) in humans is difficult to predict using classical in vitro cytotoxicity screening and regulatory animal studies. This explains why numerous compounds are stopped during clinical trials or withdrawn from the market due to hepatotoxicity. Thus, it is important to improve early prediction of DILI in human. In this study, we hypothesized that this goal could be achieved by investigating drug-induced mitochondrial dysfunction as this toxic effect is a major mechanism of DILI. To this end, we developed a high-throughput screening platform using isolated mouse liver mitochondria. Our broad spectrum multiparametric assay was designed to detect the global mitochondrial membrane permeabilization (swelling), inner membrane permeabilization (transmembrane potential), outer membrane permeabilization (cytochrome c release), and alteration of mitochondrial respiration driven by succinate or malate/glutamate. A pool of 124 chemicals (mainly drugs) was selected, including 87 with documented DILI and 37 without reported clinical hepatotoxicity. Our screening assay revealed an excellent sensitivity for clinical outcome of DILI (94 or 92% depending on cutoff) and a high positive predictive value (89 or 82%). A highly significant relationship between drug-induced mitochondrial toxicity and DILI occurrence in patients was calculated (p < 0.001). Moreover, this multiparametric assay allowed identifying several compounds for which mitochondrial toxicity had never been described before and even helped to clarify mechanisms with some drugs already known to be mitochondriotoxic. Investigation of drug-induced loss of mitochondrial integrity and function with this multiparametric assay should be considered for integration into basic screening processes at early stage to select drug candidates with lower risk of DILI in human. This assay is also a valuable tool for assessing the mitochondrial toxicity profile and investigating the mechanism of action of new

  14. Microwave ablation of ex vivo human liver and colorectal liver metastases with a novel 14.5 GHz generator.

    PubMed

    Jones, Robert P; Kitteringham, Neil R; Terlizzo, Monica; Hancock, Christopher; Dunne, Declan; Fenwick, Stephen W; Poston, Graeme J; Ghaneh, Paula; Malik, Hassan Z

    2012-01-01

    This study assessed the relationship between time, power and ablation size using a novel high-frequency 14.5 GHz microwave applicator in ex vivo human hepatic parenchyma and colorectal liver metastases. Previous examination has demonstrated structurally normal but non-viable cells within the ablation zone. This study aimed to further investigate how ablation affects these cells, and to confirm non-viability. Ablations were performed in ex vivo human hepatic parenchyma and tumour for a variety of time (10-180 s) and power (10-50 W) settings. Histological examination was performed to assess cellular anatomy, whilst enzyme histochemistry was used to confirm cellular non-viability. Transmission electron microscopy was used to investigate the subcellular structural effects of ablation within these fixed cells. Preliminary proteomic analysis was also performed to explore the mechanism of microwave cell death. Increasing time and power settings led to a predictable and reproducible increase in size of ablation. At 50 W and 180 s application, a maximum ablation diameter of 38.8 mm (±1.3) was produced. Ablations were produced rapidly, and at all time and power settings ablations remained spherical (longest:shortest diameter <1.2). Routine histological analysis using haematoxylin-eosin (H&E) confirmed well preserved cellular anatomy despite ablation. Transmission electron microscopy demonstrated marked subcellular damage. Enzyme histochemistry showed complete absence of viability in ablated tissue. Large spherical ablation zones can be rapidly and reproducibly achieved in ex vivo human hepatic parenchyma and colorectal liver metastases using a 14.5 GHz microwave generator. Despite well preserved cellular appearance, ablated tissue is non-viable.

  15. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    EPA Science Inventory

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  16. Identification of 20(S)-protopanaxadiol metabolites in human liver microsomes and human hepatocytes.

    PubMed

    Li, Liang; Chen, Xiaoyan; Li, Dan; Zhong, Dafang

    2011-03-01

    20(S)-Protopanaxadiol (PPD, 1) is one of the aglycones of the ginsenosides and has a wide range of pharmacological activities. At present, PPD has progressed to early clinical trials as an antidepressant. In this study, its fate in mixed human liver microsomes (HLMs) and human hepatocytes was examined for the first time. By using liquid chromatography-electrospray ionization ion trap mass spectrometry, 24 metabolites were found. Four metabolites were isolated, and their structures were elucidated as (20S,24S)-epoxydammarane-3,12,25-triol (2), (20S,24R)-epoxydammarane-3,12,25-triol (3), (20S,24S)-epoxydammarane-12,25-diol-3-one (4), and (20S,24R)-epoxydammarane-12,25-diol-3-one (5) based on a detailed analysis of their spectroscopic data. The predominant metabolic pathway of PPD observed was the oxidation of the 24,25-double bond to yield 24,25-epoxides, followed by hydrolysis and rearrangement to form the corresponding 24,25-vicinal diol derivatives (M6) and the 20,24-oxide form (2 and 3). Further sequential metabolites (M2-M5) were also detected through the hydroxylation and dehydrogenation of 2 and 3. All of the phase I metabolites except for M1-1 possess a hydroxyl group at C-25 of the side chain, which was newly formed by biotransformation. Two glucuronide conjugates (M7) attributed to 2 and 3 were detected in human hepatocyte incubations, and their conjugation sites were tentatively assigned to the 25-hydroxyl group. The findings of this study strongly suggested that the formation of the 25-hydroxyl group is very important for the elimination of PPD.

  17. Adiponectin oligomers and ectopic fat in liver and skeletal muscle in humans.

    PubMed

    Kantartzis, Konstantinos; Staiger, Harald; Machann, Jürgen; Schick, Fritz; Claussen, Claus D; Machicao, Fausto; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert

    2009-02-01

    We aimed at determining which circulating forms of the adipokine adiponectin that increases lipid oxidation in liver and skeletal muscle are related to ectopic fat in these depots in humans. Plasma total-, high-molecular weight (HMW)-, middle-molecular weight (MMW)-, and low-molecular weight (LMW) adiponectin were quantified by an enzyme-linked immunosorbent assay. Their relationships with liver- and intramyocellular fat, measured using (1)H magnetic resonance spectroscopy, were investigated in 54 whites without type 2 diabetes. Liver fat, adjusted for gender, age, and total body fat, was associated only with HMW adiponectin (r = -0.35, P = 0.012), but not with total-, MMW-, or LMW adiponectin. In addition, subjects with fatty liver (liver fat > or =5.56%, n = 15) had significantly lower HMW- (P = 0.04), but not total-, MMW-, or LMW adiponectin levels, compared to controls (n = 39). Similarly, intramyocellular fat correlated only with HMW (r = -0.32, P = 0.039), but not with the other circulating forms of adiponectin. These data indicate that, among circulating forms of adiponectin, HMW is strongly related to ectopic fat, thus possibly representing the form of adiponectin regulating lipid oxidation in liver and skeletal muscle.

  18. IL-2(high) tissue-resident T cells in the human liver: Sentinels for hepatotropic infection.

    PubMed

    Pallett, Laura J; Davies, Jessica; Colbeck, Emily J; Robertson, Francis; Hansi, Navjyot; Easom, Nicholas J W; Burton, Alice R; Stegmann, Kerstin A; Schurich, Anna; Swadling, Leo; Gill, Upkar S; Male, Victoria; Luong, TuVinh; Gander, Amir; Davidson, Brian R; Kennedy, Patrick T F; Maini, Mala K

    2017-06-05

    The liver provides a tolerogenic immune niche exploited by several highly prevalent pathogens as well as by primary and metastatic tumors. We have sampled healthy and hepatitis B virus (HBV)-infected human livers to probe for a subset of T cells specialized to overcome local constraints and mediate immunity. We characterize a population of T-bet(lo)Eomes(lo)Blimp-1(hi)Hobit(lo) T cells found within the intrahepatic but not the circulating memory CD8 T cell pool expressing liver-homing/retention markers (CD69(+)CD103(+) CXCR6(+)CXCR3(+)). These tissue-resident memory T cells (TRM) are preferentially expanded in patients with partial immune control of HBV infection and can remain in the liver after the resolution of infection, including compartmentalized responses against epitopes within all major HBV proteins. Sequential IL-15 or antigen exposure followed by TGFβ induces liver-adapted TRM, including their signature high expression of exhaustion markers PD-1 and CD39. We suggest that these inhibitory molecules, together with paradoxically robust, rapid, cell-autonomous IL-2 and IFNγ production, equip liver CD8 TRM to survive while exerting local noncytolytic hepatic immunosurveillance. © 2017 Pallett et al.

  19. Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver.

    PubMed

    Chamba, A; Neuberger, J; Strain, A; Hopkins, J; Sheppard, M C; Franklyn, J A

    1996-01-01

    As the liver represents a major target organ for thyroid hormone action, we compared the expression of thyroid hormone receptor (TR) alpha and beta variants in normal human liver and liver affected by primary biliary cirrhosis, sclerosing cholangitis, cryptogenic cirrhosis, and alcoholic cirrhosis (n = 6 in each group). Western blot analysis using specific polyclonal antibodies to alpha 1 or beta 1 TRs or to the related non-T3-binding c-erbA alpha 2 variant revealed abundant expression of TRs in normal and diseased liver, with no difference in size or abundance of TR proteins. Immunocytochemistry likewise revealed abundant nuclear expression of TR proteins in normal and diseased liver, with similar patterns and intensity of staining. Despite abundant TR protein expression, Northern blot hybridization of polyadenylated ribonucleic acid (RNA; 10 micrograms) to TR complementary DNAs revealed only a weak signal for c-erbA alpha 2 messenger RNA (mRNA). Comparison of the level of expression of the thyroid hormone-regulated mRNAs encoding T4-binding globulin, sex hormone-binding globulin, cortisol-binding globulin, and transthyretin in normal and diseased tissue revealed no significant difference, suggesting that hepatocellular expression of these mRNAs is maintained in chronic liver disease despite a marked reduction in circulating T3 concentrations.

  20. Human Glucocorticoid Receptor β Regulates Gluconeogenesis and Inflammation in Mouse Liver.

    PubMed

    He, Bo; Cruz-Topete, Diana; Oakley, Robert H; Xiao, Xiao; Cidlowski, John A

    2015-12-28

    While in vitro studies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, the in vivo function of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expression in vivo by both GRα-dependent and GRα-independent mechanisms.

  1. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  2. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    PubMed

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  3. Specificity of procaine and ester hydrolysis by human, minipig, and rat skin and liver.

    PubMed

    Jewell, Christopher; Ackermann, Chrisita; Payne, N Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M

    2007-11-01

    The capacity of human, minipig, and rat skin and liver subcellular fractions to hydrolyze the anesthetic ester procaine was compared with carboxylesterase substrates 4-methylumbelliferyl-acetate, phenylvalerate, and para-nitrophenylacetate and the arylesterase substrate phenylacetate. Rates of procaine hydrolysis by minipig and human skin microsomal and cytosolic fractions were similar, with rat displaying higher activity. Loperamide inhibited procaine hydrolysis by human skin, suggesting involvement of human carboxylesterase hCE2. The esterase activity and inhibition profiles in the skin were similar for minipig and human, whereas rat had a higher capacity to metabolize esters and a different inhibition profile. Minipig and human liver and skin esterase activity was inhibited principally by paraoxon and bis-nitrophenyl phosphate, classical carboxylesterase inhibitors. Rat skin and liver esterase activity was inhibited additionally by phenylmethylsulfonyl fluoride and the arylesterase inhibitor mercuric chloride, indicating a different esterase profile. These results have highlighted the potential of skin to hydrolyze procaine following topical application, which possibly limits its pharmacological effect. Skin from minipig used as an animal model for assessing transdermal drug preparations had similar capacity to hydrolyze esters to human skin.

  4. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy.

    PubMed

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M

    2017-02-16

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2-/-IL2Rγ-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair.

  5. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  6. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  7. MicroRNA-Mediated Suppression of Oncolytic Adenovirus Replication in Human Liver

    PubMed Central

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3′ untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver. PMID:23349911

  8. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    PubMed

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  9. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis.

    PubMed

    Wang, Xiaoyun; Chen, Wenjun; Huang, Yan; Sun, Jiufeng; Men, Jingtao; Liu, Hailiang; Luo, Fang; Guo, Lei; Lv, Xiaoli; Deng, Chuanhuan; Zhou, Chenhui; Fan, Yongxiu; Li, Xuerong; Huang, Lisi; Hu, Yue; Liang, Chi; Hu, Xuchu; Xu, Jin; Yu, Xinbing

    2011-10-24

    Clonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome. We combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines. This study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control.

  10. Induction of three-dimensional assembly of human liver cells by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Yoffe, B.

    1999-01-01

    The establishment of long-term cultures of functional primary human liver cells (PHLC) is formidable. Developed at NASA, the Rotary Cell Culture System (RCCS) allows the creation of the unique microgravity environment of low shear force, high-mass transfer, and 3-dimensional cell culture of dissimilar cell types. The aim of our study was to establish long-term hepatocyte cultures in simulated microgravity. PHLC were harvested from human livers by collagenase perfusion and were cultured in RCCS. PHLC aggregates were readily formed and increased up to 1 cm long. The expansion of PHLC in bioreactors was further evaluated with microcarriers and biodegradable scaffolds. While microcarriers were not conducive to formation of spheroids, PHLC cultured with biodegradable scaffolds formed aggregates up to 3 cm long. Analyses of PHLC spheroids revealed tissue-like structures composed of hepatocytes, biliary epithelial cells, and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes surrounded by complex stromal structures and reticulin fibers, bile canaliculi with multiple microvilli, and tight cellular junctions. Albumin mRNA was expressed throughout the 60-d culture. A simulated microgravity environment is conducive to maintaining long-term cultures of functional hepatocytes. This model system will assist in developing improved protocols for autologous hepatocyte transplantation, gene therapy, and liver assist devices, and facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo.

  11. Induction of three-dimensional assembly of human liver cells by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Yoffe, B.

    1999-01-01

    The establishment of long-term cultures of functional primary human liver cells (PHLC) is formidable. Developed at NASA, the Rotary Cell Culture System (RCCS) allows the creation of the unique microgravity environment of low shear force, high-mass transfer, and 3-dimensional cell culture of dissimilar cell types. The aim of our study was to establish long-term hepatocyte cultures in simulated microgravity. PHLC were harvested from human livers by collagenase perfusion and were cultured in RCCS. PHLC aggregates were readily formed and increased up to 1 cm long. The expansion of PHLC in bioreactors was further evaluated with microcarriers and biodegradable scaffolds. While microcarriers were not conducive to formation of spheroids, PHLC cultured with biodegradable scaffolds formed aggregates up to 3 cm long. Analyses of PHLC spheroids revealed tissue-like structures composed of hepatocytes, biliary epithelial cells, and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes surrounded by complex stromal structures and reticulin fibers, bile canaliculi with multiple microvilli, and tight cellular junctions. Albumin mRNA was expressed throughout the 60-d culture. A simulated microgravity environment is conducive to maintaining long-term cultures of functional hepatocytes. This model system will assist in developing improved protocols for autologous hepatocyte transplantation, gene therapy, and liver assist devices, and facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo.

  12. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans.

    PubMed

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth; Cherñavsky, Alejandra Claudia

    2017-01-01

    The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research.

  13. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans

    PubMed Central

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth

    2017-01-01

    Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research. PMID:28257515

  14. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis

    PubMed Central

    2011-01-01

    Background Clonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome. Results We combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines. Conclusions This study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control. PMID:22023798

  15. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers.

    PubMed

    op den Dries, S; Karimian, N; Sutton, M E; Westerkamp, A C; Nijsten, M W N; Gouw, A S H; Wiersema-Buist, J; Lisman, T; Leuvenink, H G D; Porte, R J

    2013-05-01

    In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion may reduce preservation injury, improve graft viability and potentially allows ex vivo assessment of graft viability before transplantation. We have studied the feasibility of normothermic machine perfusion in four discarded human donor livers. Normothermic machine perfusion consisted of pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion for 6 h. Two hollow fiber membrane oxygenators provided oxygenation of the perfusion fluid. Biochemical markers in the perfusion fluid reflected minimal hepatic injury and improving function. Lactate levels decreased to normal values, reflecting active metabolism by the liver (mean lactate 10.0 ± 2.3 mmol/L at 30 min to 2.3 ± 1.2 mmol/L at 6 h). Bile production was observed throughout the 6 h perfusion period (mean rate 8.16 ± 0.65 g/h after the first hour). Histological examination before and after 6 h of perfusion showed well-preserved liver morphology without signs of additional hepatocellular ischemia, biliary injury or sinusoidal damage. In conclusion, this study shows that normothermic machine perfusion of human donor livers is technically feasible. It allows assessment of graft viability before transplantation, which opens new avenues for organ selection, therapeutic interventions and preconditioning.

  16. Differential Expression of Matrix-Metalloproteinase-1 and -2 Genes in Normal and Fibrotic Human Liver

    PubMed Central

    Milani, Stefano; Herbst, Hermann; Schuppan, Detlef; Grappone, Cecilia; Pellegrini, Giulia; Pinzani, Massimo; Casini, Alessandro; Calabró, Antonio; Ciancio, Giuseppe; Stefanini, Francesco; Ciancio, Andrew K.; Surrenti, Calogero

    1994-01-01

    Altered degradation of extracellular matrix has been implicated in the pathogenesis of hepatic fibrosis. We investigated levels and cellular sites of gene expression of two major collagebn-degrading enzymes, matrix-metalloproteinase (MMP)-l (fibroblast type-interstitial collagenase)and MMP-2 (72-kd gelatinase, type IV collagenase) in five normal and 18 fibrotic human livers as well as in cultured human hepatic fat-storing cells by Northern blot analysis and in situ hybridization. Fatstoring cells expressed both MMP-1 and MMP-2 RNA in vitro. In vivo, MMP-1 was undetectable in mesenchymal and parenchymal cells of all liver specimens, whereas MMP-2 transcripts were expressed in all livers by vimentin-positive, CD68 negative mesenchymal cells. Mesenchymal cells of all fibrotic livers displayed high transcript levels of transforming growth factor-β1, which is known to modulate MMP expression. Along with de novo fibrogenesis and possibly influenced by transforming growth factor-β1, expression of MMP-2 in the absence of MMP-1 expression may be responsible for the quantitative and qualitative changes of extracellular matrix observed in chronic liver disease. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 7 PMID:8129038

  17. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy

    PubMed Central

    Tobe, Ryuta; Carlson, Bradley A.; Tsuji, Petra A.; Lee, Byeong Jae; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2015-01-01

    A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system. PMID:26569310

  18. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization.

    PubMed

    Mazza, Giuseppe; Al-Akkad, Walid; Telese, Andrea; Longato, Lisa; Urbani, Luca; Robinson, Benjamin; Hall, Andrew; Kong, Kenny; Frenguelli, Luca; Marrone, Giusi; Willacy, Oliver; Shaeri, Mohsen; Burns, Alan; Malago, Massimo; Gilbertson, Janet; Rendell, Nigel; Moore, Kevin; Hughes, David; Notingher, Ioan; Jell, Gavin; Del Rio Hernandez, Armando; De Coppi, Paolo; Rombouts, Krista; Pinzani, Massimo

    2017-07-17

    The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular liver tissue cubes (ALTCs) using normal liver tissue unsuitable for transplantation. The application of high shear stress is a key methodological determinant accelerating the process of tissue decellularization while maintaining ECM protein composition, 3D-architecture and physico-chemical properties of the native tissue. ALTCs were engineered with human parenchymal and non-parenchymal liver cell lines (HepG2 and LX2 cells, respectively), human umbilical vein endothelial cells (HUVEC), as well as primary human hepatocytes and hepatic stellate cells. Both parenchymal and non-parenchymal liver cells grown in ALTCs exhibited markedly different gene expression when compared to standard 2D cell cultures. Remarkably, HUVEC cells naturally migrated in the ECM scaffold and spontaneously repopulated the lining of decellularized vessels. The metabolic function and protein synthesis of engineered liver scaffolds with human primary hepatocytes reseeded under dynamic conditions were maintained. These results provide a solid basis for the establishment of effective protocols aimed at recreating human liver tissue in vitro.

  19. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes

    SciTech Connect

    Yamano, Shigeru; Tatsuno, Jun; Gonzalez, F.J. )

    1990-02-06

    Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a {lambda}gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu{sup 160}{yields}His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94% amino acid similarity with IIA3 and IIA3v. The three cDNAs were inserted into vaccinia virus, and recombinant viruses were used to infect human hepatoma Hep G2 cells. Only IIA3 was able to produce an enzyme that had a reduced CO-bound spectrum with a {lambda}{sub max} at 450 nm. This expressed enzyme was able to carry out coumarin 7-hydroxylation and ethoxycoumarin O-deethylation. cDNA-expressed IIA3v and IIA4 failed to incorporate heme and were enzymatically inactive. Analysis of IIA proteins in human liver microsomes, using antibody against rat IIA2, revealed two proteins of 49 and 50 kDa, the former of which appeared to correlate with human microsomal coumarin 7-hydroxylase activity. A more striking correlation was found between IIa mRNA and enzyme activity. The rat antibody was able to completely abolish coumarin 7-hydroxylase activity in 12 liver samples. These data establish that the CYP2A3 gene product is primarily responsible for coumarin 7-hydroxylase activity in human liver. The level of expression of this activity varied up to 40-fold between livers. Levels of IIA mRNA also varied significantly between liver specimens, and three specimens had no detectable mRNA.

  20. Hepatogenic differentiation from human adipose-derived stem cells and application for mouse acute liver injury.

    PubMed

    Guo, De-Liang; Wang, Zhi-Gang; Xiong, Liang-Kun; Pan, Le-Yu; Zhu, Qian; Yuan, Yu-Feng; Liu, Zhi-Su

    2017-03-01

    Adipose-derived stem cells (ADSCs) derived from adipose tissue have the capacity to differentiate into endodermal, mesoderm, and ectodermal cell lineages in vitro, which are an ideal engraft in tissue-engineered repair. In this study, human ADSCs were isolated from subcutaneous fat. The markers of ADSCs, CD13, CD71, CD73, CD90, CD105, CD166, CYP3A4, and ALB were detected by immunofluorescence assays. Human ADSCs were cultured in a specific hepatogenesis differentiation medium containing HGF, bFGF, nicotinamide, ITS, and oncostatin M for hepatogenic differentiation. The hepatocyte markers were analyzed using immunofluorescence and real-time PCR after dramatic changes in morphology. Hepatocytes derived from ADSCs or ADSCs were transplanted into the mice of liver injury for observation cells colonization and therapy in liver tissue. The result demonstrated that human ADSCs were positive for the CD13, CD71, CD73, CD90, CD105, and CD166 but negative for hepatocyte markers, ALB and CYP3A4. After hepatogenic differentiation, the hepatocytes were positive for liver special markers, gene expression level showed a time-lapse increase with induction time. Human ADSCs or ADSCs-derived hepatocyte injected into the vein could improve liver function repair and functionally rescue the CCl4-treated mice with liver injury, but the ADSCs transplantation was better than ADSCs-derived hepatocyte transplantation. In conclusion, our research shows that a population of hepatocyte can be specifically generated from human ADSCs and that cells may allow for participation in tissue-repair.

  1. Variability in Expression of CYP3A5 in Human Fetal Liver.

    PubMed

    Vyhlidal, Carrie A; Pearce, Robin E; Gaedigk, Roger; Calamia, Justina C; Shuster, Diana L; Thummel, Kenneth E; Leeder, J Steven

    2015-08-01

    Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.

  2. Epigenetic silencing of glutaminase 2 in human liver and colon cancers

    PubMed Central

    2013-01-01

    Background Glutaminase 2 (Gls2) is a p53 target gene and is known to play an important role in energy metabolism. Gls2 has been reported to be downregulated in human hepatocellular carcinomas (HCC). However, the underlying mechanism responsible for its downregulation is still unclear. Here, we investigated Gls2 expression and its promoter methylation status in human liver and colon cancers. Methods mRNA expression of Gls2 was determined in human liver and colon cancer cell lines and HCC tissues by real-time PCR and promoter methylation was analyzed by methylation-specific PCR (MSP) and validated by bisulfite genome sequencing (BGS). Cell growth was determined by colony formation assay and MTS assay. Statistical analysis was performed by Wilcoxon matched-pairs test or non-parametric t test. Results First, we observed reduced Gls2 mRNA level in a selected group of liver and colon cancer cell lines and in the cancerous tissues from 20 HCC and 5 human colon cancer patients in comparison to their non-cancerous counter parts. Importantly, the lower level of Gls2 in cancer cells was closely correlated to its promoter hypermethylation; and chemical demethylation treatment with 5-aza-2′-deoxycytidine (Aza) increased Gls2 mRNA level in both liver and colon cancer cells, indicating that direct epigenetic silencing suppressed Gls2 expression by methylation. Next, we further examined this correlation in human HCC tissues, and 60% of primary liver tumor tissues had higher DNA methylation levels when compared with adjacent non-tumor tissues. Detailed methylation analysis of 23 CpG sites at a 300-bp promoter region by bisulfite genomic sequencing confirmed its methylation. Finally, we examined the biological function of Gls2 and found that restoring Gls2 expression in cancer cells significantly inhibited cancer cell growth and colony formation ability through induction of cell cycle arrest. Conclusions We provide evidence showing that epigenetic silencing of Gls2 via promoter

  3. Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6.

    PubMed

    Crosby, H A; Hubscher, S; Fabris, L; Joplin, R; Sell, S; Kelly, D; Strain, A J

    1998-03-01

    The term oval cell describes small cells with oval nuclei that arise in the periphery of the portal tracts in rat models of hepatocarcinogenesis and injury and can differentiate into either hepatocytes or bile duct cells, ie, are bipotential. The presence of such cells in human liver is controversial. Here, immunolocalization of OV-6 and two biliary markers, cytokeratin 19 (CK-19) and human epithelial antigen 125 (HEA-125) is compared in normal adult human livers and in primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) liver sections. CK-19 and HEA-125 stained bile ducts and ductules in normal liver as well as proliferating ductular structures in diseased livers. OV-6 did not label ducts or ductules in normal liver, but in PBC and PSC stained numerous proliferating ductular and periductular cells and lobular hepatocytes. In PBC, discrete OV-6-positive cells with a mature biliary-cell-like morphology were seen integrated into some intact bile ducts as well as occasional small immature oval-like cells. In addition, in PSC, hepatocytes in regenerating lobules were also strongly stained with OV-6, and on close inspection, in both PBC and PSC, oval cells and small hepatocytes at the margins of the lobules were strongly labeled. In contrast to the rat liver, OV-6 and CK-19 staining did not always co-localize. It is proposed that the small OV-6-positive oval cells are analogous to those seen in rat models and may represent human liver progenitor cells that may differentiate into OV-6-positive ductal cells or lobular hepatocytes.

  4. Obstructive jaundice leads to accumulation of oxidized low density lipoprotein in human liver tissue.

    PubMed

    Comert, Mustafa; Ustundag, Yucel; Tekin, Ishak Ozel; Gun, Banu Dogan; Barut, Figen

    2006-08-21

    Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice. Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.

  5. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    PubMed

    Yuan, Fei; Snapp, Erik L; Novikoff, Phyllis M; Suadicani, Sylvia O; Spray, David C; Potvin, Barry; Wolkoff, Allan W; Stanley, Pamela

    2014-01-01

    The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  6. Human Liver Cell Trafficking Mutants: Characterization and Whole Exome Sequencing

    PubMed Central

    Yuan, Fei; Snapp, Erik L.; Novikoff, Phyllis M.; Suadicani, Sylvia O.; Spray, David C.; Potvin, Barry; Wolkoff, Allan W.; Stanley, Pamela

    2014-01-01

    The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α’’. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype. PMID:24466322

  7. Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis

    PubMed Central

    Najimi, Mustapha; Stéphenne, Xavier; Sempoux, Christine; Sokal, Etienne

    2014-01-01

    AIM: To investigate the activity and expression of EAAT2 glutamate transporter in both in vitro and in vivo models of cholestasis. METHODS: This study was conducted on human hepatoblastoma HepG2 cell cultures, the liver of bile duct ligated rats and human specimens from cholestatic patients. EAAT2 glutamate transporter activity and expression were analyzed using a substrate uptake assay, immunofluorescence, reverse transcription-polymerase chain reaction, and immunohistochemistry, respectively. RESULTS: In HepG2 cells, cholestasis was mimicked by treating cells with the protein kinase C activator, phorbol 12-myristate 13-acetate. Under such conditions, EAAT2 transporter activity was decreased both at the level of substrate affinity and maximal transport velocity. The decreased uptake was correlated with intracellular translocation of EAAT2 molecules as demonstrated using immunofluorescence. In the liver of bile duct ligated rats, an increase in EAAT2 transporter protein expression in hepatocytes was demonstrated using immunohistochemistry. The same findings were observed in human liver specimens of cholestasis in which high levels of γ-glutamyl transpeptidase were documented in patients with biliary atresia and progressive familial intrahepatic cholestasis type 3. CONCLUSION: This study demonstrates the alteration in glutamate handling by hepatocytes in liver cholestasis and suggests a potential cross-talk between glutamatergic and bile systems. PMID:24587631

  8. Long Term Maintenance of a Microfluidic 3-D Human Liver Sinusoid

    PubMed Central

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J.; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L.; Usta, O. Berk

    2016-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA’s initiative to replicate and replace chronic and acute drug testing in animals. For this purpose we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic), urea excretion (detoxification) was observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies. PMID:26152452

  9. Long-term maintenance of a microfluidic 3D human liver sinusoid.

    PubMed

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L; Usta, Osman Berk

    2016-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA's initiative to replicate and replace chronic and acute drug testing in animals. For this purpose, we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip, using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic) and urea excretion (detoxification) were observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies.

  10. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells

    PubMed Central

    Tian, Lipeng; Deshmukh, Abhijeet; Prasad, Neha; Jang, Yoon-Young

    2016-01-01

    Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults. PMID:27570479

  11. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated.

  12. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.

    PubMed

    Untaroiu, Costin D; Lu, Yuan-Chiao; Siripurapu, Sundeep K; Kemper, Andrew R

    2015-01-01

    The rapid advancement in computational power has made human finite element (FE) models one of the most efficient tools for assessing the risk of abdominal injuries in a crash event. In this study, specimen-specific FE models were employed to quantify material and failure properties of human liver parenchyma using a FE optimization approach. Uniaxial tensile tests were performed on 34 parenchyma coupon specimens prepared from two fresh human livers. Each specimen was tested to failure at one of four loading rates (0.01s(-1), 0.1s(-1), 1s(-1), and 10s(-1)) to investigate the effects of rate dependency on the biomechanical and failure response of liver parenchyma. Each test was simulated by prescribing the end displacements of specimen-specific FE models based on the corresponding test data. The parameters of a first-order Ogden material model were identified for each specimen by a FE optimization approach while simulating the pre-tear loading region. The mean material model parameters were then determined for each loading rate from the characteristic averages of the stress-strain curves, and a stochastic optimization approach was utilized to determine the standard deviations of the material model parameters. A hyperelastic material model using a tabulated formulation for rate effects showed good predictions in terms of tensile material properties of human liver parenchyma. Furthermore, the tissue tearing was numerically simulated using a cohesive zone modeling (CZM) approach. A layer of cohesive elements was added at the failure location, and the CZM parameters were identified by fitting the post-tear force-time history recorded in each test. The results show that the proposed approach is able to capture both the biomechanical and failure response, and accurately model the overall force-deflection response of liver parenchyma over a large range of tensile loadings rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. EXPRESSION OF CYP4F2 IN HUMAN LIVER AND KIDNEY: ASSESSMENT USING TARGETED PEPTIDE ANTIBODIES

    PubMed Central

    Hirani, Vandana; Yarovoy, Anton; Kozeska, Anita; Magnusson, Ronald P.; Lasker, Jerome M.

    2008-01-01

    P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61–74 (WGHQGMVNPTEEG) and 65–77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly-variable CYP4F2 expression in liver (16.4 ± 18.6 pmol/mg microsomal protein; n = 29) and kidney cortex (3.9 ± 3.8 pmol/mg; n = 10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r ≥ 0.63; p < 0.05) with leukotriene B4 and arachidonate ω-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate ω-hydroxylase in human liver. PMID:18662666

  14. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease.

    PubMed

    Lake, April D; Novak, Petr; Hardwick, Rhiannon N; Flores-Keown, Brieanna; Zhao, Fei; Klimecki, Walter T; Cherrington, Nathan J

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) may progress from simple steatosis to severe, nonalcoholic steatohepatitis (NASH) in 7%-14% of the U.S. population through a second "hit" in the form of increased oxidative stress and inflammation. Endoplasmic reticulum (ER) stress signaling and the unfolded protein response (UPR) are triggered when high levels of lipids and misfolded proteins alter ER homeostasis creating a lipotoxic environment within NAFLD livers. The objective of this study was to determine the coordinate regulation of ER stress-associated genes in the progressive stages of human NAFLD. Human liver samples categorized as normal, steatosis, NASH (Fatty), and NASH (Not Fatty) were analyzed by individual Affymetrix GeneChip Human 1.0 ST microarrays, immunoblots, and immunohistochemistry. A gene set enrichment analysis was performed on autophagy, apoptosis, lipogenesis, and ER stress/UPR gene categories. An enrichment of downregulated genes in the ER stress-associated lipogenesis and ER stress/UPR gene categories was observed in NASH. Conversely, an enrichment of upregulated ER stress-associated genes for autophagy and apoptosis gene categories was observed in NASH. Protein expression of the adaptive liver response protein STC2 and the transcription factor X-box binding protein 1 spliced (XBP-1s) were significantly elevated among NASH samples, whereas other downstream ER stress proteins including CHOP, ATF4, and phosphorylated JNK and eIF2α were not significantly changed in disease progression. Increased nuclear accumulation of total XBP-1 protein was observed in steatosis and NASH livers. The findings reveal the presence of a coordinated, adaptive transcriptional response to hepatic ER stress in human NAFLD.

  15. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment.

    PubMed

    Chaudhari, Pooja; Tian, Lipeng; Deshmukh, Abhijeet; Jang, Yoon-Young

    2016-09-01

    Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations. © 2016 by the Society for Experimental Biology and Medicine.

  16. Alpha-1-antitrypsin deficiency: from genoma to liver disease. PiZ mouse as model for the development of liver pathology in human.

    PubMed

    Giovannoni, Isabella; Callea, Francesco; Stefanelli, Marta; Mariani, Riccardo; Santorelli, Filippo M; Francalanci, Paola

    2015-01-01

    Homozygous individuals with alpha-1-antitrypsin deficiency (AATD) type PiZ have an increased risk of chronic liver disease and hepatocellular carcinoma (HCC). It is noteworthy that HCCs are composed by hepatocytes without accumulation of AAT, but the reason for this remains unclear. The aim of this study was to determine liver pathology in PiZ mice, focusing the attention on the distribution of AAT globules in normal liver, regenerative foci and neoplastic nodules. Liver of 79 PiZ mice and 18 wild type (Wt) was histologically analysed for steatosis, clear cell foci, hyperplasia and neoplasia. The expression of human-AAT transgene and murine AAT, in non-neoplastic liver and in hyperplastic/neoplastic nodules was tested by qPCR and qRT-PCR. RT-PCR was used to study expression of hepatic markers: albumin, α-foetoprotein, transthyretin, AAT, glucose-6-phospate, tyrosine aminotransferase. Liver pathology was seen more frequently in PiZ (47/79) than in Wt (5/18) and its development was age related. In older PiZ mice (18-24 m), livers showed malignant tumours (HCC and angiosarcoma) (17/50), hyperplastic nodules (28/50), non-specific changes (33/50), whereas only 9/50 were normal. Both human-AATZ DNA and mRNA showed no differences between tumours/nodules and normal liver, while murine-AAT mRNA was reduced in tumours/nodules. Accumulation of AAT is associated with an increased risk of liver nodules. The presence of globule-devoid hepatocytes and the reduced expression of murine-AAT mRNA in hyperplastic and neoplastic nodules suggest that these hepatic lesions in AATD could originate from proliferating dedifferentiated cells, lacking AAT storage and becoming capable of AFP re-expression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model

    PubMed Central

    Gröger, Marko; Rennert, Knut; Giszas, Benjamin; Weiß, Elisabeth; Dinger, Julia; Funke, Harald; Kiehntopf, Michael; Peters, Frank T.; Lupp, Amelie; Bauer, Michael; Claus, Ralf A.; Huber, Otmar; Mosig, Alexander S.

    2016-01-01

    Liver dysfunction is an early event in sepsis-related multi-organ failure. We here report the establishment and characterization of a microfluidically supported in vitro organoid model of the human liver sinusoid. The liver organoid is composed of vascular and hepatocyte cell layers integrating non-parenchymal cells closely reflecting tissue architecture and enables physiological cross-communication in a bio-inspired fashion. Inflammation-associated liver dysfunction was mimicked by stimulation with various agonists of toll-like receptors. TLR-stimulation induced the release of pro- and anti-inflammatory cytokines and diminished expression of endothelial VE-cadherin, hepatic MRP-2 transporter and apolipoprotein B (ApoB), resulting in an inflammation-related endothelial barrier disruption and hepatocellular dysfunction in the liver organoid. However, interaction of the liver organoid with human monocytes attenuated inflammation-related cell responses and restored MRP-2 transporter activity, ApoB expression and albumin/urea production. The cellular events observed in the liver organoid closely resembled pathophysiological responses in the well-established sepsis model of peritoneal contamination and infection (PCI) in mice and clinical observations in human sepsis. We therefore conclude that this human liver organoid model is a valuable tool to investigate sepsis-related liver dysfunction and subsequent immune cell-related tissue repair/remodeling processes. PMID:26902749

  18. Excessive Hepatic Mitochondrial TCA Cycle and Gluconeogenesis in Humans with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Sunny, Nishanth E.; Parks, Elizabeth J.; Browning, Jeffrey D.; Burgess, Shawn C.

    2013-01-01

    Summary Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using 2H and 13C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ∼2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage. PMID:22152305

  19. Experimental chronic active hepatits in rabbits following immunization with human liver proteins

    PubMed Central

    Büschenfelde, K. H. Meyer Zum; Kössling, F. K.; Miescher, P. A.

    1972-01-01

    Two liver-specific antigens are known: a water soluble protein (LP-2) and a water insoluble macromolecular low density lipoprotein (LP-1). In this paper the relative role of the two antigens in the development of experimental immune hepatitis has been investigated. Immunization of rabbits with a human preparation containing both antigens, led in all animals to lesions characteristic of an immune hepatitis. Immunization of the animals with a purified water soluble liver protein proved less efficient: only two out of six animals developed characteristic lesions which were less severe than those in the first group. It was deduced that although not a prerequisite, the liver-specific lipoprotein plays an important supportive role in the development of immune hepatitis. ImagesFig. 2Fig. 1Fig. 3 PMID:4338952

  20. Cytotoxicity of gold nanoclusters in human liver cancer cells

    PubMed Central

    Yang, Yanjie; Nan, Jing; Hou, Jianwen; Yu, Bianfei; Zhao, Tong; Xu, Shuang; Lv, Shuangyu; Zhang, Haixia

    2014-01-01

    In this study, we synthesized water-soluble fluorescent gold nanoclusters (Au NCs) stabilized with dihydrolipoic acid (DHLA). The cytotoxicity of these Au NCs was then assessed in the normal human hepatic cell line (L02) and the human hepatoma cell line (HepG2) at different exposure times. Cell viability was normal in both cell lines at 24 hours and 48 hours; however, the growth of HepG2 cells was significantly inhibited at 72 hours. The change in lactate dehydrogenase level was strongly correlated with cell viability after 72 hours incubation with DHLA–capped Au NCs, and the increase in cellular reactive oxygen species may be related to the decrease in cell viability. Growth inhibition of HepG2 cells was possibly due to difficultly passing the checkpoint between G1 phase and S phase. The anticancer activity of DHLA–capped Au NCs should be considered when used in biomedical imaging and drug delivery. PMID:25473282

  1. In vivo time-harmonic multifrequency elastography of the human liver

    NASA Astrophysics Data System (ADS)

    Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf

    2014-04-01

    Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.

  2. Novel hepatic microRNAs upregulated in human nonalcoholic fatty liver disease.

    PubMed

    Soronen, Jarkko; Yki-Järvinen, Hannele; Zhou, You; Sädevirta, Sanja; Sarin, Antti-Pekka; Leivonen, Marja; Sevastianova, Ksenia; Perttilä, Julia; Laurila, Pirkka-Pekka; Sigruener, Alexander; Schmitz, Gerd; Olkkonen, Vesa M

    2016-01-01

    MicroRNAs (miRNAs) control gene expression by reducing mRNA stability and translation. We aimed to identify alterations in human liver miRNA expression/function in nonalcoholic fatty liver disease (NAFLD). Subjects with the highest (median liver fat 30%, n = 15) and lowest (0%, n = 15) liver fat content were selected from >100 obese patients for miRNA profiling of liver biopsies on microarrays carrying probes for 1438 human miRNAs (a cross-sectional study). Target mRNAs and pathways were predicted for the miRNAs most significantly upregulated in NAFLD, their cell-type-specific expression was investigated by quantitative PCR (qPCR), and the transcriptome of immortalized human hepatocytes (IHH) transfected with the miRNA with the highest number of predicted targets, miR-576-5p, was studied. The screen revealed 42 miRNAs up- and two downregulated in the NAFLD as compared to non-NAFLD liver. The miRNAs differing most significantly between the groups, miR-103a-2*, miR-106b, miR-576-5p, miRPlus-I137*, miR-892a, miR-1282, miR-3663-5p, and miR-3924, were all upregulated in NAFLD liver. Target pathways predicted for these miRNAs included ones involved in cancer, metabolic regulation, insulin signaling, and inflammation. Consistent transcriptome changes were observed in IHH transfected with miR-576-5p, and western analysis revealed a marked reduction of the RAC1 protein belonging to several miR-576-5p target pathways. To conclude, we identified 44 miRNAs differentially expressed in NAFLD versus non-NAFLD liver, 42 of these being novel in the context of NAFLD. The study demonstrates that by applying a novel study set-up and a broad-coverage array platform one can reveal a wealth of previously undiscovered miRNA dysregulation in metabolic disease.

  3. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  4. Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Haigou, Risa; Miyazawa, Mitsuo

    2012-01-01

    We examined the in vitro metabolism of (+)-terpinen-4-ol by human liver microsomes and recombinant enzymes. The biotransformation of (+)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Terpinen-4-ol was found to be oxidized to (+)-(1R,2S,4S)-1,2-epoxy-p-menthan-4-ol, (+)-(1S,2R,4S)-1,2-epoxy-p-menthan-4-ol, and (4S)-p-menth-1-en-4,8-diol by human liver microsomal P450 enzymes. The identities of (+)-terpinen-4-ol metabolites were determined through the relative abundance of mass fragments and retention times on GC-MS. Of 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6, and CYP3A4 were found to catalyze the oxidation of (+)-terpinen-4-ol. Based on several lines of evidence, CYP2A6 and CYP3A4 were determined to be major enzymes involved in the oxidation of (+)-terpinen-4-ol by human liver microsomes. First, of the 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6 and CYP3A4 catalyzed oxidation of (+)-terpinen-4-ol. Second, oxidation of (+)-terpinen-4-ol was inhibited by (+)-menthofuran and ketoconazole, inhibitors known to be specific for these enzymes. Finally, there was a good correlation between CYP2A6 and CYP3A4 activities and (+)-terpinen-4-ol oxidation activities in the 10 human liver microsomes.

  5. Cyclophilin D-Sensitive Mitochondrial Permeability Transition in Adult Human Brain and Liver Mitochondria

    PubMed Central

    Morota, Saori; Chen, Li; Matsuyama, Nagahisa; Suzuki, Yoshiaki; Nakajima, Satoshi; Tanoue, Tadashi; Omi, Akibumi; Shibasaki, Futoshi; Shimazu, Motohide; Ikeda, Yukio; Uchino, Hiroyuki; Elmér, Eskil

    2011-01-01

    Abstract The mitochondrial permeability transition (mPT) is considered to be a major cause of cell death under a variety of pathophysiological conditions of the central nervous system (CNS) and other organs. Pharmacological inhibition or genetic knockout of the matrix protein cyclophilin D (CypD) prevents mPT and cell degeneration in several models of brain injury. If these findings in animal models are translatable to human disease, pharmacological inhibition of mPT offers a promising therapeutic target. The objective of this study was to validate the presence of a CypD-sensitive mPT in adult human brain and liver mitochondria. In order to perform functional characterization of human mitochondria, fresh tissue samples were obtained during hemorrhage or tumor surgery and mitochondria were rapidly isolated. Mitochondrial calcium retention capacity, a quantitative assay for mPT, was significantly increased by the CypD inhibitor cyclosporin A in both human brain and liver mitochondria, whereas thiol-reactive compounds and oxidants sensitized mitochondria to calcium-induced mPT. Brain mitochondria underwent swelling upon calcium overload, which was reversible upon calcium removal. To further explore mPT of human mitochondria, liver mitochondria were demonstrated to exhibit several classical features of the mPT phenomenon, such as calcium-induced loss of membrane potential and respiratory coupling, as well as release of the pro-apoptotic protein cytochrome c. We concluded that adult viable human brain and liver mitochondria possess an active CypD-sensitive mPT. Our findings support the rationale of CypD and mPT inhibition as pharmacological targets in acute and chronic neurodegeneration. PMID:21121808

  6. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    SciTech Connect

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  7. [Effect of combined administration of Angelica polysaccharide and cytarabine on liver of human leukemia NOD/SCID mouse model].

    PubMed

    Zhu, Jia-Hong; Xu, Chun-Yan; Mu, Xin-Yi; Liu, Jun; Zhang, Meng-Si; Jia, Dao-Yong; Zhang, Yan-Yan; Huang, Guo-Ning; Wang, Ya-Ping

    2014-01-01

    Leukemia is a type of malignant tumors of hematopoietic system with the abnormal increased immature leukemia cells showing metastasis and invasion ability. Liver is one of the main targets of the leukemia cells spread to, where they may continue to proliferate and differentiate and cause liver function damage, even liver failure. Our previous studies showed that Angelica polysscharides (APS), the main effective components in Angelica sinensis of Chinese traditional medicine, was able to inhibit the proliferation and induced differentiation of the leukemia cells, however, its effect on the liver during the treatment remains elucidated. In the present study, the human leukemia NOD/SCID mouse model were established by implantation human leukemia K562 cells line, then the leukemia mouse were treated with APS, Ara-c or APS + Ara-c respectively by peritoneal injection for 14 days, to explore the effect and mechanism of the chemicals on the mouse liver. Compared to the human leukemia NOD/SCID mouse model group with the treatments of APS, Ara-c and APS + Ara-c, We found that severe liver damage and pathological changes of the liver were able to alleviate: First, the number of white blood cells in the peripheral blood was significantly lower and with less transplanted K562 leukemia cells; Second, liver function damage was alleviated as liver function tests showed that alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBiL) were significantly reduced, while the albumin (Alb) was notably increased; Third, liver antioxidant ability was improved as the activities of the antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were significantly increased, and the contents of GSH and malonaldehyde (MDA) were decreased significantly in the liver; Fourth, the inflammation of the liver was relieved as the level of IL-1beta and IL-6, the inflammatory cytokines, were decreased significantly in the liver. Fifth, liver index

  8. Detection of human herpesvirus-7 by qualitative nested-PCR: comparison between healthy individuals and liver transplant recipients.

    PubMed

    Thomasini, Ronaldo Luis; Martins, Juliana de Moraes; Parola, Daniela Corte; Bonon, Sandra Helena Alves; Boin, Ilka de Fátima Santana Ferreira; Leonardi, Luis Sérgio; Leonardi, Marília; Costa, Sandra Cecília Botelho

    2008-01-01

    Diagnosis of human herpesvirus-7 active infection in transplant patients has proved difficult, because this virus is ubiquitous and can cause persistent infections in the host. The significance of viral DNA detected in leukocytes by PCR is unclear and cross-reaction in serological tests may occur. This study aimed to evaluate nested-PCR to detect human herpesvirus-7 active infection in liver transplant recipients compared to healthy individuals. human herpesvirus-7 nested-PCR was performed on leukocytes and sera of 53 healthy volunteers and sera of 29 liver transplant recipients. In healthy volunteers, human herpesvirus-7 was detected in 28.3% of leukocytes and 0% of serum. human herpesvirus-7 was detected in sera of 48.2% of the liver transplant recipients. Nested-PCR on DNA extracted from leukocytes detected latent infection and the study suggests that nested-PCR performed on serum could be useful to detect human herpesvirus-7 active infection in liver transplant recipients.

  9. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations.

  10. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome.

    PubMed

    Clotman, Frédéric; Libbrecht, Louis; Killingsworth, Murray C; Loo, Christine C K; Roskams, Tania; Lemaigre, Frédéric P

    2008-03-01

    Meckel syndrome is an autosomal-recessive disease characterized by a combination of renal cysts, anomalies of the central nervous system, polydactyly and ductal plate malformations (DPM), which are hepatic anomalies consisting of excessive and abnormal foetal biliary structures. Among the genomic loci associated with Meckel syndrome, mutations in four genes were recently identified. These genes code for proteins associated with primary cilia and are possibly involved in cell differentiation. The aim of the present work was to investigate the formation of the primary cilia and the differentiation of the hepatic cells in foetuses with Meckel syndrome. Sections of livers from human foetuses with Meckel syndrome were analysed by immunofluorescence, immunohistochemistry and electron microscopy. The primary cilia of the biliary cells were absent in some Meckel foetuses, but were present in others. In addition, defects in hepatic differentiation were observed in Meckel livers, as evidenced by the presence of hybrid cells co-expressing hepatocytic and biliary markers. Defects in cilia formation occur in some Meckel livers, and most cases show DPM associated with abnormal hepatic cell differentiation. Because differentiation precedes the formation of the cilia during liver development, we propose that defective differentiation may constitute the initial defect in the liver of Meckel syndrome foetuses.

  11. Transplantation of human stem cell-derived hepatocytes in an animal model of acute liver failure.

    PubMed

    Ramanathan, Rajesh; Pettinato, Giuseppe; Beeston, John T; Lee, David D; Wen, Xuejun; Mangino, Martin J; Fisher, Robert A

    2015-08-01

    Hepatocyte cell transplantation can be life-saving in patients with acute liver failure (ALF); however, primary human hepatocyte transplantation is limited by the scarcity of donor hepatocytes. We investigated the effect of stem cell-derived, hepatocyte-like cells in an animal xenotransplant model of ALF. Intraperitoneal d-galactosamine was used to develop a lethal model of ALF in the rat. Human induced pluripotent stem cells (iPSC), human mesenchymal stem cells, and human iPSC combined with human endothelial cells (iPSC + EC) were differentiated into hepatocyte-like cells and transplanted into the spleens of athymic nude rats with ALF. A reproducible lethal model of ALF was achieved with nearly 90% death within 3 days. Compared with negative controls, rats transplanted with stem cell-derived, hepatocyte-like cells were associated with increased survival. Human albumin was detected in the rat serum 3 days after transplantation in more than one-half the animals transplanted with hepatocyte-like cells. Only animals transplanted with iPSC + EC-derived hepatocytes had serum human albumin at 14 days posttransplant. Transplanted hepatocyte-like cells homed to the injured rat liver, whereas the ECs were only detected in the spleen. Transplantation of stem cell-derived, hepatocyte-like cells improved survival with evidence of in vivo human albumin production. Combining ECs may prolong cell function after transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    PubMed

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  13. Human relevance framework for rodent liver tumors induced by the insecticide sulfoxaflor.

    PubMed

    LeBaron, Matthew J; Gollapudi, B Bhaskar; Terry, Claire; Billington, Richard; Rasoulpour, Reza J

    2014-05-01

    Sulfoxaflor, a novel active substance that targets sap-feeding insects, induced rodent hepatotoxicity when administered at high dietary doses. Specifically, hepatocellular adenomas and carcinomas increased after 18 months in male and female CD-1 mice at 750 and 1250 ppm, respectively, and hepatocellular adenomas increased after 2 years in male F344 rats at 500 ppm. Studies to determine the mode of action (MoA) for these liver tumors were performed in an integrated and prospective manner as part of the standard battery of toxicology studies such that the MoA data were available prior to, or by the time of, the completion of the carcinogenicity studies. Sulfoxaflor is not genotoxic and the MoA data support the following key events in the etiology of the rodent liver tumors: (1) CAR nuclear receptor activation and (2) hepatocellular proliferation. The MoA data were evaluated in a weight of evidence approach using the Bradford Hill criteria for causation and were found to align with dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a CAR-mediated MoA while excluding other alternate MoAs. The available data include: activation of CAR, Cyp2b induction, hepatocellular hypertrophy and hyperplasia, absence of liver effects in KO mice, absence of proliferation in humanized mice, and exclusion of other possible mechanisms (e.g., genotoxicity, cytotoxicity, AhR, or PPAR activation), and indicate that the identified rodent liver tumor MoA for sulfoxaflor would not occur in humans. In this case, sulfoxaflor is considered not to be a potential human liver carcinogen.

  14. The inhibition of CYP enzymes in mouse and human liver by pilocarpine.

    PubMed Central

    Kimonen, T; Juvonen, R O; Alhava, E; Pasanen, M

    1995-01-01

    1. Pilocarpine is a cholinomimetic natural alkaloid. Its interactions with testosterone hydroxylations, coumarin 7-hydroxylase (COH), dimethylnitrosamine N-demethylase (DMNA), pentoxyresorufin O-dealkylase (PROD) and 7-ethoxyresorufin O-deethylase (EROD), which are indicative of the activities of cytochrome P4502A5 (CYP2A5) or 6, 2E1, 2B, 1A, were examined in mouse and human liver microsomes. 2. In mouse liver microsomes the IC50 values of pilocarpine were 6 microM for COH and testosterone 15 alpha-hydroxylase (T15 alpha OH) activities, 4 microM for PROD, approximately 100 microM for DMNA and testosterone 6 beta-hydroxylase (T6 beta OH) activities and > 1 mM for EROD activity. 3. In human liver microsomes, the IC50 value for COH was 6 microM and for DMNA 10 microM; T15 alpha OH and PROD activities were not detectable but T6 beta OH and testosterone 16 beta/2 beta-hydroxylase activities were moderately inhibited (IC50 70 microM). 4. These results suggest that pilocarpine has (i) a high affinity towards phenobarbitone-inducible CYP2A4/5 and CYP2B activities in mouse liver, (ii) a high affinity towards CYP2A6 in human liver microsomes and (iii) a moderate affinity towards CYP3A enzyme(s) in both microsomal preparations. 5. The low IC50 concentrations in vitro indicate potential metabolic interactions between pilocarpine and several P450 enzymes. PMID:7773543

  15. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action.

    PubMed

    de Mello, Vanessa D; Matte, Ashok; Perfilyev, Alexander; Männistö, Ville; Rönn, Tina; Nilsson, Emma; Käkelä, Pirjo; Ling, Charlotte; Pihlajamäki, Jussi

    2017-04-03

    Both genetic and lifestyle factors contribute to the risk of non-alcoholic steatohepatitis (NASH). Additionally, epigenetic modifications may also play a key role in the pathogenesis of NASH. We therefore investigated liver DNA methylation, as a marker for epigenetic alterations, in individuals with simple steatosis and NASH, and further tested if these alterations were associated with clinical phenotypes. Liver biopsies obtained from 95 obese individuals (age: 49.5 ± 7.7 years, BMI: 43 ± 5.7 kg/m(2), type 2 diabetes [T2D]: 35) as a wedge biopsy during a Roux-en-Y gastric bypass operation were investigated. Thirty-four individuals had a normal liver phenotype, 35 had simple steatosis, and 26 had NASH. Genome-wide DNA methylation pattern was analyzed using the Infinium HumanMethylation450 BeadChip. mRNA expression was analyzed from 42 individuals using the HumanHT-12 Expression BeadChip. We identified 1,292 CpG sites representing 677 unique genes differentially methylated in liver of individuals with NASH (q < 0.001), independently of T2D, age, sex, and BMI. Focusing on the top-ranking 30 and another 37 CpG sites mapped to genes enriched in pathways of metabolism (q = 0.0036) and cancer (q = 0.0001) all together, 59 NASH-associated CpG sites correlated with fasting insulin levels independently of age, fasting glucose, or T2D. From these, we identified 30 correlations between DNA methylation and mRNA expression, for example LDHB (r = -0.45, P = 0.003). We demonstrated that NASH, more than simple steatosis, associates with differential DNA methylation in the human liver. These epigenetic alterations in NASH are linked with insulin metabolism.

  16. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels.

    PubMed

    Sellaro, Tiffany L; Ranade, Aarati; Faulk, Denver M; McCabe, George P; Dorko, Kenneth; Badylak, Stephen F; Strom, Stephen C

    2010-03-01

    Tissue engineering and regenerative medicine (TE&RM) approaches to treating liver disease have the potential to provide temporary support with biohybrid-liver-assist devices or long-term therapy by replacing the diseased liver with functional constructs. A rate-limiting step for TE&RM strategies has been the loss of hepatocyte-specific functions after hepatocytes are isolated from their highly specialized in vivo microenvironment and placed in in vitro culture systems. The identification of a biologic substrate that can maintain a functional hepatocyte differentiation profile during in vitro culture would advance potential TE&RM therapeutic strategies. The present study compared two different biologic substrates for their ability to support human hepatocyte function in vitro: porcine-liver-derived extracellular matrix (PLECM) or Matrigel. Because Matrigel has been shown to be the most useful matrix for static, traditional hepatocyte culture, we directly compared PLECM with Matrigel in each experiment. Albumin secretion, hepatic transport activity, and ammonia metabolism were used to determine hepatocyte function. Hepatocytes cultured between two layers of PLECM or Matrigel showed equally high levels of albumin expression and secretion, ammonia metabolism, and hepatic transporter expression and function. We conclude that like Matrigel, PLECM represents a favorable substrate for in vitro culture of human hepatocytes.

  17. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans.

    PubMed

    Rosqvist, Fredrik; Iggman, David; Kullberg, Joel; Cedernaes, Jonathan; Johansson, Hans-Erik; Larsson, Anders; Johansson, Lars; Ahlström, Håkan; Arner, Peter; Dahlman, Ingrid; Risérus, Ulf

    2014-07-01

    Excess ectopic fat storage is linked to type 2 diabetes. The importance of dietary fat composition for ectopic fat storage in humans is unknown. We investigated liver fat accumulation and body composition during overfeeding saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs). LIPOGAIN was a double-blind, parallel-group, randomized trial. Thirty-nine young and normal-weight individuals were overfed muffins high in SFAs (palm oil) or n-6 PUFAs (sunflower oil) for 7 weeks. Liver fat, visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (SAT), total adipose tissue, pancreatic fat, and lean tissue were assessed by magnetic resonance imaging. Transcriptomics were performed in SAT. Both groups gained similar weight. SFAs, however, markedly increased liver fat compared with PUFAs and caused a twofold larger increase in VAT than PUFAs. Conversely, PUFAs caused a nearly threefold larger increase in lean tissue than SFAs. Increase in liver fat directly correlated with changes in plasma SFAs and inversely with PUFAs. Genes involved in regulating energy dissipation, insulin resistance, body composition, and fat-cell differentiation in SAT were differentially regulated between diets, and associated with increased PUFAs in SAT. In conclusion, overeating SFAs promotes hepatic and visceral fat storage, whereas excess energy from PUFAs may instead promote lean tissue in healthy humans.

  18. Mechanism of action of novel piperazine containing a toxicant against human liver cancer cells

    PubMed Central

    Kanthimathi, MS; Haerian, Batoul Sadat

    2016-01-01

    The purpose of this study was to assess the cytotoxic potential of a novel piperazine derivative (PCC) against human liver cancer cells. SNU-475 and 423 human liver cancer cell lines were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on liver cancer cells with an IC50 value of 6.98 ± 0.11 µM and 7.76 ± 0.45 µM against SNU-475 and SNU-423 respectively after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of this study suggest that PCC is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines. PMID:27019772

  19. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  20. Use of a three-dimensional humanized liver model for the study of viral gene vectors.

    PubMed

    Wagner, Anke; Röhrs, Viola; Materne, Eva-Maria; Hiller, Thomas; Kedzierski, Radoslaw; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2015-10-20

    Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo.

  1. An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer.

    PubMed

    Andersen, Jesper B; Factor, Valentina M; Marquardt, Jens U; Raggi, Chiara; Lee, Yun-Han; Seo, Daekwan; Conner, Elizabeth A; Thorgeirsson, Snorri S

    2010-10-20

    Epigenomic changes such as aberrant hypermethylation and subsequent atypical gene silencing are characteristic features of human cancer. Here, we report a comprehensive characterization of epigenomic modulation caused by zebularine, an effective DNA methylation inhibitor, in human liver cancer. Using transcriptomic and epigenomic profiling, we identified a zebularine response signature that classified liver cancer cell lines into two major subtypes with different drug responses. In drug-sensitive cell lines, zebularine caused inhibition of proliferation coupled with increased apoptosis, whereas drug-resistant cell lines showed up-regulation of oncogenic networks (for example, E2F1, MYC, and TNF) that drive liver cancer growth in vitro and in preclinical mouse models. Assessment of zebularine-based therapy in xenograft mouse models demonstrated potent therapeutic effects against tumors established from zebularine-sensitive but not zebularine-resistant liver cancer cells, leading to increased survival and decreased pulmonary metastasis. Integration of the zebularine gene expression and demethylation response signatures allowed differentiation of patients with hepatocellular carcinoma according to their survival and disease recurrence. This integrated signature identified a subclass of patients within the poor-survivor group that is likely to benefit from therapeutic agents that target the cancer epigenome.

  2. Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis.

    PubMed Central

    Herbst, H.; Wege, T.; Milani, S.; Pellegrini, G.; Orzechowski, H. D.; Bechstein, W. O.; Neuhaus, P.; Gressner, A. M.; Schuppan, D.

    1997-01-01

    The remodeling of extracellular matrix during chronic liver disease may partially be attributed to altered activity of matrix metalloproteinases and their tissue inhibitors (TIMPs). Expression of TIMP-1 and -2 was studied by in situ hybridization combined with immunohistochemistry in rat (acute and chronic carbon tetrachloride intoxication and secondary biliary fibrosis) and human livers and on isolated rat hepatic stellate cells. TIMP-1 and -2 transcripts appeared in rat livers within 1 to 3 hours after intoxication, pointing to a role in the protection against accidental activation of matrix metalloproteinases, and were present at high levels in all fibrotic rat and human livers predominantly in stellate cells. TIMP-2 RNA distribution largely matched with previously reported patterns of matrix metalloproteinase-2 (72-kd gelatinase) expression, suggesting generation of a TIMP-2/matrix metalloproteinase-2 complex (large inhibitor of metalloproteinases). Isolated stellate cells expressed TIMP-1 and -2 RNA. Addition of transforming growth factor-beta 1 enhanced TIMP-1 and matrix metalloproteinase-2 RNA levels in vitro, whereas TIMP-2-specific signals were reduced, likely to result in a stoichiometric excess of matrix-metalloproteinase-2 over TIMP-2. In the context of previous demonstrations of transforming growth factor-beta 1 and matrix metalloproteinase-2 in vivo, these patterns suggest an intrahepatic environment permitting only limited matrix degradation, ultimately resulting in redistribution of extracellular matrix with relative accumulation of collagen type 1. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9137090

  3. Novel piperazine core compound induces death in human liver cancer cells: possible pharmacological properties

    PubMed Central

    Samie, Nima; Muniandy, Sekaran; Kanthimathi, M. S.; Haerian, Batoul Sadat; Raja Azudin, Raja Elina

    2016-01-01

    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines. PMID:27072064

  4. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine.

    PubMed

    Chang, C C; Sakashita, N; Ornvold, K; Lee, O; Chang, E T; Dong, R; Lin, S; Lee, C Y; Strom, S C; Kashyap, R; Fung, J J; Farese, R V; Patoiseau, J F; Delhon, A; Chang, T Y

    2000-09-08

    By using specific anti-ACAT-1 antibodies in immunodepletion studies, we previously found that ACAT-1, a 50-kDa protein, plays a major catalytic role in the adult human liver, adrenal glands, macrophages, and kidneys but not in the intestine. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in the intestine may be largely derived from a different ACAT protein. To test this hypothesis, we produced specific polyclonal anti-ACAT-2 antibodies that quantitatively immunodepleted human ACAT-2, a 46-kDa protein expressed in Chinese hamster ovary cells. In hepatocyte-like HepG2 cells, ACAT-1 comprises 85-90% of the total ACAT activity, with the remainder attributed to ACAT-2. In adult intestines, most of the ACAT activity can be immunodepleted by anti-ACAT-2. ACAT-1 and ACAT-2 do not form hetero-oligomeric complexes. In differentiating intestinal enterocyte-like Caco-2 cells, ACAT-2 protein content increases by 5-10-fold in 6 days, whereas ACAT-1 protein content remains relatively constant. In the small intestine, ACAT-2 is concentrated at the apices of the villi, whereas ACAT-1 is uniformly distributed along the villus-crypt axis. In the human liver, ACAT-1 is present in both fetal and adult hepatocytes. In contrast, ACAT-2 is evident in fetal but not adult hepatocytes. Our results collectively suggest that in humans, ACAT-2 performs significant catalytic roles in the fetal liver and in intestinal enterocytes.

  5. Expression and partial purification of a recombinant secretory form of human liver carboxylesterase.

    PubMed

    Scott, D F; Chacko, T L; Maxwell, D M; Schlager, J J; Lanclos, K D

    1999-10-01

    Serine-dependent carboxylesterases (EC 3.1.1.1) are found in a variety of tissues with high activity detected in the liver. Carboxylesterases (CaE) hydrolyze aliphatic and aromatic esters, and aromatic amides, and play an important role in the detoxification of xenobiotic chemicals that contain organophosphate (OP) compounds. The detoxifying ability of CaE is limited by its low concentration in serum where it encounters OP compounds. Studies in our laboratory have shown that a pRC/CMV-hCaE plasmid construct, stably integrated into 293T cells, expresses a human liver CaE in culture. However, the enzyme remained inside the cell and reached a low steady-state level of expression. The goals of this study were to overexpress a functional human liver CaE from a recombinant cDNA in a human cell line and to isolate and purify the recombinant protein. To accomplish these goals, a single amino acid change was made in the C-terminal retrieval signal, HIEL (His-Ile-Glu-Leu), of human liver CaE. The mutation produced a unique Eco47III restriction site, which aided in clone selection. The recombinant plasmid, pRc/CMV-mhCaE, was isolated and stably integrated into human 293T cells. Expression of the altered cDNA resulted in secretion of an active CaE up to levels of 500 enzyme units per liter of growth medium. Secretory CaE displayed isoelectric focusing patterns similar to those of the native enzyme with no observable changes in activity. The secreted enzyme was partially purified by hydrophobic interaction chromatography and Cibacron blue affinity chromatography. Partial enzyme purification was achieved, and CaE retained a high level of enzymatic activity. Copyright 1999 Academic Press.

  6. Metabolism of sesamin by cytochrome P450 in human liver microsomes.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2010-12-01

    Metabolism of sesamin by cytochrome P450 (P450) was examined using yeast expression system and human liver microsomes. Saccharomyces cerevisiae cells expressing each of human P450 isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) were cultivated with sesamin, and monocatechol metabolite was observed in most of P450s. Kinetic analysis using the microsomal fractions of the recombinant S. cerevisiae cells revealed that CYP2C19 had the largest k(cat)/K(m) value. Based on the kinetic data and average contents of the P450 isoforms in the human liver, the putative contribution of P450s for sesamin metabolism was large in the order of CYP2C9, 1A2, 2C19, and 2D6. A good correlation was observed between sesamin catecholization activity and CYP2C9-specific activity in in vitro studies using 10 individual human liver microsomes, strongly suggesting that CYP2C9 is the most important P450 isoform for sesamin catecholization in human liver. Inhibition studies using each anti-P450 isoform-specific antibody confirmed that CYP2C9 was the most important, and the secondary most important P450 was CYP1A2. We also examined the inhibitory effect of sesamin for P450 isoform-specific activities and found a mechanism-based inhibition of CYP2C9 by sesamin. In contrast, no mechanism-based inhibition by sesamin was observed in CYP1A2-specific activity. Our findings strongly suggest that further studies are needed to reveal the interaction between sesamin and therapeutic drugs mainly metabolized by CYP2C9.

  7. Implantation of human colorectal carcinoma cells in the liver studied by in vivo fluorescence videomicroscopy.

    PubMed

    Ishii, S; Mizoi, T; Kawano, K; Cay, O; Thomas, P; Nachman, A; Ford, R; Shoji, Y; Kruskal, J B; Steele, G; Jessup, J M

    1996-03-01

    In vivo fluorescence videomicroscopy (IVFM) was used to analyse the behavior of weakly and highly metastatic human colorectal carcinoma (CRC) cells during implantation in the liver. A highly metastatic human CRC cell line, CX-1, and a weakly metastatic line, Clone A, were double-labeled with rhodamine B isothiocyanate-dextran (Rd-Dx) to locate cells and with calcein AM to assess cell metabolic activity in an experimental metastasis model. Double-labeled CRC cells (2.0 x 10(6)) were injected into the spleens of groups of nude mice and the livers observed by IVFM over the next 72 h. CRC cells were implanted within 30 s after injection into either portal venules or the proximal third of hepatic sinusoids. Approximately 0.5% of CRC cells traversed the liver through portal-central venous shunts and implanted in the lung. The number of CX-1 cells in the liver was similar to that of Clone A cells during the first 12 h. However, more CX-1 cells than Clone A cells remained in the liver at 4 h and were in groups of 8-12 cells whereas only a few, single Clone A cells were detected in the liver at 72 h. Not all Clone A cells are committed to die within 4 h of implantation because cells harvested 4 h after hepatic implantation proliferated normally in vitro when removed from the hepatic microenvironment. Since the stress of mechanical deformation during implantation may cause differences in cell survival, CX-1 and Clone A cells were passed through filters with 8 microM pores in vitro at 10-15 cm of water pressure to recreate the trauma of hepatic implantation. Approximately 50% of both CX-1 and Clone A cells were lysed. Furthermore, both CRC lines remained metabolically active when co-cultivated with liver cells for at least 24 h in vitro. Thus, the difference in metastatic potential between the two CRC lines may reside in their response to the combination of mechanical implantation and subsequent growth in the liver parenchyma.

  8. [Detection of human parvovirus B19, human bocavirus and human parvovirus 4 infections in blood samples among 95 patients with liver disease in Nanjing by nested PCR].

    PubMed

    Tong, Rui; Zhou, Wei-Min; Liu, Xi-Jun; Wang, Yue; Lou, Yong-Liang; Tan, Wen-Jie

    2013-04-01

    To analyze the infection of human parvovirus B19, human bocavirus (HBoV) and human parvovirus 4 (PARV4) in blood samples among patients with liver disease in Nanjing by molecular detection. Nested PCR assays were designed and validated to detect B19, HBoV and PARV4, respectively. The assays were used to screen three parvoviruses in blood samples from 95 patients with different liver disease in Nanjing. The parvovirus infection was analyzed statistically. The detection limits were 10 copies of genomic DNA equivalents per reaction for each assays and the good specificity were observed. The frequency of B19 and HBoV were 2/95 (2.1%) and 9/95 (9.5%) in blood samples respectively. No PARV4 was detected. HBoV was detected in 3/5 patients with drug-induced hepatitis. Both B19 and HBoV infection were detected in blood from patients with liver disease.

  9. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers

    PubMed Central

    Butler, James R.; Paris, Leela L.; Blankenship, Ross L.; Sidner, Richard A.; Martens, Gregory R.; Ladowski, Joeseph M.; Li, Ping; Estrada, Jose L; Tector, Matthew; Tector, A. Joseph

    2015-01-01

    Background A profound thrombocytopenia limits hepatic xenotransplantation in the pig-to-primate model. Porcine livers also have shown the ability to phagocytose human platelets in the absence of immune-mediate injury. Recently, inactivation of the porcine ASGR1 gene has been shown to decrease this phenomenon. Inactivating GGTA1 and CMAH genes has reduced the antibody-mediated barrier to xenotransplantation; herein we describe the effect that these modifications have on xenogeneic consumption of human platelets in the absence of immune-mediated graft injury. Methods WT, ASGR1−/−, GGTA1−/−, and GGTA1−/−CMAH−/− knockout pigs were compared for their xenogeneic hepatic consumption of human platelets. An in vitro assay was established to measure the association of human platelets with liver sinusoidal endothelial cells (LSECs) by immunohistochemistry. Perfusion models were used to measure human platelet uptake in livers from WT, ASGR1−/−, GGTA1−/−, and GGTA1−/− CMAH−/− pigs. Results GGTA1−/−, CMAH−/− LSECs exhibited reduced levels of human platelet binding in vitro, when compared to GGTA1−/− and WT LSECs. In a continuous perfusion model, GGTA1−/− CMAH−/− livers consumed fewer human platelets than GGTA1−/− and WT livers. GGTA1−/− CMAH−/− livers also consumed fewer human platelets than ASGR1−/− livers in a single pass model. Conclusions Silencing the porcine carbohydrate genes necessary to avoid antibody-mediated rejection in a pig-to-human model also reduces the xenogeneic consumption of human platelets by the porcine liver. The combination of these genetic modifications may be an effective strategy to limit the thrombocytopenia associated with pig-to-human hepatic xenotransplantation. PMID:26906939

  10. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum

    SciTech Connect

    Van den Eede, Nele; Erratico, Claudio; Exarchou, Vassiliki; Maho, Walid; Neels, Hugo; Covaci, Adrian

    2015-04-15

    Tris(2-butoxyethyl) phosphate (TBOEP) is a plasticizer present in indoor dust, reaching levels of several micrograms per gram. Such levels could lead to significant daily exposure of adults and children. Currently, no toxicokinetic data are available to estimate TBOEP clearance in humans after uptake and therefore, one objective of this study was to investigate intrinsic clearance of TBOEP by human liver microsome (HLM) and serum enzymes. Another objective was to generate information to identify and prioritize several metabolites of TBOEP for investigation of human exposure by biomonitoring. 1D and 2D-NMR methodologies were successfully applied on a mixture of the metabolites to confirm the structure of 3-HO-TBOEP (bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate) and to tentatively assign structures to 1-HO-TBOEP and 2-HO-TBOEP. HO-TBOEP isomers and bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were further monitored by liquid chromatography–tandem mass spectrometry. Rates of formation of BBOEHEP and HO-TBOEP metabolites by liver enzymes were best described by the Michaelis–Menten model. Apparent K{sub m} values for BBOEHEP, 3-HO-TBOEP, and sum of 1- and 2-HO-TBOEP isomer formation were 152, 197 and 148 μM, respectively. Apparent V{sub max} values for the formation of BBOEHEP, 3-HO-TBOEP, and the sum of 1- and 2-HO-TBOEP isomers were 2560, 643, and 254 pmol/min/mg protein, respectively. No detectable formation of BBOEP occurred with liver or serum enzymes. Our findings indicate that intrinsic clearance of TBOEP is mainly catalyzed by oxidative enzymes in the liver and that its major in vitro metabolite is BBOEHEP. These findings can be applied in human biomonitoring studies and risk assessment. - Highlights: • First steps in the elucidation of TBOEP toxicokinetics • Quantification of TBOEP metabolites in human serum and liver microsomes • No detectable formation of BBOEP occurred with liver or serum

  11. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    PubMed

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  12. Production of monospecific antiserum to a cytosolic epoxide hydrolase from human liver.

    PubMed

    Qato, M K; Reinmund, S G; Guenthner, T M

    1990-01-15

    A method for the purification to apparent homogeneity of cytosolic trans-stilbene oxide hydrolase from human liver is presented. The method employed ion exchange and gel filtration chromatography. From 50 g of human liver, 4.9 mg of homogenous enzyme protein was obtained. Although the enzyme had lost much of its catalytic activity during purification, it was nevertheless suitable for the preparation of antibodies to the enzyme. Only one immunogenic species was present in the antigen preparation, but some antibodies that were cross-reactive to sites on catalase were present in the antiserum. These catalase-specific antibodies were removed by immunoaffinity chromatography, and an IgG fraction that is monospecific to the cytosolic epoxide hydrolase was obtained. The usefulness of antibodies to this enzyme in immunoblotting experiments, following either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focussing, as well as in enzyme-linked immunosorbent assays, is demonstrated.

  13. Lack of in vitro interactions using human liver microsomes between rabeprazole and anticancer drugs.

    PubMed

    Tamaro, Ilaria; Genazzani, Armando; Canonico, Pierluigi; Grosa, Giorgio

    2009-01-01

    The potential interactions between rabeprazole, a widely used proton pump inhibitor, and anticancer drugs (5-fluorouracil, docetaxel, cyclophosphamide, gemcitabine, methotrexate, doxorubicin, etoposide) or drugs commonly present in the therapy of oncological patients (fluoxetine and ondansetron), were studied using in vitro human liver microsomes. The interactions between rabeprazole and the anticancer drugs were evaluated by measuring their concentrations in test and control incubations with HPLC-DAD-UV methods. To achieve this aim, nine HPLC-DAD-UV methods were developed using different stationary and mobile phases. The methods were then validated for the following parameters: selectivity, linearity, precision, and accuracy. As expected rabeprazole did not significantly inhibit the metabolism of the evaluated drugs in human liver microsomal preparations at the selected concentrations. These results shows that rabeprazole probably could be devoid of pharmacokinetic interactions with common drugs used during chemotherapy.

  14. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency

    PubMed Central

    Spencer, Melanie D.; Hamp, Timothy J.; Reid, Robert W.; Fischer, Leslie M.; Zeisel, Steven H.; Fodor, Anthony A.

    2010-01-01

    BACKGROUND & AIMS Non-alcoholic fatty liver disease affects up to 30% of the U.S. population, but the mechanisms underlying this condition are incompletely understood. We investigated how diet standardization and choline deficiency influence the composition of the microbial community in the human gastrointestinal (GI) tract and the development of fatty liver under conditions of choline deficiency. METHODS We performed a 2-month in-patient study of 15 female subjects who were placed on well-controlled diets in which choline levels were manipulated. We used 454-FLX pyrosequencing of 16S rRNA bacterial genes to characterize microbiota in stool samples collected over the course of the study. RESULTS The compositions of the GI microbial communities changed with choline levels of diets; each individual’s microbiome remained distinct for the duration of the experiment, even though all subjects were fed identical diets. Variations between subjects in levels of Gammaproteobacteria and Erysipelotrichi were directly associated with changes in liver fat in each subject during choline depletion. Levels of these bacteria, change in amount of liver fat, and a single nucleotide polymorphism that affects choline were combined into a model that accurately predicted the degree to which subjects developed fatty liver on a choline-deficient diet. CONCLUSIONS Host factors and GI bacteria each respond to dietary choline deficiency, although the gut microbiota remains distinct in each individual. We identified bacterial biomarkers of fatty liver that results from choline deficiency, adding to the accumulating evidence that GI microbes have a role in metabolic disorders. PMID:21129376

  15. Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

    PubMed Central

    Le Saux, Olivier; Fülöp, Krisztina; Yamaguchi, Yukiko; Iliás, Attila; Szabó, Zalán; Brampton, Christopher N.; Pomozi, Viola; Huszár, Krisztina; Arányi, Tamás; Váradi, András

    2011-01-01

    Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application. PMID:21935449

  16. Inhibitory effects of curculigoside on human liver cytochrome P450 enzymes.

    PubMed

    Lang, Jixiao; Li, Wei; Zhao, Jingming; Wang, Kaiyou; Chen, Dexi

    2017-10-01

    1. Curculigoside possesses numerous pharmacological activities, and however, little data available for the effects of curculigoside on the activity of human liver cytochrome P450 (CYP) enzymes. 2. This study investigates the inhibitory effects of curculigoside on the main human liver CYP isoforms. In this study, the inhibitory effects of curculigoside on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8, and 3A4 were investigated in human liver microsomes. 3. The results indicated that curculigoside could inhibit the activity of CYP1A2, CYP2C8, and CYP3A4, with IC50 values of 15.26, 11.93, and 9.47 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that curculigoside was not only a noncompetitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP2C8 and CYP3A4, with Ki values of 5.43, 3.54, and 3.35 μM, respectively. In addition, curculigoside is a time-dependent inhibitor for CYP1A2, with kinact/KI values of 0.056/6.15 μM(-1 )min(-1). 4. The in vitro studies of curculigoside with CYP isoforms suggest that curculigoside has the potential to cause pharmacokinetic drug interactions with other coadministered drugs metabolized by CYP1A2, CYP2C8, and CYP3A4. Further in vivo studies are needed in order to evaluate the significance of this interaction.

  17. Aerobic 2- and 4-nitroreduction of CB 1954 by human liver.

    PubMed

    Tang, Magdalene Huen Yin; Helsby, Nuala A; Wilson, William R; Tingle, Malcolm D

    2005-12-15

    5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) is an anti-tumour prodrug which recently entered clinical trials in combination with Escherichia coli nitroreductase in a gene-directed enzyme prodrug therapy (GDEPT) context. A Phase I trial of the prodrug, however, revealed dose-limiting hepatotoxicity (transaminitis). The aim of this study was to find out whether the prodrug undergoes reductive metabolism in human liver to cytotoxic metabolites which may contribute to this clinical toxicity. CB 1954 (2.5-250 microM) was incubated with human liver preparations (2-8 mg/mL of S9, cytosolic or microsomal proteins) in the presence of NAD(P)H (1 mM). The NADH- and NADPH-dependent formation of both 2- and 4-nitroreduction products was demonstrated, with NADPH being the preferred cofactor, by HPLC and mass spectrometry. The major metabolite formed in all three human liver preparations was the 4-hydroxylamine, a potent DNA cross-linking cytotoxin. The 2-hydroxylamine and 2-amine metabolites were also detected, both of which have also been demonstrated to be highly cytotoxic. 2-Nitroreduction was far greater in S9 compared with cytosol and was not detected in microsomal preparations. Although 2- and 4-nitroreduction of CB 1954 was inhibited under hyperoxic conditions, substantial metabolism was observed under atmospheric oxygen levels. These studies demonstrate that human liver is capable of aerobic reductive bioactivation of CB 1954 to cytotoxic metabolites in vitro, possibly involving multiple enzymes, which may account for the clinical hepatotoxicity observed.

  18. Transient Expression of Transgenic IL-12 in Mouse Liver Triggers Unremitting Inflammation Mimicking Human Autoimmune Hepatitis.

    PubMed

    Gil-Farina, Irene; Di Scala, Marianna; Salido, Eduardo; López-Franco, Esperanza; Rodríguez-García, Estefania; Blasi, Mercedes; Merino, Juana; Aldabe, Rafael; Prieto, Jesús; Gonzalez-Aseguinolaza, Gloria

    2016-09-15

    The etiopathogenesis of autoimmune hepatitis (AIH) remains poorly understood. In this study, we sought to develop an animal model of human AIH to gain insight into the immunological mechanisms driving this condition. C57BL/6 mice were i.v. injected with adeno-associated viral vectors encoding murine IL-12 or luciferase under the control of a liver-specific promoter. Organ histology, response to immunosuppressive therapy, and biochemical and immunological parameters, including Ag-specific humoral and cellular response, were analyzed. Mechanistic studies were carried out using genetically modified mice and depletion of lymphocyte subpopulations. Adeno-associated virus IL-12-treated mice developed histological, biochemical, and immunological changes resembling type 1 AIH, including marked and persistent liver mononuclear cell infiltration, hepatic fibrosis, hypergammaglobulinemia, anti-nuclear and anti-smooth muscle actin Abs, and disease remission with immunosuppressive drugs. Interestingly, transgenic IL-12 was short-lived, but endogenous IL-12 expression was induced, and both IL-12 and IFN-γ remained elevated during the entire study period. IFN-γ was identified as an essential mediator of liver damage, and CD4 and CD8 T cells but not NK, NKT, or B cells were essential executors of hepatic injury. Furthermore, both MHC class I and MHC class II expression was upregulated at the hepatocellular membrane, and induction of autoreactive liver-specific T cells was detected. Remarkably, although immunoregulatory mechanisms were activated, they only partially mitigated liver damage. Thus, low and transient expression of transgenic IL-12 in hepatocytes causes loss of tolerance to hepatocellular Ags, leading to chronic hepatitis resembling human AIH type 1. This model provides a practical tool to explore AIH pathogenesis and novel therapies.

  19. Differential receptor targeting of liver cells using 99mTc-neoglycosylated human serum albumins.

    PubMed

    Kim, Sungeun; Jeong, Jae Min; Hong, Mee Kyung; Jang, Ja-June; Lee, Jaetae; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2008-01-01

    Neolactosyl human serum albumin (LSA) targets asialoglycoprotein receptor and shows high liver uptake due to accumulation in hepatocytes. Although neomannosyl human serum albumin (MSA) also shows high liver uptake, it has been reported to be taken up by Kupffer cells and endothelial cells. We compared the biological properties of LSA and MSA. 99mTc-LSA and 99mTc-MSA biodistribution in mice were investigated after intravenous injection. In vivo localization of rhodaminisothiocyanate (RITC)-LSA and fluoresceineisothiocyanate (FITC)-MSA were investigated in mouse liver. Excretion routes of 99mTc-LSA and 99mTc-MSA metabolites were examined. Both 99mTc-LSA and 99mTc-MSA showed high liver uptakes. RITC-LSA was taken up by hepatocytes whereas FITC-MSA was taken up by Kupffer cells and endothelial cells. 99mTc-MSA showed higher spleen and kidney uptakes than 99mTc-LSA. 99mTc-LSA metabolites excreted in urine and feces accounted for 44.4 and 50.0% of 99mTc-LSA injected, respectively, while 99mTc-MSA metabolites accounted for 51.5 and 10.3%, respectively. In conclusion, LSA is specifically taken up by hepatcytes while MSA by Kupffer cells and endothelial cells. After taken up by the liver, LSA is metabolized by the hepatocytes and then excreted through both the hepatobiliary tract and kidney, whereas MSA is metabolized by Kupffer cells and endoghelial cells and then excreted mainly through the kidney.

  20. Role of inflammation and infection in the pathogenesis of human acute liver failure: Clinical implications for monitoring and therapy

    PubMed Central

    Donnelly, Mhairi C; Hayes, Peter C; Simpson, Kenneth J

    2016-01-01

    Acute liver failure is a rare and devastating clinical condition. At present, emergency liver transplantation is the only life-saving therapy in advanced cases, yet the feasibility of transplantation is affected by the presence of systemic inflammation, infection and resultant multi-organ failure. The importance of immune dysregulation and acquisition of infection in the pathogenesis of acute liver failure and its associated complications is now recognised. In this review we discuss current thinking regarding the role of infection and inflammation in the pathogenesis of and outcome in human acute liver failure, the implications for the management of such patients and suggest directions for future research. PMID:27468190

  1. Global Transcriptional Response of Human Liver Cells to Ethanol Stress of Different Strength Reveals Hormetic Behavior.

    PubMed

    Schmidt-Heck, Wolfgang; Wönne, Eva C; Hiller, Thomas; Menzel, Uwe; Koczan, Dirk; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny; Freyer, Nora; Guthke, Reinhard; Dooley, Steven; Zeilinger, Katrin

    2017-05-01

    The liver is the major site for alcohol metabolism in the body and therefore the primary target organ for ethanol (EtOH)-induced toxicity. In this study, we investigated the in vitro response of human liver cells to different EtOH concentrations in a perfused bioartificial liver device that mimics the complex architecture of the natural organ. Primary human liver cells were cultured in the bioartificial liver device and treated for 24 hours with medium containing 150 mM (low), 300 mM (medium), or 600 mM (high) EtOH, while a control culture was kept untreated. Gene expression patterns for each EtOH concentration were monitored using Affymetrix Human Gene 1.0 ST Gene chips. Scaled expression profiles of differentially expressed genes (DEGs) were clustered using Fuzzy c-means algorithm. In addition, functional classification methods, KEGG pathway mapping and also a machine learning approach (Random Forest) were utilized. A number of 966 (150 mM EtOH), 1,334 (300 mM EtOH), or 4,132 (600 mM EtOH) genes were found to be differentially expressed. Dose-response relationships of the identified clusters of co-expressed genes showed a monotonic, threshold, or nonmonotonic (hormetic) behavior. Functional classification of DEGs revealed that low or medium EtOH concentrations operate adaptation processes, while alterations observed for the high EtOH concentration reflect the response to cellular damage. The genes displaying a hormetic response were functionally characterized by overrepresented "cellular ketone metabolism" and "carboxylic acid metabolism." Altered expression of the genes BAHD1 and H3F3B was identified as sufficient to classify the samples according to the applied EtOH doses. Different pathways of metabolic and epigenetic regulation are affected by EtOH exposition and partly undergo hormetic regulation in the bioartificial liver device. Gene expression changes observed at high EtOH concentrations reflect in some aspects the situation of alcoholic hepatitis

  2. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells.

    PubMed

    Chu, Yung-Lin; Ho, Chi-Tang; Chung, Jing-Gung; Rajasekaran, Raghu; Sheen, Lee-Yan

    2012-08-29

    Garlic has been used throughout history for both culinary and medicinal purpose. Allicin is a major component of crushed garlic. Although it is sensitive to heat and light and easily metabolized into various compounds such as diallyl disulfide, diallyl trisulfide, and diallyl sulfide, allicin is still a major bioactive compound of crushed garlic. The mortality of hepatocellular carcinoma is quite high and ranks among the top 10 cancer-related deaths in Taiwan. Although numerous studies have shown the cancer-preventive properties of garlic and its components, there is no study on the effect of allicin on the growth of human liver cancer cells. In this study, we focused on allicin-induced autophagic cell death in human liver cancer Hep G2 cells. Our results indicated that allicin induced p53-mediated autophagy and inhibited the viability of human hepatocellular carcinoma cell lines. Using Western blotting, we observed that allicin decreased the level of cytoplasmic p53, the PI3K/mTOR signaling pathway, and the level of Bcl-2 and increased the expression of AMPK/TSC2 and Beclin-1 signaling pathways in Hep G2 cells. In addition, the colocalization of LC3-II with MitoTracker-Red (labeling mitochondria), resulting in allicin-induced degradation of mitochondria, could be observed by confocal laser microscopy. In conclusion, allicin of garlic shows great potential as a novel chemopreventive agent for the prevention of liver cancer.

  3. Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood.

    PubMed

    MacParland, Sonya A; Tsoi, Kim M; Ouyang, Ben; Ma, Xue-Zhong; Manuel, Justin; Fawaz, Ali; Ostrowski, Mario A; Alman, Benjamin A; Zilman, Anton; Chan, Warren C W; McGilvray, Ian D

    2017-01-17

    A significant challenge to delivering therapeutic doses of nanoparticles to targeted disease sites is the fact that most nanoparticles become trapped in the liver. Liver-resident macrophages, or Kupffer cells, are key cells in the hepatic sequestration of nanoparticles. However, the precise role that the macrophage phenotype plays in nanoparticle uptake is unknown. Here, we show that the human macrophage phenotype modulates hard nanoparticle uptake. Using gold nanoparticles, we examined uptake by human monocyte-derived macrophages that had been driven to a "regulatory" M2 phenotype or an "inflammatory" M1 phenotype and found that M2-type macrophages preferentially take up nanoparticles, with a clear hierarchy among the subtypes (M2c > M2 > M2a > M2b > M1). We also found that stimuli such as LPS/IFN-γ rather than with more "regulatory" stimuli such as TGF-β/IL-10 reduce per cell macrophage nanoparticle uptake by an average of 40%. Primary human Kupffer cells were found to display heterogeneous expression of M1 and M2 markers, and Kupffer cells expressing higher levels of M2 markers (CD163) take up significantly more nanoparticles than Kupffer cells expressing lower levels of surface CD163. Our results demonstrate that hepatic inflammatory microenvironments should be considered when studying liver sequestration of nanoparticles, and that modifying the hepatic microenvironment might offer a tool for enhancing or decreasing this sequestration. Our findings also suggest that models examining the nanoparticle/macrophage interaction should include studies with primary tissue macrophages.

  4. Isolation of II-alcohol dehydrogenase of human liver: Is it a determinant of alcoholism?

    PubMed Central

    Li, Ting-Kai; Bosron, William F.; Dafeldecker, Werner P.; Lange, Louis G.

    1977-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD+ oxidoreductase, EC 1.1.1.1), homogeneous by physicochemical criteria, has been available in quantity only recently [Lange, L. G. & Vallee, B. L. (1976) Biochemistry 15, 4681-4686]. Until now, the biochemical basis of human alcohol metabolism had to be extrapolated from the properties and behavior of enzymes from other species, primarily horses and yeast. The biological determinants of human alcoholism have remained obscure, although recent evidence indicates a genetic predisposition, requiring delineation. A functionally distinct form of human liver alcohol dehydrogenase (ADH), which we have designated II-ADH, is provocative since, thus far, it seems to be unique to human beings. It has a high Km for ethanol and is remarkably insensitive (apparent KI, 500 μM) to pyrazole and its derivatives, which are usually potent ADH inhibitors (KI, 1 μM), a property that is the basis for the isolation of II-ADH. The affinity resin 4-[3-(N-6-aminocaproyl)aminopropyl]pyrazole-Sepharose binds all other known forms of ADH but not II-ADH, thereby separating it selectively by affinity chromatography. In turn, this has led to the establishment of its identity with that enzyme form which was previously known as the anodic band and characterized by a high Km for ethanol (20 mM at pH 7.5). The remarkable insensitivity of II-ADH to pyrazole inhibition has also permitted quantitation of its role in hepatic ethanol oxidation. At 5 mM ethanol, a saturating concentration for virtually all other forms of ADH, II-ADH contributes less than 15% to total ethanol oxidation. However, at intoxicating concentrations, e.g., 60 mM, it can account for as much as 40% of the total ethanol oxidation rate of liver, indicating a seemingly unique role for this enzyme form in ethanol elimination. Thus far, we have found the amount of II-ADH varies from liver to liver of individuals and is considerably more labile than the other molecular forms, phenomena whose

  5. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    PubMed

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene

  6. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure.

    PubMed

    Nagamoto, Yasuhito; Takayama, Kazuo; Ohashi, Kazuo; Okamoto, Ryota; Sakurai, Fuminori; Tachibana, Masashi; Kawabata, Kenji; Mizuguchi, Hiroyuki

    2016-05-01

    Hepatocyte transplantation is one of the most attractive approaches for the treatment of patients with liver failure. Because human induced pluripotent stem cell-derived hepatocyte-like cells (iPS-HLCs) can be produced on a large scale and generated from a patient with liver failure, they are expected to be used for hepatocyte transplantation. However, when using conventional transplantation methods, i.e., intrasplenic or portal venous infusion, it is difficult to control the engraftment efficiency and avoid unexpected engraftment in other organs because the transplanted cells are delivered into blood circulation before their liver engraftment. In this study, to resolve these issues, we attempted to employ a cell sheet engineering technology for experimental hepatocyte transplantation. The human iPS-HLC sheets were attached onto the liver surfaces of mice with liver injury. This method reduced unexpected engraftment in organs other than the liver compared to that by intrasplenic transplantation. Human albumin levels in the mice with human iPS-HLC sheets were significantly higher than those in the intrasplenically-transplanted mice, suggesting the high potential for cell engraftment of the sheet transplantation procedure. In addition, human iPS-HLC sheet transplantation successfully ameliorated lethal acute liver injury induced by the infusion of carbon tetrachloride (CCl4). Moreover, we found that the hepatocyte growth factor secreted from the human iPS-HLC sheet played an important role in rescuing of mice from acute hepatic failure. Human iPS-HLC sheet transplantation would be a useful and reliable therapeutic approach for a patient with severe liver diseases. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice

    PubMed Central

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean- François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-01-01

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. PMID:26205537

  8. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  9. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer

    PubMed Central

    Bierwolf, Jeanette; Volz, Tassilo; Lütgehetmann, Marc; Allweiss, Lena; Riecken, Kristoffer; Warlich, Michael; Fehse, Boris; Kalff, Joerg C.; Dandri, Maura

    2016-01-01

    Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo. PMID:27068494

  10. Metabolism of Meloxicam in human liver involves cytochromes P4502C9 and 3A4.

    PubMed

    Chesné, C; Guyomard, C; Guillouzo, A; Schmid, J; Ludwig, E; Sauter, T

    1998-01-01

    1. The metabolism of Meloxicam (ME) and the cytochrome(s) P450 (CYPs) involved were analysed by using primary human hepatocytes, human liver microsomes and microsomes from recombinant human B-lymphoblastoid cell lines. 2. While human hepatocytes were capable of converting ME to a 5-hydroxymethyl metabolite (M7) and then to a 5-carboxyderivative (M5), human liver microsomes formed mostly only the 5-hydroxymethylderivative. The kinetics of the formation of M7 by human liver microsomes were biphasic with Km = 13.6 +/- 9.5 and 381 +/- 55.2 microM respectively. The corresponding Vmax were 33.7 +/- 24.2 and 143 +/- 83.9 pmol/min/mg protein respectively. 3. CYP2C9 and, to a much lesser extent, CYP3A4 were found to convert ME to M7. The involvement of 2C9 was demonstrated by inhibition of tolbutamide hydroxylase activity in the presence of ME, inhibition of ME metabolism by sulphaphenazole, correlation between ME metabolism and tolbutamide hydroxylase activity and active metabolism of ME by recombinant 2C9. The involvement of 3A4 was shown by inhibition of ME metabolism by ketoconazole, correlation between ME metabolism and nifedipine oxidase activity and metabolism of ME by recombinant 3A4. Kinetics of the formation of M7 by the individual enzymes resulted in a Km = 9.6 microM and Vmax = 8.4 pmol/min/mg protein for 2C9 and a Km = 475 microM and Vmax = 23 pmol/min/mg protein for 3A4.

  11. Induction of Three-Dimensional Growth of Human Liver Cells in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Khaoustov, V. I.; Yoffe, B.; Murry, D. J.; Soriano, H. E.; Risin, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    We previously reported that a NASA-developed bioreactor that simulates microgravity environment and creates the unique environment of low shear force and high-mass transfer is conducive for maintaining long term 3-D cell cultures of functional hepatocytes (60 days). However, significant further expansion of liver mass, or the remodeling of liver in vitro was jeopardized by the appearance of apoptotic zones in the center of large cell aggregates. To optimize oxygenation and nutritional uptake within growing cellular aggregates we cultured primary human liver cells (HLC) in a bioreactor in the presence or absence of microcarriers and biodegradable scaffolds. Also, to promote angiogenesis, HLC were cultured with or without microvascular endothelial cells. HLC were harvested from human livers by collagenase perfusion. While microcarriers did not affect cell growth, HLC cultured with biodegradable scaffolds made from polyglycolic acid (PGA) formed aggregates up to 3 cm in length. Culturing cells with PGA scaffolds increased the efficiency of cell self-assembly and the formation of larger cell aggregates. Based on histological evaluation it appears that the degree of apoptotic cells was diminished as compared to cultures without scaffolds. Histology of HLC with PGA-scaffolds revealed cell distribution between the fibers of the scaffolds, and cell-cell and cell-fiber interactions. Analyses of HLC spheroids revealed tissue-like structures comprised of hepatocytes, biliary epithelial cells and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes and bile canaliculi with multiple microvilli and tight cellular junctions. Hepatocytes were further organized into tight clusters surrounded by complex stromal structures and reticulin fibers. Also, we observed higher levels of albumin mRNA expression when hepatocytes were co-cultured with endothelial cells. To evaluate

  12. Induction of Three-Dimensional Growth of Human Liver Cells in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Khaoustov, V. I.; Yoffe, B.; Murry, D. J.; Soriano, H. E.; Risin, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    We previously reported that a NASA-developed bioreactor that simulates microgravity environment and creates the unique environment of low shear force and high-mass transfer is conducive for maintaining long term 3-D cell cultures of functional hepatocytes (60 days). However, significant further expansion of liver mass, or the remodeling of liver in vitro was jeopardized by the appearance of apoptotic zones in the center of large cell aggregates. To optimize oxygenation and nutritional uptake within growing cellular aggregates we cultured primary human liver cells (HLC) in a bioreactor in the presence or absence of microcarriers and biodegradable scaffolds. Also, to promote angiogenesis, HLC were cultured with or without microvascular endothelial cells. HLC were harvested from human livers by collagenase perfusion. While microcarriers did not affect cell growth, HLC cultured with biodegradable scaffolds made from polyglycolic acid (PGA) formed aggregates up to 3 cm in length. Culturing cells with PGA scaffolds increased the efficiency of cell self-assembly and the formation of larger cell aggregates. Based on histological evaluation it appears that the degree of apoptotic cells was diminished as compared to cultures without scaffolds. Histology of HLC with PGA-scaffolds revealed cell distribution between the fibers of the scaffolds, and cell-cell and cell-fiber interactions. Analyses of HLC spheroids revealed tissue-like structures comprised of hepatocytes, biliary epithelial cells and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes and bile canaliculi with multiple microvilli and tight cellular junctions. Hepatocytes were further organized into tight clusters surrounded by complex stromal structures and reticulin fibers. Also, we observed higher levels of albumin mRNA expression when hepatocytes were co-cultured with endothelial cells. To evaluate

  13. Visualization of hepatitis E virus RNA and proteins in the human liver.

    PubMed

    Lenggenhager, Daniela; Gouttenoire, Jérôme; Malehmir, Mohsen; Bawohl, Marion; Honcharova-Biletska, Hanna; Kreutzer, Susanne; Semela, David; Neuweiler, Jörg; Hürlimann, Sandra; Aepli, Patrick; Fraga, Montserrat; Sahli, Roland; Terracciano, Luigi; Rubbia-Brandt, Laura; Müllhaupt, Beat; Sempoux, Christine; Moradpour, Darius; Weber, Achim

    2017-09-01

    Although hepatitis E constitutes a substantial disease burden worldwide, surprisingly little is known about the localization of hepatitis E virus (HEV) in the human liver. We therefore aimed to visualize HEV RNA and proteins in situ. A panel of 12 different antibodies against HEV open reading frame (ORF) 1-3 proteins was evaluated for immunohistochemistry (IHC) and two probes for in situ hybridization (ISH) in formalin-fixed, paraffin-embedded (FFPE) HuH7 cells transfected with HEV ORF1-3 expression vectors. IHC (and partly ISH) were then applied to Hep293TT cells replicating infectious HEV and liver specimens from patients with hepatitis E (n=20) and controls (n=134). Whereas ORF1-3 proteins were all detectable in transfected, HEV protein-expressing cells, only ORF2 and 3 proteins were traceable in cells replicating infectious HEV. Only the ORF2-encoded capsid protein was also unequivocally detectable in liver specimens from patients with hepatitis E. IHC for ORF2 protein revealed a patchy expression in individual or grouped hepatocytes, generally stronger in chronic compared to acute hepatitis. Besides cytoplasmic and canalicular, ORF2 protein also displayed a hitherto unknown nuclear localization. Positivity for ORF2 protein in defined areas correlated with HEV RNA detection by ISH. IHC was specific and comparably sensitive as PCR for HEV RNA. ORF2 protein can be reliably visualized in the liver of patients with hepatitis E, allowing for sensitive and specific detection of HEV in FFPE samples. Its variable subcellular distribution in individual hepatocytes of the same liver suggests a redistribution of ORF2 protein during infection and interaction with nuclear components. The open reading frame (ORF) 2 protein can be used to visualize the hepatitis E virus (HEV) in the human liver. This enabled us to discover a hitherto unknown localization of the HEV ORF2 protein in the nucleus of hepatocytes and to develop a test for rapid histopathologic diagnosis of

  14. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells.

    PubMed

    Friedman, Mendel; Lee, Kap-Rang; Kim, Hyun-Jeong; Lee, In-Seon; Kozukue, Nobuyuke

    2005-07-27

    Methods were devised for the isolation of large amounts of pure alpha-chaconine and alpha-solanine from Dejima potatoes and for the extraction and analysis of total glycoalkaloids from five fresh potato varieties (Dejima, Jowon, Sumi, Toya, and Vora Valley). These compounds were then evaluated in experiments using a tetrazolium microculture (MTT) assay to assess the anticarcinogenic effects of (a) the isolated pure glycoalkaloids separately, (b) artificial mixtures of the two glycoalkaloids, and (c) the total glycoalkaloids isolated from each of the five potato varieties. All samples tested reduced the numbers of the following human cell lines: cervical (HeLa), liver (HepG2), lymphoma (U937), stomach (AGS and KATO III) cancer cells and normal liver (Chang) cells. The results show that (a) the effects of the glycoalkaloids were concentration dependent in the range of 0.1-10 mug/mL (0.117-11.7 nmol/mL); (b) alpha-chaconine was more active than was alpha-solanine; (c) some mixtures exhibited synergistic effects, whereas other produced additive ones; (d) the different cancer cells varied in their susceptibilities to destruction; and (e) the destruction of normal liver cells was generally lower than that of cancer liver cells. The decreases in cell populations were also observed visually by reversed-phase microscopy. The results complement related observations on the anticarcinogenic potential of food ingredients.

  15. High frequency of Human Cytomegalovirus DNA in the Liver of Infants with Extrahepatic Neonatal Cholestasis

    PubMed Central

    De Tommaso, Adriana MA; Andrade, Paula D; Costa, Sandra CB; Escanhoela, Cecília AF; Hessel, Gabriel

    2005-01-01

    Background Biliary atresia (BA) is the most severe hepatic disorder in newborns and its etiopathogenesis remains unknown. Viral involvement has been proposed, including the human cytomegalovirus (HCMV). The aims of the study were to use the polymerase chain reaction (PCR) to screen the liver tissue of infants with extrahepatic cholestasis for HCMV and to correlate the results with serological antibodies against HCMV and histological findings. Methods A retrospective study in a tertiary care setting included 35 patients (31 BA, 1 BA associated with a choledochal cyst, 2 congenital stenosis of the distal common bile duct and 1 hepatic cyst). HCMV serology was determined by ELISA. Liver and porta hepatis were examined histologically. Liver samples from infants and a control group were screened for HCMV DNA. Results Twelve patients had HCMV negative serology, 9 were positive for IgG antibodies and 14 were positive for IgG and IgM. Nine liver and seven porta hepatis samples were positive for HCMV DNA but none of the control group were positive (general frequency of positivity was 34.3% – 12/35). There was no correlation between HCMV positivity by PCR and the histological findings. The accuracy of serology for detecting HCMV antibodies was low. Conclusion These results indicate an elevated frequency of HCMV in pediatric patients with extrahepatic neonatal cholestasis. They also show the low accuracy of serological tests for detecting active HCMV infection and the lack of correlation between HCMV positivity by PCR and the histopathological changes. PMID:16321152

  16. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues.

    PubMed

    Biffi, Giulia; Tannahill, David; Miller, Jodi; Howat, William J; Balasubramanian, Shankar

    2014-01-01

    Four-stranded G-quadruplex DNA secondary structures have recently been visualized in the nuclei of human cultured cells. Here, we show that BG4, a G-quadruplex-specific antibody, can be used to stain DNA G-quadruplex structures in patient-derived tissues using immunohistochemistry. We observe a significantly elevated number of G-quadruplex-positive nuclei in human cancers of the liver and stomach as compared to background non-neoplastic tissue. Our results suggest that G-quadruplex formation can be detected and measured in patient-derived material and that elevated G-quadruplex formation may be a characteristic of some cancers.

  17. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading.

    PubMed

    Sparks, Jessica L; Dupaix, Rebecca B

    2008-11-01

    An understanding of the mechanical deformation behavior of the liver under high strain rate loading conditions could aid in the development of vehicle safety measures to reduce the occurrence of blunt liver injury. The purpose of this study was to develop a constitutive model of the stress-strain behavior of the human liver in blunt impact loading. Experimental stress and strain data was obtained from impact tests of 12 unembalmed human livers using a drop tower technique. A constitutive model previously developed for finite strain behavior of amorphous polymers was adapted to model the observed liver behavior. The elements of the model include a nonlinear spring in parallel with a linear spring and nonlinear dashpot. The model captures three features of liver stress-strain behavior in impact loading: (1) relatively stiff initial modulus, (2) rate-dependent yield or rollover to viscous "flow" behavior, and (3) strain hardening at large strains. Six material properties were used to define the constitutive model. This study represents a novel application of polymer mechanics concepts to understand the rate-dependent large strain behavior of human liver tissue under high strain rate loading. Applications of this research include finite element simulations of injury-producing liver or abdominal impact events.

  18. Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2012-10-01

    Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects.

  19. Biotransformation of bisphenol F by human and rat liver subcellular fractions.

    PubMed

    Cabaton, Nicolas; Zalko, Daniel; Rathahao, Estelle; Canlet, Cécile; Delous, Georges; Chagnon, Marie-Christine; Cravedi, Jean-Pierre; Perdu, Elisabeth

    2008-10-01

    Bisphenol F [4,4'-dihydroxydiphenyl-methane] (BPF) has a broad range of applications in industry (liners lacquers, adhesives, plastics, coating of drinks and food cans). Free monomers of this bisphenol can be released into the environment and enter the food chain, very likely resulting in the exposure of humans to low doses of BPF. This synthetic compound has been reported to be estrogenic. A study of BPF distribution and metabolism in rats has demonstrated the formation of many metabolites, with multiple biotransformation pathways. In the present work we investigated the in vitro biotransformation of radio-labelled BPF using rat and human liver subcellular fractions. BPF metabolites were separated, isolated by high-performance liquid chromatography (HPLC), and analysed by mass spectrometry (MS), MS(n), and nuclear magnetic resonance (NMR). Many of these metabolites were characterized for the first time in mammals and in humans. BPF is metabolised into the corresponding glucuronide and sulfate (liver S9 fractions). In addition to these phase II biotransformation products, various hydroxylated metabolites are formed, as well as structurally related apolar metabolites. These phase I metabolic pathways are dominant for incubations carried out with liver microsomes and also present for incubations carried out with liver S9 fractions. The formation of the main metabolites, namely meta-hydroxylated BPF and ortho-hydroxylated BPF (catechol BPF) is P450 dependent, as is the formation of the less polar metabolites characterized as BPF dimers. Both the formation of a catechol and of dimeric metabolites correspond to biotransformation pathways shared by BPF, other bisphenols and estradiol.

  20. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes.

    PubMed

    Kim, Kyoung-Ah; Chung, Jaegul; Jung, Dong-Hae; Park, Ji-Young

    2004-10-01

    The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 microM and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 microM and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6alpha-hydroxylation (rs=0.797; P<0.05). CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug

  1. Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes

    SciTech Connect

    Elferink, M.G.L.; Olinga, P.; van Leeuwen, E.M.; Bauerschmidt, S.; Polman, J.; Schoonen, W.G.; Heisterkamp, S.H.; Groothuis, G.M.M.

    2011-05-15

    In the process of drug development it is of high importance to test the safety of new drugs with predictive value for human toxicity. A promising approach of toxicity testing is based on shifts in gene expression profiling of the liver. Toxicity screening based on animal liver cells cannot be directly extrapolated to humans due to species differences. The aim of this study was to evaluate precision-cut human liver slices as in vitro method for the prediction of human specific toxicity by toxicogenomics. The liver slices contain all cell types of the liver in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process. Previously we showed that toxicogenomic analysis of rat liver slices is highly predictive for rat in vivo toxicity. In this study we investigated the levels of gene expression during incubation up to 24 h with Affymetrix microarray technology. The analysis was focused on a broad spectrum of genes related to stress and toxicity, and on genes encoding for phase-I, -II and -III metabolizing enzymes and transporters. Observed changes in gene expression were associated with cytoskeleton remodeling, extracellular matrix and cell adhesion, but for the ADME-Tox related genes only minor changes were observed. PCA analysis showed that changes in gene expression were not associated with age, sex or source of the human livers. Slices treated with acetaminophen showed patterns of gene expression related to its toxicity. These results indicate that precision-cut human liver slices are relatively stable during 24 h of incubation and represent a valuable model for human in vitro hepatotoxicity testing despite the human inter-individual variability.

  2. Value of energy substrates in HTK and UW to protect human liver endothelial cells against ischemia and reperfusion injury.

    PubMed

    Janssen, Hermann; Janssen, Petra H E; Broelsch, Christoph E

    2004-01-01

    Adenosine 5'-triphosphate (ATP) depletion is a major cause of cellular injury during ischemia and reperfusion in organ transplantation. Therefore, histidine-tryptophan-ketoglutarate solution (HTK; alpha-ketoglutarate) and University of Wisconsin solution (UW; adenosine) were supplied with energy substrates to achieve graft viability. Nevertheless, their efficacy for maintaining the ATP level, particularly in human liver endothelial cells, was uncertain. Furthermore, it is of interest whether a high ATP level is beneficial in human liver endothelial cell viability. We used human liver endothelial cells between the 3rd and 6th passages in a cell culture model. Human liver endothelial cells were exposed to hypothermic preservation (4 degrees C) in HTK and UW for 2, 6, 12, 24 and 48 h with subsequent reperfusion of 6 h. ATP and lactate dehydrogenase (LDH) were measured after each interval. In comparison to HTK, UW demonstrates a statistically significantly higher level of ATP after each interval of ischemia (p < 0.001) and reperfusion (p < 0.002). Additionally, UW-preserved human liver endothelial cells exceed the ATP level of the warm control during all intervals of ischemia. The loss of cell viability (LDH) was statistically significantly higher after ischemia (p < 0.01) and reperfusion (p < 0.01) in HTK than in UW except after the interval of 48 h. In conclusion, adenosine was more effective than alpha-ketoglutarate in maintaining a high ATP level in human liver endothelial cells after ischemia and reperfusion. Different pathways of energy substrate utilization were a contributing factor. The beneficial effect of the higher ATP level caused by adenosine to human liver endothelial cell viability was limited to 24 h of ischemia. Beyond this ischemia time we could not prove a favorable impact of adenosine on human liver endothelial cells.

  3. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells

    PubMed Central

    Rashid, S. Tamir; Corbineau, Sebastien; Hannan, Nick; Marciniak, Stefan J.; Miranda, Elena; Alexander, Graeme; Huang-Doran, Isabel; Griffin, Julian; Ahrlund-Richter, Lars; Skepper, Jeremy; Semple, Robert; Weber, Anne; Lomas, David A.; Vallier, Ludovic

    2010-01-01

    Human induced pluripotent stem (iPS) cells hold great promise for advancements in developmental biology, cell-based therapy, and modeling of human disease. Here, we examined the use of human iPS cells for modeling inherited metabolic disorders of the liver. Dermal fibroblasts from patients with various inherited metabolic diseases of the liver were used to generate a library of patient-specific human iPS cell lines. Each line was differentiated into hepatocytes using what we believe to be a novel 3-step differentiation protocol in chemically defined conditions. The resulting cells exhibited properties of mature hepatocytes, such as albumin secretion and cytochrome P450 metabolism. Moreover, cells generated from patients with 3 of the inherited metabolic conditions studied in further detail (α1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease type 1a) were found to recapitulate key pathological features of the diseases affecting the patients from which they were derived, such as aggregation of misfolded α1-antitrypsin in the endoplasmic reticulum, deficient LDL receptor–mediated cholesterol uptake, and elevated lipid and glycogen accumulation. Therefore, we report a simple and effective platform for hepatocyte generation from patient-specific human iPS cells. These patient-derived hepatocytes demonstrate that it is possible to model diseases whose phenotypes are caused by pathological dysregulation of key processes within adult cells. PMID:20739751

  4. Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels

    PubMed Central

    Matte, Ashok; Perfilyev, Alexander; de Mello, Vanessa D.; Käkelä, Pirjo; Pihlajamäki, Jussi

    2015-01-01

    Objective: Epigenetic variation may contribute to the development of complex metabolic diseases such as type 2 diabetes (T2D). Hepatic insulin resistance is a hallmark of T2D. However, it remains unknown whether epigenetic alterations take place in the liver from diabetic subjects. Therefore, we investigated the genome-wide DNA methylation pattern in the liver from subjects with T2D and nondiabetic controls and related epigenetic alterations to gene expression and circulating folate levels. Research Design and Methods: Liver biopsies were obtained from 35 diabetic and 60 nondiabetic subjects, which are part of the Kuopio Obesity Surgery Study. The genome-wide DNA methylation pattern was analyzed in the liver using the HumanMethylation450 BeadChip. RNA expression was analyzed from a subset of subjects using the HumanHT-12 Expression BeadChip. Results: After correction for multiple testing, we identified 251 individual CpG sites that exhibit differential DNA methylation in liver obtained from T2D compared with nondiabetic subjects (Q < .05). These include CpG sites annotated to genes that are biologically relevant to the development of T2D such as GRB10, ABCC3, MOGAT1, and PRDM16. The vast majority of the significant CpG sites (94%) displayed decreased DNA methylation in liver from subjects with T2D. The hypomethylation found in liver from diabetic subjects may be explained by reduced folate levels. Indeed, subjects with T2D had significantly reduced erythrocyte folate levels compared with nondiabetic subjects. We further identified 29 genes that displayed both differential DNA methylation and gene expression in human T2D liver including the imprinted gene H19. Conclusions: Our study highlights the importance of epigenetic and transcriptional changes in the liver from subjects with T2D. Reduced circulating folate levels may provide an explanation for hypomethylation in the human diabetic liver. PMID:26418287

  5. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    PubMed Central

    Sharma, Ruchi; Greenhough, Sebastian; Medine, Claire N.; Hay, David C.

    2010-01-01

    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays. PMID:20169088

  6. Age-related changes in microRNA expression and pharmacogenes in human liver

    PubMed Central

    Burgess, Kimberly S.; Philips, Santosh; Benson, Eric A.; Desta, Zeruesenay; Gaedigk, Andrea; Gaedigk, Roger; Segar, Matthew W.; Liu, Yunlong; Skaar, Todd C.

    2015-01-01

    Developmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric (1-17 years), and adult (28-80 years); n=30 each). 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g. hsamiR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n=10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition. PMID:25968989

  7. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    PubMed Central

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups) after 30–40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  8. Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products.

    PubMed

    Takahashi, S; Mukai, H; Tanabe, S; Sakayama, K; Miyazaki, T; Masuno, H

    1999-08-01

    Butyltin compounds (BTs) including mono-(MBT), di-(DBT) and tributyltin (TBT) were determined in livers of humans and wild terrestrial mammals, such as raccoon dogs (Nyctereutes procyonoids) and monkeys (Macaca fuscata) from Japan. In addition, 22 samples of plastic products were analyzed. BT residues were detected in all the liver samples of humans and raccoon dogs, with concentrations of <360 ng/g wet wt, whereas concentrations in the liver of monkeys were either less than the detection limit or were only in trace levels. Elevated concentrations of BTs, particularly DBT (<140,000 ng/g) and MBT (<130,000 ng/g), were found in some plastic products, such as baking parchments made from siliconized paper and gloves made up from polyurethane. The results of a cooking test using the above baking parchment indicated the transfer of BTs to foodstuffs. These observations suggest expansion of BT contamination among terrestrial mammals. BT pollution from industrial appliances, such as plastic stabilizers and catalysts other than those of marine origin as antifouling agents, are suggested as alternative sources of exposure.

  9. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    PubMed Central

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  10. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model

    PubMed Central

    Lagaye, Sylvie; Brun, Sonia; Gaston, Jesintha; Shen, Hong; Stranska, Ruzena; Camus, Claire; Dubray, Clarisse; Rousseau, Géraldine; Massault, Pierre-Philippe; Courcambeck, Jerôme; Bassisi, Firas; Halfon, Philippe; Pol, Stanislas

    2016-01-01

    AIM: To evaluate the antiviral potency of a new anti-hepatitis C virus (HCV) antiviral agent targeting the cellular autophagy machinery. METHODS: Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices (2.7 × 106 cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant (multiplicity of infection = 0.1) cultivated for up to ten days. HCV infected slices were treated at day 4 post-infection with GNS-396 for 6 d at different concentrations. HCV replication was evaluated by strand-specific real-time quantitative reverse transcription - polymerase chain reaction. The infectivity titers of supernatants were evaluated by foci formation upon inoculation into naive Huh-7.5.1 cells. The cytotoxic effect of the drugs was evaluated by lactate dehydrogenase leakage assays. RESULTS: The antiviral efficacy of a new antiviral drug, GNS-396, an autophagy inhibitor, on HCV infection of adult human liver slices was evidenced in a dose-dependent manner. At day 6 post-treatment, GNS-396 EC50 was 158 nmol/L without cytotoxic effect (compared to hydroxychloroquine EC50 = 1.17 μmol/L). CONCLUSION: Our results demonstrated that our ex vivo model is efficient for evaluation the potency of autophagy inhibitors, in particular a new quinoline derivative GNS-396 as antiviral could inhibit HCV infection in a dose-dependent manner without cytotoxic effect. PMID:27478540

  11. [Vitamin D metabolism and signaling in human hepatocellular carcinoma and surrounding non-tumorous liver].

    PubMed

    Horváth, Evelin; Balla, Bernadett; Kósa, János; Lakatos, Péter András; Lazáry, Áron; Németh, Dániel; Jozilan, Hasan; Somorácz, Áron; Korompay, Anna; Gyöngyösi, Benedek; Borka, Katalin; Kiss, András; Kupcsulik, Péter; Schaff, Zsuzsa; Szalay, Ferenc

    2016-11-01

    1,25-Dihydroxy vitamin D3 mediates antitumor effects in hepatocellular carcinoma. We examined mRNA and protein expression differences in 1,25-Dihydroxy vitamin D3-inactivating CYP24A1, mRNA of activating CYP27B1 enzymes, and that of VDR between human hepatocellular carcinoma and surrounding non-tumorous liver. Snap-frozen tissues from 13 patients were studied for mRNA and protein expression of CYP24A1. Paraffin-embedded tissues from 36 patients were used to study mRNA of VDR and CYP27B1. mRNA expression was measured by RT-PCR, CYP24A1 protein was detected by immunohistochemistry. Expression of VDR and CYP27B1 was significantly lower in hepatocellular carcinoma compared with non-tumorous liver (p<0.05). The majority of the HCC samples expressed CYP24A1 mRNA, but neither of the non-tumorous liver. The gene activation was followed by CYP24A1 protein synthesis. The presence of CYP24A1 mRNA and the reduced expression of VDR and CYP27B1 mRNA in human hepatocellular carcinoma samples indicate decreased bioavailability of 1,25-Dihydroxy vitamin D3, providing an escape mechanism from the anti-tumor effect. Orv. Hetil., 2016, 157(48), 1910-1918.

  12. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis

    PubMed Central

    Turola, Elena; Petta, Salvatore; Vanni, Ester; Milosa, Fabiola; Valenti, Luca; Critelli, Rosina; Miele, Luca; Maccio, Livia; Calvaruso, Vincenza; Fracanzani, Anna L.; Bianchini, Marcello; Raos, Nazarena; Bugianesi, Elisabetta; Mercorella, Serena; Di Giovanni, Marisa; Craxì, Antonio; Fargion, Silvia; Grieco, Antonio; Cammà, Calogero; Cotelli, Franco; Villa, Erica

    2015-01-01

    ABSTRACT Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported); liver biopsy was scored according to ‘The Pathology Committee of the NASH Clinical Research Network’. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI), histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR): 1.408, 95% confidence interval (95% CI): 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06). In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04) was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl) and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males), whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis. PMID:26183212

  13. Unique Cell Type-Specific Junctional Complexes in Vascular Endothelium of Human and Rat Liver Sinusoids

    PubMed Central

    Straub, Beate K.; Peitsch, Wiebke K.; Demory, Alexandra; Dörflinger, Yvette; Schledzewski, Kai; Schmieder, Astrid; Schemmer, Peter; Augustin, Hellmut G.; Schirmacher, Peter; Goerdt, Sergij

    2012-01-01

    Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis. PMID:22509281

  14. Can 19-nortestosterone derivatives be aromatized in the liver of adult humans? Are there clinical implications?

    PubMed

    Kuhl, H; Wiegratz, I

    2007-08-01

    Previous studies in postmenopausal women have demonstrated that, after oral administration of norethisterone, a small proportion of the compound is rapidly converted into ethinylestradiol. The shape of the concentration - time curve suggested that this occurred in the liver. The results were confirmed by in vitro investigations with adult human liver tissue. In 2002, it was shown that, after oral treatment of women with tibolone, aromatization of the compound occurred, resulting in the formation of a potent estrogen, 7 alpha-methyl-ethinylestradiol. The result has been called into question, because the adult human liver does not express cytochrome P450 aromatase, which is encoded by the CYP 19 gene. Moreover, it has been claimed that the serum level of 7 alpha-methyl-ethinylestradiol measured by gas chromatography/mass spectrometry was an artifact. Aromatization of steroids is a complex process of consecutive oxidation reactions which are catalyzed by cytochrome P450 enzymes. The conversion of the natural C19 steroids, testosterone and androstenedione, into estradiol-17beta and estrone is dependent on the oxidative elimination of the angular C19-methyl group. This complex key reaction is catalyzed by the cytochrome P450 aromatase, which is expressed in many tissues of the adult human (e.g. ovary, fat tissue), but not in the liver. However, 19-nortestosterone derivatives are characterized by the lack of the C19-methyl group. Therefore, for the aromatization of these synthetic steroids, the action of the cytochrome P450 aromatase is not necessary and the oxidative introduction of double bonds into the A-ring can be catalyzed by other hepatic cytochrome P450 enzymes. The final key process in the formation of a phenolic A-ring, both in natural androgens and 19-nortestosterone derivatives, is the enolization of a 3-keto group to the C2-C3-enol or the C3-C4-enol moiety, which occurs without the action of enzymes. 19-nortestosterone derivatives (norethisterone

  15. Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data.

    PubMed

    Dogan, Firat; Celebi, M Serdar

    2016-09-01

    Researchers working on error-prevention theories have shown that the use of replica models within simulation systems has improved operating skills, resulting in better patient outcomes. This study aims to provide material test data specifically for a human liver to validate the accuracy of viscoelastic soft tissue models. This allows the validation of virtual surgery simulators by comparison with physical test data obtained from material tests on a viscoelastic silicone gel pad. The results proved that stress behavior and relaxation curves of Aquaflex® experiment and FEM simulation are close if average liver response and respective material parameters and model are used. The precise representation of manipulated tissues used in virtual surgery trainers involves the accurate characterization of mechanical properties of the tissue. Consequently, successful implementations of these mechanical properties in a mathematical model of the deforming organ are of major importance. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    PubMed

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  17. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  18. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow.

    PubMed

    Muench, M O; Namikawa, R

    2001-01-01

    The liver and the bone marrow (BM) are the major organs that support hematopoiesis in the human fetus. Although both tissues contain the spectrum of hematopoietic cells, erythropoiesis dominates the liver. Previous studies suggested that a unique responsiveness of fetal burst-forming units erythroid (BFU-E) to erythropoietin (EPO) obviates the need for cytokines with burst-promoting activity (BPA) in fetal erythropoiesis. This potential regulatory mechanism whereby fetal erythropoiesis is enhanced was further investigated. Fluorescence-activated cell sorting was used to isolate liver and BM progenitors based on their levels of CD34 and CD38 expression. The most mature population of CD34+ lineage (Lin-) cells was also the most prevalent of the three subpopulations and contained BFU-E responsive to EPO alone under serum-deprived conditions. Kit ligand (KL) also strongly synergized with EPO in stimulating the growth of these BFU-E. An intermediate subset of CD34++CD38+Lin- cells contained erythroid progenitors responsive to EPO alone, but also displayed synergism between EPO and KL, granulocyte-macrophage colony-stimulating factor (GM-CSF), or interleukin (IL)-3, demonstrating that erythroid progenitors that respond to cytokines with BPA do exist in fetal tissues as in the adult BM. Candidate stem cells (CD34++CD38-Lin- cells) did not respond to EPO. Synergisms among KL, GM-CSF, and IL-3, and to a lesser extent granulocyte colony-stimulating factor (G-CSF) and FLK-2/FLT-3 ligand (FL), supported the growth of primitive multipotent progenitors that became responsive to EPO. These data define the limits of EPO activity in fetal erythropoiesis to cells that express CD38 and demonstrate the potential for various cytokine interactions to be involved in regulating fetal erythropoiesis. Furthermore, a comparison of the responses of liver and BM erythroid progenitors revealed similarity in their responses to cytokines but a difference in the frequency of BFU-E among the three

  19. Viral load affects the immune response to HBV in mice with humanized immune system and liver.

    PubMed

    Dusséaux, Mathilde; Masse-Ranson, Guillemette; Darche, Sylvie; Ahodantin, James; Li, Yan; Fiquet, Oriane; Beaumont, Elodie; Moreau, Pierrick; Rivière, Lise; Neuveut, Christine; Soussan, Patrick; Roingeard, Philippe; Kremsdorf, Dina; Di Santo, James P; Strick-Marchand, Helene

    2017-08-26

    Hepatitis B virus (HBV) infects hepatocytes, but the mechanisms of the immune response against the virus, and how it affects disease progression, are unclear. We performed studies with BALB/c Rag2(-/-)Il2rg(-/-)Sirpa(NOD)Alb-uPA(tg/tg) mice, stably engrafted with human hepatocytes (HUHEP) with or without a human immune system (HIS). HUHEP and HIS-HUHEP mice were given an intraperitoneal injection of HBV. Mononuclear cells were isolated from spleen and liver for analysis by flow cytometry. Liver was analyzed by immunohistochemistry and mRNA levels were measured by quantitative reverse transcription PCR. Plasma levels of HBV DNA was quantified by quantitative PCR, and antigen-specific antibodies were detected by immunocytochemistry of HBV transfected BHK-21 cells. Following HBV infection, a complete viral life cycle, with production of HBV DNA, hepatitis B e, core (HBc) and surface (HBs) antigens, and covalently closed circular DNA, was observed in HUHEP and HIS-HUHEP mice. HBV replicated unrestricted in HUHEP mice resulting in high viral titers without pathologic effects. In contrast, HBV-infected HIS-HUHEP mice developed chronic hepatitis with 10-fold lower titers and antigen-specific IgGs, (anti-HBs, anti-HBc), consistent with partial immune control. HBV-infected HIS-HUHEP livers contained infiltrating Kupffer cells, mature activated natural killer cells (CD69+), and PD-1+ effector memory T cells (CD45RO+). Reducing the viral inoculum resulted in more efficient immune control. Plasma from HBV-infected HIS-HUHEP mice had increased levels of inflammatory and immune-suppressive cytokines (C-X-C motif chemokine ligand 10 and interleukin 10), which correlated with populations of intrahepatic CD4+ T cells (CD45RO+PD-1+). Mice with high levels of viremia had HBV-infected liver progenitor cells. Giving the mice the nucleoside analogue entecavir reduced viral loads and decreased liver inflammation. In HIS-HUHEP mice, HBV infection completes a full life cycle and

  20. In vitro metabolism and interactions of the fungicide metalaxyl in human liver preparations.

    PubMed

    Abass, Khaled; Reponen, Petri; Jalonen, Jorma; Pelkonen, Olavi

    2007-01-01

    In order to provide additional information for risk assessment of the fungicide metalaxyl, the main objectives were (1) to elucidate the interactions of metalaxyl with different human liver cytochrome P450 enzymes, (2) to tentitatively identify and (semi)quantify metabolites in vitro and (3) to identify human CYP enzymes responsible for metabolism. The mean inhibitory concentrations (IC(50)) for 7-pentoxyresorufin-O-dealkylation (CYP2B) and bupropion hydroxylation (2B6) were 48.9 and 41.7μM, respectively. The biotransformation reactions were hydroxylation, (di)demethylation and lactone formation. In human liver microsomes predominant metabolites were two hydroxymetalaxyl derivatives or atropisomers of one of the derivatives. On the basis of previous rat studies these could be N-(2-hydroxymethyl-6-methylphenyl)-N-(methoxyacetyl)alanine methyl ester and/or N-(2,6-dimethyl-5-hydroxyphenyl)-N-(methoxyacetyl)alanine methyl ester. The amounts of didemethylmetalaxyl N-(2,6-dimethylphenyl)-N-(hydroxyacetyl)alanine and lactone 4-(2,6-dimethylphenyl)-3-methylmorpholine-2,5-dione were higher in homogenates than microsomes. The carcinogenic 2,6-dimethylaniline was not detected. Among the nine major human CYPs, CYP3A4 was the only one responsible for metalaxyl hydroxylation, while CYP2B6 was the major isoform responsible for (di)demethylation and lactone formation. Copyright © 2006 Elsevier B.V. All rights reserved.

  1. Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model.

    PubMed

    Han, JianHua; Dzierlenga, Anika L; Lu, Zhengqiang; Billheimer, Dean D; Torabzadeh, Elmira; Lake, April D; Li, Hui; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D; Lehman-McKeeman, Lois D; Cherrington, Nathan J

    2017-06-01

    Characteristic pathological changes define the progression of steatosis to nonalcoholic steatohepatitis (NASH) and are correlated to metabolic pathways. A common rodent model of NASH is the methionine and choline deficient (MCD) diet. The objective of this study was to perform full metabolomic analyses on liver samples to determine which pathways are altered most pronouncedly in this condition in humans, and to compare these changes to rodent models of nonalcoholic fatty liver disease (NAFLD). A principal component analysis for all 91 metabolites measured indicated that metabolome perturbation is greater and less varied for humans than for rodents. Metabolome changes in human and rat NAFLD were greatest for the amino acid and bile acid metabolite families (e.g., asparagine, citrulline, gamma-aminobutyric acid, lysine); although, in many cases, the trends were reversed when compared between species (cholic acid, betaine). Overall, these results indicate that metabolites of specific pathways may be useful biomarkers for NASH progression, although these markers may not correspond to rodent NASH models. The MCD model may be useful when studying certain end points of NASH; however, the metabolomics results indicate important differences between humans and rodents in the biochemical pathogenesis of the disease. © 2017 The Obesity Society.

  2. Expression of human glutathione S-transferase 2 in Escherichia coli. Immunological comparison with the basic glutathione S-transferases isoenzymes from human liver.

    PubMed Central

    Board, P G; Pierce, K

    1987-01-01

    A plasmid, termed pTacGST2, which contains the complete coding sequence of a GST2 (glutathione S-transferase 2) subunit and permits the expression of the protein in Escherichia coli was constructed. The expressed protein had the same subunit Mr as the enzyme from normal human liver and retained its catalytic function with both GST and glutathione peroxidase activity. Antiserum raised against the bacterially synthesized protein cross-reacted with all the basic GST isoenzymes in human liver. The electrophoretic mobility in agarose of the bacterially expressed isoenzyme suggested that its pI is identical with that of the cationic isoenzyme from human liver previously termed GST2 type 1. The available evidence suggests that the three common cationic isoenzymes found in human liver are the products of two very similar gene loci. Images Fig. 3. Fig. 4. Fig. 5. PMID:3325043

  3. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    NASA Astrophysics Data System (ADS)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  4. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  5. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells.

    PubMed

    Kranendonk, Mariëtte E G; Visseren, Frank L J; van Herwaarden, Joost A; Nolte-'t Hoen, Esther N M; de Jager, Wilco; Wauben, Marca H M; Kalkhoven, Eric

    2014-10-01

    Insulin resistance (IR) is a key mechanism in obesity-induced cardiovascular disease. To unravel mechanisms whereby human adipose tissue (AT) contributes to systemic IR, the effect of human AT-extracellular vesicles (EVs) on insulin signaling in liver and muscle cells was determined. EVs released from human subcutaneous (SAT) and omental AT (OAT)-explants ex vivo were used for stimulation of hepatocytes and myotubes in vitro. Subsequently, insulin-induced Akt phosphorylation and expression of gluconeogenic genes (G6P, PEPCK) was determined. AT-EV adipokine levels were measured by multiplex immunoassay, and AT-EVs were quantified by high-resolution flow cytometry. In hepatocytes, AT-EVs from the majority of patients inhibited insulin-induced Akt phosphorylation, while EVs from some patients stimulated insulin-induced Akt phosphorylation. In myotubes AT-EVs exerted an ambiguous effect on insulin signaling. Hepatic Akt phosphorylation related negatively to G6P-expression by both SAT-EVs (r = -0.60, P = 0.01) and OAT-EVs (r = -0.74, P = 0.001). MCP-1, IL-6, and MIF concentrations were higher in OAT-EVs compared to SAT-EVs and differently related to lower Akt phosphorylation in hepatocytes. Finally, the number of OAT-EVs correlated positively with liver enzymes indicative for liver dysfunction. Human AT-EVs can stimulate or inhibit insulin signaling in hepatocytes- possibly depending on their adipokine content- and may thereby contribute to systemic IR. Copyright © 2014 The Obesity Society.

  6. Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes.

    PubMed

    Gordon, L M; Mobley, P W

    1984-01-01

    Electron spin resonance (ESR) studies of human erythrocyte ghosts labeled with 5-nitroxide stearate, I(12,3), indicate that a temperature-dependent lipid phase separation occurs with a high onset at 38 degrees C. Cooling below 38 degrees C induces I(12,3) clustering. Similar phase separations were previously identified in human platelet and cholesterol-loaded [cholesterol/phospholipid molar ratio (C/P) = 0.85] rat liver plasma membranes [L.M. Gordon et al., 1983; J. Membrane Biol. 76; 139-149]; these were attributed to redistribution of endogenous lipid components such that I(12,3) is excluded from cholesterol-rich domains and tends to reside in cholesterol-poor domains. Further enrichment of rat liver plasma membranes to C/P ratios of 0.94-0.98 creates an "artificial" system equivalent to human erythrocyte ghosts (C/P = 0.90), using such criteria as probe flexibility, temperature dependent I(12,3) clustering; and polarity of the probe environment. Consequently, cholesterol-rich and -poor domains probably exist in both erythrocyte ghosts and high cholesterol liver membranes at physiologic temperatures. The temperature dependence of cold-induced hypertonic lysis of intact human erythrocytes was examined by incubating cells in 0.9 M sucrose for 10 min at 1 degree C intervals between 9 and 46 degrees C (Stage 1), and then subjecting them to 0 degrees C for 10 min (Stage 2). Plots of released hemoglobin are approx. sigmoidal, with no lysis below 18 degrees C and maximal lysis above 40 degrees C. The protective effect of low temperatures during Stage 1 may be due to the formation of cholesterol-rich domains that alter the bilayer distribution and/or conformation of critical membrane-associated proteins.

  7. Liver Immunology

    PubMed Central

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  8. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver.

    PubMed

    Hadi, Mackenzie; Dragovic, Sanja; van Swelm, Rachel; Herpers, Bram; van de Water, Bob; Russel, Frans G M; Commandeur, Jan N M; Groothuis, Geny M M

    2013-01-01

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat and human, the toxicity of APAP and AMAP was tested ex vivo in precision-cut liver slices (PCLS) of mouse, rat and human. Based on ATP content and histomorphology, APAP was more toxic in mouse than in rat and human PCLS. Surprisingly, although AMAP showed a much lower toxicity than APAP in mouse PCLS, AMAP was equally toxic as or even more toxic than APAP at all concentrations tested in both rat and human PCLS. The profile of proteins released into the medium of AMAP-treated rat PCLS was similar to that of APAP, whereas in the medium of mouse PCLS, it was similar to the control. Metabolite profiling indicated that mouse PCLS produced the highest amount of glutathione conjugate of APAP, while no glutathione conjugate of AMAP was detected in all three species. Mouse also produced ten times more hydroquinone metabolites of AMAP, the assumed proximate reactive metabolites, than rat or human. In conclusion, AMAP is toxic in rat and human liver and cannot be used as non-toxic isomer of APAP. The marked species differences in APAP and AMAP toxicity and metabolism underline the importance of using human tissues for better prediction of toxicity in man.

  9. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  10. A novel splice variant of human gene NPL, mainly expressed in human liver, kidney and peripheral blood leukocyte.

    PubMed

    Wu, Maoqing; Gu, Shaohua; Xu, Jian; Zou, Xianqiong; Zheng, Huarui; Jin, Zhe; Xie, Yi; Ji, Chaoneng; Mao, Yumin

    2005-04-01

    From the human fetal brain cDNA library constructed by our lab, a novel variant cDNA of a human gene was successfully cloned and identified. Because the gene has been named N-acetylneuraminate pyruvate lyase (NPL), accordingly we term our splice variant NPL_v2. The cDNA of NPL_v2 has a full-length open reading frame (ORF) from the nucleotide position 320 to 1225 that encodes a protein comprising 301 amino acids. SMART analysis showed that our hypothetical protein has one dihydrodipicolinate synthase (DHDPS) domain. Phosphorylation analysis of the deduced protein show that there are five phosphorylation sites including three "serine" and two "threonine" at the region that are not found in other splice variant. RT-PCR experiment revealed that our splice variant of the gene is mainly expressed in human placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocyte.

  11. Molecular biomarkers for aflatoxins and their application to human liver cancer.

    PubMed

    Scholl, P; Musser, S M; Kensler, T W; Groopman, J D

    1995-01-01

    The rationale for developing molecular biomarkers to monitor and assess risk from human exposure to aflatoxins have been justified by the association of these carcinogens with human liver cancer, a disease that causes at least 250000 deaths world-wide each year. The goal of our research has been the development of aflatoxin biomarkers based upon the knowledge of the biochemistry and toxicology of aflatoxins gleaned from both experimental and human studies. These biomarkers have been subsequently utilized in experimental chemoprotection models to provide data on the modulation of these markers under different situations of disease risk. Several of the aflatoxin specific biomarkers have been validated in epidemiologic studies and are now available to use as intermediate biomarkers in chemoprotection trials. This systematic approach provides encouragement for preventive interventions and should serve as a template for the development, validation and application of other chemical-specific biomarkers to cancer or other chronic diseases.

  12. Xmrk, kras and myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma.

    PubMed

    Zheng, Weiling; Li, Zhen; Nguyen, Anh Tuan; Li, Caixia; Emelyanov, Alexander; Gong, Zhiyuan

    2014-01-01

    Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC). Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24-29%) and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2%) of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down) in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup.

  13. Xmrk, Kras and Myc Transgenic Zebrafish Liver Cancer Models Share Molecular Signatures with Subsets of Human Hepatocellular Carcinoma

    PubMed Central

    Zheng, Weiling; Li, Zhen; Nguyen, Anh Tuan; Li, Caixia; Emelyanov, Alexander; Gong, Zhiyuan

    2014-01-01

    Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC). Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24–29%) and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2%) of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down) in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup. PMID:24633177

  14. Bioenergetic adaptations of the human liver in the ALPPS procedure - how liver regeneration correlates with mitochondrial energy status.

    PubMed

    Alexandrino, Henrique; Rolo, Anabela; Teodoro, João S; Donato, Henrique; Martins, Ricardo; Serôdio, Marco; Martins, Mónica; Tralhão, José G; Caseiro Alves, Filipe; Palmeira, Carlos; Castro E Sousa, Francisco

    2017-09-20

    The Associating Liver Partition and Portal Ligation for Staged Hepatectomy (ALPPS) depends on a significant inter-stages kinetic growth rate (KGR). Liver regeneration is highly energy-dependent. The metabolic adaptations in ALPPS are unknown. i) Assess bioenergetics in both stages of ALPPS (T1 and T2) and compare them with control patients undergoing minor (miHp) and major hepatectomy (MaHp), respectively; ii) Correlate findings in ALPPS with volumetric data; iii) Investigate expression of genes involved in liver regeneration and energy metabolism. Five patients undergoing ALPPS, five controls undergoing miHp and five undergoing MaHp. Assessment of remnant liver bioenergetics in T1, T2 and controls. Analysis of gene expression and protein content in ALPPS. Mitochondrial function was worsened in T1 versus miHp; and in T2 versus MaHp (p < 0.05); but improved from T1 to T2 (p < 0.05). Liver bioenergetics in T1 strongly correlated with KGR (p < 0.01). An increased expression of genes associated with liver regeneration (STAT3, ALR) and energy metabolism (PGC-1α, COX, Nampt) was found in T2 (p < 0.05). Metabolic capacity in ALPPS is worse than in controls, improves between stages and correlates with volumetric growth. Bioenergetic adaptations in ALPPS could serve as surrogate markers of liver reserve and as target for energetic conditioning. Copyright © 2017 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  15. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes.

    PubMed

    Otake, Yoko; Hsieh, Faye; Walle, Thomas

    2002-05-01

    In a previous study, we used human liver microsomes for the first time to study cytochrome P450 (P450)-mediated oxidation of the flavonoid galangin. The combination of CYP1A2 and CYP2C9 produced a V(max)/K(m) value of 13.6 +/- 1.1 microl/min/mg of protein. In the present extended study, we determined glucuronidation rates for galangin with the same microsomes. Two major and one minor glucuronide were identified by liquid chromatography/mass spectrometry. The V(max)/K(m) values for the two major glucuronides conjugated in the 7- and 3-positions were 155 +/- 30 and 427 +/- 26 microl/min/mg of protein, thus, exceeding that of oxidation by 11 and 31 times, respectively. This highly efficient glucuronidation appeared to be catalyzed mainly by the UDP-glucuronosyltransferase (UGT)1A9 isoform but also by UGT1A1 and UGT2B15. Sulfation of galangin by the human liver cytosol, mediated mainly but not exclusively by sulfotransferase (SULT) 1A1, also appeared to be efficient. These conclusions were strongly supported by experiments using the S9 fraction of the human liver, in which all three metabolic pathways could be directly compared. When galangin metabolism was examined in fresh plated hepatocytes from six donors, glucuronidation clearly predominated followed by sulfation. Oxidation occurred only to a minor extent in two of the donors. This study for the first time establishes that glucuronidation and sulfation of galangin, and maybe other flavonoids, are more efficient than P450-mediated oxidation, clearly being the metabolic pathways of choice in intact cells and therefore likely also in vivo.

  16. Impacts of Unregulated Novel Brominated Flame Retardants on Human Liver Thyroid Deiodination and Sulfotransferation.

    PubMed

    Smythe, Tristan A; Butt, Craig M; Stapleton, Heather M; Pleskach, Kerri; Ratnayake, Geemitha; Song, Chae Yoon; Riddell, Nicole; Konstantinov, Alex; Tomy, Gregg T

    2017-06-20

    The inhibitory effects of five novel brominated flame retardants, 1,2-bis(2,4,5-tribromophenoxy)ethane (BTBPE), decabromodiphenylethane (DBDPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), and β-tetrabromoethylcyclohexane (β-TBECH), on thyroid hormone deiodinase (DIO) and sulfotransferase (SULT) activity were investigated using human in vitro liver microsomal and cytosolic bioassays. Enzymatic activity was measured by incubating active human liver subcellular fractions with thyroid hormones (T4 and rT3 separately) and measuring changes in thyroid hormone (T4, T3, rT3, and 3,3'-T2) concentrations. Only DBDPE showed inhibition of both outer and inner ring deiodination (O and IRD) of T3 and 3,3'-T2 formation from T4, respectively, with an estimated IC50 of 160 nM; no statistically significant inhibition of SULT activity was observed. ORD inhibition of 3,3'-T2 formation from rT3 was also observed (IC50 ∼ 100 nM). The kinetics of T4 O and IRD were also investigated, although a definitive mechanism could not be identified as the Michaelis-Menten parameters and maximal rate constants were not significantly different. Concentrations tested were intentionally above expected environmental levels, and this study suggests that these NBFRs are not potent human liver DIO and SULT inhibitors. To our knowledge, DBDPE is the first example of a nonhydroxylated contaminant inhibiting DIO activity, and further study of the mechanism of action is warranted.

  17. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    PubMed

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation.

    PubMed

    Snider, Natasha T; Weerasinghe, Sujith V W; Iñiguez-Lluhí, Jorge A; Herrmann, Harald; Omary, M Bishr

    2011-01-21

    Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.

  19. Keratin Hypersumoylation Alters Filament Dynamics and Is a Marker for Human Liver Disease and Keratin Mutation*

    PubMed Central

    Snider, Natasha T.; Weerasinghe, Sujith V. W.; Iñiguez-Lluhí, Jorge A.; Herrmann, Harald; Omary, M. Bishr

    2011-01-01

    Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function. PMID:21062750

  20. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    PubMed Central

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  1. Metabolism of Ginger Component [6]-Shogaol in Liver Microsomes from Mouse, Rat, Dog, Monkey, and Human

    PubMed Central

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-01-01

    Scope There are limited data on the metabolism of [6]-shogaol, a major bioactive component of ginger. This study demonstrates metabolism of [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Methods and results The in vitro metabolism of [6]-shogaol was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with [6]-shogaol, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E, 4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than [6]-shogaol. Conclusion We conclude that [6]-shogaol is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning pre-clinical trials towards [6]-shogaol chemoprevention. PMID:23322474

  2. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  3. Classification of Cholestatic and Necrotic Hepatotoxicants Using Transcriptomics on Human Precision-Cut Liver Slices.

    PubMed

    Vatakuti, Suresh; Pennings, Jeroen L A; Gore, Emilia; Olinga, Peter; Groothuis, Geny M M

    2016-03-21

    Human toxicity screening is an important stage in the development of safe drug candidates. Hepatotoxicity is one of the major reasons for the withdrawal of drugs from the market because the liver is the major organ involved in drug metabolism, and it can generate toxic metabolites. There is a need to screen molecules for drug-induced hepatotoxicity in humans at an earlier stage. Transcriptomics is a technique widely used to screen molecules for toxicity and to unravel toxicity mechanisms. To date, the majority of such studies were performed using animals or animal cells, with concomitant difficulty in interpretation due to species differences, or in human hepatoma cell lines or cultured hepatocytes, suffering from the lack of physiological expression of enzymes and transporters and lack of nonparenchymal cells. The aim of this study was to classify known hepatotoxicants on their phenotype of toxicity in humans using gene expression profiles ex vivo in human precision-cut liver slices (PCLS). Hepatotoxicants known to induce either necrosis (n = 5) or cholestasis (n = 5) were used at concentrations inducing low (<30%) and medium (30-50%) cytotoxicity, based on ATP content. Random forest and support vector machine algorithms were used to classify hepatotoxicants using a leave-one-compound-out cross-validation method. Optimized biomarker sets were compared to derive a consensus list of markers. Classification correctly predicted the toxicity phenotype with an accuracy of 70-80%. The classification is slightly better for the low than for the medium cytotoxicity. The consensus list of markers includes endoplasmic reticulum stress genes, such as C2ORF30, DNAJB9, DNAJC12, SRP72, TMED7, and UBA5, and a sodium/bile acid cotransporter (SLC10A7). This study shows that human PCLS are a useful model to predict the phenotype of drug-induced hepatotoxicity. Additional compounds should be included to confirm the consensus list of markers, which could then be used to develop a

  4. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system.

    PubMed

    Wheeler, S E; Clark, A M; Taylor, D P; Young, C L; Pillai, V C; Stolz, D B; Venkataramanan, R; Lauffenburger, D; Griffith, L; Wells, A

    2014-12-09

    Metastatic outgrowth in breast cancer can occur years after a seeming cure. Existing model systems of dormancy are limited as they do not recapitulate human metastatic dormancy without exogenous manipulations and are unable to query early events of micrometastases. Here, we describe a human ex vivo hepatic microphysiologic system. The system is established with fresh human hepatocytes and non-parenchymal cells (NPCs) creating a microenvironment into which breast cancer cells (MCF7 and MDA-MB-231) are added. The hepatic tissue maintains function through 15 days as verified by liver-specific protein production and drug metabolism assays. The NPCs form an integral part of the hepatic niche, demonstrated within the system through their participation in differential signalling cascades and cancer cell outcomes. Breast cancer cells intercalate into the hepatic niche without interfering with hepatocyte function. Examination of cancer cells demonstrated that a significant subset enter a quiescent state of dormancy as shown by lack of cell cycling (EdU(-) or Ki67(-)). The presence of NPCs altered the cancer cell fraction entering quiescence, and lead to differential cytokine profiles in the microenvironment effluent. These findings establish the liver microphysiologic system as a relevant model for the study of breast cancer metastases and entry into dormancy.

  5. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system

    PubMed Central

    Wheeler, S E; Clark, A M; Taylor, D P; Young, C L; Pillai, V C; Stolz, D B; Venkataramanan, R; Lauffenburger, D; Griffith, L; Wells, A

    2014-01-01

    Background: Metastatic outgrowth in breast cancer can occur years after a seeming cure. Existing model systems of dormancy are limited as they do not recapitulate human metastatic dormancy without exogenous manipulations and are unable to query early events of micrometastases. Methods: Here, we describe a human ex vivo hepatic microphysiologic system. The system is established with fresh human hepatocytes and non-parenchymal cells (NPCs) creating a microenvironment into which breast cancer cells (MCF7 and MDA-MB-231) are added. Results: The hepatic tissue maintains function through 15 days as verified by liver-specific protein production and drug metabolism assays. The NPCs form an integral part of the hepatic niche, demonstrated within the system through their participation in differential signalling cascades and cancer cell outcomes. Breast cancer cells intercalate into the hepatic niche without interfering with hepatocyte function. Examination of cancer cells demonstrated that a significant subset enter a quiescent state of dormancy as shown by lack of cell cycling (EdU− or Ki67−). The presence of NPCs altered the cancer cell fraction entering quiescence, and lead to differential cytokine profiles in the microenvironment effluent. Conclusions: These findings establish the liver microphysiologic system as a relevant model for the study of breast cancer metastases and entry into dormancy. PMID:25314052

  6. Detection of anti-liver cell membrane antibody using a human hepatocellular carcinoma cell line

    SciTech Connect

    Lobo-Yeo, A.; McSorley, C.; McFarlane, B.M.; Mieli-Vergani, G.; Mowat, A.P.; Vergani, D.

    1989-02-01

    A radioimmunometric technique for the detection of autoantibodies to liver membrane antigens has been developed using Alexander cells, a human hepatocellular carcinoma cell line. After incubation of Alexander cells with serum, antimembrane antibodies were detected by addition of /sup 125/I-labeled Protein A. Binding ratios in 15 children with uncontrolled autoimmune chronic active hepatitis and in seven children with primary sclerosing cholangitis were significantly higher than in 18 age-matched normal controls. Nine patients with inactive autoimmune chronic active hepatitis, 13 with alpha 1-antitrypsin deficiency and five with fulminant hepatic failure had ratios similar to controls. In nine patients with Wilson's disease, there was a modest but significant increase in binding ratio. In four children with autoimmune chronic active hepatitis, binding ratios fell during effective immunosuppressive therapy. Sera from patients with systemic lupus erythematosus or rheumatoid arthritis gave normal results, excluding that binding derives from Fc-mediated immune complex capture. A positive correlation was found between Alexander cell binding values and anti-liver-specific protein antibody titers, suggesting that the two assays detect antibodies against shared antigenic determinants. The Alexander cell assay is a simple, rapid and sensitive technique to detect antibody to liver cell membrane antigens.

  7. Function of the liver and bile ducts in humans exposed to lead.

    PubMed

    Kasperczyk, A; Dziwisz, M; Ostałowska, A; Swietochowska, E; Birkner, E

    2013-08-01

    Lead is very common in the environment, and it is therefore important to characterize its possible adverse health effects. The aim of this study was to evaluate the impact of lead exposure on selected functions of the liver and bile ducts in people who are chronically exposed to the metal because of their occupations. To provide this information, the activity of specific enzymes and the bilirubin concentration were determined in blood serum, and morphological parameters of the liver and bile ducts were evaluated using the ultrasonic imaging method. Healthy male employees of a lead-zinc processing facility (n = 145) who were occupationally exposed to lead were divided into two subgroups as a function of the lead concentrations in blood (PbB): low lead exposure (PbB = 20-35 μg/dl; n = 57) and high lead exposure (PbB = 35-60 μg/dl; n = 88). Human exposure to lead compounds was found to cause liver enlargement and to activate inflammatory reactions with the characteristics of moderate cholestasis within the bile ducts, while no characteristics of necrotic damage of hepatic cells were noted. It seems that lipid peroxidation can be one of the toxic mechanisms of lead which induce moderate cholestasis. The effects depend on the extent of the lead exposure and were greater in subjects with higher exposure levels, particularly subjects with PbB values greater than 35 μg/dl.

  8. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    SciTech Connect

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya; Takamiya, Masataka; Aoki, Yasuhiro; Fukami, Tatsuki; Yokoi, Tsuyoshi

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  9. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues

    SciTech Connect

    Olsavsky, Katy M.; Page, Jeanine L.; Johnson, Mary C.; Zarbl, Helmut; Strom, Stephen C.; Omiecinski, Curtis J. . E-mail: cjo10@psu.edu

    2007-07-01

    Frequently, primary hepatocytes are used as an in vitro model for the liver in vivo. However, the culture conditions reported vary considerably, with associated variability in performance. In this study, we characterized the differentiation character of primary human hepatocytes cultured using a highly defined, serum-free two-dimensional sandwich system, one that configures hepatocytes with collagen I as the substratum together with a dilute extracellular matrix (Matrigel{sup TM}) overlay combined with a defined serum-free medium containing nanomolar levels of dexamethasone. Gap junctional communication, indicated by immunochemical detection of connexin 32 protein, was markedly enhanced in hepatocytes cultured in the Matrigel sandwich configuration. Whole genome expression profiling enabled direct comparison of liver tissues to hepatocytes and to the hepatoma-derived cell lines, HepG2 and Huh7. PANTHER database analyses were used to identify biological processes that were comparatively over-represented among probe sets expressed in the in vitro systems. The robustness of the primary hepatocyte cultures was reflected by the extent of unchanged expression character when compared directly to liver, with more than 77% of the probe sets unchanged in each of the over-represented categories, representing such genes as C/EBP{alpha}, HNF4{alpha}, CYP2D6, and ABCB1. In contrast, HepG2 and Huh7 cells were unchanged from the liver tissues for fewer than 48% and 55% of these probe sets, respectively. Further, hierarchical clustering of the hepatocytes, but not the cell lines, shifted from donor-specific to treatment-specific when the probe sets were filtered to focus on phenobarbital-inducible genes, indicative of the highly differentiated nature of the hepatocytes when cultured in a highly defined two-dimensional sandwich system.

  10. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  11. Variation in dielectric properties due to pathological changes in human liver.

    PubMed

    Peyman, Azadeh; Kos, Bor; Djokić, Mihajlo; Trotovšek, Blaž; Limbaeck-Stokin, Clara; Serša, Gregor; Miklavčič, Damijan

    2015-12-01

    Dielectric properties of freshly excised human liver tissues (in vitro) with several pathological conditions including cancer were obtained in frequency range 100 MHz-5 GHz. Differences in dielectric behavior of normal and pathological tissues at microwave frequencies are discussed based on histological information for each tissue. Data presented are useful for many medical applications, in particular nanosecond pulsed electroporation techniques. Knowledge of dielectric properties is vital for mathematical calculations of local electric field distribution inside electroporated tissues and can be used to optimize the process of electroporation for treatment planning procedures.

  12. Partial characterization of a highly conserved aspartyl kinase (AK) in normal human liver.

    PubMed

    Arenas-Díaz, G; Marshall, S H

    1990-01-01

    Subcellular fractions from human liver were assayed for aspartyl kinase (AK) activity measured by standard spectrophotometric methods. Along the purification procedure three different fractions displayed the expected enzyme activity. Interestingly, two of these fractions were specifically recognized by antibodies raised against E. coli aspartate kinases, suggesting a high degree of evolutionary conservation for these ubiquitous enzymes for prokaryotes. Since their known function in bacteria is not strictly required in eukaryotes, these observation imply that the presence and activity of aspartyl kinase(s) in mammals might represent putative regulatory roles for these enzymes in eukaryotic cell metabolism.

  13. Phentermine inhibition of recombinant human liver monoamine oxidases A and B.

    PubMed

    Nandigama, Ravi K; Newton-Vinson, Paige; Edmondson, Dale E

    2002-03-01

    Recent studies with rat tissue preparations have suggested that the anorectic drug phentermine inhibits serotonin degradation by inhibition of monoamine oxidase (MAO) A with a K(I) value of 85-88 microM, a potency suggested to be similar to that of other reversible MAO inhibitors (Ulus et al., Biochem Pharmacol 2000;59:1611-21). Since there are known differences between rats and humans in substrate and inhibitor specificities of MAOs, the interactions of phentermine with recombinant human purified preparations of MAO A and MAO B were determined. Human MAO A was competitively inhibited by phentermine with a K(I) value of 498+/-60 microM, a value approximately 6-fold weaker than that observed for the rat enzyme. Phentermine was also observed to be a competitive inhibitor of recombinant human liver MAO B with a K(I) value of 375+/-42 microM, a value similar to that observed with the rat enzyme (310-416 microM). In contrast to the behavior with rat tissue preparations, no slow time-dependent behavior was observed for phentermine inhibition of purified soluble human MAO preparations. Difference absorption spectral studies showed similar perturbations of the covalent FAD moieties of both human MAO A and MAO B, which suggests a similar mode of binding in both enzymes. These data suggest that phentermine inhibition of human MAO A (or of MAO B) is too weak to be of pharmacological relevance.

  14. Human parenchymal and non-parenchymal liver cell isolation, culture and characterization.

    PubMed

    Damm, Georg; Pfeiffer, Elisa; Burkhardt, Britta; Vermehren, Jan; Nüssler, Andreas K; Weiss, Thomas S

    2013-10-01

    Many reports describing parenchymal liver cell isolation have been published so far. However, recent evidence has clearly demonstrated that non-parenchymal liver cells play an important role in many pathophysiologies of the liver, such as drug-induced liver diseases, inflammation, and the development of liver fibrosis and cirrhosis. In this study, we present an overview of the current methods for isolating and characterizing parenchymal and non-parenchymal liver cells.

  15. Differential TGFβ pathway targeting by miR-122 in humans and mice affects liver cancer metastasis

    PubMed Central

    Yin, Shenyi; Fan, Yu; Zhang, Hanshuo; Zhao, Zhihua; Hao, Yang; Li, Juan; Sun, Changhong; Yang, Junyu; Yang, Zhenjun; Yang, Xiao; Lu, Jian; Xi, Jianzhong Jeff

    2016-01-01

    Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFβ pathway: miR-122 target site is present in the mouse but not human TGFβR1, whereas a noncanonical target site is present in the TGFβ1 5′UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFβR1 and the ligand TGFβ1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFβ1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases. PMID:26987776

  16. Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers

    PubMed Central

    Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.

    2015-01-01

    Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate

  17. Measurement of liver iron overload by magnetic induction using a planar gradiometer: preliminary human results.

    PubMed

    Casañas, R; Scharfetter, H; Altes, A; Remacha, A; Sarda, P; Sierra, J; Merwa, R; Hollaus, K; Rosell, J

    2004-02-01

    The measurement of hepatic iron overload is of particular interest in cases of hereditary hemochromatosis or in patients subject to periodic blood transfusion. The measurement of plasma ferritin provides an indirect estimate but the usefulness of this method is limited by many common clinical conditions (inflammation, infection, etc). Liver biopsy provides the most quantitative direct measurement of iron content in the liver but the risk of the procedure limits its acceptability. This work studies the feasibility of a magnetic induction (MI) low-cost system to measure liver iron overload. The excitation magnetic field (B0, frequency: 28 kHz) was produced by a coil, the perturbation produced by the object (deltaB) was detected using a planar gradiometer. We measured ten patients and seven volunteers in supine and prone positions. Each subject was moved in a plane parallel to the gradiometer several times to estimate measurement repeatability. The real and imaginary parts of deltaB/B0 were measured. Plastic tanks filled with water, saline and ferric solutions were measured for calibration purposes. We used a finite element model to evaluate the experimental results. To estimate the iron content we used the ratio between the maximum values for real and imaginary parts of deltaB/B0 and the area formed by the Nyquist plot divided by the maximum imaginary part. Measurements in humans showed that the contribution of the permittivity is stronger than the contribution of the permeability produced by iron stores in the liver. Defined iron estimators show a limited correlation with expected iron content in patients (R < or = 0.56). A more precise control of geometry and position of the subjects and measurements at multiple frequencies would improve the method.

  18. Challenging small human hepatocytes with opiates: further characterization of a novel prototype bioartificial liver.

    PubMed

    Wurm, Martin; Woess, Claudia; Libiseller, Kathrin; Beer, Beate; Pavlic, Marion

    2010-03-01

    Bioartificial liver (BAL) systems can take over liver functions in patients undergoing liver failure until transplantation. Recently, a novel prototype rotary BAL has been developed using small human hepatocytes (SH). This study investigated the metabolism of opiates morphine and methadone in the BAL and their influence on the basic cell culture parameters, viability, and growth of SH. Opiates may be present in patients due to pain therapy, anticancer treatment, or drug abuse. Cells were cultivated in the BAL for a total of 12 days and exposed twice to 100 microg/L of morphine or methadone. Morphine and methadone concentrations were analyzed using gas chromatography with a mass spectrometry detector. Further, the production of albumin, lactate dehydrogenase release, lactate release, urea production, and glucose consumption were measured. Cell viability and growth were determined by confocal microscopy. Cytochrome P 3A4 and uridindiphosphat (UDP) glucuronosyl transferase 2B7 in SH were analyzed by western blot. The mean cell density during treatment was 5.5 +/- 0.7 x 10(6) cells/mL (n = 6) and was not altered significantly by the opiates. Cell viability stayed above 90%. Morphine was not reduced by SH and was a stress factor as determined by decreased metabolic activity. On the other hand, SH metabolized methadone showing first-order kinetics: the first-order rate constant k = 0,019, half-life t(1/2) = 36 h. Methadone metabolism led to decreased urea and albumin production. The expression of cytochrome P 3A4, mainly responsible for methadone metabolism, was proved in SH. The prototype BAL is basically suited to support liver functions, provided patients receive therapy with methadone.

  19. Recombinant Human Acid Sphingomyelinase as an Adjuvant to Sorafenib Treatment of Experimental Liver Cancer

    PubMed Central

    Savić, Radoslav; He, Xingxuan; Fiel, Isabel; Schuchman, Edward H.

    2013-01-01

    Background Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the third leading cause of cancer death worldwide. The only approved systemic treatment for unresectable HCC is the oral kinase inhibitor, sorafenib. Recombinant human acid sphingomyelinase (rhASM), which hydrolyzes sphingomyelin to ceramide, is an orphan drug under development for the treatment of Type B Niemann-Pick disease (NPD). Due to the hepatotropic nature of rhASM and its ability to generate pro-apoptotic ceramide, this study evaluated the use of rhASM as an adjuvant treatment with sorafenib in experimental models of HCC. Methodology/Principal Findings In vitro, rhASM/sorafenib treatment reduced the viability of Huh7 liver cancer cells more than sorafenib. In vivo, using a subcutaneous Huh7 tumor model, mouse survival was increased and proliferation in the tumors decreased to a similar extent in both sorafenib and rhASM/sorafenib treatment groups. However, combined rhASM/sorafenib treatment significantly lowered tumor volume, increased tumor necrosis, and decreased tumor blood vessel density compared to sorafenib. These results were obtained despite poor delivery of rhASM to the tumors. A second (orthotopic) model of Huh7 tumors also was established, but modest ASM activity was similarly detected in these tumors compared to healthy mouse livers. Importantly, no chronic liver toxicity or weight loss was observed from rhASM therapy in either model. Conclusions/Significance The rhASM/sorafenib combination exhibited a synergistic effect on reducing the tumor volume and blood vessel density in Huh7 xenografts, despite modest activity of rhASM in these tumors. No significant increases in survival were observed from the rhASM/sorafenib treatment. The poor delivery of rhASM to Huh7 tumors may be due, at least in part, to low expression of mannose receptors. The safety and efficacy of this approach, together with the novel findings regarding enzyme targeting, merits further

  20. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors.

    PubMed

    Schmelzer, Eva; Reid, Lola M

    2009-10-01

    Although telomerase activity has been analyzed in various normal and malignant tissues, including liver, it is still unknown to what extent telomerase can be associated with specific maturational lineage stages. We assessed human telomerase activity, protein and gene expression for the telomerase reverse transcriptase, as well as expression of the telomeric template RNA hTER in hepatic stem cells and in various developmental stages of the liver from fetal to adult. In addition, the effect of growth factors on telomerase activity was analyzed in hepatic stem cells in vitro. Telomerase was found to be highly active in fetal liver cells and was significantly higher than in hepatic stem cells, correlating with gene and protein expression levels. Activity in postnatal livers from all donor ages varied considerably and did not correlate with age or gene expression levels. The hter expression could be detected throughout the development. A short stimulation by growth factors of cultured hepatic stem cells did not increase telomerase activity. Telomerase is considerably active in fetal liver and variably in postnatal livers. Although telomerase protein is present at varying levels in liver cells of all donor ages, gene expression is solely associated with fetal liver cells.

  1. Human Telomerase Activity, Telomerase and Telomeric Template Expression in Hepatic Stem Cells and in Livers from Fetal and Postnatal Donors

    PubMed Central

    Schmelzer, Eva; Reid, Lola M.

    2009-01-01

    Background Even though telomerase activity has been analyzed in various normal and malignant tissues, including liver, it is still unknown to what extent telomerase can be associated with specific maturational lineage stages. Methods We assessed human telomerase activity, protein and gene expression for the telomerase reverse transcriptase, as well as expression of the telomeric template RNA hter in hepatic stem cells and in various developmental stages of the liver from fetal to adult. Additionally, the effect of growth factors on telomerase activity was analyzed in hepatic stem cells in vitro. Results Telomerase was found to be highly active in fetal liver cells and was significantly higher than in hepatic stem cells, correlating with gene and protein expression levels. Activity in postnatal livers from all donor ages varied considerably and did not correlate with age or gene expression levels. The hter expression could be detected throughout development. A short stimulation by growth factors of cultured hepatic stem cells did not increase telomerase activity. Conclusions Telomerase is considerably active in fetal liver and variably in postnatal livers. Although telomerase protein is present at varying levels in liver cells of all donor ages, gene expression is associated solely with fetal liver cells. PMID:19240645

  2. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    SciTech Connect

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A.

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  3. Therapeutic Efficacy of Human Hepatocyte Transplantation in a SCID/uPA Mouse Model with Inducible Liver Disease

    PubMed Central

    Douglas, Donna N.; Kawahara, Toshiyasu; Sis, Banu; Bond, David; Fischer, Karl P.; Tyrrell, D. Lorne J.; Lewis, Jamie T.; Kneteman, Norman M.

    2010-01-01

    Background Severe Combined Immune Deficient (SCID)/Urokinase-type Plasminogen Activator (uPA) mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH) which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk)/ganciclovir (GCV) system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK)/GCV system of hepatic failure in SCID/uPA mice. Methodology/Principal Findings In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32–87%). Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH. Conclusions/Significance Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against v

  4. Kinetics of tris (1-chloro-2-propyl) phosphate (TCIPP) metabolism in human liver microsomes and serum.

    PubMed

    Van den Eede, Nele; Tomy, Gregg; Tao, Fang; Halldorson, Thor; Harrad, Stuart; Neels, Hugo; Covaci, Adrian

    2016-02-01

    Tris(1-chloro-2-propyl) phosphate (TCIPP) is an emerging contaminant which is ubiquitous in the indoor and outdoor environment. Moreover, its presence in human body fluids and biota has been evidenced. Since no quantitative data exist on the biotransformation or stability of TCIPP in the human body, we performed an in vitro incubation of TCIPP with human liver microsomes (HLM) and human serum (HS). Two metabolites, namely bis(2-chloro-isopropyl) phosphate (BCIPP) and bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), were quantified in a kinetic study using HLM or HS (only BCIPP, the hydrolysis product) and LC-MS. The Michaelis-Menten model fitted best the NADPH-dependent formation of BCIPHIPP and BCIPP in HLM, with respective V(MAX) of 154 ± 4 and 1470 ± 110 pmol/min/mg protein and respective apparent K(m) of 80.2 ± 4.4 and 96.1 ± 14.5 μM. Hydrolases, which are naturally present in HLM, were also involved in the production of BCIPP. A HS paraoxonase assay could not detect any BCIPP formation above 38.6 ± 10.8 pmol/min/μL serum. Our data indicate that BCIPP is the major metabolite of TCIPP formed in the liver. To our knowledge, this is the first quantitative assessment of the stability of TCIPP in tissues of humans or any other species. Further research is needed to confirm whether these biotransformation reactions are associated with a decrease or increase in toxicity.

  5. Role of transcription factor CCAAT/enhancer-binding protein alpha in human fetal liver cell types in vitro.

    PubMed

    Gerlach, Jörg C; Over, Patrick; Foka, Hubert G; Turner, Morris E; Thompson, Robert L; Gridelli, Bruno; Schmelzer, Eva

    2015-08-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model. Human fetal liver cells were investigated in vitro. C/EBPα gene expression was knocked down using siRNA or overexpressed by plasmid transfection. Cell type-specific gene expression was studied, cell populations and their proliferation were investigated, and metabolic parameters were analyzed. When C/EBPα gene expression was knocked down, we observed a significantly reduced expression of typical endothelial, hematopoietic and mesenchymal genes such as CD31, vWF, CD90, CD45 and α-smooth muscle actin in fetal cells. The intracellular expression of hepatic proteins and genes for liver-specific serum proteins α-fetoprotein and albumin were reduced, their protein secretion was increased. Fetal endothelial cell numbers were reduced and hepatoblast numbers were increased. C/EBPα overexpression in fetal cells resulted in increased endothelial numbers, but did not affect mesenchymal cell types or hepatoblasts. We demonstrated that the effects of C/EBPα are specific for the different human fetal liver cell types, using an advanced 3-D perfusion bioreactor as a human in vivo-like model. © 2014 The Japan Society of Hepatology.

  6. Liver transplantation☆

    PubMed Central

    Rossi, M.; Mennini, G.; Lai, Q.; Ginanni Corradini, S.; Drudi, F.M.; Pugliese, F.; Berloco, P.B.

    2007-01-01

    Orthotopic liver transplantation (OLT) involves the substitution of a diseased native liver with a normal liver (or part of one) taken from a deceased or living donor. Considered an experimental procedure through the 1980s, OLT is now regarded as the treatment of choice for a number of otherwise irreversible forms of acute and chronic liver disease. The first human liver transplantation was performed in the United States in 1963 by Prof. T.E. Starzl of the University of Colorado. The first OLT to be performed in Italy was done in 1982 by Prof. R. Cortesini. The procedure was successfully performed at the Policlinico Umberto I of the University of Rome (La Sapienza). The paper reports the indications for liver transplantation, donor selection and organ allocation in our experience, surgical technique, immunosuppression, complications and results of liver transplantation in our center. PMID:23396075

  7. Human Cord Blood Stem Cells Generate Human Cytokeratin 18-Negative Hepatocyte-Like Cells in Injured Mouse Liver

    PubMed Central

    Sharma, Amar Deep; Cantz, Tobias; Richter, Rudolf; Eckert, Klaus; Henschler, Reinhard; Wilkens, Ludwig; Jochheim-Richter, Andrea; Arseniev, Lubomir; Ott, Michael

    2005-01-01

    Differentiation of adult bone marrow (BM) cells into nonhematopoietic cells is a rare phenomenon. Several reports, however, suggest that human umbilical cord blood (hUCB)-derived cells give rise to hepatocytes after transplantation into nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Therefore, we analyzed the hepatic differentiation potential of hUCB cells and compared the frequency of newly formed hepatocyte-like cells in the livers of recipient NOD-SCID mice after transplantation of hUCB versus murine BM cells. Mononuclear cell preparations of hUCB cells or murine BM from enhanced green fluorescent protein transgenic or wild-type mice were transplanted into sublethally irradiated NOD-SCID mice. Liver regeneration was induced by carbon tetrachloride injury with and without sub-sequent hepatocyte growth factor treatment. By immunohistochemistry and reverse transcriptasepolymerase chain reaction, we detected clusters of hepatocyte-like cells in the livers of hUCB-transplanted mice. These cells expressed human albumin and Hep Par 1 but mouse CK18, suggesting the formation of chimeric hepatocyte-like cells. Native fluorescence microscopy and double immunofluorescence failed to detect single hepatocytes derived from transplanted enhanced green fluorescent protein-transgenic mouse BM. Fluorescent in situ hybridization rarely revealed donor-derived hepatocyte-like cells after cross-gender mouse BM transplantation. Thus, hUCB cells have differentiation capabilities different from murine BM cells after transplantation into NOD-SCID mice, demonstrating the importance of further testing before hUCB cells can be used therapeutically. PMID:16049339

  8. Human plasma concentrations of herbicidal carbamate molinate extrapolated from the pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and physiologically based pharmacokinetic modeling.

    PubMed

    Yamashita, Masanao; Suemizu, Hiroshi; Murayama, Norie; Nishiyama, Sayako; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-10-01

    To predict concentrations in humans of the herbicidal carbamate molinate, used exclusively in rice cultivation, a forward dosimetry approach was carried out using data from lowest-observed-adverse-effect-level doses orally administered to rats, wild type mice, and chimeric mice with humanized liver and from in vitro human and rodent experiments. Human liver microsomes preferentially mediated hydroxylation of molinate, but rat livers additionally produced molinate sulfoxide and an unidentified metabolite. Adjusted animal biomonitoring equivalents for molinate and its primary sulfoxide from animal studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and human metabolic data with a simple physiologically based pharmacokinetic (PBPK) model. The slower disposition of molinate and accumulation of molinate sulfoxide in humans were estimated by modeling after single and multiple doses compared with elimination in rodents. The results from simplified PBPK modeling in combination with chimeric mice with humanized liver suggest that ratios of estimated parameters of molinate sulfoxide exposure in humans to those in rats were three times as many as general safety factor of 10 for species difference in toxicokinetics. Thus, careful regulatory decision is needed when evaluating the human risk resulting from exposure to low doses of molinate and related carbamates based on data obtained from rats.

  9. A human liver microphysiology platform for investigating physiology, drug safety, and disease models

    PubMed Central

    Senutovitch, Nina; Boltz, Robert; DeBiasio, Richard; Ying Shun, Tong; Gough, Albert; Taylor, D Lansing

    2015-01-01

    This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2–4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to

  10. A human liver microphysiology platform for investigating physiology, drug safety, and disease models.

    PubMed

    Vernetti, Lawrence A; Senutovitch, Nina; Boltz, Robert; DeBiasio, Richard; Shun, Tong Ying; Gough, Albert; Taylor, D Lansing

    2016-01-01

    This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2-4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related

  11. Determination of cytochrome P450 enzymes involved in the metabolism of (-)-terpinen-4-ol by human liver microsomes.

    PubMed

    Miyazawa, M; Haigou, R

    2011-12-01

    The in vitro metabolism of (-)-terpinen-4-ol was examined in human liver microsomes and recombinant enzymes. The biotransformation of (-)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry. (-)-Terpinen-4-ol was found to be oxidized to (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol, major metabolic product by human liver microsomal P450 enzymes. The formation of metabolites of (-)-terpinen-4-ol was determined by relative abundance of mass fragments and retention times on GC. CYP2A6 in human liver microsomes was a major enzyme involved in the oxidation of (-)-terpinen-4-ol by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 had the highest activity for oxidation of (-)-terpinen-4-ol. Second, oxidation of (-)-terpinen-4-ol was inhibited by (+)-menthofuran. Finally, there was a good correlation between CYP2A6 maker activity and (-)-terpinen-4-ol oxidation activities in liver microsomes of 10 human samples. Kinetic analysis showed that the V(max)/K(m) values for (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol catalysed by liver microsomes of human sample HH-18 was 2.49 μL/min/nmol. Human recombinant CYP2A6 catalysed (-)-(1S,2R,4R)-1,2-epoxy-p-menthan-4-ol with V(max) values of 13.9 nmol/min/nmol P450 and apparent K(m) values of 91 μM.

  12. Human immunodeficiency virus and nodular regenerative hyperplasia of liver: A systematic review

    PubMed Central

    Sood, Archita; Castrejón, Mariana; Saab, Sammy

    2014-01-01

    AIM: To investigate the diagnosis, pathogenesis, natural history, and management of nodular regenerative hyperplasia (NRH) in patients with human immunodeficiency virus (HIV). METHODS: We performed a systematic review of the medical literature regarding NRH in patients with HIV. Inclusion criteria include reports with biopsy proven NRH. We studied the clinical features of NRH, in particular, related to its presenting manifestation and laboratory values. Combinations of the following keywords were implemented: “nodular regenerative hyperplasia”, “human immunodeficiency virus”, “noncirrhotic portal hypertension”, “idiopathic portal hypertension”, “cryptogenic liver disease”, “highly active antiretroviral therapy” and “didanosine”. The bibliographies of these studies were subsequently searched for any additional relevant publications. RESULTS: The clinical presentation of patients with NRH varies from patients being completely asymptomatic to the development of portal hypertension – namely esophageal variceal bleeding and ascites. Liver associated enzymes are generally normal and synthetic function well preserved. There is a strong association between the occurrence of NRH and the use of antiviral therapies such as didanosine. The management of NRH revolves around treating the manifestations of portal hypertension. The prognosis of NRH is generally good since liver function is preserved. A high index of suspicion is required to make a identify NRH. CONCLUSION: The appropriate management of HIV-infected persons with suspected NRH is yet to be outlined. However, NRH is a clinically subtle condition that is difficult to diagnose, and it is important to be able to manage it according to the best available evidence. PMID:24653794

  13. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells.

    PubMed

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang; Jin, Min; Li, Jun-wen

    2015-06-01

    Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.

  14. Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

    PubMed Central

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M.; Hughes, D