LungMAP: The Molecular Atlas of Lung Development Program
Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam
2017-01-01
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251
LungMAP: The Molecular Atlas of Lung Development Program.
Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam
2017-11-01
The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela
2016-01-01
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344
Liu, Hongye; Kho, Alvin T; Kohane, Isaac S; Sun, Yao
2006-01-01
Background The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. Methods and Findings Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. Conclusions From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome. PMID:16800721
A three-dimensional model of human lung development and disease from pluripotent stem cells.
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-05-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.
A three-dimensional model of human lung development and disease from pluripotent stem cells
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F.; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-01-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modeling, drug discovery and regenerative medicine1. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants2, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs3. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis4,5, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease. PMID:28436965
USDA-ARS?s Scientific Manuscript database
Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...
Henry, Frank S.
2015-01-01
The structure of the gas exchange region of the human lung (the pulmonary acinus) undergoes profound change in the first few years of life. In this paper, we investigate numerically how the change in alveolar shape with time affects the rate of nanoparticle deposition deep in the lung during postnatal development. As human infant data is unavailable, we use a rat model of lung development. The process of postnatal lung development in the rat is remarkably similar to that of the human, and the structure of the rat acinus is indistinguishable from that of the human acinus. The current numerical predictions support our group's recent in vivo findings, which were also obtained by using growing rat lung models, that nanoparticle deposition in infants is strongly affected by the change in the structure of the pulmonary acinus. In humans, this major structural change occurs over the first 2 yr of life. Our current predictions would suggest that human infants at the age of ∼2 yr might be most at risk to the harmful effects of air pollution. Our results also suggest that dose estimates for inhalation therapies using nanoparticles, based on fully developed adult lungs with simple body weight scaling, are likely to overestimate deposition by up to 55% for newborns and underestimate deposition by up to 17% for 2-yr-old infants. PMID:26494453
Nikolić, Marko Z; Caritg, Oriol; Jeng, Quitz; Johnson, Jo-Anne; Sun, Dawei; Howell, Kate J; Brady, Jane L; Laresgoiti, Usua; Allen, George; Butler, Richard; Zilbauer, Matthias; Giangreco, Adam; Rawlins, Emma L
2017-01-01
The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated. DOI: http://dx.doi.org/10.7554/eLife.26575.001 PMID:28665271
Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.
2011-01-01
Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803
Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A
1992-12-01
The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.
Growth of alveoli during postnatal development in humans based on stereological estimation.
Herring, Matt J; Putney, Lei F; Wyatt, Gregory; Finkbeiner, Walter E; Hyde, Dallas M
2014-08-15
Alveolarization in humans and nonhuman primates begins during prenatal development. Advances in stereological counting techniques allow accurate assessment of alveolar number; however, these techniques have not been applied to the developing human lung. Based on the recent American Thoracic Society guidelines for stereology, lungs from human autopsies, ages 2 mo to 15 yr, were fractionated and isometric uniform randomly sampled to count the number of alveoli. The number of alveoli was compared with age, weight, and height as well as growth between right and left lungs. The number of alveoli in the human lung increased exponentially during the first 2 yr of life but continued to increase albeit at a reduced rate through adolescence. Alveolar numbers also correlated with the indirect radial alveolar count technique. Growth curves for human alveolarization were compared using historical data of nonhuman primates and rats. The alveolar growth rate in nonhuman primates was nearly identical to the human growth curve. Rats were significantly different, showing a more pronounced exponential growth during the first 20 days of life. This evidence indicates that the human lung may be more plastic than originally thought, with alveolarization occurring well into adolescence. The first 20 days of life in rats implies a growth curve that may relate more to prenatal growth in humans. The data suggest that nonhuman primates are a better laboratory model for studies of human postnatal lung growth than rats. Copyright © 2014 the American Physiological Society.
Morris, Alison; Paulson, Joseph N; Talukder, Hisham; Tipton, Laura; Kling, Heather; Cui, Lijia; Fitch, Adam; Pop, Mihai; Norris, Karen A; Ghedin, Elodie
2016-07-08
Longitudinal studies of the lung microbiome are challenging due to the invasive nature of sample collection. In addition, studies of the lung microbiome in human disease are usually performed after disease onset, limiting the ability to determine early events in the lung. We used a non-human primate model to assess lung microbiome alterations over time in response to an HIV-like immunosuppression and determined impact of the lung microbiome on development of obstructive lung disease. Cynomolgous macaques were infected with the SIV-HIV chimeric virus SHIV89.6P. Bronchoalveolar lavage fluid samples were collected pre-infection and every 4 weeks for 53 weeks post-infection. The microbiota was characterized at each time point by 16S ribosomal RNA (rRNA) sequencing. We observed individual variation in the composition of the lung microbiota with a proportion of the macaques having Tropheryma whipplei as the dominant organism in their lungs. Bacterial communities varied over time both within and between animals, but there did not appear to be a systematic alteration due to SHIV infection. Development of obstructive lung disease in the SHIV-infected animals was characterized by a relative increase in abundance of oral anaerobes. Network analysis further identified a difference in community composition that accompanied the development of obstructive disease with negative correlations between members of the obstructed and non-obstructed groups. This emphasizes how species shifts can impact multiple other species, potentially resulting in disease. This study is the first to investigate the dynamics of the lung microbiota over time and in response to immunosuppression in a non-human primate model. The persistence of oral bacteria in the lung and their association with obstruction suggest a potential role in pathogenesis. The lung microbiome in the non-human primate is a valuable tool for examining the impact of the lung microbiome in human health and disease.
Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge
2006-04-01
Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.
Interplay between the lung microbiome and lung cancer.
Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong
2018-02-28
The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F
2001-03-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.
Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.
2001-01-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043
Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair
2015-08-01
Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.
Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.
Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam
2015-07-01
DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.
NASA Astrophysics Data System (ADS)
Koujalagi, V.; Ramesh, S. L.; Gunarathne, G. P. P.; Semple, S.; Ayres, J. G.
2009-02-01
This study presents the work carried out in developing a precision bolus injection system in order to understand the regional deposition of nanoparticles (NP) in human lung. A real-time control system has been developed that is capable of storing graphite NP, assessing human breathing pattern and delivering a bolus of the stored NP at a pre-determined instance of the inhalation phase of breathing. This will form the basis for further development of a system to deliver radioactive nanoparticles to enable 3-dimensional lung imaging using techniques such as positron emission tomography (PET). The system may then be used to better understand the actual regional deposition in human lung, which could validate or challenge the current computational lung models such as that published by the International Commission for Radiation Protection (ICRP-1994). A dose related response to inhaled PM can possibly be shown, which can be used to review the current workplace exposure limits (WELs).
Winkler-Heil, R; Hussain, M; Hofmann, W
2015-05-01
Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.
De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu
2012-01-01
Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288
LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Zhang, Hui; Sweezey, Neil B; Kaplan, Feige
2015-02-15
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological Society.
2014-10-01
AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b
Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; He, Yao; Chen, Shanshan
Lung cancer has been a hot area of research because of its high incidence and mortality. In this study, WWP2, an E3 ubiquitin ligase, is proposed to be an oncoprotein contributing to lung tumorigenesis. We attempted to determine if WWP2 gene expression is correlated with the development of human lung adenocarcinoma. Real-time PCR and western blotting were used to detect the expression of WWP2 in 65 paired lung adenocarcinoma and adjacent normal lung tissues. We found that WWP2 expression was elevated in lung adenocarcinoma tissues and was correlated with the tumor differentiation stage, TNM stage and presence of lymph nodemore » metastasis. We performed CCK-8 and colony formation assays and found that down-regulation of WWP2 inhibited proliferation in A549 and SPC-A-1 cells. A wound healing assay and trans-well invasion assays showed that down-regulation of WWP2 inhibited the migration and invasion of lung adenocarcinoma cells. It could be predicted from these data that elevated expression of WWP2 may play a role in facilitating the development of lung adenocarcinoma. - Highlights: • Expression of WWP2 is firstly reported in human lung adenocarcinoma. • Function of WWP2 is firstly explored in lung adenocarcinoma cells.« less
Aizawa, Koichi; Liu, Chun; Veeramachaneni, Sudipta; Hu, Kang-Quan; Smith, Donald E; Wang, Xiang-Dong
2013-12-01
Development of new animal lung cancer models that are relevant to human lung carcino-genesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK). In the present study, we investigated whether NNK treatment alone induces both preneoplastic and neoplastic lesions in the lungs of ferrets. We exposed ferrets to NNK by i.p. injection of NNK (50 mg/kg BW) once a month for four consecutive months and then followed up for 24, 26 and 32 weeks. The incidences of pulmonary pre-neoplastic and neoplastic lesions were assessed by histopathological examination. The expressions of 7 nicotinic acetylcholine receptor ( 7 nAChR, which has been shown to promote lung carcinogenesis)and its related molecular biomarkers in lungs were examined by immunohistochemistry and/or Western blotting analysis. Ferrets exposed to NNK alone developed both preneoplastic lesions (squamous metaplasia, dysplasia and atypical adenomatous hyperplasia) and tumors (squamous cell carcinoma, adenocarcinoma and adenosquamous carcinoma), which are commonly seen in humans. The incidence of tumor induced by NNK was time-dependent in the ferrets (16.7%, 40.0% and 66.7% for 24, 26 and 32 weeks, respectively). 7 nAChR is highly expressed in the ferret bronchial/bronchiolar epithelial cells, and alveolar macrophages in ferrets exposed to NNK, and in both squamous cell carcinoma and adenocarcinoma of the ferrets. In addition, we observed the tendency for an increase in phospho-ERK and cyclin D1 protein levels (p = 0.081 and 0.080, respectively) in the lungs of ferrets exposed to NNK. The development of both preneoplastic and neoplastic lesions in ferret lungs by injecting NNK alone provides a simple and highly relevant non-rodent model for studying biomarkers/molecular targets for the prevention, detection and treatment of lung carcinogenesis in humans.
Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.
Judge, Eoin P; Hughes, J M Lynne; Egan, Jim J; Maguire, Michael; Molloy, Emer L; O'Dea, Shirley
2014-09-01
The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.
DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER
Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...
Towards in vivo bacterial detection in human lung(Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin
2017-04-01
Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).
The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com
2014-08-15
Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved inmore » the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.« less
hPSC-derived lung and intestinal organoids as models of human fetal tissue
Aurora, Megan; Spence, Jason R.
2016-01-01
In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882
2011-01-01
Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV) is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k) representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com). Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins led us to identification of several genes involved in SCLC tumor development. Furthermore, our study reveled that the Aryl Hydrocarbon Receptor Signaling is the primarily affected pathway by the E6/E7 oncoproteins expression and that this pathway is also deregulated in human SCLC. Our results provide the basis for the development of new therapeutic approaches against human SCLC. PMID:21205295
Developing Physiologic Models for Emergency Medical Procedures Under Microgravity
NASA Technical Reports Server (NTRS)
Parker, Nigel; O'Quinn, Veronica
2012-01-01
Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI s patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.
Developing Physiologic Models for Emergency Medical Procedures Under Microgravity
NASA Technical Reports Server (NTRS)
Parker, Nigel; OQuinn, Veronica
2012-01-01
Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI's patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.
The porcine lung as a potential model for cystic fibrosis
Rogers, Christopher S.; Abraham, William M.; Brogden, Kim A.; Engelhardt, John F.; Fisher, John T.; McCray, Paul B.; McLennan, Geoffrey; Meyerholz, David K.; Namati, Eman; Ostedgaard, Lynda S.; Prather, Randall S.; Sabater, Juan R.; Stoltz, David Anthony; Zabner, Joseph; Welsh, Michael J.
2008-01-01
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF. PMID:18487356
[Current state and development of artificial lungs].
Mei, Zaoxian; Sun, Xin; Wu, Qi
2010-12-01
The artificial lung is a technical device for providing life support; it will be put in use when the natural lungs are failing and are not able to maintain sufficient oxygenation of the body's organ systems. From the viewpoint of long-term development, the artificial lung should be permanently implanted in the body, so that it will substitute for the human pulmonary function partially or completely. In this paper, four artificial lung technologies were expounded with reference to the development and research process of artificial lung. They were extracorporeal membrane oxygenation, intravascular artificial lung, implantable artificial lung, and pumpless extracorporeal lung assist. In this paper were described the structure of the four kinds of artificial lung, the working principle, and their advantages, disadvantages and indications. The prospect of artificial lung was evaluated in the light of the data from the existing animal experiments and from the clinical experience of the centers.
Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan
2018-04-01
Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin
2016-01-01
Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.
Epidemiologic and occupational studies demonstrate that ambient PM and DEP have deleterious effects on human cardiopulmonary health including exacerbation of pre-existing lung disease and development of respiratory infections. The effects of ambient PM on lung cell responsivenes...
Gengenbacher, Martin; Duque-Correa, Maria A; Kaiser, Peggy; Schuerer, Stefanie; Lazar, Doris; Zedler, Ulrike; Reece, Stephen T; Nayyar, Amit; Cole, Stewart T; Makarov, Vadim; Barry Iii, Clifton E; Dartois, Véronique; Kaufmann, Stefan H E
2017-08-18
During active TB in humans a spectrum of pulmonary granulomas with central necrosis and hypoxia exists. BALB/c mice, predominantly used in TB drug development, do not reproduce this complex pathology thereby inaccurately predicting clinical outcome. We found that Nos2 -/- mice incapable of NO-production in immune cells as microbial defence uniformly develop hypoxic necrotizing lung lesions, widely observed in human TB. To study the impact of hypoxic necrosis on the efficacy of antimycobacterials and drug candidates, we subjected Nos2 -/- mice with TB to monotherapy before or after establishment of human-like pathology. Isoniazid induced a drug-tolerant persister population only when necrotic lesions were present. Rifapentine was more potent than rifampin prior to development of human-like pathology and equally potent thereafter, in agreement with recent clinical trials. Pretomanid, delamanid and the pre-clinical candidate BTZ043 were bactericidal independent of pulmonary pathology. Linezolid was bacteriostatic in TB-infected Nos2 -/- mice but significantly improved lung pathology. Hypoxic necrotizing lesions rendered moxifloxacin less active. In conclusion, Nos2 -/- mice are a predictive TB drug development tool owing to their consistent development of human-like pathology.
21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs... deep portions of the lungs of users. The lung is an organ, like skin, subject to the development of granulomas. Unlike the skin, the lung will not reveal the presence of granulomatous changes until they have...
A human lung xenograft mouse model of Nipah virus infection.
Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry
2014-04-01
Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7) TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Rafiemanesh, Hosein; Mehtarpour, Mojtaba; Khani, Farah; Hesami, Sayed Mohammadali; Shamlou, Reza; Towhidi, Farhad; Makhsosi, Behnam Reza; Moini, Ali
2016-01-01
Background The highest incidence of lung cancer is seen in North America and the lowest incidence in central Africa. Socioeconomic factors of inequality reflect regional disparities in human development. Due to the importance of awareness about incidence and mortality of lung cancer in health programming and the possible role of the human development index (HDI), this study was done with the aim to investigate the epidemiology of lung cancer in the world and its relationship with HDI. Methods The study was conducted based on data from the world data of cancer and the World Bank (including the HDI and its components). Data about the age-specific incidence and mortality rate (ASR) for every country in 2012 were getting from the global cancer project. To analyze data, correlation tests between incidence and death rates, and HDI and its components were employed with a significance level of 0.05 using SPSS software. Results Lung cancer with standardized incidence rate (ASIR) and standardized mortality rate (ASMR), equal to 23.1 and 19.7 (in 100,000 people), respectively. The highest and lowest values of mortality incidence ratio (MIR) for lung cancer due to continents division were 0.93 and 0.71 for Eastern Africa and Australia/New Zealand, respectively. Univariate analysis showed significant relationship (P<0.0001) between ASIR and ASMR with life expectancy at birth and mean years of schooling. Conclusions The highest MIR for lung cancer was for medium human development countries. Linear regression analysis showed a reverse significant relationship between MIR and HDI. PMID:27293825
Rafiemanesh, Hosein; Mehtarpour, Mojtaba; Khani, Farah; Hesami, Sayed Mohammadali; Shamlou, Reza; Towhidi, Farhad; Salehiniya, Hamid; Makhsosi, Behnam Reza; Moini, Ali
2016-06-01
The highest incidence of lung cancer is seen in North America and the lowest incidence in central Africa. Socioeconomic factors of inequality reflect regional disparities in human development. Due to the importance of awareness about incidence and mortality of lung cancer in health programming and the possible role of the human development index (HDI), this study was done with the aim to investigate the epidemiology of lung cancer in the world and its relationship with HDI. The study was conducted based on data from the world data of cancer and the World Bank (including the HDI and its components). Data about the age-specific incidence and mortality rate (ASR) for every country in 2012 were getting from the global cancer project. To analyze data, correlation tests between incidence and death rates, and HDI and its components were employed with a significance level of 0.05 using SPSS software. Lung cancer with standardized incidence rate (ASIR) and standardized mortality rate (ASMR), equal to 23.1 and 19.7 (in 100,000 people), respectively. The highest and lowest values of mortality incidence ratio (MIR) for lung cancer due to continents division were 0.93 and 0.71 for Eastern Africa and Australia/New Zealand, respectively. Univariate analysis showed significant relationship (P<0.0001) between ASIR and ASMR with life expectancy at birth and mean years of schooling. The highest MIR for lung cancer was for medium human development countries. Linear regression analysis showed a reverse significant relationship between MIR and HDI.
Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia
2012-01-01
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521
Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans
Lee, Matt K.; Pryhuber, Gloria S.; Schwarz, Margaret A.; Smith, Susan M.; Pavlova, Zdena; Sunday, Mary E.
2005-01-01
Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD. PMID:15778491
Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew
2017-06-01
Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...
2015-06-08
Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Xu, Zhidong; Mao, Jian -Hua
Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less
The Lung Microbiome After Lung Transplantation
Becker, Julia B.; Poroyko, Valeriy
2014-01-01
Summary Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome’s role in the failing lung allograft. PMID:24601662
A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis.
Bauer, Yasmina; Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali
2015-02-01
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat-human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1-treated primary human lung fibroblasts and transforming growth factor-β1-treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model-human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease.
A Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis
Tedrow, John; de Bernard, Simon; Birker-Robaczewska, Magdalena; Gibson, Kevin F.; Guardela, Brenda Juan; Hess, Patrick; Klenk, Axel; Lindell, Kathleen O.; Poirey, Sylvie; Renault, Bérengère; Rey, Markus; Weber, Edgar; Nayler, Oliver; Kaminski, Naftali
2015-01-01
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat–human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1–treated primary human lung fibroblasts and transforming growth factor-β1–treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model–human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease. PMID:25029475
Armstrong, Susan M.; Wang, Changsen; Tigdi, Jayesh; Si, Xiaoe; Dumpit, Carlo; Charles, Steffany; Gamage, Asela; Moraes, Theo J.; Lee, Warren L.
2012-01-01
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza. PMID:23115643
Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan
2016-10-24
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic.
Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan
2016-01-01
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic. PMID:27783043
Ex vivo lung perfusion: a comprehensive review of the development and exploration of future trends.
Roman, Marius A; Nair, Sukumaran; Tsui, Steven; Dunning, John; Parmar, Jasvir S
2013-09-01
There is a critical mismatch between the number of donor lungs available and the demand for lungs for transplantation. This has created unacceptably high waiting-list mortality for lung transplant recipients. Currently (2012) in the United Kingdom, there are 216 patients on the lung transplant waiting list and 17 on heart and lung transplant list. The waiting times for suitable lungs average 412 days, with an increasing mortality and morbidity among the patients on the lung transplant list. Ex vivo lung perfusion (EVLP) has emerged as a technique for the assessment, resuscitation, and potential repair of suboptimal donor lungs. This is a rapidly developing field with significant clinical implications. In this review article, we critically appraise the background developments that have led to our current clinical practice. In particular, we focus on the human and animal experience, the different perfusion-ventilation strategies, and the impact of different perfusates and leukocyte filters. Finally, we examine EVLP as a potential research tool. This will provide insight into EVLP and its future development in the field of clinical lung transplantation.
Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Shizuko, Kagawa; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M.; Betsuyaku, Tomoko
2014-01-01
Fibroblast growth factor (FGF) 9 is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumors. We show that prolonged FGF9 overexpression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumor cells harbored tumor-propagating cells that were able to form secondary tumors in recipient mice regardless of FGF9 expression. However, the highest degree of tumor propagation was observed when unfractionated tumor cells were coadministered with autologous, tumor-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9/FGF receptor (FGFR) 3 signaling axis, maintenance and propagation of the tumor was independent of this signaling. Activation of an alternative FGF/FGFR and the interaction with tumor stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF/FGFR signaling in the initiation, growth, and propagation of lung cancer. Our findings suggest that analyzing the expressions of FGFs/FGFRs in human lung cancer will be a useful tool for guiding customized therapy. PMID:25413587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Kai, E-mail: gk161@163.com; Department of Respiration, 161th Hospital, PLA, Wuhan 430015; Jin, Faguang, E-mail: jinfag@fmmu.edu.cn
2015-09-25
The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5more » also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.« less
NASA Astrophysics Data System (ADS)
Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan
Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.
A 4DCT imaging-based breathing lung model with relative hysteresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less
Nicotine prevents the apoptosis induced by menadione in human lung cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Tao; Lu Heng; Shang Xuan
Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role ofmore » anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-{kappa}B was up-regulated. Interference analysis of NF-{kappa}B in A549 cells showed that knock down of NF-{kappa}B resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-{kappa}B inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.« less
Ferret lung transplant: an orthotopic model of obliterative bronchiolitis.
Sui, H; Olivier, A K; Klesney-Tait, J A; Brooks, L; Tyler, S R; Sun, X; Skopec, A; Kline, J; Sanchez, P G; Meyerholz, D K; Zavazava, N; Iannettoni, M; Engelhardt, J F; Parekh, K R
2013-02-01
Obliterative bronchiolitis (OB) is the primary cause of late morbidity and mortality following lung transplantation. Current animal models do not reliably develop OB pathology. Given the similarities between ferret and human lung biology, we hypothesized an orthotopic ferret lung allograft would develop OB. Orthotopic left lower lobe transplants were successfully performed in 22 outbred domestic ferrets in the absence of immunosuppression (IS; n = 5) and presence of varying IS protocols (n = 17). CT scans were performed to evaluate the allografts. At intervals between 3-6 months the allografts were examined histologically for evidence of acute/chronic rejection. IS protects allografts from acute rejection and early graft loss. Reduction of IS dosage by 50% allowed development of controlled rejection. Allografts developed infiltrates on CT and classic histologic acute rejection and lymphocytic bronchiolitis. Cycling of IS, to induce repeated episodes of controlled rejection, promoted classic histologic hallmarks of OB including fibrosis-associated occlusion of the bronchiolar airways in all allografts of long-term survivors. In conclusion, we have developed an orthotopic lung transplant model in the ferret with documented long-term functional allograft survival. Allografts develop acute rejection and lymphocytic bronchiolitis, similar to humans. Long-term survivors develop histologic changes in the allografts that are hallmarks of OB. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Asymptomatic Pulmonary Allograft Kaposi Sarcoma: A Case Report.
Nannini, Nazarena; Rebusso, Alessandro; Lunardi, Francesca; Loy, Monica; Calabrese, Francesca; Battistella, Lucia; Schiavon, Marco; Rea, Federico; Calabrese, Fiorella
2017-08-01
Solid-organ transplant recipients are at high risk of developing malignancies. A greater risk of Kaposi sarcoma has been reported in lung recipients in our country, particularly in those from Southern Italy, probably due to the high prevalence of Human herpes virus 8 infection. Kaposi sarcoma affecting only the lung allograft is extremely rare. We describe a case of a lung recipient who developed Kaposi sarcoma only in the graft, 22 months after transplant. The patient, a 65-year-old man from Southern Italy, underwent bilateral lung transplant for idiopathic pulmonary fibrosis in January 2009. He developed mild/moderate acute cellular rejection (≥A2) in 4 of 6 scheduled transbronchial biopsies thus was treated with increased immunosuppressive therapy, shifting from cyclosporine to tacrolimus and mycophenolate mofetil. In July 2010, a high-resolution computed tomography scan showed small bilateral lung nodules, despite a generally good condition. After 2 months, his condition worsened with a severe weight loss. A positron emission tomography scan showed mild metabolic activity in the lesions with no other localizations. In October 2010, a lung biopsy was performed, with results showing typical histologic and immunohistochemical features of Kaposi sarcoma. Molecular tissue evaluations and serologic analyses were positive for Human herpes virus 8. The patient's immunosuppressive therapy was suspended, and he started liposomal doxorubicin treatment; however, after the first cycle, he developed severe respiratory dysfunction. The patient died 27 months after lung transplant for neoplasm. Our report highlights the importance of considering Kaposi sarcoma in the differential diagnosis for lung nodules in lung transplant recipients, even in the absence of any initial specific symptom or cutaneous lesion.
Development of a Zealand White Rabbit Deposition Model to Study Inhalation Anthrax
Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, A.P.; Corley, Richard A.
2016-01-01
Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits. PMID:26895308
Manorak, Wichayapha; Idahosa, Chizobam; Gupta, Kshitij; Roy, Saptarshi; Panettieri, Reynold; Ali, Hydar
2018-01-03
Hemokinin-1 (HK-1) is a novel neuropeptide produced by human bronchial cells and macrophages and causes contraction of human bronchi ex vivo. It is also generated by antigen/IgE-activated murine mast cells (MCs) and contributes to experimental chronic allergic airway inflammation via the activation of the neurokinin receptor-1 (NK-1R) expressed on murine MCs. We found elevated MC numbers in the lungs of individuals who died from asthma (asthma) when compared to lungs of individuals who died from other causes (non-asthma). Mas-related G Protein coupled receptor X2 (MRGPRX2) is a novel G-protein coupled receptor (GPCR) that is expressed predominantly on human MCs. We detected low level of MRGPRX2 in non-asthma lung MCs but its expression was significantly upregulated in asthma lung MCs. HK-1 caused degranulation in a human MC line (LAD2) and RBL-2H3 cells stably expressing MRGPRX2 and this response was resistant to inhibition by an NK-1R antagonist. However, knockdown of MRGPRX2 in LAD2 cells resulted in substantial inhibition of HK-1-induced degranulation. These findings suggest that while HK-1 contributes to the development of experimental asthma in mice via NK-1R on murine MCs the effect of this neuropeptide on human bronchoconstriction likely reflects the activation of MRGPRX2 on lung MCs. Thus, development of selective MRGPRX2 antagonists could serve as novel target for the modulation of asthma.
Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages.
Nayak, Deepak K; Mendez, Oscar; Bowen, Sara; Mohanakumar, Thalachallour
2018-04-20
Alveolar macrophages are terminally differentiated, lung-resident macrophages of prenatal origin. Alveolar macrophages are unique in their long life and their important role in lung development and function, as well as their lung-localized responses to infection and inflammation. To date, no unified method for identification, isolation, and handling of alveolar macrophages from humans and mice exists. Such a method is needed for studies on these important innate immune cells in various experimental settings. The method described here, which can be easily adopted by any laboratory, is a simplified approach to harvesting alveolar macrophages from bronchoalveolar lavage fluid or from lung tissue and maintaining them in vitro. Because alveolar macrophages primarily occur as adherent cells in the alveoli, the focus of this method is on dislodging them prior to harvest and identification. The lung is a highly vascularized organ, and various cell types of myeloid and lymphoid origin inhabit, interact, and are influenced by the lung microenvironment. By using the set of surface markers described here, researchers can easily and unambiguously distinguish alveolar macrophages from other leukocytes, and purify them for downstream applications. The culture method developed herein supports both human and mouse alveolar macrophages for in vitro growth, and is compatible with cellular and molecular studies.
Alphonse, Rajesh S; Vadivel, Arul; Fung, Moses; Shelley, William Chris; Critser, Paul John; Ionescu, Lavinia; O'Reilly, Megan; Ohls, Robin K; McConaghy, Suzanne; Eaton, Farah; Zhong, Shumei; Yoder, Merv; Thébaud, Bernard
2014-05-27
Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage. © 2014 American Heart Association, Inc.
S-nitrosoglutathione reductase in human lung cancer.
Marozkina, Nadzeya V; Wei, Christina; Yemen, Sean; Wallrabe, Horst; Nagji, Alykhan S; Liu, Lei; Morozkina, Tatiana; Jones, David R; Gaston, Benjamin
2012-01-01
S-Nitrosoglutathione (GSNO) reductase regulates cell signaling pathways relevant to asthma and protects cells from nitrosative stress. Recent evidence suggests that this enzyme may prevent human hepatocellular carcinoma arising in the setting of chronic hepatitis. We hypothesized that GSNO reductase may also protect the lung against potentially carcinogenic reactions associated with nitrosative stress. We report that wild-type Ras is S-nitrosylated and activated by nitrosative stress and that it is denitrosylated by GSNO reductase. In human lung cancer, the activity and expression of GSNO reductase are decreased. Further, the distribution of the enzyme (including its colocalization with wild-type Ras) is abnormal. We conclude that decreased activity of GSNO reductase could leave the human lung vulnerable to the oncogenic effects of nitrosative stress, as is the case in the liver. This potential should be considered when developing therapies that inhibit pulmonary GSNO reductase to treat asthma and other conditions.
An integrated physiology model to study regional lung damage effects and the physiologic response
2014-01-01
Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032
Supercomputer description of human lung morphology for imaging analysis.
Martonen, T B; Hwang, D; Guan, X; Fleming, J S
1998-04-01
A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.
Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LCmore » cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship between cadmium and lung cancer.« less
Mahood, Thomas H; Johar, Dina R; Iwasiow, Barbara M; Xu, Wayne; Keijzer, Richard
2016-05-01
We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.
77 FR 27471 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and...: To discuss and provide updates on sleep and circadian research developments and the NIH sleep... sleep and circadian research developments and the NIH sleep research plan. Place: National Institutes of...
Animal Models of Fibrotic Lung Disease
Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.
2013-01-01
Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222
Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis
Tashiro, Jun; Rubio, Gustavo A.; Limper, Andrew H.; Williams, Kurt; Elliot, Sharon J.; Ninou, Ioanna; Aidinis, Vassilis; Tzouvelekis, Argyrios; Glassberg, Marilyn K.
2017-01-01
Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans. PMID:28804709
Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.
Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J
2016-04-23
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Tiny Device Mimics Human Lung Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamedmore » “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.« less
Tiny Device Mimics Human Lung Function
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
2018-01-16
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. âWe breathe in and out thousands of times every day. And while we have control over what we eat or drink, we donât always have control over what we breathe in,â said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so weâre making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed âPuLMoâ for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unitâjust like the human lung. The units are primarily made from various polymers and are connected by a microfluidic âcircuit boardâ that manages fluid and air flow. âWhen we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,â said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.
A Brave New World: The Lung Microbiota in an Era of Change
Blaser, Martin J.
2014-01-01
The development of culture-independent techniques has revolutionized our understanding of how our human cells interact with the even greater number of microbial inhabitants of our bodies. As part of this revolution, data are increasingly challenging the old dogma that in health, the lung mucosa is sterile. To understand how the lung microbiome may play a role in human health, we identified five major questions for lung microbiome research: (1) Is the lung sterile? (2) Is there a unique core microbiome in the lung? (3) How dynamic are the microbial populations? (4) How do pulmonary immune responses affect microbiome composition? and (5) Are the lungs influenced by the intestinal immune responses to the gut microbiome? From birth, we are exposed to continuous microbial challenges that shape our microbiome. In our changing environment, perturbation of the gut microbiome affects both human health and disease. With widespread antibiotic use, the ancient microbes that formerly resided within us are being lost, for example, Helicobacter pylori in the stomach. Animal models show that antibiotic exposure in early life has developmental consequences. Considering the potential effects of this altered microbiome on pulmonary responses will be critical for future investigations. PMID:24437400
Development of a Zealand white rabbit deposition model to study inhalation anthrax
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgharian, Bahman; Price, Owen; Kabilan, Senthil
Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits asmore » a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.« less
Genetic Modification of the Lung Directed Toward Treatment of Human Disease.
Sondhi, Dolan; Stiles, Katie M; De, Bishnu P; Crystal, Ronald G
2017-01-01
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor.
Gill, Sharonjit K; Yao, Yiwen; Kay, Linda J; Bewley, Martin A; Marriott, Helen M; Peachell, Peter T
2016-11-01
PGE 2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE 2 has not been defined. The aim of this study was to identify the EP receptor by which PGE 2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. The effects of PGE 2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP 2 -selective (PF-04852946, PF-04418948) and EP 4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE 2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. PGE 2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP 2 and EP 4 receptors. L-902,688 (EP 4 receptor-selective agonist) was considerably more potent than butaprost (EP 2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP 2 receptor-selective antagonists had marginal effects on the PGE 2 inhibition of TNF-α generation, whereas EP 4 receptor-selective antagonists caused rightward shifts in the PGE 2 concentration-response curves. These studies demonstrate that the EP 4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE 2 on human lung macrophages. This suggests that EP 4 receptor agonists could be effective anti-inflammatory agents in human lung disease. © 2016 The British Pharmacological Society.
EGFR and Ras regulate DDX59 during lung cancer development.
Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong
2018-02-05
Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical potentials of human pluripotent stem cells in lung diseases
2014-01-01
Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future. PMID:24995122
Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung
Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G.; Yusuf, Kamran; Nedrelow, Jonathan H.; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J.; Elias, Jack A.
2008-01-01
Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit. PMID:18441284
Developmental regulation of NO-mediated VEGF-induced effects in the lung.
Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G; Yusuf, Kamran; Nedrelow, Jonathan H; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J; Elias, Jack A
2008-10-01
Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.
Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng
2017-01-01
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258
Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng
2017-05-01
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the intestinal cell kinase (ICK) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. © 2017 Federation of European Biochemical Societies.
Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William
2007-08-29
The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.
Genesis of breath sounds-Preliminary verification of theory
NASA Technical Reports Server (NTRS)
Patterson, J. L.; Hardin, J. C.; Seiner, J. M.
1980-01-01
Experimental results are presented which tend to validate a previously developed theory of sound production in the human lung over a particular Reynolds number range. In addition, a new, presently nonunderstood, phenomenon was observed at higher Reynolds number. These results, which show how sound generation in the lung depends upon the physiologically important variables of volume flow rate and bronchial diameter, have potentially important application in noninvasive lung examination and the diagnosis of lung disease.
Williamson, James D; Sadofsky, Laura R; Hart, Simon P
2015-03-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.
Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L
2016-02-01
The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.
Asgharian, B; Price, O T; Oldham, M; Chen, Lung-Chi; Saunders, E L; Gordon, T; Mikheev, V B; Minard, K R; Teeguarden, J G
2014-12-01
Comparing effects of inhaled particles across rodent test systems and between rodent test systems and humans is a key obstacle to the interpretation of common toxicological test systems for human risk assessment. These comparisons, correlation with effects and prediction of effects, are best conducted using measures of tissue dose in the respiratory tract. Differences in lung geometry, physiology and the characteristics of ventilation can give rise to differences in the regional deposition of particles in the lung in these species. Differences in regional lung tissue doses cannot currently be measured experimentally. Regional lung tissue dosimetry can however be predicted using models developed for rats, monkeys, and humans. A computational model of particle respiratory tract deposition and clearance was developed for BALB/c and B6C3F1 mice, creating a cross-species suite of available models for particle dosimetry in the lung. Airflow and particle transport equations were solved throughout the respiratory tract of these mice strains to obtain temporal and spatial concentration of inhaled particles from which deposition fractions were determined. Particle inhalability (Inhalable fraction, IF) and upper respiratory tract (URT) deposition were directly related to particle diffusive and inertial properties. Measurements of the retained mass at several post-exposure times following exposure to iron oxide nanoparticles, micro- and nanoscale C60 fullerene, and nanoscale silver particles were used to calibrate and verify model predictions of total lung dose. Interstrain (mice) and interspecies (mouse, rat and human) differences in particle inhalability, fractional deposition and tissue dosimetry are described for ultrafine, fine and coarse particles.
Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong
2012-01-01
Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886
[Study for lung sound acquisition module based on ARM and Linux].
Lu, Qiang; Li, Wenfeng; Zhang, Xixue; Li, Junmin; Liu, Longqing
2011-07-01
A acquisition module with ARM and Linux as a core was developed. This paper presents the hardware configuration and the software design. It is shown that the module can extract human lung sound reliably and effectively.
Biological and statistical approaches to predicting human lung cancer risk from silica.
Kuempel, E D; Tran, C L; Bailer, A J; Porter, D W; Hubbs, A F; Castranova, V
2001-01-01
Chronic inflammation is a key step in the pathogenesis of particle-elicited fibrosis and lung cancer in rats, and possibly in humans. In this study, we compute the excess risk estimates for lung cancer in humans with occupational exposure to crystalline silica, using both rat and human data, and using both a threshold approach and linear models. From a toxicokinetic/dynamic model fit to lung burden and pulmonary response data from a subchronic inhalation study in rats, we estimated the minimum critical quartz lung burden (Mcrit) associated with reduced pulmonary clearance and increased neutrophilic inflammation. A chronic study in rats was also used to predict the human excess risk of lung cancer at various quartz burdens, including mean Mcrit (0.39 mg/g lung). We used a human kinetic lung model to link the equivalent lung burdens to external exposures in humans. We then computed the excess risk of lung cancer at these external exposures, using data of workers exposed to respirable crystalline silica and using Poisson regression and lifetable analyses. Finally, we compared the lung cancer excess risks estimated from male rat and human data. We found that the rat-based linear model estimates were approximately three times higher than those based on human data (e.g., 2.8% in rats vs. 0.9-1% in humans, at mean Mcrit lung burden or associated mean working lifetime exposure of 0.036 mg/m3). Accounting for variability and uncertainty resulted in 100-1000 times lower estimates of human critical lung burden and airborne exposure. This study illustrates that assumptions about the relevant biological mechanism, animal model, and statistical approach can all influence the magnitude of lung cancer risk estimates in humans exposed to crystalline silica.
Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia
Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.
2012-01-01
Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150
Lung bioaccessibility of contaminants in particulate matter of geological origin.
Guney, Mert; Chapuis, Robert P; Zagury, Gerald J
2016-12-01
Human exposure to particulate matter (PM) has been associated with adverse health effects. While inhalation exposure to airborne PM is a prominent research subject, exposure to PM of geological origin (i.e., generated from soil/soil-like material) has received less attention. This review discusses the contaminants in PM of geological origin and their relevance for human exposure and then evaluates lung bioaccessibility assessment methods and their use. PM of geological origin can contain toxic elements as well as organic contaminants. Observed/predicted PM lung clearance times are long, which may lead to prolonged contact with lung environment. Thus, certain exposure scenarios warrant the use of in vitro bioaccessibility testing to predict lung bioavailability. Limited research is available on lung bioaccessibility test development and test application to PM of geological origin. For in vitro tests, test parameter variation between different studies and concerns about physiological relevance indicate a crucial need for test method standardization and comparison with relevant animal data. Research is recommended on (1) developing robust in vitro lung bioaccessibility methods, (2) assessing bioaccessibility of various contaminants (especially polycyclic aromatic hydrocarbons (PAHs)) in PM of diverse origin (surface soils, mine tailings, etc.), and (3) risk characterization to determine relative importance of exposure to PM of geological origin.
2013-01-01
Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely examined in vivo. There is no residual gas, which interferes with ultrasound. Pulmonary vessels and bronchi are clearly differentiated. Simulated lung lesions can easily be detected inside the lung lobe. Conclusions Lung flooding enables complete lung sonography and tumour detection. We have developed a novel method that efficiently uses ultrasound for guiding intraoperative interventions in open and endoscopic lung surgery. PMID:23841910
Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span
Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali
2017-01-01
Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385
Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Caillibotte, Georges
2016-01-01
A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-01-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587
The rabbit as a model for studying lung disease and stem cell therapy.
Kamaruzaman, Nurfatin Asyikhin; Kardia, Egi; Kamaldin, Nurulain 'Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham
2013-01-01
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy
Kamaruzaman, Nurfatin Asyikhin; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham
2013-01-01
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy. PMID:23653896
Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac
NASA Astrophysics Data System (ADS)
Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas
2017-03-01
According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).
Research of transport and deposition of aerosol in human airway replica
NASA Astrophysics Data System (ADS)
Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav
2012-04-01
Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.
Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.
2016-03-01
Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.
Nayak, Deepak K; Zhou, Fangyu; Xu, Min; Huang, Jing; Tsuji, Moriya; Yu, Jinsheng; Hachem, Ramsey; Gelman, Andrew E; Bremner, Ross M; Smith, Michael A; Mohanakumar, Thalachallour
2017-07-12
Chronic rejection significantly limits long-term success of solid organ transplantation. De novo donor-specific antibodies (DSAs) to mismatched donor human leukocyte antigen after human lung transplantation predispose lung grafts to chronic rejection. We sought to delineate mediators and mechanisms of DSA pathogenesis and to define early inflammatory events that trigger chronic rejection in lung transplant recipients and obliterative airway disease, a correlate of human chronic rejection, in mouse. Induction of transcription factor zinc finger and BTB domain containing protein 7a (Zbtb7a) was an early response critical in the DSA-induced chronic rejection. A cohort of human lung transplant recipients who developed DSA and chronic rejection demonstrated greater Zbtb7a expression long before clinical diagnosis of chronic rejection compared to nonrejecting lung transplant recipients with stable pulmonary function. Expression of DSA-induced Zbtb7a was restricted to alveolar macrophages (AMs), and selective disruption of Zbtb7a in AMs resulted in less bronchiolar occlusion, low immune responses to lung-restricted self-antigens, and high protection from chronic rejection in mice. Additionally, in an allogeneic cell transfer protocol, antigen presentation by AMs was Zbtb7a-dependent where AMs deficient in Zbtb7a failed to induce antibody and T cell responses. Collectively, we demonstrate that AMs play an essential role in antibody-induced pathogenesis of chronic rejection by regulating early inflammation and lung-restricted humoral and cellular autoimmunity. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Mahavadi, Poornima; Sasikumar, Satish; Cushing, Leah; Hyland, Tessa; Rosser, Ann E.; Riccardi, Daniela; Lu, Jining; Kalin, Tanya V.; Kalinichenko, Vladimir V.; Guenther, Andreas; Ramirez, Maria I.; Pardo, Annie; Selman, Moisés; Warburton, David
2013-01-01
Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity. PMID:24375798
Giant cell lung carcinoma in a man with acquired immunodeficiency syndrome.
Kodama, Takahide; Miyazaki, Kunihiko; Satoh, Hiroaki; Hitomi, Shigemi; Ohtsuka, Morio
2009-01-01
A 66-year-old man, who was discovered to have human immunodeficiency virus (HIV) infection 22 months previously and was treated with highly active antiretroviral (HAART) therapy, developed giant cell carcinoma of the lung. In English literature, this is the first case of such cell type of lung cancer during HAART therapy. Since giant cell carcinoma of the lung occurs mainly in elderly men who smoke heavily, there may not be a possibility that the HIV or HAART was causative in our patient.
Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.
Dong, Jie; Ma, Qiang
2018-01-01
T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.
Regales, Lucia; Balak, Marissa N.; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A.; Solit, David B.; Rosen, Neal; Zakowski, Maureen F.; Pao, William
2007-01-01
Background The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. Methodology/Principal Findings To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFRT790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFRL858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFRT790M-expressing animals develop tumors with longer latency than EGFRL858R+T790M-bearing mice and in the absence of additional kinase domain mutations. Conclusions/Significance These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFRT790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations. PMID:17726540
Practical use of advanced mouse models for lung cancer.
Safari, Roghaiyeh; Meuwissen, Ralph
2015-01-01
To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.
Kim, Edy Y.; Battaile, John T.; Patel, Anand C.; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H.; Benoit, Loralyn A.; Byers, Derek E.; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W.; Morton, Jeffrey D.; Castro, Mario; Polineni, Deepika; Patterson, G. Alexander; Schwendener, Reto A.; Allard, John D.; Peltz, Gary; Holtzman, Michael J.
2008-01-01
To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of a chronic lung disease that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after infection with a common type of respiratory virus is cleared to trace levels of noninfectious virus. Unexpectedly, the chronic inflammatory disease arises independently of an adaptive immune response and is driven by IL-13 produced by macrophages stimulated by CD1d-dependent TCR-invariant NKT cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a novel NKT cell-macrophage innate immune axis. PMID:18488036
Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
2016-10-02
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu
2016-01-01
ABSTRACT Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure. PMID:27467530
Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe
2016-01-01
The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.
AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer
Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe
2016-01-01
The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676
Wei, Yumeng; Liang, Jing; Zheng, Xiaoli; Pi, Chao; Liu, Hao; Yang, Hongru; Zou, Yonggen; Ye, Yun; Zhao, Ling
2017-01-01
The present study aims to develop a kind of novel nanoliposomes for the lung-targeting delivery system of baicalin as a Chinese medicine monomer. Baicalin-loaded nanoliposomes were prepared by the effervescent dispersion and lyophilized techniques. Baicalin-loaded nanoliposomes had an average particle size of 131.7±11.7 nm with 0.19±0.02 polydispersity index, 82.8%±1.24% entrapment efficiency and 90.47%±0.93% of yield and sustaining drug release effect over 24 h and were stable for 12 months at least. In vitro no hemolytic activity was observed for the experimental drug concentration. After intravenous administration of baicalin-loaded nanoliposomes to rabbits, drug concentration in the lungs was the highest among the tested organs at all time points and was significantly higher than that of its solution. For the targeting parameters, the relative intake rate and the ratio of peak concentration of lung were 4.837 and 2.789, respectively. Compared with plasma, liver, spleen, and kidney, the ratios of targeting efficacy (Te)liposomes to (Te)injection of lung were increased by a factor of 14.131, 1.893, 3.357, and 3.470, respectively. Furthermore, the results showed that the baicalin-loaded nanoliposomes did not induce lung injury. Importantly, baicalin-loaded nanoliposomes showed better antitumor therapeutic efficacy in the nude mice bearing orthotopic human lung cancer with the median survival time of blank liposomes (11.40±0.16 days), baicalin solution (17.30±0.47 days), and baicalin-loaded nanoliposomes (25.90±0.53 days). Therefore, the liposome is a promising drug carrier with an excellent lung-targeting property and therapeutic effect for the treatment of lung disease, such as lung cancer. PMID:28096670
Structural and quantitative expression analyses of HERV gene family in human tissues.
Ahn, Kung; Kim, Heui-Soo
2009-08-31
Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.
Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background
Sukstanskii, A.L.; Yablonskiy, D.A.
2011-01-01
The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985
In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice.
Ramsey, Kathryn A; Larcombe, Alexander N; Sly, Peter D; Zosky, Graeme R
2013-02-18
Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100 μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations.
In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice
2013-01-01
Background Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Methods Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. Results In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Conclusions Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations. PMID:23419080
Jones, Jace W; Jackson, Isabel L; Vujaskovic, Zeljko; Kaytor, Michael D; Kane, Maureen A
2017-12-01
Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.
Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jina; Lee, Youngkyu; Shin, Hunjoo
Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of changemore » of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.« less
[Occupational lung cancer. A comparison between humans and experimental animals].
Adachi, S; Takemoto, K
1987-09-01
Many epidemiological and experimental studies have suggested that the respiratory tract is one of the most sensitive organs to environmental carcinogens. Nevertheless there is little evidence to determine the relationship between a specific environmental carcinogen and a cell type of lung cancer, because the cell types of lung cancer and their relative frequencies are highly complex compared with those of other organs and tissues. In the present paper, occupational lung-cancer characteristics, which are the clearest in the relation between cause and effect in human lung cancers, were reviewed in comparison with the results of animal experiments concerned with occupational lung carcinogens. Through accumulation of histopathological examinations of the lung cancer cases, the following relationships between cause and cell type were conjectured: chromium and squamous cell carcinoma; asbestos and adenocarcinoma; nickel and squamous cell carcinoma; beryllium and small cell carcinoma; bis (chloromethyl) ether and small cell carcinoma; mustard gas and squamous cell or small cell carcinoma; vinyl chloride and large cell or adenocarcinoma; radionuclides and small cell carcinoma. The relation pertaining to arsenic, benzotrichloride and tar could not be conjectured because of insufficient cases and information in the histological diagnosis. On the other hand, the carcinogenicity of these substances in occupational exposure has been confirmed by animal experiments administered intratracheally or by inhalation studies under relatively higher concentration. As a result of recent refinements of inhalation study, all-day and life-span exposure to extremely low concentrations, such as microgram/m3 orders, of certain substances has been possible. The characteristics of lung tumors occurring in these animals are rather different from those of human. For example, in mouse, almost all of the malignant lung tumors developed by carcinogens are adenocarcinomas and it is rare to find the squamous cell carcinoma. Moreover, small cell carcinoma and large cell carcinoma have not known to occur in the lungs of rats and mice. Therefore, future research should focus elucidating the specific relationship between cause and cell type of human lung cancer by means of animal experiments on lung cancer that give attention to the specificities of each experimental animal and the origin of the resultant lung tumor.
Szabo, Eva; Miller, Mark Steven; Lubet, Ronald A.; You, Ming; Wang, Yian
2017-01-01
Due to exposure to environmental toxicants, a “field cancerization” effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis. PMID:27935865
MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma
Salaün, Mathieu; Peng, Jing; Hensley, Harvey H.; Roder, Navid; Flieder, Douglas B.; Houlle-Crépin, Solène; Abramovici-Roels, Olivia; Sabourin, Jean-Christophe; Thiberville, Luc; Clapper, Margie L.
2015-01-01
Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer. PMID:26193700
Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio
2015-01-01
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927
Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio
2015-12-01
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.
Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E
2012-01-01
Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.
Kawabata, Shigeru; Mercado-Matos, José R; Hollander, M Christine; Donahue, Danielle; Wilson, Willie; Regales, Lucia; Butaney, Mohit; Pao, William; Wong, Kwok-Kin; Jänne, Pasi A; Dennis, Phillip A
2014-06-26
Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.
Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim
2008-05-01
Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.
Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A
1991-10-01
Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.
Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells
Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.
2013-01-01
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327
Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry
2017-08-01
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. Copyright © 2017 American Society for Microbiology.
Escaffre, Olivier; Saito, Tais B.; Juelich, Terry L.; Ikegami, Tetsuro; Smith, Jennifer K.; Perez, David D.; Atkins, Colm; Levine, Corri B.; Huante, Matthew B.; Nusbaum, Rebecca J.; Endsley, Janice J.
2017-01-01
ABSTRACT Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. PMID:28539439
Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.
Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J
2017-08-01
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso
NASA Astrophysics Data System (ADS)
Dai, Zoujun
Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its coupling to the lung parenchyma; and (4) Develop improved techniques in array acoustic measurement on the torso surface of sound transmitted through the pulmonary system and torso. Tissue Viscoelasticity. Two experimental identification approaches of shear viscoelasticity were used. The first approach is to directly estimate the frequency-dependent surface wave speed and then to optimize the coefficients in an assumed viscoelastic model type. The second approach is to measure the complex-valued frequency response function (FRF) between the excitation location and points at known radial distances. The FRF has embedded in it frequency-dependent information about both surface wave phase speed and attenuation that can be used to directly estimate the complex shear modulus. The coefficients in an assumed viscoelastic tissue model type can then be optimized. Poroviscoelasticity Model for Lung Vibro-acoustics. A poroviscoelastic model based on Biot theory of wave propagation in porous media was used for compression waves in the lungs. This model predicts a fast compression wave speed close to the one predicted by the effective medium theory at low frequencies and an additional slow compression wave due to the out of phase motion of the air and the lung parenchyma. Both compression wave speeds vary with frequency. The fast compression wave speed and attenuation were measured on an excised pig lung under two different transpulmonary pressures. Good agreement was achieved between the experimental observation and theoretical predictions. Sound Transmission in Airways and Coupling to Lung Parenchyma. A computer generated airway tree was simplified to 255 segments and integrated into the lung geometry from the Visible Human Male for numerical simulations. Acoustic impedance boundary conditions were applied at the ends of the terminal segments to represent the unmodeled downstream airway segments. Experiments were also carried out on a preserved pig lung and similar trends of lung surface velocity distribution were observed between the experiments and simulations. This approach provides a feasible way of simplifying the airway tree and greatly reduces the computation time. Acoustic Measurements of Sound Transmission in Human Subjects. Scanning laser Doppler vibrometry (SLDV) was used as a gold standard for transmitted sound measurements on a human subject. A low cost piezodisk sensor array was also constructed as an alternative to SLDV. The advantages and disadvantages of each technique are discussed.
Wong, Amy P; Chin, Stephanie; Xia, Sunny; Garner, Jodi; Bear, Christine E; Rossant, Janet
2015-03-01
Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling.
Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias
2014-09-01
This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.
NASA Astrophysics Data System (ADS)
Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.
1981-11-01
Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.
SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression.
Xu, Yan; Hu, Brian; Alnajm, Sammy S; Lu, Yin; Huang, Yangxin; Allen-Gipson, Diane; Cheng, Feng
2015-01-01
Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information for drug development against smoking-related diseases. The SEGEL web server is available online at http://www.chengfeng.info/smoking_database.html.
Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K
2017-02-01
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors
Kalra, Sean; Cleaver, Timothy G.; Merrick, Daniel; Wang, Xiao-Jing; Malkoski, Stephen P.
2015-01-01
Non-small cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer, however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC datasets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms including mutation, homozygous deletion, and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4−/− mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage while Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4 deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4 deficient tumors can be exploited by specific therapeutic strategies. PMID:25893305
Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A
2012-12-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Thomson, R B; Smith, T F; Wilson, W R
1982-01-01
The laboratory diagnosis of Pneumocystis carinii pneumonia in humans includes the identification of cysts in stained lung tissue impression smears. By using a mouse model, we compared the number of cysts in lung tissue impression smears with those contained in a concentrate of homogenized lung tissue. Eleven C3H/HEN mice developed P. carinii infection after corticosteroid injections, a low protein (8%) diet, and tetracycline administered in drinking water. Impression smears were prepared with freshly bisected lung tissue. Smears of concentrates were prepared with sediment from centrifuged lung tissue homogenates. All smears were made in duplicate, stained with toluidine blue O or methenamine silver, coded, randomized, and examined. The concentrate preparations contained more cysts per microscopic field than the impression preparations (P less than 0.01). Concentrates prepared by grinding with a mortar and pestle contained more cysts than concentrates prepared by blending with a Stomacher (P less than 0.05). Cysts were detected equally well with either the toluidine blue O or silver stain (not significant). Lung tissue concentrates were superior to lung tissue impressions for detecting P. carinii cysts in mice. Use of lung tissue concentrates should be considered for the diagnosis of human P. carinii infection. PMID:6181088
Movia, Dania; Gerard, Valerie; Maguire, Ciaran Manus; Jain, Namrata; Bell, Alan P; Nicolosi, Valeria; O'Neill, Tiina; Scholz, Dimitri; Gun'ko, Yurii; Volkov, Yuri; Prina-Mello, Adriele
2014-03-01
Gold nanomaterials are currently raising a significant interest for human welfare in the field of clinical diagnosis, therapeutics for chronic pathologies, as well as of many other biomedical applications. In particular, gold nanomaterials are becoming a promising technology for developing novel approaches and treatments against widespread societal diseases such as cancer. In this study, we investigated the potential of proprietary gold nanoboxes (AuNBs) as carriers for their perspective translation into multifunctional, pre-clinical nano-enabled systems for personalized medicine approaches against lung cancer. A safe-by-design, tiered approach, with systematic tests conducted in the early phases on uncoated AuNBs and more focused testing on the coated, drug-loaded nanomaterial toward the end, was adopted. Our results showed that uncoated AuNBs could effectively penetrate into human lung adenocarcinoma (A549) cells when in simple (mono-cultures) or complex (co- and three-dimensional-cultures) in vitro microenvironments mimicking the alveolar region of human lungs. Uncoated AuNBs were biologically inert in A549 cells and demonstrated signs of biodegradability. Concurrently, preliminary data revealed that coated, drug-loaded AuNBs could efficiently deliver a chemotherapeutic agent to A549 cells, corroborating the hypothesis that AuNBs could be used in the future for the development of personalized nano-enabled systems for lung cancer treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lu, Zhe; Liu, Yi; Xu, Junfeng; Yin, Hongping; Yuan, Haiying; Gu, Jinjing; Chen, Yan-Hua; Shi, Liyun; Chen, Dan; Xie, Bin
2018-03-01
Tight junction proteins are correlated with cancer development. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies. We have previously reported that claudin-7 was strongly expressed in benign bronchial epithelial cells at the cell-cell junction while expression of claudin-7 was either altered with discontinued weak expression or completely absent in lung cancers. Based on these results, we continued working on the expression pattern of claudin-7 and its relationship with lung cancer development. We herein proposed a new Digital Image Classification, Fragmentation index, Morphological analysis (DICFM) method for differentiating the normal lung tissues and lung cancer tissues based on the claudin-7 immunohistochemical staining. Seventy-seven lung cancer samples were obtained from the Second Affiliated Hospital of Zhejiang University and claudin-7 immunohistochemical staining was performed. Based on C++ and Open Source Computer Vision Library (OpenCV, version 2.4.4), the DICFM processing module was developed. Intensity and fragmentation of claudin-7 expression, as well as the morphological parameters of nuclei were calculated. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis. Agreement between these computational results and the results obtained by two pathologists was demonstrated. The intensity of claudin-7 expression was significantly decreased while the fragmentation was significantly increased in the lung cancer tissues compared to the normal lung tissues and the intensity was strongly positively associated with the differentiation of lung cancer cells. Moreover, the perimeters of the nuclei of lung cancer cells were significantly greater than that of the normal lung cells, while the parameters of area and circularity revealed no statistical significance. Taken together, our DICFM approach may be applied as an appropriate approach to quantify the immunohistochemical staining of claudin-7 on the cell membrane and claudin-7 may serve as a marker for identification of lung cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da
Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed. • Acute effects of chlorine were pulmonary edema, hypoxemia and impaired lung function. • Persistent small airway disease developed following recovery from acute injury. • Small airway disease included inflammation and bronchiolitis obliterans lesions. • The model should be useful for studying chlorine lung injury and testing treatments.« less
78 FR 54261 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and.... Agenda: To discuss and provide updates on sleep and circadian research developments and the NIH sleep... Institute's/Center's home page: www.nhlbi.nih.gov/meetings/index.htm , where an agenda and any additional...
77 FR 16844 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... discuss and provide updates on sleep and circadian research developments and the NIH sleep research plan.... Information is also available on the Institute's/Center's home page: www.nhlbi.nih.gov/meetings/index.htm...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... cancer, lung cancer, mesothelioma, and stomach/gastric cancer. The Licensed Field of Use explicitly... cancers, including mesothelioma, lung cancer, stomach/gastric cancer, ovarian cancer and pancreatic cancer... Cancers AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION: Notice. SUMMARY: This...
Postnatal airway growth in cystic fibrosis piglets.
Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A
2017-09-01
Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.
Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.
2016-01-01
Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365
Sen, Partha; Dharmadhikari, Avinash V; Majewski, Tadeusz; Mohammad, Mahmoud A; Kalin, Tanya V; Zabielska, Joanna; Ren, Xiaomeng; Bray, Molly; Brown, Hannah M; Welty, Stephen; Thevananther, Sundararajah; Langston, Claire; Szafranski, Przemyslaw; Justice, Monica J; Kalinichenko, Vladimir V; Gambin, Anna; Belmont, John; Stankiewicz, Pawel
2014-01-01
Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of Foxf1 exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 Foxf1+/- mice when compared to their wildtype littermate controls; 14 genes, COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP, and SIRPA, were found common to both ACDMPV and Foxf1 heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer.
Aromatase inhibitors in human lung cancer therapy.
Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J
2005-12-15
Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.
Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study
Morissette, Mathieu C.; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bossé, Yohan
2014-01-01
Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285
ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.
Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I; Creighton, Chad J; Kheradmand, Farrah; DeMayo, Francesco J
2015-03-03
Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Overexpression of TRIM25 in Lung Cancer Regulates Tumor Cell Progression.
Qin, Ying; Cui, He; Zhang, Hua
2016-10-01
Lung cancer is one of the most common causes of cancer-related deaths worldwide. Although great efforts and progressions have been made in the study of the lung cancer in the recent decades, the mechanism of lung cancer formation remains elusive. To establish effective therapeutic methods, new targets implied in lung cancer processes have to be identified. Tripartite motif-containing 25 has been associated with ovarian and breast cancer and is thought to positively promote cell growth by targeting the cell cycle. However, whether tripartite motif-containing 25 has a function in lung cancer development remains unknown. In this study, we found that tripartite motif-containing 25 was overexpressed in human lung cancer tissues. Expression of tripartite motif-containing 25 in lung cancer cells is important for cell proliferation and migration. Knockdown of tripartite motif-containing 25 markedly reduced proliferation of lung cancer cells both in vitro and in vivo and reduced migration of lung cancer cells in vitro Meanwhile, tripartite motif-containing 25 silencing also increased the sensitivity of doxorubicin and significantly increased death and apoptosis of lung cancer cells by doxorubicin were achieved with knockdown of tripartite motif-containing 25. We also observed that tripartite motif-containing 25 formed a complex with p53 and mouse double minute 2 homolog (MDM2) in both human lung cancer tissues and in lung cancer cells and tripartite motif-containing 25 silencing increased the expression of p53. These results provide evidence that tripartite motif-containing 25 contributes to the pathogenesis of lung cancer probably by promoting proliferation and migration of lung cancer cells. Therefore, targeting tripartite motif-containing 25 may provide a potential therapeutic intervention for lung cancer. © The Author(s) 2015.
Delivery of aerosolized drugs encapsulated in liposomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yung-Sung; Lyons, C.R.; Schmid, M.H.
1995-12-01
Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
...] Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and... (human leucocyte antigen) expressed by human cells. Initial studies will examine and characterize... human lung cell lines. There is a growing interest in developing universal vaccines for influenza by...
Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration
Peyrot, Donald A.; Lefort, Claire; Steffenhagen, Marie; Mansuryan, Tigran; Ducourthial, Guillaume; Abi-Haidar, Darine; Sandeau, Nicolas; Vever-Bizet, Christine; Kruglik, Sergei G.; Thiberville, Luc; Louradour, Frédéric; Bourg-Heckly, Geneviève
2012-01-01
Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle. PMID:22567579
Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S
2014-03-01
Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.
Detection of bremsstrahlung radiation of 90Sr-90Y for emergency lung counting.
Ho, A; Hakmana Witharana, S S; Jonkmans, G; Li, L; Surette, R A; Dubeau, J; Dai, X
2012-09-01
This study explores the possibility of developing a field-deployable (90)Sr detector for rapid lung counting in emergency situations. The detection of beta-emitters (90)Sr and its daughter (90)Y inside the human lung via bremsstrahlung radiation was performed using a 3″ × 3″ NaI(Tl) crystal detector and a polyethylene-encapsulated source to emulate human lung tissue. The simulation results show that this method is a viable technique for detecting (90)Sr with a minimum detectable activity (MDA) of 1.07 × 10(4) Bq, using a realistic dual-shielded detector system in a 0.25-µGy h(-1) background field for a 100-s scan. The MDA is sufficiently sensitive to meet the requirement for emergency lung counting of Type S (90)Sr intake. The experimental data were verified using Monte Carlo calculations, including an estimate for internal bremsstrahlung, and an optimisation of the detector geometry was performed. Optimisations in background reduction techniques and in the electronic acquisition systems are suggested.
Maruta, Naomichi; Marumoto, Moegi
2017-01-01
Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293
I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.
NASA Astrophysics Data System (ADS)
Jafari, Farhad
The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the echo characteristics on each patient group and their pulmonary pathology is made. It is concluded that the technique may provide a potential tool in detecting pulmonary abnormalities. More controlled patient studies, however, are indicated as necessary to determine the sensitivity of the ultrasound technique.
Age-related pulmonary emphysema in mice lacking alpha/beta hydrolase domain containing 2 gene.
Jin, Shoude; Zhao, Gang; Li, Zhenghua; Nishimoto, Yuki; Isohama, Yoichiro; Shen, Jingling; Ito, Takaaki; Takeya, Motohiro; Araki, Kimi; He, Ping; Yamamura, Ken-ichi
2009-03-06
The alpha/beta hydrolase family genes have been identified as down-regulated genes in human emphysematous lungs. Although proteins in the alpha/beta hydrolase family generally act as enzymes, such as lipases, the specific functions of the Abhd2 protein are unknown. To examine the role of Abhd2 in the lung, we analyzed Abhd2 deficient mice obtained by gene trap mutagenesis. Abhd2 was expressed in the alveolar type II cells. Abhd2 deficiency resulted in a decreased level of phosphatidylcholine in the bronchoalveolar lavage. These mice developed spontaneous gradual progression of emphysema, due to increased macrophage infiltration, increased inflammatory cytokines, a protease/anti-protease imbalance and enhanced apoptosis. This phenotype is more akin to the pace of emphysema that develops in humans. Our findings suggest that derangement in alveolar phospholipid metabolism can induce emphysema, and that Abhd2 plays a critical role in maintaining lung structural integrity.
Approaches to chemoprevention of lung cancer based on carcinogens in tobacco smoke.
Hecht, S S
1997-01-01
Chemoprevention may be one way to prevent lung cancer in smokers who are motivated to quit but cannot stop. The approach to chemoprevention of lung cancer described in this article is based on an understanding of the lung carcinogens present in tobacco smoke. The available data indicate that the compounds in cigarette smoke most likely involved in the induction of lung cancer in humans are the complex of polynuclear aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P) and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). A large number of compounds are now available that inhibit lung tumorigenesis by B[a]P or NNK in rodents. Inhibition of NNK-induced lung carcinogenesis by phenethyl isothiocyanate (PEITC) and inhibition of B[a]P-induced lung carcinogenesis by benzyl isothiocyanate (BITC) are discussed as examples. Studies with PEITC in rodents clearly demonstrate that it inhibits NNK-induced lung tumorigenesis by inhibiting the metabolic activation of NNK. Similar changes appear to occur in humans according to data generated in smokers who ate watercress, a source of PEITC. It is likely that mixtures of chemopreventive agents with activity against carcinogens in tobacco smoke, such as NNK and B[a]P, will be useful in chemoprevention of lung cancer in smokers. Furthermore, there is a need to develop suppressing agents for lung cancer that might be applicable in both smokers and ex-smokers. PMID:9255587
DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).
We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...
Developing EZH2-Targeted Therapy for Lung Cancer | Office of Cancer Genomics
Epigenetic targets are exciting new avenues for cancer drug discovery. Zhang and colleagues have designed the open-source EZH2 inhibitor JQEZ5 and shown antitumor efficacy in vitro and in vivo in preclinical studies in murine and human lung adenocarcinoma models expressing high levels of EZH2.
75 FR 71450 - National Heart, Lung, and Blood Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... discuss sleep research plan development. Public meeting observers should call 1-888-791-5525 to access the.... Information is also available on the Institute's/Center's home page: www.nhlbi.nih.gov/meetings/index.htm...
Deposition of ultrafine (nano) particles in the human lung.
Asgharian, Bahman; Price, Owen T
2007-10-01
Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.
Production and Assessment of Decellularized Pig and Human Lung Scaffolds
Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-01-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920
Production and assessment of decellularized pig and human lung scaffolds.
Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-09-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu; Chen, Jing; Schlueter, Connie F.
Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposedmore » mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.« less
Antiinflammatory Effects of Budesonide in Human Fetal Lung
Barrette, Anne Marie; Roberts, Jessica K.; Chapin, Cheryl; Egan, Edmund A.; Segal, Mark R.; Oses-Prieto, Juan A.; Chand, Shreya; Burlingame, Alma L.
2016-01-01
Lung inflammation in premature infants contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without the apparent adverse effects that occur with systemic dexamethasone therapy. Our objective was to determine budesonide potency, stability, and antiinflammatory effects in human fetal lung. We cultured explants of second-trimester fetal lung with budesonide or dexamethasone and used microscopy, immunoassays, RNA sequencing, liquid chromatography/tandem mass spectrometry, and pulsating bubble surfactometry. Budesonide suppressed secreted chemokines IL-8 and CCL2 (MCP-1) within 4 hours, reaching a 90% decrease at 12 hours, which was fully reversed 72 hours after removal of the steroid. Half-maximal effects occurred at 0.04–0.05 nM, representing a fivefold greater potency than for dexamethasone. Budesonide significantly induced 3.6% and repressed 2.8% of 14,500 sequenced mRNAs by 1.6- to 95-fold, including 119 genes that contribute to the glucocorticoid inflammatory transcriptome; some are known targets of nuclear factor-κB. By global proteomics, 22 secreted inflammatory proteins were hormonally regulated. Two glucocorticoid-regulated genes of interest because of their association with lung disease are CHI3L1 and IL1RL1. Budesonide retained activity in the presence of surfactant and did not alter its surface properties. There was some formation of palmitate-budesonide in lung tissue but no detectable metabolism to inactive 16α-hydroxy prednisolone. We concluded that budesonide is a potent and stable antiinflammatory glucocorticoid in human fetal lung in vitro, supporting a beneficial antiinflammatory response to lung-targeted budesonide:surfactant treatment of infants for the prevention of BPD. PMID:27281349
Antiinflammatory Effects of Budesonide in Human Fetal Lung.
Barrette, Anne Marie; Roberts, Jessica K; Chapin, Cheryl; Egan, Edmund A; Segal, Mark R; Oses-Prieto, Juan A; Chand, Shreya; Burlingame, Alma L; Ballard, Philip L
2016-11-01
Lung inflammation in premature infants contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without the apparent adverse effects that occur with systemic dexamethasone therapy. Our objective was to determine budesonide potency, stability, and antiinflammatory effects in human fetal lung. We cultured explants of second-trimester fetal lung with budesonide or dexamethasone and used microscopy, immunoassays, RNA sequencing, liquid chromatography/tandem mass spectrometry, and pulsating bubble surfactometry. Budesonide suppressed secreted chemokines IL-8 and CCL2 (MCP-1) within 4 hours, reaching a 90% decrease at 12 hours, which was fully reversed 72 hours after removal of the steroid. Half-maximal effects occurred at 0.04-0.05 nM, representing a fivefold greater potency than for dexamethasone. Budesonide significantly induced 3.6% and repressed 2.8% of 14,500 sequenced mRNAs by 1.6- to 95-fold, including 119 genes that contribute to the glucocorticoid inflammatory transcriptome; some are known targets of nuclear factor-κB. By global proteomics, 22 secreted inflammatory proteins were hormonally regulated. Two glucocorticoid-regulated genes of interest because of their association with lung disease are CHI3L1 and IL1RL1. Budesonide retained activity in the presence of surfactant and did not alter its surface properties. There was some formation of palmitate-budesonide in lung tissue but no detectable metabolism to inactive 16α-hydroxy prednisolone. We concluded that budesonide is a potent and stable antiinflammatory glucocorticoid in human fetal lung in vitro, supporting a beneficial antiinflammatory response to lung-targeted budesonide:surfactant treatment of infants for the prevention of BPD.
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice.
Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda; Park, Jung-Eun; Earnest, James T; Bair, Thomas B; Bates, Amber M; Brogden, Kim A; Flaherty, Heather A; Gallagher, Tom; Meyerholz, David K; Perlman, Stanley; McCray, Paul B
2017-04-11
The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERS MA ) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERS MA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERS MA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERS MA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERS MA provide tools to investigate disease causes and develop new therapies.
Onishi, Masahiro; Kobayashi, Tetsu; D'Alessandro-Gabazza, Corina N; Fujimoto, Hajime; Chelakkot-Govindalayathil, Ayshwarya-Lakshmi; Takahashi, Yoshinori; Yasuma, Taro; Nishihama, Kota; Toda, Masaaki; Takei, Yoshiyuki; Taguchi, Osamu; Gabazza, Esteban C
2018-02-26
Chronic obstructive pulmonary disease is the major growing cause of mortality and morbidity worldwide, and it is going to become the third most common cause of death by 2020. Chronic obstructive pulmonary disease is pathologically characterized by lung emphysema and small airway inflammation. Animal models are very important to get insights into the disease pathogenesis but current models of chronic obstructive pulmonary disease take a long time to develop. The need of a new model is compelling. In the present study we focus on the role of matrix metalloproteinases in the pathogenesis of chronic obstructive pulmonary disease and hypothesized that lung overexpression of latent matrix metalloproteinases-2 would allow the development of emphysema after short-term exposure to cigarette smoke extract inhalation. Human latent matrix metalloproteinases-2 transgenic mouse expressing high level of the protein in the lungs and wild type mouse were exposed to aerosolized cigarette smoke extract for two weeks. Transgenic mice showed significant lung emphysematous changes, increased infiltration of inflammatory cells and enhanced lung concentrations of inflammatory cytokines in the lungs compared to their wild type counterparts after inhalation of cigarette smoke extract. This novel mouse model will be a very useful tool for evaluating the mechanistic pathways and for development of novel therapies in cigarette smoke-associated lung emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.
Hoyle, Gary W.; Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M.; Rawson, Greg; Niño, Joe A.; Carson, Kenneth H.
2016-01-01
Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. PMID:26952014
Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun
2009-06-01
We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications.
Branica, Bozica Vrabec; Smojver-Jezek, Silvana; Juros, Zrinka; Grgić, Sandra; Srpak, Nives; Mitrecić, Dinko; Gajović, Srećko
2010-03-01
Besides its well-known role in cervical carcinoma, HPV is also suggested to be involved in lung cancer development. A number of authors have been investigating the presence of HPV in histological materials. We used routine bronchial aspirates from 84 patients with lung carcinoma for DNA extraction and then performed polymerase chain reaction for high-risk HPV types 16, 18 and 33. The results were compared to those obtained from buccal and eyelid mucosa. Only three patients were positive for HPV in bronchial aspirates: one for HPV 16 type, one for HPV 18 type, and one for HPV 33. Our data indicated the low prevalence of HPV in patients with lung carcinomas in Croatia, therefore it seems unlikely that HPV contributes to the development of lung carcinomas in this region.
Antioxidants as Potential Therapeutics for Lung Fibrosis
DAY, BRIAN J.
2009-01-01
Interstitial lung disease encompasses a large group of chronic lung disorders associated with excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and the non–metal-containing nitroxides. The antioxidant scavenging class is based on endogenous antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of animals and humans. PMID:17999627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgharian, Bahman; Price, Owen; McClellan, Gene
2012-11-01
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of themore » animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 µm in size were examined for endotracheal and and up to 5 µm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Finally, future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model.« less
Asgharian, Bahman; Price, Owen; McClellan, Gene; Corley, Rick; Einstein, Daniel R.; Jacob, Richard E.; Harkema, Jack; Carey, Stephan A.; Schelegle, Edward; Hyde, Dallas; Kimbell, Julia S.; Miller, Frederick J.
2016-01-01
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 μm in size were examined for endotracheal and and up to 5 μm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model. PMID:23121298
Extraintestinal roles of bombesin-like peptides and their receptors: lung.
Qin, Xiao-Qun; Qu, Xiangping
2013-02-01
Description of the recent findings of the biological roles of bombesin-like peptides and their receptors in lungs. Gastrin-releasing peptide (GRP) was involved in the airway inflammation in murine models of airway hyperreactivity. The circulating proGRP could serve as a valuable tumor marker for small-cell lung cancers, and the plasma level of proGRP is more stable compared with that of serum proGRP. Recent studies also shed light on the intracellular signaling pathways of bombesin receptor subtype-3 (BRS-3) activation in cultured human lung cancer cells. The relevant biology of BLPs and their receptors in lung cancers and other lung diseases still remains largely unknown. With the development of several highly specific BRS-3 agonists, recent studies provided some insights into the biological effects of BRS-3 in lungs.
Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.
Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas
2011-10-01
Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.
Functional polymorphisms in cell death pathway genes FAS and FASL contribute to risk of lung cancer.
Zhang, X; Miao, X; Sun, T; Tan, W; Qu, S; Xiong, P; Zhou, Y; Lin, D
2005-06-01
The FAS and FASL system plays a key role in regulating apoptotic cell death and corruption of this signalling pathway has been shown to participate in immune escape and tumorigenesis. There is reduced expression of FAS but elevated expression of FASL in many types of human cancers including lung cancer. We recently reported an association between functional polymorphisms in FAS (-1377G-->A) and FASL (-844T-->C) and risk of oesophageal cancer. To examine the contribution of these polymorphisms to risk of developing lung cancer. Genotypes of 1000 lung cancer patients and 1270 controls were analysed by PCR based restriction fragment length polymorphism. Associations with risk of lung cancer were estimated by logistic regression. Compared with non-carriers, there was a 1.6 fold excess risk of developing lung cancer for carriers of the FAS -1377AA genotype (odds ratio (OR) 1.59, 95% confidence interval (CI) 1.21 to 2.10; p = 0.001), and 1.8 fold excess risk (OR 1.79, 95% CI 1.26 to 2.52; p = 0.001) for carriers of FASL -844CC. Gene-gene interaction of FAS and FASL polymorphisms increased risk of lung cancer in a multiplicative manner (OR for the carriers of both FAS -1377AA and FASL -844CC genotypes 4.18, 95% CI 2.83 to 6.18). Gene-environment interaction of FAS or FASL polymorphism and smoking associated with increased risk of lung cancer was also found. These results are consistent with our initial findings in oesophageal cancer and further support the hypothesis that the FAS and FASL triggered apoptosis pathway plays an important role in human carcinogenesis.
Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and d...
Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and di-...
Models to teach lung sonopathology and ultrasound-guided thoracentesis.
Wojtczak, Jacek A
2014-12-01
Lung sonography allows rapid diagnosis of lung emergencies such as pulmonary edema, hemothorax or pneumothorax. The ability to timely diagnose an intraoperative pneumothorax is an important skill for the anesthesiologist. However, lung ultrasound exams require an interpretation of not only real images but also complex acoustic artifacts such as A-lines and B-lines. Therefore, appropriate training to gain proficiency is important. Simulated environment using ultrasound phantom models allows controlled, supervised learning. We have developed hybrid models that combine dry or wet polyurethane foams, porcine rib cages and human hand simulating a rib cage. These models simulate fairly accurately pulmonary sonopathology and allow supervised teaching of lung sonography with the immediate feedback. In-vitro models can also facilitate learning of procedural skills, improving transducer and needle positioning and movement, rapid recognition of thoracic anatomy and hand - eye coordination skills. We described a new model to teach an ultrasound guided thoracentesis. This model consists of the experimenter's hand placed on top of the water-filled container with a wet foam. Metacarpal bones of the human hand simulate a rib cage and a wet foam simulates a diseased lung immersed in the pleural fluid. Positive fluid flow offers users feedback when a simulated pleural effusion is accurately assessed.
Salomonsen, Charlotte M; Breum, Solvej Ø; Larsen, Lars E; Jakobsen, Jeanette; Høiby, Niels; Hammer, Anne S
2012-11-26
Hemorrhagic pneumonia is a disease of farmed mink (Neovison vison) caused by Pseudomonas aeruginosa. The disease is highly seasonal in Danish mink with outbreaks occurring almost exclusively in the autumn. Human respiratory syncytial virus (RSV) has been shown to augment infection with P. aeruginosa in mice and to promote adhesion of P. aeruginosa to human respiratory cells. We tested 50 lung specimens from mink with hemorrhagic pneumonia for bovine RSV by reverse transcriptase polymerase chain reaction (PCR) and for human RSV by a commercial real-time PCR. RSV was not found. This study indicates that human and bovine RSV is not a major co-factor for development of hemorrhagic pneumonia in Danish mink.
Wei, Hongying; Liang, Fan; Cheng, Wei; Zhou, Ren; Wu, Xiaomeng; Feng, Yan; Wang, Yan
2017-11-01
Fine particulate matter (PM 2.5 ) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM 2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM 2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non-small cell lung cancer cell line A549. We found that both acute and chronic PM 2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM 2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM 2.5 exposure. CSC properties induced by chronic PM 2.5 exposure characterized with increased cell-surface markers (CD44, ABCG2), self-renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness-associated microRNAs, Let-7a, miR-16 and miR-34a, were found to be significantly downregulated by chronic PM 2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM 2.5 , and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM 2.5 . © 2017 Wiley Periodicals, Inc.
Soeiro-Pereira, Paulo V.; Gomes, Eliane; Neto, Antonio Condino; D' Império Lima, Maria R.; Alvarez, José M.; Portugal, Silvia; Epiphanio, Sabrina
2016-01-01
Malaria remains one of the greatest burdens to global health, causing nearly 500,000 deaths in 2014. When manifesting in the lungs, severe malaria causes acute lung injury/acute respiratory distress syndrome (ALI/ARDS). We have previously shown that a proportion of DBA/2 mice infected with Plasmodium berghei ANKA (PbA) develop ALI/ARDS and that these mice recapitulate various aspects of the human syndrome, such as pulmonary edema, hemorrhaging, pleural effusion and hypoxemia. Herein, we investigated the role of neutrophils in the pathogenesis of malaria-associated ALI/ARDS. Mice developing ALI/ARDS showed greater neutrophil accumulation in the lungs compared with mice that did not develop pulmonary complications. In addition, mice with ALI/ARDS produced more neutrophil-attracting chemokines, myeloperoxidase and reactive oxygen species. We also observed that the parasites Plasmodium falciparum and PbA induced the formation of neutrophil extracellular traps (NETs) ex vivo, which were associated with inflammation and tissue injury. The depletion of neutrophils, treatment with AMD3100 (a CXCR4 antagonist), Pulmozyme (human recombinant DNase) or Sivelestat (inhibitor of neutrophil elastase) decreased the development of malaria-associated ALI/ARDS and significantly increased mouse survival. This study implicates neutrophils and NETs in the genesis of experimentally induced malaria-associated ALI/ARDS and proposes a new therapeutic approach to improve the prognosis of severe malaria. PMID:27926944
Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya
2015-09-01
Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng Yahsin; Chang, Louis W.; Cheng Lichuan
2007-05-01
Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity inmore » human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.« less
Animal Models in Carotenoids Research and Lung Cancer Prevention1
Kim, Jina; Kim, Yuri
2011-01-01
Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis. PMID:21966544
Airoldi, Irma; Di Carlo, Emma; Cocco, Claudia; Caci, Emanuela; Cilli, Michele; Sorrentino, Carlo; Sozzi, Gabriella; Ferrini, Silvano; Rosini, Sandra; Bertolini, Giulia; Truini, Mauro; Grossi, Francesco; Galietta, Luis Juan Vicente; Ribatti, Domenico; Pistoia, Vito
2009-01-01
Background Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rβ2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. Methodology/Principal Findings Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rβ2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R+ neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/β2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/β2+ cells inhibited angiogenesis in vitro. Tumors formed by Calu6/β2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. Conclusions This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well known immune-modulatory properties of the cytokine and may provide a rational basis for the development of a clinical trial. PMID:19582164
Watanabe, Hideo; Francis, Joshua M.; Woo, Michele S.; Etemad, Banafsheh; Lin, Wenchu; Fries, Daniel F.; Peng, Shouyong; Snyder, Eric L.; Tata, Purushothama Rao; Izzo, Francesca; Schinzel, Anna C.; Cho, Jeonghee; Hammerman, Peter S.; Verhaak, Roel G.; Hahn, William C.; Rajagopal, Jayaraj; Jacks, Tyler; Meyerson, Matthew
2013-01-01
The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas. PMID:23322301
Autoradiographic localization of specific (/sup 3/H)dexamethasone binding in fetal lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, D.G.; Butley, M.S.; Cunha, G.R.
1984-10-01
The cellular and subcellular localization of specific (/sup 3/H)dexamethasone binding was examined in fetal mouse lung at various stages of development and in human fetal lung at 8 weeks of gestation using a rapid in vitro steroid incubation technique followed by thaw-mount autoradiography. Competition studies with unlabeled steroids demonstrate the specificity of (/sup 3/H)dexamethasone labeling, and indicate that fetal lung mesenchyme is a primary glucocorticoid target during lung development. Autoradiographs of (/sup 3/H)dexamethasone binding in lung tissue at early stages of development demonstrate that the mesenchyme directly adjacent to the more proximal portions of the bronchiolar network is heavily labeled.more » In contrast, the epithelium which will later differentiate into bronchi and bronchioles, is relatively unlabeled. Distal portions of the growing epithelium, destined to become alveolar ducts and alveoli, do show nuclear localization of (/sup 3/H)dexamethasone. In addition, by utilizing a technique which allows the simultaneous examination of extracellular matrix components and (/sup 3/H)dexamethasone binding, a relationship is observed between extensive mesenchymal (/sup 3/H)dexamethasone binding and extensive extracellular matrix accumulation. Since glucocorticoids stimulate the synthesis of many extracellular matrix components, these results suggest a role for these hormones in affecting mesenchymal-epithelial interactions during lung morphogenesis.« less
DEPOSITION OF SULFATE ACID AEROSOLS IN THE DEVELOPING HUMAN LUNG
Computations of aerosol deposition as affected by (i) aerosol hygroscopicity, (ii) human age, and (iii) respiratory intensity are accomplished using a validated mathematical model. he interactive effects are very complicated but systematic. ew general observations can be made; ra...
Osaki, Mitsuhiko; Takeshita, Fumitaka; Sugimoto, Yui; Kosaka, Nobuyoshi; Yamamoto, Yusuke; Yoshioka, Yusuke; Kobayashi, Eisuke; Yamada, Tesshi; Kawai, Akira; Inoue, Toshiaki; Ito, Hisao; Oshimura, Mitsuo; Ochiya, Takahiro
2011-01-01
Pulmonary metastases are the main cause of death in patients with osteosarcoma, however, the molecular mechanisms of metastasis are not well understood. To detect lung metastasis-related microRNA (miRNA) in human osteosarcoma, we compared parental (HOS) and its subclone (143B) human osteosarcoma cell lines showing lung metastasis in a mouse model. miR-143 was the most downregulated miRNA (P < 0.01), and transfection of miR-143 into 143B significantly decreased its invasiveness, but not cell proliferation. Noninvasive optical imaging technologies revealed that intravenous injection of miR-143, but not negative control miRNA, significantly suppressed lung metastasis of 143B (P < 0.01). To search for miR-143 target mRNA in 143B, microarray analyses were performed using an independent RNA pool extracted by two different comprehensive miR-143-target mRNA collecting systems. Western blot analyses revealed that MMP-13 was mostly protein downregulated by miR-143. Immunohistochemistry using clinical samples clearly revealed MMP-13-positive cells in lung metastasis-positive cases, but not in at least three cases showing higher miR-143 expression in the no metastasis group. Taken together, these data indicated that the downregulation of miR-143 correlates with the lung metastasis of human osteosarcoma cells by promoting cellular invasion, probably via MMP-13 upregulation, suggesting that miRNA could be used to develop new molecular targets for osteosarcoma metastasis. PMID:21427707
Stone, P J; Lucey, E C; Virca, G D; Christensen, T G; Breuer, R; Snider, G L
1990-06-01
A study was undertaken to determine whether emphysema and airway secretory cell metaplasia, induced in hamsters by intratracheal treatment with human neutrophil elastase (HNE), could be moderated by pretreatment with human alpha 1-protease inhibitor (API). API (4.9 mg) was given intratracheally to hamsters 1 h before 0.3 mg HNE. Eight weeks later, lung volumes and pressure-volume relationships were measured in the anaesthetized animals. Mean linear intercepts and secretory cell indices were measured in lung sections. API given 1 h before HNE moderated the development of bronchial secretory cell metaplasia. The severity of emphysema was reduced by 75%. Clearance studies indicated that 80% of the functional activity of instilled API could be lavaged from the lungs after 1 h, indicating a 4 h half-life in the lavageable compartment of the lungs. We calculate that for 50% protection from emphysema the molar ratio of lavageable API to HNE at the time of HNE instillation was 4.8 as compared with 0.78 for 50% inhibition of elastolytic activity in vitro, indicating that API is only 16% as efficient in vivo as compared with its in vitro HNE inhibitory effectiveness. Nevertheless, we conclude that human API given intratracheally is efficacious against HNE-induced emphysema and secretory cell metaplasia.
A method for the in vivo measurement of americium-241 at long times post-exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neton, J.W.
1988-01-01
This study investigated an improved method for the quantitative measurement, calibration and calculation of {sup 241}Am organ burdens in humans. The techniques developed correct for cross-talk or count-rate contributions from surrounding and adjacent organ burdens and assures for the proper assignment of activity to the lungs, liver and skeleton. In order to predict the net count-rates for the measurement geometries of the skull, liver and lung, a background prediction method was developed. This method utilizes data obtained from the measurement of a group of control subjects. Based on this data, a linear prediction equation was developed for each measurement geometry.more » In order to correct for the cross-contributions among the various deposition loci, a series of surrogate human phantom structures were measured. The results of measurements of {sup 241}Am depositions in six exposure cases have been evaluated using these new techniques and have indicated that lung burden estimates could be in error by as much as 100 percent when corrections are not made for contributions to the count-rate from other organs.« less
Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling
Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.
2015-01-01
This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380
Automated Decellularization of Intact, Human-Sized Lungs for Tissue Engineering
Price, Andrew P.; Godin, Lindsay M.; Domek, Alex; Cotter, Trevor; D'Cunha, Jonathan; Taylor, Doris A.
2015-01-01
We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature. This system was interfaced with a prototypic bioreactor chamber that was connected to another program, from a commercial source, which controlled the volume and flow pressure of fluids. Lung matrix that was decellularized by the automated method was compared to a manual method previously used by us and others. Automation resulted in more consistent acellular matrix preparations as demonstrated by measuring levels of DNA, hydroxyproline (collagen), elastin, laminin, and glycosaminoglycans. It also proved highly beneficial in saving time as the decellularization procedure was reduced from days down to just 24 h. Developing a rapid, controllable, automated system for production of reproducible matrices in a closed system is a major step forward in whole-organ tissue engineering. PMID:24826875
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania
2017-05-31
C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.
Cruzan, George; Bus, James S; Andersen, Melvin E; Carlson, Gary P; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie
2018-06-01
Based on 13 chronic studies, styrene exposure causes lung tumors in mice, but no tumor increases in other organs in mice or rats. Extensive research into the mode of action demonstrates the key events and human relevance. Key events are: metabolism of styrene by CYP2F2 in mouse lung club cells to ring-oxidized metabolites; changes in gene expression for metabolism of lipids and lipoproteins, cell cycle and mitotic M-M/G1 phases; cytotoxicity and mitogenesis in club cells; and progression to preneoplastic/neoplastic lesions in lung. Although styrene-7,8-oxide (SO) is a common genotoxic styrene metabolite in in vitro studies, the data clearly demonstrate that SO is not the proximate toxicant and that styrene does not induce a genotoxic mode of action. Based on complete attenuation of styrene short-term and chronic toxicity in CYP2F2 knockout mice and similar attenuation in CYP2F1 (humanized) transgenic mice, limited metabolism of styrene in human lung by CYP2F1, 2 + orders of magnitude lower SO levels in human lung compared to mouse lung, and lack of styrene-related increase in lung cancer in humans, styrene does not present a risk of cancer to humans. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease.
Bertuzzi, Margherita; Hayes, Gemma E; Icheoku, Uju J; van Rhijn, Norman; Denning, David W; Osherov, Nir; Bignell, Elaine M
2018-01-08
Respiratory epithelia fulfil multiple roles beyond that of gaseous exchange, also acting as primary custodians of lung sterility and inflammatory homeostasis. Inhaled fungal spores pose a continual antigenic, and potentially pathogenic, challenge to lung integrity against which the human respiratory mucosa has developed various tolerance and defence strategies. However, respiratory disease and immune dysfunction frequently render the human lung susceptible to fungal diseases, the most common of which are the aspergilloses, a group of syndromes caused by inhaled spores of Aspergillus fumigatus . Inhaled Aspergillus spores enter into a multiplicity of interactions with respiratory epithelia, the mechanistic bases of which are only just becoming recognized as important drivers of disease, as well as possible therapeutic targets. In this mini-review we examine current understanding of Aspergillus -epithelial interactions and, based upon the very latest developments in the field, we explore two apparently opposing schools of thought which view epithelial uptake of Aspergillus spores as either a curative or disease-exacerbating event.
Molecular Profiles for Lung Cancer Pathogenesis and Detection in US Veterans
2011-10-01
expression data was analyzed using the BRB-ArrayTools v .4.1.0 developed by Dr. Richard Simon and the BRB-ArrayTools Development Team and then normalized...14. Spira A, Beane J, Shah V , et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004;101...10143-10148 15. Spira A, Beane JE, Shah V , et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer
Molecular Profiles for Lung Cancer Pathogenesis and Detection in US Veterans
2011-10-01
data was analyzed using the BRB-ArrayTools v .4.1.0 developed by Dr. Richard Simon and the BRB-ArrayTools Development Team and then normalized and log...Spira A, Beane J, Shah V , et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004;101:10143...10148 15. Spira A, Beane JE, Shah V , et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat
Witsch, Thilo J; Turowski, Pawel; Sakkas, Elpidoforos; Niess, Gero; Becker, Simone; Herold, Susanne; Mayer, Konstantin; Vadász, István; Roberts, Jesse D; Seeger, Werner; Morty, Rory E
2014-02-01
Bronchopulmonary dysplasia (BPD) is a common and serious complication of premature birth, characterized by a pronounced arrest of alveolar development. The underlying pathophysiological mechanisms are poorly understood although perturbations to the maturation and remodeling of the extracellular matrix (ECM) are emerging as candidate disease pathomechanisms. In this study, the expression and regulation of three members of the lysyl hydroxylase family of ECM remodeling enzymes (Plod1, Plod2, and Plod3) in clinical BPD, as well as in an experimental animal model of BPD, were addressed. All three enzymes were localized to the septal walls in developing mouse lungs, with Plod1 also expressed in the vessel walls of the developing lung and Plod3 expressed uniquely at the base of developing septa. The expression of plod1, plod2, and plod3 was upregulated in the lungs of mouse pups exposed to 85% O2, an experimental animal model of BPD. Transforming growth factor (TGF)-β increased plod2 mRNA levels and activated the plod2 promoter in vitro in lung epithelial cells and in lung fibroblasts. Using in vivo neutralization of TGF-β signaling in the experimental animal model of BPD, TGF-β was identified as the regulator of aberrant plod2 expression. PLOD2 mRNA expression was also elevated in human neonates who died with BPD or at risk for BPD, compared with neonates matched for gestational age at birth or chronological age at death. These data point to potential roles for lysyl hydroxylases in normal lung development, as well as in perturbed late lung development associated with BPD.
[Lung transplantation. State of the art].
García-Covarrubias, Lisardo; Salerno, Tomas A; Panos, Anthony L; Pham, Si M
2007-01-01
Lung transplantation is currently considered an established treatment for some advanced lung diseases. The beginning of experimental lung transplantation dates back to the 1940's when the Soviet Vladimir P. Demikhov performed the first lung transplants in animals. Two decades later, James Hardy performed the first lung transplant in humans. Unfortunately, the beginning of clinical lung transplantation was hampered by technical complications and the excessive toxicity of immunosuppressive drugs. Improvement in the surgical technique along with the development of more effective and less toxic immunosuppressive drugs has led to a better outcome in lunt transplant recipients. Donor selection and management before organ procurement play a key role in the receptor's outcome. Due to the shortage of donors, some institutions are using more liberal selection criteria, reporting satisfactory outcomes. The approach of the lung and heart-lung transplant patient is multidisciplinary and includes the cardiothoracic transplant surgeon, pulmonologist, anesthesiologist, and intensivist, among others. Herein, we review some relevant historical aspects and recent advances in the management of lung transplant recipients, including indications and contraindications, evaluation of donors and recipients, surgical techniques and peripost-operative care.
Expression and function of human hemokinin-1 in human and guinea pig airways.
Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Risse, Paul-André; Sage, Edouard; Advenier, Charles; Devillier, Philippe
2010-10-07
Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.
Mapping cardiogenic oscillations using synchrotron-based phase contrast CT imaging
NASA Astrophysics Data System (ADS)
Thurgood, Jordan; Dubsky, Stephen; Siu, Karen K. W.; Wallace, Megan; Siew, Melissa; Hooper, Stuart; Fouras, Andreas
2012-10-01
In many animals, including humans, the lungs encase the majority of the heart thus the motion of each organ affects the other. The effects of the motion of the heart on the lungs potentially provides information with regards to both lung and heart health. We present a novel technique that is capable of measuring the effect of the heart on the surrounding lung tissue through the use of advanced synchrotron imaging techniques and recently developed X-ray velocimetry methods. This technique generates 2D frequency response maps of the lung tissue motion at multiple projection angles from projection X-ray images. These frequency response maps are subsequently used to generate 3D reconstructions of the lung tissue exhibiting motion at the frequency of ventilation and the lung tissue exhibiting motion at the frequency of the heart. This technique has a combined spatial and temporal resolution sufficient to observe the dynamic and complex 3D nature of lung-heart interactions.
NASA Astrophysics Data System (ADS)
Baek, Inseok
The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.
CE was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was a negative correlationmore » (r . -0.81) between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.
CE (converting enzyme) was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was amore » negative correlation between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less
Fröhlich, Eleonore; Salar-Behzadi, Sharareh
2014-01-01
The alveolar epithelium of the lung is by far the most permeable epithelial barrier of the human body. The risk for adverse effects by inhaled nanoparticles (NPs) depends on their hazard (negative action on cells and organism) and on exposure (concentration in the inhaled air and pattern of deposition in the lung). With the development of advanced in vitro models, not only in vivo, but also cellular studies can be used for toxicological testing. Advanced in vitro studies use combinations of cells cultured in the air-liquid interface. These cultures are useful for particle uptake and mechanistic studies. Whole-body, nose-only, and lung-only exposures of animals could help to determine retention of NPs in the body. Both approaches also have their limitations; cellular studies cannot mimic the entire organism and data obtained by inhalation exposure of rodents have limitations due to differences in the respiratory system from that of humans. Simulation programs for lung deposition in humans could help to determine the relevance of the biological findings. Combination of biological data generated in different biological models and in silico modeling appears suitable for a realistic estimation of potential risks by inhalation exposure to NPs. PMID:24646916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Timothy N.; Dentener, Mieke A.
Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damagingmore » inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT5A signaling. • Microarray reveals WNT as a novel complex signaling network in silica-mediated injury.« less
Aging effects on airflow dynamics and lung function in human bronchioles.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-01-01
The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Aging effects on airflow dynamics and lung function in human bronchioles
Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.
2017-01-01
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies. PMID:28846719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Ralf; Koenig, Wolfgang
2006-07-05
We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants ofmore » human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.« less
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer
Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William
2017-01-01
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048
Gideon, Hannah P; Skinner, Jason A; Baldwin, Nicole; Flynn, JoAnne L; Lin, Philana Ling
2016-12-15
Whole blood transcriptional profiling offers great diagnostic and prognostic potential. Although studies identified signatures for pulmonary tuberculosis (TB) and transcripts that predict the risk for developing active TB in humans, the early transcriptional changes immediately following Mycobacterium tuberculosis infection have not been evaluated. We evaluated the gene expression changes in the cynomolgus macaque model of TB, which recapitulates all clinical aspects of human M. tuberculosis infection, using a human microarray and analytics platform. We performed genome-wide blood transcriptional analysis on 38 macaques at 11 postinfection time points during the first 6 mo of M. tuberculosis infection. Of 6371 differentially expressed transcripts between preinfection and postinfection, the greatest change in transcriptional activity occurred 20-56 d postinfection, during which fluctuation of innate and adaptive immune response-related transcripts was observed. Modest transcriptional differences between active TB and latent infection were observed over the time course with substantial overlap. The pattern of module activity previously published for human active TB was similar in macaques with active disease. Blood transcript activity was highly correlated with lung inflammation (lung [ 18 F]fluorodeoxyglucose [FDG] avidity) measured by positron emission tomography and computed tomography at early time points postinfection. The differential signatures between animals with high and low lung FDG were stronger than between clinical outcomes. Analysis of preinfection signatures of macaques revealed that IFN signatures could influence eventual clinical outcomes and lung FDG avidity, even before infection. Our data support that transcriptional changes in the macaque model are translatable to human M. tuberculosis infection and offer important insights into early events of M. tuberculosis infection. Copyright © 2016 by The American Association of Immunologists, Inc.
Switalla, S; Lauenstein, L; Prenzler, F; Knothe, S; Förster, C; Fieguth, H-G; Pfennig, O; Schaumann, F; Martin, C; Guzman, C A; Ebensen, T; Müller, M; Hohlfeld, J M; Krug, N; Braun, A; Sewald, K
2010-08-01
Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1β, MIP-1β, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-γ, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation >0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1β, and IFN-γ. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Switalla, S.; Lauenstein, L.; Prenzler, F.
Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. Themore » initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1{beta}, MIP-1{beta}, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-{gamma}, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation > 0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1{beta}, and IFN-{gamma}. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans.« less
Zhou, Hong-sheng; Liu, Jing-hu; Wang, Xiu-quan; Guo, Jiang-hua; Song, Xiao-lin
2007-03-01
To describe the clinical manifestations and lung imaging characteristics of the human transmissible highly pathogenic H5N1 avian influenza. The clinical manifestations and lung imaging characteristics of human transmissible highly pathogenic H5N1 avian influenza in one patient were reviewed and analyzed. The patient had the clear history of occupational exposure. The fever and symptoms of influenza were prominent at onset and associated with the symptoms of the digestive tract. The laboratory findings comprised the significant decrease of the white blood cell count and the lymphocyte number and the impairment of the liver function and the myocardial enzymes. The disease progressed rapidly and multiple organs including lung, heart, liver and kidneys were involved. It was ineffective to administer anti-fungal, anti-virus and anti-inflammation medicines. It was in vain to use mechanical ventilation and pneumothorax intubation and closed drainage as well as the support therapy. In the X-ray film, the lesions progressed quickly and changed diversely with absorption and development at the same time. The nasal and throat swabs and the gargle specimen were detected with RT-PCR and real time PCR by Chinese Center for Disease Control and Prevention. The results showed that both the specific HA and NA genes of the avian influenza virus H5N1 subtype were positive and in the same time a strain of avian influenza virus A/jiangxi/1/2005H5N1) was separated and obtained from the nasal and throat swabs. The autopsy showed that diffuse injury of alveolus in lungs, DIC and multiple organ injury. The human transmissible highly pathogenic H5N1 avian influenza is a lethal disease. The disease progresses rapidly with the absorption and development at the same time in the lungs and unfortunately there are no effective therapeutic measures. The prevention of the contagious disease for the occupationally exposed population should be emphasized.
Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses
Waters, Christopher M.; Roan, Esra; Navajas, Daniel
2015-01-01
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969
Proteomic Analysis of Arsenic-Induced Oxidative Stress in Human Epidermal Keratinocytes
Chronic exposure to inorganic arsenic (IAs) has been associated with the development of several human cancers, including those found in the skin, lung, urinary bladder, liver, prostate and kidney. The precise mechanisms by which arsenic causes cancer are unknown. Defining the mod...
Ji, Hongbin; Zhao, Xiaojun; Yuza, Yuki; Shimamura, Takeshi; Li, Danan; Protopopov, Alexei; Jung, Boonim L.; McNamara, Kate; Xia, Huili; Glatt, Karen A.; Thomas, Roman K.; Sasaki, Hidefumi; Horner, James W.; Eck, Michael; Mitchell, Albert; Sun, Yangping; Al-Hashem, Ruqayyah; Bronson, Roderick T.; Rabindran, Sridhar K.; Discafani, Carolyn M.; Maher, Elizabeth; Shapiro, Geoffrey I.; Meyerson, Matthew; Wong, Kwok-Kin
2006-01-01
The tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) have shown anti-tumor activity in the treatment of non-small cell lung cancer (NSCLC). Dramatic and durable responses have occurred in NSCLC tumors with mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). In contrast, these inhibitors have shown limited efficacy in glioblastoma, where a distinct EGFR mutation, the variant III (vIII) in-frame deletion of exons 2–7, is commonly found. In this study, we determined that EGFRvIII mutation was present in 5% (3/56) of analyzed human lung squamous cell carcinoma (SCC) but was not present in human lung adenocarcinoma (0/123). We analyzed the role of the EGFRvIII mutation in lung tumorigenesis and its response to tyrosine kinase inhibition. Tissue-specific expression of EGFRvIII in the murine lung led to the development of NSCLC. Most importantly, these lung tumors depend on EGFRvIII expression for maintenance. Treatment with an irreversible EGFR inhibitor, HKI-272, dramatically reduced the size of these EGFRvIII-driven murine tumors in 1 week. Similarly, Ba/F3 cells transformed with the EGFRvIII mutant were relatively resistant to gefitinib and erlotinib in vitro but proved sensitive to HKI-272. These findings suggest a therapeutic strategy for cancers harboring the EGFRvIII mutation. PMID:16672372
Taratula, Oleh; Kuzmov, Andriy; Shah, Milin; Garbuzenko, Olga B.; Minko, Tamara
2013-01-01
We developed, synthesized, and tested a multifunctional nanostructured lipid nanocarrier-based system (NLCS) for efficient delivery of an anticancer drug and siRNA directly into the lungs by inhalation. The system contains: (1) nanostructured lipid carriers (NLC); (2) anticancer drug (doxorubicin or paclitaxel); (3) siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) siRNA targeted to BCL2 mRNA as a suppressor of nonpump cellular resistance and (5) a modified synthetic analog of luteinizing hormone-releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells. The NLCS was tested in vitro using human lung cancer cells and in vivo utilizing mouse orthotopic model of human lung cancer. After inhalation, the proposed NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact and also significantly decreasing the exposure of healthy organs when compared with intravenous injection. The NLCS showed enhanced antitumor activity when compared with intravenous treatment. The data obtained demonstrated high efficiency of proposed NLCS for tumor-targeted local delivery by inhalation of anticancer drugs and mixture of siRNAs specifically to lung cancer cells and, as a result, efficient suppression of tumor growth and prevention of adverse side effects on healthy organs. PMID:23648833
Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A.; Waalkes, Michael P.
2009-01-01
Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-α (ER-α) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-β-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. in utero arsenic exposure also induced overexpression of α-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-α expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-α expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-α activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood. PMID:17077188
Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A; Waalkes, Michael P
2007-02-01
Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-alpha (ER-alpha) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-beta-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. In utero arsenic exposure also induced overexpression of alpha-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-alpha expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-alpha expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-alpha activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood.
Nitrilase 1 modulates lung tumor progression in vitro and in vivo
Wang, Yong Antican; Sun, Yunguang; Le Blanc, Justin M.; Solomides, Charalambos; Zhan, Tingting; Lu, Bo
2016-01-01
Uncovering novel growth modulators for non-small cell lung cancer (NSCLC) may lead to new therapies for these patients. Previous studies suggest Nit1 suppresses chemically induced carcinogenesis of the foregut in a mouse model. In this study we aimed to determine the role of Nit1 in a transgenic mouse lung cancer model driven by a G12D Kras mutation. Nit1 knockout mice (Nit1−/−) were crossed with KrasG12D/+ mice to investigate whether a G12D Kras mutation and Nit1 inactivation interact to promote or inhibit the development of NSCLC. We found that lung tumorigenesis was suppressed in the Nit1-null background (Nit1−/−:KrasG12D/+). Micro-CT scans and gross tumor measurements demonstrated a 5-fold reduction in total tumor volumes compared to Nit1+/+KrasG12D/+ (p<0.01). Furthermore, we found that Nit1 is highly expressed in human lung cancer tissues and cell lines and use of siRNA against Nit1 decreased overall cell survival of lung cancer cells in culture. In addition, cisplatin response was enhanced in human lung cancer cells when Nit1 was knocked down and Nit1−/−:KrasG12D/+ tumors showed increased sensitivity to cisplatin in vivo. Together, our data indicate that Nit1 may play a supportive role in the modulation of lung tumorigenesis and represent a novel target for NSCLCs treatment. PMID:26967383
ACE phenotyping in human heart.
Tikhomirova, Victoria E; Kost, Olga A; Kryukova, Olga V; Golukhova, Elena Z; Bulaeva, Naida I; Zholbaeva, Aigerim Z; Bokeria, Leo A; Garcia, Joe G N; Danilov, Sergei M
2017-01-01
Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10-15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. "Conformational fingerprint" of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk.
Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun
2018-02-07
Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.
Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert
2016-01-01
Background The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Methods Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Results Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Conclusions Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. PMID:27558745
[Unilateral lung transplant in a case of terminal pulmonary fibrosis].
Santillán-Doherty, P
1990-01-01
Up to 1980, less than 40 lung transplants had been reported worldwide without any success. The factors influencing these poor results were related to complications at the bronchial anastomosis and ineffective immunosuppressive regimens. The development of new immunosuppressive drugs has permitted the reevaluation of lung transplantation as a therapeutic option. The success with heart-lung transplantation stimulated the development of clinical human single-lung and double-lung transplantation. However the world experience is still scarce. In our institution we have developed experimental work leading to the establishment of a lung transplant program. This paper describes our first single lung transplant patient. The patient, a 33 year old man with end-stage pulmonary fibrosis, was totally oxygen dependant, maintaining arterial blood oxygen levels below 40 mmHg without oxygen supplementation and confined to a wheelchair. A single left lung transplant was performed from a young brain-dead donor. The bronchial anastomosis was protected with an omental flap. The immunosuppressive regimen was based on cyclosporin A and azathioprine from the beginning, adding prednisone on the third postoperative week. There has been only one episode suggestive of acute rejection which was managed with methylprednisolone. On the 9th postoperative week the patient developed a bronchial stenoses at the anastomotic site which required dilation and stenting with an endobronchial silastic stent. His clinical course has been uneventful since then. His ventilatory parameters showed an increase of vital capacity from 900 to 2100 mL and his FEV1 from 700 to 1500 mL. His gas exchange has been normal with arterial blood gas oxygen above 60 mmHg and oxygen saturation above 94%.(ABSTRACT TRUNCATED AT 250 WORDS)
Xian, Jian; Aitchison, Alan; Bobrow, Linda; Corbett, Gerard; Pannell, Richard; Rabbitts, Terence; Rabbitts, Pamela
2004-09-15
The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.
Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells
Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.
2014-01-01
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234
There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-01-01
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847
Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A
2017-11-23
The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.
Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Cong, De-Gang; Chang, Hao; Wang, Xue-Feng; Zhang, Tie-Wa; Zhang, Jian; Fu, Kai; Jiang, Jiu-Yang
2008-04-29
To investigate the correlation between Pokemon gene and cisplatin mechanism. Human lung adenocarcinoma cells of the lines A549 and AGZY83-a, human lung squamous carcinoma cells of the line HE-99, and human giant cell lung cancer cells of the line 95D were cultured and cisplatin was added into the medium. Other lung cancer cells of the above mentioned lines were cultured in the medium without cisplatin and were used as control groups. RT-PCR and Western blotting were used to detect the mRNA and protein expression of Pokemon. Pokemon mRNA and protein were expressed highly in all the 4 cell lines. The Pokemon gene expression did not changed significantly after cisplatin treatment groups. There were not significant differences in the mRNA and protein expression of Pokemon among the 4 experiment groups and the control groups (all P > 0.05). Cisplatin has no effect on the Pokemon gene expression of the human lung cancer cells.
Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....
Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer.
Maier, Colleen R; Hollander, M Christine; Hobbs, Evthokia A; Dogan, Irem; Linnoila, R Ilona; Dennis, Phillip A
2011-11-01
Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiologic levels of nicotine on lung tumor formation, tumor growth, or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Tumors that develop in this model have mutations in K-ras, which is commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size and did not affect overall survival. Likewise, in a syngeneic model using lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable with those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiologic data showing that NRT does not enhance lung cancer risk in former smokers.
Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells
NASA Astrophysics Data System (ADS)
Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.
2012-04-01
We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.
A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells
Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi
2016-01-01
Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-Hui; Pu, Yang; Cheng, Gangge; Yu, Xinguang; Zhou, Lixin; Lin, Dongmei; Zhu, Ke; Alfano, Robert R.
2017-02-01
Resonance Raman (RR) spectroscopy offers a novel Optical Biopsy method in cancer discrimination by a means of enhancement in Raman scattering. It is widely acknowledged that the RR spectrum of tissue is a superposition of spectra of various key building block molecules. In this study, the Resonance Raman (RR) spectra of human metastasis of lung cancerous and normal brain tissues excited by a visible selected wavelength at 532 nm are used to explore spectral changes caused by the tumor evolution. The potential application of RR spectra human brain metastasis of lung cancer was investigated by Blind Source Separation such as Principal Component Analysis (PCA). PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components (PCs). The results show significant RR spectra difference between human metastasis of lung cancerous and normal brain tissues analyzed by PCA. To evaluate the efficacy of for cancer detection, a linear discriminant analysis (LDA) classifier is utilized to calculate the sensitivity, and specificity and the receiver operating characteristic (ROC) curves are used to evaluate the performance of this criterion. Excellent sensitivity of 0.97, specificity (close to 1.00) and the Area Under ROC Curve (AUC) of 0.99 values are achieved under best optimal circumstance. This research demonstrates that RR spectroscopy is effective for detecting changes of tissues due to the development of brain metastasis of lung cancer. RR spectroscopy analyzed by blind source separation may have potential to be a new armamentarium.
Burgos, Carmen Mesas; Uggla, Andreas Ringman; Fagerström-Billai, Fredrik; Eklöf, Ann-Christine; Frenckner, Björn; Nord, Magnus
2010-07-01
Pulmonary hypoplasia and persistent pulmonary hypertension are the main causes of mortality and morbidity in newborns with congenital diaphragmatic hernia (CDH). Nitrofen is well known to induce CDH and lung hypoplasia in a rat model, but the mechanism remains unknown. To increase the understanding of the underlying pathogenesis of CDH, we performed a global gene expression analysis using microarray technology. Pregnant rats were given 100 mg nitrofen on gestational day 9.5 to create CDH. On day 21, fetuses after nitrofen administration and control fetuses were removed; and lungs were harvested. Global gene expression analysis was performed using Affymetrix Platform and the RAE 230 set arrays. For validation of microarray data, we performed real-time polymerase chain reaction and Western blot analysis. Significantly decreased genes after nitrofen administration included several growth factors and growth factors receptors involved in lung development, transcription factors, water and ion channels, and genes involved in angiogenesis and extracellular matrix. These results could be confirmed with real-time polymerase chain reaction and protein expression studies. The pathogenesis of lung hypoplasia and CDH in the nitrofen model includes alteration at a molecular level of several pathways involved in lung development. The complexity of the nitrofen mechanism of action reminds of human CDH; and the picture is consistent with lung hypoplasia and vascular disease, both important contributors to the high mortality and morbidity in CDH. Increased understanding of the molecular mechanisms that control lung growth may be the key to develop novel therapeutic techniques to stimulate pre- and postnatal lung growth. Copyright 2010 Elsevier Inc. All rights reserved.
Overview of Lung Development in the Newborn Human.
Warburton, David
2017-01-01
In human neonates rapid adaptation from an aqueous intrauterine environment to permanent air breathing is the rate-limiting step for extrauterine life, failure of which justifies the existence of neonatal intensive care units. The lung develops at about 4-6 weeks' gestation in humans as a ventral outpouching of the primitive foregut into the surrounding ventral mesenchyme, termed the laryngotracheal groove. At its posterior end lie progenitor cells that form a pair of bronchial tubes, from which arise all the distal epithelial structures of the lung. In humans, formation of the distal gas exchange surfaces begins in utero at about 20 weeks' gestation and is substantially established by term. Stereotypic branching of the proximal airway ends relatively early at 16-18 weeks at the bronchoalveolar duct junctions. Distally, about 5 finger-like alveolar ducts arise from each bronchoalveolar duct junction and ramify outwards towards the pleura. The majority of alveolar air sacs arise from the sides of the alveolar ducts and each of these alveoli can have up to 5 daughter alveoli arising from the outer surface as subsequent buds. At the end of each alveolar duct lie the mouths of 5 interconnected alveoli. Each family of alveoli arising from each bronchoalveolar duct junction has a different shape depending upon the limitations imposed by the pleural surface as well as the interstitial fascial planes. © 2017 S. Karger AG, Basel.
Andreasson, Anders S I; Borthwick, Lee A; Gillespie, Colin; Jiwa, Kasim; Scott, Jonathan; Henderson, Paul; Mayes, Jonny; Romano, Rosalba; Roman, Marius; Ali, Simi; Fildes, James E; Marczin, Nandor; Dark, John H; Fisher, Andrew J
2017-09-01
Extended criteria donor lungs deemed unsuitable for immediate transplantation can be reconditioned using ex vivo lung perfusion (EVLP). Objective identification of which donor lungs can be successfully reconditioned and will function well post-operatively has not been established. This study assessed the predictive value of markers of inflammation and tissue injury in donor lungs undergoing EVLP as part of the DEVELOP-UK study. Longitudinal samples of perfusate, bronchoalveolar lavage, and tissue from 42 human donor lungs undergoing clinical EVLP assessments were analyzed for markers of inflammation and tissue injury. Levels were compared according to EVLP success and post-transplant outcomes. Neutrophil adhesion to human pulmonary microvascular endothelial cells (HPMECs) conditioned with perfusates from EVLP assessments was investigated on a microfluidic platform. The most effective markers to differentiate between in-hospital survival and non-survival post-transplant were perfusate interleukin (IL)-1β (area under the curve = 1.00, p = 0.002) and tumor necrosis factor-α (area under the curve = 0.95, p = 0.006) after 30 minutes of EVLP. IL-1β levels in perfusate correlated with upregulation of intracellular adhesion molecule-1 in donor lung vasculature (R 2 = 0.68, p < 0.001) and to a lesser degree upregulation of intracellular adhesion molecule-1 (R 2 = 0.30, p = 0.001) and E-selectin (R 2 = 0.29, p = 0.001) in conditioned HPMECs and neutrophil adhesion to conditioned HPMECs (R 2 = 0.33, p < 0.001). Neutralization of IL-1β in perfusate effectively inhibited neutrophil adhesion to conditioned HPMECs (91% reduction, p = 0.002). Donor lungs develop a detectable and discriminatory pro-inflammatory signature in perfusate during EVLP. Blocking the IL-1β pathway during EVLP may reduce endothelial activation and subsequent neutrophil adhesion on reperfusion; this requires further investigation in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Tikkanen, Jussi M; Singer, Lianne G; Kim, S Joseph; Li, Yanhong; Binnie, Matthew; Chaparro, Cecilia; Chow, Chung-Wai; Martinu, Tereza; Azad, Sassan; Keshavjee, Shaf; Tinckam, Kathryn
2016-09-01
Despite increasing evidence about the role of donor-specific human leukocyte antigen (HLA) antibodies in transplant outcomes, the incidence and impact of de novo donor-specific antibodies (dnDSA) after lung transplantation remains unclear. To describe the incidence, characteristics, and impact of dnDSA after lung transplantation. We investigated a single-center cohort of 340 lung transplant recipients undergoing transplant during 2008 to 2011. All patients underwent HLA-antibody testing quarterly pretransplant and at regular intervals over the first 24 months after transplant. The patients received modified immunosuppression depending on their pretransplant sensitization status. Risk factors for dnDSA development, as well as the associations of dnDSA with patient survival and chronic lung allograft dysfunction (CLAD), were determined using multivariable analysis. The cumulative incidence of dnDSA was 47% at a median of 86 days (range, 44-185 d) after lung transplantation. Seventy-six percent of recipients with dnDSA had DQ-DSA. Male sex and the use of ex vivo lung perfusion were associated with an increased risk of dnDSA, whereas increased HLA-DQB1 matching was protective. DQ-dnDSA preceded or coincided with the diagnosis of CLAD in all cases. Developing dnDSA (vs. no dnDSA) was associated with a twofold increased risk of CLAD (hazard ratio, 2.04; 95% confidence interval, 1.13-3.69). This association appeared to be driven by the development of DQ-dnDSA. dnDSA are common after lung transplantation, with the majority being DQ DSA. DQ-dnDSA are associated with an increased risk of CLAD. Strategies to prevent or treat DQ-dnDSA may improve outcomes for lung transplant recipients.
Modeling of the Nitric Oxide Transport in the Human Lungs.
Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît
2016-01-01
In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might provide an interesting way to characterize the extent of BC in unhealthy patients.
Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012
Matthay, Michael A.; Anversa, Piero; Bhattacharya, Jahar; Burnett, Bruce K.; Chapman, Harold A.; Hare, Joshua M.; Hei, Derek J.; Hoffman, Andrew M.; Kourembanas, Stella; McKenna, David H.; Ortiz, Luis A.; Ott, Harald C.; Tente, William; Thébaud, Bernard; Trapnell, Bruce C.; Weiss, Daniel J.; Yuan, Jason X.-J.
2013-01-01
The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health convened the Cell Therapy for Lung Disease Working Group on November 13–14, 2012, to review and formulate recommendations for future research directions. The workshop brought together investigators studying basic mechanisms and the roles of cell therapy in preclinical models of lung injury and pulmonary vascular disease, with clinical trial experts in cell therapy for cardiovascular diseases and experts from the NHLBI Production Assistance for Cell Therapy program. The purpose of the workshop was to discuss the current status of basic investigations in lung cell therapy, to identify some of the scientific gaps in current knowledge regarding the potential roles and mechanisms of cell therapy in the treatment of lung diseases, and to develop recommendations to the NHLBI and the research community on scientific priorities and practical steps that would lead to first-in-human trials of lung cell therapy. PMID:23713908
Cysts mark the early stage of metastatic tumor development in non-small cell lung cancer
Thakur, Chitra; Rapp, Ulf R.; Rudel, Thomas
2018-01-01
Identifying metastatic tumor growth at an early stage has been one of the biggest challenges in the treatment of lung cancer. By genetic lineage tracing approach in a conditional model of Non-Small Cell Lung Cancer (NSCLC) in mice, we demonstrate that cystic lesions represent an early stage of metastatic invasion. We generated a mouse model for NSCLC which incorporated a heritable DsRed fluorescent tag driven by the ubiquitous CAG promoter in the alveolar type II cells of the lung. We found early cystic lesions in a secondary organ (liver) that lacked the expression of bona fide lung makers namely Scgb1a1 and surfactant protein C Sftpc and were DsRed positive hence identifying lung as their source of origin. This demonstrates the significant potential of alveolar type II cells in orchestrating the process of metastasis, rendering it as one of the target cell types of the lung of therapeutic importance in human NSCLC. PMID:29464089
Napier, F. E.; Shearer, M. A.; Temple, D. M.
1990-01-01
1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152
Comparative microscopic study of human and rat lungs after overexposure to welding fume.
Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R
2013-11-01
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.
Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.
Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua
2017-03-01
Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.
Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin
2014-09-01
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models. © 2014 by the Society for Experimental Biology and Medicine.
Friesen, Robert H E; Koudstaal, Wouter; Koldijk, Martin H; Weverling, Gerrit Jan; Brakenhoff, Just P J; Lenting, Peter J; Stittelaar, Koert J; Osterhaus, Albert D M E; Kompier, Ronald; Goudsmit, Jaap
2010-02-08
The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class. We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in pharyngeal secretions and largely prevented H5N1-induced lung pathology. When administered therapeutically 1 day after challenge, 30 mg/kg CR6261 prevented death in all animals and blunted disease, as evidenced by decreased weight loss and temperature rise, reduced lung viral loads and shedding, and less lung damage. These data demonstrate the prophylactic and therapeutic efficacy of this new class of human monoclonal antibodies in a highly stringent and clinically relevant animal model of influenza and justify clinical development of this approach as intervention for both seasonal and pandemic influenza.
Epidemiology studies link human exposure to ambient air pollution with the development and exacerbation of cardiopulmonary disease. Diesel exhaust (DE) is a significant source of ambient air pollution, and thus may contribute to adverse pulmonary health effects. Previous human re...
The role of innate immunity in acute allograft rejection after lung transplantation.
Palmer, Scott M; Burch, Lauranell H; Davis, R Duane; Herczyk, Walter F; Howell, David N; Reinsmoen, Nancy L; Schwartz, David A
2003-09-15
Although innate immunity is crucial to pulmonary host defense and can initiate immune and inflammatory responses independent of adaptive immunity, it remains unstudied in the context of transplant rejection. To investigate the role of innate immunity in the development of allograft rejection, we assessed the impact of two functional polymorphisms in the toll-like receptor 4 (TLR4) associated with endotoxin hyporesponsiveness on the development of acute rejection after human lung transplantation. Patients and donors were screened for the TLR4 Asp299Gly and Thr399Ile polymorphisms by polymerase chain reaction using sequence-specific primers. The rate of acute rejection at 6 months was significantly reduced in recipients, but not in donors, with the Asp299Gly or Thr399Ile alleles as compared with wild type (29 vs. 56%, respectively, p = 0.05). This association was confirmed in Cox proportional hazards and multivariate logistic regression models. Our results suggest activation of innate immunity in lung transplant recipients through TLR4 contributes to the development acute rejection after lung transplantation. Therapies directed at inhibition of innate immune responses mediated by TLR4 may represent a novel and effective means to prevent acute rejection after lung transplantation.
Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu
2016-12-01
Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.
Huang, Wei; Shi, Jun; Yen, R T
2012-12-01
The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.
Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M
2017-10-15
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-11-25
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.
Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo
2017-01-01
Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841
ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo
Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.; Solouk-Saran, Djamschid; Männ, Linda; Weski, Juliane; Maurer, Andreas; Fischer, Eliane; Spycher, Philipp R.; Schibli, Roger; Boschetti, Frederic; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Severin, Gregory W.; Autenrieth, Stella E.; Krappmann, Sven; Davies, Genna; Pichler, Bernd J.; Gunzer, Matthias; Wiehr, Stefan
2016-01-01
Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [64Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [64Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [18F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation. PMID:26787852
Measurement and classification of heart and lung sounds by using LabView for educational use.
Altrabsheh, B
2010-01-01
This study presents the design, development and implementation of a simple low-cost method of phonocardiography signal detection. Human heart and lung signals are detected by using a simple microphone through a personal computer; the signals are recorded and analysed using LabView software. Amplitude and frequency analyses are carried out for various phonocardiography pathological cases. Methods for automatic classification of normal and abnormal heart sounds, murmurs and lung sounds are presented. Various cases of heart and lung sound measurement are recorded and analysed. The measurements can be saved for further analysis. The method in this study can be used by doctors as a detection tool aid and may be useful for teaching purposes at medical and nursing schools.
A 4DCT imaging-based breathing lung model with relative hysteresis
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-01-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811
A 4DCT imaging-based breathing lung model with relative hysteresis
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-12-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.
Allergen-induced migration of human cells in allergic severe combined immunodeficiency mice.
Duez, C; Akoum, H; Marquillies, P; Cesbron, J Y; Tonnel, A B; Pestel, J
1998-02-01
Recently, we have shown that severe combined immunodeficiency (SCID) mice, intraperitoneally reconstituted with peripheral blood mononuclear cells (PBMC) from Dermatophagoides pteronyssinus (Dpt)-sensitive patients, produced human IgE and developed a pulmonary inflammatory-type reaction after exposure to allergen aerosol. In order to understand the potential mechanisms involved in the human cell migration in SCID mice, we analysed their phenotypic profile in the lungs, spleen and thymus, 2 months after Dpt inhalation. The human cell recruitment in these organs was found to be allergen-dependent as CD45+ human cells were only detected in hu-SCID mice after Dpt exposure. The composition of the pulmonary human T-cell infiltrate, preferentially memory (CD45RO), activated (human leucocyte antigen (HLA)-DR) and CD4+ cells, was similar to that described in asthmatic patients. However, CD20+ B cells were predominately recruited in the spleen and thymus and may be IgE-producing cells in the spleen. In the lungs, the percentage of human leucocytes expressing the alpha-chain of the lymphocyte function-associated antigen-1 (LFA-1) (CD11a) was higher than those of CD49d+ or CD54+ cells, in contrast to the spleen and thymus, suggesting a potential role of LFA-1 in the human cell migration towards SCID mice lung. In conclusion, this model could be useful in the study of factors implicated in the cellular migration towards the lymphoid organs during an allergic reaction.
Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing
2016-10-04
Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.
ACE phenotyping in human heart
Tikhomirova, Victoria E.; Kost, Olga A.; Kryukova, Olga V.; Golukhova, Elena Z.; Bulaeva, Naida I.; Zholbaeva, Aigerim Z.; Bokeria, Leo A.; Garcia, Joe G. N.
2017-01-01
Aims Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs. Methods and results We performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10–15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. “Conformational fingerprint” of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles. Conclusions Significant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk. PMID:28771512
AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists
Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.
2017-01-01
While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244
AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.
Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T
2017-01-01
While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, J. A.; Hansen, K. M.; Wilson, J. S.
1976-08-01
This report summarizes results of preliminary experiments to develop cytological and biochemical indicators for estimating damage to respiratory epithelium exposed to toxic agents associated with the by-products of nonnuclear energy production using advanced flow-systems cell-analysis technologies. Since initiation of the program one year ago, progress has been made in obtaining adequate numbers of exfoliated lung cells from the Syrian hamster for flow analysis; cytological techniques developed on human exfoliated gynecological samples have been adapted to hamster lung epithelium for obtaining single-cell suspensions; and lung-cell samples have been initially characterized based on DNA content, total protein, nuclear and cytoplasmic size, andmore » multiangle light-scatter measurements. Preliminary results from measurements of the above parameters which recently became available are described in this report. As the flow-systems technology is adapted further to analysis of exfoliated lung cells, measurements of changes in physical and biochemical cellular properties as a function of exposure to toxic agents will be performed.« less
Tsubouchi, Kazuya; Araya, Jun; Minagawa, Shunsuke; Hara, Hiromichi; Ichikawa, Akihiro; Saito, Nayuta; Kadota, Tsukasa; Sato, Nahoko; Yoshida, Masahiro; Kurita, Yusuke; Kobayashi, Kenji; Ito, Saburo; Fujita, Yu; Utsumi, Hirofumi; Yanagisawa, Haruhiko; Hashimoto, Mitsuo; Wakui, Hiroshi; Yoshii, Yutaka; Ishikawa, Takeo; Numata, Takanori; Kaneko, Yumi; Asano, Hisatoshi; Yamashita, Makoto; Odaka, Makoto; Morikawa, Toshiaki; Nakayama, Katsutoshi; Nakanishi, Yoichi; Kuwano, Kazuyoshi
2017-08-03
Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor β) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.
Moss, G S; Das Gupta, T K; Brinkman, R; Sehgal, L; Newsom, B
1979-01-01
The object of this study was to compare the ultrastructure pulmonary effects of the infusion of homologous and heterologous serum albumin solution in the treatment of hemorrhagic shock in baboons. Adult baboons subjected to hemorrhagic shock were resuscitated with either baboon serum albumin, human serum albumin, or Ringer's lactate solution. The lungs were fixed in vivo with potassium pyroantimony, a solution which produces electron dense interstitial precipitation of sodium. The lungs from animals resuscitated with baboon serum albumin showed evidence of interstitial edema, including dispersion of collagen fibers, interstitial smudging and increased interstital sodium concentrations. Similar changes were seen following human serum albumin infusions. Lung tissue from animals treated with Ringer's lactate solution showed minimal changes from normal. These results suggest that interstitial pulmonary edema develops after either homologous or heterologous serum albumin infusion in the treatment of hemorrhagic shock in baboons. Images Figs. 2a and b. Figs. 3a and b. Figs. 4a and b. Figs. 5a and b. Figs. 6a and b. PMID:106780
NASA Astrophysics Data System (ADS)
Bhargava, Maneesh
Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
Nakada, Tomohisa; Kiyotani, Kazuma; Iwano, Shunsuke; Uno, Takahiko; Yokohira, Masanao; Yamakawa, Keiko; Fujieda, Masaki; Saito, Tetsuya; Yamazaki, Hiroshi; Imaida, Katsumi; Kamataki, Tetsuya
2012-01-01
We previously found that genetic polymorphism in cytochrome P450 2A6 (CYP2A6) is one of the potential determinants of tobacco-related lung cancer risk. It has been reported that the plasma concentration of cotinine, a major metabolite of nicotine, in carriers of wild-type alleles of CYP2A6 is considerably higher than that in carriers of null or reduced-function alleles of CYP2A6, raising the possibility that cotinine plays an important role in the development of lung cancer. As a novel mechanism of lung tumorigenesis mediated by CYP2A6, we investigated the effects of cotinine on the suppression of apoptosis and promotion of lung tumor growth. In human lung adenocarcinoma A549 cells, cotinine inhibited doxorubicin-induced cell death by suppressing caspase-mediated apoptosis. Enhanced phosphorylation of Akt, a key factor responsible for cell survival and inhibition of apoptosis, was detected after cotinine treatment. These data suggest that cotinine suppresses caspase-mediated apoptosis induced by doxorubicin through activation of the PI3K/Akt pathway. Furthermore, we clarified that cotinine significantly facilitated tumor growth in the Lewis lung cancer model and accelerated development of lung adenomas induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mice. We herein propose that cotinine induces tumor promotion by inhibiting apoptosis and enhancing cellular proliferation, thus underlining the importance of CYP2A6 in tobacco-related lung tumorigenesis.
Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C
2015-02-12
Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers.
B cells in chronic obstructive pulmonary disease: moving to center stage
Polverino, Francesca; Seys, Leen J. M.; Bracke, Ken R.
2016-01-01
Chronic inflammatory responses in the lungs contribute to the development and progression of chronic obstructive pulmonary disease (COPD). Although research studies focused initially on the contributions of the innate immune system to the pathogenesis of COPD, more recent studies have implicated adaptive immune responses in COPD. In particular, studies have demonstrated increases in B cell counts and increases in the number and size of B cell-rich lymphoid follicles in COPD lungs that correlate directly with COPD severity. There are also increases in lung levels of mediators that promote B cell maturation, activation, and survival in COPD patients. B cell products such as autoantibodies directed against lung cells, components of cells, and extracellular matrix proteins are also present in COPD lungs. These autoantibodies may contribute to lung inflammation and injury in COPD patients, in part, by forming immune complexes that activate complement components. Studies of B cell-deficient mice and human COPD patients have linked B cells most strongly to the emphysema phenotype. However, B cells have protective activities during acute exacerbations of COPD by promoting adaptive immune responses that contribute to host defense against pathogens. This review outlines the evidence that links B cells and B cell-rich lymphoid follicles to the pathogenesis of COPD and the mechanisms involved. It also reviews the potential and limitations of B cells as therapeutic targets to slow the progression of human COPD. PMID:27542809
Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.
Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic
2015-07-15
Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.
Morphometric and histological analysis of the lungs of Syrian golden hamsters.
Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B
1978-01-01
Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957
Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K.; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V.; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M.; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A.; Grunewald, Johan; Ytterberg, A. Jimmy
2016-01-01
Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides. Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 106 bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10–15 × 106 cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls. In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 106 cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients and healthy controls in order to identify disease-associated peptides. PMID:27452731
Xie, Hong; Holmes, Amie L.; Wise, Sandra S.; Young, Jamie L.; Wise, James T. F.; Wise, John Pierce
2015-01-01
Hexavalent chromium Cr(VI) is a known human lung carcinogen, with solubility playing an important role in its carcinogenic potency. Dermal exposure to Cr(VI) is common and has been associated with skin damage; however, no link between chromate exposure and skin cancer has been found. In this study, we compared the cytotoxic and clastogenic effects of Cr(VI) and its impacts on cell cycle progression in human lung and skin fibroblasts. We found human skin cells arrested earlier in their cell cycle and exhibit more cytotoxicity than human lung cells, despite taking up similar amounts of Cr. These outcomes are consistent with a hypothesis that different cellular and molecular responses underlie the differences in carcinogenic outcome in these two tissues. PMID:25805272
Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B
2015-11-01
Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.
Abbott, Barbara D.; Wood, Carmen R.; Watkins, Andrew M.; Das, Kaberi P.; Lau, Christopher S.
2010-01-01
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARα, β, and γ mRNA and protein in human fetal tissues. With increasing fetal age, mRNA expression of PPARα and β increased in liver, but PPARβ decreased in heart and intestine, and PPARγ decreased in adrenal. Adult and fetal mean expression of PPARα, β, and γ mRNA did not differ in intestine, but expression was lower in fetal stomach and heart. PPARα and β mRNA in kidney and spleen, and PPARγ mRNA in lung and adrenal were lower in fetal versus adult. PPARγ in liver and PPARβ mRNA in thymus were higher in fetal versus adult. PPARα protein increased with fetal age in intestine and decreased in lung, kidney, and adrenal. PPARβ protein in adrenal and PPARγ in kidney decreased with fetal age. This study provides new information on expression of PPAR subtypes during human development and will be important in evaluating the potential for the developing human to respond to PPAR environmental or pharmaceutical agonists. PMID:20706641
Cell signaling molecules as drug targets in lung cancer: an overview.
Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa
2011-07-01
Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.
2008-08-15
Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in themore » development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.« less
Asotra, Kamlesh; Torday, John S.
2010-01-01
There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)γ, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPARγ expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations. PMID:19641967
Krawic, Casey; Luczak, Michal W; Zhitkovich, Anatoly
2017-09-18
Inhalation of soluble chromium(VI) is firmly linked with higher risks of lung cancer in humans. However, comparative studies in rats have found a high lung tumorigenicity for moderately soluble chromates but no tumors for highly soluble chromates. These major species differences remain unexplained. We investigated the impact of extracellular reducers on responses of human and rat lung epithelial cells to different Cr(VI) forms. Extracellular reduction of Cr(VI) is a detoxification process, and rat and human lung lining fluids contain different concentrations of ascorbate and glutathione. We found that reduction of chromate anions in simulated lung fluids was principally driven by ascorbate with only minimal contribution from glutathione. The addition of 500 μM ascorbate (∼rat lung fluid concentration) to culture media strongly inhibited cellular uptake of chromate anions and completely prevented their cytotoxicity even at otherwise lethal doses. While proportionally less effective, 50 μM extracellular ascorbate (∼human lung fluid concentration) also decreased uptake of chromate anions and their cytotoxicity. In comparison to chromate anions, uptake and cytotoxicity of respirable particles of moderately soluble CaCrO 4 and SrCrO 4 were much less sensitive to suppression by extracellular ascorbate, especially during early exposure times and in primary bronchial cells. In the absence of extracellular ascorbate, chromate anions and CaCrO 4 /SrCrO 4 particles produced overall similar levels of DNA double-stranded breaks, with less soluble particles exhibiting a slower rate of breakage. Our results indicate that a gradual extracellular dissolution and a rapid internalization of calcium chromate and strontium chromate particles makes them resistant to detoxification outside the cells, which is extremely effective for chromate anions in the rat lung fluid. The detoxification potential of the human lung fluid is significant but much lower and insufficient to provide a threshold-type dose dependence for soluble chromates.
HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways.
Wang, Gang; Jiao, Hao; Zheng, Jun-Nian; Sun, Xia
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease with unknown etiology. Recent studies have indicated that heat-shock protein 27 (HSP27) contributes to the pathogenesis of IPF through the regulation of epithelial-mesenchymal transition (EMT). However, the expression and role of HSP27 in fibroblasts during pulmonary fibrogenesis has not been investigated to date, at least to the best of our knowledge. In this study, we examined the expression of HSP27 in fibrotic lung tissue and fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor-β (TGF-β). The results revealed that the expression of HSP27 was significantly increased in fibrotic lung tissue and fibroblasts from BLM-challenged mice. In vitro, TGF-β stimulated HSP27 expression in and the differentiation of human lung fibroblasts. The knockdown of Smad3 expression or nuclear factor-κB p65 subunit attenuated the TGF-β-induced increase in HSP27 expression and the differentiation of human lung fibroblasts. In addition, the knockdown of HSP27 expression attenuated the TGF-β-induced activation of ERK and Smad3, and inhibited the differentiation of human lung fibroblasts. On the whole, the findings of our study demonstrate that HSP27 expression is upregulated in lung fibroblasts during pulmonary fibrosis, and subsequently, HSP27 modulates lung fibroblast differentiation through the Smad3 and ERK pathways.
Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.
Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A
2017-01-01
Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Association of Heme Oxygenase 1 with Lung Protection in Malaria-Associated ALI/ARDS.
Pereira, Marcelo L M; Ortolan, Luana S; Sercundes, Michelle K; Debone, Daniela; Murillo, Oscar; Lima, Flávia A; Marinho, Claudio R F; Epiphanio, Sabrina
2016-01-01
Malaria is a serious disease, caused by the parasite of the genus Plasmodium , which was responsible for 440,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications in severe malaria. The murine model DBA/2 reproduces the clinical signs of ALI/ARDS in humans, when infected with Plasmodium berghei ANKA. High levels of HO-1 were reported in cases of severe malaria. Our data indicated that the HO-1 mRNA and protein expression are increased in mice that develop malaria-associated ALI/ARDS (MA-ALI/ARDS). Additionally, the hemin, a HO-1 inducing drug, prevented mice from developing MA-ALI/ARDS when administered prior to the development of MA-ALI/ARDS in this model. Also, hemin treatment showed an amelioration of respiratory parameters in mice, high VEGF levels in the sera, and a decrease in vascular permeability in the lung, which are signs of ALI/ARDS. Therefore, the induction of HO-1 before the development of MA-ALI/ARDS could be protective. However, the increased expression of HO-1 on the onset of MA-ALI/ARDS development may represent an effort to revert the phenotype of this syndrome by the host. We therefore confirm that HO-1 inducing drugs could be used for prevention of MA-ALI/ARDS in humans.
Taylor, Alexia J.; McClure, Christina D.; Shipkowski, Kelly A.; Thompson, Elizabeth A.; Hussain, Salik; Garantziotis, Stavros; Parsons, Gregory N.; Bonner, James C.
2014-01-01
Background Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. Methods The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. Results ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. Conclusion These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo. PMID:25216247
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2017-02-01
Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.
NASA Astrophysics Data System (ADS)
Ishimori, Hiroyuki; Kawata, Yoshiki; Niki, Noboru; Nakaya, Yoshihiro; Ohmatsu, Hironobu; Matsui, Eisuke; Fujii, Masashi; Moriyama, Noriyuki
2007-03-01
We have developed a Micro CT system for understanding lung function at a high resolution of the micrometer order (up to 5µm in spatial resolution). Micro CT system enables the removal specimen of lungs to be observed at micro level, has expected a big contribution for micro internal organs morphology and the image diagnosis study. In this research, we develop system to visualize lung microstructures in three dimensions from micro CT images and analyze them. They characterize in that high CT value of the noise area is, and the difficulty of only using threshold processing to extract the alveolar wall of micro CT images. Thus, we are developing a method of extracting the alveolar wall with surface thinning algorithm. In this report, we propose the method which reduces the excessive degeneracy of figure which caused by surface thinning process. And, we apply this algorithm to the micro CT image of the actual pulmonary specimen. It is shown that the extraction of the alveolus wall becomes possible in the high precision.
Genome-wide association analysis identifies six new loci associated with forced vital capacity.
Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J
2014-07-01
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
Genome-wide association analysis identifies six new loci associated with forced vital capacity
Loth, Daan W.; Artigas, María Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Viňuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wilk, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietiläinen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Åsa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, André G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B.J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah; Zhao, Jing Hua; Rantanen, Taina; O’Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P.; Gläser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gudnason, Vilmundur; Hancock, Dana B.; Williams, O. Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Viljanen, Anne; Heliövaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, H. Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melén, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.
2014-01-01
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease. PMID:24929828
Tyan, Yu-Chang; Wu, Hsin-Yi; Lai, Wu-Wei; Su, Wu-Chou; Liao, Pao-Chi
2005-01-01
Pleural effusion, an accumulation of pleural fluid, contains proteins originated from plasma filtrate and, especially when tissues are damaged, parenchyma interstitial spaces of lungs and/or other organs. This study details protein profiles in human pleural effusion from 43 lung adenocarcinoma patients by a two-dimensional nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (2D nano-HPLC-ESI-MS/MS) system. The experimental results revealed the identification of 1415 unique proteins from human pleural effusion. Among these 124 proteins identified with higher confidence levels, some proteins have not been reported in plasma and may represent proteins specifically present in pleural effusion. These proteins are valuable for mass identification of differentially expressed proteins involved in proteomics database and screening biomarker to further study in human lung adenocarcinoma. The significance of the use of proteomics analysis of human pleural fluid for the search of new lung cancer marker proteins, and for their simultaneous display and analysis in patients suffering from lung disorders has been examined.
Involvement of MicroRNAs in Lung Cancer Biology and Therapy
Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan
2011-01-01
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030
Yan, Ziying; Feng, Zehua; Sun, Xingshen; Zhang, Yulong; Zou, Wei; Wang, Zekun; Jensen-Cody, Chandler; Liang, Bo; Park, Soo-Yeun; Qiu, Jianming; Engelhardt, John F
2017-08-01
Human bocavirus type-1 (HBoV1) has a high tropism for the apical membrane of human airway epithelia. The packaging of a recombinant adeno-associated virus 2 (rAAV2) genome into HBoV1 capsid produces a chimeric vector (rAAV2/HBoV1) that also efficiently transduces human airway epithelia. As such, this vector is attractive for use in gene therapies to treat lung diseases such as cystic fibrosis. However, preclinical development of rAAV2/HBoV1 vectors has been hindered by the fact that humans are the only known host for HBoV1 infection. This study reports that rAAV2/HBoV1 vector is capable of efficiently transducing the lungs of both newborn (3- to 7-day-old) and juvenile (29-day-old) ferrets, predominantly in the distal airways. Analyses of in vivo, ex vivo, and in vitro models of the ferret proximal airway demonstrate that infection of this particular region is less effective than it is in humans. Studies of vector binding and endocytosis in polarized ferret proximal airway epithelial cultures revealed that a lack of effective vector endocytosis is the main cause of inefficient transduction in vitro. While transgene expression declined proportionally with growth of the ferrets following infection at 7 days of age, reinfection of ferrets with rAAV2/HBoV1 at 29 days gave rise to approximately 5-fold higher levels of transduction than observed in naive infected 29-day-old animals. The findings presented here lay the foundation for clinical development of HBoV1 capsid-based vectors for lung gene therapy in cystic fibrosis using ferret models.
Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease.
Van Dyken, Steven J; Liang, Hong-Erh; Naikawadi, Ram P; Woodruff, Prescott G; Wolters, Paul J; Erle, David J; Locksley, Richard M
2017-04-20
The environmentally widespread polysaccharide chitin is degraded and recycled by ubiquitous bacterial and fungal chitinases. Although vertebrates express active chitinases from evolutionarily conserved loci, their role in mammalian physiology is unclear. We show that distinct lung epithelial cells secrete acidic mammalian chitinase (AMCase), which is required for airway chitinase activity. AMCase-deficient mice exhibit premature morbidity and mortality, concomitant with accumulation of environmentally derived chitin polymers in the airways and expression of pro-fibrotic cytokines. Over time, these mice develop spontaneous pulmonary fibrosis, which is ameliorated by restoration of lung chitinase activity by genetic or therapeutic approaches. AMCase-deficient epithelial cells express fibrosis-associated gene sets linked with cell stress pathways. Mice with lung fibrosis due to telomere dysfunction and humans with interstitial lung disease also accumulate excess chitin polymers in their airways. These data suggest that altered chitin clearance could exacerbate fibrogenic pathways in the setting of lung diseases characterized by epithelial cell dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Clinical and Biological Heterogeneity in ARDS: Direct versus Indirect Lung Injury
Shaver, Ciara M.; Bastarache, Julie A.
2014-01-01
Synopsis The acute respiratory distress syndrome (ARDS) is a heterogeneous group of illnesses affecting the pulmonary parenchyma with acute onset bilateral inflammatory pulmonary infiltrates with associated hypoxemia. ARDS occurs after two major types of pulmonary injury: direct lung injury affecting the lung epithelium or indirect lung injury disrupting the vascular endothelium. Greater understanding of the differences between direct and indirect lung injury may refine our classification of patients with ARDS and lead to development of new therapeutics targeted at specific subpopulations of patients with ARDS. In this review, we will summarize the differences between direct and indirect causes of ARDS in human patients and then will review current knowledge of the similarities and differences in ARDS pathogenesis based on experimental animal models of direct and indirect lung injury. While the separation between direct and indirect causes of ARDS may be oversimplified, it is a useful approach to advancing our current understanding of the pathogenesis of this complex and often fatal disease. PMID:25453415
Peterson, Candida C
2005-08-01
This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.
Transpleural ventilation of explanted human lungs
Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D
2007-01-01
Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776
AISLE: an automatic volumetric segmentation method for the study of lung allometry.
Ren, Hongliang; Kazanzides, Peter
2011-01-01
We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.
Interactive lung segmentation in abnormal human and animal chest CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.
2014-08-15
Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... cancer, lung cancer, rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease''. DATES: Only written comments and/or applications for a...
Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung.
Sava, Parid; Ramanathan, Anand; Dobronyi, Amelia; Peng, Xueyan; Sun, Huanxing; Ledesma-Mendoza, Adrian; Herzog, Erica L; Gonzalez, Anjelica L
2017-12-21
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
NASA Astrophysics Data System (ADS)
Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan
2017-03-01
This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.
Testa, Jacqueline E; Chrastina, Adrian; Oh, Phil; Li, Yan; Witkiewicz, Halina; Czarny, Malgorzata; Buss, Tim; Schnitzer, Jan E
2009-08-01
Mapping protein expression of endothelial cells (EC) in vivo is fundamental to understanding cellular function and may yield new tissue-selective targets. We have developed a monoclonal antibody, MAb J120, to a protein expressed primarily in rat lung and heart endothelium. The antigen was identified as CD34, a marker of hematopoietic stem cells and global marker of endothelial cells in human and mouse tissues. PCR-based cloning identified two CD34 variant proteins, full length and truncated, both of which are expressed on luminal endothelial cell plasma membranes (P) isolated from lung. Truncated CD34 predominated in heart P, and neither variant was detected in P from kidney or liver. CD34 in lung was readily accessible to (125)I-J120 inoculated intravenously, and immunohistochemistry showed strong CD34 expression in lung EC. Few microvessels stained in heart and kidney, and no CD34 was detected in vessels of other organs or in lymphatics. We present herein the first complete sequence of a rat CD34 variant and show for the first time that the encoded truncated variant is endogenously expressed on EC in vivo. We also demonstrate that CD34 expression in rat EC, unlike mouse and human, is restricted in its distribution enabling quite specific lung targeting in vivo.
Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.
2012-01-01
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667
Desch, A Nicole; Gibbings, Sophie L; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J; Prabagar, Miglena; Atif, Shaikh M; Segura, Elodie; Xavier, Ramnik J; Bratton, Donna L; Janssen, William J; Henson, Peter M; Jakubzick, Claudia V
2016-03-15
The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.
Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun
2017-01-01
We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a significant antitumor activity in human lung cancer cells A549 and NCI-H358. NF-κB inhibition may mediate the antitumor effect.
Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A
2016-11-01
Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.
2010-01-01
In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage. PMID:22461760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingappan, Krithika, E-mail: lingappa@bcm.edu; Jiang, Weiwu; Wang, Lihua
Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expressionmore » in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.« less
75 FR 66772 - National Heart, Lung, and Blood Institute; Notice of Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and..., Director, National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and... Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, National...
Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma.
Greer, Alexandra M; Matthay, Michael A; Kukreja, Jasleen; Bhakta, Nirav R; Nguyen, Christine P; Wolters, Paul J; Woodruff, Prescott G; Fahy, John V; Shin, Jeoung-Sook
2014-01-01
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1⁺ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1⁺ DCs, we found that the numbers of BDCA1⁺ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1⁺ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
Probing Lung Microstructure with Hyperpolarized 3He Gradient Echo MRI
Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A
2014-01-01
In this paper we demonstrate that Gradient Echo MRI with hyperpolarized 3He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized 3He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of 3He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and blood vessel network. Data obtained on 8 healthy volunteers are in good agreement with literature values. This information is complementary to the information that is obtained by means of in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group and opens new opportunities to study lung microstructure in health and disease. PMID:24920182
Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip
2018-05-17
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.
Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert
2016-12-01
The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Pérez-Sánchez, José M.; Rodríguez, Ignacio; Ruiz-Cabello, Jesús
2009-01-01
Abstract Apparent diffusion coefficient (ADC) measurement in the lung using gas magnetic resonance imaging is a promising technique with potential for reflecting changes in lung microstructure. Despite some recent impressive human applications, full interpretation of ADC measures remains an elusive goal, due to a lack of detailed knowledge about the structure dependency of ADC. In an attempt to fill this gap we have performed random walk simulations in a three-dimensional geometrical model of the lung acinus, the distal alveolated sections of the lung tree accounting for ∼90% of the total lung volume. Simulations were carried out adjusting model parameters after published morphological data for the rat peripheral airway system, which predict an ADC behavior as microstructure changes with lung inflation in partial agreement with measured ADCs at different airway pressures. The approach used to relate experimental ADCs to lung microstructural changes does not make any assumption about the cause of the changes, so it could be applied to other scenarios such as chronic obstructive pulmonary disease, lung development, etc. The work presented here predicts numerically for the first time ADC values measured in the lung from independent morphological measures of lung microstructure taken at different inflation stages during the breath cycle. PMID:19619480
2005-08-01
with breast cancer cells along with experiments conducted with cervical- HPV , lewis lung and avian influenza cells have shown the DEISSEROTH, Albert...vaccination strategies may be useful for the development of vaccines for cancers of the breast, lung, colon, ovary, prostate, endometrium, and cervix ... cancer cells bearing the TAA.7,16 We studied 2 types of TAA in this vector vaccination strategy: the human papillomavirus ( HPV ) E7 foreign antigen
USDA-ARS?s Scientific Manuscript database
The objective of this report was to characterize the enhanced clinical disease and lung lesions observed in pigs vaccinated with inactivated H1N2 swine delta-cluster influenza A virus and challenged with pandemic 2009 A/H1N1 human influenza virus. Eighty-four, six-week-old, crossbred pigs were rand...
Magnetic core-shell nanoparticles for drug delivery by nebulization.
Verma, Navin Kumar; Crosbie-Staunton, Kieran; Satti, Amro; Gallagher, Shane; Ryan, Katie B; Doody, Timothy; McAtamney, Colm; MacLoughlin, Ronan; Galvin, Paul; Burke, Conor S; Volkov, Yuri; Gun'ko, Yurii K
2013-01-23
Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.
Magnetic core-shell nanoparticles for drug delivery by nebulization
2013-01-01
Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route. PMID:23343139
Discovery of cancer biomarkers through the use of mouse models.
Kuick, Rork; Misek, David E; Monsma, David J; Webb, Craig P; Wang, Hong; Peterson, Kelli J; Pisano, Michael; Omenn, Gilbert S; Hanash, Samir M
2007-04-28
Although our understanding of the molecular pathogenesis of common types of cancer has improved considerably, the development of effective strategies for cancer diagnosis and treatment have lagged behind. Mouse models of cancer potentially represent an efficient means for uncovering diagnostic markers as genetic alterations associated with human tumors can be engineered in mice. In addition, defined stages of tumor development, breeding conditions, and blood sampling can all be controlled and standardized to limit heterogeneity. Alternatively human cancer cells can be injected into mice and tumor development monitored in xenotransplants. Mouse-based studies promise to elucidate a repertoire of protein changes that occur in blood and biological fluids during tumor development. This is illustrated in a study in which we have applied a three-dimensional intact protein analysis system (IPAS) to elucidate detectable protein changes in serum from immunodeficient mice with lung xenografts from orthotopically implanted human A549 lung adenocarcinoma cells. With sufficiently detailed protein sequence identifications, the observed protein changes can be attributed to either the host mouse or the human tumor cells. It is noteworthy that the majority of increases identified have corresponded to relatively abundant serum proteins, some of which have previously been reported as increased in the sera of cancer patients. Proteomic studies of mouse models of cancer allow assessment of the range of changes in plasma proteins that occur with tumor development and may lead to the identification of potential cancer markers applicable to humans.
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.
Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata
2015-03-20
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A 3D human tissue-engineered lung model to study influenza A infection.
Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather
2018-05-05
Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon.
Chen, Zhihai; Wang, Dapeng; Gu, Chao; Liu, Xing; Pei, Weiwei; Li, Jianxiang; Cao, Yi; Jiao, Yang; Tong, Jian; Nie, Jihua
2015-09-01
Radon has long been recognized as a human carcinogen leading to lung cancer, but the underlying mechanisms remain obscure. Recent studies have shown that the let-7 microRNA and K-ras play an important role in the development of various cancers. However, the exact role between let-7 and K-ras in radon induced lung damage has not been explored so far. In the present study, wistar rats and human bronchial epithelial (HBE) cells were long-term exposed to radon, and then alterations in histological pathology of rat lung tissue, ROS, antioxidant enzymes activities and clonogenic formation in HBE cells, as well as changes in let-7 and K-ras expression were determined to observe the adverse effects induced by radon. The results showed that long-term exposure to radon produced severe lung damage in rats, significantly increased ROS production and clonogenic formation ratios and decreased SOD activities in HBE cells. In addition, an obvious down-regulation of let-7 and up-regulation of K-ras were also revealed both in mRNA and in protein level in lung tissue of rats and HBE cells exposed to radon. Furthermore, a significant down-regulation of K-ras was then confirmed in both let-7b-3p and let-7a-2-3p transfected HBE cells. Taken together, the present results propose an involvement of let-7 microRNA and K-ras in radon induced lung damage both in vivo and in vitro, which may thus be of potential value in early diagnosis and therapy of radon-induced lung tumorgenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume
ANTONINI, JAMES M.; ROBERTS, JENNY R.; SCHWEGLER-BERRY, DIANE; MERCER, ROBERT R.
2015-01-01
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2 mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable. PMID:23798603
Cannabis Smoking in 2015: A Concern for Lung Health?
Biehl, Jason R; Burnham, Ellen L
2015-09-01
Recent legislative successes allowing expanded access to recreational and medicinal cannabis have been associated with its increased use by the public, despite continued debates regarding its safety within the medical and scientific communities. Despite legislative changes, cannabis is most commonly used by smoking, although alternatives to inhalation have also emerged. Moreover, the composition of commercially available cannabis has dramatically changed in recent years. Therefore, developing sound scientific information regarding its impact on lung health is imperative, particularly because published data conducted prior to widespread legalization are conflicting and inconclusive. In this commentary, we delineate major observations of epidemiologic investigations examining cannabis use and the potential associated development of airways disease and lung cancer to highlight gaps in pulmonary knowledge. Additionally, we review major histopathologic alterations related to smoked cannabis and define specific areas in animal models and human clinical translational investigations that could benefit from additional development. Given that cannabis has an ongoing classification as a schedule I medication, federal funding to support investigations of modern cannabis use in terms of medicinal efficacy and safety profile on lung health have been elusive. It is clear, however, that the effects of inhaled cannabis on lung health remain uncertain and given increasing use patterns, are worthy of further investigation.
Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease
Jobe, Alan H.
2015-01-01
Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD. PMID:26301222
Cathepsin E Promotes Pulmonary Emphysema via Mitochondrial Fission
Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J.
2015-01-01
Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. PMID:25239563
Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.
Zhao, Hailin; Huang, Han; Ologunde, Rele; Lloyd, Dafydd G; Watts, Helena; Vizcaychipi, Marcela P; Lian, Qingquan; George, Andrew J T; Ma, Daqing
2015-06-01
Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model. For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed. Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced. Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.
Bombesin-like peptide receptors in human bronchial epithelial cells.
Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A
1996-01-01
Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.
White, Eric S; Borok, Zea; Brown, Kevin K; Eickelberg, Oliver; Guenther, Andreas; Jenkins, R Gisli; Kolb, Martin; Martinez, Fernando J; Roman, Jesse; Sime, Patricia
2016-04-01
Pulmonary fibrosis encompasses a group of lung-scarring disorders that occur owing to known or unknown insults and accounts for significant morbidity and mortality. Despite intense investigation spanning decades, much remains to be learned about the natural history, pathophysiology, and biologic mechanisms of disease. To identify the most pressing research needs in the lung fibrosis community and to provide a roadmap of priorities to investigators, funding agencies, patient advocacy groups, and other interested stakeholders. An ad hoc international working group of the American Thoracic Society with experience in clinical, translational, and bench-based research in fibrotic lung diseases was convened. The group used an iterative consensus process to identify successes and challenges in pulmonary fibrosis research. The group identified five main priority areas in which substantial resources should be invested to advance our understanding and to develop novel therapies for patients with pulmonary fibrosis. These priorities include develop newer models of human lung fibrosis, engage current and new stakeholders to provide sustained funding for the initiatives, create a global infrastructure for storing patient-derived materials, establish collaborative preclinical and clinical research networks in fibrotic lung disease, and create a global lung fibrosis initiative that unites these multifaceted efforts into a single virtual umbrella structure. Despite recent advances in the treatment of some forms of lung fibrosis, many gaps in knowledge about natural history, pathophysiology, and treatment remain. Investment in the research priorities enumerated above will help address these shortcomings and enhance patient care worldwide.
Zhang, Kun-Shui; Chen, Hui-Qing; Chen, Yi-Shen; Qiu, Kai-Feng; Zheng, Xiao-Bin; Li, Guo-Cheng; Yang, Hai-Di; Wen, Cui-Ju
2014-10-01
Lung cancer is one of the leading causes of cancer deaths worldwide. Recent evidences indicated that bisphenol A (BPA), a wide contaminant with endocrine disrupting activity, could enhance the susceptibility of carcinogenesis. Although there are increasing opportunities for lung cells exposure to BPA via inhalation, there is no study concerning the effects of BPA on the development of lung cancer. The present study revealed that BPA less than 10(-4)M had limited effects on the proliferation of lung cancer A549 cells, however, BPA treatment significantly stimulated the in vitro migration and invasion of cells combing with the morphological changes and up regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. G-protein-coupled estrogen receptor (GPER), while not estrogen receptor α/β (ERα/β), mediated the BPA induced up regulation of MMPs. Further, BPA treatment induced rapid activation of ERK1/2 via GPER/EGFR. GPER/ERFR/ERK1/2 mediated the BPA induced upregulation of MMPs and in vitro migration of lung cancer A549 cells. In summary, our data presented here revealed for the first time that BPA can promote the in vitro migration and invasion of lung cancer cells via upregulation of MMPs and GPER/EGFR/ERK1/2 signals, which mediated these effects. This study suggested that more attention should be paid on the BPA and other possible environmental estrogens induced development of lung cancer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua
2014-01-01
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.
Jin, Cheng S.; Wada, Hironobu; Anayama, Takashi; McVeigh, Patrick Z; Hu, Hsin Pei; Hirohashi, Kentaro; Nakajima, Takahiro; Kato, Tatsuya; Keshavjee, Shaf; Hwang, David; Wilson, Brian C.; Zheng, Gang; Yasufuku, Kazuhiro
2016-01-01
Early detection and efficient treatment modality of early-stage peripheral lung cancer is essential. Current non-surgical treatments for peripheral lung cancer show critical limitations associated with various complications, requiring alternative minimally invasive therapeutics. Porphysome nanoparticle-enabled fluorescence-guided transbronchial photothermal therapy (PTT) of peripheral lung cancer was developed and demonstrated in preclinical animal models. Systemically-administered porphysomes accumulated in lung tumors with significantly enhanced disease-to-normal tissue contrast, as confirmed in three subtypes of orthotopic human lung cancer xenografts (A549, H460 and H520) in mice and in an orthotopic VX2 tumor in rabbits. An in-house prototype fluorescence bronchoscope demonstrated the capability of porphysomes for in vivo imaging of lung tumors in the mucosal/submucosal layers, providing real-time fluorescence guidance for transbronchial PTT. Porphysomes also enhanced the efficacy of transbronchial PTT significantly and resulted in selective and efficient tumor tissue ablation in the rabbit model. A clinically used cylindrical diffuser fiber successfully achieved tumor-specific thermal ablation, showing promising evidence for the clinical translation of this novel platform to impact upon non-surgical treatment of early-stage peripheral lung cancer. PMID:27543602
CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy.
Tuscano, Joseph M; Kato, Jason; Pearson, David; Xiong, Chengyi; Newell, Laura; Ma, Yunpeng; Gandara, David R; O'Donnell, Robert T
2012-11-01
Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasis and extended overall survival. The finding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti-CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. ©2012 AACR.
Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos
Mossman, Brooke T.; Lippmann, Morton; Hesterberg, Thomas W.; Kelsey, Karl T.; Barchowsky, Aaron; Bonner, James C.
2011-01-01
Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis. PMID:21534086
Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.
2013-01-01
Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756
ZHONG, ZHIWEI; DONG, ZHUO; YANG, LIHUA; CHEN, XIAOQIANG; GONG, ZHAOHUI
2012-01-01
Green tea catechins are known to function as anticancer agents via inhibition of carcinogenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed, yet the precise mechanism of lung cancer prevention by green tea catechins remains unclear. microRNAs (miRs) are a class of 21–24 nucleotide small non-coding RNAs and play critical roles throughout cellular development and regulation. Emerging evidence demonstrates that tea catechins influence the expression of miRs in human cancer cells to inhibit tumorigenesis. Both let-7a-1 and let-7g were detected in the human lung cancer cells treated with tea catechins. The cell viability and cell cycle were analyzed after tea catechins treatment. In the present study, we found that tea catechins upregulated the tumor-suppressor miRs, let-7a-1 and let-7g, in lung cancer cell lines. The upregulation of let-7a/7g repressed the expression of their targets, C-MYC and the regulatory protein of LIN-28, at the mRNA and protein levels. Moreover, the cell growth assay indicated that tea catechins significantly inhibited cell proliferation, and the flow cytometric analysis revealed an increase in the number of cells in the G2/M phase and a decrease in the number of cells in the S phase after treatment with tea catechins. These observations suggest that green tea catechins mediate the inhibition of proliferation of lung cancer cells through the let-7 signaling pathway. PMID:22970031
Percutaneous radiofrequency ablation of lung tumors in a large animal model.
Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C
2003-08-01
Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.
Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.
Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S
2012-02-01
Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less
Comparative biology of cystic fibrosis animal models.
Fisher, John T; Zhang, Yulong; Engelhardt, John F
2011-01-01
Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
2012-01-01
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.
Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M
2012-12-28
G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng
Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild typemore » of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells. • Overexpression of the Del-1 gene potentiates proliferation and invasion of lung carcinoma cells. • Del-1 may be used as a diagnostic or prognostic marker for lung cancer progression.« less
Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection.
Guo, L; Feng, K; Wang, Y C; Mei, J J; Ning, R T; Zheng, H W; Wang, J J; Worthen, G S; Wang, X; Song, J; Li, Q H; Liu, L D
2017-11-01
Annual epidemics and unexpected pandemics of influenza are threats to human health. Lung immune and inflammatory responses, such as those induced by respiratory infection influenza virus, determine the outcome of pulmonary pathogenesis. Platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) has an immunoregulatory role in inflammatory diseases. Here we show that CXCL4 is associated with pulmonary influenza infection and has a critical role in protecting mice from fatal H1N1 virus respiratory infection. CXCL4 knockout resulted in diminished viral clearance from the lung and decreased lung inflammation during early infection but more severe lung pathology relative to wild-type mice during late infection. Additionally, CXCL4 deficiency decreased leukocyte accumulation in the infected lung with markedly decreased neutrophil infiltration into the lung during early infection and extensive leukocyte, especially lymphocyte accumulation at the late infection stage. Loss of CXCL4 did not affect the activation of adaptive immune T and B lymphocytes during the late stage of lung infection. Further study revealed that CXCL4 deficiency inhibited neutrophil recruitment to the infected mouse lung. Thus the above results identify CXCL4 as a vital immunoregulatory chemokine essential for protecting mice against influenza A virus infection, especially as it affects the development of lung injury and neutrophil mobilization to the inflamed lung.
Kim, Kyun Ha; Song, Hyuk-Hwan; Ahn, Kyung-Seop; Oh, Sei-Ryang; Sadikot, Ruxana T; Joo, Myungsoo
2016-07-21
The tuber of Alismataceae Alisma orientale Juzepzuk has been prescribed as a remedy for treating the diseases associated with body fluid dysfunction such as edema and inflammatory lung diseases. Chronic obstructive pulmonary disease (COPD) is a debilitating, inflammatory lung disease without effective treatment. Along with persistent inflammation, autophagy has been recently reported to contribute to COPD. Here, by employing a murine model, we examined whether the tuber of the plant is effective against COPD MATERIALS AND METHODS: The ethanol extract of the tuber of A. orientale Juzepzuk (EEAO) was fingerprinted by HPLC. For the establishment of COPD lung, mice received single intratracheal (i.t.) spraying of elastase and LPS per week for 2 weeks. After approximated to the dose prescribed typically to patients, EEAO was administered to the lung 2h after each LPS treatment. Morphometric analyses, semi-quantitative RT-PCR, and western blot were performed to evaluate the effects of EEAO on emphysema, inflammation, and autophagy in mouse lungs. The effect of EEAO on autophagy was also assessed by western blot at the cellular level with murine macrophages and human lung epithelial cells. When receiving i.t. elastase and LPS for 2 weeks, mice developed emphysema and inflammation in the lung. EEAO treatment, however, significantly reduced emphysema and inflammatory cell infiltration to the lung with concomitant decrease of the production of pro-inflammatory cytokines including TNF-α, IL-6, and TGF-β, signature cytokines of COPD. Unlike control mice, the lungs of the COPD mice expressed LC3-II, a biomarker for autophagy formation, which was decreased by EEAO treatment. EEAO also lowered the expression of LC3-II in murine macrophage, RAW 264.7, and human lung epithelial cell, BEAS-2B, which was associated with EEAO activating mTOR. EEAO relieved COPD pathologic features in a mouse model, which was associated with suppression of lung inflammation, emphysema, and autophagy. Our results suggest an effectiveness of the tuber of A. orientale in chronic inflammatory lung diseases such as COPD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seki, Yasuhiro; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology; Yoshida, Yukihiro
2014-01-24
Highlights: • Most of the adenocarcinomas and bronchioloalveolar carcinomas were LIPH-positive. • LIPH is necessary for the proliferation of lung cancer cells in vitro. • A high level of LIPH in serum is correlated with better survival in early phase lung-cancer patients after surgery. - Abstract: Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1)more » as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.« less
Jesudason, E. C.
2002-01-01
Lung hypoplasia is central to the poor prognosis of babies with congenital diaphragmatic hernia (CDH). Prolapse of abdominal organs through a diaphragmatic defect has traditionally been thought to impair lung growth by compression. The precise developmental biology of CDH remains unresolved. Refractory to fetal correction, lung hypoplasia in CDH may instead originate during embryogenesis and before visceral herniation. Resolving these conflicting hypotheses may lead to reappraisal of current clinical strategies. Genetic studies in murine models and the fruitfly, Drosophila melanogaster are elucidating the control of normal respiratory organogenesis. Branchless and breathless are Drosophila mutants lacking fibroblast growth factor (FGF) and its cognate receptor (FGFR), respectively. Sugarless and sulphateless mutants lack enzymes essential for heparan sulphate (HS) biosynthesis. Phenotypically, all these mutants share abrogated airway branching. Mammalian organ culture and transgenic models confirm the essential interaction of FGFs and HS during airway ramification. Embryonic airway development (branching morphogenesis) occurs in a defined spatiotemporal sequence. Unlike the surgically-created lamb model, the nitrofen rat model permits investigation of embryonic lung growth in CDH. Microdissecting embryonic lung primordia from the nitrofen CDH model and normal controls, we demonstrated that disruption of stereotyped airway branching correlates with and precedes subsequent CDH formation. To examine disturbed branching morphogenesis longitudinally, we characterised a system that preserves lung hypoplasia in organ culture. We tested FGFs and heparin (an HS analogue) as potential therapies on normal and hypoplastic lungs. Observing striking differences in morphological response to FGFs between normal and hypoplastic lung primordia, we postulated abnormalities of FGF/HS signalling in the embryonic CDH lung. Evaluating this hypothesis further, we examined effects of an HS-independent growth factor (epidermal growth factor, EGF) on hypoplastic lung development. Visible differences in morphological response indicate an intrinsic abnormality of hypoplastic lung primordia that may involve shared targets of FGFs and EGE. These studies indicate that lung hypoplasia precedes diaphragmatic hernia and may involve disturbances of mitogenic signalling pathways fundamental to embryonic lung development. What does this imply for human CDH? Fetal surgery may be 'too little, too late' to correct an established lung embryopathy. In utero growth factor therapy may permit antenatal lung rescue. Prevention of the birth defect by preconceptual prophylaxis may represent the ultimate solution. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:12215028
Elewa, Yaser Hosny Ali; Ichii, Osamu; Takada, Kensuke; Nakamura, Teppei; Masum, Md Abdul; Kon, Yasuhiro
2018-01-01
Bleomycin (BLM) has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6) mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs) under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d) following a single 50 μL intranasal (i.n.) instillation of either BLM sulfate (5 mg/kg) (BLM group) or phosphate-buffered saline (control group). The lung fibrosis was examined by Masson's trichrome (MT) stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd) was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs), and high endothelial venules (HEVs). We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT) and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations within the MFALCs of BLM group suggesting a potential proliferative induction of B-cells following inflammation. Furthermore, significant positive correlations were observed between quantitative parameters of these immune cells in both the lungs and MFALCs. Thus, we suggest a potentially important role for MFALCs and HEVs in the progression of lung disease, especially in inflammatory lung disease.
Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny
2016-01-28
Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.
Buczynski, Bradley W.; Yee, Min; Paige Lawrence, B.
2012-01-01
Oxygen exposure in preterm infants has been associated with altered lung development and increased risk for respiratory viral infections later in life. Although the dose of oxygen sufficient to exert these changes in humans remains unknown, adult mice exposed to 100% oxygen between postnatal days 1–4 exhibit alveolar simplification and increased sensitivity to influenza virus infection. Additionally, two nonlinear thresholds of neonatal oxygen exposures were previously identified that promote modest (between 40% and 60% oxygen) and severe (between 80% and 100% oxygen) changes in lung development. Here, we investigate whether these two thresholds correlate with the severity of lung disease following respiratory viral infection. Adult mice exposed to 100% oxygen at birth, and to a lesser extent 80% oxygen, demonstrated enhanced body weight loss, persistent inflammation, and fibrosis following infection compared with infected siblings exposed to room air at birth. In contrast, the host response to infection was indistinguishable between mice exposed to room air and 40% or 60% oxygen. Interestingly, levels of monocyte chemoattractant protein (MCP)-1 were equivalently elevated in infected mice that had been exposed to 80% or 100% oxygen as neonates. However, reducing levels of MCP-1 using heterozygous Mcp-1 mice did not affect oxygen-dependent changes in the response to infection. Thus lung development and the host response to respiratory viral infection are disrupted by different doses of oxygen. Our findings suggest that measuring lung function alone may not be sufficient to identify individuals born prematurely who have increased risk for respiratory viral infection. PMID:22408042
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
Engineered cell and tissue models of pulmonary fibrosis.
Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L
2018-04-01
Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.
A549 Cells: Lung Carcinoma Cell Line for Adenovirus | NCI Technology Transfer Center | TTC
Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.
Ji, G H; Cui, Y; Yu, H; Cui, X B
2016-09-30
Lung cancer is one of the most malignant tumors worldwide with a high mortality rate, which has not been improved since several decades ago. FOX gene family members have been reported to play extensive roles in regulating many biological processes and disorders. In order to clarify the contribution of FOX gene family members in lung cancer biology, we performed expression profiling analysis of FOX gene family members from FOXA to FOXR in lung cancer cell lines and tissue specimens by Real-time PCR, western blot and immunohistochemistry analysis. We found that FOXE1 was the only gene which was over-expressed in six out of eight lung cancer cell lines and human cancer tissue specimens (28 out of 35 cases with higher expression and 7 out of 35 cases with moderate expression). Further investigation showed that MMP2 gene was up-regulated, and autophagy markers such as LC3B, ATG5, ATG12 and BECLIN1, were down-regulated concomitant with the increase of FOXE1. These results implicated that FOXE1 may be an important regulator by targeting autophagy and MMPs pathways in lung cancer development.
Lung Microbiome for Clinicians. New Discoveries about Bugs in Healthy and Diseased Lungs
Rom, William N.; Weiden, Michael D.
2014-01-01
Microbes are readily cultured from epithelial surfaces of the skin, mouth, and colon. In the last 10 years, culture-independent DNA-based techniques demonstrated that much more complex microbial communities reside on most epithelial surfaces; this includes the lower airways, where bacterial culture had failed to reliably demonstrate resident bacteria. Exposure to a diverse bacterial environment is important for adequate immunological development. The most common microbes found in the lower airways are also found in the upper airways. Increasing abundance of oral characteristic taxa is associated with increased inflammatory cells and exhaled nitric oxide, suggesting that the airway microbiome induces an immunological response in the lung. Furthermore, rhinovirus infection leads to outgrowth of Haemophilus in patients with chronic obstructive pulmonary disease, and human immunodeficiency virus–infected subjects have more Tropheryma whipplei in the lower airway, suggesting a bidirectional interaction in which the host immune defenses also influence the microbial niche. Quantitative and/or qualitative changes in the lung microbiome may be relevant for disease progression and exacerbations in a number of pulmonary diseases. Future investigations with longitudinal follow-up to understand the dynamics of the lung microbiome may lead to the development of new therapeutic targets. PMID:24460444
Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J
2017-06-01
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.
A Simple Device for Measuring Static Compliance of Lung-Thorax Combine
ERIC Educational Resources Information Center
Sircar, Sabyasachi
2015-01-01
Explaining the concept of lung compliance remains a challenge to the physiology teacher because it cannot be demonstrated easily in human subjects and all attempts until now have used only simulation models. A simple device is described in the present article to measure the compliance of the "lung-thorax" combine in human subjects with…
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
Sharma, Anurag; Wu, Wenzhu; Sung, Biin; Huang, Jing; Tsao, Tiffany; Li, Xiangming; Gomi, Rika; Tsuji, Moriya
2016-01-01
ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease, which causes high rates of morbidity and mortality in infants and the elderly. Models of human RSV pulmonary disease are needed to better understand RSV pathogenesis and to assess the efficacy of RSV vaccines. We assessed the RSV-specific human innate, humoral, and cellular immune responses in humanized mice (mice with a human immune system [HIS mice]) with functional human CD4+ T and B cells. These mice were generated by introduction of HLA class II genes, various human cytokines, and human B cell activation factor into immunodeficient NOD scid gamma (NSG) mice by the use of an adeno-associated virus vector, followed by engraftment of human hematopoietic stem cells. During the first 3 days of infection, HIS mice lost more weight and cleared RSV faster than NSG mice. Human chemokine (C-C motif) ligand 3 (CCL3) and human interleukin-1β (IL-1β) expression was detected in the RSV-infected HIS mice. The pathological features induced by RSV infection in HIS mice included peribronchiolar inflammation, neutrophil predominance in the bronchioalveolar lavage fluid, and enhanced airway mucus production. Human anti-RSV IgG and RSV-neutralizing antibodies were detected in serum and human anti-RSV mucosal IgA was detected in bronchioalveolar lavage fluid for up to 6 weeks. RSV infection induced an RSV-specific human gamma interferon response in HIS mouse splenocytes. These results indicate that human immune cells can induce features of RSV lung disease, including mucus hyperplasia, in murine lungs and that HIS mice can be used to elicit human anti-RSV humoral and cellular immunity. IMPORTANCE Infections with respiratory syncytial virus (RSV) are common and can cause severe lung disease in infants and the elderly. The lack of a suitable animal model with disease features similar to those in humans has hampered efforts to predict the efficacy of novel anti-RSV therapies and vaccines for use in humans. A murine model consisting of mice with a human immune system (HIS mice) could be useful for assessment of RSV disease and anti-RSV responses specific to humans. This study investigates an HIS mouse model to imitate human RSV disease and immune responses. We found that RSV lung infection in HIS mice results in an RSV-specific pathology that mimics RSV disease in humans and induces human anti-RSV immune responses. This model could be useful for better understanding of human RSV disease and for the development of RSV therapies. PMID:26962219
A microengineered model of RBC transfusion-induced pulmonary vascular injury.
Seo, Jeongyun; Conegliano, David; Farrell, Megan; Cho, Minseon; Ding, Xueting; Seykora, Thomas; Qing, Danielle; Mangalmurti, Nilam S; Huh, Dongeun
2017-06-13
Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.
Park, Jung Ok; Choi, Do-Young; Choi, Dong-Sic; Kim, Hee Joung; Kang, Jeong Won; Jung, Jae Hun; Lee, Jeong Hwa; Kim, Jayoung; Freeman, Michael R; Lee, Kye Young; Gho, Yong Song; Kim, Kwang Pyo
2013-07-01
Microvesicles (MVs, also known as exosomes, ectosomes, microparticles) are released by various cancer cells, including lung, colorectal, and prostate carcinoma cells. MVs released from tumor cells and other sources accumulate in the circulation and in pleural effusion. Although recent studies have shown that MVs play multiple roles in tumor progression, the potential pathological roles of MV in pleural effusion, and their protein composition, are still unknown. In this study, we report the first global proteomic analysis of highly purified MVs derived from human nonsmall cell lung cancer (NSCLC) pleural effusion. Using nano-LC-MS/MS following 1D SDS-PAGE separation, we identified a total of 912 MV proteins with high confidence. Three independent experiments on three patients showed that MV proteins from PE were distinct from MV obtained from other malignancies. Bioinformatics analyses of the MS data identified pathologically relevant proteins and potential diagnostic makers for NSCLC, including lung-enriched surface antigens and proteins related to epidermal growth factor receptor signaling. These findings provide new insight into the diverse functions of MVs in cancer progression and will aid in the development of novel diagnostic tools for NSCLC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemically-induced Mouse Lung Tumors: Applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce; ...
2016-07-14
Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less
Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Lary A.; Jaing, Crystal J.; Campbell, Christine Pierce
Although ~20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFRmore » expression. Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Lastly, most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.« less
Synergistic Antitumor Effect of Oligogalacturonides and Cisplatin on Human Lung Cancer A549 Cells.
Huang, Cian-Song; Huang, Ai-Chun; Huang, Ping-Hsiu; Lo, Diana; Wang, Yuh-Tai; Wu, Ming-Chang
2018-06-14
Cisplatin (DPP), a clinically potent antineoplastic agent, is limited by its severe adverse effects. The aim of this study was to investigate the effect of oligogalacturonides (OGA) and DDP on human lung cancer A549 cells. The combined use of OGA and DDP had a synergistic effect on the growth inhibition of A549 cells, changed the cell cycle distribution, and enhanced apoptotic response, especially in sequential combination treatment group of DDP 12 h + OGA 12 h. Western blot analyses showed that the combination treatment of OGA and DDP upregulated Bax, p53, and Caspase-3 and downregulated Bcl-2 proteins. More importantly, DDP-induced toxicity was attenuated by OGA and DDP combination treatment in normal HEK293 cells. Our data suggests that the combined use of OGA from natural sources and DDP could be an important new adjuvant therapy for lung cancer as well as offer important insights for reducing kidney toxicity of DDP and delaying the development of DDP resistance.
Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar
2013-12-01
For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, Markus; Michel, Geert; Hoefer, Christina
2007-08-10
Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies inmore » type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns.« less
Ni, Ke; Liu, Ming; Zheng, Jian; Wen, Liyan; Chen, Qingyun; Xiang, Zheng; Lam, Kowk-Tai; Liu, Yinping; Chan, Godfrey Chi-Fung; Lau, Yu-Lung; Tu, Wenwei
2018-06-01
Pulmonary fibrosis is a chronic progressive lung disease with few treatments. Human mesenchymal stem cells (MSCs) have been shown to be beneficial in pulmonary fibrosis because they have immunomodulatory capacity. However, there is no reliable model to test the therapeutic effect of human MSCs in vivo. To mimic pulmonary fibrosis in humans, we established a novel bleomycin-induced pulmonary fibrosis model in humanized mice. With this model, the benefit of human MSCs in pulmonary fibrosis and the underlying mechanisms were investigated. In addition, the relevant parameters in patients with pulmonary fibrosis were examined. We demonstrate that human CD8 + T cells were critical for the induction of pulmonary fibrosis in humanized mice. Human MSCs could alleviate pulmonary fibrosis and improve lung function by suppressing bleomycin-induced human T-cell infiltration and proinflammatory cytokine production in the lungs of humanized mice. Importantly, alleviation of pulmonary fibrosis by human MSCs was mediated by the PD-1/programmed death-ligand 1 pathway. Moreover, abnormal PD-1 expression was found in circulating T cells and lung tissues of patients with pulmonary fibrosis. Our study supports the potential benefit of targeting the PD-1/programmed death-ligand 1 pathway in the treatment of pulmonary fibrosis.
Absorbed doses of lungs from radon retained in airway lumens of mice and rats.
Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro
2013-08-01
This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.
A comparative potency method for cancer risk assessment has been developed based upon a constant relative potency hypothesis. This method was developed and tested using data from a battery of short-term mutagenesis bioassays, animal tumorigenicity data and human lung cancer risk ...
Armstrong, Sylvia J.; Zuckerman, A. J.
1972-01-01
Retronecine pyrrole induces toxic changes both in human liver and lung cells. Lasiocarpine and retrorsine are toxic to liver cells but not to lung cells, which are unable to metabolize the pyrrolizidine alkaloids to pyrroles. The application of lasiocarpine to human liver cells in culture is followed by inhibition of DNA, RNA and protein synthesis; vacuolation of the cells, the prevention of mitosis and the formation of giant cells (“megalocytes”). PMID:5032089
Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie
2015-01-01
Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908
miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.
Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang
2017-02-01
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer
Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...
2015-03-20
Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less
A reevaluation of CD22 expression in human lung cancer.
Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S
2014-01-01
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.
Porcine pulmonary auto-transplantation for ex vivo therapy as a model for new treatment strategies.
Krüger, Marcus; Zinne, Norman; Biancosino, Christian; Höffler, Klaus; Rajab, Taufiek K; Waldmann, Karl-Heinz; Jonigk, Danny; Avsar, Murat; Haverich, Axel; Hoeltig, Doris
2016-09-01
Lung auto-transplantation is the surgical key step in experiments involving ex vivo therapy of severe or end-stage lung diseases. Ex vivo therapy has become a clinical reality because of systems such as the Organ Care System (OCS) Lung, which is the only commercially available portable lung perfusion system. However, survival experiments involving porcine lung auto-transplantation pose special surgical and anaesthesiological challenges. This current study was designed to describe the development of surgical techniques and aneasthesiological management strategies that facilitate lung auto-transplantation survival surgery including a follow-up period of 4 days. Left pneumonectomy was performed in 12 Mini-Lewe miniature pigs. After ex vivo treatment of the harvested lungs within the OCS Lung for 2 h, the lungs were retransplanted into the same animal (auto-transplantation). Four animals were used to develop the optimal techniques and establish an experimental protocol. According to the final protocol, eight additional animals were operated. The follow-up period was 4 days. There were four severe intraoperative surgical complications [anatomical variant of the superior vena cava (two times), a complication related to the bronchial anastomosis and a complication related to the pulmonary arterial anastomosis]. The major postoperative problems were hyperkalaemia, prolonged recovery from anaesthesia and pulmonary oedema after reperfusion. Establishment of the surgical technique showed that using a pericardial tube to facilitate the anastomosis of the thin left superior pulmonary vein should be considered to prevent thrombosis. However, routine use of the patch technique to construct venous and arterial anastomoses is not necessary. Furthermore, traction on the venous anastomoses can be avoided by performing the bronchial anastomosis first. Lung auto-transplantation is a feasible experimental model for ex vivo therapy of lung diseases and is applicable for experimental questions concerning human lung transplantation. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Bioengineered Lungs: A Challenge and An Opportunity.
Farré, Ramon; Otero, Jordi; Almendros, Isaac; Navajas, Daniel
2018-01-01
Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Patricia C., E-mail: ryanp@medimmune.com; Sleeman, Matthew A.; Rebelatto, Marlon
Mavrilimumab (CAM-3001) is an investigational human IgG4 monoclonal antibody (MAb) targeting GM-CSF receptor alpha which is currently being developed for the treatment of RA. GM-CSF plays a central role in the pathogenesis of rheumatoid arthritis (RA) through the activation, differentiation, and survival of macrophages and neutrophils. To support clinical development, the nonclinical safety of mavrilimumab was evaluated in several studies with cynomolgus monkeys as the pharmacologically relevant species. Comprehensive toxicity parameters were assessed in each study, and treatment duration ranged from 4 to 26 weeks. Mavrilimumab has an acceptable safety profile in monkeys with no changes in any parameters othermore » than microscopic findings in lung. In several studies, minimal accumulation of foamy alveolar macrophages was observed. This finding was only seen in studies of at least 11 weeks duration, was reversible following a dose-free recovery period and was considered non-adverse. At higher dose levels (≥ 30 mg/kg/week), in a 26-week repeat-IV dose study, the presence of lung foreign material, cholesterol clefts, and granulomatous inflammation was also observed in a few animals and was considered adverse. The dose- and time-related accumulation of foamy macrophages in lung following exposure to mavrilimumab observed in several NHP studies was expected based upon the known role of GM-CSFRα signaling in the function of alveolar macrophages. Overall, a clean no-observed-adverse-effect-level (NOAEL) without any effects in lung was established and provided adequate clinical safety margins. In clinical studies in RA patients, mavrilimumab has demonstrated good clinical activity with adequate safety to support further clinical development. A Phase 2b study of mavrilimumab in subjects with RA is in progress. - Highlights: • Mavrilimumab is a MAB targeting GM-CSFRα being developed for RA therapy. • Mavrilimumab has an acceptable safety profile in cynomolgus monkeys. • Lung changes observed reflect role of GM-CSF in alveolar macrophage function. • High safety margins support continued clinical development of mavrilimumab.« less
Biehl, Jason R.
2015-01-01
Recent legislative successes allowing expanded access to recreational and medicinal cannabis have been associated with its increased use by the public, despite continued debates regarding its safety within the medical and scientific communities. Despite legislative changes, cannabis is most commonly used by smoking, although alternatives to inhalation have also emerged. Moreover, the composition of commercially available cannabis has dramatically changed in recent years. Therefore, developing sound scientific information regarding its impact on lung health is imperative, particularly because published data conducted prior to widespread legalization are conflicting and inconclusive. In this commentary, we delineate major observations of epidemiologic investigations examining cannabis use and the potential associated development of airways disease and lung cancer to highlight gaps in pulmonary knowledge. Additionally, we review major histopathologic alterations related to smoked cannabis and define specific areas in animal models and human clinical translational investigations that could benefit from additional development. Given that cannabis has an ongoing classification as a schedule I medication, federal funding to support investigations of modern cannabis use in terms of medicinal efficacy and safety profile on lung health have been elusive. It is clear, however, that the effects of inhaled cannabis on lung health remain uncertain and given increasing use patterns, are worthy of further investigation. PMID:25996274
Robust pulmonary lobe segmentation against incomplete fissures
NASA Astrophysics Data System (ADS)
Gu, Suicheng; Zheng, Qingfeng; Siegfried, Jill; Pu, Jiantao
2012-03-01
As important anatomical landmarks of the human lung, accurate lobe segmentation may be useful for characterizing specific lung diseases (e.g., inflammatory, granulomatous, and neoplastic diseases). A number of investigations showed that pulmonary fissures were often incomplete in image depiction, thereby leading to the computerized identification of individual lobes a challenging task. Our purpose is to develop a fully automated algorithm for accurate identification of individual lobes regardless of the integrity of pulmonary fissures. The underlying idea of the developed lobe segmentation scheme is to use piecewise planes to approximate the detected fissures. After a rotation and a global smoothing, a number of small planes were fitted using local fissures points. The local surfaces are finally combined for lobe segmentation using a quadratic B-spline weighting strategy to assure that the segmentation is smooth. The performance of the developed scheme was assessed by comparing with a manually created reference standard on a dataset of 30 lung CT examinations. These examinations covered a number of lung diseases and were selected from a large chronic obstructive pulmonary disease (COPD) dataset. The results indicate that our scheme of lobe segmentation is efficient and accurate against incomplete fissures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.
1990-08-01
Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to expressmore » diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.« less
Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S
2010-02-01
Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.
Regulatory mechanisms of betacellulin in CXCL8 production from lung cancer cells
2014-01-01
Background Betacellulin (BTC), a member of the epidermal growth factor (EGF) family, binds and activates ErbB1 and ErbB4 homodimers. BTC was expressed in tumors and involved in tumor growth progression. CXCL8 (interleukin-8) was involved in tumor cell proliferation via the transactivation of the epidermal growth factor receptor (EGFR). Materials and methods The present study was designed to investigate the possible interrelation between BTC and CXCL8 in human lung cancer cells (A549) and demonstrated the mechanisms of intracellular signals in the regulation of both functions. Bio-behaviors of A549 were assessed using Cell-IQ Alive Image Monitoring System. Results We found that BTC significantly increased the production of CXCL8 through the activation of the EGFR-PI3K/Akt-Erk signal pathway. BTC induced the resistance of human lung cancer cells to TNF-α/CHX-induced apoptosis. Treatments with PI3K inhibitors, Erk1/2 inhibitor, or Erlotinib significantly inhibited BTC-induced CXCL8 production and cell proliferation and movement. Conclusion Our data indicated that CXCL8 production from lung cancer cells could be initiated by an autocrine mechanism or external sources of BTC through the EGFR–PI3K–Akt–Erk pathway to the formation of inflammatory microenvironment. BTC may act as a potential target to monitor and improve the development of lung cancer inflammation. PMID:24629040
Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju
2018-05-15
Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.
Orthotopic lung cancer murine model by nonoperative transbronchial approach.
Nakajima, Takahiro; Anayama, Takashi; Matsuda, Yasushi; Hwang, David M; McVeigh, Patrick Z; Wilson, Brian C; Zheng, Gang; Keshavjee, Shaf; Yasufuku, Kazuhiro
2014-05-01
The aim of this work was to establish a novel orthotopic human non-small cell lung cancer (NSCLC) murine xenograft model by a nonsurgical, transbronchial approach. Male athymic nude mice and human NSCLC cell lines, including A549, H460, and H520 were used. Under direct visualization of the vocal cords, a 23-gauge blunt-tip slightly curved metal catheter was introduced into the trachea to the bronchus, and 2.5×10(5) tumor cells mixed with Matrigel (BD Biosciences, Mississauga, Ontario, Canada) were administered into the lung. Mice were monitored using weekly microcomputed tomography scans for tumor formation. When the tumor size reached more than 4 mm in diameter, the animals were euthanized, and the tumor tissue was evaluated histopathologically. Of 37 mice studied, 34 were confirmed to have tumor formation: 29 developed solitary tumors and 5 had multifocal lesions. There was no evidence of extrapleural dissemination or effusion. Transbronchial delivery of tumor cells enabled the establishment of a novel orthotopic human NSCLC murine xenograft model. This clinically relevant preclinical model bearing a solitary nodule is of value for a variety of in vivo research studies. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Fedorova, Olga; Shuvalov, Oleg; Merkulov, Valeriy; Vasileva, Elena; Antonov, Alexey; Barlev, Nikolai A.
2016-01-01
The product of RCHY1 human gene, Pirh2, is a RING-finger containing E3 ligase that modifies p53 with ubiquitin residues resulting in its subsequent degradation in proteasomes. Transcription of RCHY1 is regulated by p53 itself thus forming a negative regulatory feedback loop. Functionally, by eliminating p53, Pirh2 facilitates tumorigenesis. However, the role of Pirh2 in cancer cells lacking p53 is yet not well understood. Therefore, we decided to elucidate the role of Pirh2 in p53-negative human non-small cell lung carcinoma cells, H1299. We found that ectopic expression of Pirh2 enhanced cell proliferation, resistance to doxorubicin, and increased migration potential. Ablation of Pirh2 by specific shRNA reversed these phenotypes. Mechanistically, Pirh2 increased mRNA and protein levels of the c-Myc oncogene. The bioinformatics data indicate that co-expression of both c-Myc and Pirh2 strongly correlated with poor survival of lung cancer patients. Collectively, our results suggest that Pirh2 can be considered as a potential pharmacological target for developing anticancer therapies to treat p53-negative cancers. PMID:28191284
Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha
2017-05-01
Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.
Price, Dominique N; McBride, Amber A; Anton, Martina; Kusewitt, Donna F; Norenberg, Jeffrey P; MacKenzie, Debra A; Thompson, Todd A; Muttil, Pavan
2016-01-01
Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.
Anton, Martina; Kusewitt, Donna F.; Norenberg, Jeffrey P.; MacKenzie, Debra A.; Thompson, Todd A.; Muttil, Pavan
2016-01-01
Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models. PMID:28036366
A new automated 2D-(SCX/RP)-nano-LC/MSMS method was developed. Separation of the peptides in the first LC dimension was the main focus of this work, and it was optimized using human serum albumin (HSA) and human lung cell lysate tryptic digests. Samples were reduced and alkylated...
A Recurrent Mutation in PARK2 Is Associated with Familial Lung Cancer
Xiong, Donghai; Wang, Yian; Kupert, Elena; Simpson, Claire; Pinney, Susan M.; Gaba, Colette R.; Mandal, Diptasri; Schwartz, Ann G.; Yang, Ping; de Andrade, Mariza; Pikielny, Claudio; Byun, Jinyoung; Li, Yafang; Stambolian, Dwight; Spitz, Margaret R.; Liu, Yanhong; Amos, Christopher I.; Bailey-Wilson, Joan E.; Anderson, Marshall; You, Ming
2015-01-01
PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation. PMID:25640678
Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China.
Zhou, Yi; Li, Lianshui; Hu, Lei
2017-10-19
Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM 10 ) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO₂, NO₂, PM 10 , annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.
Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD.
Wang, Wei; Rayburn, Elizabeth R; Hang, Jie; Zhao, Yuqing; Wang, Hui; Zhang, Ruiwen
2009-09-01
20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol (25-OCH(3)-PPD), a newly identified natural product from Panax notoginseng, exhibits activity against a variety of cancer cells. Herein, we report the effects of this compound on human A549, H358, and H838 lung cancer cells, and compare these effects with a control lung epithelial cell line, BEAS-2B. 25-OCH(3)-PPD decreased survival, inhibited proliferation, and induced apoptosis and G1 cell cycle arrest in the lung cancer cell lines. The P. notoginseng compound also decreased the levels of proteins associated with cell proliferation and cell survival. Moreover, 25-OCH(3)-PPD inhibited the growth of A549 lung cancer xenograft tumors. 25-OCH(3)-PPD demonstrated low toxicity to non-cancer cells, and no observable toxicity was seen when the compound was administered to animals. In conclusion, our preclinical data indicate that 25-OCH(3)-PPD is a potential therapeutic agent in vitro and in vivo, and further preclinical and clinical development of this agent for lung cancer is warranted.
Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China
Zhou, Yi; Li, Lianshui; Hu, Lei
2017-01-01
Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures. PMID:29048397
ACID AIR AND AEROBIOLOGY RELATED TO THE MATURING HUMAN LUNG
The effect of 'acid air' on human health was studied by considering the effects of hygroscopicity upon aerosol deposition in the lung as a function of human subject age. Children are a critical sub-population to be incorporated into health effects analyses following ambient expos...
EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON OZONE-INDUCED LUNG INJURY IN HUMAN SUBJECTS
Epidemiological, in vitro and animal studies suggest that dietary antioxidants can modulate the cellular and physiologic effects of ozone (O3) inhalation in humans. To determine whether antioxidants can influence human susceptibility to O3-induced changes in lung function and a...
The role of LKB1 in lung cancer.
Sanchez-Cespedes, Montse
2011-09-01
In humans, the LKB1 gene is located on the short arm of chromosome 19, which is frequently deleted in lung tumors. Unlike most cancers of sporadic origin, in non-small cell lung cancer (NSCLC) nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. In NSCLC, LKB1 inactivation strongly predominates in adenocarcinomas from smokers and coexists with mutations at other important cancer genes, including KRAS and TP53. Remarkably, LKB1 alterations frequently occur simultaneously with inactivation at another important tumor suppressor gene, BRG1 (also called SMARCA4), which is also located on chromosome 19p. The present review considers the frequency and pattern of LKB1 mutations in lung cancer and the distinct biological pathways in which the LKB1 protein is involved in the development of this type of cancer. Finally, the possible clinical applications in cancer management, especially in lung cancer treatment, associated with the presence of absence of LKB1 are discussed.
Perioperative detection of circulating tumour cells in patients with lung cancer.
Chudasama, Dimple; Burnside, Nathan; Beeson, Julie; Karteris, Emmanouil; Rice, Alexandra; Anikin, Vladimir
2017-08-01
Lung cancer is a leading cause of mortality and despite surgical resection a proportion of patients may develop metastatic spread. The detection of circulating tumour cells (CTCs) may allow for improved prediction of metastatic spread and survival. The current study evaluates the efficacy of the ScreenCell® filtration device, to capture, isolate and propagate CTCs in patients with primary lung cancer. Prior to assessment of CTCs, the present study detected cancer cells in a proof-of-principle- experiment using A549 human lung carcinoma cells as a model. Ten patients (five males and five females) with pathologically diagnosed primary non-small cell lung cancer undergoing surgical resection, had their blood tested for CTCs. Samples were taken from a peripheral vessel at the baseline, from the pulmonary vein draining the lobe containing the tumour immediately prior to division, a further central sample was taken following completion of the resection, and a final peripheral sample was taken three days post-resection. A significant increase in CTCs was observed from baseline levels following lung manipulation. No association was able to be made between increased levels of circulating tumour cells and survival or the development of metastatic deposits. Manipulation of the lung during surgical resection for non-small cell lung carcinoma results in a temporarily increased level of CTCs; however, no clinical impact for this increase was observed. Overall, the study suggests the ScreenCell® device has the potential to be used as a CTC isolation tool, following further work, adaptations and improvements to the technology and validation of results.
Vitamin D Receptor Expression in Normal, Premalignant, and Malignant Human Lung Tissue
Menezes, Ravi J.; Cheney, Richard T.; Husain, Aliya; Tretiakova, Maria; Loewen, Gregory; Johnson, Candace S.; Jayaprakash, Vijay; Moysich, Kirsten B.; Salgia, Ravi; Reid, Mary E.
2009-01-01
Background There is a strong interest in identifying chemopreventive agents that might help decrease the burden of lung cancer. The active metabolite of vitamin D, 1,25-dihydroxycholecalciferol (calcitriol), has been shown to have antiproliferative effects in several tumor types, mediated by the vitamin D receptor (VDR). This is the first comprehensive survey of VDR expression in a series of human lung tissues, including normal and premalignant central airway biopsies and lung tumors. Methods Immunohistochemical expression of nuclear and cytoplasmic VDR was examined in 180 premalignant or malignant bronchial biopsies from bronchoscopy of 78 high-risk individuals at the Roswell Park Cancer Institute and also in 63 tumor samples from 35 lung cancer patients from the University of Chicago Hospitals. Associations between clinicopathologic data and VDR expression were examined. Results VDR expression was present in many samples. In biopsies, VDR was commonly detected throughout the full epithelial layer. Most histologically normal (60%, 53 of 88) and metaplastic (61%, 39 of 64) samples had moderate to high nuclear intensity; dysplastic samples mostly had low nuclear intensity (10 of 18, 55%). In tumor samples, 62% (38 of 61) were lacking cytoplasmic VDR, with nuclear expression present in 79%(49 of 62). Analysis of all samples revealed a positive linear trend between proportion of samples with greater nuclear than cytoplasmic intensity and increasing histologic grade (P < 0.01). Conclusions VDR expression spanned the lung carcinogenesis spectrum. Nuclear expression was similar across various histologies, whereas cytoplasmic expression decreased with increasing histologic grade. These results indicate that there is potential for the use of calcitriol as a chemopreventive agent against the development of lung cancer. (Cancer Epidemiol Bio-markers Prev 2008;17(5):1104–10) PMID:18483332
Wnt5a Is Associated with Cigarette Smoke-Related Lung Carcinogenesis via Protein Kinase C
Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong
2013-01-01
Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis. PMID:23349696
Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.
Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong
2013-01-01
Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.
Osteosarcoma development following single inhalation exposure to americium-241 in beagle dogs.
Gillett, N A; Hahn, F F; Mewhinney, J A; Muggenberg, B A
1985-10-01
Young, mature Beagle dogs underwent single inhalation exposure to respirable aerosols of 241AmO2 to determine the radiation dose distribution to tissues. The dogs were serially sacrificed to assess the clearance of 241Am from the lung, the rate of translocation to internal organs, the pattern of retention in the organs, and the rates and modes of excretion. Americium dioxide was relatively soluble in the lung, leading to the translocation of significant quantities of 241Am to bone and liver, thus delivering radiation doses to these tissues nearly equal to that received by the lung. Osteoblastic osteosarcomas developed in four dogs surviving more than 1000 days after exposure. Histologically, all of the osteosarcomas were associated with areas of radiation osteodystrophy characterized by bone infarction, peritrabecular new bone formation, marrow fibrosis, and microresorptive cavities. The retention and translocation of inhaled 241Am in dogs is similar to that of man, indicating that 241Am inhaled by humans may potentially result in significant risk of bone tumor development.
Cathepsin E promotes pulmonary emphysema via mitochondrial fission.
Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J
2014-10-01
Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Tena, Ana F; Fernández, Joaquín; Álvarez, Eduardo; Casan, Pere; Walters, D Keith
2017-06-01
The need for a better understanding of pulmonary diseases has led to increased interest in the development of realistic computational models of the human lung. To minimize computational cost, a reduced geometry model is used for a model lung airway geometry up to generation 16. Truncated airway branches require physiologically realistic boundary conditions to accurately represent the effect of the removed airway sections. A user-defined function has been developed, which applies velocities mapped from similar locations in fully resolved airway sections. The methodology can be applied in any general purpose computational fluid dynamics code, with the only limitation that the lung model must be symmetrical in each truncated branch. Unsteady simulations have been performed to verify the operation of the model. The test case simulates a spirometry because the lung is obliged to rapidly perform both inspiration and expiration. Once the simulation was completed, the obtained pressure in the lower level of the lung was used as a boundary condition. The output velocity, which is a numerical spirometry, was compared with the experimental spirometry for validation purposes. This model can be applied for a wide range of patient-specific resolution levels. If the upper airway generations have been constructed from a computed tomography scan, it would be possible to quickly obtain a complete reconstruction of the lung specific to a specific person, which would allow individualized therapies. Copyright © 2016 John Wiley & Sons, Ltd.
Hardie, William D; Davidson, Cynthia; Ikegami, Machiko; Leikauf, George D; Le Cras, Timothy D; Prestridge, Adrienne; Whitsett, Jeffrey A; Korfhagen, Thomas R
2008-06-01
Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.
Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.
2013-01-01
Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559
Pai, Rohan V; Jain, Rajesh R; Bannalikar, Anilkumar S; Menon, Mala D
2016-04-01
The lung is the primary entry site and target for Mycobacterium tuberculosis; more than 80% of the cases reported worldwide are of pulmonary tuberculosis. Hence, direct delivery of anti-tubercular drugs to the lung would be beneficial in reducing both, the dose required, as well as the duration of therapy for pulmonary tuberculosis. In the present study, microsphere-based dry powder inhalation systems of the anti-tubercular drugs, rifampicin and rifabutin, were developed and evaluated, with a view to achieve localized and targeted delivery of these drugs to the lung. The drug-loaded chitosan microparticles were prepared by an ionic gelation method, followed by spray-drying to obtain respirable particles. The microparticles were evaluated for particle size and drug release. The drug-loaded microparticles were then adsorbed onto an inhalable lactose carrier and characterized for in vitro lung deposition on an Andersen Cascade Impactor (ACI) followed by in vitro uptake study in U937 human macrophage cell lines. In vivo toxicity of the developed formulations was evaluated using Sprague Dawley rats. Both rifampicin and rifabutin-loaded microparticles had MMAD close to 5 μm and FPF values of 21.46% and 29.97%, respectively. In vitro release study in simulated lung fluid pH 7.4 showed sustained release for 12 hours for rifampicin microparticles and up to 96 hours for rifabutin microparticles, the release being dependent on both swelling of the polymer and solubility of the drugs in the dissolution medium. In vitro uptake studies in U937 human macrophage cell line suggested that microparticles were internalized within the macrophages. In vivo acute toxicity study of the microparticles in Sprague Dawley rats revealed no significant evidence for local adverse effects. Thus, spray-dried microparticles of the anti-tubercular drugs, rifampicin and rifabutin, could prove to be an improved, targeted, and efficient system for treatment of tuberculosis.
Elewa, Yaser Hosny Ali; Ichii, Osamu; Kon, Yasuhiro
2017-08-01
MRL/MpJ-Fas lpr (lpr) mice are a model for autoimmune diseases such as systemic lupus erythematosus (SLE). These diseases mainly affect women, with a 10:1 female-to-male ratio, and cause pleuropulmonary lesions. We previously revealed a correlation between mediastinal fat-associated lymphoid cluster (MFALC) development and cellular infiltration in the lungs of lpr male mice; however, we did not report on MFALCs in females. The purpose of this investigation was to reveal sex-related differences in MFALCs in lpr mice. We compared the morphological features of MFALCs and lung mononuclear cell aggregates (LMCAs) in 5-month-old male and female lpr mice. The females showed significantly elevated anti-dsDNA autoantibody titers and larger MFALCs, with a higher ratio of lymphatic vessel (LV) and high endothelial venule (HEV) areas to MFALC area, and greater numbers of T- and B-cells, macrophages, and proliferating and dendritic cells in MFALCs and LMCAs than males. Our data indicated that MFALCs were more developed and lung lesions were more severe in female than in male lpr mice, thereby suggesting a potential role for LVs and HEVs in the establishment of MFALCs and lung lesions. Further investigation in female lpr mice will be needed for treatment of human respiratory diseases and autoimmune disorders.
Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...
Genetic predictors of MEK dependence in non-small cell lung cancer.
Pratilas, Christine A; Hanrahan, Aphrothiti J; Halilovic, Ensar; Persaud, Yogindra; Soh, Junichi; Chitale, Dhananjay; Shigematsu, Hisayuki; Yamamoto, Hiromasa; Sawai, Ayana; Janakiraman, Manickam; Taylor, Barry S; Pao, William; Toyooka, Shinichi; Ladanyi, Marc; Gazdar, Adi; Rosen, Neal; Solit, David B
2008-11-15
Hyperactivated extracellular signal-regulated kinase (ERK) signaling is common in human cancer and is often the result of activating mutations in BRAF, RAS, and upstream receptor tyrosine kinases. To characterize the mitogen-activated protein kinase/ERK kinase (MEK)/ERK dependence of lung cancers harboring BRAF kinase domain mutations, we screened a large panel of human lung cancer cell lines (n = 87) and tumors (n = 916) for BRAF mutations. We found that non-small cell lung cancers (NSCLC) cells with both V600E and non-V600E BRAF mutations were selectively sensitive to MEK inhibition compared with those harboring mutations in epidermal growth factor receptor (EGFR), KRAS, or ALK and ROS kinase fusions. Supporting its classification as a "driver" mutation in the cells in which it is expressed, MEK inhibition in (V600E)BRAF NSCLC cells led to substantial induction of apoptosis, comparable with that seen with EGFR kinase inhibition in EGFR mutant NSCLC models. Despite high basal ERK phosphorylation, EGFR mutant cells were uniformly resistant to MEK inhibition. Conversely, BRAF mutant cell lines were resistant to EGFR inhibition. These data, together with the nonoverlapping pattern of EGFR and BRAF mutations in human lung cancer, suggest that these lesions define distinct clinical entities whose treatment should be guided by prospective real-time genotyping. To facilitate such an effort, we developed a mass spectrometry-based genotyping method for the detection of hotspot mutations in BRAF, KRAS, and EGFR. Using this assay, we confirmed that BRAF mutations can be identified in a minority of NSCLC tumors and that patients whose tumors harbor BRAF mutations have a distinct clinical profile compared with those whose tumors harbor kinase domain mutations in EGFR.
Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation
Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.
2016-01-01
Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141
Asgari, Yazdan; Khosravi, Pegah; Zabihinpour, Zahra; Habibi, Mahnaz
2018-02-19
Genome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models. We reconstructed genome-scale metabolic models for lung and prostate, under normal and cancer conditions to detect the major genes associated with critical subsystems during tumor development. Furthermore, we utilized gene expression data in combination with an information theory-based approach to reconstruct co-expression networks of the human lung and prostate in both cohorts. Our results revealed 19 genes as candidate biomarkers for lung and prostate cancer cells. This study also revealed that the development of a complementary approach (integration of gene expression and metabolic profiles) could lead to proposing novel biomarkers and suggesting renovated cancer treatment strategies which have not been possible to detect using either of the methods alone.
Gao, Na; Wang, Ying; Zheng, Chun-Ming; Gao, Yan-Li; Li, Hui; Li, Yan; Fu, Ting-Ting; Xu, Li-Li; Wang, Wei; Ying, Sun; Huang, Kewu
2017-05-01
β 2 -Microglobulin (β 2 M), the light chain of the major histocompatibility complex class I (MHC I), has been identified as a proaging factor and is involved in the pathogenesis of neurodegenerative disorders by driving cognitive and regenerative impairments. However, little attention has focused on the effect of β 2 M in the development of lung emphysema. Here, we found that concentrations of β 2 M in plasma were significantly elevated in patients with lung emphysema than those in normal control subjects (1.89 ± 0.12 vs. 1.42 ± 0.06 mg/l, P < 0.01). Moreover, the expression of β 2 M was significantly higher in lung tissue of emphysema (39.90 ± 1.97 vs. 23.94 ± 2.11%, P < 0.01). Immunofluorescence showed that β 2 M was mainly expressed in prosurfactant protein C-positive (pro-SPC + ) alveolar epithelial cells and CD14 + macrophages. Exposure to recombinant human β 2 M and cigarette smoke extract (CSE) in vitro enhanced cellular senescence and inhibited proliferation of A549 cells, which was partially reversed by the presence of anti-β 2 M antibody. However, anti-β 2 M antibody did not attenuate the elevated production of IL-1β, IL-6, and TNF-α in A549 cells that were exposed to CSE. Immunofluorescence showed that colocalization of β 2 M, and the hemochromatosis gene (HFE) protein was observed on A549 cells. These data suggest β 2 M might participate in the development of lung emphysema through induction of lung epithelial cell senescence and inhibition. Copyright © 2017 the American Physiological Society.
The incidence and mortality of lung cancer and their relationship to development in Asia.
Pakzad, Reza; Mohammadian-Hafshejani, Abdollah; Ghoncheh, Mahshid; Pakzad, Iraj; Salehiniya, Hamid
2015-12-01
Lung cancer is the deadliest cancer worldwide and the most common cancer in Asia. It is necessary to get information on epidemiology and inequalities related to incidence and mortality of the cancer to use for planning and further research. This study aimed to investigate epidemiology and inequality of incidence and mortality from lung cancer in Asia. The study was conducted based on data from the world data of cancer and the World Bank [including the Human Development Index (HDI) and its components]. The incidence and mortality rates, and cancer distribution maps were drawn for Asian countries. To analyze data, correlation test between incidence and death rates, and HDI and its components at significant was used in the significant level of 0.05 using SPSS software. A total of 1,033,881 incidence (71.13% were males and 28.87% were females. Sex ratio was 2.46) and 936,051 death (71.45% in men and 28.55% in women. The sex ratio was 2.50) recorded in Asian countries in 2012. Five countries with the highest standardized incidence and mortality rates of lung cancer were Democratic Republic of Korea, China, Armenia, Turkey, and Timor-Leste, respectively. Correlation between HDI and standardized incidence rate was 0.345 (P=0.019), in men 0.301 (P=0.042) and in women 0.3 (P=0.043); also between HDI and standardized mortality rate 0.289 (P=0.052), in men 0.265 (P=0.075) and in women 0.200 (P=0.182). The incidence of lung cancer has been increasing in Asia. It is high in men. Along with development, the incidence and mortality from lung cancer increases. It seems necessary to study reasons and factors of increasing the incidence and mortality of lung cancer in Asian countries.
Mehta, Heena; Goulet, Philippe-Olivier; Nguyen, Vinh; Pérez, Gemma; Koenig, Martial; Senécal, Jean-Luc; Sarfati, Marika
2016-12-01
DNA Topoisomerase I (TopoI) is a candidate autoantigen for diffuse cutaneous systemic sclerosis (dcSSc) associated with fatal lung disease. Dendritic cells (DCs) contribute to bleomycin-induced lung fibrosis. However, the possibility that TopoI-loaded DCs are involved in the initiation and/or perpetuation of dcSSc has not been explored. Here, we show that immunization with TopoI peptide-loaded DCs induces anti-TopoI autoantibody response and long-term fibrosis. Mice were repeatedly immunized with unpulsed DCs or DCs loaded with either TOPOIA or TOPOIB peptides, selected from different regions of TopoI. At week 12 after initial DC immunization, TOPOIA DCs but not TOPOIB DCs immunization induced mixed inflammation and fibrosis in lungs and skin. At a late time point (week 18), both TOPOIA DCs and TOPOIB DCs groups displayed increased alpha-smooth muscle actin expression in lungs and dermis along with skin fibrosis distal from the site of injection when compared with unpulsed DCs. Both TopoI peptide-DC-immunized groups developed IgG2a anti-TopoI autoantibody response. At week 10, signs of perivascular, peribronchial, and parenchymal pulmonary inflammation were already observed in the TOPOIA DCs group, together with transient elevation in bronchoalveolar lavage cell counts, IL-17A expression, and CXCL4 production, a biomarker of early human dcSSc. Collectively, TopoI peptide DCs induce progressive autoantibody response as well as development of protracted skin and lung dcSSc-like disease. Pronounced lung inflammation, transient IL-17A, and CXCL4 expression precede fibrosis development. Our immunization strategy, that uses self immune system and autoantigen, will help to further investigate the pathogenesis of this complex autoimmune disorder with unmet medical needs.
Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.
2011-03-01
Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.
Smits, Jacqueline M A; Melman, Sonja; Mertens, Bart J A; Laufer, Gunther; Persijn, Guido G; Van Raemdonck, Dirk
2003-12-15
Despite its reduced benefit for a single recipient, the transplantation of two single-lung allografts as opposed to one bilateral lung transplant has the indisputable advantage of maximizing the number of patients that benefit from a single donor. In the period 1997 to 1999, 90 paired single-lung transplants (SLTx) from 45 donors were performed in 16 lung centers in Eurotransplant, with a complete follow-up of 1 year. No significant differences between left- and right-lung allograft recipients were observed regarding age, sex, primary disease, number of human leukocyte antigen mismatches, cold ischemic time, and donor-to-recipient cytomegalovirus match. Early posttransplant outcome, as assessed by oxygenation index at 12, 24, and 48 hr, also did not differ significantly, and there were no differences in time to extubation and time spent in the intensive care unit. In the first month, six left- and three right-lung allograft recipients died. Bronchiolitis obliterans syndrome developed in 5 of 39 left-lung and 10 of 42 right-lung allograft recipients. If the retrieval team was different from the transplanting team, a significantly worse 1-year posttransplant survival rate was seen in patients who underwent left SLTx compared with those who underwent right SLTx (62% vs. 92%, respectively; P=0.04). More fatal posttransplant complications occur in patients undergoing left SLTx compared with right SLTx. A less optimistic assessment of the left lung by the not-implanting retrieval team is warranted.
Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling
Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier
2015-01-01
Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176
Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.
Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier
2015-09-29
Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.
miR-133 involves in lung adenocarcinoma cell metastasis by targeting FLOT2.
Wei, Guangxia; Xu, Yahuan; Peng, Tao; Yan, Jie
2018-03-01
Dysregulated microRNAs (miRNAs) reported to involve into the oncogenesis and progression in various human cancers. However, the roles and mechanism of miR-133 in lung adenocarcinoma remain largely unclear. In this study, qPCR assay and western blot were used to detect the expression levels of miR-133, Akt and FLOT2. Luciferase reporter assay was used to identify the target role of miR-133 on FLOT2. The cell invasion and the migration capability were performed using the transwell invasion assay and wound healing assay. We found that miR-133 expression levels were downregulated in human lung adenocarcinoma specimens and cell lines compared with the adjacent normal tissues and normal human bronchial epithelial cell. miR-133 significantly suppressed metastasis of lung adenocarcinoma cells in vitro. Furthermore, FLOT2 (flotillin-2) identified as a direct target of miR-133, and FLOT2 expression levels were inversely correlated with miR-133 expression levels in human lung adenocarcinoma specimens. And the restoration studies suggested FGF2 as a downstream effector of miR-133 which acted through Akt signalling pathway. Our study revealed the mechanism that miR-133 suppresses lung adenocarcinoma metastasis by targeting FLOT2 via Akt signalling pathway, implicating a potential prognostic biomarker and therapeutic target for lung adenocarcinoma treatment.
Nontypeable Haemophilus influenzae Induces Sustained Lung Oxidative Stress and Protease Expression
King, Paul T.; Sharma, Roleen; O’Sullivan, Kim; Selemidis, Stavros; Lim, Steven; Radhakrishna, Naghmeh; Lo, Camden; Prasad, Jyotika; Callaghan, Judy; McLaughlin, Peter; Farmer, Michael; Steinfort, Daniel; Jennings, Barton; Ngui, James; Broughton, Bradley R. S.; Thomas, Belinda; Essilfie, Ama-Tawiah; Hickey, Michael; Holmes, Peter W.; Hansbro, Philip; Bardin, Philip G.; Holdsworth, Stephen R.
2015-01-01
Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps. PMID:25793977
[Function of alveoles as a result of evolutionary development of respiratory system in mammals].
Ivanov, K P
2013-01-01
Reaction of hemoglobin oxygenation is known to occur for 40 femtoseconds (40 x 10(-15) s). However, the process of oxygen diffusion to hemoglobin under physiologic conditions decelerated this reaction approximately billion times. In mammalian lungs, blood is moving at a high rate and in a relatively high amount. The human lung mass is as low as 600 g, but the complete cardiac output approaches 6 1/min. In rat, from 20 to 40 ml of blood is passed for q min through the lung whose mass is about 1.5 g. Such blood flow rate is possible, as in lungs of high animals there exists a dense network of relatively large microvessels with diameter from 20 to 40 microm and more. In spite of a large volume and a high blood flow rate hampering oxygen diffusion, the complete blood oxygenation occurs in lung alveoli. This is due to peculiar mechanisms that facilitate markedly the oxygen diffusion and that developed in alveoli of mammals in the course of many million years of evolution of their respiratory system. Thus, alveolus is not a bubble with air, but a complex tool of fight with inertness of diffusion. It is interesting that in lungs of the low vertebrates, neither such system of blood vessels nor alveoli exist, and their blood flow rate is much lower than in mammals.
Long non-coding RNA RUNXOR accelerates MDSC-mediated immunosuppression in lung cancer.
Tian, Xinyu; Ma, Jie; Wang, Ting; Tian, Jie; Zheng, Yu; Peng, Rongrong; Wang, Yungang; Zhang, Yue; Mao, Lingxiang; Xu, Huaxi; Wang, Shengjun
2018-06-18
RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA that has been indicated as a key regulator in the development of myeloid cells by targeting runt-related transcription factor 1 (RUNX1). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells consisting of immature granulocytes and monocytes with immunosuppression. However, the impact of lncRNA RUNXOR on the development of MDSCs remains unknown. Both the expressions of RUNXOR and RUNX1 in the peripheral blood were measured by qRT-PCR. Human MDSCs used in this study were isolated from tumor tissue of patients with lung cancer by FCM or induced from PBMCs of healthy donors with IL-1β + GM-CSF. Specific siRNA was used to knockdown the expression of RUNXOR in MDSCs. In this study, we found that the lncRNA RUNXOR was upregulated in the peripheral blood of lung cancer patients. In addition, as a target gene of RUNXOR, the expression of RUNX1 was downregulated in lung cancer patients. Finally, the expression of RUNXOR was higher in MDSCs isolated from the tumor tissues of lung cancer patients compared with cells from adjacent tissue. In addition, RUNXOR knockdown decreased Arg1 expression in MDSCs. Based on our findings, it is illustrated that RUNXOR is significantly associated with the immunosuppression induced by MDSCs in lung cancer patients and may be a target of anti-tumor therapy.
Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce
2006-11-01
One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer.
Khan, Naghma; Afaq, Farrukh; Khusro, Fatima H.; Adhami, Vaqar Mustafa; Suh, Yewseok; Mukhtar, Hasan
2011-01-01
Lung cancer is one of the most commonly occurring malignancies. It has been reported that mTOR is phosphorylated in lung cancer and its activation was more frequent in tumors with over-expression of PI3K/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell-growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human non-small cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex like Rictor, Raptor, GβL and PRAS40. There was increase in the phosphorylation of AMPKα and decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer. PMID:21618507
Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M
2009-10-19
Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.
Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury
Moodley, Yuben; Atienza, Daniel; Manuelpillai, Ursula; Samuel, Chrishan S.; Tchongue, Jorge; Ilancheran, Sivakami; Boyd, Richard; Trounson, Alan
2009-01-01
Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton’s jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury. uMSCs were administered systemically, and lungs were harvested at 7, 14, and 28 days post-bleomycin. Injected uMSCs were located in the lung 2 weeks later only in areas of inflammation and fibrosis but not in healthy lung tissue. The administration of uMSCs reduced inflammation and inhibited the expression of transforming growth factor-β, interferon-γ, and the proinflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor-α. Collagen concentration in the lung was significantly reduced by uMSC treatment, which may have been a consequence of the simultaneous reduction in Smad2 phosphorylation (transforming growth factor-β activity). uMSCs also increased matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, favoring a pro-degradative milieu following collagen deposition. Notably, injected human lung fibroblasts did not influence either collagen or matrix metalloproteinase levels in the lung. The results of this study suggest that uMSCs have antifibrotic properties and may augment lung repair if used to treat acute respiratory distress syndrome. PMID:19497992
Chemically-induced mouse lung tumors: applications to ...
A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism
Human papillomavirus 16/18 infections in lung cancer patients in Mexico.
Badillo-Almaraz, I; Zapata-Benavides, P; Saavedra-Alonso, S; Zamora-Avila, D; Reséndez-Pérez, D; Tamez-Guerra, R; Herrera-Esparza, R; Rodríguez-Padilla, C
2013-01-01
Human papillomavirus (HPV) is an epitheliotropic, double-stranded DNA virus, and its high-risk genotypes are associated with human cancer. HPV genome has been detected in lung carcinomas in certain places around the world, including Mexico; however, the prevalence of this is unclear. In this study, we examine the frequency of high-risk HPV 16/18 in lung cancer tissues from a Mexican population. 39 lung cancer specimens were analyzed by polymerase chain reaction (PCR) using HPV GP5+/GP6+ primers and then were genotyped using specific primers to HPV 16/18. Additionally, in situ hybridization (ISH) was performed using BIO-labeled oligonucleotide probes. Our results identified 15 positive cases (38.46%) for HPV 16 and 1 positive case (2.56%) for HPV 18 by PCR. ISH showed the presence of HPV DNA in 13 of 16 (81%) samples, in agreement with the PCR results. In this study, we detected HPV 16/18 gene sequences in lung cancer samples obtained from Mexican patients by PCR and ISH. We found the highest prevalence of HPV 16 infection in lung adenocarcinomas, suggesting that HPV infection may be associated with lung cancer. However, further studies are needed to elucidate the role of HPV in lung carcinogenesis. Copyright © 2013 S. Karger AG, Basel.
2016-12-01
developed expertise in live animal imaging to enable monitoring to tumors over time in these models. We have initiated treatment studies with chemotherapy...requested on 9/22/14 and reported in our first annual report. Significant changes in use or care of human subjects, vertebrate animals ...biohazards and/or select agents We have no additional changes to make in use of vertebrate animals , biohazards and/or select reagents beyond what was
Yan, Hong; Bi, Lei; Wang, Yunshan; Zhang, Xia; Hou, Zhibo; Wang, Qian; Snijders, Antoine M; Mao, Jian-Hua
2017-03-23
Many DDB1-CUL4 associated factors (DCAFs) have been identified and serve as substrate receptors. Although the oncogenic role of CUL4A has been well established, specific DCAFs involved in cancer development remain largely unknown. Here we infer the potential impact of 19 well-defined DCAFs in human lung adenocarcinomas (LuADCs) using integrative omics analyses, and discover that mRNA levels of DTL, DCAF4, 12 and 13 are consistently elevated whereas VBRBP is reduced in LuADCs compared to normal lung tissues. The transcriptional levels of DCAFs are significantly correlated with their gene copy number variations. SKIP2, DTL, DCAF6, 7, 8, 13 and 17 are frequently gained whereas VPRBP, PHIP, DCAF10, 12 and 15 are frequently lost. We find that only transcriptional level of DTL is robustly, significantly and negatively correlated with overall survival across independent datasets. Moreover, DTL-correlated genes are enriched in cell cycle and DNA repair pathways. We also identified that the levels of 25 proteins were significantly associated with DTL overexpression in LuADCs, which include significant decreases in protein level of the tumor supressor genes such as PDCD4, NKX2-1 and PRKAA1. Our results suggest that different CUL4-DCAF axis plays the distinct roles in LuADC development with possible relevance for therapeutic target development.
Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke
2015-11-01
Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.
Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma
Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar
2015-01-01
Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839
Patel, Monal; Predescu, Dan; Bardita, Cristina; Chen, Jiwang; Jeganathan, Niranjan; Pritchard, Melanie; DiBartolo, Salvatore; Machado, Roberto; Predescu, Sanda
2017-03-01
Murine models of pulmonary arterial hypertension (PAH) that recapitulate the plexiform and obliterative arteriopathy seen in PAH patients and help in defining the molecular mechanisms involved are missing. Herein, we investigated whether intersectin-1s (ITSN) deficiency and prolonged lung expression of an ITSN fragment with endothelial cell (EC) proliferative potential (EH ITSN ), present in the lungs of PAH animal models and human patients, induce formation of plexiform/obliterative lesions and defined the molecular mechanisms involved. ITSN-deficient mice (knockout/heterozygous and knockdown) were subjected to targeted lung delivery of EH ITSN via liposomes for 20 days. Immunohistochemistry and histological and morphometric analyses revealed a twofold increase in proliferative ECs and a 1.35-fold increase in proliferative α-smooth muscle actin-positive cells in the lungs of ITSN-deficient mice, transduced with the EH ITSN relative to wild-type littermates. Treated mice developed severe medial wall hypertrophy, intima proliferation, and various forms of obliterative and plexiform-like lesions in pulmonary arteries, similar to PAH patients. Hemodynamic measurements indicated modest increases in the right ventricular systolic pressure and right ventricle hypertrophy. Transcriptional and protein assays of lung tissue indicated p38 MAPK -dependent activation of Elk-1 transcription factor and increased expression of c-Fos gene. This unique murine model of PAH-like plexiform/obliterative arteriopathy induced via a two-hit pathophysiological mechanism without hypoxia provides novel druggable targets to ameliorate and, perhaps, reverse the EC plexiform phenotype in severe human PAH. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Beaver, Laura M.; Stemmy, Erik J.; Schwartz, Arnold M.; Damsker, Jesse M.; Constant, Stephanie L.; Ceryak, Susan M.; Patierno, Steven R.
2009-01-01
Background Chronic inflammation is implicated in the development of several human cancers, including lung cancer. Certain particulate hexavalent chromium [Cr(VI)] compounds are well-documented human respiratory carcinogens that release genotoxic soluble chromate and are associated with fibrosis, fibrosarcomas, adenocarcinomas, and squamous cell carcinomas of the lung. Despite this, little is known about the pathologic injury and immune responses after repetitive exposure to particulate chromates. Objectives In this study we investigated the lung injury, inflammation, proliferation, and survival signaling responses after repetitive exposure to particulate chromate. Methods BALB/c mice were repetitively treated with particulate basic zinc chromate or saline using an intranasal exposure regimen. We assessed lungs for Cr(VI)-induced changes by bronchoalveolar lavage, histologic examination, and immunohistochemistry. Results Single exposure to Cr(VI) resulted in inflammation of lung tissue that persists for up to 21 days. Repetitive Cr(VI) exposure induced a neutrophilic inflammatory airway response 24 hr after each treatment. Neutrophils were subsequently replaced by increasing numbers of macrophages by 5 days after treatment. Repetitive Cr(VI) exposure induced chronic peribronchial inflammation with alveolar and interstitial pneumonitis dominated by lymphocytes and macrophages. Moreover, chronic toxic mucosal injury was observed and accompanied by increased airway pro-matrix metalloprotease-9. Injury and inflammation correlated with airways becoming immunoreactive for phosphorylation of the survival signaling protein Akt and the proliferation marker Ki-67. We observed a reactive proliferative response in epithelial cells lining airways of chromate-exposed animals. Conclusions These data illustrate that repetitive exposure to particulate chromate induces chronic injury and an inflammatory microenvironment that may promote Cr(VI) carcinogenesis. PMID:20049209
Testing lung cancer drugs and therapies in mice
National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with
Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2003-01-01
We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.
The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.
Otsuka, Shannon; Bebb, Gwyn
2008-12-01
Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.
A Re-evaluation of CD22 Expression by Human Lung Cancer
Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.
2014-01-01
CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821
ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion
Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.
2012-01-01
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
Epimorphin expression in interstitial pneumonia
Terasaki, Yasuhiro; Fukuda, Yuh; Suga, Moritaka; Ikeguchi, Naoki; Takeya, Motohiro
2005-01-01
Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP), and lungs with usual interstitial pneumonia (UIP); we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling. PMID:15651999
Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yihua; Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031; Fang, Rong
2010-05-28
Lung cancer is one of the most devastating diseases worldwide. RGS17 is previously shown to be over-expressed in human lung adenocarcinomas and plays an important role in lung tumor growth. Here we have identified a miRNA, has-mir-182, involved in the regulation of RGS17 expression through two conserved sites located in its 3' UTR region. Consistently, endogenous RGS17 expression level is regulated by hsa-mir-182 in human lung cancer cell lines. Similar to the knockdown of RGS17, ectopic expression of hsa-mir-182 significantly inhibits lung cancer cell proliferation and anchorage-independent cell growth, which can be rescued by re-expression of RGS17. Taken together, thesemore » data have provided the first evidence of miRNA regulation of RGS17 expression in lung cancer.« less
Evidence of carcinogenicity in humans of water-soluble nickel salts
2010-01-01
Background Increased risks of nasal cancer and lung cancer in nickel refiners have been investigated scientifically and discussed since they were detected in the 1930s. Nickel compounds are considered to be the main cause of the cancer excess. Parts of the nickel producing industry and their consultants oppose the classification of water-soluble nickel salts as human carcinogens, and argue that the risk in exposed workers should be ascribed to other occupational exposures and smoking. Discussion Respiratory cancer risks in Welsh, Finnish, and Norwegian nickel refiners add to the evidence of carcinogenicity of water-soluble nickel. In Norwegian refiners, the first epidemiological study in 1973 identified high risks of lung cancer and nasal cancer among long-term electrolysis workers. Risk analyses based on exposure estimates developed in the 1980s supported the view that water-soluble nickel compounds were central in the development of cancer. Recently, new exposure estimates were worked out for the same cohort based on personal monitoring of total nickel and chemical determination of four forms of nickel. Additional data have been collected on life-time smoking habits, and on exposure to arsenic, asbestos, sulphuric acid mists, cobalt, and occupational lung carcinogens outside the refinery. After adjustment for these potential confounding exposures in case-control analyses, the risk pattern added to the evidence of an important role of water-soluble nickel compounds as causes of lung cancer. These Norwegian cancer studies rely on national Cancer Registry data, considered close to complete from 1953 onwards; and on National Population Register data continuously updated with mortality and emigration. Canadian mortality studies--perceived to offer the strongest support to the industry position not to recognise carcinogenicity of water-soluble nickel--appear to suffer from limitations in follow-up time, loss to follow-up, absence of risk analysis with individual exposure estimates, no confounder control, and a likely underestimation of cancer mortality. Conclusions Rejection to recognise water-soluble nickel as a human carcinogen seems to contradict material epidemiological evidence that demonstrates a strong association between water-soluble nickel compounds and risks of lung cancer and nasal cancer. Independent international scientific bodies have classified nickel compounds as carcinogenic to humans, inclusive of water-soluble nickel. PMID:20377901
Johns, Roger A.; Takimoto, Eiki; Meuchel, Lucas W.; Elsaigh, Esra; Zhang, Ailan; Heller, Nicola M.; Semenza, Gregg L.; Yamaji-Kegan, Kazuyo
2017-01-01
Objective Pulmonary hypertension (PH) is characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown that in rodents, hypoxia-induced mitogenic factor (HIMF; also known as FIZZ1 or RELMα) causes PH by initiating lung vascular inflammation. We hypothesized that hypoxia-inducible factor-1 (HIF-1) is a critical downstream signal mediator of HIMF during PH development. Approach and Results In this study, we compared the degree of HIMF-induced pulmonary vascular remodeling and PH development in wild-type (HIF-1α+/+) and HIF-1α heterozygous null (HIF-1α+/−) mice. HIMF-induced PH was significantly diminished in HIF-1α+/− mice and was accompanied by a dysregulated VEGF-A–VEGF receptor 2 pathway. HIF-1α was critical for bone marrow-derived cell migration and vascular tube formation in response to HIMF. Furthermore, HIMF and its human homolog, resistin-like molecule-β (RELMβ), significantly increased IL-6 in macrophages and lung resident cells through a mechanism dependent on HIF-1α and, at least to some extent, on nuclear factor κB. Conclusions Our results suggest that HIF-1α is a critical downstream transcription factor for HIMF-induced pulmonary vascular remodeling and PH development. Importantly, both HIMF and human RELMβ significantly increased IL-6 in lung resident cells and increased perivascular accumulation of IL-6–expressing macrophages in the lungs of mice. These data suggest that HIMF can induce HIF-1, VEGF-A, and interleukin-6, which are critical mediators of both hypoxic inflammation and PH pathophysiology. PMID:26586659
Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway
2011-01-01
Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R.; Rosas, Ivan; Ai, Xingbin
2016-01-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca2+-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca2+ oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921
Is the appearance of macrophages in pulmonary tissue related to time of asphyxia?
Vacchiano, G; D'Armiento, F; Torino, R
2001-01-01
In order to connect the appearance of macrophages and giant cells in pulmonary tissue with the time of asphyxia the authors analyzed 50 asphyxiated human lungs paying their attention on the number of alveolar and interstitial macrophages and giant cells. They compared histological specimens of 25 asphixiated humans lungs following a slow asphyxia (30 min or more) with 25 histological specimens of asphyxiated human lungs following a rapid asphyxia (10-15 min). Alveolar and interstitial macrophages and giant cells per section, were considered and numbered. Controls were done on histological examination of traumatized lungs. In the pulmonary alveoli following on acute asphyxia there were 27.7+/-4.4 macrophages per section. Subjects dead after a slow asphyxiation showed 68.2+/-7.1 alveolar macrophages per section (p<0.001). Interstitial macrophages were also frequently present. No differences are detectable in the number of polynuclear giant cells between rapidly and slowly asphyxiated human lungs. The number of alveolar and interstitial macrophages per section can be considered as a further histological evidence of a slow asphyxia and can differentiate a slow asphyxia from an acute one.
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin
2016-05-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.
AMBIENT PARTICULATE MATTER DECREASED IN HUMAN ALVEOLAR MACHROPHAGE CYTOKINE RELEASE
Human exposure to ambient airborne particulate matter (PM) is associated with cardiopulmonary mortality and morbidity, including increased hospitalizations for lung infection. Normal lung immune responses to bacterial infection include alveolar macrophage cytokine production and...
de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo
2017-06-24
Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5 AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs.
Zhou, Xiaofeng; Loomis-King, Hillary; Gurczynski, Stephen J.; Wilke, Carol A.; Konopka, Kristine E.; Ptaschinski, Catherine; Coomes, Stephanie M; Iwakura, Yoichiro; van Dyk, Linda F.; Lukacs, Nicholas W.; Moore, Bethany B.
2015-01-01
Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplant (BMT) followed by infection with murine gamma herpesvirus (γHV-68) that results in pneumonitis and fibrosis and mimics human “non-infectious” HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection (dpi). CD4 T cells in BMT mice are skewed towards IL-17A rather than IFN-γ production. Transplantation of bone marrow from Il-17a−/− donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more TGF-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest “non-infectious” HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset. PMID:26376362
Dinh, Phuong-Uyen C; Cores, Jhon; Hensley, M Taylor; Vandergriff, Adam C; Tang, Junnan; Allen, Tyler A; Caranasos, Thomas G; Adler, Kenneth B; Lobo, Leonard J; Cheng, Ke
2017-06-30
Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
76 FR 21387 - National Heart, Lung, and Blood Institute;
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
78 FR 42967 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood Institute Special.../DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge [[Page 42968
ERIC Educational Resources Information Center
Peterson, Candida C.
2005-01-01
This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, "Journal of Autism and Developmental Disorders," 19(4),…
p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer.
Poomakkoth, Noufira; Issa, Aya; Abdulrahman, Nabeel; Abdelaziz, Somaia Gamal; Mraiche, Fatima
2016-01-14
A global survey of cancer has shown that lung cancer is the most common cause of the new cancer cases and cancer deaths in men worldwide. The mortality from lung cancer is more than the combined mortality from breast, prostate and colorectal cancers. The two major histological types of lung cancer are non-small cell lung cancer (NSCLC) accounting for about 85 % of cases and small cell lung cancer accounting for 15 % of cases. NSCLC, the more prevalent form of lung cancer, is often diagnosed at an advanced stage and has a very poor prognosis. Many factors have been shown to contribute to the development of lung cancer in humans including tobacco smoking, exposure to environmental carcinogens (asbestos, or radon) and genetic factors. Despite the advances in treatment, lung cancer remains one of the leading causes of cancer death worldwide. Interestingly, the overall 5 year survival from lung cancer has not changed appreciably in the past 25 years. For this reason, novel and more effective treatments and strategies for NSCLC are critically needed. p90 ribosomal S6 kinase (RSK), a serine threonine kinase that lies downstream of the Ras-MAPK (mitogen activated protein kinase) cascade, has been demonstrated to be involved in the regulation of cell proliferation in various malignancies through indirect (e.g., modulation of transcription factors) or direct effects on the cell-cycle machinery. Increased expression of RSK has been demonstrated in various cancers, including lung cancer. This review focuses on the role of RSK in lung cancer and its potential therapeutic application.
ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS
Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...
Airway disease phenotypes in animal models of cystic fibrosis.
McCarron, Alexandra; Donnelley, Martin; Parsons, David
2018-04-02
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Optical medical imaging: from glass to man
NASA Astrophysics Data System (ADS)
Bradley, Mark
2016-11-01
A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.
Walsh, D A; Salmon, M; Featherstone, R; Wharton, J; Church, M K; Polak, J M
1994-01-01
1. The distribution and characteristics of tachykinin NK1 binding sites have been compared in human and guinea pig lung using quantitative in vitro receptor autoradiography with [125I]-Bolton Hunter-labelled substance P ([125I]-BH-SP). In addition, the effects on these sites of ovalbumin sensitization and challenge have been determined in guinea pig lung. 2. [125I]-BH-SP bound specifically and with high affinity to microvascular endothelium in both human and guinea pig lung, but to bronchial smooth muscle and pulmonary artery media in only guinea pig lung. 3. Specific binding of [125I]-BH-SP to guinea pig bronchial smooth muscle was positively correlated with airway diameter in the range 150-800 microns and was less dense in trachea than in main bronchi. 4. [125I]-BH-SP binding was inhibited by tachykinins with rank orders of affinity of SP > NKA > NKB (human microvessels) and SP > NKA = NKB (guinea pig bronchi and pulmonary arteries). NKA displayed a higher affinity for [125I]-BH-SP binding sites in human microvessels than in guinea pig tissues (P < 0.0001), indicating differences in selectivity for tachykinins between human and guinea pig NK1 receptors. 5. In both human and guinea pig lung, [125I]-BH-SP binding was inhibited by the specific tachykinin receptor antagonists FK888 (NK1 selective antagonist) and FK224 (mixed NK1/NK2 antagonist), with FK888 displaying equal affinity to SP and > 500 times higher affinity than FK224. SP, NKA, NKB and FK888 exhibited similar affinities for [125I]-BH-SP binding sites in both guinea pig arteries and bronchi.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 PMID:7534186
Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P
2017-07-01
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs
Tawhai, Merryn H; Hoffman, Eric A
2013-01-01
Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation is distributed to the peripheral tissue. The human airway structure spans more than 20 generations, beginning with the extra-thoracic airways (oral or nasal cavity, and through the pharynx and larynx to the trachea), then the conducting airways, the respiratory airways, and to the alveoli. The airways in individuals and sub-populations (by gender, age, ethnicity, and normal vs. diseased states) may exhibit different dimensions, branching patterns and angles, and thickness and rigidity. At the local level, one would like to capture detailed flow characteristics, e.g. local velocity profiles, shear stress, and pressure, for prediction of particle transport in an airway (lung structure) model that is specific to the geometry of an individual, to understand how inter-subject variation in airway geometry (normal or pathological) influences the transport and deposition of particles. In a systems biology – or multiscale modeling – approach, these local flow characteristics can be further integrated with epithelial cell models for the study of mechanotransduction. At the global (organ) level, one would like to match regional ventilation (lung function) that is specific to the individual, thus ensuring that the flow that transports inhaled particles is appropriately distributed throughout the lung model. Computational models that do not account for realistic distribution of ventilation are not capable of predicting realistic particle distribution or targeted drug deposition. Furthermore, the flow in the human lung can be transitional or turbulent in the upper and proximal airways, and becomes laminar in the distal airways. The flows in the laminar, transitional and turbulent regimes have different temporal and spatial scales. Therefore, modeling airway structure and predicting gas flow and particle transport at both local and global levels require image-guided multiscale modeling strategies. In this article, we will review the aforementioned three key aspects of CFD studies of the human lungs: airway structure (conducting airways), lung function (regional ventilation and boundary conditions), and flow characteristics (modeling of turbulent flow and its effect on particle transport). For modeling airway structure, we will focus on the conducting airways, and review both symmetric vs. asymmetric airway models, idealized vs. CT-based airway models, and multiscale subject-specific airway models. Imposition of physiological subject-specific boundary conditions (BCs) in CFD is essential to match regional ventilation in individuals, which is also critical in studying preferential deposition of inhaled aerosols in sub-populations, e.g. normals vs. asthmatics that may exhibit different ventilation patterns. Subject-specific regional ventilation defines flow distributions and characteristics in airway segments and bifurcations, which subsequently determines the transport and deposition of aerosols in the entire lungs. Turbulence models are needed to capture the transient and turbulent nature of the gas flow in the human lungs. Thus, the advantages and disadvantages of different turbulence models as well as their effects on particle transport will be discussed. The ultimate goal of the development is to identify sensitive structural and functional variables in sub-populations of normal and diseased lungs for potential clinical applications. PMID:23843310
Luciw, Paul A; Oslund, Karen L; Yang, Xiao-Wei; Adamson, Lourdes; Ravindran, Resmi; Canfield, Don R; Tarara, Ross; Hirst, Linda; Christensen, Miles; Lerche, Nicholas W; Offenstein, Heather; Lewinsohn, David; Ventimiglia, Frank; Brignolo, Laurie; Wisner, Erik R; Hyde, Dallas M
2011-11-01
Infection with Mycobacterium tuberculosis primarily produces a multifocal distribution of pulmonary granulomas in which the pathogen resides. Accordingly, quantitative assessment of the bacterial load and pathology is a substantial challenge in tuberculosis. Such assessments are critical for studies of the pathogenesis and for the development of vaccines and drugs in animal models of experimental M. tuberculosis infection. Stereology enables unbiased quantitation of three-dimensional objects from two-dimensional sections and thus is suited to quantify histological lesions. We have developed a protocol for stereological analysis of the lung in rhesus macaques inoculated with a pathogenic clinical strain of M. tuberculosis (Erdman strain). These animals exhibit a pattern of infection and tuberculosis similar to that of naturally infected humans. Conditions were optimized for collecting lung samples in a nonbiased, random manner. Bacterial load in these samples was assessed by a standard plating assay, and granulomas were graded and enumerated microscopically. Stereological analysis provided quantitative data that supported a significant correlation between bacterial load and lung granulomas. Thus this stereological approach enables a quantitative, statistically valid analysis of the impact of M. tuberculosis infection in the lung and will serve as an essential tool for objectively comparing the efficacy of drugs and vaccines.
Modeling pressure relationships of inspired air into the human lung bifurcations through simulations
NASA Astrophysics Data System (ADS)
Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana
2018-03-01
Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.
Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou
2018-01-08
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.
Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection
Nguyen, Bao-Ngoc H.; Azimzadeh, Agnes M.; Schroeder, Carsten; Buddensick, Thomas; Zhang, Tianshu; Laaris, Amal; Cochrane, Megan; Schuurman, Henk-Jan; Sachs, David H.; Allan, James S.; Pierson, Richard N.
2012-01-01
Background Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF+/+) pig lungs. Results GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms. PMID:21496117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less
PIXE analysis of mineral matter in thin sections of human lung
NASA Astrophysics Data System (ADS)
Annegarn, H. J.; Pillay, A. E.; Da Vies, J. C. A.; Faure, D.; Sellschop, J. P. F.
1988-12-01
It is postulated that insoluble mineral residues in the lungs of deceased miners may provide a quantitative measure of the integrated lifetime dust exposure. For epidemiological surveys rapid instrumental techniques are required to analyse representative samples of lung tissue. Particle-induced X-ray emission (PIXE) has been evaluated for analysis of microtomed slices of wax-embedded lung and lymph node (Hilar gland) tissue from deceased miners. The 50 μm slices, mounted on Mylar backings and placed in a He atmosphere, were irradiated using 3.2 MeV protons. PIXE analysis provided adequate sensitivity for key mineral elements including Si, Cr and Ti. The porous, nonuniform nature of lung tissue made it impossible to measure the tissue mass in the irradiated area, preventing the calculation of mass concentrations. Instead, biological sulphur was used as an internal standard, assuming that the fraction of S in soft, fat-free tissue is constant. Results are presented for lung and lymph node tissue from gold, chrome, copper, platinum and asbestos miners. Si mineral residues in lymph node tissue were found to be concentrated by a factor 50 relative to lung. Cr residues were clearly observed in the chrome miner's lung, but no excess of Cu was present in the copper miner's lung. There is evidence of preferential Si removal relative to Ti. Results warrant further development of PIXE for scanning of large numbers of lung samples prepared in the above manner.
Mangal, Sharad; Gao, Wei; Li, Tonglei; Zhou, Qi (Tony)
2017-01-01
Lung cancer is the second most prevalent and the deadliest among all cancer types. Chemotherapy is recommended for lung cancers to control tumor growth and to prolong patient survival. Systemic chemotherapy typically has very limited efficacy as well as severe systemic adverse effects, which are often attributed to the distribution of anticancer drugs to non-targeted sites. In contrast, inhalation routes permit the delivery of drugs directly to the lungs providing high local concentrations that may enhance the anti-tumor effect while alleviating systemic adverse effects. Preliminary studies in animals and humans have suggested that most inhaled chemotherapies are tolerable with manageable pulmonary adverse effects, including cough and bronchospasm. Promoting the deposition of anticancer drugs in tumorous cells and minimizing access to healthy lung cells can further augment the efficacy and reduce the risk of local toxicities caused by inhaled chemotherapy. Sustained release and tumor localization characteristics make nanoparticle formulations a promising candidate for the inhaled delivery of chemotherapeutic agents against lung cancers. However, the physiology of respiratory tracts and lung clearance mechanisms present key barriers for the effective deposition and retention of inhaled nanoparticle formulations in the lungs. Recent research has focused on the development of novel formulations to maximize lung deposition and to minimize pulmonary clearance of inhaled nanoparticles. This article systematically reviews the challenges and opportunities for the pulmonary delivery of nanoparticle formulations for the treatment of lung cancers. PMID:28504252
Chang, Yun Sil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Oh, Wonil; Yang, Yoon Sun; Park, Won Soon
2011-01-01
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this preclinical translation study was to optimize the dose of human UCB-derived MSCs in attenuating hyperoxia-induced lung injury in newborn rats. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (95% oxygen) or normoxia after birth for 14 days. Three different doses of human UCB-derived MSCs, 5 × 10(3) (HT1), 5 × 10(4) (HT2), and 5 × 10(5) (HT3), were delivered intratracheally at postnatal day (P) 5. At P14, lungs were harvested for analyses including morphometry for alveolarization, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining, myeoloperoxidase activity, mRNA level of tumor necross factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β), human glyceradehyde-3-phosphate dehydrogenase (GAPDH), and p47(phox), and collagen levels. Increases in TUNEL-positive cells were attenuated in all transplantation groups. However, hyperoxia-induced lung injuries, such as reduced alveolarization, as evidenced by increased mean linear intercept and mean alveolar volume, and increased collagen levels were significantly attenuated in both HT2 and HT3, but not in HT1, with better attenuation in HT3 than in HT2. Dose-dependent human GAPDH expression, indicative of the presence of human RNA in lung tissue, was observed only in the transplantation groups, with higher expression in HT3 than in HT2, and higher expression in HT2 than in HT1. Hyperoxia-induced inflammatory responses such as increased myeloperoxidase acitivity, mRNA levels of TNF-α, IL-1β, IL-6, and TGF-β of the lung tissue, and upregulation of both cytosolic and membrane p47(phox), indicative of oxidative stress, were significantly attenuated in both HT2 and HT3 but not in HT1. These results demonstrate that intratracheal transplantation of human UCB-derived MSCs with appropriate doses may attenuate hyperoxia-induced lung injury through active involvement of these cells in modulating host inflammatory responses and oxidative stress in neonatal rats.
76 FR 16631 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... of Committee: National Heart, Lung, and Blood Institute Special Emphasis Panel; Severe Asthma... Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7186...
75 FR 4092 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood..., Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge...
76 FR 30372 - National Heart, Lung, and Blood Institute; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: Heart, Lung, and Blood Initial Review... Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Room 7190, Bethesda, MD...
76 FR 1186 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Heart, Lung, and Blood Institute Special Emphasis Panel, Research Project In Organ Failure. Date...
78 FR 12767 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood....D., Scientific Review Officer, Office of Scientific Review/DERA, National, Heart, Lung, and Blood...
76 FR 30371 - National Heart, Lung, and Blood Institute; Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...: Shelley S. Sehnert, PhD, Scientific Review Officer, Office of Scientific Review/DERA, National Heart, Lung...
77 FR 18252 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
77 FR 9670 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood...., Scientific Review Officer, Review Branch/DERA, National Heart, Lung, and Blood Institute, 6701 Rockledge...
77 FR 16843 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and... clearly unwarranted invasion of personal privacy. Name of Committee: National Heart, Lung, and Blood... Review Officer, Office of Scientific Review/DERA, National Heart, Lung, and Blood Institute, 6701...
Benavent Acero, Fernando; Capobianco, Carla S; Garona, Juan; Cirigliano, Stéfano M; Perera, Yasser; Urtreger, Alejandro J; Perea, Silvio E; Alonso, Daniel F; Farina, Hernan G
2017-05-01
Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-κB signaling
Lu, Jinchang; Song, Guohui; Tang, Qinglian; Zou, Changye; Han, Feng; Zhao, Zhiqiang; Yong, Bicheng; Yin, Junqiang; Xu, Huaiyuan; Xie, Xianbiao; Kang, Tiebang; Lam, YingLee; Yang, Huiling; Shen, Jingnan; Wang, Jin
2015-01-01
Osteosarcoma is a common malignant bone tumor with a propensity to metastasize to the lungs. Epigenetic abnormalities have been demonstrated to underlie osteosarcoma development; however, the epigenetic mechanisms that are involved in metastasis are not yet clear. Here, we analyzed 2 syngeneic primary human osteosarcoma cell lines that exhibit disparate metastatic potential for differences in epigenetic modifications and expression. Using methylated DNA immunoprecipitation (MeDIP) and microarray expression analysis to screen for metastasis-associated genes, we identified Iroquois homeobox 1 (IRX1). In both human osteosarcoma cell lines and clinical osteosarcoma tissues, IRX1 overexpression was strongly associated with hypomethylation of its own promoter. Furthermore, experimental modulation of IRX1 in osteosarcoma cell lines profoundly altered metastatic activity, including migration, invasion, and resistance to anoikis in vitro, and influenced lung metastasis in murine models. These prometastatic effects of IRX1 were mediated by upregulation of CXCL14/NF-κB signaling. In serum from osteosarcoma patients, the presence of IRX1 hypomethylation in circulating tumor DNA reduced lung metastasis–free survival. Together, these results identify IRX1 as a prometastatic gene, implicate IRX1 hypomethylation as a potential molecular marker for lung metastasis, and suggest that epigenetic reversion of IRX1 activation may be beneficial for controlling osteosarcoma metastasis. PMID:25822025
Micro-imaging of the Mouse Lung via MRI
NASA Astrophysics Data System (ADS)
Wang, Wei
Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.