Science.gov

Sample records for human lung mast

  1. Human lung-derived mature mast cells cultured alone or with mouse 3T3 fibroblasts maintain an ultrastructural phenotype different from that of human mast cells that develop from human cord blood cells cultured with 3T3 fibroblasts.

    PubMed Central

    Dvorak, A. M.; Furitsu, T.; Estrella, P.; Ishizaka, T.

    1991-01-01

    Culture systems designed to maintain or develop human mast cells have proved difficult, yet these systems would provide valuable resources for future investigations of human mast cell biology. Cocultures of either isolated mature human lung mast cells (Levi-Schaffer et al., J Immunol 1987, 139:494-500) or human cord blood mononuclear cells (Furitsu, Proc Natl Acad Sci USA 1989, 86:10039-10043) with 3T3 embryonic mouse skin fibroblasts have implicated fibroblasts as an important factor in the successful maintenance and development of human mast cells in vitro. The authors cultured isolated, mature human lung mast cells either with or without 3T3 cells for 1 month and examined their ultrastructural phenotype. Mast cell viability in each circumstance was equivalent, but mast cell yield was improved in the presence of 3T3 cells. The ultrastructural phenotype was identical in both culture systems. Mast cells were shown to maintain the phenotype of their in vivo lung counterparts (ie, scroll granules predominanted, and numerous lipid bodies were present). This ultrastructural phenotype differs from that of mast cells that develop in cocultures of human cord blood cells and 3T3 cells, where developing mast cells with crystalline granules and few lipid bodies prevail, a phenotype much like that of human skin mast cells in vivo (Furitsu, Proc Natl Acad Sci USA 1989, 86:10039-10043). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1750506

  2. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    SciTech Connect

    Stevens, R.L.; Austen, K.F. ); Fox, C.C.; Lichtenstein, L.M. )

    1988-04-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  3. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells.

    PubMed Central

    Stevens, R L; Fox, C C; Lichtenstein, L M; Austen, K F

    1988-01-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of 35S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although [35S]heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. We here demonstrate that human lung mast cells of 96% purity incorporate [35S] sulfate into separate heparin and chondroitin sulfate proteoglycans in an approximately equal to 2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin [35S]sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin [35S]sulfate E proteoglycans and the [35S]heparin proteoglycans were exocytosed from the [35S]sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of 35S-labeled proteoglycans reside in the secretory granules of these human lung mast cells. PMID:3353378

  4. Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells.

    PubMed Central

    Leung, K B; Flint, K C; Brostoff, J; Hudspith, B N; Johnson, N M; Lau, H Y; Liu, W L; Pearce, F L

    1988-01-01

    Sodium cromoglycate and nedocromil sodium produced a dose dependent inhibition of histamine secretion from human pulmonary mast cells obtained by bronchoalveolar lavage and by enzymatic dissociation of lung parenchyma. Both compounds were significantly more active against the lavage cells than against the dispersed lung cells, and nedocromil sodium was an order of magnitude more effective than sodium cromoglycate against both cell types. Tachyphylaxis was observed with the parenchymal cells but not with the lavage cells. Nedocromil sodium and sodium cromoglycate also inhibited histamine release from the lavage cells of patients with sarcoidosis and extrinsic asthma. PMID:2462755

  5. Release of Elastase from Purified Human Lung Mast Cells and Basophils. Identification as a Hageman Factor Cleaving Enzyme

    DTIC Science & Technology

    1989-01-01

    heterogeneity and hyper- plasia in bleomycin -induced pulmonary fibrosis of rats. Am. Rev. Respir. Dis. 130:.797-902. 40. AGius, R. M., R. C. GoDFREY, and S. T...been shown to be elevated in human pulmonary disorders. Although the HF cleaving assay has been used to demonstrate the presence of functional elastase...FUJLMER, and R. G. CRYSTAL. 1979. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders. Lab, Invest. 40-.717-34. 38

  6. Mast Cells in Lung Homeostasis: Beyond Type I Hypersensitivity.

    PubMed

    Campillo-Navarro, Marcia; Chávez-Blanco, Alma D; Wong-Baeza, Isabel; Serafín-López, Jeanet; Flores-Mejía, Raúl; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2014-06-01

    Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases.

  7. Mast Cells in Lung Homeostasis: Beyond Type I Hypersensitivity

    PubMed Central

    Campillo-Navarro, Marcia; Chávez-Blanco, Alma D; Wong-Baeza, Isabel; Serafín-López, Jeanet; Flores-Mejía, Raúl; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2014-01-01

    Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases PMID:25484639

  8. Characterization of the EP receptor subtype that mediates the inhibitory effects of prostaglandin E2 on IgE-dependent secretion from human lung mast cells.

    PubMed

    Kay, L J; Gilbert, M; Pullen, N; Skerratt, S; Farrington, J; Seward, E P; Peachell, P T

    2013-07-01

    Prostaglandin E2 (PGE2 ) has been shown to inhibit IgE-dependent histamine release from human lung mast cells. This effect of PGE2 is believed to be mediated by EP2 receptors. However, definitive evidence that this is the case has been lacking in the absence of EP2 -selective antagonists. Moreover, recent evidence has suggested that PGE2 activates EP4 receptors to inhibit respiratory cell function. The aim of this study was to determine the receptor by which PGE2 inhibits human lung mast cell responses by using recently developed potent and selective EP2 and EP4 receptor antagonists alongside other established EP receptor ligands. The effects of non-selective (PGE2 , misoprostol), EP2 -selective (ONO-AE1-259, AH13205, butaprost-free acid) and EP4 -selective (L-902,688, TCS251) agonists on IgE-dependent histamine release and cyclic-AMP generation in mast cells were determined. The effects of EP2 -selective (PF-04418948, PF-04852946) and EP4 -selective (CJ-042794, L-161,982) antagonists on PGE2 responses of mast cells were studied. The expression of EP receptor subtypes was determined by RT-PCR. Prostaglandin E2 , EP2 agonists and EP4 agonists inhibited IgE-dependent histamine release from mast cells. PGE2 and EP2 agonists, but not EP4 agonists, increased cyclic-AMP levels in mast cells. EP4 -selective antagonists did not affect the PGE2 inhibition of histamine release, whereas EP2 -selective antagonists caused rightward shifts in the PGE2 concentration-response curves. RT-PCR studies indicated that mast cells expressed EP2 and EP4 receptors. Although human lung mast cells may express both EP2 and EP4 receptors, the principal mechanism by which PGE2 inhibits mediator release in mast cells is by activating EP2 receptors. © 2013 John Wiley & Sons Ltd.

  9. Human mast cell transcriptome project.

    PubMed

    Saito, H; Nakajima, T; Matsumoto, K

    2001-05-01

    After draft reading of the human genome sequence, systemic analysis of the transcriptome (the whole transcripts present in a cell) is progressing especially in commonly available cell types. Until recently, human mast cells were not commonly available. We have succeeded to generate a substantial number of human mast cells from umbilical cord blood and from adult peripheral blood progenitors. Then, we have examined messenger RNA selectively transcribed in these mast cells using high-density oligonucleotide probe arrays. Many unexpected but important transcripts were selectively expressed in human mast cells. We discuss the results obtained from transcriptome screening by introducing our data regarding mast-cell-specific genes.

  10. Mast cells promote melanoma colonization of lungs.

    PubMed

    Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar

    2016-10-18

    Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.

  11. Mast cells in airway diseases and interstitial lung disease.

    PubMed

    Cruse, Glenn; Bradding, Peter

    2016-05-05

    Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease.

  12. Histamine release from human buffy coat-derived mast cells.

    PubMed

    Wang, Xian Song; Lau, Hang Yung Alaster

    2007-04-01

    Mast cells are unique immune cells that release a spectrum of chemical mediators contributing to the inflammatory symptoms of allergic disorders. Although mast cell biology has been extensively studied in the rodents, research on human mast cells is hampered by the lack of a convenient preparation source. This problem has now been addressed by culturing human mast cells from CD34(+) progenitors. We have recently discovered that human buffy coat preparations from local blood banks are an abundant and convenient source of progenitors for culturing mature mast cells which express functional high affinity IgE receptors and contain histamine and tryptase in their granules. In the current study, we further characterize these buffy coat-derived mast cells by studying their responses to common mast cell secretagogues and stabilizers. Mature human mast cells were obtained by culturing isolated progenitors in methylcellulose containing stem cell factor (SCF), IL-3 and IL-6 for 6 weeks and subsequently in liquid medium containing SCF and IL-6 for another 6 to 8 weeks. Following sensitisation with human IgE, these cells released histamine dose-dependently upon activation by anti-IgE and calcium ionophores while compound 48/80 and substance P were relatively ineffective. When the effects of anti-asthmatic agents on anti-IgE-induced mediator release from these cells were compared, only the beta(2)-adrenoceptor agonists and phosphodiesterase inhibitors produced dose-dependent inhibition but not cromolyn or nedocromil. In total, mast cells cultured from human buffy coat progenitors shared similar functional properties of MC(T) subtype of mast cells found predominantly in human lung parenchyma and intestinal mucosa.

  13. Desensitization of β2-adrenoceptor-mediated responses by short-acting β2-adrenoceptor agonists in human lung mast cells

    PubMed Central

    Chong, Lee K; Suvarna, Kim; Chess-Williams, Russell; Peachell, Peter T

    2003-01-01

    The principal aim of the present study was to determine whether long-term treatment of human lung mast cells (HLMC) with the clinically-relevant β2-adrenoceptor agonists, salbutamol and terbutaline, leads to desensitization of β2-adrenoceptor-mediated responses in these cells. The non-selective β-adrenoceptor agonist, isoprenaline, and the selective β2-adrenoceptor agonists, salbutamol and terbutaline, inhibited the IgE-mediated release of histamine from HLMC. Salbutamol (pD2; 7.7±0.3) and terbutaline (pD2; 7.3±0.2) were roughly equipotent as inhibitors of histamine release although both agonists were less potent than isoprenaline (pD2; 8.6±0.2). Isoprenaline (10−5 M), salbutamol (10−5 M) and terbutaline (10−5 M) enhanced total cell cAMP levels in HLMC over basal by 361±90, 150±38 and 165±35%, respectively. Long-term exposure (24 h) of HLMC to either salbutamol (10−7 M) or terbutaline (10−7 M) led to a subsequent reduction in the effectiveness of salbutamol and terbutaline (both 10−9–10−4 M) to inhibit histamine release. However, salbutamol was significantly (P<0.05) more effective than terbutaline at promoting the functional desensitization. Radioligand binding studies, using iodinated cyanopindolol, were performed to determine β2-adrenoceptor density in cell membranes after pretreatment (24 h) of cells with either salbutamol (10−6 M) or terbutaline (10−6 M). Both agonists reduced β2-adrenoceptor density in membranes to about the same extent (∼25% reduction) but these changes in receptor density were not statistically significant (P>0.05). These data indicate that long-term exposure of mast cells to salbutamol causes greater levels of desensitization to β2-adrenoceptor-mediated responses in HLMC than terbutaline. These findings may have wider clinical significance in the context of asthma treatment as compromised mast cell inhibition could result following long-term exposure of mast cells to short-acting bronchodilators. PMID

  14. Mast cells in human health and disease.

    PubMed

    DeBruin, Erin J; Gold, Matthew; Lo, Bernard C; Snyder, Kimberly; Cait, Alissa; Lasic, Nikola; Lopez, Martin; McNagny, Kelly M; Hughes, Michael R

    2015-01-01

    Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.

  15. Mast cells in the human alveolar wall: an electronmicroscopic study.

    PubMed Central

    Fox, B; Bull, T B; Guz, A

    1981-01-01

    Mast cells were identified by electronmicroscopy in the alveolar wall of the lung in 20 subjects (10 normal, 10 abnormal). A quantitative and qualitative study was made of the mast cells. In the normal lung there was an average concentration of 350 mast cells/mm2 of alveolar wall and in the abnormal 523/mm2. Mast cells occupied approximately 1.6-2.1% of the area of the alveolar wall. There was marked variation in the structure of the mast cell granules but no differences between those in the normal and abnormal lungs. There was evidence that constant degranulation of mast cells may be occurring in the lung. The role that alveolar mast cells may play in the vasoconstrictor response to alveolar hypoxia is discussed. It is suggested that the tachypnoea present in asthma may partly be due to release of mediators from sensitised mast cells within the alveolar wall. Images PMID:7328180

  16. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  17. The human mast cell: an overview.

    PubMed

    Krishnaswamy, Guha; Ajitawi, Omar; Chi, David S

    2006-01-01

    Mast cells are fascinating, multifunctional, tissue-dwelling cells that have been traditionally associated with the allergic response. However, recent studies suggest these cells may be capable of regulating inflammation, host defense, and innate immunity. The purpose of this review is to present salient aspects of mast cell biology in the context of mast cell function in physiology and disease. After their development from bone marrow-derived progenitor cells that are primed with stem cell factor, mast cells continue their maturation and differentiation in peripheral tissue, developing into two well-described subsets of cells, MC(T) and MC(TC) cells. These cells can be distinguished on the basis of their tissue location, dependence on T lymphocytes, and their granule contents. Mast cells can undergo activation by antigens/allergens, superoxides, complement proteins, neuropeptides, and lipoproteins. After activation, mast cells express histamine, leukotrienes, and prostanoids, as well as proteases, and many cytokines and chemokines. These mediators may be pivotal to the genesis of an inflammatory response. By virtue of their location and mediator expression, mast cells may play an active role in many diseases, such as allergy, parasitic diseases, atherosclerosis, malignancy, asthma, pulmonary fibrosis, and arthritis. Recent data also suggest that mast cells play a vital role in host defense against pathogens by elaboration of tumor necrosis factor alpha. Mast cells also express the Toll-like receptor, which may further accentuate their role in the immune-inflammatory response. This chapter summarizes the many well-known and novel functional aspects of human mast cell biology and emphasizes their unique role in the inflammatory response.

  18. Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis.

    PubMed

    Cha, Seung-Ick; Chang, Christine S; Kim, Eun Kyung; Lee, Jae W; Matthay, Michael A; Golden, Jeffrey A; Elicker, Brett M; Jones, Kirk; Collard, Harold R; Wolters, Paul J

    2012-07-01

    The relationship of mast cells to the pathogenesis of lung fibrosis remains undefined despite recognition of their presence in the lungs of patients with pulmonary fibrosis. This study was performed to characterize the relationship of mast cells to fibrotic lung diseases. Lung tissues from patients with idiopathic pulmonary fibrosis (IPF), chronic hypersensitivity pneumonitis (HP), systemic sclerosis (SSc)-related interstitial lung disease (ILD) and normal individuals were subjected to chymase immunostaining and the mast cell density quantified. Eosinophils were quantified by immunostaining for eosinophil peroxidase. Changes in lung function were correlated with mast cell density. Lung tissue obtained from IPF patients had a higher density of chymase-immunoreactive mast cells than that from patients with HP, SSc-related ILD or normal lungs. IPF lung tissue had a higher density of eosinophils than normal lung. There was no correlation between mast cell density and eosinophil density in IPF lung. IPF patients with high mast cell density had a slower rate of decline in forced vital capacity (FVC) than IPF patients with low mast cell density. Mast cell density in IPF lungs is higher than in other fibrotic lung diseases and normal lungs. Increased mast cell density in IPF may predict slower disease progression. © 2012 Blackwell Publishing Ltd.

  19. Lung mast cell density defines a subpopulation of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Cha, Seung-Ick; Chang, Christine S; Kim, Eun Kyung; Lee, Jae W.; Matthay, Michael A; Golden, Jeffrey A; Elicker, Brett M; Jones, Kirk; Collard, Harold R; Wolters, Paul J

    2012-01-01

    Aims The relationship of mast cells to the pathogenesis of lung fibrosis remains undefined despite recognition of their presence in the lungs of patients with pulmonary fibrosis. This study was performed to characterize the relationship of mast cells to fibrotic lung diseases. Methods and results Lung tissues from patients with idiopathic pulmonary fibrosis (IPF), chronic hypersensitivity pneumonitis (HP), systemic sclerosis (SSc)-related interstitial lung disease (ILD) and normal individuals were subjected to chymase immunostaining and the mast cell density quantified. Eosinophils were quantified by immunostaining for eosinophil peroxidase. Changes in lung function were correlated with mast cell density. Lung tissue obtained from IPF patients had a higher density of chymase-immunoreactive mast cells than that from patients with HP, SSc-related ILD or normal lungs. IPF lung tissue had a higher density of eosinophils than normal lung. There was no correlation between mast cell density and eosinophil density in IPF lung. IPF patients with high mast cell density had a slower rate of decline in forced vital capacity (FVC) than IPF patients with low mast cell density. Conclusions Mast cell density in IPF lungs is higher than in other fibrotic lung diseases and normal lungs. Increased mast cell density in IPF may predict slower disease progression. PMID:22394225

  20. Mast cells play an important role in Chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway

    PubMed Central

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D.; Alsabeh, Randa; Slepenkin, Anatoly V.; Peterson, Ellena; Crother, Timothy R.; Arditi, Moshe

    2015-01-01

    Mast cells are known as central players in allergy and anaphylaxis, and play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae (Cpn) is an important human pathogen, but it is unclear what role mast cells play during Cpn infection. We infected C57BL/6 (WT) and mast cell-deficient mice, Kitw-sh/w-sh (Wsh), with Cpn. Wsh mice showed improved survival than WT, with fewer cells in Wsh BALF despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT. Cromolyn, a mast cell stabilizer, reduced BAL cells and bacterial burden similar to Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BAL cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation while Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of MMP-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during Cpn infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for Cpn. PMID:25754739

  1. Development of human mast cells in vitro.

    PubMed Central

    Furitsu, T; Saito, H; Dvorak, A M; Schwartz, L B; Irani, A M; Burdick, J F; Ishizaka, K; Ishizaka, T

    1989-01-01

    Nucleated cells of human umbilical cord blood were cocultured with mouse skin-derived 3T3 fibroblasts. After 7-8 weeks in culture, when the number of the other hematopoietic cells declined, metachromatic granule-containing mononuclear cells appeared in the cultures, and the number of the cells increased up to 12 weeks. After 11-14 weeks in culture, the metachromatic mononuclear cells comprised a substantial portion of the cultured cells. These cells contained 1.8-2 micrograms of histamine per 10(6) cells and bore receptors for IgE. All of the cells contained tryptase in their granules. Electron microscopic analysis showed that these cells were mature human mast cells, clearly different from the basophilic granulocytes or eosinophils that arise in a variety of circumstances in cord blood cell cultures. Most of the cultured mast cells expressed some granules with regular crystalline arrays and contained both tryptase and chymase, and thus resembled human skin mast cells. Images PMID:2532357

  2. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    PubMed

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  3. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway.

    PubMed

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Alsabeh, Randa; Slepenkin, Anatoly V; Peterson, Ellena; Crother, Timothy R; Arditi, Moshe

    2015-04-15

    Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.

  4. Mast cells in human and experimental cardiometabolic diseases.

    PubMed

    Shi, Guo-Ping; Bot, Ilze; Kovanen, Petri T

    2015-11-01

    Mast cells, like many other types of inflammatory cell, perform pleiotropic roles in cardiometabolic diseases such as atherosclerosis, abdominal aortic aneurysms, obesity, and diabetes mellitus, as well as complications associated with these diseases. Low numbers of mast cells are present in the heart, aorta, and adipose tissue of healthy humans, but patients with cardiometabolic diseases and animals with experimentally-induced cardiometabolic pathologies have high numbers of mast cells with increased activity in the affected tissues. Mediators released by the activated mast cells, such as chemokines, cytokines, growth factors, heparin, histamine, and proteases, not only function as biomarkers of cardiometabolic diseases, but might also directly contribute to the pathogenesis of such diseases. Mast-cell mediators impede the functions of vascular cells, the integrity of the extracellular matrix, and the activity of other inflammatory cells, thereby contributing to the pathobiology of the conditions at multiple levels. In mouse models, mast-cell activation aggravates the progression of various cardiometabolic pathologies, whereas a genetic deficiency or pharmacological stabilization of mast cells, or depletion or inhibition of specific mast-cell mediators, tends to delay the progression of such conditions. Pharmacological inhibition of mast-cell activation or their targeted effector functions offers potential novel therapeutic strategies for patients with cardiometabolic disorders.

  5. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body.

    PubMed

    Kambe, Naotomo; Hiramatsu, Hidefumi; Shimonaka, Mika; Fujino, Hisanori; Nishikomori, Ryuta; Heike, Toshio; Ito, Mamoru; Kobayashi, Kimio; Ueyama, Yoshito; Matsuyoshi, Norihisa; Miyachi, Yoshiki; Nakahata, Tatsutoshi

    2004-02-01

    The transplantation of primitive human cells into sublethally irradiated immune-deficient mice is the well-established in vivo system for the investigation of human hematopoietic stem cell function. Although mast cells are the progeny of hematopoietic stem cells, human mast cell development in mice that underwent human hematopoietic stem cell transplantation has not been reported. Here we report on human mast cell development after xenotransplantation of human hematopoietic stem cells into nonobese diabetic severe combined immunodeficient (NOD/SCID)/gamma(c)(null) (NOG) mice with severe combined immunodeficiency and interleukin 2 (IL-2) receptor gamma-chain allelic mutation. Supported by the murine environment, human mast cell clusters developed in mouse dermis, but they required more time than other forms of human cell reconstitution. In lung and gastric tract, mucosal-type mast cells containing tryptase but lacking chymase located on gastric mucosa and in alveoli, whereas connective tissue-type mast cells containing both tryptase and chymase located on gastric submucosa and around major airways, as in the human body. Mast cell development was also observed in lymph nodes, spleen, and peritoneal cavity but not in the peripheral blood. Xenotransplantation of human hematopoietic stem cells into NOG mice can be expected to result in a highly effective model for the investigation of human mast cell development and function in vivo.

  6. Generation, isolation, and maintenance of human mast cells and mast cell lines derived from peripheral blood or cord blood.

    PubMed

    Rådinger, Madeleine; Jensen, Bettina M; Kuehn, Hye Sun; Kirshenbaum, Arnold; Gilfillan, Alasdair M

    2010-08-01

    Antigen-mediated mast cell activation is a pivotal step in the initiation of allergic disorders including anaphylaxis and atopy. To date, studies aimed at investigating the mechanisms regulating these responses, and studies designed to identify potential ways to prevent them, have primarily been conducted in rodent mast cells. However, to understand how these responses pertain to human disease, and to investigate and develop novel therapies for the treatment of human mast cell-driven disease, human mast cell models may have greater relevance. Recently, a number of systems have been developed to allow investigators to readily obtain sufficient quantities of human mast cells to conduct these studies. These mast cells release the appropriate suite of inflammatory mediators in response to known mast cell activators including antigen. These systems have also been employed to examine the signaling events regulating these responses. Proof of principle studies has also demonstrated utility of these systems for the identification of potential inhibitors of mast cell activation and growth. In this unit, techniques for the development and culture of human mast cells from their progenitors and the culture of human mast cell lines are described. The relative merits and drawbacks of each model are also described.

  7. Orai and TRPC channel characterization in FcεRI-mediated calcium signaling and mediator secretion in human mast cells.

    PubMed

    Wajdner, Hannah E; Farrington, Jasmine; Barnard, Claire; Peachell, Peter T; Schnackenberg, Christine G; Marino, Joseph P; Xu, Xiaoping; Affleck, Karen; Begg, Malcolm; Seward, Elizabeth P

    2017-03-01

    Inappropriate activation of mast cells via the FcεRI receptor leads to the release of inflammatory mediators and symptoms of allergic disease. Calcium influx is a critical regulator of mast cell signaling and is required for exocytosis of preformed mediators and for synthesis of eicosanoids, cytokines and chemokines. Studies in rodent and human mast cells have identified Orai calcium channels as key contributors to FcεRI-initiated mediator release. However, until now the role of TRPC calcium channels in FcεRI-mediated human mast cell signaling has not been published. Here, we show evidence for the expression of Orai 1,2, and 3 and TRPC1 and 6 in primary human lung mast cells and the LAD2 human mast cell line but, we only find evidence of functional contribution of Orai and not TRPC channels to FcεRI-mediated calcium entry. Calcium imaging experiments, utilizing an Orai selective antagonist (Synta66) showed the contribution of Orai to FcεRI-mediated signaling in human mast cells. Although, the use of a TRPC3/6 selective antagonist and agonist (GSK-3503A and GSK-2934A, respectively) did not reveal evidence for TRPC6 contribution to FcεRI-mediated calcium signaling in human mast cells. Similarly, inactivation of STIM1-regulated TRPC1 in human mast cells (as tested by transfecting cells with STIM1-KK(684-685)EE - TRPC1 gating mutant) failed to alter FcεRI-mediated calcium signaling in LAD2 human mast cells. Mediator release assays confirm that FcεRI-mediated calcium influx through Orai is necessary for histamine and TNFα release but is differentially involved in the generation of cytokines and eicosanoids.

  8. Influenza Infection in Mice Induces Accumulation of Lung Mast Cells through the Recruitment and Maturation of Mast Cell Progenitors

    PubMed Central

    Zarnegar, Behdad; Mendez-Enriquez, Erika; Westin, Annika; Söderberg, Cecilia; Dahlin, Joakim S.; Grönvik, Kjell-Olov; Hallgren, Jenny

    2017-01-01

    Mast cells (MCs) are powerful immune cells that mature in the peripheral tissues from bone marrow (BM)-derived mast cell progenitors (MCp). Accumulation of MCs in lung compartments where they are normally absent is thought to enhance symptoms in asthma. The enrichment of lung MCs is also observed in mice subjected to models of allergic airway inflammation. However, whether other types of lung inflammation trigger increased number of MCp, which give rise to MCs, is unknown. Here, mouse-adapted H1N1 influenza A was used as a model of respiratory virus infection. Intranasal administration of the virus induced expression of VCAM-1 on the lung vascular endothelium and an extensive increase in integrin β7hi lung MCp. Experiments were performed to distinguish whether the influenza-induced increase in the number of lung MCp was triggered mainly by recruitment or in situ cell proliferation. A similar proportion of lung MCp from influenza-infected and PBS control mice were found to be in a proliferative state. Furthermore, BM chimeric mice were used in which the possibility of influenza-induced in situ cell proliferation of host MCp was prevented. Influenza infection in the chimeric mice induced a similar number of lung MCp as in normal mice. These experiments demonstrated that recruitment of MCp to the lung is the major mechanism behind the influenza-induced increase in lung MCp. Fifteen days post-infection, the influenza infection had elicited an immature MC population expressing intermediate levels of integrin β7, which was absent in controls. At the same time point, an increased number of toluidine blue+ MCs was detected in the upper central airways. When the inflammation was resolved, the MCs that accumulated in the lung upon influenza infection were gradually lost. In summary, our study reveals that influenza infection induces a transient accumulation of lung MCs through the recruitment and maturation of MCp. We speculate that temporary augmented numbers of lung MCs

  9. Do variations in mast cell hyperplasia account for differences in radiation-induced lung injury among different mouse strains, rats and nonhuman primates?

    PubMed

    Down, Julian D; Medhora, Meetha; Jackson, Isabel L; Cline, J Mark; Vujaskovic, Zeljko

    2013-08-01

    The role of mast cell infiltrates in the pathology of radiation damage to the lung has been a subject of continuing investigation over the past four decades. This has been accompanied by a number of proposals as to how mast cells and the secretory products thereof participate in the generation of acute inflammation (pneumonitis) and the chronic process of collagen deposition (fibrosis). An additional pathophysiology examines the possible connection between mast cell hyperplasia and pulmonary hypertension through the release of vasoactive mediators. The timing and magnitude of pneumonitis and fibrosis are known to vary tremendously among different genetic mouse strains and animal species. Therefore, we have systematically compared mast cell numbers in lung sections from nine mouse strains, two rat strains and nonhuman primates (NHP) after whole thorax irradiation (WTI) at doses ranging from 10-15 Gy and at the time of entering respiratory distress. Mice of the BALB/c strain had a dramatic increase in interstitial mast cell numbers, similar to WAG/Rij and August rats, while relatively low levels of mast cell infiltrate were observed in other mouse strains (CBA, C3H, B6, C57L, WHT and TO mice). Enumeration of mast cell number in five NHPs (rhesus macaque), exhibiting severe pneumonitis at 17 weeks after 10 Gy WTI, also indicated a low response shared by the majority of mouse strains. There appeared to be no relationship between the mast cell response and the strain-dependent susceptibility towards pneumonitis or fibrosis. Further investigations are required to explore the possible participation of mast cells in mediating specific vascular responses and whether a genetically diverse mast cell response occurs in humans.

  10. Do Variations in Mast Cell Hyperplasia Account for Differences in Radiation-Induced Lung Injury among Different Mouse Strains, Rats and Nonhuman Primates?

    PubMed Central

    Down, Julian D.; Medhora, Meetha; Jackson, Isabel L.; Cline, J. Mark; Vujaskovic, Zeljko

    2013-01-01

    The role of mast cell infiltrates in the pathology of radiation damage to the lung has been a subject of continuing investigation over the past four decades. This has been accompanied by a number of proposals as to how mast cells and the secretory products thereof participate in the generation of acute inflammation (pneumonitis) and the chronic process of collagen deposition (fibrosis). An additional pathophysiology examines the possible connection between mast cell hyperplasia and pulmonary hypertension through the release of vasoactive mediators. The timing and magnitude of pneumonitis and fibrosis are known to vary tremendously among different genetic mouse strains and animal species. Therefore, we have systematically compared mast cell numbers in lung sections from nine mouse strains, two rat strains and nonhuman primates (NHP) after whole thorax irradiation (WTI) at doses ranging from 10–15 Gy and at the time of entering respiratory distress. Mice of the BALB/c strain had a dramatic increase in interstitial mast cell numbers, similar to WAG/Rij and August rats, while relatively low levels of mast cell infiltrate were observed in other mouse strains (CBA, C3H, B6, C57L, WHT and TO mice). Enumeration of mast cell number in five NHPs (rhesus macaque), exhibiting severe pneumonitis at 17 weeks after 10 Gy WTI, also indicated a low response shared by the majority of mouse strains. There appeared to be no relationship between the mast cell response and the strain-dependent susceptibility towards pneumonitis or fibrosis. Further investigations are required to explore the possible participation of mast cells in mediating specific vascular responses and whether a genetically diverse mast cell response occurs in humans. PMID:23819595

  11. The mast cell - B-cell axis in lung vascular remodeling and pulmonary hypertension.

    PubMed

    Breitling, Siegfried; Hui, Zhang; Zabini, Diana; Hu, Yijie; Hoffmann, Julia; Goldenberg, Neil M; Tabuchi, Arata; Buelow, Roland; Dos Santos, Claudia; Kuebler, Wolfgang Michael

    2017-02-24

    Over the past years, a critical role for the immune system and in particular, for mast cells, in the pathogenesis of pulmonary hypertension (PH) has emerged. However, the way in which mast cells promote PH is still poorly understood. Here, we investigated the mechanisms by which mast cells may contribute to PH, specifically focusing on the interaction between the innate and adaptive immune response and the role of B-cells and autoimmunity. Experiments were performed in Sprague Dawley rats and B-cell deficient JH-KO rats in the monocrotaline, sugen-hypoxia and the aortic banding model of PH. Hemodynamics, cell infiltration, IL-6 expression, and vascular remodeling were analyzed. Gene array analyses revealed constituents of immunoglobulins as most prominently regulated mast cell dependent genes in the lung in experimental PH. IL-6 was shown to link mast cells to B-cells, as a) IL-6 was upregulated and colocalized with mast cells and was reduced by mast cell stabilizers, and b) IL-6 or mast cell blockade reduced B-cells in lungs of monocrotaline-treated rats. A functional role for B-cells in PH was demonstrated, in that either blocking B-cells by an anti-CD20 antibody or B-cell deficiency in JH-KO rats attenuated right ventricular systolic pressure and vascular remodeling in experimental PH. We here identify a mast cell - B-cell axis driven by IL-6 as critical immune pathway in the pathophysiology of PH. Our results provide novel insights into the role of the immune system in PH, which may be therapeutically exploited by targeted immunotherapy.

  12. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  13. Mast cell heterogeneity in non-human primates

    SciTech Connect

    Barrett, K.E.; Szucs, E.F.; Metcalfe, D.D.

    1986-03-05

    Mast cells of rodents may be subdivided in terms of their properties, but the extent of such heterogeneity in man and higher animals is still unknown. The authors have compared lung (LMC) and intestinal (IMC) mast cells obtained from individual monkeys. LMC contained more histamine (HA) than IMC (6.61+/-1.3 vs. 1.6+/-0.6 pg/cell, means+/-SEM, n=3). LMC released more HA (17.7+/-2.1% vs. 9.2+/-1.0%, means+/-SEM, n=16) and also generated more LTC/sub 4/ equivalents as measured by radioimmunoassay (range 13.4-41.5 vs. 3.0-4.0 ng/10/sup 6/ mast cells) following an anaphylactic stimulus. The majority (>90%) of LMC stained metachromatically under conditions appropriate for heparin-containing cells, whereas IMC required more forcing conditions to display metachromasia. In contrast to these quantitative and qualitative mediator differences, functional responses of LMC and IMC were similar. Thus, HA release was inhibited comparably by theophylline, isoprenaline and dibutyryl cyclic AMP, but quercetin was slightly more active on IMC. Substance P caused dose-related HA release from both cell types, although the amount released varied between individual animal, (range LMC 1.2-20.2%, IMC 1.8-23.0%, n=4). Other neuropeptides (pentagastrin) vasoactive intestinal peptide, neurotensin, somatostatin) did not release HA. They conclude that mast cell heterogeneity in higher animals may be reflected more by cytochemical rather than functional differences between mast cell classes.

  14. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  15. Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family.

    PubMed Central

    Vanderslice, P; Ballinger, S M; Tam, E K; Goldstein, S M; Craik, C S; Caughey, G H

    1990-01-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the approximately 1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family. Images PMID:2187193

  16. Lin− CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors

    PubMed Central

    Dahlin, Joakim S.; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell

    2016-01-01

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow–derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34+ progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin−) CD34hi CD117int/hi FcεRI+ progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell–like phenotype, although with a slow cell division capacity in vitro. Isolated Lin− CD34hi CD117int/hi FcεRI+ blood cells had an immature mast cell–like appearance and expressed high levels of many mast cell–related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription–polymerase chain reaction. Altogether, we propose that the Lin− CD34hi CD117int/hi FcεRI+ blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin− CD34hi CD117int/hi FcεRI+ blood mast cell progenitors than asthmatics with normal lung function. PMID:26626992

  17. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    PubMed

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function.

  18. Mercury induces inflammatory mediator release from human mast cells

    PubMed Central

    2010-01-01

    Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD) have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2) on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs) were stimulated by HgCl2 (0.1-10 μM) for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF) and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively) from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p < 0.05). Addition of HgCl2 (0.1 μM) to the proinflammatory neuropeptide substance P (SP, 0.1 μM) had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p < 0.05) from hCBMCs compared to control cells (182 ± 57 pg/106 cells), and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM) compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p < 0.05). Addition of HgCl2 (0.1 μM) to SP (5 μM) further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD

  19. Enhanced histamine release from lung mast cells of guinea pigs exposed to sulfuric acid aerosols

    SciTech Connect

    Fujimaki, Hidekazu ); Katayama, Noboru; Wakamori, Kazuo )

    1992-06-01

    To clarify the relationship between air pollution and mast cell response, the effects of sulfuric acid aerosols on histamine release from lung mast cells of guinea pigs were investigated. Guinea pigs were exposed to 0.3, 1.0 and 3.2 mg/m{sup 3} sulfuric acid (H{sub 2}SO{sub 4}) aerosols or 4 ppm nitrogen dioxide (NO{sub 2}) for 2 and 4 weeks. After the exposure, lung mast cell suspensions were isolated by collagenase treatment and antigen- or A23187-induced histamine release was measured. Antigen-induced histamine release from mast cells was significantly enhanced by the exposure to 1.0 and 3.2 mg/m{sup 3} H{sub 2}SO{sub 4} for 2 weeks, but exposure to H{sub 2}SO{sub 4} for 4 weeks did not show the enhancement of antigen-induced histamine release. A23187-induced histamine release was significantly enhanced by the exposure to 1.0 mg/m{sup 3} H{sub 2}SO{sub 4} or 4 ppm NO{sub 2} for 2 weeks, but suppression of histamine release from lung mast cells stimulated with A23187 was observed by the exposure to 3.2 mg/m{sup 3} H{sub 2}So{sub 4} for 4 weeks. The exposure to 0.3 mg/m{sup 3} H{sub 2}So{sub 4} showed no changes in antigen- and A23187-induced histamine release. The combination of 1.0 mg/m{sup 3} H{sub 2}So{sub 4} with 4 ppm NO{sub 2} for 2 weeks resulted in no changes in antigen- and A23187-induced histamine release. These results suggested that functional properties of lung mast cells may be altered by a low concentration of H{sub 2}So{sub 4} aerosol exposure.

  20. A mast cell secretagogue, compound 48/80, prevents the accumulation of hyaluronan in lung tissue injured by ionizing irradiation

    SciTech Connect

    Nilsson, K.; Bjermer, L.; Hellstroem, S.H.; Henriksson, R.; Haellgren, R. )

    1990-02-01

    Irradiation with a single dose of 30 Grey on the basal regions of the lungs of Sprague-Dawley rats induced a peribronchial and alveolar inflammation. Infiltration of mast cells in the edematous alveolar interstitial tissue and also in the peribronchial tissue were characteristic features of the lesion. The appearance of mast cells was already seen 4 wk after irradiation and by weeks 6 to 8 there was a heavy infiltration. The staining properties suggested that they were connective tissue-type mast cells. The infiltration of mast cells was paralleled by an accumulation of hyaluronan (hyaluronic acid) in the alveolar interstitial tissue 6 and 8 wk after irradiation. The recovery of hyaluronan (HA) during bronchoalveolar lavage (BAL) of the lungs also increased at this time. Treatment with a mast cell secretagogue, compound 48/80, induced a distinct reduction of granulated mast cells in the alveolar tissue. Regular treatment with compound 48/80 from the time of irradiation considerably reduced the HA recovery during BAL and the HA accumulation in the interstitial tissue but did not affect the interstitial infiltration of mononuclear cells and polymorphonuclear leukocytes. By contrast, an accumulation of HA in the alveolar interstitial space was induced when compound 48/80 was given not until mast cell infiltration of the lung had started. The effects of compound 48/80 indicate that the connective tissue response after lung irradiation is dependent on whether or not mast cell degranulation is induced before or after the mast cell infiltration of the alveolar tissue.

  1. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases

    SciTech Connect

    Reynolds, D.S.; Gurley, D.S.; Stevens, R.L.; Austen, K.F.; Serafin, W.E. Brigham and Women's Hospital, Boston, MA ); Sugarbaker, D.J. )

    1989-12-01

    Human skin and lung mast cells and rodent peritoneal cells contain a carboxypeptidase in their secretory granules. The authors have screened human lung cDNA libraries with a mouse mast cell carboxypeptidase A (MC-CPA) cDNA probe to isolate a near-full-length cDNA that encodes human MC-CPA. The 5{prime} end of the human MC-CPA transcript was defined by direct mRNA sequencing and by isolation and partial sequencing of the human MC-CPA gene. Human MC-CPA is predicted to be translated as a 417 amino acid preproenzyme which includes a 15 amino acid signal peptide and a 94-amino acid activation peptide. The mature human MC-CPA enzyme has a predicted size of 36.1 kDa, a net positive charge of 16 at neutral pH, and 86% amino acid sequence identity with mouse MC-CPA. DNA blot analyses showed that human MC-CPA mRNA is transcribed from a single locus in the human genome. Comparison of the human MC-CPA with mouse MC-CPA and with three rat pancreatic carboxypeptidases shows that these enzymes are encoded by distinct but homologous genes.

  2. In Vitro Desensitization of Human Skin Mast Cells

    PubMed Central

    Zhao, Wei; Gomez, Gregorio; Macey, Matthew; Kepley, Christopher L.

    2013-01-01

    Desensitization is a clinical procedure whereby incremental doses of a drug are administered over several hours to a sensitive patient until a therapeutic dose and clinical tolerance are achieved. Clinical tolerance may occur in part by attenuating the mast cell response. In the present study, primary human skin mast cells were used to establish and characterize an in vitro model of desensitization. Mast cells in culture were armed with allergen-specific (4-hydroxy-3-nitro-phenylacety and Der p2) and non-specific IgE antibodies, and then desensitized by incremental exposures to 4-hydroxy-3-nitrophenylacety-BSA. This desensitization procedure abrogated the subsequent degranulation response to the desensitizing allergen, to an unrelated allergen, and to IgG anti-FcεRI, but not to C5a, substance P, compound 48/80, and calcium ionophore. Desensitized cells regained their FcεRI-dependent degranulation capability by 24–48 h after free allergen had been removed. Therefore, sensitized human skin mast cells are reversibly desensitized in vitro by exposure to incremental doses of that allergen, which also cross-desensitizes them to an unrelated allergen. PMID:22009002

  3. Lung mast cells are a source of secreted phospholipases A2

    PubMed Central

    Triggiani, Massimo; Giannattasio, Giorgio; Calabrese, Cecilia; Loffredo, Stefania; Granata, Francescopaolo; Fiorello, Alfonso; Santini, Mario; Gelb, Michael H.; Marone, Gianni

    2009-01-01

    Background Secreted phospholipases A2 (sPLA2s) are released in plasma and other biologic fluids of patients with inflammatory, autoimmune, and allergic diseases. Objective We sought to evaluate sPLA2 activity in the bronchoalveolar lavage fluid (BALF) of asthmatic patients and to examine the expression and release of sPLA2s from primary human lung mast cells (HLMCs). Methods sPLA2 activity was measured in BALF and supernatants of either unstimulated or anti-IgE–activated HLMCs as hydrolysis of oleic acid from radiolabeled Escherichia coli membranes. Expression of sPLA2s was examined by using RT-PCR. The release of cysteinyl leukotriene (LT) C4 was measured by means of enzyme immunoassay. Results Phospholipase A2 (PLA2) activity was higher in the BALF of asthmatic patients than in the control group. BALF PLA2 activity was blocked by the sPLA2 inhibitors dithiothreitol and Me-Indoxam but not by the cytosolic PLA2 inhibitor AZ-1. HLMCs spontaneously released a PLA2 activity that was increased on stimulation with anti-IgE. This PLA2 activity was blocked by dithiothreitol and Me-Indoxam but not by AZ-1. HLMCs constitutively express mRNA for group IB, IIA, IID, IIE, IIF, III, V, X, XIIA, and XIIB sPLA2s. Anti-IgE did not modify the expression of sPLA2s. The cell-impermeable inhibitor Me-Indoxam significantly reduced (up to 40%) the production of LTC4 from anti-IgE–stimulated HLMCs. Conclusions sPLA2 activity is increased in the airways of asthmatic patients. HLMCs express multiple sPLA2s and release 1 or more of them when activated by anti-IgE. The sPLA2s released by mast cells contribute to LTC4 production by acting in an autocrine fashion. Mast cells can be a source of sPLA2s in the airways of asthmatic patients. PMID:19541351

  4. Human mast cells costimulate T cells through a CD28-independent interaction.

    PubMed

    Suurmond, Jolien; Dorjée, Annemarie L; Huizinga, Tom W J; Toes, René E M

    2016-05-01

    Mast cells are innate immune cells usually residing in peripheral tissues, where they are likely to activate T-cell responses. Similar to other myeloid immune cells, mast cells can function as antigen-presenting cells. However, little is known about the capacity of human mast cells to costimulate CD4(+) T cells. Here, we studied the T-cell stimulatory potential of human mast cells. Peripheral blood derived mast cells were generated and cocultured with isolated CD4(+) T cells. In the presence of T-cell receptor triggering using anti-CD3, mast cells promoted strong proliferation of T cells, which was two- to fivefold stronger than the "T-cell promoting capacity" of monocytes. The interplay between mast cells and T cells was dependent on cell-cell contact, suggesting that costimulatory molecules on the mast cell surface are responsible for the effect. However, in contrast to monocytes, the T-cell costimulation by mast cells was independent of the classical costimulatory molecule CD28, or that of OX40L, ICOSL, or LIGHT. Our data show that mast cells can costimulate human CD4(+) T cells to induce strong T-cell proliferation, but that therapies aiming at disrupting the interaction of CD28 and B7 molecules do not inhibit mast cell mediated T-cell activation.

  5. CD11c+ cells are required for antigen-induced increase of mast cells in the lung.

    PubMed

    Dahlin, Joakim S; Feinstein, Ricardo; Cui, Yue; Heyman, Birgitta; Hallgren, Jenny

    2012-10-15

    Patients with allergic asthma have more lung mast cells, which likely worsens the symptoms. In experimental asthma, CD11c(+) cells have to be present during the challenge phase for several features of allergic inflammation to occur. Whether CD11c(+) cells play a role for Ag-induced increases of lung mast cells is unknown. In this study, we used diphtheria toxin treatment of sensitized CD11c-diphtheria toxin receptor transgenic mice to deplete CD11c(+) cells. We demonstrate that recruitment of mast cell progenitors to the lung is substantially reduced when CD11c(+) cells are depleted during the challenge phase. This correlated with an impaired induction of endothelial VCAM-1 and led to a significantly reduced number of mature mast cells 1 wk after challenge. Collectively, these data suggest that Ag challenge stimulates CD11c(+) cells to produce cytokines and/or chemokines required for VCAM-1 upregulation on the lung endothelium, which in turn is crucial for the Ag-induced mast cell progenitor recruitment and the increase in mast cell numbers.

  6. The production and secretion of complement component C1q by human mast cells.

    PubMed

    van Schaarenburg, Rosanne A; Suurmond, Jolien; Habets, Kim L L; Brouwer, Mieke C; Wouters, Diana; Kurreeman, Fina A S; Huizinga, Tom W J; Toes, René E M; Trouw, Leendert A

    2016-10-01

    C1q is the initiation molecule of the classical pathway of the complement system and is produced by macrophages and immature dendritic cells. As mast cells share the same myeloid progenitor cells, we have studied whether also mast cells can produce and secrete C1q. Mast cells were generated in vitro from CD34+ progenitor cells from buffy coats or cord blood. Fully differentiated mast cells were shown by both RNA sequencing and qPCR to express C1QA, C1QB and C1QC. C1q produced by mast cells has a similar molecular make-up as serum C1q. Reconstituting C1q depleted serum with mast cell supernatant in haemolytic assays, indicated that C1q secreted by mast cells is functionally active. The level of C1q in supernatants produced under basal conditions was considerably enhanced upon stimulation with LPS, dexamethasone in combination with IFN- γ or via FcεRI triggering. Mast cells in human tissues stained positive for C1q in both healthy and in inflamed tissue. Moreover, mast cells in healthy and diseased skin appear to be the predominant C1q positive cells. Together, our data reveal that mast cells are able to produce and secrete functional active C1q and indicate mast cells as a local source of C1q in human tissue.

  7. Mast cell phenotype, TNFα expression and degranulation status in non-small cell lung cancer

    PubMed Central

    Shikotra, A.; Ohri, C. M.; Green, R. H.; Waller, D. A.; Bradding, P.

    2016-01-01

    Mast cell infiltration of tumour islets represents a survival advantage in non-small cell lung cancer (NSCLC). The phenotype and activation status of these mast cells is unknown. We investigated the mast cell phenotype in terms of protease content (tryptase-only [MCT], tryptase + chymase [MCTC]) and tumour necrosis factor-alpha (TNFα) expression, and extent of degranulation, in NSCLC tumour stroma and islets. Surgically resected tumours from 24 patients with extended survival (ES; mean survival 86.5 months) were compared with 25 patients with poor survival (PS; mean survival 8.0 months) by immunohistochemistry. Both MCT and MCTC in tumour islets were higher in ES (20.0 and 5.6 cells/mm2 respectively) compared to PS patients (0.0 cells/mm2) (p < 0.0001). Both phenotypes expressed TNFα in the islets and stroma. In ES 44% of MCT and 37% of MCTC expressed TNFα in the tumour islets. MCT in the ES stroma were more degranulated than in those with PS (median degranulation index = 2.24 versus 1.73 respectively) (p = 0.0022), and ES islet mast cells (2.24 compared to 1.71, p < 0.0001). Since both MCT and MCTC infiltrating tumour islets in ES NSCLC patients express TNFα, the cytotoxic activity of this cytokine may confer improved survival in these patients. Manipulating mast cell microlocalisation and functional responses in NSCLC may offer a novel approach to the treatment of this disease. PMID:27922077

  8. Ablation of human skin mast cells in situ by lysosomotropic agents.

    PubMed

    Hagforsen, Eva; Paivandy, Aida; Lampinen, Maria; Weström, Simone; Calounova, Gabriela; Melo, Fabio R; Rollman, Ola; Pejler, Gunnar

    2015-07-01

    Mast cells are known to have a detrimental impact on numerous types of inflammatory skin diseases such as contact dermatitis, atopic eczema and cutaneous mastocytosis. Regimens that dampen skin mast cell-mediated activities can thus offer an attractive therapeutic option under such circumstances. As mast cells are known to secrete a large array of potentially pathogenic compounds, both from preformed stores in secretory lysosomes (granules) and after de novo synthesis, mere inhibition of degranulation or interference with individual mast cell mediators may not be sufficient to provide an effective blockade of harmful mast cell activities. An alternative strategy may therefore be to locally reduce skin mast cell numbers. Here, we explored the possibility of using lysosomotropic agents for this purpose, appreciating the fact that mast cell granules contain bioactive compounds prone to trigger apoptosis if released into the cytosolic compartment. Based on this principle, we show that incubation of human skin punch biopsies with the lysosomotropic agents siramesine or Leu-Leu methyl ester preferably ablated the mast cell population, without causing any gross adverse effects on the skin morphology. Subsequent analysis revealed that mast cells treated with lysosomotropic agents predominantly underwent apoptotic rather than necrotic cell death. In summary, this study raises the possibility of using lysosomotropic agents as a novel approach to targeting deleterious mast cell populations in cutaneous mastocytosis and other skin disorders negatively influenced by mast cells.

  9. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis

    PubMed Central

    Moretti, Silvia; Renga, Giorgia; Oikonomou, Vasilis; Galosi, Claudia; Pariano, Marilena; Iannitti, Rossana G.; Borghi, Monica; Puccetti, Matteo; De Zuani, Marco; Pucillo, Carlo E.; Paolicelli, Giuseppe; Zelante, Teresa; Renauld, Jean-Christophe; Bereshchenko, Oxana; Sportoletti, Paolo; Lucidi, Vincenzina; Russo, Maria Chiara; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; Talesa, Vincenzo Nicola; Napolioni, Valerio; Romani, Luigina

    2017-01-01

    T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF. PMID:28090087

  10. Human mast cell mediator cocktail excites neurons in human and guinea-pig enteric nervous system.

    PubMed

    Schemann, M; Michel, K; Ceregrzyn, M; Zeller, F; Seidl, S; Bischoff, S C

    2005-04-01

    Neuroimmune interactions are an integral part of gut physiology and involved in the pathogenesis of inflammatory and functional bowel disorders. Mast cells and their mediators are important conveyors in the communication from the innate enteric immune system to the enteric nervous system (ENS). However, it is not known whether a mediator cocktail released from activated human mast cells affects neural activity in the ENS. We used the Multi-Site Optical Recording Technique to image single cell activity in guinea-pig and human ENS after application of a mast cell mediator cocktail (MCMC) that was released from isolated human intestinal mucosa mast cells stimulated by IgE-receptor cross-linking. Local application of MCMC onto individual ganglia evoked an excitatory response consisting of action potential discharge. This excitatory response occurred in 31%, 38% or 11% neurons of guinea-pig submucous plexus, human submucous plexus, or guinea-pig myenteric plexus, respectively. Compound action potentials from nerve fibres or fast excitatory synaptic inputs were not affected by MCMC. This study demonstrates immunoneural signalling in the human gut and revealed for the first time that an MCMC released from stimulated human intestinal mast cells induces excitatory actions in the human and guinea-pig ENS.

  11. The development of human mast cells. An historical reappraisal.

    PubMed

    Ribatti, Domenico

    2016-03-15

    The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34(+)/CD117(+)/CD13(+)multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, different MC phenotypes can develop in different tissues and organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [The role of mast cell population in aortic intima in development of human atherosclerosis].

    PubMed

    Zhdanov, V S; Drobkova, I P; Tcherpachenko, N M; Sirotkin, V N

    2002-01-01

    To assess the role of mast cells in development of human atherosclerosis. Autopsy material (transverse cross-sections of the aorta and membranous preparations of intima) from 53 persons who died of accidental causes. Original method of the study of aortic cellular populations on membranous preparations of intima allowed to analyze character of accumulation of lipids in fatty streaks, as well as changes of mast cells and relative amount of various cellular populations in intact intima and during development of early atherosclerotic lesions. In intact intima mast cells are consistently found, their quantity depends on age and degree of intimal hyperplasia. Density of mast cell population in age groups 17-29 and 30-49 years was 5.8 and 9.6 cells/mm2, respectively. Ratio of mast cells to total amount of lymphocytes and monocytes was 1:6. Two types of fatty streaks ('early' and 'transitional') can be distinguished depending on structure of lipid inclusions and cellular composition. Compared with intact intima 'early' fatty streaks have increased content of lymphocytes and monocytes. Average density of mast cells in early streaks is 12.2 cells/mm2 with ratio of mast cells to total amount of lymphocytes and monocytes 1:11. Development of 'transitional' fatty streaks preceding plaque formation is characterized by signs of inflammation with multifold increase of content of lymphocytes and monocytes and ratio of amount of mast cells to that of mononuclear cells 1:20. Density of mast cells including their degranulating forms is the highest (18.1 cells/mm2) on periphery of 'transitional' fatty streaks while substantially smaller amount of mast cells (3.2 cells/mm2) can be found in central areas of these streaks. Mast cells actively participate in atherogenesis, development and progression of atherosclerotic lesions. Formation of fatty streaks in human aorta is associated with signs of immune inflammation (lymphocytic-monocytic reaction and increased amount of mast cells).

  13. Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis.

    PubMed

    Bryce, Paul J; Falahati, Rustom; Kenney, Laurie L; Leung, John; Bebbington, Christopher; Tomasevic, Nenad; Krier, Rebecca A; Hsu, Chia-Lin; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A

    2016-09-01

    Mast cells are a critical component of allergic responses in humans, and animal models that allow the in vivo investigation of their contribution to allergy and evaluation of new human-specific therapeutics are urgently needed. To develop a new humanized mouse model that supports human mast cell engraftment and human IgE-dependent allergic responses. This model is based on the NOD-scid IL2rg(null)SCF/GM-CSF/IL3 (NSG-SGM3) strain of mice engrafted with human thymus, liver, and hematopoietic stem cells (termed Bone marrow, Liver, Thymus [BLT]). Large numbers of human mast cells develop in NSG-SGM3 BLT mice and populate the immune system, peritoneal cavity, and peripheral tissues. The human mast cells in NSG-SGM3 BLT mice are phenotypically similar to primary human mast cells and express CD117, tryptase, and FcεRI. These mast cells undergo degranulation in an IgE-dependent and -independent manner, and can be readily cultured in vitro for additional studies. Intradermal priming of engrafted NSG-SGM3 mice with a chimeric IgE containing human constant regions resulted in the development of a robust passive cutaneous anaphylaxis response. Moreover, we describe the first report of a human mast cell antigen-dependent passive systemic anaphylaxis response in primed mice. NSG-SGM3 BLT mice provide a readily available source of human mast cells for investigation of mast cell biology and a preclinical model of passive cutaneous anaphylaxis and passive systemic anaphylaxis that can be used to investigate the pathogenesis of human allergic responses and to test new therapeutics before their advancement to the clinic. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Virus-Infected Human Mast Cells Enhance Natural Killer Cell Functions.

    PubMed

    Portales-Cervantes, Liliana; Haidl, Ian D; Lee, Patrick W; Marshall, Jean S

    2017-01-01

    Mucosal surfaces are protected from infection by both structural and sentinel cells, such as mast cells. The mast cell's role in antiviral responses is poorly understood; however, they selectively recruit natural killer (NK) cells following infection. Here, the ability of virus-infected mast cells to enhance NK cell functions was examined. Cord blood-derived human mast cells infected with reovirus (Reo-CBMC) and subsequent mast cell products were used for the stimulation of human NK cells. NK cells upregulated the CD69 molecule and cytotoxicity-related genes, and demonstrated increased cytotoxic activity in response to Reo-CBMC soluble products. NK cell interferon (IFN)-γ production was also promoted in the presence of interleukin (IL)-18. In vivo, SCID mice injected with Reo-CBMC in a subcutaneous Matrigel model, could recruit and activate murine NK cells, a property not shared by normal human fibroblasts. Soluble products of Reo-CBMC included IL-10, TNF, type I and type III IFNs. Blockade of the type I IFN receptor abrogated NK cell activation. Furthermore, reovirus-infected mast cells expressed multiple IFN-α subtypes not observed in reovirus-infected fibroblasts or epithelial cells. Our data define an important mast cell IFN response, not shared by structural cells, and a subsequent novel mast cell-NK cell immune axis in human antiviral host defense.

  15. Codeine induces human mast cell chemokine and cytokine production: involvement of G-protein activation

    PubMed Central

    Sheen, C. H.; Schleimer, R. P.; Kulka, M.

    2007-01-01

    Background Activation of mast cells and the systemic release of histamine are common side effects of opiates such as codeine and morphine. In some individuals, codeine not only elicits a sizable early response due to mast cell degranulation, but can also lead to late cutaneous allergic inflammation possibly through the production of chemokines. However, individuals who exhibit a late phase reaction to codeine often do not react to its synthetic analog, meperidine. The goal of this study was to test whether codeine and meperidine induce secretion of inflammatory mediators in human mast cells. Methods To characterize opiate activation of human mast cells, we stimulated cultured human (LAD2 cell line and CD34+-derived) mast cells with codeine and meperidine and measured degranulation and chemokine production. Results Codeine, but not meperidine, activated human mast cell degranulation within 30 min in a dose-dependent manner. Degranulation was blocked by the phosphoinositol-3 kinase (PI3K) inhibitor, wortmannin, and pertussis toxin but not by Ro-31-8220, a PKC inhibitor or forskolin, a cyclic adenylyl cyclase activator. After 3 and 8 h of stimulation, codeine, but not meperidine, activated human mast cells to release monocyte chemoattractant protein-1 (CCL2), regulated on activation, normal T expressed and secreted (RANTES, CCL5) and interleukin-8 (CXCL 8) but not inducible protein-10 (CXCL10). Conclusions Codeine activates human mast cell degranulation and chemokine production by activating protein kinase A and PI3 kinase, possibly leading to NF-κB activation. Therefore, opiates may regulate late phase allergic inflammation by activating chemokine production by human mast cells. PMID:17441793

  16. Lipid body formation during maturation of human mast cells.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  17. Intracellular RNA recognition pathway activates strong anti-viral response in human mast cells.

    PubMed

    Lappalainen, J; Rintahaka, J; Kovanen, P T; Matikainen, S; Eklund, K K

    2013-04-01

    Mast cells have been implicated in the first line of defence against parasites and bacteria, but less is known about their role in anti-viral responses. Allergic diseases often exacerbate during viral infection, suggesting an increased activation of mast cells in the process. In this study we investigated human mast cell response to double-stranded RNA and viral infection. Cultured human mast cells were incubated with poly(I:C), a synthetic RNA analogue and live Sendai virus as a model of RNA parainfluenza virus infection, and analysed for their anti-viral response. Mast cells responded to intracellular poly(I:C) by inducing type 1 and type 3 interferons and TNF-α. In contrast, extracellular Toll-like receptor 3 (TLR)-3-activating poly(I:C) failed to induce such response. Infection of mast cells with live Sendai virus induced an anti-viral response similar to that of intracellular poly(I:C). Type 1, but not type 3 interferons, up-regulated the expression of melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-inducible gene-1 (RIG-1), and TLR-3, demonstrating that human mast cells do not express functional receptors for type 3 interferons. Furthermore, virus infection induced the anti-viral proteins MxA and IFIT3 in human mast cells. In conclusion, our results support the notion that mast cells can recognize an invading virus through intracellular virus sensors and produce high amounts of type 1 and type 3 interferons and the anti-viral proteins human myxovirus resistance gene A (MxA) and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in response to the virus infection.

  18. P2X7 receptors induce degranulation in human mast cells.

    PubMed

    Wareham, Kathryn J; Seward, Elizabeth P

    2016-06-01

    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated.

  19. Importance of mast cells in human periapical inflammatory lesions.

    PubMed

    Ledesma-Montes, Constantino; Garcés-Ortíz, Maricela; Rosales-García, Gilberto; Hernández-Guerrero, Juan Carlos

    2004-12-01

    The role of mast cells (MCs) in periapical inflammatory lesions is not well understood. The objective of this work was to quantify MC numbers in human periapical lesions with the aim to clarify their role in the pathogenesis of these lesions. We analyzed the slides of 64 human periapical inflammatory lesions stained with pH 8.0 toluidine blue technique, quantified the number of MCs, and evaluated any correlation with age, gender, size, and location. The results of this study suggest that MCs were more numerous in females (p < 0.01); MC numbers were higher in biopsies from granulomas with proliferating epithelium and lower in biopsies from chronic apical abscesses; MC counts did not correlate with patients' age or size. MCs were observed more commonly in areas containing inflammatory infiltrate and degranulation was a frequent finding in these zones. Our results suggest that MCs play an active role in the pathogenesis of the periapical inflammatory lesions. The potential role of MCs related with the initiation, development, and persistence of the periapical inflammatory process are discussed.

  20. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    PubMed

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells.

    PubMed

    Lopes, José Pedro; Stylianou, Marios; Nilsson, Gunnar; Urban, Constantin F

    2015-07-20

    Immunosuppressed patients are frequently afflicted with severe mycoses caused by opportunistic fungal pathogens. Besides being a commensal, colonizing predominantly skin and mucosal surfaces, Candida albicans is the most common human fungal pathogen. Mast cells are present in tissues prone to fungal colonization being expectedly among the first immune cells to get into contact with C. albicans. However, mast cell-fungus interaction remains a neglected area of study. Here we show that human mast cells mounted specific responses towards C. albicans. Collectively, mast cell responses included the launch of initial, intermediate and late phase components determined by the secretion of granular proteins and cytokines. Initially mast cells reduced fungal viability and occasionally internalized yeasts. C. albicans could evade ingestion by intracellular growth leading to cellular death. Furthermore, secreted factors in the supernatants of infected cells recruited neutrophils, but not monocytes. Late stages were marked by the release of cytokines that are known to be anti-inflammatory suggesting a modulation of initial responses. C. albicans-infected mast cells formed extracellular DNA traps, which ensnared but did not kill the fungus. Our results suggest that mast cells serve as tissue sentinels modulating antifungal immune responses during C. albicans infection. Consequently, these findings open new doors for understanding fungal pathogenicity.

  2. Estimation of the total number of mast cells in the human umbilical cord. A methodological study.

    PubMed

    Engberg Damsgaard, T M; Windelborg Nielsen, B; Sørensen, F B; Henriques, U; Schiøtz, P O

    1992-09-01

    The aim of the present study was to estimate the total number of mast cells in the human umbilical cord. Using 50 microns-thick paraffin sections, made from a systematic random sample of umbilical cord, the total number of mast cells per cord was estimated using a combination of the optical disector and fractionated sampling. The mast cell of the human umbilical cord was found in Wharton's jelly, most frequently in close proximity to the three blood vessels. No consistent pattern of variation in mast cell numbers from the fetal end of the umbilical cord towards the placenta was seen. The total number of mast cells found in the umbilical cord was 5,200,000 (median), range 2,800,000-16,800,000 (n = 7), that is 156,000 mast cells per gram umbilical cord (median), range 48,000-267,000. Thus, the umbilical cord constitutes an adequate source of mast cells for further investigation of these cells in the newborn, e.g. for describing their functional and secretory characteristics and possible clinical relevance in relation to the development of allergic, inflammatory and immunological diseases in infancy and childhood.

  3. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal.

    PubMed

    Naccache, Alexandre; Louiset, Estelle; Duparc, Céline; Laquerrière, Annie; Patrier, Sophie; Renouf, Sylvie; Gomez-Sanchez, Celso E; Mukai, Kuniaki; Lefebvre, Hervé; Castanet, Mireille

    2016-10-15

    Mast cells are present in the human adult adrenal with a potential role in the regulation of aldosterone secretion in both normal cortex and adrenocortical adenomas. We have investigated the human developing adrenal gland for the presence of mast cells in parallel with steroidogenic enzymes profile and serotonin signaling pathway. RT-QPCR and immunohistochemical studies were performed on adrenals at 16-41 weeks of gestation (WG). Tryptase-immunopositive mast cells were found from 18 WG in the adrenal subcapsular layer, close to 3βHSD- and CYP11B2-immunoreactive cells, firstly detected at 18 and 24 WG, respectively. Tryptophan hydroxylase and serotonin receptor type 4 expression increased at 30 WG before the CYP11B2 expression surge. In addition, HDL and LDL cholesterol receptors were expressed in the subcapsular zone from 24 WG. Altogether, our findings suggest the implication of mast cells and serotonin in the establishment of the mineralocorticoid synthesizing pathway during fetal adrenal development.

  4. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha.

    PubMed

    Lin, T J; Issekutz, T B; Marshall, J S

    2000-07-01

    Mature mast cells are generally considered to be less mobile cells residing within tissue sites. However, mast cell numbers are known to increase in the context of inflammation, and mast cells are recognized to be important in regulating local neutrophil infiltration. CXC chemokines may play a critical role in this process. In this study two human mast cell-like lines, HMC-1 and KU812, and human cord blood-derived primary cultured mast cells were employed to examine role of stromal cell-derived factor-1 (SDF-1) in regulating mast cell migration and mediator production. It was demonstrated that human mast cells constitutively express mRNA and protein for CXCR4. Stimulation of human mast cells with SDF-1, the only known ligand for CXCR4, induced a significant increase in intracellular calcium levels. In vitro, SDF-1 alpha mediated dose-dependent migration of human cord blood-derived mast cells and HMC-1 cells across HUVEC monolayers. Although SDF-1 alpha did not induce mast cell degranulation, it selectively stimulated production of the neutrophil chemoattractant IL-8 without affecting TNF-alpha, IL-1beta, IL-6, GM-CSF, IFN-gamma, or RANTES production, providing further evidence of the selective modulation of mast cell function by this chemokine. These findings provide a novel, SDF-1-dependent mechanism for mast cell transendothelial migration and functional regulation, which may have important implications for the local regulation of mast cells in disease.

  5. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival

    PubMed Central

    Ainsua-Enrich, Erola; Serrano-Candelas, Eva; Álvarez-Errico, Damiana; Picado, César; Sayós, Joan; Rivera, Juan; Martín, Margarita

    2015-01-01

    3BP2 is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor (SCF) is necessary for mast cell development, proliferation and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting PI3K and MAP kinase pathways in human mast cells from HMC-1, LAD2 (human mast cell lines) and CD34+-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal human mast cells as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase 3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased MITF expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2 silenced cells. Moreover, downregulation of KIT expression by miRNA221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates human mast cell survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders. PMID:25810396

  6. Mast cell and histamine content of human bronchoalveolar lavage fluid.

    PubMed Central

    Agius, R M; Godfrey, R C; Holgate, S T

    1985-01-01

    Bronchoalveolar lavage was performed in 97 patients including control patients with bronchial carcinoma (24) and patients with sarcoidosis (20), cryptogenic fibrosing alveolitis (9), and asthma (4), and others. Cytocentrifuged slides were stained by two methods: May-Grünwald Giemsa and toluidine blue. In the last 32 subjects the bronchoalveolar lavage fluid was separated into supernatant and cell pellet for the subsequent assay of the performed mast cell mediator, histamine. Comparison of the two methods of staining showed a bias towards toluidine blue. Controls had a differential mean (SE) mast cell count of 0.07% (0.01%). Higher counts were noted in cryptogenic fibrosing alveolitis--0.61% (0.15%) (p less than 0.001)--and in sarcoidosis--0.14% (0.02%) (p less than 0.05). There was a strong correlation between absolute mast cell counts and cell lysate histamine concentration (r = 0.78, p less than 0.001). Less strong, significant, correlations between supernatant histamine concentration and absolute mast cell counts (r = 0.48, p less than 0.01) or cell lysate histamine concentration (r = 0.72, p less than 0.01) were also found. Derived mean values of histamine per mast cell ranged from 3.7 to 10.9 picograms. The mean histamine content of lavage fluid supernatant as a percentage of the total lavage fluid histamine was 24.9% (3.3%). The possible clinical significance of these findings is discussed. Images PMID:4060097

  7. Mast cell degranulation via MRGPRX2 by isolated human albumin fragments.

    PubMed

    Karhu, T; Akiyama, K; Vuolteenaho, O; Bergmann, U; Naito, T; Tatemoto, K; Herzig, K-H

    2017-08-24

    Mast cells are important modulators of the human immune system via their release of several inflammatory mediators and proteases. The release can be activated by different pathways: the classical immunoglobulin E-dependent pathway and by the non-immunological immunoglobulin E-independent pathway. MAS-related G protein-coupled receptor X2 (MRGPRX2) is expressed in mast cells and it is one of the endogenous receptor responsible for the IgE-independent activation of human mast cell. The MRGPRX2 is classified as orphan receptor and unlike most GPCRs, the MRGPRX2 recognizes a wide range of basic molecules. Thus, there still might be several unknown ligands for the receptor. MRGPRX2 activating peptides were isolated from human plasma using consecutive HPLC purification steps. The isolation process was monitored with MRGPRX2 transfected HEK 293 cells. The isolated peptides were sequenced by MS and synthetized. The synthetic peptides were used to determine degranulation of the human LAD 2 mast cell line by measuring β-hexosaminidase release. Three endogenous MRGPRX2 activating peptides were isolated from human plasma. These peptides are identified as fragments of albumin. The isolated fragments activate MRGPRX2 and degranulate MRGPRX2 expressing LAD 2 cells in dose-dependent manner. The isolated basic peptides generated from human albumin are able to degranulate mast cells via the MRGPRX2. These endogenous albumin fragments, cleaved from albumin by mast cell secreted proteases, provide a possible pathway for self-perpetuating mast cell dependent inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mast-cell-releasing tryptase triggers acute lung injury induced by small intestinal ischemia-reperfusion by activating PAR-2 in rats.

    PubMed

    Gan, Xiaoliang; Liu, Dezhao; Huang, Pinjie; Gao, Wanling; Chen, Xinzhi; Hei, Ziqing

    2012-06-01

    Mast cell has been demonstrated to be involved in the small intestinal ischemia-reperfusion (IIR) injury, however, the precise role of tryptase released from mast cell on acute lung injury(ALI) induced by IIR remains to be elucidated, our study aimed to observe the roles of tryptase on ALI triggered by IIR and its underlying mechanism. Adult SD rats were randomized into sham-operated group, sole IIR group in which rats were subjected to 75 min superior mesenteric artery occlusion followed by 4 h reperfusion, or IIR being respectively treated with cromolyn sodium, protamine, and compound 48/80. The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for assays for protein expressions of tryptase and mast cell protease 7 (MCP7) and protease-activated receptor 2 (PAR-2). Pulmonary mast cell number and levels of IL-8 were quantified. Lung histologic injury scores and lung water content were measured. IIR resulted in lung injury evidenced as significant increases in lung histological scores and lung water contents, accompanied with concomitant increases of expressions of tryptase and MCP7, and elevations in PAR-2 expressions and IL-8 levels in lungs. Stabilizing mast cell with cromolyn sodium and inhibiting tryptase with protamine significantly reduced IIR-mediated ALI and the above biochemical changes while activating mast cell with compound 48/80 further aggravated IIR-mediated ALI and the increases of above parameters. Tryptase released from mast cells mediates ALI induced by intestinal ischemia-reperfusion by activating PAR-2 to produce IL-8.

  9. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2014-10-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.

  10. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Qu, Meihua; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2014-01-01

    Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca2+ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals. PMID:25147231

  11. Isolation of mast cells from rabbit lung and liver: comparison of histamine release induced by the hypnotics Althesin and propanidid.

    PubMed

    Ennis, M; Lorenz, W; Gerland, W; Heise, J

    1987-04-01

    The enzyme collagenase was used to disperse rabbit lung and liver into their component cells. The resulting cell suspensions contained ca. 6.9% (lung) or 6.5% (liver) mast cells and were used in studies of histamine release without further purification. Both cell suspensions exhibited a low spontaneous release of histamine (ca. 6.6% lung, ca. 7.2% liver). Both cell types responded to challenge with anti-rabbit serum with a maximum release of the amine of ca. 22% (lung) and ca. 45% (liver). Concanavalin A challenge generally resulted in bell-shaped dose response curves, however some lung preparations did not respond. The rabbit cells were refractory to stimulation by Compound 48/80 and dextran. However a dose-dependent release of histamine was elicited after challenge with the detergents cremophor El, TN (12-hydroxystearic acid polymerized with ethylene oxide, degree of polymerization 15) and the hypnotics Althesin and propanidid. The maximum release observed depended on which cell preparation had been used. These results further emphasize the functional heterogeneity of mast cells from both different species and from different organs within the same species.

  12. Effects of human hair and nail proteins and their films on rat mast cells.

    PubMed

    Fujii, Toshihiro; Murai, Shinya; Ohkawa, Kousaku; Hirai, Toshihiro

    2008-06-01

    Human hair and nail are valuable materials for producing individual corresponding biocompatible materials. A rapid and convenient protein extraction method (Shindai method) and novel procedures for preparing their protein films from their extracts have been developed using human hair and nail. The effects of the human hair and nail proteins and their films on histamine release from rat peritoneal mast cells were investigated. Both protein solutions and their films, mainly consisting of keratins and matrix proteins, did not induce histamine release from the mast cells. Scanning electron microscopy (SEM) also showed that the mast cells were only slightly affected by adding the human hair and nail proteins or by incubating on their protein films. The IgE-dependent histamine release was inhibited by the hair and nail proteins and their films. Incubation of the mast cells with the hair and nail proteins prior to the addition of the IgE serum resulted in a high inhibition (50%) of the histamine release, while the inhibition was approximately 10% when the protein solutions were mixed with the mast cells after incubation with the IgE serum. These results suggest that the human hair and nail proteins and their films will be useful materials for antiallergic actions.

  13. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature.

  14. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  15. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    PubMed Central

    Hollander, Camilla; Nyström, Max; Janciauskiene, Sabina; Westin, Ulla

    2003-01-01

    Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI) is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p < 0.01) in a SLPI-producing, type II-like alveolar cell line, (A549) when co-cultured with HMC-1 cells, but not in an HMC-1-conditioned medium, for 96 hours. By contrast, increased SLPI mRNA expression (by 1.58-fold, p < 0.05) was found under the same experimental conditions. Immunohistochemical analysis revealed mast cell transmigration in co-culture with SLPI-producing A549 cells for 72 and 96 hours. Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response. PMID:12952550

  16. Annexin 1: differential expression in tumor and mast cells in human larynx cancer.

    PubMed

    Silistino-Souza, Rosana; Rodrigues-Lisoni, Flávia C; Cury, Patricia M; Maniglia, José V; Raposo, Luis S; Tajara, Eloiza H; Christian, Helen C; Oliani, Sonia M

    2007-06-15

    Annexin 1 protein (ANXA1) expression was evaluated in tumor and mast cells in human larynx cancer and control epithelium. The effect of the exogenous ANXA1 (peptide Ac 2-26) was also examined during the cellular growth of the Hep-2 human larynx epidermoid carcinoma cell line. This peptide inhibited the proliferation of the Hep-2 cells within 144 hr. In surgical tissue specimens from 20 patients with larynx cancer, ultrastructural immunocytochemistry analysis showed in vivo down-regulation of ANXA1 expression in the tumor and increased in mast cells and Hep-2 cells treated with peptide Ac2-26. Combined in vivo and in vitro analysis demonstrated that ANXA1 plays a regulatory role in laryngeal cancer cell growth. We believe that a better understanding of the regulatory mechanisms of ANXA1 in tumor and mast cells may lead to future biological targets for the therapeutic intervention of human larynx cancer.

  17. Application of cultured human mast cells (CHMC) for the design and structure-activity relationship of IgE-mediated mast cell activation inhibitors.

    PubMed

    Argade, Ankush; Bhamidipati, Somasekhar; Li, Hui; Carroll, David; Clough, Jeffrey; Keim, Holger; Sylvain, Catherine; Rossi, Alexander B; Coquilla, Christina; Issakani, Sarkiz D; Masuda, Esteban S; Payan, Donald G; Singh, Rajinder

    2015-01-01

    Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The modulatory effect of TLR2 on LL-37-induced human mast cells activation.

    PubMed

    Zhang, Yuan-Yuan; Yu, Yang-Yang; Zhang, Ya-Rui; Zhang, Wei; Yu, Bo

    2016-02-05

    The sole and endogenous anti-microbial peptide LL-37 is a significant effector molecule in the innate host defense system. Apart from its broadly direct anti-microbial activity, the peptide also activates mast cell in respect of allergic diseases and inflammation. On the other hand, mast cell can be activated by Toll-like receptors (TLRs) which are at the center of innate immunity. It was the aim of the study to illustrate the modulatory effect of TLR2 ligands peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4) on LL-37 induced LAD2 cells (a human mast cell line) activation. LL-37 induced LAD2 cells degranulation and the release of IL-8. TLR2 ligands didn't induce LAD2 cells degranulation, but triggered the release of IL-8. Incubation with PGN or Pam3CSK4 significantly suppressed LL-37-induced degranulation through inhibition of calcium mobilization from LAD2 cells. Similarly, the release of IL-8 was inhibited when LAD2 cells were co-stimulated with TLR2 ligands and LL-37. Studies with inhibitors of key enzymes involved in mast cell signaling indicated that the release of IL-8 induced by TLR2 ligands and LL-37 involved the activation of the PI3K, ERK, JNK and calcineurin signaling pathways. In contrast, p38 activation down-regulated the release of IL-8 induced by TLR2 ligands and LL-37. Taken together, these observations suggest that activation of human mast cells by LL-37 could be modified by TLR2 ligands and the function of human mast cells could be switched from allergic reactions to innate immune response.

  19. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells

    PubMed Central

    Gorbea, Enrique; Ullrich, Stephen E.

    2015-01-01

    Ultraviolet (UV) radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by up regulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression, so we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 up-regulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome. PMID:26316070

  20. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells.

    PubMed

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Gorbea, Enrique; Ullrich, Stephen E

    2015-12-01

    UV radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes has a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by upregulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression; therefore, we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF, and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 upregulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome.

  1. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut

    PubMed Central

    Miller, Hugh R P; Pemberton, Alan D

    2002-01-01

    Serine proteinases with trypsin-like (tryptase) and chymotrypsin-like (chymase) properties are major constituents of mast cell granules. Several tetrameric tryptases with differing specificities have been characterized in humans, but only a single chymase. In other species there are larger families of chymases with distinct and narrow proteolytic specificities. Expression of chymases and tryptases varies between tissues. Human pulmonary and gastrointestinal mast cells express chymase at lower levels than tryptase, whereas rodent and ruminant gastrointestinal mast cells express uniquely mucosa-specific chymases. Local and systemic release of chymases and tryptases can be quantified by immunoassay, providing highly specific markers of mast cell activation. The expression and constitutive extracellular secretion of the mucosa-specific chymase, mouse mast cell proteinase-1 (mMCP-1), is regulated by transforming growth factor-β1 (TGF-β1) in vitro, but it is not clear how the differential expression of chymases and tryptases is regulated in other species. Few native inhibitors have been identified for tryptases but the tetramers dissociate into inactive subunits in the absence of heparin. Chymases are variably inhibited by plasma proteinase inhibitors and by secretory leucocyte protease inhibitor (SLPI) that is expressed in the airways. Tryptases and chymases promote vascular permeability via indirect and possibly direct mechanisms. They contribute to tissue remodelling through selective proteolysis of matrix proteins and through activation of proteinase-activated receptors and of matrix metalloproteinases. Chymase may modulate vascular tissues through its ability to process angiotensin-I to angiotensin-II. Mucosa-specific chymases promote epithelial permeability and are involved in the immune expulsion of intestinal nematodes. Importantly, granule proteinases released extracellularly contribute to the recruitment of inflammatory cells and may thus be involved in

  2. Correlation of mast cells in different stages of human periodontal diseases: Pilot study

    PubMed Central

    Agrawal, Raina; Gupta, Jagriti; Gupta, Krishna Kumar; Kumar, Vinod

    2016-01-01

    Aims and Objectives: The aim of this study was to evaluate and correlate the relationship between mast cells counts and different stages of human periodontal diseases. Materials and Methods: The study sample comprised 50 patients, which were divided into three groups, consisting of 10 cases of clinically healthy gingival tissues (control group) 20 cases of dental plaque-induced gingivitis with no attachment loss and 20 cases of localized chronic periodontitis (LCP) characterized by the loss of periodontal support. The samples for control group were obtained during tooth extractions for orthodontic reasons. The specimens were immediately fixed in 10% neutral buffered formalin. Conclusion: In this study, LCP cases had higher mast cell counts compared to gingivitis sites or healthy tissues. Increased mast cell counts in the progressing sites of periodontal diseases may indicate the importance of these cells in the progression of chronic periodontitis. PMID:27194868

  3. Mast cell lines HMC-1 and LAD2 in comparison with mature human skin mast cells--drastically reduced levels of tryptase and chymase in mast cell lines.

    PubMed

    Guhl, Sven; Babina, Magda; Neou, Angelos; Zuberbier, Torsten; Artuc, Metin

    2010-09-01

    To circumvent the costly isolation procedure associated with tissue mast cells (MC), two human MC lines, i.e. HMC-1 and LAD2, are frequently employed, but their relation to mature MC is unknown. Here, we quantitatively assessed their expression of MC markers in direct comparison to skin MC (sMC). sMC expressed all lineage markers at highest and HMC-1 cells at lowest levels. LAD2 cells expressed comparable high-affinity IgE receptor alpha (FcepsilonRIalpha) and FcepsilonRIgamma but less FcepsilonRIbeta than sMC and displayed slightly reduced, but robust FcepsilonRI-mediated histamine release. Only minor differences were found for total histamine content and c-Kit expression. Huge, and to this level unexpected, differences were found for MC tryptase and chymase, with sMC > LAD2 > HMC-1. Taken together, HMC-1 cells represent very immature malignantly transformed MC, whereas LAD2 cells can be considered intermediately differentiated. Because of the minute levels of MC proteases, MC lines can serve as surrogates of tissue MC to a limited degree only.

  4. Association of mast cells with calcification in the human pineal gland.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Deręgowski, Krzysztof; Maśliński, Sławomir

    2010-01-01

    Increased pineal calcifications and decreased pineal melatonin biosynthesis, both age related, support the notion of a pineal bio-organic timing mechanism. The role of calcification in the pathogenesis of pineal gland dysfunction remains unknown but the available data document that calcification is an organized, regulated process, rather than a passive aging phenomenon. The cellular biology and micro-environmental conditions required for calcification remain poorly understood but most studies have demonstrated evidence that mast cells are strongly implicated in this process. The aim of the present study was to examine the phenotype of mast cells associated with early stages and with the progressive development of calcification in the human pineal gland. The study was performed on pineal samples of 170 fetuses and children whose brains were autopsied and diagnosed during 1998-2002. The representative cerebral and pineal specimens were stained with haematoxylin and eosin or the von Kossa staining technique and for the distribution of mast cell tryptase, mast cell chymase, histamine H4 receptor and vascular network using biotinylated Ulex europaeus agglutinin. Tryptase mast cells were found in all stages of pineal gland development independently of the presence of local tissue lesions. All of them were always localized in the close vicinity of the blood vessels and expressed immunoreactivity to histamine H4 receptor antibody. Immunolocalization of mast cells by chymase antibody (and following dual immunostaining with both chymase and tryptase antibodies) demonstrated that these cells were few in number and were located in the subcapsular region of the gland. In our study, all functional mast cells that underwent activation and were co-localized with deposits of calcium did not contain chymase. All of them were stained with tryptase and represent the MC-T phenotype. Tryptase mast cells and extracellular tryptase were often associated with areas of early and more

  5. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  6. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    PubMed

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  7. A novel method to generate and culture human mast cells: Peripheral CD34+ stem cell-derived mast cells (PSCMCs).

    PubMed

    Schmetzer, Oliver; Valentin, Patricia; Smorodchenko, Anna; Domenis, Rossana; Gri, Giorgia; Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-11-01

    The identification and characterization of human mast cell (MC) functions are hindered by the shortage of MC populations suitable for investigation. Here, we present a novel technique for generating large numbers of well differentiated and functional human MCs from peripheral stem cells (=peripheral stem cell-derived MCs, PSCMCs). Innovative and key features of this technique include 1) the use of stem cell concentrates, which are routinely discarded by blood banks, as the source of CD34+ stem cells, 2) cell culture in serum-free medium and 3) the addition of LDL as well as selected cytokines. In contrast to established and published protocols that use CD34+ or CD133+ progenitor cells from full blood, we used a pre-enriched cell population obtained from stem cell concentrates, which yielded up to 10(8) differentiated human MCs per batch after only three weeks of culture starting with 10(6) total CD34+ cells. The total purity on MCs (CD117+, FcεR1+) generated by this method varied between 55 and 90%, of which 4-20% were mature MCs that contain tryptase and chymase and show expression of FcεRI and CD117 in immunohistochemistry. PSCMCs showed robust histamine release in response to stimulation with anti-FcεR1 or IgE/anti-IgE, and increased proliferation and differentiation in response to IL-1β or IFN-γ. Taken together, this new protocol of the generation of large numbers of human MCs provides for an innovative and suitable option to investigate the biology of human MCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Regulation of mast cell characteristics by cytokines: divergent effects of interleukin-4 on immature mast cell lines versus mature human skin mast cells.

    PubMed

    Thienemann, Friedrich; Henz, Beate M; Babina, Magda

    2004-08-01

    Mast cells (MC) are of hematopoietic origin but complete their differentiation exclusively within tissues. The mediators that positively or negatively affect the maturation process are incompletely defined. Here, the human MC line HMC-1 (subclone 5C6) was used along with several treatments (IL-4, IL-6, NGFbeta), either alone or in combination, and MC differentiation was monitored by flow-cytometric analysis of c-kit, tryptase, and FcepsilonRIalpha expression. Of the different treatments, IL-4 displayed the clearest effects by suppressing the expression of the three markers and inhibiting cellular growth, while the other cytokines had no (NGFbeta) or negligible (IL-6) effects only. The downregulating effects of IL-4 could not be overcome by any other treatment. There is some controversy in the literature as to the impact of IL-4 on the MC lineage. To determine whether the effects from IL-4 were differentiation stage dependent, two further human MC subsets (skin MC and LAD 2 cells) were investigated. No effects on c-kit and FcepsilonRIalpha expression were noted when terminally differentiated skin MC were used as target cells, while a modest downregulation of c-kit was observed with intermediately matured LAD 2 cells. In sharp contrast to HMC-1 5C6 cells, the survival of skin MC was significantly enhanced by IL-4 treatment. Our data therefore imply that at a lower maturation stage, IL-4 acts as a negative regulator of the MC lineage, but that this property disappears or is even reversed upon terminal differentiation of the cell. Our study provides direct proof that the effects of IL-4 vary substantially in the course of MC maturation.

  9. Isolation of rat lung mast cells for purposes of one-week cultivation using novel Percoll variant Percoll PLUS.

    PubMed

    Kubrycht, J; Maxová, H; Nyč, O; Vajner, L; Novotná, J; Hezinová, A; Trnková, A; Vrablová, K; Vytášek, R; Valoušková, V

    2011-01-01

    Prolonged cultivation of separated rat lung mast cells (LMC) in vitro is necessary to better investigate a possible role of LMC in different stages of tissue remodeling induced by hypoxia. Rat lung mast cells (LMC) were separated using a protocol including an improved proteolytic extraction and two subsequent density gradient separations on Ficoll-Paque PLUS and a new generation of Percoll, i.e. Percoll PLUS. Instead of usual isotonic stock Percoll solution, an alternative "asymptotically isotonic" stock solution was more successful in our density separation of LMC on Percoll PLUS. Separated cells were cultivated for six days in media including stem cell factor, interleukins IL-3 and IL-6, and one of two alternative mixtures of antibiotics. These cultivations were performed without any contamination and with only rare changes in cell size and morphology. Model co-cultivation of two allogenic fractions of LMC often caused considerable rapid changes in cell morphology and size. In contrast to these observations no or rare morphological changes were found after cultivation under hypoxic conditions. In conclusions, we modified separation on Percoll PLUS to be widely used, altered LMC separation with respect to purposes of long-lasting cultivation and observed some model morphological changes of LMC.

  10. Flow cytometric analysis of mast cells from normal and pathological human bone marrow samples: identification and enumeration.

    PubMed Central

    Orfao, A.; Escribano, L.; Villarrubia, J.; Velasco, J. L.; Cerveró, C.; Ciudad, J.; Navarro, J. L.; San Miguel, J. F.

    1996-01-01

    In the present paper we have used a three-color immunofluorescence procedure combined with flow cytometry cell analysis and sorting for the identification and enumeration of human mast cells in both normal and pathological bone marrow samples. Our results show that bone marrow mast cells are clearly identifiable on the basis of their light-scatter properties and strong CD117 expression. These cells were negative for the CD34, CD38, and BB4 antigens. In addition, they were CD33+ and displayed a high reactivity for the anti-IgE monoclonal antibody. The identity of the CD117-strong+ cells (mast cells) was confirmed by both microscopic examination and flow cytometry analysis. The overall frequency of mast cells in the bone marrow samples analyzed in the present study was constantly lower than 1%. The lowest frequencies corresponded to normal human bone marrow samples (0.0080 +/- 0.0082%) and the highest to those patients suffering from indolent systemic mast cell disease (0.40 +/- 0.13%). In summary, our results show that the identification and enumeration of bone marrow mast cells can be achieved using multiparametric flow cytometry. Moreover, once identified, mast cells are suitable for being characterized from the phenotypic and the functional point of view, facilitating the comparison between normal and abnormal mast cells. Images Figure 3 PMID:8909239

  11. [In vitro differentiation of human umbilical cord blood mononuclear cells into mature mast cells induced by cytokines].

    PubMed

    Chen, Huifang; He, Ying; Zhang, Lanzhen; Liu, Zhaoyu; Zou, Zehong; Tao, Ailin

    2015-09-01

    To isolate and induce human umbilical cord blood mononuclear cells to differentiate into mature mast cells of high purity. Human umbilical cord blood mononuclear cells were differentiated into mature mast cells by the treatment of recombinant human stem cell factor (rhSCF) and recombinant human interleukin 6 (rhIL-6). The cultured cells at different time points were stained with toluidine blue for the detection of anti-FcepsilonRI and the maturity of mast cells was detected by flow cytometry. After the mature mast cells were stimulated with allergen, the levels of histamine and tryptase in the supernatant were determined. The cells started to express FcepsilonRI receptor after 2-week treatment of rhSCF and rhIL-6. After 3 weeks, the amount of FcepsilonRI receptor reached its peak accompanied by increased intracellular basophilic granules. The mature mast cells released tryptase and histamine effectively after allergen challenge. Human umbilical cord blood mononuclear cells can be differentiated into mature mast cells by the treatment of rhSCF and rhIL-6. The mature mast cells may be used for the study of allergenicity in vitro.

  12. Uptake and distribution of fullerenes in human mast cells

    PubMed Central

    Dellinger, Anthony; Zhou, Zhiguo; Norton, Sarah K.; Lenk, Robert; Conrad, Daniel; Kepley, Christopher L.

    2010-01-01

    Fullerenes are carbon cages of variable size that can be derivatized with various side chain moieties resulting in compounds that are being developed into nanomedicines. While fullerene use in several pre-clinical in vitro and in vivo models of disease has demonstrated their potential as diagnostic and therapeutic agents, little is known about how they enter cells, what organelles they target, and the time course for their cellular deposition. Fullerenes (C70) that have previously been shown to be potent inhibitors of mast cell (MC)-mediated allergic inflammation were conjugated with Texas Red (TR) and used in conjunction with confocal microscopy to determine mechanisms of uptake, the organelle localization, and the duration they can be detected in situ. We show C70-TR are non-specifically endocytosed into MC where they are shuttled throughout the cytoplasm, lysosomes, mitochondria, and into endoplasmic reticulum at different times. No nuclear or secretory granule localization was observed. The C70-TR remained detectable within cells at one week. These studies show MC endocytose fullerenes where they are shuttled to organelles involved with calcium and reactive oxygen species (ROS) production which may explain their efficacy as cellular inhibitors. PMID:20138243

  13. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  14. Mast Cells: A Pivotal Role in Pulmonary Fibrosis

    PubMed Central

    Veerappan, Arul; O'Connor, Nathan J.; Brazin, Jacqueline; Reid, Alicia C.; Jung, Albert; McGee, David; Summers, Barbara; Branch-Elliman, Dascher; Stiles, Brendon; Worgall, Stefan; Kaner, Robert J.

    2013-01-01

    Pulmonary fibrosis is characterized by an inflammatory response that includes macrophages, neutrophils, lymphocytes, and mast cells. The purpose of this study was to evaluate whether mast cells play a role in initiating pulmonary fibrosis. Pulmonary fibrosis was induced with bleomycin in mast-cell-deficient WBB6F1-W/Wv (MCD) mice and their congenic controls (WBB6F1-+/+). Mast cell deficiency protected against bleomycin-induced pulmonary fibrosis, but protection was reversed with the re-introduction of mast cells to the lungs of MCD mice. Two mast cell mediators were identified as fibrogenic: histamine and renin, via angiotensin (ANG II). Both human and rat lung fibroblasts express the histamine H1 and ANG II AT1 receptor subtypes and when activated, they promote proliferation, transforming growth factor β1 secretion, and collagen synthesis. Mast cells appear to be critical to pulmonary fibrosis. Therapeutic blockade of mast cell degranulation and/or histamine and ANG II receptors should attenuate pulmonary fibrosis. PMID:23570576

  15. Histamine H4 Receptor mediates interleukin-8 and TNF-α release in human mast cells via multiple signaling pathways.

    PubMed

    Chen, X-F; Zhang, Z; Dou, X; Li, J-J; Zhang, W; Yu, Y-Y; Yu, B; Yu, B

    2016-01-27

    Histamine, mainly produced by mast cells, is an important inflammatory mediator in immune response. Recently Histamine H4 Receptor (H4R) was also identified in mast cells, from which pro-inflammatory cytokines and chemokines are released. However, the mechanism of how H4R mediates these cytokines and chemokines release in mast cells was still unclear. To further explore the role of H4R in the immune inflammatory response in mast cells, we tested the release of inflammatory cytokine tumor necrosis factor-α (TNF-α), chemokine interleukin-8 (IL-8) and the relevant signaling pathways activated by H4R on LAD2 cells (a human mast cell line). We found that the release of IL-8 and TNF-α were blocked by inhibitors of PI3K, ERK and Ca2+-Calcineurin-NFAT signaling pathways, while the release of these cytokines and chemokines were enhanced by the inhibitor of P38 signaling pathway. However, inhibitors of the JNK and NF-κB signaling pathways had little effect on the expression of the pro-inflammatory mediators. Moreover, activation of the H4R could induce phosphorylation of ERK, p38 and AKT in mast cells. In conclusion, we found that H4R mediates the release of inflammatory cytokine TNF-α and chemokine IL-8 in human mast cells via PI3K, Ca2+-Calcineurin-NFAT and MAPKs signaling pathways.

  16. CD84 negatively regulates IgE high affinity receptor signaling in human mast cells

    PubMed Central

    Álvarez-Errico, Damiana; Oliver-Vila, Irene; Aínsua-Enrich, Erola; Gilfillan, Alasdair M.; Picado, César; Sayós, Joan; Martín, Margarita

    2011-01-01

    CD84 is a self-binding receptor from the CD150 family that is broadly expressed in hematopoietic cells. It has been described that the adaptors SAP and EAT-2 are critical for CD150 family members signaling and function. We observed that human mast cells express CD84 but lack SAP or EAT-2, that CD84 is tyrosine phosphorylated upon FcεRI engagement, and that the release of granule contents is reduced when FcεRI is co-engaged with CD84 in LAD2 and human CD34+-derived mast cells (huMCs). In addition, we observed that the release of IL-8 and GM-CSF was also reduced in FcεRI/CD84 costimulated cells as compared to FcεRI/Ig control. In order to understand how CD84 down-regulates FcεRI-mediated function, we analyzed signaling pathways affected by CD84 in human mast cells. Our results showed that CD84 dampens FcεRI-mediated calcium mobilization after its co-crosslinking with the receptor. Furthermore, FcεRI-mediated Syk-LAT-PLCγ1 axis activity is down-regulated after CD84 stimulation, compared to FcεRI/Ig control. The inhibitory kinase Fes phosphorylates mainly the inhibitory motif for CD84. Moreover Fes, which has been described to become phosphorylated after substrate binding, also gets phosphorylated when co-expressed with CD84. Consistently, Fes was observed to be more phosphorylated after CD84 and FcεRI co-crosslinking. The phosphorylation of the protein phosphatase SHP-1 also increases after CD84 and FcεRI coengagement. Taken together, our results show that CD84 is highly expressed in mast cells and that it contributes to the regulation of FcεRI signaling in a SAP and EAT-2 independent and Fes and SHP-1 dependent mechanisms. PMID:22068234

  17. Down-regulation of Heat Shock Protein HSP90ab1 in Radiation-damaged Lung Cells other than Mast Cells

    PubMed Central

    Geyer, Peter; Fitze, Guido; Baretton, Gustavo B.

    2014-01-01

    Ionizing radiation (IR) leads to fibrosing alveolitis (FA) after a lag period of several weeks to months. In a rat model, FA starts at 8 weeks after IR. Before that, at 5.5 weeks after IR, the transcription factors Sp1 (stimulating protein 1) and AP-1 (activator protein 1) are inactivated. To find genes/proteins that were down-regulated at that time, differentially expressed genes were identified in a subtractive cDNA library and verified by quantitative RT-PCR (reverse transcriptase polymerase chain reaction), western blotting and immunohistochemistry (IH). The mRNA of the molecular chaperone HSP90AB1 (heat shock protein 90 kDa alpha, class B member 1) was down-regulated 5.5 weeks after IR. Later, when FA manifested, HSP90ab1 protein was down-regulated by more than 90% in lung cells with the exception of mast cells. In most mast cells of the normal lung, both HSP90ab1 and HSP70, another major HSP, show a very low level of expression. HSP70 was massively up-regulated in all mast cells three months after irradiation whereas HSP90AB1 was up-regulated only in a portion of mast cells. The strong changes in the expression of central molecular chaperones may contribute to the well-known disturbance of cellular functions in radiation-damaged lung tissue. PMID:24670792

  18. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells

    PubMed Central

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S.

    2015-01-01

    ABSTRACT The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+ T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4+ T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. PMID:26719250

  19. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties.

    PubMed

    Gupta, Kshitij; Kotian, Akhil; Subramanian, Hariharan; Daniell, Henry; Ali, Hydar

    2015-10-06

    Preclinical evaluation of Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) antimicrobial peptides (AMPs) is important because of their therapeutic potential against bacterial, fungal and viral infections. Human mast cells (HMCs) play important roles in host defense and wound healing but the abilities of retrocyclins and protegrin-1 to harness these functions have not been investigated. Here, we report that chemically synthesized RC-100 and PG-1 caused calcium mobilization and degranulation in HMCs but these responses were not blocked by an inhibitor of formyl peptide receptor-like 1 (FPRL1), a known receptor for AMPs. However, RC-100 and PG-1 induced degranulation in rat basophilic leukemia (RBL-2H3) cells stably expressing Mas related G protein coupled receptor X2 (MrgX2). Chemical synthesis of these AMPs is prohibitively expensive and post-synthesis modifications (cyclization, disulfide bonds, folding) are inadequate for optimal antimicrobial activity. Indeed, we found that synthetic RC-100, which caused mast cell degranulation via MrgX2, did not display any antimicrobial activity. Green-fluorescent protein (GFP)-tagged RC-101 (analog of RC-100) and GFP-tagged PG-1 purified from transgenic plant chloroplasts killed bacteria and induced mast cell degranulation. Furthermore, GFP-PG1 bound specifically to RBL-2H3 cells expressing MrgX2. These findings suggest that retrocyclins and protegrins activate HMCs independently of FPRL1 but via MrgX2. Harnessing this novel feature of AMPs to activate mast cell's host defense/wound healing properties in addition to their antimicrobial activities expands their clinical potential. Low cost production of AMPs in plants should facilitate their advancement to the clinic overcoming major hurdles in current production systems.

  20. Anti-CXCR3 staining is useful for detecting human cutaneous and mucosal mast cells.

    PubMed

    Fukiwake, Noriko; Moroi, Yoichi; Imafuku, Shinichi; Masuda, Teiichi; Kokuba, Hisashi; Furue, Masutaka; Urabe, Kazunori

    2006-05-01

    Human synovial mast cells (MC) can be immunolabelled with antihuman CXCR3 antibody (Ab) (clone 49801). We have investigated whether cutaneous and mucosal MC are stained with anti-CXCR3 Ab in paraffin-embedded sections. Immunohistochemical staining and immunofluorescence double staining assays were performed with anti-CXCR3, anti-tryptase, and anti-chymase Ab using normal skin, psoriatic skin lesions, and normal colon. When compared with tryptase and chymase staining, 100% of the cutaneous and 98% of the mucosal MC were positive for CXCR3. Anti-CXCR3 staining is a useful marker for human cutaneous and mucosal MC in paraffin-embedded sections.

  1. Allergens displayed on virus-like particles are highly immunogenic but fail to activate human mast cells.

    PubMed

    Engeroff, P; Caviezel, F; Storni, F; Thoms, F; Vogel, M; Bachmann, M F

    2017-08-08

    The goal of allergen-specific immunotherapy is the induction of protective immune responses in the absence of anaphylactic reactions. We have previously shown that Fel d 1, the major cat allergen, displayed in a repetitive fashion on virus-like particles (VLPs) may fulfill these criteria. Specifically, Fel d 1 on VLPs induced strongly increased protective IgG responses compared to free allergen in mice while anaphylactic reactions were essentially abolished. Here we extend these findings to human mast cells and offer a mechanistic explanation for the reduced anaphylactic activity. We differentiated human mast cells in vitro from blood-derived stem cell progenitors and sensitized the cells with a monoclonal Fel d 1-specific IgE. We compared the capability of Fel d 1 to induce mast cell activation in its free form versus displayed on VLPs and we performed allergen binding studies by surface plasmon resonance as well as flow cytometry. We show that free Fel d 1 induces degranulation of IgE-sensitized mast cells whereas Fel d 1 displayed on VLPs fails to induce mast cell activation. We demonstrate that this inability to activate mast cells is based on a biophysical as well as a biochemical mechanism. Firstly, Fel d 1 on VLPs showed a strongly impaired ability to bind to surface-bound IgE. Secondly, despite residual binding, repetitively displayed allergen on VLPs failed to cause mast cell activation. These findings indicate that repetitively displaying allergens on VLPs increases their immunogenicity while reducing their potential to cause anaphylactic reactions by essentially eliminating IgE-mediated activation of mast cells. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  2. Irradiation-induced effects on mast cells, neuropeptides, and atrial natriuretic peptide in the rat heart and lung: bases for further studies.

    PubMed

    Forsgren, K S; Cavén, A G; Hansson, M C; Larsson, F H; Kjörell, U K; Henriksson, R G; Franzén, L I

    2001-01-01

    We examined the effects of irradiation over the thorax of the rat on the mast cells, the neuropeptide-containing nerve fibers, and the expression of atrial natriuretic peptide in the heart and lung. The total doses were 20 to 36 Gy delivered as single doses or fractionated irradiation. Immunohistochemical and radioimmunoassay methods were used. The number of mast cells was much reduced in both the lung and heart in response to irradiation. A trend for lowering the atrial natriuretic peptide levels in plasma was noted both 1 day and 9 days after irradiation. In contrast to the situation in other organs (salivary and laryngeal glands, the intestine), no changes occurred in the immunohistochemical expression of neuropeptides. With these observations and those made in previous studies about the effects of radiotherapy on other organs, the functional significance and basis for further research in the fields are discussed.

  3. Individual strains of Lactobacillus paracasei differentially inhibit human basophil and mouse mast cell activation

    PubMed Central

    Cassard, Lydie; Lalanne, Ana Inés; Garault, Peggy; Cotillard, Aurélie; Chervaux, Christian; Wels, Michiel; Smokvina, Tamara

    2016-01-01

    Abstract Introduction The microbiota controls a variety of biological functions, including immunity, and alterations of the microbiota in early life are associated with a higher risk of developing allergies later in life. Several probiotic bacteria, and particularly lactic acid bacteria, were described to reduce both the induction of allergic responses and allergic manifestations. Although specific probiotic strains were used in these studies, their protective effects on allergic responses also might be common for all lactobacilli. Methods To determine whether allergic effector cells inhibition is a common feature of lactobacilli or whether it varies among lactobacilli strains, we compared the ability of 40 strains of the same Lactobacillus paracasei species to inhibit IgE‐dependent mouse mast cell and human basophil activation. Results We uncovered a marked heterogeneity in the inhibitory properties of the 40 Lactobacillus strains tested. These segregated into three to four clusters depending on the intensity of inhibition. Some strains inhibited both mouse mast cell and human basophil activation, others strains inhibited only one cell type and another group induced no inhibition of activation for either cell type. Conclusions Individual Lactobacillus strains of the same species differentially inhibit IgE‐dependent activation of mouse mast cells and human basophils, two cell types that are critical in the onset of allergic manifestations. Although we failed to identify specific bacterial genes associated with inhibition by gene‐trait matching analysis, our findings demonstrate the complexity of the interactions between the microbiota and the host. These results suggest that some L. paracasei strains might be more beneficial in allergies than others strains and provide the bases for a rational screening of lactic acid bacteria strains as next‐generation probiotics in the field of allergy. PMID:27621812

  4. Expression and functional activity of the IL-8 receptor type CXCR1 and CXCR2 on human mast cells.

    PubMed

    Lippert, U; Artuc, M; Grützkau, A; Möller, A; Kenderessy-Szabo, A; Schadendorf, D; Norgauer, J; Hartmann, K; Schweitzer-Stenner, R; Zuberbier, T; Henz, B M; Krüger-Krasagakes, S

    1998-09-01

    To further elucidate mechanisms involved in mast cell accumulation at sites of cutaneous inflammation, we have studied the ability of human leukemic mast cells (HMC-1 cells) to express functionally active IL-8 receptors. Expression of mRNA for both types of IL-8 receptors (CXCR1 and CXCR2) was demonstrated by PCR and of both proteins by flow cytometry. Binding and competition studies with 125I-labeled IL-8 and its homologue melanoma growth stimulating activity (125I-labeled MGSA) revealed two specific binding sites for IL-8, K1 = 1.1 x 10(11) M(-1) and K2 = 5 x 10(7) M(-1); and for MGSA, K1 = 2.8 x 10(10) M(-1) and K2 = 5 x 10(7) M(-1). This finding was supported by a dose-dependent rise of cytosolic free calcium concentration ([Ca2+]i) induced by both chemokines and to a lesser extent by the homologue neutrophil-activating peptide-2 (NAP-2). A significant migratory response of human leukemic mast cells (HMC-1) was observed with all three chemokines at a range from 10(-8) M to 10(-9) M. Moreover, the formation of cellular F-actin was induced in a rapid, dose-dependent fashion, with a maximally 1.7-fold increase at 10(-7) M. Using postembedding immunoelectron microscopy, we could show the expression of CXCRI on the cytoplasmatic membrane of isolated human skin mast cells whereas CXCR2 was located in mast cell-specific granules. These findings demonstrate for the first time the functional expression of both types of IL-8 receptors on human mast cells, suggesting a role for their ligands during mast cell activation and recruitment.

  5. Changes in mast cell number and stem cell factor expression in human skin after radiotherapy for breast cancer.

    PubMed

    Westbury, Charlotte B; Freeman, Alex; Rashid, Mohammed; Pearson, Ann; Yarnold, John R; Short, Susan C

    2014-05-01

    Mast cells are involved in the pathogenesis of radiation fibrosis and may be a therapeutic target. The mechanism of increased mast cell number in relation to acute and late tissue responses in human skin was investigated. Punch biopsies of skin 1 and 15-18 months after breast radiotherapy and a contralateral control biopsy were collected. Mast cells were quantified by immunohistochemistry using the markers c-Kit and tryptase. Stem cell factor (SCF) and collagen-1 expression was analysed by qRT-PCR. Clinical photographic scores were performed at post-surgical baseline and 18 months and 5 years post-radiotherapy. Primary human dermal microvascular endothelial cell (HDMEC) cultures were exposed to 2Gy ionising radiation and p53 and SCF expression was analysed by Western blotting and ELISA. Dermal mast cell numbers were increased at 1 (p=0.047) and 18 months (p=0.040) using c-Kit, and at 18 months (p=0.024) using tryptase immunostaining. Collagen-1 mRNA in skin was increased at 1 month (p=0.047) and 18 months (p=0.032) and SCF mRNA increased at 1 month (p=0.003). None of 16 cases scored had a change in photographic appearance at 5 years, compared to baseline. SCF expression was not increased in HDMECs irradiated in vitro. Increased mast cell number was associated with up-regulated collagen-1 expression in human skin at early and late time points. This increase could be secondary to elevated SCF expression at 1 month after radiotherapy. Although mast cells accumulate around blood vessels, no endothelial cell secretion of SCF was seen after in vitro irradiation. Modification of mast cell number and collagen-1 expression may be observed in skin at 1 and 18 months after radiotherapy in breast cancer patients with no change in photographic breast appearance at 5 years. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Evidence for Human Lung Stem Cells

    PubMed Central

    Kajstura, Jan; Rota, Marcello; Hall, Sean R.; Hosoda, Toru; D’Amario, Domenico; Sanada, Fumihiro; Zheng, Hanqiao; Ogórek, Barbara; Rondon-Clavo, Carlos; Ferreira-Martins, João; Matsuda, Alex; Arranto, Christian; Goichberg, Polina; Giordano, Giovanna; Haley, Kathleen J.; Bardelli, Silvana; Rayatzadeh, Hussein; Liu, Xiaoli; Quaini, Federico; Liao, Ronglih; Leri, Annarosa; Perrella, Mark A.; Loscalzo, Joseph; Anversa, Piero

    2011-01-01

    BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.) PMID:21561345

  7. Quercetin Is More Effective than Cromolyn in Blocking Human Mast Cell Cytokine Release and Inhibits Contact Dermatitis and Photosensitivity in Humans

    PubMed Central

    Asadi, Shahrzad; Sismanopoulos, Nikolaos; Butcher, Alan; Fu, Xueyan; Katsarou-Katsari, Alexandra; Antoniou, Christina; Theoharides, Theoharis C.

    2012-01-01

    Mast cells are immune cells critical in the pathogenesis of allergic, but also inflammatory and autoimmune diseases through release of many pro-inflammatory cytokines such as IL-8 and TNF. Contact dermatitis and photosensitivity are skin conditions that involve non-immune triggers such as substance P (SP), and do not respond to conventional treatment. Inhibition of mast cell cytokine release could be effective therapy for such diseases. Unfortunately, disodium cromoglycate (cromolyn), the only compound marketed as a mast cell “stabilizer”, is not particularly effective in blocking human mast cells. Instead, flavonoids are potent anti-oxidant and anti-inflammatory compounds with mast cell inhibitory actions. Here, we first compared the flavonoid quercetin (Que) and cromolyn on cultured human mast cells. Que and cromolyn (100 µM) can effectively inhibit secretion of histamine and PGD2. Que and cromolyn also inhibit histamine, leukotrienes and PGD2 from primary human cord blood-derived cultured mast cells (hCBMCs) stimulated by IgE/Anti-IgE. However, Que is more effective than cromolyn in inhibiting IL-8 and TNF release from LAD2 mast cells stimulated by SP. Moreover, Que reduces IL-6 release from hCBMCs in a dose-dependent manner. Que inhibits cytosolic calcium level increase and NF-kappa B activation. Interestingly, Que is effective prophylactically, while cromolyn must be added together with the trigger or it rapidly loses its effect. In two pilot, open-label, clinical trials, Que significantly decreased contact dermatitis and photosensitivity, skin conditions that do not respond to conventional treatment. In summary, Que is a promising candidate as an effective mast cell inhibitor for allergic and inflammatory diseases, especially in formulations that permit more sufficient oral absorption. PMID:22470478

  8. MicroRNA-143 Downregulates Interleukin-13 Receptor Alpha1 in Human Mast Cells

    PubMed Central

    Yu, Shaoqing; Zhang, Ruxin; Zhu, Chunshen; Cheng, Jianqiu; Wang, Hong; Wu, Jing

    2013-01-01

    MicroRNA-143 (miR-143) was found to be downregulated in allergic rhinitis, and bioinformatics analysis predicted that IL-13Rα1 was a target gene of miR-143. To understand the molecular mechanisms of miR-143 involved in the pathogenesis of allergic inflammation, recombinant miR-143 plasmid vectors were constructed, and human mast cell-1(HMC-1) cells which play a central role in the allergic response were used for study. The plasmids were transfected into HMC-1 cells using a lentiviral vector. Expression of IL-13Rα1 mRNA was then detected by reverse transcriptase polymerase chain reaction (RT-PCR) and Western Blotting. The miR-143 lentiviral vector was successfully stably transfected in HMC-1 cells for target gene expression. Compared to the control, the target gene IL-13Rα1 was less expressed in HMC-1 transfected with miR-143 as determined by RT-PCR and Western Blotting (p < 0.05); this difference in expression was statistically significant and the inhibition efficiency was 71%. It indicates that miR-143 directly targets IL-13Rα1 and suppresses IL-13Rα1 expression in HMC-1 cells. Therefore, miR-143 may be associated with allergic reaction in human mast cells. PMID:23965966

  9. Go is required for the release of IL-8 and TNF-α, but not degranulation in human mast cells.

    PubMed

    Yu, Yangyang; Huang, Zhenhe; Mao, Zhuo; Zhang, Yarui; Jin, Meiling; Chen, Wenwen; Zhang, Wei; Yu, Bo; Zhang, Weizhen; Alaster Lau, Hang Yung

    2016-06-05

    Mast cells activated by IgE-dependent and -independent mechanisms play important roles in innate and acquired immune responses. Activation of pertussis toxin (PTX)-sensitive Gi/o proteins is the key step in mast cell degranulation and release of de novo synthesized inflammatory mediators through IgE-independent mechanism. However, the roles of Gi and Go proteins in mast cells activation have not yet been differentiated. In the current study, the functional roles of Go proteins in the activities of LAD2 cells, a human mast cell line, are identified. Knockdown of Gαo expression significantly inhibited the synthesis of IL-8 and TNF-α from substance P activated LAD2 cells but demonstrated no effect on degranulation. This effect was associated with the activation of Erk and JNK/MAPKs signaling, whereas PI3K-Akt, calcium mobilization and NFAT translocation remained unchanged. These results suggest that Gi and Go proteins differentially regulate human mast cells activities through activating distinct signaling cascades.

  10. Essential roles of sphingosine-1–phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema

    PubMed Central

    Price, Megan M.; Hait, Nitai C.; Kapitonov, Dmitri; Falanga, Yves T.; Morales, Johanna K.; Ryan, John J.; Milstien, Sheldon; Spiegel, Sarah

    2010-01-01

    Systemic exacerbation of allergic responses, in which mast cells play a critical role, results in life-threatening anaphylactic shock. Sphingosine-1–phosphate (S1P), a ligand for a family of G protein–coupled receptors, is a new addition to the repertoire of bioactive lipids secreted by activated mast cells. Yet little is known of its role in human mast cell functions and in anaphylaxis. We show that S1P2 receptors play a critical role in regulating human mast cell functions, including degranulation and cytokine and chemokine release. Immunoglobulin E–triggered anaphylactic responses, including elevation of circulating histamine and associated pulmonary edema in mice, were significantly attenuated by the S1P2 antagonist JTE-013 and in S1P2-deficient mice, in contrast to anaphylaxis induced by administration of histamine or platelet-activating factor. Hence, S1P and S1P2 on mast cells are determinants of systemic anaphylaxis and associated pulmonary edema and might be beneficial targets for anaphylaxis attenuation and prophylaxis. PMID:20194630

  11. A review of the morphology of human nasal mast cells as studied by light and electron microscopy.

    PubMed

    Drake-Lee, A B; Price, J

    1992-12-01

    This review discusses the distribution and classification of human nasal mast cells after the use of different fixatives, and some of their staining characteristics, both at the light- and electron-microscopical level. The problems encountered with alcoholic and formaldehyde fixation are discussed as well as the limitations of different stains (including the basic aniline dyes), esterase cytochemistry and immunological techniques. Also, the respective limitations of light and electron microscopy are compared. Cells studied by means of electron microscopy are much more difficult to quantify objectively. It is concluded that classification of mast cells--by means of their morphology, fixation and staining characteristics--into two categories (mucosal vs. connective tissue; T-vs. T/C cells) is simplistic, especially since human nasal mast cells are both heterogeneous and pleomorphic.

  12. Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells

    SciTech Connect

    Gilead, L.; Bibi, O.; Razin, E. )

    1990-09-15

    Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above-mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers.

  13. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    PubMed

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  14. Alteration and acquisition of Siglecs during in vitro maturation of CD34+ progenitors into human mast cells.

    PubMed

    Yokoi, H; Myers, A; Matsumoto, K; Crocker, P R; Saito, H; Bochner, B S

    2006-06-01

    Using human mast cells (MC) derived by culture of CD34+ peripheral blood precursors, a comprehensive study was performed of expression of 11 known Siglecs. Analysis was initially performed at the mRNA level using gene arrays. Positive results were then validated at the protein level using indirect immunofluorescence and flow cytometry, and for some Siglecs, Western blot analysis was also used. Culture-derived MC expressed mRNA for CD22 (Siglec-2), CD33 (Siglec-3), Siglec-5, Siglec-6, Siglec-8 and Siglec-10. Flow cytometry confirmed surface expression of all these molecules except for CD22 and Siglec-10, where levels were low or undetectable. However, Western blotting was able to detect MC expression of CD22 and Siglec-10, suggesting that these proteins were mostly cytoplasmic. CD34+ precursor cells from peripheral blood constitutively expressed surface CD33, Siglec-5 and Siglec-10. As they matured into MC, their constitutive levels of CD33 changed little, Siglec-5 and Siglec-10 declined, and Siglec-6 and Siglec-8 appeared de novo, all in parallel with accumulation of histamine and other MC markers, such as surface expression of FcepsilonRIalpha, and CD51. Phenotypic analysis of LAD-2 MC yielded a similar pattern of Siglec expression except that CD22 expression was particularly prominent. Finally, immunohistochemistry confirmed expression of these same Siglecs by mature tryptase-positive MC in human lung tissues. These data demonstrate an extensive and previously unappreciated pattern of Siglec expression on human MC. Whether engagement and signaling through these inhibitory Siglecs can impact MC biology will require further investigation.

  15. Human lung lysozyme: sources and properties.

    PubMed

    Konstan, M W; Chen, P W; Sherman, J M; Thomassen, M J; Wood, R E; Boat, T F

    1981-01-01

    Lysozyme in human airway secretions is thought to defend the lung against airborne bacteria. Although lysozyme has been purified and characterized from human tears, milk, saliva, and other sources (1-5), human lung lysozyme has received little attention except for measurements of concentrations in sputum (6, 7), immunocytochemical and histochemical localization (8-12),and studies of secretion by alveolar macrophages (13). This study was designed to identify the sources of secreted lung lysozyme, to quantitate the secretory activities of the various sources,and to compare the properties of lysozyme from lung cells with those from other tissues.

  16. Mechanism of the Antigen-Independent Cytokinergic SPE-7 IgE Activation of Human Mast Cells in Vitro

    PubMed Central

    Bax, Heather J.; Bowen, Holly; Dodev, Tihomir S.; Sutton, Brian J.; Gould, Hannah J.

    2015-01-01

    Release of pro-inflammatory mediators by mast cells is a key feature of allergic disease. The ‘dogma’ is that IgE molecules merely sensitise mast cells by binding FcεRI prior to cross-linking by multivalent allergen, receptor aggregation and mast cell activation. However, certain monoclonal IgE antibodies have been shown to elicit mast cell activation in an antigen-independent cytokinergic manner, and DNP-specific murine SPE-7 IgE is the most highly cytokinergic antibody known. We show that both monovalent hapten and recombinant SPE-7 IgE Fab inhibit its cytokinergic activity as measured by mast cell degranulation and TNF-α release. Using SPE-7 IgE, a non-cytokinergic human IgE and a poorly cytokinergic murine IgE, we reveal that interaction of the Fab region of ‘free’ SPE-7 IgE with the Fab of FcεRI-bound SPE-7 IgE is the basis of its cytokinergic activity. We rule out involvement of IgE Fc, Cε1 and Cλ/κ domains, and propose that ‘free’ SPE-7 IgE binds to FcεRI-bound SPE-7 IgE by an Fv-Fv interaction. Initial formation of a tri-molecular complex (one ‘free’ IgE molecule cross-linking two receptor-bound IgE molecules) leads to capture of further ‘free’ and receptor-bound IgEs to form larger clusters that trigger mast cell activation. PMID:25892150

  17. Resveratrol preferentially inhibits IgE-dependent PGD2 biosynthesis but enhances TNF production from human skin mast cells.

    PubMed

    Shirley, Devon; McHale, Cody; Gomez, Gregorio

    2016-04-01

    Resveratrol, a natural polyphenol found in the skin of red grapes, is reported to have anti-inflammatory properties including protective effects against aging. Consequently, Resveratrol is a common nutritional supplement and additive in non-prescription lotions and creams marketed as anti-aging products. Studies in mice and with mouse bone marrow-derived mast cells (BMMCs) have indicated anti-allergic effects of Resveratrol. However, the effects of Resveratrol on human primary mast cells have not been reported. Human mast cells were isolated and purified from normal skin tissue of different donors. The effect of Resveratrol on IgE-dependent release of allergic inflammatory mediators was determined using various immunoassays, Western blotting, and quantitative real-time PCR. Resveratrol at low concentrations (≤10 μM) inhibited PGD2 biosynthesis but not degranulation. Accordingly, COX-2 expression was inhibited but phosphorylation of Syk, Akt, p38, and p42/44 (ERKs) remained intact. Surprisingly, TNF production was significantly enhanced with Resveratrol. At a high concentration (100 μM), Resveratrol significantly inhibited all parameters analyzed except Syk phosphorylation. Here, we show that Resveratrol at low concentrations exerts its anti-inflammatory properties by preferentially targeting the arachidonic acid pathway. We also demonstrate a previously unrecognized pro-inflammatory effect of Resveratrol--the enhancement of TNF production from human mature mast cells following IgE-dependent activation. These findings suggest that Resveratrol as a therapeutic agent could inhibit PGD2-mediated inflammation but would be ineffective against histamine-mediated allergic reactions. However, Resveratrol could potentially exacerbate or promote allergic inflammation by enhancing IgE-dependent TNF production from mast cells in human skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Tumor-mast cell interactions: induction of pro-tumorigenic genes and anti-tumorigenic 4-1BB in MCs in response to Lewis Lung Carcinoma.

    PubMed

    Wensman, Helena; Kamgari, Nona; Johansson, Anna; Grujic, Mirjana; Calounova, Gabriela; Lundequist, Anders; Rönnberg, Elin; Pejler, Gunnar

    2012-04-01

    Mast cells (MCs) can have either detrimental or beneficial effects on malignant processes but the underlying mechanisms are poorly understood. Here we addressed this issue by examining the interaction between Lewis Lung Carcinoma (LLC) cells and MCs. In vivo, LLC tumors caused a profound accumulation of MCs, suggesting that LLC tumors have the capacity to attract MCs. Indeed, transwell migration assays showed that LLC-conditioned medium had chemotactic activity towards MCs, which was blocked by an antibody towards stem cell factor. In order to gain insight into the molecular mechanisms operative in tumor-MC interactions, the effect of LLC on the MC gene expression pattern was examined. As judged by gene array analysis, conditioned medium from LLC cells caused significant upregulation of numerous cell surface receptors and a pro-angiogenic Runx2/VEGF/Dusp5 axis in MCs, the latter in line with a role for MCs in promoting tumor angiogenesis. Among the genes showing the highest extent of upregulation was Tnfrsf9, encoding the anti-tumorigenic protein 4-1BB, suggesting that also anti-tumorigenic factors are induced. Quantitative RT-PCR analysis showed that 4-1BB was upregulated in a transient manner, and it was also shown that tumor cells induce 4-1BB in human MCs. Immunohistochemical analysis showed that LLC-conditioned medium induced 4-1BB also at the protein level. Together, this study provides novel insight into the molecular events associated with MC-tumor interactions and suggests that tumor cells induce both pro- and anti-tumorigenic responses in MCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mast Cell Interaction with Neutrophils in Human Gastric Carcinomas: Ultrastructural Observations

    PubMed Central

    Branca, Giovanni; Alberto Caruso, Rosario

    2016-01-01

    Aim. The role of mast cells in cell-cell immune interactions has received increasing attention, although their functional interaction with neutrophils still remains to be clarified in tumors. The aim of the present study was to investigate the association between mast cells and neutrophils in a series of gastric carcinomas (GC). Patients and Methods. 52 surgically resected GC specimens were routinely processed for both light and electron microscopy. Only cases showing both mast cells and neutrophils in the tumor stroma were considered in the analysis. Results. Only 9 GC (M : F = 5 : 4; age range: 50–82 years) showed both mast cells and neutrophils in the tumor stroma. At ultrathin sections, we identified heterotypic aggregation and intermingling of mast cells and neutrophils. Mast cells had mature phenotype and showed full complement of granules with homogeneous, scroll, particle, and mixed pattern. In addition, we found normal-appearing or early apoptosis showing neutrophils. Conclusion. Our histological findings showed the likely interaction between mast cells and neutrophils in GC. We hypothesize that the granular content of mast cells may be released in small quantity through a mechanism called “kiss-and-run fusion,” which is alternative to well-known massive anaphylactic or piecemeal degranulation. PMID:27882290

  20. Ability of Interleukin-33- and Immune Complex-Triggered Activation of Human Mast Cells to Down-Regulate Monocyte-Mediated Immune Responses.

    PubMed

    Rivellese, Felice; Suurmond, Jolien; Habets, Kim; Dorjée, Annemarie L; Ramamoorthi, Nandhini; Townsend, Michael J; de Paulis, Amato; Marone, Gianni; Huizinga, Tom W J; Pitzalis, Costantino; Toes, René E M

    2015-09-01

    Mast cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). In particular, their activation by interleukin-33 (IL-33) has been linked to the development of arthritis in animal models. The aim of this study was to evaluate the functional responses of human mast cells to IL-33 in the context of RA. Human mast cells were stimulated with IL-33 combined with plate-bound IgG or IgG anti-citrullinated protein antibodies (ACPAs), and their effects on monocyte activation were evaluated. Cellular interactions of mast cells in RA synovium were assessed by immunofluorescence analysis, and the expression of messenger RNA (mRNA) for mast cell-specific genes was evaluated in synovial biopsy tissue from patients with early RA who were naive to treatment with disease-modifying antirheumatic drugs. IL-33 induced the up-regulation of Fcγ receptor type IIa and enhanced the activation of mast cells by IgG, including IgG ACPAs, as indicated by the production of CXCL8/IL-8. Intriguingly, mast cell activation triggered with IL-33 and IgG led to the release of mediators such as histamine and IL-10, which inhibited monocyte activation. Synovial mast cells were found in contact with CD14+ monocyte/macrophages. Finally, mRNA levels of mast cell-specific genes were inversely associated with disease severity, and IL-33 mRNA levels showed an inverse correlation with the levels of proinflammatory markers. When human mast cells are activated by IL-33, an immunomodulatory phenotype develops, with human mast cells gaining the ability to suppress monocyte activation via the release of IL-10 and histamine. These findings, together with the presence of synovial mast cell-monocyte interactions and the inverse association between the expression of mast cell genes at the synovial level and disease activity, suggest that these newly described mast cell-mediated inhibitory pathways might have a functional relevance in the pathogenesis of RA. © 2015, American College of Rheumatology.

  1. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs.

    PubMed

    Suzuki, Takaya; Suzuki, Satoshi; Fujino, Naoya; Ota, Chiharu; Yamada, Mitsuhiro; Suzuki, Takashi; Yamaya, Mutsuo; Kondo, Takashi; Kubo, Hiroshi

    2014-05-01

    Expression of c-Kit and its ligand, stem cell factor (SCF), in developing human lung tissue was investigated by immunohistochemistry. Twenty-eight human fetal lungs [age range 13 to 38 gestational wk (GW)] and 12 postnatal lungs (age range 1-79 yr) were evaluated. We identified c-Kit(+) cells in the lung mesenchyme as early as 13 GW. These mesenchymal c-Kit(+) cells in the lung did not express mast cell tryptase or α-smooth muscle actin. However, these cells did express CD34, VEGFR2, and Tie-2, indicating their endothelial lineage. Three-dimensional reconstructions of confocal laser scanning images revealed that c-Kit(+) cells displayed a closed-end tube formation that did not contain hematopoietic cells. From the pseudoglandular phase to the canalicular phase, c-Kit(+) cells appeared to continuously proliferate, to connect with central pulmonary vessels, and finally, to develop the lung capillary plexus. The spatial distribution of c-Kit- and SCF-positive cells was also demonstrated, and these cells were shown to be in close association. Our results suggest that c-Kit expression in early fetal lungs marks a progenitor population that is restricted to endothelial lineage. This study also suggests the potential involvement of c-Kit signaling in lung vascular development.

  2. Innate defense regulator IDR-1018 activates human mast cells through G protein-, phospholipase C-, MAPK- and NF-ĸB-sensitive pathways.

    PubMed

    Yanashima, Kensuke; Chieosilapatham, Panjit; Yoshimoto, Eri; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François

    2017-08-01

    Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018

  3. KTN0158, a Humanized Anti-KIT Monoclonal Antibody, Demonstrates Biologic Activity against both Normal and Malignant Canine Mast Cells.

    PubMed

    London, Cheryl A; Gardner, Heather L; Rippy, Sarah; Post, Gerald; La Perle, Krista; Crew, Linda; Lopresti-Morrow, Lori; Garton, Andrew J; McMahon, Gerald; LaVallee, Theresa M; Gedrich, Richard

    2016-11-04

    Purpose: KTN0158 is a novel anti-KIT antibody that potently inhibits wild-type and mutant KIT. This study evaluated the safety, biologic activity, and pharmacokinetic/pharmacodynamics profile of KTN0158 in dogs with spontaneous mast cell tumors (MCT) as a prelude to human clinical applications.Experimental Design: Cell proliferation, KIT phosphorylation, and mast cell degranulation were evaluated in vitro KTN0158 was administered to 4 research dogs to assess clinical effects and cutaneous mast cell numbers. Thirteen dogs with spontaneous MCT were enrolled into a prospective phase I dose-escalating open-label clinical study of KTN0158 evaluating 3 dose levels and 2 schedules and with weekly assessments for response and clinical toxicities.Results: KTN0158 was a potent inhibitor of human and dog KIT activation and blocked mast cell degranulation in vitro In dogs, KTN0158 was well tolerated and reduced cutaneous mast cell numbers in a dose-dependent manner. Clinical benefit of KTN0158 administration in dogs with MCT (n = 5 partial response; n = 7 stable disease) was observed regardless of KIT mutation status, and decreased KIT phosphorylation was demonstrated in tumor samples. Histopathology after study completion demonstrated an absence of neoplastic cells in the primary tumors and/or metastatic lymph nodes from 4 dogs. Reversible hematologic and biochemical adverse events were observed at doses of 10 and 30 mg/kg. The MTD was established as 10 mg/kg.Conclusions: KTN0158 inhibits KIT phosphorylation, demonstrates an acceptable safety profile in dogs, and provides objective responses in canine MCT patients with and without activating KIT mutations, supporting future clinical evaluation of KTN0158 in people. Clin Cancer Res; 1-10. ©2016 AACR.

  4. DA-9601 inhibits activation of the human mast cell line HMC-1 through inhibition of NF-kappaB.

    PubMed

    Lee, S; Park, H-H; Son, H-Y; Ha, J-H; Lee, M-G; Oh, T-Y; Sohn, D H; Jeong, T C; Lee, S H; Son, J-K; Lee, S G; Jun, C-D; Kim, S-H

    2007-03-01

    Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 with immune regulatory properties. The formulated ethanol extract of Artemisia asiatica Nakai (DA-9601) has been reported to have antioxidative and anti-inflammatory activities. In this report, we investigated the effect of DA-9601 on the expression of pro-inflammatory cytokines by the activated human mast cell line HMC-1 and studied its possible mechanisms of action. DA-9601 dose-dependently decreased the gene expression and production of TNF-alpha, IL-1beta, and IL-6 on phorbol 12-myristate 13-acetate (PMA)- and calcium ionophore A23187-stimulated HMC-1 cells. In addition, DA-9601 attenuated PMA- and A23187-induced activation of NF-kappaB as indicated by inhibition of degradation of IkappaBalpha, nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. Our in vitro studies provide evidence that DA-9601 might contribute to the treatment of mast cell-derived allergic inflammatory diseases.

  5. Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans.

    PubMed

    Shi, Michael A; Shi, Guo-Ping

    2012-01-01

    Mast cells (MCs) play an important role in allergic hyperresponsiveness and in defending microorganism infections. Recent studies of experimental animals and humans have suggested that MCs participate in obesity and diabetes. MC distribution and activities in adipose tissues may vary, depending on the locations of different adipose tissues. In addition to releasing inflammatory mediators to affect adipose tissue extracellular matrix remodeling and to promote inflammatory cell recruitment and proliferation, MCs directly and indirectly interact and activate adipose tissue cells, including adipocytes and recruited inflammatory cells. Plasma MC protease levels are significantly higher in obese patients than in lean subjects. Experimental obese animals lose body weight after MC inactivation. MC functions in diabetes are even more complicated, and depend on the type of diabetes and on different diabetic complications. Both plasma MC proteases and MC activation essential immunoglobulin E levels are significant risk factors for human pre-diabetes and diabetes mellitus. MC stabilization prevents diet-induced diabetes and improves pre-established diabetes in experimental animals. MC depletion or inactivation can improve diet-induced type 2 diabetes and some forms of type 1 diabetes, but also can worsen other forms of type 1 diabetes, at least in experimental animals. Observations from animal and human studies have suggested beneficial effects of treating diabetic patients with MC stabilizers. Some diabetic patients may benefit from enhancing MC survival and proliferation - hypotheses that merit detailed basic researches and clinical studies.

  6. Expression of Recombinant Human Mast Cell Chymase with Asn-linked Glycans in Glycoengineered Pichia pastoris

    PubMed Central

    Smith, Eliot T.; Perry, Evan T.; Sears, Megan B.; Johnson, David A.

    2014-01-01

    Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man)5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5 mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDSPAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced Km, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns. PMID:25131858

  7. Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells

    PubMed Central

    Dichlberger, Andrea; Schlager, Stefanie; Maaninka, Katariina; Schneider, Wolfgang J.; Kovanen, Petri T.

    2014-01-01

    Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation. PMID:25114172

  8. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues

    PubMed Central

    Yu, Yen-Rei A.; Hotten, Danielle F.; Malakhau, Yuryi; Volker, Ellen; Ghio, Andrew J.; Noble, Paul W.; Kraft, Monica; Hollingsworth, John W.; Gunn, Michael D.

    2016-01-01

    Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined flow cytometry panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue is currently lacking. The objective of this study was to develop a flow cytometry–based panel for human BAL and lung tissue. We obtained and performed flow cytometry/sorting on human BAL cells and lung tissue. Confocal images were obtained from lung tissue using antibodies for cluster of differentiation (CD)206, CD169, and E cadherin. We defined a multicolor flow panel for human BAL and lung tissue that identifies major leukocyte populations. These include macrophage (CD206+) subsets and other CD206− leukocytes. The CD206− cells include: (1) three monocyte (CD14+) subsets, (2) CD11c+ dendritic cells (CD14−, CD11c+, HLA-DR+), (3) plasmacytoid dendritic cells (CD14−, CD11c−, HLA-DR+, CD123+), and (4) other granulocytes (neutrophils, mast cells, eosinophils, and basophils). Using this panel on human lung tissue, we defined two populations of pulmonary macrophages: CD169+ and CD169− macrophages. In lung tissue, CD169− macrophages were a prominent cell type. Using confocal microscopy, CD169+ macrophages were located in the alveolar space/airway, defining them as alveolar macrophages. In contrast, CD169− macrophages were associated with airway/alveolar epithelium, consistent with interstitial-associated macrophages. We defined a flow cytometry panel in human BAL and lung tissue that allows identification of multiple immune cell types and delineates alveolar from interstitial-associated macrophages. This study has important implications for defining myeloid cells in human lung samples. PMID:26267148

  9. Mast Cell Proteases as Protective and Inflammatory Mediators

    PubMed Central

    Caughey, George H.

    2014-01-01

    Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them—notably tryptases and chymases—are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms, and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptides like endothelin and neurotensin during septic peritonitis, and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence non-mast cell proteases, such as by activating matrix metalloproteinase cascades

  10. A comparative study of the spatial distribution of mast cells and microvessels in the foetal, adult human thymus and thymoma.

    PubMed

    Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico

    2010-02-01

    Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.

  11. Tiny Device Mimics Human Lung Function

    SciTech Connect

    McDonald, Rebecca; Harris, Jennifer; Nath, Pulak

    2016-04-25

    Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.

  12. Human lung ex vivo infection models.

    PubMed

    Hocke, Andreas C; Suttorp, Norbert; Hippenstiel, Stefan

    2017-03-01

    Pneumonia is counted among the leading causes of death worldwide. Viruses, bacteria and pathogen-related molecules interact with cells present in the human alveolus by numerous, yet poorly understood ways. Traditional cell culture models little reflect the cellular composition, matrix complexity and three-dimensional architecture of the human lung. Integrative animal models suffer from species differences, which are of particular importance for the investigation of zoonotic lung diseases. The use of cultured ex vivo infected human lung tissue may overcome some of these limitations and complement traditional models. The present review gives an overview of common bacterial lung infections, such as pneumococcal infection and of widely neglected pathogens modeled in ex vivo infected lung tissue. The role of ex vivo infected lung tissue for the investigation of emerging viral zoonosis including influenza A virus and Middle East respiratory syndrome coronavirus is discussed. Finally, further directions for the elaboration of such models are revealed. Overall, the introduced models represent meaningful and robust methods to investigate principles of pathogen-host interaction in original human lung tissue.

  13. Signal transduction-associated and cell activation-linked antigens expressed in human mast cells.

    PubMed

    Valent, Peter; Ghannadan, Minoo; Hauswirth, Alexander W; Schernthaner, Gerit-Holger; Sperr, Wolfgang R; Arock, Michel

    2002-05-01

    Mast cells (MCs) are multifunctional hematopoietic effector cells that produce and release an array of biologically active mediator substances. Growth and functions of MCs are regulated by cytokines, other extracellular factors, surface and cytoplasmic receptors, oncogene products, and a complex network of signal transduction cascades. Key regulators of differentiation of MCs appear to be stem cell factor (SCF) and its tyrosine kinase receptor KIT (c-kit proto-oncogene product=CD117), downstream-acting elements, and the mi transcription factor (MITF). Signaling through KIT is negatively regulated by the signal regulatory protein (SIRP)-alpha (CD172a)-SHP-1-pathway that is disrupted in neoplastic MCs in MC proliferative disorders. Both KIT and FcepsilonRI are involved in MC activation and mediator release. Activation of MCs through FcepsilonRI is associated with increased expression of activation-linked membrane antigens as well as with signaling events involving Lyn and Syk kinases, the phosphatidylinositol-3-kinase-pathway, Ras pathway, and the phospholipase C-protein kinase C pathway. A similar network of signaling is found in SCF-activated MCs. The current article gives an overview on signal transduction-associated and activation-linked antigens expressed in human MCs. Wherever possible the functional implication of signaling pathways and antigen expression are discussed.

  14. Variable expression of activation-linked surface antigens on human mast cells in health and disease.

    PubMed

    Valent, P; Schernthaner, G H; Sperr, W R; Fritsch, G; Agis, H; Willheim, M; Bühring, H J; Orfao, A; Escribano, L

    2001-02-01

    Mast cells (MC) are multipotent effector cells of the immune system. They contain an array of biologically active mediator substances in their granules. MC also express a number of functionally important cell surface antigens, including stem cell factor receptor (SCFR=kit=CD117), high affinity IgER (FcepsilonRI), or CSaR (CD88). Respective ligands can induce or promote degranulation, migration, or cytokine production. Other integral surface molecules can mediate adhesion or cell aggregation. Recent data suggest that a number of critical molecules are variably expressed on the surface of human MC. In fact, depending on the environment (organ), stage of cell maturation, type of disease, and other factors, MC express variable amounts of activation-linked antigens (CD25, CD63, CD69, CD88), cell recognition molecules (CD2, CD11, CD18, CD50, CD54), or cytokine receptors. At present, however, little is known about the mechanisms and regulation of expression of such antigens. The present article gives an overview of MC phenotypes in health and disease, and attempts to provide explanations for the phenotypic variability of MC.

  15. Mast Cells Expedite Control of Pulmonary Murine Cytomegalovirus Infection by Enhancing the Recruitment of Protective CD8 T Cells to the Lungs

    PubMed Central

    Lemmermann, Niels A. W.; Büttner, Julia K.; Michel, Anastasija; Taube, Christian; Podlech, Jürgen; Böhm, Verena; Freitag, Kirsten; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J.; Stassen, Michael

    2014-01-01

    The lungs are a noted predilection site of acute, latent, and reactivated cytomegalovirus (CMV) infections. Interstitial pneumonia is the most dreaded manifestation of CMV disease in the immunocompromised host, whereas in the immunocompetent host lung-infiltrating CD8 T cells confine the infection in nodular inflammatory foci and prevent viral pathology. By using murine CMV infection as a model, we provide evidence for a critical role of mast cells (MC) in the recruitment of protective CD8 T cells to the lungs. Systemic infection triggered degranulation selectively in infected MC. The viral activation of MC was associated with a wave of CC chemokine ligand 5 (CCL5) in the serum of C57BL/6 mice that was MC-derived as verified by infection of MC-deficient KitW-sh/W-sh “sash” mutants. In these mutants, CD8 T cells were recruited less efficiently to the lungs, correlating with enhanced viral replication and delayed virus clearance. A causative role for MC was verified by MC reconstitution of “sash” mice restoring both, efficient CD8 T-cell recruitment and infection control. These results reveal a novel crosstalk axis between innate and adaptive immune defense against CMV, and identify MC as a hitherto unconsidered player in the immune surveillance at a relevant site of CMV disease. PMID:24763809

  16. Histamine and chondroitin sulfate E proteoglycan released by cultured human colonic mucosa: indication for possible presence of E mast cells

    SciTech Connect

    Eliakim, R.; Gilead, L.; Ligumsky, M; Okon, E.; Rachmilewitz, D.; Razin, E.

    1986-01-01

    An association between the release of histamine and chondroitin sulfate E proteoglycan (PG) was demonstrates in human colonic mucosa (HCM). Colonic biopsy samples incorporated (/sup 35/S)sulfate into PG, which was partially released into the culture medium during the incubation period. Ascending thin-layer chromatography of the released /sup 35/S-labeled PG after its digestion by chondroitin ABC lyase (chondroitinase, EC 4.2.2.4) followed by autoradiography yielded three products that migrated in the position of monosulfated disaccharides of N-acetylgalactosamine 4-sulfate and N-acetylgalactosoamine 6-sulfate and of an oversulfated disaccharide possessing N-acetylgalatosamine 4,6-disulfate. Cultured colonic mucosa released 23.6 +/- 3.7ng of histamine per mg of wet tissue without any special trigger. Comparison by linear regression analysis of the release of histamine and chondroitin (/sup 35/S)sulfate E PG revealed a correlation coefficient (r) of 0.7. Histological examination of the colonic biopsies revealed the presence of many mast cells in various degrees of degranulation in the mucosa and submucosa. The above correlation, the observation that most of the mast cells showed various degrees of degranulation, and the lack of heparin synthesis as opposed to the synthesis and immunological release of chondroitin sulfate E strongly suggest that the E mast cell exists in the human colon.

  17. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    PubMed

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  18. [Inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide-stimulated human mast cells].

    PubMed

    Zhou, Yun-jiang; Wang, Hu; Li, Li; Sui, He-huan; Huang, Jia-jun

    2015-06-01

    This study is to investigate the inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide(LPS)-stimulated HMC-1 mast cells. The cytotoxicity of kaempferol to HMC-1 mast cells were analyzed by using MTT assay and then the administration concentrations of kaempferol were established. Histamine, IL-6, IL-8, IL-1β and TNF-α were measured using ELISA assay in activated HMC-1 mast cells after incubation with various concentrations of kaempferol (10, 20 and 40 µmol.L-1). Western blot was used to test the protein expression of p-IKKβ, IκBα, p-IκBα and nucleus NF-κB of LPS-induced HMC-1 mast cells after incubation with different concentrations of kaempferol. The optimal concentrations of kaempferol were defined as the range from 5 µmol.L-1 to 40 µmol.L-1. Kaempferol significantly decreased the release of histamine, IL-6, IL-8, IL-1β and TNF-α of activated HMC-1 mast cells (P<0.01). After incubation with kaempferol, the protein expression of p-IKKβ, p-IKBa and nucleus NF-κB (p65) markedly reduced in LPS-stimulated HMC-1 mast cells (P<0.01). Taken together, we concluded that kaempferol markedly inhibit mast cell-mediated inflammatory response. At the same time, kaempferol can inhibit the activation of IKKβ, block the phosphorylation of IκBα, prevent NF-KB entering into the nucleus, and then decrease the release of inflammatory mediators.

  19. Detection of respiratory allergies caused by environmental chemical allergen via measures of hyper-activation and degranulation of mast cells in lungs of NC/Nga mice.

    PubMed

    Nishino, Risako; Fukuyama, Tomoki; Watanabe, Yuko; Kurosawa, Yoshimi; Koasaka, Tadashi; Harada, Takanori

    2016-09-01

    Respiratory allergy triggered by exposure to environmental chemical allergen is a serious problem in many Asian countries and has the potential to cause severe health problems. Here, we aimed to elucidate the pathogenic mechanisms of this disease and develop an in vivo detection method for respiratory allergy induced by environmental chemical allergen. Both BALB/c and NC/Nga mice were sensitized topically for 3 weeks and were then subjected to inhalation challenge with pulverized trimellitic anhydride into particles measuring 2-μm in diameter. On the day after the final challenge, all mice were sacrificed, and IgE levels, immunocyte counts, and cytokine levels in the serum, hilar lymph nodes, and bronchoalveolar lavage fluid were measured. We also monitored the expression of genes encoding pro-inflammatory cytokines in the lung. We found that all endpoints were significantly increased in mice of both strains subjected to trimellitic anhydride inhalation as compared with the respective control groups. However, worsening of respiratory status was noted only in NC/Nga mice. Interestingly, type 2 helper T-cell reactions were significantly increased in BALB/c mice compared with that in NC/Nga mice. In contrast, the number of mast cells, levels of mast cell-related cytokine/chemokines, and production of histamine in NC/Nga mice were significantly higher than those in BALB/c mice. Thus, environmental chemical allergen induced respiratory allergy in NC/Nga mice in terms of functional and inflammatory symptoms. Furthermore, mast cells may be involved in the aggravation of airway allergic symptoms induced by environmental chemical allergens.

  20. Surfactant protein A (SP-A) and SP-A-derived peptide attenuate chemotaxis of mast cells induced by human β-defensin 3.

    PubMed

    Uehara, Yasuaki; Takahashi, Motoko; Murata, Masaki; Saito, Atsushi; Takamiya, Rina; Hasegawa, Yoshihiro; Kuronuma, Koji; Chiba, Hirofumi; Hashimoto, Jiro; Sawada, Norimasa; Takahashi, Hiroki; Kuroki, Yoshio; Ariki, Shigeru

    2017-03-25

    Human β-defensin 3 (hBD3) is known to be involved in mast cell activation. However, molecular mechanisms underlying the regulation of hBD3-induced mast cell activation have been poorly understood. We previously reported that SP-A and SP-A-derived peptide 01 (SAP01) regulate the function of hBD3. In this study, we focused on the effects of SP-A and SAP01 on the activation of mast cells induced by hBD3. SAP01 directly bound to hBD3. Mast cell-mediated vascular permeability and edema in hBD3 administered rat ears were decreased when injected with SP-A or SAP01. Compatible with the results in rat ear model, both SP-A and SAP01 inhibited hBD3-induced chemotaxis of mast cells in vitro. Direct interaction between SP-A or SAP01 and hBD3 seemed to be responsible for the inhibitory effects on chemotaxis. Furthermore, SAP01 attenuated hBD3-induced accumulation of mast cells and eosinophils in tracheas of the OVA-sensitized inflammatory model. SP-A might contribute to the regulation of inflammatory responses mediated by mast cells during infection.

  1. Retinoic acid potentiates inflammatory cytokines in human mast cells: identification of mast cells as prominent constituents of the skin retinoid network.

    PubMed

    Babina, Magda; Guhl, Sven; Motakis, Efthymios; Artuc, Metin; Hazzan, Tarek; Worm, Margitta; Forrest, Alistair R R; Zuberbier, Torsten

    2015-05-05

    Retinoic acid (RA), the active vitamin-A-metabolite, has well-established functions in skin homeostasis and in the immune system. Skin mast cells (MCs) combine traits of both structures, being of hematopoietic origin, but functional in the skin environment. It remains largely unknown whether mature MCs are targeted by the retinoid network. Here, we demonstrate that human skin MCs display substantial susceptibility to RA by which they are instructed to increase pro-inflammatory mediators (IL-1β, IL-8, TNF-α) but not histamine release. The effects are observed at physiological RA levels, in different microenvironments, and are largely donor-independent. RA susceptibility is owed to the cells' abundant expression of RARA, the receptor mediating MC cytokine responses. Unexpectedly, bioinformatics calculations on the FANTOM5 expression atlas revealed general enrichment of retinoid network components in MCs against other skin cells, and MCs rapidly upregulated RA responsive genes. In conclusion, MCs are important yet hitherto overlooked retinoid targets in the skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. [Human lung connective tissue in postnatal ontogeny].

    PubMed

    Kasimtsev, A A; Nikolaev, V G

    1993-01-01

    Changes of the connective tissue structures, appearing during all postnatal ontogenesis stages were studied in 147 human lung specimens of different age groups (from newborns up to 82-year-olds). Qualitative and quantitative composition of connective tissue structures changes with the age which leads to the lateral aggregation of the fibers and growth of the general mass of the connective tissue. Heterochronia of the age variability manifestations in different regions of the lung framework was demonstrated. The original age transformations of connective tissue structures are characteristic for the basal lung regions. With the exception of perivasal connective tissue, similar changes in the region of the lung apexes appear 3-5 years later. This gives an opportunity to distinguish three anatomic zones in the lungs in an apico-basal direction, characterising the local nature of the age changes manifestations.

  3. Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses.

    PubMed

    Feng, Chunli; Beller, Elizabeth M; Bagga, Savita; Boyce, Joshua A

    2006-04-15

    Prostaglandin E2 (PGE2) blocks mast-cell (MC)-dependent allergic responses in humans but activates MCs in vitro. We assessed the functions of the EP receptors for PGE2 on cultured human MCs (hMCs). hMCs expressed the EP3, EP2, and EP4 receptors. PGE2 stimulated the accumulation of cyclic adenosine monophosphate (cAMP), and suppressed both Fc epsilonRI-mediated eicosanoid production and tumor necrosis factor-alpha (TNF-alpha) generation. PGE2 also caused phosphorylation of extracellular signal-regulated kinase (ERK), exocytosis, and production of prostaglandin D2 (PGD2), as well as leukotriene C4 (LTC4) when protein kinase A (PKA) was inhibited. An EP3 receptor-selective agonist, AE-248, mimicked PGE2-mediated ERK phosphorylation, exocytosis, and eicosanoid formation. Selective agonists of both EP2 and EP4 receptors (AE1-259-01 and AE-329, respectively) stimulated cAMP accumulation. No selective agonist, alone or in combination, was as effective as PGE2. AE-248, AE1-259-01, and AE-329 all inhibited Fc epsilonRI-mediated TNF-alpha generation, while AE1-259-01 blocked eicosanoid production. PGE2 caused the expression of inducible cAMP early repressor (ICER) by a pathway involving PKA and ERK. Thus, while PGE2 activates MCs through EP3 receptors, it also counteracts Fc epsilonRI-mediated eicosanoid production through EP2 receptors and PKA, and blocks cytokine transcription. These functions explain the potency of PGE2 as a suppressor of early- and late-phase allergic responses.

  4. Human papillomavirus and lung cancinogenesis: an overview.

    PubMed

    de Freitas, Antonio Carlos; Gurgel, Ana Pavla; de Lima, Elyda Golçalves; de França São Marcos, Bianca; do Amaral, Carolina Maria Medeiros

    2016-12-01

    Lung cancer is the most common cause of cancer deaths worldwide. Although tobacco smoking is considered to be the main risk factor and the most well-established risk factor for lung cancer, a number of patients who do not smoke have developed this disease. This number varies between 15 % to over one-half of lung cancer cases, and the deaths from lung cancer in non-smokers are increasing every year. There are many other agents that are thought to be etiological, including diesel exhaust exposure, metals, radiation, radon, hormonal factors, cooking oil, air pollution and infectious diseases, such as human papillomavirus (HPV). Studies in various parts of the world have detected HPV DNA at different rates in lung tumors. However, the role of HPV in lung cancer is still unclear. Thus, in this review, we investigated some molecular mechanisms of HPV protein activity in host cells, the entry of HPV into lung tissue and the possible route used by the virus to reach the lung cells.

  5. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties.

    PubMed

    Nguyen, Su Duy; Maaninka, Katariina; Lappalainen, Jani; Nurmi, Katariina; Metso, Jari; Öörni, Katariina; Navab, Mohamad; Fogelman, Alan M; Jauhiainen, Matti; Lee-Rueckert, Miriam; Kovanen, Petri T

    2016-02-01

    Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. The findings identify C-terminal cleavage of apoA-I by human mast

  6. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties

    PubMed Central

    Nguyen, Su Duy; Maaninka, Katariina; Lappalainen, Jani; Nurmi, Katariina; Metso, Jari; Öörni, Katariina; Navab, Mohamad; Fogelman, Alan M.; Jauhiainen, Matti; Lee-Rueckert, Miriam

    2016-01-01

    Objective— Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. Approach and Results— Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α–activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB–dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)– and M-CSF (macrophage colony-stimulating factor)–differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)–activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. Conclusions— The

  7. Mast Cells and Influenza A Virus: Association with Allergic Responses and Beyond

    PubMed Central

    Graham, Amy C.; Temple, Rachel M.; Obar, Joshua J.

    2015-01-01

    Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infections associated with significant morbidity in young and elderly populations, and has a large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover infection and global pandemics, which have significantly greater morbidity and mortality across all ages. The pathology associated with these pandemic and spillover infections appear to be the result of an excessive inflammatory response leading to severe lung damage, which likely predisposes the lungs for secondary bacterial infections. The lung is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells during bacterial and parasitic infections has been extensively studied; yet, the role of these hematopoietic cells during viral infections is only beginning to emerge. Recently, it has been shown that mast cells can be directly activated in response to IAV, releasing mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral chemokines, which participate in the excessive inflammatory and pathological response observed during IAV infections. In this review, we will examine the relationship between mast cells and IAV, and discuss the role of mast cells as a potential drug target during highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in other viral infections associated with significant host pathology. PMID:26042121

  8. Selective growth of human mast cells induced by Steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells.

    PubMed

    Saito, H; Ebisawa, M; Tachimoto, H; Shichijo, M; Fukagawa, K; Matsumoto, K; Iikura, Y; Awaji, T; Tsujimoto, G; Yanagida, M; Uzumaki, H; Takahashi, G; Tsuji, K; Nakahata, T

    1996-07-01

    To establish the method for generating a large number of mature human mast cells, we cultured cord blood mononuclear cells (CBMC) in several conditions in the presence of Steel factor (SF). Among several cytokines tested, IL-6 enhanced SF-dependent mast cell growth from purified CD34+ cells for more than 8 wk in culture. When CBMC were cultured instead of CD34+ cells, IL-6 enhanced the mast cell development in the presence but not in the absence of PGE2. PGE2 enhanced the SF- and IL-6-dependent development of mast cells from CBMC probably by blocking granulocyte-macrophage CSF (GM-CSF) secretion from accessory cells, because 1) PGE2, or anti-GM-CSF enhanced the mast cell development induced by SF and IL-6 from CBMC, but not from CD34+ cells; 2) GM-CSF inhibited the enhancing effect of IL-6 on the mast cell development from CD34+ cells; and 3) PGE2 inhibited GM-CSF secretion from CBMC. The mast cells cultured in the presence of SF, IL-6, and PGE2 for >10 wk were 99% pure, and seemed to be functionally mature, because 1) they contained 5.62 micrograms of histamine and 3.46 micrograms of tryptase per 10(6) cells; and 2) when sensitized with human IgE and then challenged with anti-human IgE, the cells released a variety of mediators such as histamine, and an increase in intracellular Ca2+ was found in advance of the activation of membrane movement by using a confocal laser-scanning microscope. Electron-microscopic analysis revealed that some of the cultured mast cells are morphologically mature since they filled with scroll granules and contained crystal granules.

  9. The ascomycin macrolactam pimecrolimus (Elidel, SDZ ASM 981) is a potent inhibitor of mediator release from human dermal mast cells and peripheral blood basophils.

    PubMed

    Zuberbier, T; Chong, S U; Grunow, K; Guhl, S; Welker, P; Grassberger, M; Henz, B M

    2001-08-01

    The ascomycin macrolactam pimecrolimus (Elidel, SDZ ASM 981) has recently been developed as a novel and cell-selective inhibitor of inflammatory cytokine secretion; it has fewer adverse effects than currently available drugs. In this study, we investigated the capacity of pimecrolimus to directly inhibit in vitro mediator release from human skin mast cells and basophils. Purified cutaneous mast cells or basophil-containing peripheral blood leukocytes were obtained from healthy human donors and preincubated with pimecrolimus (0.1 nmol/L to 1 micromol/L) in the absence or presence of its specific antagonist (rapamycin), cyclosporin A (100 nmol/L to 1 micromol/L), or dexamethasone (1 micromol/L) and then stimulated with anti-IgE or with calcium ionophore A23187 plus phorbol myristate acetate. Cell supernatants were kept for analysis of histamine, tryptase, LTC4, and TNF-alpha. Pimecrolimus caused a strong and dose-dependent inhibition of anti-IgE--induced release of histamine from mast cells and basophils (maximally 73% and 82%, respectively, at 500 nmol/L pimecrolimus) and of mast cell tryptase (maximally 75%) and a less pronounced inhibition of LTC4 (maximally 32%) and of calcium ionophore plus phorbol myristate acetate--induced mast cell TNF-alpha release (90% maximum at 100 nmol/L pimecrolimus). In contrast, inhibition achieved during mast cell histamine release was maximally 60% with cyclosporin A and only 28% with dexamethasone. These data demonstrate a marked inhibitory capacity of pimecrolimus on mediator release from human mast cells and basophils with a potency exceeding that of cyclosporin A and dexamethasone. Pimecrolimus might thus be expected to be effective in the treatment of mast cell-- and basophil-dependent diseases.

  10. T Regulatory Cells Control Antigen-Induced Recruitment of Mast Cell Progenitors to the Lungs of C57BL/6 Mice

    PubMed Central

    Jones, Tatiana G.; Finkelman, Fred D.; Austen, K. Frank; Gurish, Michael F.

    2010-01-01

    In C57BL/6 mice, the recruitment of mast cell progenitors (MCps) to the lung is a feature of Ag-induced pulmonary inflammation that requires sensitization and challenge and is totally inhibited by the administration of anti-CD4 at the time of challenge. When mAb to TGFβ1 or to IL-10R was administered at the time of challenge, the recruitment of MCp/106 mononuclear cells (MNCs) to the lung was inhibited by 56.3 and 69.6%, respectively, whereas mAb to IL-4, IFN-γ, IL-6, IL-17A, and IL-17F had no effect. In sensitized and challenged C57BL/6 mice lacking TGFβRII on CD4+ cells, the recruitment of MCp/106 MNCs was reduced by 67.8%. The requirement for TGFβ1 and IL-10 suggested a role for CD4+CD25+ T regulatory cells. Mice treated with anti-CD25 at the time of Ag-challenge showed a reduction in the recruitment of MCp/106 MNCs by 77.2% without any reduction in MNC influx. These results reveal an unexpected role for T regulatory cells in promoting the recruitment of MCps to the lungs of C57BL/6 mice with Ag-induced pulmonary inflammation. PMID:20601599

  11. Mast cell infiltrates in vulvodynia represent secondary and idiopathic mast cell hyperplasias.

    PubMed

    Regauer, Sigrid; Eberz, Barbara; Beham-Schmid, Christine

    2015-05-01

    Mast cell infiltrates in tissues of vulvodynia are common, but they have not been characterized for criteria of neoplastic mast cell disease or correlated with patient's concomitant diseases associated with increased mast cells. Formalin-fixed specimens of 35 patients with vulvodynia were evaluated immunohistochemically with antibodies to CD 3,4,8,20,117c and human mast cell tryptase, and for WHO-criteria of neoplastic mastocytosis (>25% spindled mast cell, CD25 expression, point mutations of the c-kit gene (D816V), and chronically elevated serum tryptase levels). Only 20/35 specimens showed a T-lymphocyte dominant inflammatory infiltrate on HE-stained sections, but all showed mast cells. 4/35 biopsies showed <10 mast cells/mm(2) , 15/35 specimens 40-60 mast cells/mm(2) and 16/35 specimens >60 mast cells/mm(2) (average 80/mm(2) ). Control tissue contained typically <10 mast cells/mm(2) . Spindling, CD25-expression, c-kit gene mutations, or increased serum tryptase levels were not detected. 26/35 (74%) patients had concomitant autoimmune diseases, psoriasis, atopy, various allergies, preceding infections. Independent of the subtype of vulvodynia, the majority of mast cell rich biopsies with >40 mast cells/mm(2) were classified as a secondary mast cell disorder reflecting an activated immune system in 75% of vulvodynia patients. Patients with increased mast cells may benefit from medical therapy targeting mast cells.

  12. Lung retention of cerium in humans.

    PubMed Central

    Pairon, J C; Roos, F; Iwatsubo, Y; Janson, X; Billon-Galland, M A; Bignon, J; Brochard, P

    1994-01-01

    A retrospective study was conducted to evaluate lung retention of particles containing cerium in subjects with and without previous occupational exposure to mineral dusts. Analytical transmission electron microscopy was performed on 459 samples of bronchoalveolar lavage (BAL) fluid and 75 samples of lung tissue. Study of the distribution of mineralogical species in human samples showed that particles containing cerium were encountered in less than 10% of subjects. The proportion of subjects with particles containing cerium in their biological samples was not different between controls and subjects with previous occupational exposure to fibrous or nonfibrous mineral dusts. This was considered as the background level of lung retention of cerium in the general population. By contrast, determination of the absolute concentration of particles containing cerium in BAL fluid and lung tissue samples showed that 1.2% (from BAL fluid) and 1.5% (from lung tissue) of subjects with previous exposure to mineral particles had high lung retention of particles containing cerium. This study is believed to be the first one in which lung retention of cerium was estimated in the general population. PMID:8130849

  13. Mast cells and mastocytosis

    PubMed Central

    2008-01-01

    Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors. PMID:18684881

  14. Serum amyloid A (SAA) activates human mast cells which leads into degradation of SAA and generation of an amyloidogenic SAA fragment.

    PubMed

    Niemi, Katri; Baumann, Marc H; Kovanen, Petri T; Eklund, Kari K

    2006-04-01

    Serum amyloid A (SAA) is a precursor for the amyloid A in AA type of amyloidosis. Distribution of mast cells in tissues is similar to the distribution of amyloid deposits in secondary AA-amyloidosis. Therefore, we studied whether mast cells could be involved in SAA metabolism. Human mast cell line (HMC-1) cells were cultured with recombinant human apoSAA (rhSAA), and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-1 beta was determined by ELISA. RhSAA and human SAA (huSAA) were incubated with human chymase, tryptase or with intact human mast cell (huMC) in cultures, and degradation of SAA was followed by gel electrophoresis, liquid chromatography and mass spectrometry. SAA induced dose-dependent production of TNF-alpha and IL-1 beta in HMC-1 cells. Tryptase, chymase, and huMC granules degraded efficiently the SAA protein. Degradation of SAA by tryptase, but not by chymase, released a highly amyloidogenic N-terminal fragment of SAA. Finally, incubation of huMC with rhSAA alone resulted in degradation of SAA and formation of protofibrillar intermediates. These results suggest a pathogenic role for mast cells in AA-amyloidosis.

  15. Tiny Device Mimics Human Lung Function

    ScienceCinema

    McDonald, Rebecca; Harris, Jennifer; Nath, Pulak

    2016-07-12

    Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.

  16. Mast cells and COPD.

    PubMed

    Mortaz, Esmaeil; Folkerts, Gert; Redegeld, Frank

    2011-08-01

    The pathogenesis of chronic obstructive pulmonary disease (COPD) is based on the innate and adaptive inflammatory immune response to the inhalation of toxic particles and gases. Although tobacco smoking is the primary cause of this inhalation injury, many other environmental and occupational exposures contribute to the pathology of COPD. The immune inflammatory changes associated with COPD are linked to a tissue-repair and -remodeling process that increases mucus production and causes emphysematous destruction of the gas-exchanging surface of the lung. The common form of emphysema observed in smokers begins in the respiratory bronchioles near the thickened and narrowed small bronchioles that become the major site of obstruction in COPD. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages, T lymphocytes, and dendritic cells. The relative contribution of mast cells to airway injury and remodeling is not well documented. In this review, an overview is given on the possible role of mast cells and their mediators in the pathogenesis of COPD. Activation of mast cells and mast cell signaling in response to exposure to cigarette smoke is further discussed.

  17. An optimized protocol for the generation and functional analysis of human mast cells from CD34(+) enriched cell populations.

    PubMed

    Yin, Yuzhi; Bai, Yun; Olivera, Ana; Desai, Avanti; Metcalfe, Dean D

    2017-09-01

    The culture of mast cells from human tissues such a cord blood, peripheral blood or bone marrow aspirates has advanced our understanding of human mast cells (huMC) degranulation, mediator production and response to pharmacologic agents. However, existing methods for huMC culture tend to be laborious and expensive. Combining technical approaches from several of these protocols, we designed a simplified and more cost effective approach to the culture of mast cells from human cell populations including peripheral blood and cryopreserved cells from lymphocytapheresis. On average, we reduced by 30-50 fold the amount of culture media compared to our previously reported method, while the total MC number generated by this method (2.46±0.63×10(6) vs. 2.4±0.28×10(6), respectively, from 1.0×10(8) lymphocytapheresis or peripheral blood mononuclear blood cells [PBMCs]) was similar to our previous method (2.36±0.70×10(6)), resulting in significant budgetary savings. In addition, we compared the yield of huMCs with or without IL-3 added to early cultures in the presence of stem cell factor (SCF) and interlukin-6 (IL-6) and found that the total MC number generated, while higher with IL-3 in the culture, did not reach statistical significance, suggesting that IL-3, often recommended in the culture of huMCs, is not absolutely required. We then performed a functional analysis by flow cytometry using standard methods and which maximized the data we could obtain from cultured cells. We believe these approaches will allow more laboratories to culture and examine huMC behavior going forward. Published by Elsevier B.V.

  18. Mast cell sarcoma: clinical management.

    PubMed

    Weiler, Catherine R; Butterfield, Joseph

    2014-05-01

    Mast cell sarcoma is a disorder that results in abnormal mast cells as identified by morphology, special stains, and in some publications, c-kit mutation analysis. It affects animal species such as canines more commonly than humans. In humans it is a very rare condition, with variable clinical presentation. There is no standard therapy for the disorder. It can affect any age group. It is occasionally associated with systemic mastocytosis and/or urticaria pigmentosa. The prognosis of mast cell sarcoma in published literature is very poor in humans.

  19. Bacterial activation of mast cells.

    PubMed

    Chi, David S; Walker, Elaine S; Hossler, Fred E; Krishnaswamy, Guha

    2006-01-01

    Mast cells often are found in a perivascular location but especially in mucosae, where they may response to various stimuli. They typically associate with immediate hypersensitive responses and are likely to play a critical role in host defense. In this chapter, a common airway pathogen, Moraxella catarrhalis, and a commensal bacterium, Neiserria cinerea, are used to illustrate activation of human mast cells. A human mast cell line (HMC-1) derived from a patient with mast cell leukemia was activated with varying concentrations of heat-killed bacteria. Active aggregation of bacteria over mast cell surfaces was detected by scanning electron microscopy. The activation of mast cells was analyzed by nuclear factor-kappaB (NF-kappaB) activation and cytokine production in culture supernatants. Both M. catarrhalis and N. cinerea induce mast cell activation and the secretion of two key inflammatory cytokines, interleukin-6 and MCP-1. This is accompanied by NF-kappaB activation. Direct bacterial contact with mast cells appears to be essential for this activation because neither cell-free bacterial supernatants nor bacterial lipopolysaccharide induce cytokine secretion.

  20. MALDI Profiling of Human Lung Cancer Subtypes

    PubMed Central

    Nistal, Manuel; Calvo, Enrique; Madero, Rosario; Díaz, Esther; Camafeita, Emilio; de Castro, Javier; López, Juan Antonio; González-Barón, Manuel; Espinosa, Enrique; Fresno Vara, Juan Ángel

    2009-01-01

    Background Proteomics is expected to play a key role in cancer biomarker discovery. Although it has become feasible to rapidly analyze proteins from crude cell extracts using mass spectrometry, complex sample composition hampers this type of measurement. Therefore, for effective proteome analysis, it becomes critical to enrich samples for the analytes of interest. Despite that one-third of the proteins in eukaryotic cells are thought to be phosphorylated at some point in their life cycle, only a low percentage of intracellular proteins is phosphorylated at a given time. Methodology/Principal Findings In this work, we have applied chromatographic phosphopeptide enrichment techniques to reduce the complexity of human clinical samples. A novel method for high-throughput peptide profiling of human tumor samples, using Parallel IMAC and MALDI-TOF MS, is described. We have applied this methodology to analyze human normal and cancer lung samples in the search for new biomarkers. Using a highly reproducible spectral processing algorithm to produce peptide mass profiles with minimal variability across the samples, lineal discriminant-based and decision tree–based classification models were generated. These models can distinguish normal from tumor samples, as well as differentiate the various non–small cell lung cancer histological subtypes. Conclusions/Significance A novel, optimized sample preparation method and a careful data acquisition strategy is described for high-throughput peptide profiling of small amounts of human normal lung and lung cancer samples. We show that the appropriate combination of peptide expression values is able to discriminate normal lung from non-small cell lung cancer samples and among different histological subtypes. Our study does emphasize the great potential of proteomics in the molecular characterization of cancer. PMID:19890392

  1. Extended cleavage specificity of the mast cell chymase from the crab-eating macaque (Macaca fascicularis): an interesting animal model for the analysis of the function of the human mast cell chymase.

    PubMed

    Thorpe, Michael; Yu, Jing; Boinapally, Vamsi; Ahooghalandari, Parvin; Kervinen, Jukka; Garavilla, Lawrence de; Hellman, Lars

    2012-12-01

    Serine proteases are the major protein constituents within mast cell secretory granules. These proteases are subdivided into chymases and tryptases depending on their primary cleavage specificity. Here, we present the extended cleavage specificity of the macaque mast cell chymase and compare the specificity with human chymase (HC) and dog chymase (DC) that were produced in the same insect cell expression host. The macaque chymase (MC) shows almost identical characteristics as the HC, including both primary and extended cleavage specificities as well as sensitivity to protease inhibitors, whereas the DC differs in several of these characteristics. Although previous studies have shown that mouse mast cell protease-4 (mMCP-4) is similar in its hydrolytic specificity to the HC, mouse mast cells contain several related enzymes. Thus mice may not be the most appropriate model organism for studying HC activity and inhibition. Importantly, macaques express only one chymase and, as primates, are closely related to human general physiology. In addition, the human and macaque enzymes both cleave angiotensin I (Ang I) in the same way, generating primarily angiotensin II (Ang II) and they do not further degrade the peptide like most rodent enzymes do. Both enzymes also cleave two additional potential in vivo substrates, fibronectin and secretory leukocyte protease inhibitor (SLPI) in a similar way. Given the fact that both HC and MC are encoded by a single gene with high sequence homology and that many physiological processes are similar between these species, the macaque may be a very interesting model to study the physiological role of the chymase and to determine the potency and potential side-effects of various chymase inhibitors designed for therapeutic human use.

  2. Human Mesenchymal Stem Cell-Derived Microvesicles Prevent the Rupture of Intracranial Aneurysm in Part by Suppression of Mast Cell Activation via a PGE2-Dependent Mechanism

    PubMed Central

    Liu, Jia; Kuwabara, Atsushi; Kamio, Yoshinobu; Hu, Shuling; Park, Jeonghyun; Hashimoto, Tomoki; Lee, Jae-Woo

    2017-01-01

    Background Activation of mast cells participates in the chronic inflammation associated with cerebral arteries in intracranial aneurysm formation and rupture. Several studies have shown that the anti-inflammatory effect of mesenchymal stem cells (MSCs) is beneficial for the treatment of aneurysms. However, some long-term safety concerns exist regarding stem cell-based therapy for clinical use. Objective We investigated the therapeutic potential of microvesicles (MVs) derived from human MSCs, anuclear membrane bound fragments with reparative properties, in preventing the rupture of intracranial aneurysm in mice, particularly in the effect of MVs on mast cell activation. Methods and Results Intracranial aneurysm was induced in C57BL/6 mice by the combination of systemic hypertension and intrathecal elastase injection. Intravenous administration of MSC-derived MVs on day 6 and day 9 after aneurysm induction significantly reduced the aneurysmal rupture rate, which was associated with reduced number of activated mast cells in the brain. A23187-induced activation of both primary cultures of murine mast cells and a human mast cell line, LAD2, was suppressed by MVs treatment, leading to a decrease in cytokine release and tryptase and chymase activities. Up-regulation of prostaglandin E2 (PGE2) production and E-prostanoid 4 (EP4) receptor expression were also observed on mast cells with MVs treatment. Administration of an EP4 antagonist with the MVs eliminated the protective effect of MVs against the aneurysmal rupture in vivo. Conclusions Human MSC-derived MVs prevented the rupture of intracranial aneurysm, in part due to their anti-inflammatory effect on mast cells, which was mediated by PGE2 production and EP4 activation. PMID:27350036

  3. Human Mesenchymal Stem Cell-Derived Microvesicles Prevent the Rupture of Intracranial Aneurysm in Part by Suppression of Mast Cell Activation via a PGE2-Dependent Mechanism.

    PubMed

    Liu, Jia; Kuwabara, Atsushi; Kamio, Yoshinobu; Hu, Shuling; Park, Jeonghyun; Hashimoto, Tomoki; Lee, Jae-Woo

    2016-12-01

    Activation of mast cells participates in the chronic inflammation associated with cerebral arteries in intracranial aneurysm formation and rupture. Several studies have shown that the anti-inflammatory effect of mesenchymal stem cells (MSCs) is beneficial for the treatment of aneurysms. However, some long-term safety concerns exist regarding stem cell-based therapy for clinical use. We investigated the therapeutic potential of microvesicles (MVs) derived from human MSCs, anuclear membrane bound fragments with reparative properties, in preventing the rupture of intracranial aneurysm in mice, particularly in the effect of MVs on mast cell activation. Intracranial aneurysm was induced in C57BL/6 mice by the combination of systemic hypertension and intrathecal elastase injection. Intravenous administration of MSC-derived MVs on day 6 and day 9 after aneurysm induction significantly reduced the aneurysmal rupture rate, which was associated with reduced number of activated mast cells in the brain. A23187-induced activation of both primary cultures of murine mast cells and a human mast cell line, LAD2, was suppressed by MVs treatment, leading to a decrease in cytokine release and tryptase and chymase activities. Upregulation of prostaglandin E2 (PGE2) production and E-prostanoid 4 (EP4) receptor expression were also observed on mast cells with MVs treatment. Administration of an EP4 antagonist with the MVs eliminated the protective effect of MVs against the aneurysmal rupture in vivo. Human MSC-derived MVs prevented the rupture of intracranial aneurysm, in part due to their anti-inflammatory effect on mast cells, which was mediated by PGE2 production and EP4 activation. Stem Cells 2016;34:2943-2955.

  4. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism.

    PubMed

    Vanuytsel, Tim; van Wanrooy, Sander; Vanheel, Hanne; Vanormelingen, Christophe; Verschueren, Sofie; Houben, Els; Salim Rasoel, Shadea; Tόth, Joran; Holvoet, Lieselot; Farré, Ricard; Van Oudenhove, Lukas; Boeckxstaens, Guy; Verbeke, Kristin; Tack, Jan

    2014-08-01

    Intestinal permeability and psychological stress have been implicated in the pathophysiology of IBD and IBS. Studies in animals suggest that stress increases permeability via corticotropin-releasing hormone (CRH)-mediated mast cell activation. Our aim was to investigate the effect of stress on intestinal permeability in humans and its underlying mechanisms. Small intestinal permeability was quantified by a 2 h lactulose-mannitol urinary excretion test. In a first study, 23 healthy volunteers were subjected to four different conditions: control; indomethacin; public speech and anticipation of electroshocks. In a second study, five test conditions were investigated in 13 volunteers: control; after pretreatment with disodium cromoglycate (DSCG); administration of CRH; DSCG+CRH and DSCG+public speech. Indomethacin, as a positive comparator (0.071±0.040 vs 0.030±0.022; p<0.0001), and public speech (0.059±0.040; p<0.01), but not the shock protocol increased intestinal permeability. Similarly, salivary cortisol was only increased after public speech. Subgroup analysis demonstrated that the effect of public speech on permeability was only present in subjects with a significant elevation of cortisol. CRH increased the lactulose-mannitol ratio (0.042±0.021 vs 0.028±0.009; p=0.02), which was inhibited by the mast cell stabiliser DSCG. Finally, intestinal permeability was unaltered by public speech with DSCG pretreatment. Acute psychological stress increases small intestinal permeability in humans. Peripheral CRH reproduces the effect of stress and DSCG blocks the effect of both stress and CRH, suggesting the involvement of mast cells. These findings provide new insight into the complex interplay between the central nervous system and GI function in man. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes.

    PubMed

    Weatherly, Lisa M; Shim, Juyoung; Hashmi, Hina N; Kennedy, Rachel H; Hess, Samuel T; Gosse, Julie A

    2016-06-01

    Triclosan (TCS) is an antimicrobial used widely in hospitals and personal care products, at ~10 mm. Human skin efficiently absorbs TCS. Mast cells are ubiquitous key players both in physiological processes and in disease, including asthma, cancer and autism. We previously showed that non-cytotoxic levels of TCS inhibit degranulation, the release of histamine and other mediators, from rat basophilic leukemia mast cells (RBL-2H3), and in this study, we replicate this finding in human mast cells (HMC-1.2). Our investigation into the molecular mechanisms underlying this effect led to the discovery that TCS disrupts adenosine triphosphate (ATP) production in RBL-2H3 cells in glucose-free, galactose-containing media (95% confidence interval EC50 = 7.5-9.7 µm), without causing cytotoxicity. Using these same glucose-free conditions, 15 µm TCS dampens RBL-2H3 degranulation by 40%. The same ATP disruption was found with human HMC-1.2 cells (EC50 4.2-13.7 µm), NIH-3 T3 mouse fibroblasts (EC50 4.8-7.4 µm) and primary human keratinocytes (EC50 3.0-4.1 µm) all with no cytotoxicity. TCS increases oxygen consumption rate in RBL-2H3 cells. Known mitochondrial uncouplers (e.g., carbonyl cyanide 3-chlorophenylhydrazone) previously were found to inhibit mast cell function. TCS-methyl, which has a methyl group in place of the TCS ionizable proton, affects neither degranulation nor ATP production at non-cytotoxic doses. Thus, the effects of TCS on mast cell function are due to its proton ionophore structure. In addition, 5 µm TCS inhibits thapsigargin-stimulated degranulation of RBL-2H3 cells: further evidence that TCS disrupts mast cell signaling. Our data indicate that TCS is a mitochondrial uncoupler, and TCS may affect numerous cell types and functions via this mechanism. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Does diesel exhaust cause human lung cancer?

    PubMed

    Cox, L A

    1997-12-01

    Recent reviews of epidemiological evidence on the relation between exposure to diesel exhaust (DE) and lung cancer risk have reached conflicting conclusions, ranging from belief that there is sufficient evidence to conclude that DE is a human lung carcinogen (California EPA, 1994) to conclusions that there is inadequate evidence to support a causal association between DE and human lung cancer (Muscat and Wynder, 1995). Individual studies also conflict, with both increases and decreases in relative risks of lung cancer mortality being cited with 95% statistical confidence. On balance, reports of elevated risk outnumber reports of reduced risk. This paper reexamines the evidence linking DE exposures to lung cancer risk. After briefly reviewing animal data and biological mechanisms, it surveys the relevant epidemiological literature and examines possible explanations for the discrepancies. These explanations emphasize the distinction between statistical associations, which have been found in many studies, and causal associations, which appear not to have been established. Methodological threats to valid causal inference are identified and new approaches for controlling them are proposed using recent techniques from artificial intelligence (AI) and computational statistics. These threats have not been adequately controlled for in previous epidemiological studies. They provide plausible noncausal explanations for the reported increases in relative risks, making it impossible to infer causality between DE exposure and lung cancer risk from these studies. A key contribution is to show how recent techniques developed in the AI-and-statistics literature can help clarify the causal interpretation of complex multivariate data sets used in epidemiological risk assessments. Applied to the key study of Garshick et al. (1988), these methods show that DE concentration has no positive causal association with occupational lung cancer mortality risk.

  7. Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics

    PubMed Central

    Sutcliffe, A; Kaur, D; Page, S; Woodman, L; Armour, C L; Baraket, M; Bradding, P; Hughes, J M; Brightling, C E

    2006-01-01

    Background Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines. Methods Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)‐1β, IL‐4, and IL‐13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemotaxins mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF‐β, and SCF in the supernatants were measured and the effect of non‐asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined. Results Human lung mast cells and HMC‐1 cells migrated towards Th2 stimulated ASM from asthmatics but not non‐asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non‐asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant. Conclusion Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non‐asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma. PMID:16601090

  8. Functional expression of aryl hydrocarbon receptor on mast cells populating human endometriotic tissues.

    PubMed

    Mariuzzi, Laura; Domenis, Rossana; Orsaria, Maria; Marzinotto, Stefania; Londero, Ambrogio P; Bulfoni, Michela; Candotti, Veronica; Zanello, Andrea; Ballico, Maurizio; Mimmi, Maria C; Calcagno, Angelo; Marchesoni, Diego; Di Loreto, Carla; Beltrami, Antonio P; Cesselli, Daniela; Gri, Giorgia

    2016-09-01

    Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The aryl hydrocarbon receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: (i) examined the cytokine expression profile; (ii) counted AhR-expressing MCs; (iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; (iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); (v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and (vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors

  9. Functional Expression of Aryl Hydrocarbon Receptor on Mast Cells Populating Human Endometriotic Tissues

    PubMed Central

    Orsaria, Maria; Marzinotto, Stefania; Londero, Ambrogio P; Bulfoni, Michela; Candotti, Veronica; Zanello, Andrea; Ballico, Maurizio; Mimmi, Maria C; Calcagno, Angelo; Marchesoni, Diego; Di Loreto, Carla; Beltrami, Antonio P; Cesselli, Daniela; Gri, Giorgia

    2016-01-01

    Endometriosis is an inflammatory disease characterized by the presence of ectopic endometrial tissue outside the uterus. A diffuse infiltration of mast cells (MCs) is observed throughout endometriotic lesions, but little is known about how these cells contribute to the network of molecules that modulate the growth of ectopic endometrial implants and promote endometriosis-associated inflammation. The Aryl Hydrocarbon Receptor (AhR), a transcription factor known to respond to environmental toxins and endogenous compounds, is present in MCs. In response to AhR activation, MCs produce IL-17 and reactive oxygen species, highlighting the potential impact of AhR ligands on inflammation via MCs. Here, we investigated the possibility that endometrial MCs promote an inflammatory microenvironment by sensing AhR ligands, thus sustaining endometriosis development. Using human endometriotic tissue (ET) samples, we performed the following experiments: i) examined the cytokine expression profile; ii) counted AhR-expressing MCs; iii) verified the phenotype of AhR-expressing MCs to establish whether MCs have a tolerogenic (IL-10-positive) or inflammatory (IL-17-positive) phenotype; iv) measured the presence of AhR ligands (tryptophan-derived kynurenine) and tryptophan-metabolizing enzymes (indoleamine 2,3-dioxygenase 1 (IDO1)); v) treated ET organ cultures with an AhR antagonist in vitro to measure changes in the cytokine milieu; and vi) measured the growth of endometrial stromal cells cultured with AhR-activated MC-conditioned medium. We found that ET tissue was conducive to cytokine production, orchestrating chronic inflammation and a population of AhR-expressing MCs that are both IL-17 and IL-10-positive. ET was rich in IDO1 and the AhR-ligand kynurenine compared with control tissue, possibly promoting MC activation through AhR. ET was susceptible to treatment with an AhR antagonist, and endometrial stromal cell growth was improved in the presence of soluble factors released by

  10. 1,2-Benzisothiazol-3-one 1,1-dioxide inhibitors of human mast cell tryptase.

    PubMed

    Combrink, K D; Gülgeze, H B; Meanwell, N A; Pearce, B C; Zulan, P; Bisacchi, G S; Roberts, D G; Stanley, P; Seiler, S M

    1998-11-19

    A library of compounds were prepared by reacting 2-(bromomethyl)-1, 2-benzisothiazol-3(2H)-one 1,1-dioxide (5) with commercially available carboxylic acids in the presence of potassium carbonate or a tertiary amine base. From this library, (1,1-dioxido-3-oxo-1, 2-benzisothiazol-2(3H)-yl)methyl N-[(phenylmethoxy)carbonyl]-beta-alanate (7b) emerged as a potent inhibitor of human mast cell tryptase (IC50 = 0.85 microM). Extension of the side chain of 7b by two carbons gave (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl 5-[[(phenylmethoxy)carbonyl]amino]pentanoate (7d) which was an 8-fold more potent inhibitor (IC50 = 0.1 microM). Further modification of this series produced benzoic acid derivative (1, 1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl 4-[[(phenylmethoxy)carbonyl]amino]benzoate (7n) which is the most potent inhibitor identified in this series (IC50 = 0.064 microM). These compounds exhibit time-dependent inhibition consistent with mechanism-based inhibition. For 7b, the initial enzyme velocity is not a saturable function of the inhibitor concentration and the initial Ki could not be determined (Ki > 10 microM). The steady-state rate constant, Ki, was determined to be 396 nM. On the other hand, compounds 7d and 7n are time-dependent inhibitors with a saturable initial complex. From these studies, an initial rate constant, Ki, for 7d and 7n was found to be 345 and 465 nM, respectively. The steady-state inhibition constants, Ki, for 7d and 7n were calculated to be 60 and 52 nM, respectively. Compound 7n is a 13-fold more potent inhibitor than 7b, and these kinetic studies indicate that the increase in inhibitory activity is due to an increase in initial affinity toward the enzyme and not an increase in chemical reactivity. These inhibitors generally show high selectivity for tryptase, being 40-fold weaker inhibitors of elastase, being 100-fold weaker against trypsin, and showing no inhibition against thrombin. These compounds are not inhibitors of

  11. Products from human mast cell line cells enhance the production of interferon-γ by CD8+ and CD4+ T cells

    PubMed Central

    De Pater-Huijsen, Francina L; De Riemer, Mariëlle J; Reijneke, Richard M R; Pompen, Marjolein; Lutter, René; Jansen, Henk M; Out, Theo A

    2002-01-01

    In patients with allergic asthma, T-cell cytokines are implicated in the regulation of the local inflammation in the airways. The ability of sensitized mast cells to release mediators and cytokines early upon allergen stimulation makes them important candidates for local immunoregulation. We have studied the effects of human mast cells on T cells with the use of the human mast cell line HMC-1. We showed that activated human mast cells or their soluble products induced and enhanced the interferon-γ (IFN-γ) production by T cells up to about 60-fold. The production of interleukin (IL)-4 was hardly affected and that of IL-5 was slightly enhanced. The enhancement of IFN-γ production was induced both in polyclonal CD4+ and CD8+ T cells and in CD4+ and CD8+ T-cell clones. Further characterization of the factors involved demonstrated a molecular mass above 30 000. Our results implicate that by this mechanism mast cells may account for a negative feedback system locally down-regulating allergen-induced T helper 2 responses via IFN-γ production by the T cells. PMID:11972627

  12. Products from human mast cell line cells enhance the production of interferon-gamma by CD8+ and CD4+ T cells.

    PubMed

    de Pater-Huijsen, Francina L; de Riemer, MariElle J; Reijneke, Richard M R; Pompen, Marjolein; Lutter, René; Jansen, Henk M; Out, Theo A

    2002-05-01

    In patients with allergic asthma, T-cell cytokines are implicated in the regulation of the local inflammation in the airways. The ability of sensitized mast cells to release mediators and cytokines early upon allergen stimulation makes them important candidates for local immunoregulation. We have studied the effects of human mast cells on T cells with the use of the human mast cell line HMC-1. We showed that activated human mast cells or their soluble products induced and enhanced the interferon-gamma (IFN-gamma) production by T cells up to about 60-fold. The production of interleukin (IL)-4 was hardly affected and that of IL-5 was slightly enhanced. The enhancement of IFN-gamma production was induced both in polyclonal CD4+ and CD8+ T cells and in CD4+ and CD8+ T-cell clones. Further characterization of the factors involved demonstrated a molecular mass above 30 000. Our results implicate that by this mechanism mast cells may account for a negative feedback system locally down-regulating allergen-induced T helper 2 responses via IFN-gamma production by the T cells.

  13. Mast cells in gastrointestinal disorders.

    PubMed

    Bischoff, Stephan C

    2016-05-05

    Mast cells are constitutively found in the gastrointestinal (GI) tract. The three major physiological functions of GI mast cells comprise of - as far as we know - regulation of GI functions, namely epithelial and endothelial functions, crosstalk with the enteric nervous system, and contribution to the host defense against bacterial, viral and parasitic agents. A number of chronic GI diseases, including inflammatory bowel disease (Crohn's disease, ulcerative colitis), celiac disease, irritable bowel syndrome, and food allergies, are thought to be associated with mast cell hyperplasia and humoral activity. Clinical conditions characterized by a decrease in mast cell functionality are not known so far. In the present review, we summarize current evidence which show that human mast cells play a central role at the GI barrier, both in health and disease.

  14. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model.

    PubMed

    Medeiros, Israel L; Pêgo-Fernandes, Paulo M; Mariani, Alessandro W; Fernandes, Flávio G; Unterpertinger, Fernando V; Canzian, Mauro; Jatene, Fabio B

    2012-09-01

    Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035). The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0), and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71). The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.

  15. Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis.

    PubMed

    Rodriguez, Annette R; Yu, Jieh-Juen; Guentzel, M Neal; Navara, Christopher S; Klose, Karl E; Forsthuber, Thomas G; Chambers, James P; Berton, Michael T; Arulanandam, Bernard P

    2012-06-01

    TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.

  16. Human Lung Immunity against Mycobacterium tuberculosis

    PubMed Central

    Schwander, Stephan; Dheda, Keertan

    2011-01-01

    The study of human pulmonary immunity against Mycobacterium tuberculosis (M.tb) provides a unique window into the biological interactions between the human host and M.tb within the broncho-alveolar microenvironment, the site of natural infection. Studies of bronchoalveolar cells (BACs) and lung tissue evaluate innate, adaptive, and regulatory immune mechanisms that collectively contribute to immunological protection or its failure. In aerogenically M.tb–exposed healthy persons lung immune responses reflect early host pathogen interactions that may contribute to sterilization, the development of latent M.tb infection, or progression to active disease. Studies in these persons may allow the identification of biomarkers of protective immunity before the initiation of inflammatory and disease-associated immunopathological changes. In healthy close contacts of patients with tuberculosis (TB) and during active pulmonary TB, immune responses are compartmentalized to the lungs and characterized by an exuberant helper T-cell type 1 response, which as suggested by recent evidence is counteracted by local suppressive immune mechanisms. Here we discuss how exploring human lung immunity may provide insights into disease progression and mechanisms of failure of immunological protection at the site of the initial host–pathogen interaction. These findings may also aid in the identification of new biomarkers of protective immunity that are urgently needed for the development of new and the improvement of current TB vaccines, adjuvant immunotherapies, and diagnostic technologies. To facilitate further work in this area, methodological and procedural approaches for bronchoalveolar lavage studies and their limitations are also discussed. PMID:21075901

  17. Mast cell degranulation and de novo histamine formation contribute to sustained post-exercise vasodilation in humans.

    PubMed

    Romero, Steven A; McCord, Jennifer L; Ely, Matthew R; Sieck, Dylan C; Buck, Tahisha M; Luttrell, Meredith J; MacLean, David A; Halliwill, John R

    2016-08-25

    In humans, acute aerobic exercise elicits a sustained post-exercise vasodilation within previously active skeletal muscle. This response is dependent on activation of histamine H1 and H2 receptors, but the source of intramuscular histamine remains unclear. We tested the hypothesis that interstitial histamine in skeletal muscle would be increased with exercise and would be dependent on de novo formation via the inducible enzyme histidine decarboxylase and/or mast cell degranulation. Subjects performed 1 h of unilateral dynamic knee-extension exercise or sham (seated rest). We measured the interstitial histamine concentration and local blood flow (ethanol washout) via skeletal muscle microdialysis of the vastus lateralis In some probes, we infused either α-fluoromethylhistidine hydrochloride (α-FMH), a potent inhibitor of histidine decarboxylase, or histamine H1/H2 receptor blockers. We also measured interstitial tryptase concentrations, a biomarker of mast cell degranulation. Compared with pre-exercise, histamine was increased after exercise by Δ4.2 ± 1.8 ng ml(-1) (P < 0.05), but not when α-FMH was administered (Δ-0.3 ± 1.3 ng ml(-1), P = 0.9). Likewise, local blood flow after exercise was reduced to pre-exercise levels by both α-FMH and H1/H2 blockade. In addition, tryptase was elevated during exercise by Δ6.8 ± 1.1 ng ml(-1) (P < 0.05). Taken together, these data suggest that interstitial histamine in skeletal muscle increases with exercise and results from both de novo formation and mast cell degranulation. This suggests that exercise produces an anaphylactoid signal which affects recovery, and may influence skeletal muscle blood flow during exercise.

  18. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock.

    PubMed

    Baumann, Anja; Feilhauer, Katharina; Bischoff, Stephan C; Froy, Oren; Lorentz, Axel

    2015-03-01

    Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa.

  19. Distinct tissue site-specific requirements of mast cells and complement components C3/C5a receptor in IgG immune complex-induced injury of skin and lung.

    PubMed

    Baumann, U; Chouchakova, N; Gewecke, B; Köhl, J; Carroll, M C; Schmidt, R E; Gessner, J E

    2001-07-15

    We induced the passive reverse Arthus reaction to IgG immune complexes (IC) at different tissue sites in mice lacking C3 treated or not with a C5aR-specific antagonist, or in mice lacking mast cells (Kit(W)/Kit(W-v) mice), and compared the inflammatory responses with those in the corresponding wild-type mice. We confirmed that IC inflammation of skin can be mediated largely by mast cells expressing C5aR and FcgammaRIII. In addition, we provided evidence for C3-independent C5aR triggering, which may explain why the cutaneous Arthus reaction develops normally in C3(-/-) mice. Furthermore, some, but not all, of the acute changes associated with the Arthus response in the lung were significantly more intense in normal mice than in C3(-/-) or Kit(W)/Kit(W-v) mice, indicating for C3- and mast cell-dependent and -independent components. Finally, we demonstrated that C3 contributed to the elicitation of neutrophils to alveoli, which corresponded to an increased synthesis of TNF-alpha, macrophage-inflammatory protein-2, and cytokine-induced neutrophil chemoattractant. While mast cells similarly influenced alveolar polymorphonuclear leukocyte influx, the levels of these cytokines remained largely unaffected in mast cell deficiency. Together, the phenotypes of C3(-/-) mice and Kit(W)/Kit(W-v) mice suggest that complement and mast cells have distinct tissue site-specific requirements acting by apparently distinct mechanisms in the initiation of IC inflammation.

  20. Tryptase precursors are preferentially and spontaneously released, whereas mature tryptase is retained by HMC-1 cells, Mono-Mac-6 cells, and human skin-derived mast cells.

    PubMed

    Schwartz, Lawrence B; Min, Hae-Ki; Ren, Shunlin; Xia, Han-Zhang; Hu, Jiang; Zhao, Wei; Moxley, George; Fukuoka, Yoshihiro

    2003-06-01

    Tryptase (alpha and beta) levels in serum are used to assess mast cell involvement in human disease. Using cultured cells, the current study examines the hypothesis that protryptase(s) are spontaneously secreted by mast cells at rest, whereas mature tryptase(s) are stored in secretory granules until their release by activated cells. HMC-1 cells have only beta-tryptase genes and the corresponding mRNA. Mono-Mac-6 cells have both alpha- and beta-tryptase genes but preferentially express alpha-tryptase. Mono-Mac-6 cells spontaneously secrete most of their tryptase, which consists of alpha-protryptase, whereas mature tryptase is retained inside these cells. HMC-1 cells also spontaneously secrete most of their tryptase, identified as beta-protryptase, and retain mature tryptase. Skin-derived mast cells retain most of their tryptase, which is mature, and spontaneously secrete protryptase(s). Total tryptase levels in plasma are detectable but no different in healthy subjects with and without the gene for alpha-tryptase, consistent with pro forms of both alpha- and beta-tryptase being spontaneously secreted. Thus, protryptase(s) are spontaneously secreted by resting mast cells, whereas mature tryptase is retained by mast cells until they are activated to degranulate.

  1. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor.

    PubMed

    Säfholm, Jesper; Manson, Martijn L; Bood, Johan; Delin, Ingrid; Orre, Ann-Charlotte; Bergman, Per; Al-Ameri, Mamdoh; Dahlén, Sven-Erik; Adner, Mikael

    2015-11-01

    Inhaled prostaglandin (PG) E2 might inhibit asthmatic responses, but the mechanisms involved remain undefined. We sought to characterize the direct and indirect effects of PGE2 on human small airways with particular reference to the receptors mediating the responses. Contraction and relaxation were studied in isolated human bronchi with an inner diameter of 1 mm or less. Low concentrations of PGE2 (0.01-1 μmol/L) relaxed the bronchi precontracted by histamine. The bronchodilator response was inhibited by the E prostanoid (EP) subtype 4 receptor antagonist ONO-AE3-208 but unaffected by the EP2 receptor antagonist PF-04418948. Higher concentrations of PGE2 (10-100 μmol/L) contracted the small airways. However, the TP receptor agonists U-46,619, PGF2α, and PGD2 were more potent than PGE2. Moreover, the bronchoconstrictor responses to PGE2 and all other tested prostanoids, including the EP1/EP3 receptor agonist 17-phenyl trinor PGE2 and the partial FP receptor agonist AL-8810, were uniformly abolished by the TP receptor antagonist SQ-29,548. In the presence of TP and EP4 antagonists, PGE2 inhibited the mast cell-mediated bronchoconstriction resulting from anti-IgE challenge. Measurement of the release of histamine and cysteinyl leukotrienes documented that this bronchoprotective action of PGE2 was mediated by the EP2 receptor, unrelated to bronchodilation, and increased with time of exposure. The pharmacology of PGE2 in isolated human small airways was different from its profile in animal models. This first demonstration of powerful EP2 receptor-mediated inhibition of IgE-dependent contractions in human airways introduces a new selective target for the treatment of asthma. This EP2 control of mast cell-mediated bronchoconstriction is presumably exaggerated in patients with aspirin-exacerbated respiratory disease. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fc epsilon receptor I expression and mediator release.

    PubMed

    Yamaguchi, M; Sayama, K; Yano, K; Lantz, C S; Noben-Trauth, N; Ra, C; Costa, J J; Galli, S J

    1999-05-01

    We investigated the effects of IgE versus IL-4 on Fc epsilon RI surface expression in differentiated human mast cells derived in vitro from umbilical cord blood mononuclear cells. We found that IgE (at 5 micrograms/ml) much more strikingly enhanced surface expression of Fc epsilon RI than did IL-4 (at 0.1-100 ng/ml); similar results were also obtained with differentiated mouse mast cells. However, IL-4 acted synergistically with IgE to enhance Fc epsilon RI expression in these umbilical cord blood-derived human mast cells, as well as in mouse peritoneal mast cells derived from IL-4-/- or IL-4+/+ mice. We also found that: 1) IgE-dependent enhancement of Fc epsilon RI expression was associated with a significantly enhanced ability of these human mast cells to secrete histamine, PGD2, and leukotriene C4 upon subsequent passive sensitization with IgE and challenge with anti-IgE; 2) preincubation with IL-4 enhanced IgE-dependent mediator secretion in these cells even in the absence of significant effects on Fc epsilon RI surface expression; 3) when used together with IgE, IL-4 enhanced IgE-dependent mediator secretion in human mast cells to levels greater than those observed in cells that had been preincubated with IgE alone; and 4) batches of human mast cells generated in vitro from umbilical cord blood cells derived from different donors exhibited differences in the magnitude and pattern of histamine and lipid mediator release in response to anti-IgE challenge, both under baseline conditions and after preincubation with IgE and/or IL-4.

  3. An antimicrobial peptide with angiogenic properties, AG-30/5C, activates human mast cells through the MAPK and NF-κB pathways.

    PubMed

    Kanazawa, Kazo; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François

    2016-04-01

    Apart from their direct antimicrobial activities against invading pathogens, antimicrobial peptides exhibit additional protective functions that have led to their being named host defense peptides (HDPs). These functions include the stimulation of the production of cytokines/chemokines, the promotion of chemotaxis and cell proliferation and the induction of angiogenesis and wound healing. AG-30/5C is a novel angiogenic HDP that in addition to its antimicrobial activity also activates fibroblasts and endothelial cells and promotes angiogenesis and wound healing. Given that mast cells are found primarily in the vicinity of vessels, where they are intimately involved in wound healing, we hypothesized that AG-30/5C may activate mast cells. We demonstrated that AG-30/5C activated LAD2 human mast cells to degranulate and produce lipid mediators including leukotriene C4, prostaglandin D2 and E2. Moreover, AG-30/5C increased mast cell chemotaxis and induced the production of the cytokines GM-CSF and TNF-α and various chemokines, such as IL-8, MCP-1, MCP-3, MIP-1α and MIP-1β. The chemotaxis and cytokine/chemokine production induced by AG-30/5C were suppressed by both pertussis toxin and U-73122, suggesting the involvement of the G protein and phospholipase C pathways in AG-30/5C-induced mast cell activation. Furthermore, these pathways were activated downstream of the MAPK and NF-κB signaling molecules, as demonstrated by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors on cytokine/chemokine production. Interestingly, AG-30/5C caused the phosphorylation of MAPKs and IκB. We suggest that the angiogenic and antimicrobial peptide AG-30/5C plays a key role in the recruitment and activation of human mast cells at inflammation and wound sites.

  4. Stimulus-Selective Regulation of Human Mast Cell Gene Expression, Degranulation and Leukotriene Production by Fluticasone and Salmeterol

    PubMed Central

    Catalli, Adriana; Karpov, Victor; Erdos, Levente E.; Tancowny, Brian P.; Schleimer, Robert P.; Kulka, Marianna

    2014-01-01

    Despite the fact that glucocorticoids and long acting beta agonists are effective treatments for asthma, their effects on human mast cells (MC) appear to be modest. Although MC are one of the major effector cells in the underlying inflammatory reactions associated with asthma, their regulation by these drugs is not yet fully understood and, in some cases, controversial. Using a human immortalized MC line (LAD2), we studied the effects of fluticasone propionate (FP) and salmeterol (SM), on the release of early and late phase mediators. LAD2 cells were pretreated with FP (100 nM), SM (1 µM), alone and in combination, at various incubation times and subsequently stimulated with agonists substance P, C3a and IgE/anti-IgE. Degranulation was measured by the release of β-hexosaminidase. Cytokine and chemokine expression were measured using quantitative PCR, ELISA and cytometric bead array (CBA) assays. The combination of FP and SM synergistically inhibited degranulation of MC stimulated with substance P (33% inhibition compared to control, n = 3, P<.05). Degranulation was inhibited by FP alone, but not SM, when MC were stimulated with C3a (48% inhibition, n = 3, P<.05). As previously reported, FP and SM did not inhibit degranulation when MC were stimulated with IgE/anti-IgE. FP and SM in combination inhibited substance P-induced release of tumor necrosis factor (TNF), CCL2, and CXCL8 (98%, 99% and 92% inhibition, respectively, n = 4, P<.05). Fluticasone and salmeterol synergistically inhibited mediator production by human MC stimulated with the neuropeptide substance P. This synergistic effect on mast cell signaling may be relevant to the therapeutic benefit of combination therapy in asthma. PMID:24819142

  5. Cytokine expression profile in human lungs undergoing normothermic ex-vivo lung perfusion.

    PubMed

    Sadaria, Miral R; Smith, Phillip D; Fullerton, David A; Justison, George A; Lee, Joon H; Puskas, Ferenc; Grover, Frederick L; Cleveland, Joseph C; Reece, T Brett; Weyant, Michael J

    2011-08-01

    A donor lung shortage prevents patients from receiving life-saving transplants. Ex-vivo lung perfusion (EVLP) is a viable means of expanding the donor pool by evaluating and potentially improving donor lung function. The metabolic and inflammatory effects of EVLP on human lung tissue are currently unknown. We sought to establish representative cytokine expression in human donor lungs meeting acceptable lung transplant criteria after prolonged normothermic EVLP. Seven single human lungs not meeting traditional transplantation criteria for various reasons underwent normothermic EVLP. Lungs were perfused with deoxygenated colloid, rewarmed, and ventilated per standard protocol. Lung function was evaluated every hour. Biopsies were taken at 1, 6, and 12 hours. Inflammatory cytokines were quantitatively measured using a human cytokine magnetic bead-based multiplex assay. All lungs met traditional transplant criteria after EVLP. The partial pressure of arterial oxygen and physiologic lung function significantly improved (p<0.05). No pulmonary edema was formed, and histology demonstrated no evidence of acute lung injury. Interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor, and monocyte chemotactic protein-1 were upregulated, while granulocyte macrophage colony-stimulating factor was downregulated during EVLP (p<0.05). IL-1β, IL-4, IL-7, IL-12, interferon-γ, macrophage inflammatory protein-1β, and tumor necrosis factor-α were detectable and unchanged. Ex-vivo lung perfusion demonstrates the ability to improve oxygenation and physiologic lung function in donor lungs unacceptable for transplantation without injury to the lung. We establish here a cytokine expression profile in human lungs undergoing normothermic EVLP. These data can be used in the future to explore novel targeted therapies for ischemia-reperfusion injury. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Detection and quantification of mast cell, vascular endothelial growth factor, and microvessel density in human inflammatory periapical cysts and granulomas.

    PubMed

    Fonseca-Silva, T; Santos, C C O; Alves, L R; Dias, L C; Brito, M; De Paula, A M B; Guimarães, A L S

    2012-09-01

    To identify and quantify mast cell (MC), vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in human periapical cysts and granulomas. Archived samples of cysts (n = 40) and granulomas (n = 28) were sectioned and stained with toluidine blue. MCs were identified and counted. Immunohistochemical reactions were employed to evaluate the tissue expression of VEGF and vessels. MVD was estimated by determining the areas of tissue labelled with CD31 antibody. The data were analysed using the Mann-Whitney test (P < 0.05). MCs were observed in the peripheral regions of both lesion types, whilst VEGF and MVD were distributed in the stroma. The presence of MCs was higher in cysts than in granulomas (P < 0.05). VEGF and MVD expression were similar in these lesions. The highest number of MCs was observed in cysts. Moreover, the identification of VEGF and MVD was consistent with the immune mechanisms involved in the lesions. © 2012 International Endodontic Journal.

  7. Metabolic heterogeneity in human lung tumors

    PubMed Central

    Hensley, Christopher T.; Faubert, Brandon; Yuan, Qing; Lev-Cohain, Naama; Jin, Eunsook; Kim, Jiyeon; Jiang, Lei; Ko, Bookyung; Skelton, Rachael; Loudat, Laurin; Wodzak, Michelle; Klimko, Claire; McMillan, Elizabeth; Butt, Yasmeen; Ni, Min; Oliver, Dwight; Torrealba, Jose; Malloy, Craig R.; Kernstine, Kemp; Lenkinski, Robert E.; DeBerardinis, Ralph J.

    2015-01-01

    SUMMARY Non-small cell lung cancer (NSCLC) is heterogeneous in the genetic and environmental parameters that influence cell metabolism in culture. Here, we assessed the impact of these factors on human NSCLC metabolism in vivo using intra-operative 13C-glucose infusions in nine NSCLC patients to compare metabolism between tumors and benign lung. While enhanced glycolysis and glucose oxidation were common among these tumors, we observed evidence for oxidation of multiple nutrients in each of them, including lactate as a potential carbon source. Moreover, metabolically heterogeneous regions were identified within and between tumors, and surprisingly, our data suggested potential contributions of non-glucose nutrients in well-perfused tumor areas. Our findings not only demonstrate the heterogeneity in tumor metabolism in vivo but also highlight the strong influence of the microenvironment on this feature. PMID:26853473

  8. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    PubMed

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  9. Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells.

    PubMed

    Asadi, S; Zhang, B; Weng, Z; Angelidou, A; Kempuraj, D; Alysandratos, K D; Theoharides, T C

    2010-01-01

    HgCl2 is a known environemental neurotoxin, but is also used as preservative in vaccines as thimerosal containing ethyl mercury covalently linked to thiosalicylate. We recently reported that mercury choloride (HgCl(2)) can stimulate human mast cells to release vascular endothelial growth factor (VEGF), which is also vasoactive and pro-inflammatory. Here we show that thimerosal induces significant VEGF release from human leukemic cultured LAD2 mast cells (at 1 microM 326 ± 12 pg/106 cells and 335.5 ± 12 pg/106 cells at 10 microM) compared to control cells (242 ± 21 pg/106 cells, n=5, p less than 0.05); this effect is weaker than that induced by HgCl2 at 10 microM (448 ± 14 pg/106 cells) (n=3, p less than 0.05). In view of this finding, we hypothesize that the thiosalicylate component of thimerosal may have an inhibitory effect on VEGF release. Thimerosal (10 microM) added together with the peptide Substance P (SP) at 2 microM, used as a positive control, reduced VEGF release by 90 percent. Methyl thiosalicylate (1 or 10 microM) added with either SP or HgCl2 (10 microM) inhibited VEGF release by 100 percent, while sodium salicylate or ibuprofen had no effect. Pretreatment for 10 min with the flavonoid luteolin (0.1 mM) before HgCl2 or thimerosal compeletly blocked their effect. Luteolin and methyl thiosalicylate may be useful in preventing mercury-induced toxicity.

  10. Morphometric examination of native lungs in human lung allograft recipients.

    PubMed

    Wiebe, B M; Burton, C M; Milman, N; Iversen, M; Andersen, C B

    2006-11-01

    The aim of the study was to estimate the degree of lung damage in patients with alpha(1)-antitrypsin (alpha1AT) deficiency, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) at the time of lung transplantation. Using unbiased stereological methods, lung-, bronchial- and vessel-volume, capillary length, and alveolar surface area and densities were estimated in recipient lungs from 21 consecutive patients with pre-transplant diagnoses including COPD (n=7), alpha1AT deficiency (n=6) and CF (n=8). Six unused adult donor lungs served as controls. Information relating to patient demography and pre-transplant lung function was obtained by retrospective chart review. Disease groups differed significantly with respect to demographics and pre-transplant lung function. Total lung volume was similar in all groups. Bronchial volume was significantly larger in CF patients compared to the control group (p<0.0001) and to the other two diagnostic groups: alpha1AT deficiency (p=0.0001) and COPD (p<0.0001). Alveolar surface density and capillary length density were significantly lower in patients with alpha1AT deficiency and COPD compared to controls (p<0.0001, respectively) and to patients with CF (p<0.0002, respectively). There were no correlations between clinical lung function and morphometric measurements. We conclude that unbiased microscopic stereological morphometry is an evolving science with the potential to elucidate pulmonary disease pathogenesis.

  11. Ramipril and metoprolol intake aggravate human and murine anaphylaxis: evidence for direct mast cell priming.

    PubMed

    Nassiri, Maria; Babina, Magda; Dölle, Sabine; Edenharter, Günter; Ruëff, Franziska; Worm, Margitta

    2015-02-01

    Cofactors contribute to the elicitation of anaphylaxis. β-Blockers and angiotensin-converting enzyme (ACE) inhibitors are widely used cardiovascular drugs. We specially designed a mouse model to further analyze the cofactor potential of these drugs. We sought to test the hypothesis that β-blockers and ACE inhibitors alter the risk for severe anaphylaxis and to pinpoint the associated mechanism. The risk factor potency of cardiovascular drugs on the severity of anaphylaxis in patients from German-speaking countries was analyzed. In vivo interaction of the cardiovascular drugs metoprolol (β-blocker) and ramipril (ACE inhibitor) with the anaphylactic response was determined. Mast cell (MC) mediators (histamine, serotonin, leukotriene C₄, prostaglandin D2, and mouse mast cell protease 1) were quantified in serum. Bone marrow-derived cultured MCs served to identify whether the therapeutics targeted MCs directly. Our anaphylaxis database indicated a higher risk of severe anaphylaxis after monotherapy with β-blockers or ACE inhibitors, which was more pronounced when both drugs were combined. This was confirmed in our mouse model. While single therapeutics had either no significant (ramipril) or a modestly aggravating (metoprolol) effect, their combined administration exacerbated anaphylactic symptoms potently and simultaneously enhanced MC mediators, hinting at MCs as direct targets. In fact, FcεRI-mediated MC histamine release was synergistically increased by metoprolol/ramipril or metoprolol/bradykinin (the latter increased after ACE inhibitor intake), whereas the substances had no significant effect on their own. MC priming was particularly pronounced when FcεRI aggregation was in the suboptimal range, reflecting common clinical settings. β-Blockers and ACE inhibitors synergistically aggravate anaphylaxis at least partly by decreasing the threshold of MC activation. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc

  12. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    PubMed

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Effect of the house dust mite allergen Der p 1 on tryptase release from human mast cells.

    PubMed

    Wang, D Q; Shen, Y Y; Xu, J H; Tang, H

    2016-07-14

    This study aimed to investigate the effects of the house dust mite allergen Der p 1 on the secretion of tryptase from the human mast cell line HMC-1. Flow cytometry was used to determine the expression levels of protease-activated receptor-2 (PAR2) on the surface of HMC-1 cells. HMC-1 cells were treated with Der p 1, SLIGRL-NH2 (PAR2 agonist), LRGILS-NH2 (control peptide for PAR2), or Der p 1 + FSLLRY (PAR2 antagonist), and the tryptase levels were measured using enzyme-linked immunosorbent assay. The biological functions of PAR2 were determined using the calcium green indicator, and intracellular calcium fluorescence intensity in the different groups (Der p 1, SLIGRL-NH2, LRGILS- NH2, Der p 1 + FSLLRY, tryptase, tryptase + FSLLRY, or cell culture medium) was detected by laser scanning confocal microscopy. The mast cells expressed PAR2 receptor on their surfaces. Der p 1 alone induced a significant release of intracellular calcium and tryptase in HMC-1 cells compared with the SLIGRL- NH2 treatment group and the control group. The combination of Der p 1 and FSLLRY partly inhibited intracellular calcium and tryptase release in HMC-1 cells compared with the Der p 1 treatment group. Moreover, tryptase induced a significant release of intracellular calcium in the HMC-1 cells. Der p 1 induced HMC-1 cell degranulation and the release of tryptase by activating the PAR2 receptor on the cell surfaces. Tryptase activated the PAR2 receptor and induced intracellular calcium release from the HMC-1 cells in a positive feedback loop.

  14. Passive cutaneous anaphylaxis inhibition: evidence for heterogeneity in IgE mast cell interaction.

    PubMed Central

    Lehrer, S B; McCants, M L; Farris, P N; Bazin, H

    1981-01-01

    Recent evidence suggests that IgE molecules are heterogeneous with respect to ability to compete with IgE myeloma for sensitization of histamine release from chopped human lung and ability to passively sensitize human basophils for antigen-induced histamine release. These observations prompted further investigation of the possibility that there exists a functional heterogeneity in the IgE molecules with respect to mast-cell binding properties. Using eight different purified rat IgE myeloma proteins, we found that they differ in their ability to inhibit the passive cutaneous anaphylaxis (PCA) reaction of mouse reaginic antisera. This suggests that IgE molecules differ in their ability to bind to mast cell receptors. Since maximal inhibition of different mouse reaginic antisera and mouse IgE hybridomas is achieved with different IgE myelomas, there may exist a functional heterogeneity in mast-cell binding receptors as well. PMID:7319556

  15. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  16. The role of mast cells in atherosclerosis.

    PubMed

    Wezel, A; Quax, P H A; Kuiper, J; Bot, I

    2015-01-01

    Rupture of an atherosclerotic plaque is the major underlying cause of adverse cardiovascular events such as myocardial infarction or stroke. Therapeutic interventions should therefore be directed towards inhibiting growth of atherosclerotic lesions as well as towards prevention of lesion destabilization. Interestingly, the presence of mast cells has been demonstrated in both murine and human plaques, and multiple interventional murine studies have pointed out a direct role for mast cells in early and late stages of atherosclerosis. Moreover, it has recently been described that activated lesional mast cells correlate with major cardiovascular events in patients suffering from cardiovascular disease. This review focuses on the effect of different mast cell derived mediators in atherogenesis and in late stage plaque destabilization. Also, possible ligands for mast cell activation in the context of atherosclerosis are discussed. Finally, we will elaborate on the predictive value of mast cells, together with therapeutic implications, in cardiovascular disease.

  17. Mast cells in nonmammalian vertebrates: an overview.

    PubMed

    Baccari, Gabriella Chieffi; Pinelli, Claudia; Santillo, Alessandra; Minucci, Sergio; Rastogi, Rakesh Kumar

    2011-01-01

    Mast cells are best known as multifunctional entities that may confer a benefit on immune system. This review presents the known facts on mast-cell system and breakthroughs in mast-cell biology in fish, amphibians, reptiles, and birds. As compared to mammals, there are relatively few data available on mast cells in many nonmammalian vertebrates. Nevertheless, like in mammals, mast cells in nonmammalian vertebrates contain a wide range of bioactive compounds including histamine, heparin, neuropeptides, and neutral proteases. In bony fishes, these cells secrete antimicrobial peptides as well. Mast cells have a widespread distribution in the brain, endocrine glands, intestine, liver, kidney, skin, tongue, and lungs, the highest concentration occurring in different tissues in the different taxa. Currently, researchers are grappling with the nature of scientific support to substantiate the functional importance of mast cells in nonmammalian vertebrates. Ultimately, the origin and evolution of vertebrate mast cell is of great interest to comparative immunologists seeking an underlying trend in the phylogenetic development of immunity.

  18. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  19. Inhaled cellulosic and plastic fibers found in human lung tissue.

    PubMed

    Pauly, J L; Stegmeier, S J; Allaart, H A; Cheney, R T; Zhang, P J; Mayer, A G; Streck, R J

    1998-05-01

    We report the results of studies undertaken to determine whether inhaled plant (i.e., cellulosic; e.g., cotton) and plastic (e.g., polyester) fibers are present in human lungs and, if so, whether inhaled fibers are also present in human lung cancers. Specimens of lung cancer of different histological types and adjacent nonneoplastic lung tissue were obtained from patients undergoing a lung resection for removal of a tumor. With the protection of a laminar flow hood and safeguards to prevent contamination by extraneous fibers, fresh, nonfixed, and nonstained samples of lung tissue were compressed between two glass microscope slides. Specimens in these dual slide chambers were examined with a microscope configured to permit viewing with white light, fluorescent light, polarizing light, and phase-contrast illumination. Near-term fetal bovine lungs and nonlung human tumors were used as controls. In contrast to the observations of these control tissues, morphologically heterogeneous fibers were seen repetitively in freshly excised human lung tissue using polarized light. Inhaled fibers were present in 83% of nonneoplastic lung specimens (n = 67/81) and in 97% of malignant lung specimens (n = 32/33). Thus, of the 114 human lung specimens examined, fibers were observed in 99 (87%). Examination of histopathology slides of lung tissue with polarized light confirmed the presence of inhaled cellulosic and plastic fibers. Of 160 surgical histopathology lung tissue slides, 17 were selected for critical examination; of these, fibers were identified in 13 slides. The inhalation of mineral (e.g., asbestos) fibers has been described by many investigators; we believe, however, that this is the first report of inhaled nonmineral (e.g., plant and plastic) fibers. These bioresistant and biopersistent cellulosic and plastic fibers are candidate agents contributing to the risk of lung cancer.

  20. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk.

    PubMed Central

    Mauderly, J L

    1997-01-01

    Rats and other rodents are exposed by inhalation to identify agents that might present hazards for lung cancer in humans exposed by inhalation. In some cases, the results are used in attempts to develop quantitative estimates of human lung cancer risk. This report reviews evidence for the usefulness of the rat for evaluation of lung cancer hazards from inhaled particles. With the exception of nickel sulfate, particulate agents thought to be human lung carcinogens cause lung tumors in rats exposed by inhalation. The rat is more sensitive to carcinogenesis from nonfibrous particles than mice or Syrian hamsters, which have both produced false negatives. However, rats differ from mice and nonhuman primates in both the pattern of particle retention in the lung and alveolar epithelial hyperplastic responses to chronic particle exposure. Present evidence warrants caution in extrapolation from the lung tumor response of rats to inhaled particles to human lung cancer hazard, and there is considerable uncertainty in estimating unit risks for humans from rat data. It seems appropriate to continue using rats in inhalation carcinogenesis assays of inhaled particles, but the upper limit of exposure concentrations must be set carefully to avoid false-positive results. A positive finding in both rats and mice would give greater confidence that an agent presents a carcinogenic hazard to man, and both rats and mice should be used if the agent is a gas or vapor. There is little justification for including Syrian hamsters in assays of the intrapulmonary carcinogenicity of inhaled agents. PMID:9400748

  1. The human mast cell chymase gene (CMA1): Mapping to the cathepsin G/granzyme gene cluster and lineage-restricted expression

    SciTech Connect

    Caughey, G.H.; Schaumberg, T.H.; Zerweck, E.H. ); Butterfield, J.H. ); Hanson, R.D.; Ley, T.J. ); Silverman, G.A. )

    1993-03-01

    Genes encoding T-cell receptor [alpha]/[delta] chains, neutrophil cathepsin G, and lymphocyte CGL/granzymes are closely linked on chromosomal band 14q11.2. The current work identifies the human mast cell chymase gene (CMA1) as the fourth protease in this cluster and maps the gene to within 150 kb of the cathepsin G gene. The gene order is centromere-T cell receptor [alpha]/[delta]-CGL-1/granzyme B-CGL-2/granzyme H-cathepsin G-chymase. Chymase and cathepsin G genes are shown to be cotranscribed in the human mast cell line HMC-1 and in U-937 cells. Other cells transcribe cathepsin G or CGL/granzyme genes, but not chymase genes, suggesting a capacity for independent regulation. Comparison of the 5[prime] flank of the chymase gene with those of cathepsin G and CGL/granzymes reveals little overall homology. Only short regions of the 5[prime] flanks of the human and murine chymase genes sequenced to date are similar, suggesting that they are more distantly related than human and rodent CGL-1/granzyme B, the flanks of which are highly homologous. The expression patterns and clustering of genes provide possible clues to the presence of locus control regions that orchestrate lineage-restricted expression of leukocyte and mast cell proteases. 30 refs., 4 figs., 1 tab.

  2. Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells.

    PubMed

    Valent, Peter; Cerny-Reiterer, Sabine; Herrmann, Harald; Mirkina, Irina; George, Tracy I; Sotlar, Karl; Sperr, Wolfgang R; Horny, Hans-Peter

    2010-09-01

    Mast cells (MC) are specialized immune cells that play a key role in anaphylactic reactions. Growth, differentiation, and function of these cells are regulated by a complex network of cytokines, surface receptors, signaling molecules, the microenvironment, and the genetic background. A number of previous and more recent data suggest that MC are heterogeneous in terms of cytokine-regulation, expression of cytoplasmic and cell surface antigens, and response to ligands. MC heterogeneity is often organ-specific and is considered to be related to MC plasticity, disease-associated factors, and the maturation stage of the cells. The stem cell factor (SCF) receptor KIT (CD117) is expressed on all types of MC independent of maturation and activation-status. In systemic mastocytosis (SM), KIT is often expressed in MC in a mutated and constitutively activated form. In these patients, MC aberrantly display CD2 and CD25, diagnostic markers of neoplastic MC in all SM variants. In advanced SM, MC co-express substantial amounts of CD30, whereas CD2 expression on MC may be decreased compared to indolent SM. Other surface molecules, such as CD63 or CD203c, are overexpressed on neoplastic MC in SM, and are further upregulated upon cross-linking of the IgE receptor. Some of the cell surface antigens expressed on MC or their progenitors may serve as therapeutic targets in the future. These targets include CD25, CD30, CD33, CD44, and CD117/KIT. The current article provides an overview on cell surface antigens and target receptors expressed by MC in physiologic and reactive tissues, and in patients with SM, with special reference to phenotypic heterogeneity and clinical implications.

  3. Expansion of Th17 Cells by Human Mast Cells Is Driven by Inflammasome-Independent IL-1β.

    PubMed

    Suurmond, Jolien; Habets, Kim L L; Dorjée, Annemarie L; Huizinga, Tom W; Toes, René E M

    2016-12-01

    Mast cells (MC) are most well known for their role in innate immune responses. However, MC are increasingly recognized as important regulators of adaptive immune responses, especially in setting the outcome of T cell responses. In this study we determined the effect of MC on cytokine production by naive and memory human Th cells. CD4(+) T cells were cultured with MC supernatant or control medium, after which cytokine production by T cells was determined. Supernatant of activated MC specifically increased the number of IL-17-producing T cells. This enhancement of Th17 cell number was specifically observed for the memory CD4(+) T cell population and not for the naive CD4(+) T cell population. The effect of MC was inhibited for ∼80% by blocking Abs to IL-1β and the rIL-1R antagonist anakinra. Importantly, secretion of active IL-1β by MC was independent of caspase activity, indicating that Th17 cell expansion by MC occurred through inflammasome-independent IL-1β. Together, these studies reveal a role for human MC in setting the outcome of T cell responses through release of caspase-independent IL-1β, and provide evidence for a novel contribution of MC in boosting the Th17 axis in mucosal immune responses. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Quantitative Anatomy of the Growing Lungs in the Human Fetus.

    PubMed

    Szpinda, Michał; Siedlaczek, Waldemar; Szpinda, Anna; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Badura, Mateusz

    2015-01-01

    Using anatomical, digital, and statistical methods we examined the three-dimensional growth of the lungs in 67 human fetuses aged 16-25 weeks. The lung dimensions revealed no sex differences. The transverse and sagittal diameters and the base circumference were greater in the right lungs while the lengths of anterior and posterior margins and the lung height were greater in the left lungs. The best-fit curves for all the lung parameters were natural logarithmic models. The transverse-to-sagittal diameter ratio remained stable and averaged 0.56 ± 0.08 and 0.52 ± 0.08 for the right and left lungs, respectively. For the right and left lungs, the transverse diameter-to-height ratio significantly increased from 0.74 ± 0.09 to 0.92 ± 0.08 and from 0.56 ± 0.07 to 0.79 ± 0.09, respectively. The sagittal diameter-to-height ratio significantly increased from 1.41 ± 0.23 to 1.66 ± 0.18 in the right lung, and from 1.27 ± 0.17 to 1.48 ± 0.22 in the left lung. In the fetal lungs, their proportionate increase in transverse and sagittal diameters considerably accelerates with relation to the lung height. The lung dimensions in the fetus are relevant in the evaluation of the normative pulmonary growth and the diagnosis of pulmonary hypoplasia.

  5. Azelastine is more potent than olopatadine n inhibiting interleukin-6 and tryptase release from human umbilical cord blood-derived cultured mast cells.

    PubMed

    Kempuraj, Duraisamy; Huang, Man; Kandere, Kristiana; Boucher, William; Letourneau, Richard; Jeudy, Sheila; Fitzgerald, Kim; Spear, Kathleen; Athanasiou, Achilles; Theoharides, Theoharis C

    2002-05-01

    Mast cells are involved in early- and late-phase reactions by releasing vasoactive molecules, proteases, and cytokines. Certain histamine-1 receptor antagonists and other antiallergic drugs seem to inhibit the release of mediators from rat and human mast cells. Azelastine and olopatadine are antiallergic agents present in the ophthalmic solutions azelastine hydrochloride (Optivar, Asta Medica/Muro Pharmaceuticals, Tewksbury, MA), and olopatadine hydrochloride (Patanol, Alcon Laboratories, Fort Worth, TX), respectively. We investigated the effect of these drugs on interleukin-6 (IL-6), tryptase, and histamine release from cultured human mast cells (CHMCs). CHMCs were grown from human umbilical cord blood-derived CD34+ cells in the presence of stem cell factor and IL-6 for 14 to 16 weeks. Sensitized CHMCs were pretreated with various concentrations of azelastine or olopatadine for 5 minutes. CHMCs were then challenged with anti-immunoglobulin E, and the released mediators were quantitated. The greatest inhibition of mediator release was seen with 24 microM azelastine; this level of inhibition was matched with the use of 133 microM olopatadine. At this concentration, these drugs inhibited IL-6 release by 83% and 74%, tryptase release by 55% and 79%, and histamine release by 41% and 45%, respectively. Activated CHMCs were characterized by numerous filopodia that were inhibited by both drugs as shown by electron microscopy. These results indicate that azelastine and olopatadine can inhibit CHMCs activation and release of IL-6, tryptase, and histamine. On an equimolar basis, azelastine was a more potent inhibitor than olopatadine.

  6. Chymase inhibitor-sensitive synthesis of endothelin-1 (1-31) by recombinant mouse mast cell protease 4 and human chymase.

    PubMed

    Semaan, Walid; Desbiens, Louisane; Houde, Martin; Labonté, Julie; Gagnon, Hugo; Yamamoto, Daisuke; Takai, Shinji; Laidlaw, Tanya; Bkaily, Ghassan; Schwertani, Adel; Pejler, Gunnar; Levesque, Christine; Desjardins, Roxane; Day, Robert; D'Orléans-Juste, Pedro

    2015-03-15

    Important structural differences imply that human and mouse mast cell chymases may differ with respect to their enzymatic properties. We compared in this study the catalytic efficiencies of recombinant human chymase (rCMA1) and its functional murine homologue recombinant mouse mast cell protease-4 (rmMCP-4) toward a fluorogenic chymase substrate (Suc-Ala-Ala-Pro-Phe-7-amino-4-methylcoumarin (AMC) and by their ability to convert Big-endothelin (ET)-1 into ET-1 (1-31) using a LC/MS/MS system. Activities toward a fluorogenic substrate (Suc-Leu-Leu-Val-Tyr-AMC) and Big ET-1 were also measured in extracts from mouse peritoneal mast cells, LUVA human mast cell-like cells and human aortas. The specificity of these activities was assessed with the chymase inhibitor TY-51469 (2-[4-(5-fluoro-3-methylbenzo[b]thiophen-2-yl)sulfonamido-3-methanesulfonyl-phenyl]thiazole-4-carboxylic acid). For similar affinities, rmMCP-4 showed a higher activity toward the fluorogenic substrate and a higher ability to process Big ET-1 as compared to recombinant CMA1 (chymase activity (kcat/KM in μM(-1)s(-1)): 2.29 × 10(-4)vs. 6.41 × 10(-6); ET-1 (1-31) production: 2.19 × 10(-3)vs. 6.57 × 10(-5)), and both of these activities of mouse and human chymase were sensitive to TY-51469. Furthermore, extracts from mouse peritoneal mast cells, LUVA cells and human aorta homogenates contained processing activities toward the fluorogenic chymase substrate as well as Big ET-1, all of which were sensitive to TY-51469. Finally, the pressor responses to Big ET-1 but not to ET-1 were significantly reduced in conscious and free moving mMCP-4 KO mice when compared to wild type congeners. Our results suggest that both mouse and human chymases have potent ET-1 (1-31)-producing abilities, with the murine isoform being more efficient.

  7. The effect of ex vivo lung perfusion on microbial load in human donor lungs.

    PubMed

    Andreasson, Anders; Karamanou, Danai M; Perry, John D; Perry, Audrey; Ӧzalp, Faruk; Butt, Tanveer; Morley, Katie E; Walden, Hannah R; Clark, Stephen C; Prabhu, Mahesh; Corris, Paul A; Gould, Kate; Fisher, Andrew J; Dark, John H

    2014-09-01

    Ex vivo lung perfusion (EVLP) has emerged as a technique to potentially recondition unusable donor lungs for transplantation. Beneficial effects of EVLP on physiologic function have been reported, but little is known about the effect of normothermic perfusion on the infectious burden of the donor lung. In this study, we investigated the effect of EVLP on the microbial load of human donor lungs. Lungs from 18 human donors considered unusable for transplantation underwent EVLP with a perfusate containing high-dose, empirical, broad-spectrum anti-microbial agents. Quantitative cultures of bacteria and fungi were performed on bronchoalveolar lavage fluid from the donor lung before and after 3 to 6 hours of perfusion. The identification of any organisms and changes in number of colony forming units before and after EVLP were assessed and anti-microbial susceptibilities identified. Thirteen out of 18 lungs had positive cultures, with bacterial loads significantly decreasing after EVLP. Yeast loads increased when no anti-fungal treatment was given, but were reduced when prophylactic anti-fungal treatment was added to the circuit. Six lungs were ultimately transplanted into patients, all of whom survived to hospital discharge. There was 1 death at 11 months. Our study shows that EVLP with high-dose, empirical anti-microbial agents in the perfusate is associated with an effective reduction in the microbial burden of the donor lung, a benefit that has not previously been demonstrated. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Spectroscopic quantitation of cytochrome P-450 in human lung microsomes.

    PubMed

    Wheeler, C W; Guenthner, T M

    1990-01-01

    The cytochrome P-450 content of human lung microsomes was measured by difference spectroscopy of the carbon monoxide-complexed hemoprotein. These measurements were only possible after the microsome preparation had been subjected to centrifugation over a discontinuous sucrose gradient, to remove an opaque black contaminant. The specific concentration of total cytochrome P-450 in human lung microsomes is essentially identical to that of microsomes prepared under identical conditions from untreated baboon lungs, but is only 0.7% of the specific content found in lung microsomes from untreated rabbits. These measurements correspond well to the observed metabolic capacities of the various microsome samples.

  9. Effect of c-kit ligand, stem cell factor, on mediator release by human intestinal mast cells isolated from patients with inflammatory bowel disease and controls.

    PubMed Central

    Bischoff, S C; Schwengberg, S; Wordelmann, K; Weimann, A; Raab, R; Manns, M P

    1996-01-01

    The regulation of mediator release in human intestinal mast cells is largely unknown. Apart from IgE receptor crosslinking no secretagogues have been described so far. This study examined the effect of two cytokines (c-kit ligand and interleukin 3) and other agonists on human intestinal mast cell function. Cells were isolated from surgery specimens of 47 patients undergoing intestinal resection because of tumours or inflammatory bowel disease. Cell suspensions contained 3.6% mast cells (mean of 50 experiments). After preincubation without or with c-kit ligand or interleukin 3, cells were stimulated by IgE receptor crosslinking, C5a or formyl-methionyl-leucyl-phenylalanine (fMLP). Histamine and sulphidoleukotriene release was measured in supernatants. The sequential stimulation of the cells with c-kit ligand and IgE receptor crosslinking induced the release of high amounts of histamine and leukotrienes, whereas each agonist by itself induced only marginal mediator release. Interleukin 3 induced no release by itself, but enhanced the IgE receptor dependent release, possibly by an indirect mechanism. No significant mediator release was seen in response to C5a and fMLP, even if the cells were pretreated with c-kit ligand. The mediator release, particularly that of leukotrienes, was higher in cells isolated from actively inflamed tissue from patients with inflammatory bowel disease compared with controls. In conclusion, it was found that, apart from IgE receptor crosslinking, c-kit ligand and interleukin 3 regulate mediator release in human intestinal mast cells. The enhancement of mediator release by cytokines may be of particular relevance in the pathogenesis of inflammatory bowel diseases and food intolerance reactions. PMID:8566835

  10. Characterization of maspardin, responsible for human Mast syndrome, in an insect species and analysis of its evolution in metazoans

    NASA Astrophysics Data System (ADS)

    Chertemps, Thomas; Montagné, Nicolas; Bozzolan, Françoise; Maria, Annick; Durand, Nicolas; Maïbèche-Coisne, Martine

    2012-07-01

    Mast syndrome is a complicated form of human hereditary spastic paraplegias, caused by a mutation in the gene acid cluster protein 33, which encodes a protein designated as "maspardin." Maspardin presents similarity to the α/β-hydrolase superfamily, but might lack enzymatic activity and rather be involved in protein-protein interactions. Association with the vesicles of the endosomal network also suggested that maspardin may be involved in the sorting and/or trafficking of molecules in the endosomal pathway, a crucial process for maintenance of neuron health. Despite a high conservation in living organisms, studies of maspardin in other animal species than mammals were lacking. In the cotton armyworm Spodoptera littoralis, an insect pest model, analysis of an expressed sequence tag collection from antenna, the olfactory organ, has allowed identifying a maspardin homolog ( SlMasp). We have investigated SlMasp tissue distribution and temporal expression by PCR and in situ hybridization techniques. Noteworthy, we found that maspardin was highly expressed in antennae and associated with the structures specialized in odorant detection. We have, in addition, identified maspardin sequences in numerous "nonmammalian" species and described here their phylogenetic analysis in the context of metazoan diversity. We observed a strong conservation of maspardin in metazoans, with surprisingly two independent losses of this gene in two relatively distant ecdysozoan taxa that include major model organisms, i.e., dipterans and nematodes.

  11. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II

  12. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells.

    PubMed

    Paruchuri, Sailaja; Jiang, Yongfeng; Feng, Chunli; Francis, Sanjeev A; Plutzky, Jorge; Boyce, Joshua A

    2008-06-13

    Cysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E(4) is the most stable and abundant in vivo. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE(4) potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia. We now report that LTE(4) activates human mast cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR)gamma, a nuclear receptor for dietary lipids. Although LTD(4) is more potent than LTE(4) for inducing calcium flux by the human MC sarcoma line LAD2, LTE(4) is more potent for inducing proliferation and chemokine generation, and is at least as potent for upregulating COX-2 expression and causing prostaglandin D(2) (PGD(2)) generation. LTE(4) caused phosphorylation of extracellular signal-regulated kinase (ERK), p90RSK, and cyclic AMP-regulated-binding protein (CREB). ERK activation in response to LTE(4), but not to LTD(4), was resistant to inhibitors of phosphoinositol 3-kinase. LTE(4)-mediated COX-2 induction, PGD(2) generation, and ERK phosphorylation were all sensitive to interference by the PPARgamma antagonist GW9662 and to targeted knockdown of PPARgamma. Although LTE(4)-mediated PGD(2) production was also sensitive to MK571, an antagonist for the type 1 receptor for cys-LTs (CysLT(1)R), it was resistant to knockdown of this receptor. This LTE(4)-selective receptor-mediated pathway may explain the unique physiologic responses of human airways to LTE(4) in vivo.

  13. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin

    PubMed Central

    2012-01-01

    Background Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by varying degrees of dysfunctional social abilities, learning deficits, and stereotypic behaviors. Many patients with ASDs have ‘allergy-like’ symptoms and respond disproportionally to stress. We have previously shown that the peptide neurotensin (NT) is increased in the serum of young children with autism and that can stimulate extracellular secretion of mitochondrial (mt)DNA which was also increased in the serum of these children. Methods Human mast cells were stimulated by corticotropin-releasing hormone (CRH), mitochondrial DNA, IgE/anti-IgE, either for 24 hours to measure vascular endothelial growth factor (VEGF) release by ELISA or for 6 hours or quantitative PCR. Results CRH augmented IgE/anti-IgE-induced human mast-cell release of VEGF and it also induced the expression of IgE receptor (FcεRI) on mast cells. Moreover, sonicated mitochondria also augmented VEGF release, and this effect was blocked by the natural flavone luteolin. Conclusion These results indicate that stress and infection-mimicking extracellular mitochondrial components augment allergic inflammation that may be involved in the early pathogenesis of ASDs. Moreover, luteolin inhibits these processes and may be helpful in the treatment of ASDs. PMID:22559745

  14. Human sweat metabolomics for lung cancer screening.

    PubMed

    Calderón-Santiago, Mónica; Priego-Capote, Feliciano; Turck, Natacha; Robin, Xavier; Jurado-Gámez, Bernabé; Sanchez, Jean C; Luque de Castro, María D

    2015-07-01

    Sweat is one of the less employed biofluids for discovery of markers in spite of its increased application in medicine for detection of drugs or for diagnostic of cystic fibrosis. In this research, human sweat was used as clinical sample to develop a screening tool for lung cancer, which is the carcinogenic disease with the highest mortality rate owing to the advanced stage at which it is usually detected. In this context, a method based on the metabolite analysis of sweat to discriminate between patients with lung cancer versus smokers as control individuals is proposed. The capability of the metabolites identified in sweat to discriminate between both groups of individuals was studied and, among them, a trisaccharide phosphate presented the best independent performance in terms of the specificity/sensitivity pair (80 and 72.7%, respectively). Additionally, two panels of metabolites were configured using the PanelomiX tool as an attempt to reduce false negatives (at least 80% specificity) and false positives (at least 80% sensitivity). The first panel (80% specificity and 69% sensitivity) was composed by suberic acid, a tetrahexose, and a trihexose, while the second panel (69% specificity and 80% sensitivity) included nonanedioic acid, a trihexose, and the monoglyceride MG(22:2). Thus, the combination of the five metabolites led to a single panel providing 80% specificity and 79% sensitivity, reducing the false positive and negative rates to almost 20%. The method was validated by estimation of within-day and between-days variability of the quantitative analysis of the five metabolites.

  15. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy

    PubMed Central

    Wang, Leo D.; Rao, Tata Nageswara; Rowe, R. Grant; Nguyen, Phi T.; Sullivan, Jessica L.; Pearson, Daniel S.; Doulatov, Sergei; Wu, Linwei; Lindsley, R. Coleman; Zhu, Hao; DeAngelo, Daniel J.; Daley, George Q.; Wagers, Amy J.

    2015-01-01

    Mast cells are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration, and tumor progression. Dysregulated mast cell development leads to systemic mastocytosis, a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused mast cell accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-mast cell progenitors altering gene expression patterns to favor cell fate choices that enhanced mast cell specification. In addition, LIN28B-induced mast cells appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of mast cell terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human mast cell leukemia samples revealed upregulation of LIN28B in abnormal mast cells from patients with systemic mastocytosis (SM). This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in mast cell disease. PMID:25655194

  16. Human embryonic stem cells and lung regeneration.

    PubMed

    Varanou, A; Page, C P; Minger, S L

    2008-10-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically.

  17. DETECTION AND QUANTITATION OF FALLOUT PARTICLES IN A HUMAN LUNG.

    PubMed

    WEGST, A V; PELLETIER, C A; WHIPPLE, G H

    1964-02-28

    Portions of an adult human lung were studied by autoradiography in order to detect the presence of fallout particles. The radioactivity in the remainder of the tissue was determined with a gamma-ray spectrometer. Four particles were found and their activities were determined. From the measurement for total-fission-product activity in the lung tissue it was calculated that there were approximately 264 particles in the right lung at the time of death.

  18. A human breathing lung-on-a-chip.

    PubMed

    Huh, Dongeun Dan

    2015-03-01

    Here we describe a microphysiological system that replicates the functional unit of the living human lung. This human "breathing lung-on-a-chip" microdevice provides unique capabilities to reconstitute three-dimensional microarchitecture, dynamic mechanical activity, and integrated physiological function of the alveolar-capillary interface. We demonstrate the potential of this microengineered biomimetic model for screening environmental particulates and modeling complex human disease processes.

  19. Regional differences in alveolar density in the human lung are related to lung height.

    PubMed

    McDonough, John E; Knudsen, Lars; Wright, Alexander C; Elliott, W Mark; Ochs, Matthias; Hogg, James C

    2015-06-01

    The gravity-dependent pleural pressure gradient within the thorax produces regional differences in lung inflation that have a profound effect on the distribution of ventilation within the lung. This study examines the hypothesis that gravitationally induced differences in stress within the thorax also influence alveolar density in terms of the number of alveoli contained per unit volume of lung. To test this hypothesis, we measured the number of alveoli within known volumes of lung located at regular intervals between the apex and base of four normal adult human lungs that were rapidly frozen at a constant transpulmonary pressure, and used microcomputed tomographic imaging to measure alveolar density (number alveoli/mm3) at regular intervals between the lung apex and base. These results show that at total lung capacity, alveolar density in the lung apex is 31.6 ± 3.4 alveoli/mm3, with 15 ± 6% of parenchymal tissue consisting of alveolar duct. The base of the lung had an alveolar density of 21.2 ± 1.6 alveoli/mm3 and alveolar duct volume fraction of 29 ± 6%. The difference in alveolar density can be negated by factoring in the effects of alveolar compression due to the pleural pressure gradient at the base of the lung in vivo and at functional residual capacity.

  20. Comparative decellularization and recellularization of normal versus emphysematous human lungs.

    PubMed

    Wagner, Darcy E; Bonenfant, Nicholas R; Parsons, Charles S; Sokocevic, Dino; Brooks, Elice M; Borg, Zachary D; Lathrop, Melissa J; Wallis, John D; Daly, Amanda B; Lam, Ying Wai; Deng, Bin; DeSarno, Michael J; Ashikaga, Takamaru; Loi, Roberto; Weiss, Daniel J

    2014-03-01

    Acellular whole human lung scaffolds represent a unique opportunity for ex vivo tissue engineering. However, it remains unclear whether lungs from individuals with chronic lung diseases such as chronic obstructive pulmonary disease (COPD) can be appropriately decellularized and recellularized. To assess this, cadaveric human lungs from normal (non-smoking) patients and from patients with COPD (smoking history) were decellularized and found by histochemical and immunohistochemical staining, electron microscopy, and mass spectrometry to retain characteristic histological architecture and extracellular matrix components (ECM) reflecting either normal or COPD, particularly emphysematous, origin. Inoculation of human bronchial epithelial cells, endothelial progenitor cells, bone marrow-derived mesenchymal stem cells, and lung fibroblasts via airway or vascular routes into small, excised segments of the decellularized lungs demonstrated that normal lung scaffolds robustly supported initial engraftment and growth of each cell type for up to one month. In contrast, despite initial binding, all cell types inoculated into decellularized emphysematous lungs did not survive beyond one week. However, cell attachment and proliferation on solubilized ECM homogenates of decellularized normal and emphysematous lungs coated onto tissue culture plates was comparable and not impaired, suggesting that the 3-dimensional decellularized emphysematous scaffolds may lack the necessary ECM architecture to support sustained cell growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Comparative Decellularization and Recellularization of Normal versus Emphysematous Human Lungs

    PubMed Central

    Wagner, Darcy. E.; Bonenfant, Nicholas. R.; Parsons, Charles; Sokocevic, Dino; Brooks, Elice. M.; Borg, Zachary. D.; Lathrop, Melissa. J.; Wallis, John. D.; Daly, Amanda. B.; Lam, Ying Wai; Deng, Bin; DeSarno, Michael. J.; Ashikaga, Takamaru; Loi, Roberto; Weiss, Daniel. J.

    2014-01-01

    Acellular whole human lung scaffolds represent a unique opportunity for ex vivo tissue engineering. However, it remains unclear whether lungs from individuals with chronic lung diseases such as chronic obstructive pulmonary disease (COPD) can be appropriately decellularized and recellularized. To assess this, cadaveric human lungs from normal (non-smoking) patients and from patients with COPD (smoking history) were decellularized and found by histochemical and immunohistochemical staining, electron microscopy, and mass spectrometry to retain characteristic histological architecture and extracellular matrix components (ECM) reflecting either normal or COPD, particularly emphysematous, origin. Inoculation of human bronchial epithelial cells, endothelial progenitor cells, bone marrow-derived mesenchymal stem cells, and lung fibroblasts via airway or vascular routes into small, excised segments of the decellularized lungs demonstrated that normal lung scaffolds robustly supported initial engraftment and growth of each cell type for up to one month. In contrast, despite initial binding, all cell types inoculated into decellularized emphysematous lungs did not survive beyond one week. However, cell attachment and proliferation on solubilized ECM homogenates of decellularized normal and emphysematous lungs coated onto tissue culture plates was comparable and not impaired, suggesting that the 3-dimensional decellularized emphysematous scaffolds may lack the necessary ECM architecture to support sustained cell growth. PMID:24461327

  2. Mast cells as effector cells of innate immunity and regulators of adaptive immunity.

    PubMed

    Cardamone, Chiara; Parente, Roberta; Feo, Giulia De; Triggiani, Massimo

    2016-10-01

    Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules

  3. The activity of sodium cromoglycate analogues in human lung in vitro: a comparison with rat passive cutaneous anaphylaxis and clinical efficacy.

    PubMed Central

    Church, M. K.; Gradidge, C. F.

    1980-01-01

    1 Eleven analogues of sodium cromoglycate have been tested for their ability to suppress histamine release induced by anti-IgE from passively sensitized human lung fragments in vitro. 2 With the exception of WY 16922, which released histamine at high concentrations, all inhibited histamine release in a linear dose-related manner. 3 The analogues were 30 to 1500 times more potent than sodium cromoglycate. However, their regression slopes of activity upon log-concentration were only one-third as steep as that for sodium cromoglycate, indicating a possible difference in their mechanism of action. 4 In comparison with sodium cromoglycate, the analogues were more potent in human lung than in rat passive cutaneous anaphylaxis (PCA); there was no quantitative correlation between potencies in the two tests. 5 The human lung model is not predictive of anti-asthmatic activity in man as the six analogues tested clinically are less effective than sodium cromoglycate. 6 These results throw doubt on the use of models of mast cell degranulation in the search for anti-allergic drugs and, possibly, on the relative importance of mast cell degranulation in the pathogenesis of asthma. PMID:6159030

  4. Insights into mast cell functions in asthma using mouse models.

    PubMed

    Lei, Ying; Gregory, Joshua A; Nilsson, Gunnar P; Adner, Mikael

    2013-10-01

    Therapeutics targeting specific mechanisms of asthma have shown promising results in mouse models of asthma. However, these successes have not transferred well to the clinic or to the treatment of asthma sufferers. We suggest a reason for this incongruity is that mast cell-dependent responses, which may play an important role in the pathogenesis of both atopic and non-atopic asthma, are not a key component in most of the current asthma mouse models. Two reasons for this are that wild type mice have, in contrast to humans, a negligible number of mast cells localized in the smaller airways and in the parenchyma, and that only specific protocols show mast cell-dependent reactions. The development of mast cell-deficient mice and the reconstitution of mast cells within these mice have opened up the possibility to generate mouse models of asthma with a marked role of mast cells. In addition, mast cell-deficient mice engrafted with mast cells have a distribution of mast cells more similar to humans. In this article we review and highlight the mast cell-dependent and -independent responses with respect to airway hyperresponsiveness and inflammation in asthma models using mast cell-deficient and mast cell-engrafted mice.

  5. Importance of mast cell Prss31/transmembrane tryptase/tryptase-γ in lung function and experimental chronic obstructive pulmonary disease and colitis.

    PubMed

    Hansbro, Philip M; Hamilton, Matthew J; Fricker, Michael; Gellatly, Shaan L; Jarnicki, Andrew G; Zheng, Dominick; Frei, Sandra M; Wong, G William; Hamadi, Sahar; Zhou, Saijun; Foster, Paul S; Krilis, Steven A; Stevens, Richard L

    2014-06-27

    Protease serine member S31 (Prss31)/transmembrane tryptase/tryptase-γ is a mast cell (MC)-restricted protease of unknown function that is retained on the outer leaflet of the plasma membrane when MCs are activated. We determined the nucleotide sequences of the Prss31 gene in different mouse strains and then used a Cre/loxP homologous recombination approach to create a novel Prss31(-/-) C57BL/6 mouse line. The resulting animals exhibited no obvious developmental abnormality, contained normal numbers of granulated MCs in their tissues, and did not compensate for their loss of the membrane tryptase by increasing their expression of other granule proteases. When Prss31-null MCs were activated with a calcium ionophore or by their high affinity IgE receptors, they degranulated in a pattern similar to that of WT MCs. Prss31-null mice had increased baseline airway reactivity to methacholine but markedly reduced experimental chronic obstructive pulmonary disease and colitis, thereby indicating both beneficial and adverse functional roles for the tryptase. In a cigarette smoke-induced model of chronic obstructive pulmonary disease, WT mice had more pulmonary macrophages, higher histopathology scores, and more fibrosis in their small airways than similarly treated Prss31-null mice. In a dextran sodium sulfate-induced acute colitis model, WT mice lost more weight, had higher histopathology scores, and contained more Cxcl-2 and IL-6 mRNA in their colons than similarly treated Prss31-null mice. The accumulated data raise the possibility that inhibitors of this membrane tryptase may provide additional therapeutic benefit in the treatment of humans with these MC-dependent inflammatory diseases.

  6. Inhaled histamine increases human lung mucociliary transport

    SciTech Connect

    Mussatto, D.J.; Garrard, C.S.; Trumbull, J.J.; Bowers, M.W.; Sanders, C.J.; Yeates, D.B.; Lourenco, R.V.

    1986-03-01

    Histamine, a mediator of airways constriction, alters ciliary beat frequency, bronchial mucus production, and epithelial ion transport; and in dogs, increases mucociliary transport. To evaluate the effect of inhaled histamine on human tracheobronchial mucociliary clearance, the authors measured lung mucociliary clearance (LMC) and tracheal mucociliary transport rate (TMTR) in 5 healthy, nonsmoking subjects in a randomized, double-blind, cross-over study. The concentration of inhaled histamine which produced a 20% fall in FEV/sub 1/ was established for each subject. On a separate day the subjects inhaled a 9 ..mu..m MMAD /sup 99m/Tc-Fe/sub 2/O/sub 3/ aerosol. LMC and TMTR were then measured for 2.5h using a gamma camera and a tracheal multidetector probe. Simultaneously, the subjects were challenged every 26 +/- 4 min with either PBS or histamine in PBS. The Fe/sub 2/O/sub 3/ retained after 24h for histamine (14.4 +/- 7.6%) and PBS studies (13.1 +/- 8.6%) indicated no difference in deposition of Fe/sub 2/O/sub 3/ (ANOVA). Fe/sub 2/O/sub 3/ clearance at 30 min was increased in the histamine studies (61 +/- 21% compared to the PBS studies (44 +/- 29%; p < 0.02, ANOVA)). TMTR was also increased with histamine (7.6 +/- 3.4 mm/min) compared to PBS (4.6 +/- 1.7 mm/min; p < 0.001, ANOVA). Results indicate an acute stimulatory effect of inhaled histamine on mucous transport in humans.

  7. Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells

    PubMed Central

    Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.

    2014-01-01

    Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234

  8. Retinoic Acid Negatively Impacts Proliferation and MCTC Specific Attributes of Human Skin Derived Mast Cells, but Reinforces Allergic Stimulability

    PubMed Central

    Babina, Magda; Artuc, Metin; Guhl, Sven; Zuberbier, Torsten

    2017-01-01

    The Vitamin-A-metabolite retinoic acid (RA) acts as a master regulator of cellular programs. Mast cells (MCs) are primary effector cells of type-I-allergic reactions. We recently uncovered that human cutaneous MCs are enriched with RA network components over other skin cells. Yet, direct experimental evidence on the significance of the RA-MC axis is limited. Here, skin-derived cultured MCs were exposed to RA for seven days and investigated by flow-cytometry (BrdU incorporation, Annexin/PI, FcεRI), microscopy, RT-qPCR, histamine quantitation, protease activity, and degranulation assays. We found that while MC size and granularity remained unchanged, RA potently interfered with MC proliferation. Conversely, a modest survival-promoting effect from RA was noted. The granule constituents, histamine and tryptase, remained unaffected, while RA had a striking impact on MC chymase, whose expression dropped by gene and by peptidase activity. The newly uncovered MRGPRX2 performed similarly to chymase. Intriguingly, RA fostered allergic MC degranulation, in a way completely uncoupled from FcεRI expression, but it simultaneously restricted MRGPRX2-triggered histamine release in agreement with the reduced receptor expression. Vitamin-A-derived hormones thus re-shape skin-derived MCs numerically, phenotypically, and functionally. A general theme emerges, implying RA to skew MCs towards processes associated with (allergic) inflammation, while driving them away from the skin-imprinted MCTC (“MCs containing tryptase and chymase”) signature (chymase, MRGPRX2). Collectively, MCs are substantial targets of the skin retinoid network. PMID:28264498

  9. Retinoic Acid Negatively Impacts Proliferation and MCTC Specific Attributes of Human Skin Derived Mast Cells, but Reinforces Allergic Stimulability.

    PubMed

    Babina, Magda; Artuc, Metin; Guhl, Sven; Zuberbier, Torsten

    2017-02-28

    The Vitamin-A-metabolite retinoic acid (RA) acts as a master regulator of cellular programs. Mast cells (MCs) are primary effector cells of type-I-allergic reactions. We recently uncovered that human cutaneous MCs are enriched with RA network components over other skin cells. Yet, direct experimental evidence on the significance of the RA-MC axis is limited. Here, skin-derived cultured MCs were exposed to RA for seven days and investigated by flow-cytometry (BrdU incorporation, Annexin/PI, FcεRI), microscopy, RT-qPCR, histamine quantitation, protease activity, and degranulation assays. We found that while MC size and granularity remained unchanged, RA potently interfered with MC proliferation. Conversely, a modest survival-promoting effect from RA was noted. The granule constituents, histamine and tryptase, remained unaffected, while RA had a striking impact on MC chymase, whose expression dropped by gene and by peptidase activity. The newly uncovered MRGPRX2 performed similarly to chymase. Intriguingly, RA fostered allergic MC degranulation, in a way completely uncoupled from FcεRI expression, but it simultaneously restricted MRGPRX2-triggered histamine release in agreement with the reduced receptor expression. Vitamin-A-derived hormones thus re-shape skin-derived MCs numerically, phenotypically, and functionally. A general theme emerges, implying RA to skew MCs towards processes associated with (allergic) inflammation, while driving them away from the skin-imprinted MCTC ("MCs containing tryptase and chymase") signature (chymase, MRGPRX2). Collectively, MCs are substantial targets of the skin retinoid network.

  10. Mast cell activation disorders.

    PubMed

    Akin, Cem

    2014-01-01

    Disorders associated with mast cell activation range from relatively common IgE-mediated disease and chronic urticaria to rarer conditions such as mastocytosis or monoclonal mast cell activation disorder. Mast cell activation disorders can be mechanistically classified into primary (associated with abnormal production of mast cells that carry pathologic markers of clonality), secondary (normal mast cells activated in reaction to a microenvironmental trigger), and idiopathic (no etiology is found). Clinical presentations, diagnostic criteria as well as general principles of a stepwise therapy approach are discussed.

  11. Mast cell reactivity at the margin of human skin wounds: an early cell marker of wound survival?

    PubMed

    Oehmichen, M; Gronki, T; Meissner, C; Anlauf, M; Schwark, T

    2009-10-30

    Detecting the vitality of mechanical skin wounds (antemortem versus postmortem injury) in human cadavers remains a specifically forensic problem. To determine whether skin mast cells (MCs) are activated during the very early phase of human wound healing we performed a histomorphometric evaluation of the extent of MC enzyme loss as an indication of MC degranulation at the wound margins of skin wounds in 64 human cadavers. We compared the number of tryptase-reactive MCs, which are said not to loose all of their enzyme activity during degranulation process, with the number of naphthol AS-D chloroacetate esterase (NAS-DClAE)-positive MCs, which loose their complete enzyme activity in the form of enzyme-positive granula after activation. The enzyme activity was evaluated on sequential histological sections after autopsy as an indirect quantification of the number of degranulated MCs. Most of the victims had died within 10-60 min after injury (n=50), 12 survived between 60 min and 24h, and only 2 victims survived more than 24h (12 days each). The number of enzyme-positive MCs were counted in six successive visual fields (0.785 mm(2)) on the one hand located parallel to and--on the other hand--at increasing distances outward from the wound margins. In victims surviving the injury less than 60 min the average number of NAS-DClAE-reactive MCs next to the wound margin was significantly lower than the number of tryptase-reactive MCs. The extent of the reduction in NAS-DClAE-reactive MC counts correlated inversely with the distance from the wound edges. Our findings show that MCs undergo very early loss of NAS-DClAE activity at wound margins, and thus appear to be an early cell marker of wound survival. However, definitive evidence that the enzyme loss (degranulation) represents a vital process can only be obtained by comparing MC enzyme loss induced by injury during intact circulation with the MC reaction to injury inflicted very shortly after cardiac arrest, a question that

  12. Benign mast cell hyperplasia and atypical mast cell infiltrates in penile lichen planus in adult men.

    PubMed

    Regauer, Sigrid; Beham-Schmid, Christine

    2014-08-01

    Introduction. Lichen planus (LP) is a chronic cytokine-mediated disease of possible auto-immune etiology. 25% of men have anogenital manifestations. Erosive penile LP causes a scarring phimosis of the foreskin in uncircumcised men. Mast cells as potent immune modulators have been implicated in a number of autoimmune and chronic inflammatory diseases, but have not been investigated in LP. Material and Methods. Formalin-fixed tissues of 117 circumcision specimens of adult men affected by LP were evaluated for the extent of mast cell and lymphocyte infiltrates, characterized immunohistochemically with antibodies to CD 3, 4, 8, 20, 21, 25, 30, 117c and human mast cell tryptase. Specimens with dense mast cell infiltrates were analyzed for point mutations of the c-kit gene (D816V). Results. Unaffected skin and modified mucosa of foreskins contained ⟨5 mast cells/mm². The inflammatory infiltrate of LP-lesions displayed ⟨15 mast cells/mm² in 33/117 foreskins, 16-40 mast cells/mm² in 22/117 and ⟩40 mast cells/mm² (average 70, range 40-100) in 62/117 foreskins. Lesional mast cells of 29/117 (24%) foreskins showed aberrant CD25-expression and/or spindled morphology, with 11/29 men having erosive LP, 13/29 a lymphocytic vasculitis and 1/28 a systemic mastocytosis. Neither CD30-expression nor c-kit mutations were identified. Atypical mast cell infiltrates in LP correlated with high disease activity, erosive LP and presence of lymphocytic vasculitis Conclusions. Increased mast cells in penile LP, mostly representing a benign hyperplasia/activation syndrome, suggests them as targets for innovative therapy options for symptomatic LP-patients not responding to corticosteroid therapy. Presently, the biological implications of atypical mast cell infiltrates in penile LP are unknown.

  13. The accumulation of nickel in human lungs

    SciTech Connect

    Edelman, D.A.; Roggli, V.L. )

    1989-05-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predicted nickel concentrations that were in the range of those of persons without known nickel exposure. Nickel is a suspected carcinogen and has been associated with an increased risk of respiratory tract cancer among nickel workers. However, before the nickel content of cigarettes can be implicated in the etiology of lung cancer, further studies are needed to evaluate the independent effects of smoking and exposure to nickel.

  14. The accumulation of nickel in human lungs.

    PubMed Central

    Edelman, D A; Roggli, V L

    1989-01-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predicted nickel concentrations that were in the range of those of persons without known nickel exposure. Nickel is a suspected carcinogen and has been associated with an increased risk of respiratory tract cancer among nickel workers. However, before the nickel content of cigarettes can be implicated in the etiology of lung cancer, further studies are needed to evaluate the independent effects of smoking and exposure to nickel. PMID:2759060

  15. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes

    PubMed Central

    Desch, A. Nicole; Gibbings, Sophie L.; Goyal, Rajni; Kolde, Raivo; Bednarek, Joe; Bruno, Tullia; Slansky, Jill E.; Jacobelli, Jordan; Mason, Robert; Ito, Yoko; Messier, Elise; Randolph, Gwendalyn J.; Prabagar, Miglena; Atif, Shaikh M.; Segura, Elodie; Xavier, Ramnik J.; Bratton, Donna L.; Janssen, William J.; Henson, Peter M.

    2016-01-01

    Rationale: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. Objectives: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. Methods: We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. Measurements and Main Results: We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. Conclusions: Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics. PMID:26551758

  16. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase.

    PubMed

    Welle, M

    1997-03-01

    Mast cells are one of the major effector cells in the pathogenesis of the immediate-type hypersensitivity reaction in a number of non-allergic immune disorders as well as in normal physiological processes. In addition, it has been shown recently that mast cells also play a significant role in a life-saving host response to bacterial reactions. But as much as the immunopathological role of mast cells has been acknowledged, these cells have also aroused much controversy and confusion. By now it is clear that one explanation for the sometimes even contradictory opinions on mast cell function arise from mast cell heterogeneity. This heterogeneity can express itself as differences in histochemical, biochemical, and functional characteristics. In vitro systems provided a powerful tool for the investigation of the basic mechanisms for mast cell development and differentiation and helped to demonstrate that mast cell heterogeneity can be traced back to certain cytokine patterns that are present in different microenvironments. In this context it has also been shown that the growth factors required for human mast cell differentiation are somewhat different than those for rodents. In rodents, the atypical, T cell-dependent mucosal type mast cell can be distinguished from the T cell-independent connective tissue-type mast cell. In humans, the strict classification into mucosal and connective tissue-type mast cells is not possible and the content of mast cell-specific proteases chymase and tryptase is the main criterion for mast cell subtypes in humans. The large quantities of tryptase and chymase that are synthesized by mast cells suggest and emphasize the significance of these proteinases in mast cell function and stimulated investigations about the biological properties of these mast cell-specific proteases. Comparing their biological activities it becomes clear that they share some activities. On the other hand, tryptase seems to participate in proinflammatory mast cell

  17. Linear dimensions and volumes of human lungs

    SciTech Connect

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does not improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.

  18. Linear dimensions and volumes of human lungs

    DOE PAGES

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  19. Solubility of Freon 22 in human blood and lung tissue

    SciTech Connect

    Varene, N.; Choukroun, M.L.; Marthan, R.; Varene, P.

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  20. Human lung expresses unique gamma-glutamyl transpeptidase transcripts.

    PubMed Central

    Wetmore, L A; Gerard, C; Drazen, J M

    1993-01-01

    gamma-Glutamyl transpeptidase (EC 2.3.2.2, gamma GT) is a membrane-bound ectoenzyme that plays an important role in the metabolism of glutathione. It is composed of two subunits, both of which are encoded by a common mRNA. We examined the expression of gamma GT in human lung tissue by Northern blot analysis and screening a cDNA library made from human lung poly(A)+ RNA. Our results show that there are two gamma GT mRNA populations in human lung tissue. We define these as group I (2.4 kb) and group II (approximately 1.2 kb) transcripts. In the present communication, we characterize the unique lung transcript. Sequence analysis of representative clones shows that group I transcripts are virtually identical to those previously isolated from liver and placenta but possess a unique 5' untranslated region. In marked contrast, group II transcripts appear to be human-lung-specific. Group II transcripts appear on Northern blots probed with full-length or 3'-biased gamma GT cDNA. Sequence analysis of group II clones shows them to be homologous with group I clones in the region that encodes the reading frame for the light chain; however, they possess a series of unique 5' untranslated regions, which suggests that they arise from lung-specific message processing. Additionally, approximately 50% of the isolated group II clones contain 34 nt substitutions compared with the "wild-type" gamma GT transcripts. These data indicate that human lung expresses unique gamma GT transcripts of unknown function as well as the classical form. The abundant group II transcripts may encode part of a heterodimer related to gamma GT or represent processed lung-specific pseudogenes. Images Fig. 1 PMID:7689219

  1. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1

    PubMed Central

    LIU, WAI NAM; LEUNG, KWOK NAM

    2015-01-01

    The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and −9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells. PMID:26623027

  2. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-11-01

    The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and -9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells.

  3. Follistatin is a novel biomarker for lung adenocarcinoma in humans.

    PubMed

    Chen, Fangfang; Ren, Ping; Feng, Ye; Liu, Haiyan; Sun, Yang; Liu, Zhonghui; Ge, Jingyan; Cui, Xueling

    2014-01-01

    Follistatin (FST), a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear. The study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80), which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40) using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis. These data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma.

  4. Follistatin Is a Novel Biomarker for Lung Adenocarcinoma in Humans

    PubMed Central

    Feng, Ye; Liu, Haiyan; Sun, Yang; Liu, Zhonghui; Ge, Jingyan; Cui, Xueling

    2014-01-01

    Background Follistatin (FST), a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear. Methods and Results The study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80), which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40) using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis. Conclusions These data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma. PMID:25347573

  5. Ex Vivo Perfusion Treatment of Infection in Human Donor Lungs.

    PubMed

    Nakajima, D; Cypel, M; Bonato, R; Machuca, T N; Iskender, I; Hashimoto, K; Linacre, V; Chen, M; Coutinho, R; Azad, S; Martinu, T; Waddell, T K; Hwang, D M; Husain, S; Liu, M; Keshavjee, S

    2016-04-01

    Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high-dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic-treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad-spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL-1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad-spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Decreased expression of interleukin 13 in human lung emphysema

    PubMed Central

    Boutten, A; Bonay, M; Laribe, S; Leseche, G; Castier, Y; Lecon-Malas, V; Fournier, M; Durand, G; Aubier, M; Dehoux, M; Crestani, B

    2004-01-01

    Background: The overexpression of interferon (IFN)γ or interleukin (IL)-13 in the adult murine lung induces the development of changes that mirror human lung emphysema. Methods: IL-13 and IFNγ expression was determined in lung samples from five groups of patients: severe emphysema without α1-antitrypsin deficiency (SE+, n = 10); severe emphysema with α1-antitrypsin deficiency (SE–, n = 5); mild localised emphysema (ME, n = 8); non-emphysema smokers (NE-S, n = 9), and non-emphysema non-smokers (NE-NS, n = 11). Lung IL-13 and IFNγ mRNA were analysed by RT-PCR. Lung concentrations of IL-13 protein were assessed by ELISA. Results: The expression of IFNγ mRNA was similar in patients with or without emphysema. IL-13 mRNA was markedly decreased in the SE+ group compared with the SE– (p = 0.04), ME (p = 0.02), and non-emphysema groups (p = 0.01). IL-13 mRNA correlated with forced expiratory volume in 1 second (r = 0.5, p = 0.04) and arterial oxygen tension (r = 0.45, p = 0.03) in emphysema patients. In contrast to the non-emphysematous lung, IL-13 protein was below the detection limit of the assay in most emphysematous lung homogenates. Conclusion: The lung IL-13 content is reduced in patients with severe emphysema without α1-antitrypsin deficiency. PMID:15454650

  7. 46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION AND RETRACTION CYLINDERS BETWEEN MAST AND TRENCH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.

    PubMed

    Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze

    2015-08-01

    Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Mast cell secretome: Soluble and vesicular components.

    PubMed

    Vukman, Krisztina V; Försönits, András; Oszvald, Ádám; Tóth, Eszter Á; Buzás, Edit I

    2017-02-09

    Mast cells are multifunctional master cells implicated in both innate and adaptive immune responses. Their role has been best characterized in allergy and anaphylaxis; however, emerging evidences support their contribution to a wide variety of human diseases. Mast cells, being capable of both degranulation and subsequent recovery, have recently attracted substantial attention as also being rich sources of secreted extracellular vesicles (including exosomes and microvesicles). Along with secreted de novo synthesized soluble molecules and secreted preformed granules, the membrane-enclosed extracellular vesicles represent a previously unexplored part of the mast cell secretome. In this review article we summarize available data regarding the different soluble molecules and membrane-enclosed structures secreted by mast cells. Furthermore, we provide an overview of the release mechanisms including degranulation, piecemeal degranulation, transgranulation, and secretion of different types of extracellular vesicles. Finally, we aim to give a summary of the known biological functions associated with the different mast cell-derived secretion products. The increasingly recognized complexity of mast cell secretome may provide important novel clues to processes by which mast cells contribute to the development of different pathologies and are capable of orchestrating immune responses both in health and disease.

  10. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  11. Mast cells mediate malignant pleural effusion formation.

    PubMed

    Giannou, Anastasios D; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M; Vreka, Malamati; Zazara, Dimitra E; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A; Patmanidi, Alexandra L; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S; Agalioti, Theodora; Stathopoulos, Georgios T

    2015-06-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.

  12. Interleukin-6 enhances whereas tumor necrosis factor alpha and interferons inhibit integrin expression and adhesion of human mast cells to extracellular matrix proteins.

    PubMed

    Schoeler, Dagmar; Grützkau, Andreas; Henz, Beate M; Küchler, Jens; Krüger-Krasagakis, Sabine

    2003-05-01

    Integrins are expressed on mast cells and constitute an essential prerequisite for the accumulation of the cells at sites of inflammation. In order to clarify a potential contribution of inflammatory cytokines to this process, we have studied the modulation of integrin expression and adhesion of immature human mast cells (HMC-1) to extracellular matrix proteins by interleukin-6, tumor necrosis factor alpha, interferon-alpha and interferon-gamma. Corticosteroids were used for comparison. On fluorescence-activated cell sorter analysis, preincubation of cells for 48 h with different concentrations of interleukin-6 induced a significant, up to 40%, increase of alpha v alpha 5, CD49b (alpha 2), CD49e (alpha 5), CD49f (alpha 6), and CD51 (alpha v). In contrast, different concentrations of tumor necrosis factor alpha, interferon-alpha, interferon-gamma, and dexamethasone (10-8-10-10 M) inhibited expression of adhesion receptors by up to 60%, reaching significance for some but not all integrins. On semiquantitative polymerase chain reaction analysis, interleukin-6, the other cytokines, and corticosteroids significantly modulated expression of alpha1, alpha v and alpha 5 integrin chains at mRNA level. Functional significance of these findings was proven in adhesion assays using fibronectin, laminin, and vitronectin, with interleukin-6 causing significant enhancement of adhesion in all cases, tumor necrosis factor alpha and dexamethasone inducing significant reduction of adhesion to fibronectin and laminin, and interferon-gamma significantly inhibiting adhesion to fibronectin only. Specificity of interleukin-6-induced changes was demonstrated using antibodies against alpha1 and alpha 5 integrins in unstimulated and interleukin-6-prestimulated cells. These data show that interleukin-6 stimulates mast cell adhesion to extracellular matrix and thus allows for the accumulation of the cells at tissue sites by enhancing integrin expression, whereas tumor necrosis factor alpha

  13. Isolation, culture, and characterization of intestinal mast cells.

    PubMed

    Sellge, Gernot; Bischoff, Stephan C

    2006-01-01

    Mast cells are bone-marrow-derived tissue cells typically located at barrier sites of the body, such as skin, mucosal barriers, or blood barriers, that is, around blood vessels. This location suggests that mast cells might have a function as immunological "gate-keepers" or "watch dogs" and, indeed, some recent functional data support this idea. Mast cells derive from myeloid progenitors, but in contrast to other myeloid cells, they leave the bone marrow in an immature state; therefore, mast cells are not found in the blood under normal conditions. For full maturation, the tissue environment is necessary. Thus, mature mast cells can be only isolated from tissue such as skin or mucosal sites, which makes mast cell isolation rather complicated. Alternatively, mast cell progenitors can be isolated from the bone marrow, peripheral blood, or cord blood, which is easier but requires subsequent in vitro maturation of mast cells as far as possible using cytokines. This chapter describes a rather new technique of mast cell isolation from human intestinal mucosal tissue yielding approx 1-5 million pure and viable human mast cells suitable to perform functional and cell culture experiments.

  14. Second-hand smoke and human lung cancer

    PubMed Central

    Besaratinia, Ahmad; Pfeifer, Gerd P.

    2009-01-01

    Since the early 1980s, there has been growing concern about potential health consequences of exposure to second-hand smoke (SHS). Despite SHS being established as a risk factor for lung cancer development, the estimated risk has remained small yet somehow debatable. Human exposure to SHS is complicated because of temporal variabilities in source, composition, and concentration of SHS. The temporality of exposure to SHS is important for human lung carcinogenesis with a latency of many years. To explore the causal effect of SHS in lung carcinogenesis, exposure assessments should estimate chronic exposure to SHS on an individual basis. However, conventional exposure assessment for SHS relies on one-off or short-term measurements of SHS indices. A more reliable approach would be to use biological markers that are specific for SHS exposure and pertinent to lung cancer. This approach requires an understanding of the underlying mechanisms through which SHS could contribute to lung carcinogenesis. This Review is a synopsis of research on SHS and lung cancer, with special focus on hypothetical modes of action of SHS for carcinogenesis, including genotoxic and epigenetic effects. PMID:18598930

  15. TMEM45B, up-regulated in human lung cancer, enhances tumorigenicity of lung cancer cells.

    PubMed

    Hu, Rui; Hu, Fengqing; Xie, Xiao; Wang, Lei; Li, Guoqing; Qiao, Tong; Wang, Mingsong; Xiao, Haibo

    2016-09-01

    Transmembrane protein 45B (TMEM45B) is a member of TMEMs. Altered expression of TMEMs is frequently observed in a variety of human cancers, but the expression and functional roles of TMEM45B in lung cancer is not reported. In the present study, levels of mRNA expression of TMEM45B in lung cancer tissues were assessed using re-analyzing expression data of The Cancer Genome Atlas (TCGA) lung cancer cohort and real-time PCR analysis on our own cohort. Lung cancer cells, A549 and NCI-H1975, infected with TMEM45B short hairpin RNA were examined in cell proliferation, cell cycle, cell apoptosis, wound-healing, and cell invasion assays as well as mouse xenograft models. Here, we demonstrated that TMEM45B was overexpressed in lung cancer and its expression correlated with overall survival of patients. In addition, silencing of TMEM45B expression reduced cell proliferation in vitro and in vivo, induced cell cycle arrest and cell apoptosis, and blocked cell migration and invasion. Moreover, knockdown of TMEM45B significantly suppressed G1/S transition, induced cell apoptosis, and inhibited cell invasion via regulating the expression of cell cycle-related proteins (CDK2, CDC25A, and PCNA), cell apoptosis-related proteins (Bcl2, Bax, and Cleaved Caspase 3), and metastasis-related proteins (MMP-9, Twist, and Snail), respectively. Thus, TMEM45B is a potential prognostic marker and cancer-selective therapeutic target in lung cancer.

  16. Controversial role of mast cells in skin cancers.

    PubMed

    Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni

    2017-01-01

    Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.

  17. Acute lung injury after instillation of human breast milk or infant formula into rabbits' lungs.

    PubMed

    O'Hare, B; Lerman, J; Endo, J; Cutz, E

    1996-06-01

    Recent interest in shortening the fasting interval after ingestion of milk products demonstrated large volumes of breast milk in the stomach 2 h after breastfeeding. Although aspiration is a rare event, if it were to occur with human breast milk, it is important to understand the extent of the lung injury that might occur. Therefore, the response to instillation of acidified breast milk and infant formula in the lungs of adult rabbits was studied. In 18 anesthetized adult rabbits, 1 of 3 fluids (in a volume of 0.8 ml.kg-1 and pH level of 1.8, acidified with hydrochloric acid); saline, breast milk, or infant formula (SMA, Wyeth, Windsor, Ontario), was instilled into the lungs via a tracheotomy. The lungs were ventilated for 4 h after instillation. Alveolar-to-arterial oxygen gradient and dynamic compliance were measured before and at hourly intervals after instillation. After 4 h, the rabbits were killed and the lungs were excised. Neutrophil infiltration was quantitated by a pathologist blinded to the instilled fluid. A histologic control group of four rabbits was ventilated under study conditions without any intratracheal fluid instillation. Alveolar-to-arterial oxygen gradient increased and dynamic compliance decreased significantly during the 4 h after instillation of both breast milk and infant formula compared with baseline measurements and with saline controls (P < 0.05). The neutrophil counts in the lungs from the saline, breast milk, and formula rabbits were significantly greater than those in the control group. Instillation of acidified breast milk or infant formula (in a volume of 0.8 ml.kg-1 and pH level of 1.8) into rabbits' lungs induces acute lung injury of similar intensity that lasts at least 4 h.

  18. Induction of inflammatory mediators from human polymorphonuclear granulocytes and rat mast cells by haemolysin-positive and -negative E. coli strains with different adhesins.

    PubMed Central

    Scheffer, J; Vosbeck, K; König, W

    1986-01-01

    We investigated the role of various E. coli strains that expressed different adhesins and/or generated haemolysin with regard to the induction of inflammatory mediators, e.g. histamine release from rat mast cells as well as the chemiluminescence response and the release of lipoxygenase transformation products from human polymorphonuclear neutrophils. Our data show that the degree of haemagglutination did not parallel the induction of the chemiluminescence response. Haemolysin-negative bacteria with different adhesins induced more 5-hydroxyeicosatetraenoic acid as compared to haemolysin-positive bacteria, which generated more leukotriene B4 as compared to 5-hydroxyeicosatetraenoic acid. Among the leukotrienes, more leukotriene B4 as compared to leukotriene C4 was released from peripheral leucocytes. Studies with rat mast cells showed that histamine release was dependent on the haemolysin activity expressed by washed bacteria or present within the bacterial culture supernatant. Histamine release was markedly diminished when haemolysin activity decayed. Several haemolysin-negative bacteria with defined adhesins also released histamine, suggesting that, in addition to haemolysin, other factors contribute to mediator release. Thus, various properties of bacteria (e.g. adhesins, haemolysin) may participate to varying degrees in the induction of inflammatory mediators, e.g. oxygen radicals, lipoxygenase transformation products, leucotrienes and histamine. PMID:2433215

  19. Hyperpolarized 129Xe MRI of the Human Lung

    PubMed Central

    Mugler, John P.; Altes, Talissa A.

    2012-01-01

    By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432

  20. Mast Cell Function

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  1. Impact of Statins on Gene Expression in Human Lung Tissues

    PubMed Central

    Lane, Jérôme; van Eeden, Stephan F.; Obeidat, Ma’en; Sin, Don D.; Tebbutt, Scott J.; Timens, Wim; Postma, Dirkje S.; Laviolette, Michel; Paré, Peter D.; Bossé, Yohan

    2015-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin

  2. Immunoglobulin E and Mast Cell Proteases Are Potential Risk Factors of Human Pre-Diabetes and Diabetes Mellitus

    PubMed Central

    Wang, Zhen; Zhang, Hong; Shen, Xu-Hui; Jin, Kui-Li; Ye, Guo-fen; Qian, Li; Li, Bo; Zhang, Yong-Hong; Shi, Guo-Ping

    2011-01-01

    Background Recent studies have suggested that mast-cell activation and inflammation are important in obesity and diabetes. Plasma levels of mast cell proteases and the mast cell activator immunoglobulin E (IgE) may serve as novel inflammatory markers that associate with the risk of pre-diabetes and diabetes mellitus. Methods and Results A total of 340 subjects 55 to 75 years of age were grouped according to the American Diabetes Association 2003 criteria of normal glucose tolerance, pre-diabetes, and diabetes mellitus. The Kruskal-Wallis test demonstrated significant differences in plasma IgE levels (P = 0.008) among groups with different glucose tolerance status. Linear regression analysis revealed significant correlations between plasma levels of chymase (P = 0.030) or IgE (P = 0.022) and diabetes mellitus. Ordinal logistic regression analysis showed that IgE was a significant risk factor of pre-diabetes and diabetes mellitus (odds ratio [OR]: 1.674, P = 0.034). After adjustment for common diabetes risk factors, including age, sex, hypertension, body-mass index, cholesterol, homeostatic model assessment (HOMA) index, high-sensitivity C-reactive protein (hs-CRP), and mast cell chymase and tryptase, IgE remained a significant risk factor (OR: 1.866, P = 0.015). Two-variable ordinal logistic analysis indicated that interactions between hs-CRP and IgE, or between IgE and chymase, increased further the risks of developing pre-diabetes and diabetes mellitus before (OR: 2.204, P = 0.044; OR: 2.479, P = 0.033) and after (OR: 2.251, P = 0.040; OR: 2.594, P = 0.026) adjustment for common diabetes risk factors. Conclusions Both IgE and chymase associate with diabetes status. While IgE and hs-CRP are individual risk factors of pre-diabetes and diabetes mellitus, interactions of IgE with hs-CRP or with chymase further increased the risk of pre-diabetes and diabetes mellitus. PMID:22194960

  3. Mast cells and inflammation.

    PubMed

    Frenzel, Laurent; Hermine, Olivier

    2013-03-01

    The prominent role for mast cells in the inflammatory response has been increasingly well documented in recent years. Mast cells not only contribute to maintain homeostasis via degranulation and to generate IgE-mediated allergic reactions, but also sit at a major crossroads for both innate and adaptive immune responses. The part played by mast cells in chronic inflammatory diseases such as rheumatoid arthritis and multiple sclerosis identifies mast cells as a valuable treatment target in these diseases. Tyrosine-kinase inhibitors targeting the c-Kit mast cell receptor have been found effective in treating rheumatoid arthritis, asthma, and multiple sclerosis. When used in combination with other available drugs, tyrosine-kinase inhibitors may improve the therapeutic management of these diseases.

  4. Mast cell leukemia.

    PubMed

    Georgin-Lavialle, Sophie; Lhermitte, Ludovic; Dubreuil, Patrice; Chandesris, Marie-Olivia; Hermine, Olivier; Damaj, Gandhi

    2013-02-21

    Mast cell leukemia (MCL) is a very rare form of aggressive systemic mastocytosis accounting for < 1% of all mastocytosis. It may appear de novo or secondary to previous mastocytosis and shares more clinicopathologic aspects with systemic mastocytosis than with acute myeloid leukemia. Symptoms of mast cell activation-involvement of the liver, spleen, peritoneum, bones, and marrow-are frequent. Diagnosis is based on the presence of ≥ 20% atypical mast cells in the marrow or ≥ 10% in the blood; however, an aleukemic variant is frequently encountered in which the number of circulating mast cells is < 10%. The common phenotypic features of pathologic mast cells encountered in most forms of mastocytosis are unreliable in MCL. Unexpectedly, non-KIT D816V mutations are frequent and therefore, complete gene sequencing is necessary. Therapy usually fails and the median survival time is < 6 months. The role of combination therapies and bone marrow transplantation needs further investigation.

  5. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  6. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  7. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  8. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  9. Asbestos fibers in human lung: forensic significance

    SciTech Connect

    Ehrenreich, T.; Selikoff, I.J.

    1981-03-01

    Asbestos is a fibrous mineral which, because of its unique properties, has innumerable applications in many industries and is used in a large variety of consumer products. It has become ubiquitous and is woven, literally and figuratively, into the fabric of our present-day civilization. However, its presence is sometimes unknown and unsuspected by those who are exposed to asbestos by virtue of occupation or environment and inhale its fibers. Exposed workers and even urban dwellers may have a variable lung burden of asbestos fibers. There is indisputable clinical, pathological, experimental and epidemiological proof that, after varying periods of latency, asbestos may cause benign and malignant disease often leading to disability or death. Forensic investigation of suspected asbestos-related deaths includes a life-time occupational history, a complete autopsy, and identification of the asbestos fiber tissue burden. The latter usually requires special procedures.

  10. Mast importance, production, and management

    Treesearch

    Harmon P., Jr. Weeks

    1989-01-01

    Mast is a broad term that refers to the various nuts and fruits produced by woody plants. It is usually subdivided into hard mast (nuts) and soft mast (fleshy fruits). Forest tree and shrub mast is an important seasonal food for many forest wildlife species.

  11. Impact of mast cells on the skin.

    PubMed

    Kritas, S K; Saggini, A; Varvara, G; Murmura, G; Caraffa, A; Antinolfi, P; Toniato, E; Pantalone, A; Neri, G; Frydas, S; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Theoharides, T C; Conti, P

    2013-01-01

    When through the skin a foreign antigen enters it provokes an immune response and inflammatory reaction. Mast cells are located around small vessels that are involved in vasaldilation. They mature under the influence of local tissue to various cytokines. Human skin mast cells play an essential role in diverse physiological and pathological processes and mediate immediate hypersensitive reaction and allergic diseases. Injection of anti-IgE in the skin or other agents that directly activate mast cells may cause the decrease in vascular tone, leakage of plasma and may lead to a fall in blood pressure with fatal anaphylactic shock. Skin mast cells are also implicated as effector cells in response to multiple parasites such as Leishmania which is primarily characterized by its tissue cutaneous tropism. Activated macrophages by IFNgamma, cytotoxic T cells, activated mast cells and several cytokines are involved in the elimination of the parasites and immunoprotection. IL-33 is one of the latest cytokines involved in IgE-induced anaphylaxis and in the pathogenesis of allergic skin disorders. IL-33 has been shown in epidermis of patients with psoriasis and its skin expression causes atopic dermatitis and it is crucial for the development of this disease. Here we review the impact of mast cells on the skin.

  12. Mast cells and inflammation.

    PubMed

    Stassen, Michael; Hültner, Lothar; Müller, Christian; Schmitt, Edgar

    2002-01-01

    Mast cells have long been recognized as potent producers of a large panel of biologically highly active mediators such as biogenic amines, arachidonic acid metabolites, cytokines and chemokines, but most of their biological functions have been elusive and speculative. By taking advantage of mast cell-deficient mice, the role of mast cells in a variety of experimental settings can now be studied in detail and such approaches have dramatically altered and enlarged our knowledge about mast cell biology and function. Herein we will focus on the role of mast cells in inflammatory reactions of diverse origin, such as delayed type hypersensitivity, atopy, immune complex-mediated inflammation and innate immune responses. From the current standpoint, there is no doubt that the most outstanding and beneficial feature of mast cells is their recently discovered ability to induce a life-saving inflammatory response rapidly upon encountering microbes and microbial constituents. Nevertheless, the picture is also emerging that mast cells are deeply involved in the induction and maintenance of a variety of severe allergic and autoimmune diseases. However, a deeper understanding of their activation and immune-modulatory capacity might open a new window for the development of curative strategies.

  13. Mutations of the KIT (Mast/Stem cell growth factor receptor) proto-oncogene account for a continuous range of phenotypes in human piebaldism

    SciTech Connect

    Spritz, R.A.; Holmes, S.A. ); Ramesar, R.; Greenberg, J.; Beighton, P.; Curtis, D.

    1992-11-01

    Piebaldism is a rare autosomal dominant disorder of pigmentation, characterized by congenital patches of white skin and hair from which melanocytes are absent. The authors have previously shown that piebaldism can result from missense and frameshift mutations of the KIT proto-oncogene, which encodes the cellular receptor tyrosine kinase for the mast/stem cell growth factor. Here, the authors report two novel KIT mutations associated with human piebaldism. A proximal frameshift is associated with a mild piebald phenotype, and a splice-junction mutation is associated with a highly variable piebald phenotype. They discuss the apparent relationship between the predicted impact of specific KIT mutations on total KIT-dependent signal transduction and the severity of the resultant piebald phenotypes. 35 refs., 5 figs.

  14. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  15. SNAP23-Dependent Surface Translocation of Leukotriene B4 (LTB4) Receptor 1 Is Essential for NOX2-Mediated Exocytotic Degranulation in Human Mast Cells Induced by Trichomonas vaginalis-Secreted LTB4.

    PubMed

    Min, Arim; Lee, Young Ah; Kim, Kyeong Ah; El-Benna, Jamel; Shin, Myeong Heon

    2017-01-01

    Trichomonas vaginalis is a sexually transmitted parasite that causes vaginitis in women and itself secretes lipid mediator leukotriene B4 (LTB4). Mast cells are important effector cells of tissue inflammation during infection with parasites. Membrane-bridging SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes are critical for fusion during exocytosis. Although T. vaginalis-derived secretory products (TvSP) have been shown to induce exocytosis in mast cells, information regarding the signaling mechanisms between mast cell activation and TvSP is limited. In this study, we found that SNAP23-dependent surface trafficking of LTB4 receptor 1 (BLT1) is required for nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-mediated exocytotic degranulation of mast cells induced by TvSP. First, stimulation with TvSP induced exocytotic degranulation and reactive oxygen species (ROS) generation in HMC-1 cells. Next, TvSP-induced ROS generation and exocytosis were strongly inhibited by transfection of BLT1 small interfering RNA (siRNA). TvSP induced trafficking of BLT1 from the cytosol to the plasma membrane. We also found that knockdown of SNAP23 abrogated TvSP-induced ROS generation, exocytosis, and surface trafficking of BLT1 in HMC-1 cells. By coimmunoprecipitation, there was a physical interaction between BLT1 and SNAP23 in TvSP-stimulated HMC-1 cells. Taken together, our results suggest that SNAP23-dependent surface trafficking of BLT1 is essential for exocytosis in human mast cells induced by T. vaginalis-secreted LTB4 Our data collectively demonstrate a novel regulatory mechanism for SNAP23-dependent mast cell activation of T. vaginalis-secreted LTB4 involving surface trafficking of BLT1. These results can help to explain how the cross talk mechanism between parasite and host can govern deliberately tissue inflammatory responses.

  16. Thyroid hormone metabolism and the developing human lung.

    PubMed

    Hume, R; Richard, K; Kaptein, E; Stanley, E L; Visser, T J; Coughtrie, M W

    2001-05-01

    Thyroid hormones are involved in the regulation of fetal lung development, and maturation is accelerated in animal models by antepartum exposure to raised concentrations of the receptor-active thyroid hormone triiodothyronine and glucocorticoids. It is essential that the nature of the regulation of the spatial and temporal metabolism of iodothyronines in the human fetus and infant is known before effective therapies can be developed to modify human lung maturation. Thyroid hormone bioavailability to the human fetus is regulated in part by enzymatic deiodination and reversible sulfation of iodothyronines, with contributions from other factors such as fetomaternal and fetoamniotic hormone transfers, fetal thyroid gland production, and the activities of plasma membrane transporters mediating uptake of iodothyronines from plasma into tissues. Copyright 2001 S. Karger AG, Basel.

  17. Activated protooncogenes in human lung tumors from smokers.

    PubMed

    Reynolds, S H; Anna, C K; Brown, K C; Wiest, J S; Beattie, E J; Pero, R W; Iglehart, J D; Anderson, M W

    1991-02-15

    Fourteen primary human lung tumor DNAs from smokers were analyzed for transforming activity by two DNA transfection assays. Activated protooncogenes were detected in 3 of 11 tumor DNAs by the NIH 3T3 focus assay, whereas activated protooncogenes were detected in 11 of 13 tumor DNAs by the NIH 3T3 cotransfection-nude mouse tumorigenicity assay. K- or NRAS genes activated by point mutation at codons 12 or 61 were detected in a large cell carcinoma, a squamous cell carcinoma, and 5 adenocarcinomas. An HRAS oncogene activated by a different mechanism was detected in an epidermoid carcinoma. One adenocarcinoma was found to contain an activated RAF gene. Two unidentified transforming genes were detected in a squamous cell carcinoma DNA and two adenocarcinoma DNAs. Eight of 10 lung adenocarcinomas that had formed metastases at the time of surgery were found to contain RAS oncogenes. No significant increase in metastasis was observed in the lung adenocarcinomas that contained one or more 6-kilobase EcoRI alleles of the LMYC gene. Overall, 12 of 14 (86%) of the lung tumor DNAs from smokers were found to contain activated protooncogenes. RAS oncogenes appear to play a role in the development of metastases in lung adenocarcinomas.

  18. Human lung morphology models for particle deposition studies.

    PubMed

    Martonen, T B; Schroeter, J D; Hwang, D; Fleming, J S; Conway, J H

    2000-01-01

    Knowledge of human lung morphology is of paramount importance in calculating deposition patterns of inhaled particulate matter (PM) to be used in the definition of ambient air quality standards. Due to the inherently complex nature of the branching structure of the airway network, practical assumptions must be made for modeling purposes. The most commonly used mathematical models reported in the literature that describe PM deposition use Weibel's model A morphology. This assumes the airways of the lung to be a symmetric, dichotomously branching system. However, computer simulations of this model, when compared to scintigraphy images, have shown it to lack physiological realism (Martonen et al., 1994a). Therefore, a more physiologically realistic model of the lung is needed to improve the current PM dosimetry models. Herein, a morphological model is presented that is based on laboratory data from planar gamma camera and single-photon emission computed tomography (SPECT) images. Key elements of this model include: The parenchymal wall of the lung is defined in mathematical terms, the whole lung is divided into distinct left and right components, a set of branching angles is derived from experimental measurements, and the branching network is confined within the discrete left and right components (i.e., there is no overlapping of airways). In future work, this new, more physiologically realistic morphological model can be used to calculate PM deposition patterns for risk assessment protocols.

  19. Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue.

    PubMed

    Goldman, R; Enewold, L; Pellizzari, E; Beach, J B; Bowman, E D; Krishnan, S S; Shields, P G

    2001-09-01

    Tobacco smoke is a major source of human exposure to polycyclic aromatic hydrocarbons (PAHs). The concentration of PAHs in lung tissue would reflect an individual's dose, and its variation could perhaps reflect cancer risk. Eleven PAHs were measured in 70 lung tissue samples from cancer-free autopsy donors by gas chromatography-mass spectrometry. There were 37 smokers and 33 nonsmokers as estimated by serum cotinine concentration. The sum of PAH concentrations was higher in smokers (P = 0.01), and there was a dose-response relationship for greater smoking (P < 0.01). Smoking increased the concentration of five PAHs including benzo(a)pyrene, which increased approximately 2-fold. The risk for increasing carcinogenic PAHs (odds ratio, 8.20; 95% confidence interval, 2.39-28.09) was 3-fold compared with noncarcinogenic PAHs (odds ratio, 2.61; 95% confidence interval, 0.75-9.12). A higher concentration of PAHs was detected in the lung tissue of males, although the estimated smoking was similar in males and females. Race was not associated with PAH concentrations overall, but PAH concentrations appeared to be higher in African-American males than in any other group. Age was weakly correlated with an increase in fluoranthene and pyrene. The measurement of PAHs in human lung tissue can be used to estimate the actual dose to the target organ.

  20. Discrimination and quantification of autofluorescence spectra of human lung cells

    NASA Astrophysics Data System (ADS)

    Rahmani, Mahya; Khani, Mohammad Mehdi; Khazaei Koohpar, Zeinab; Molik, Paria

    2016-10-01

    To study laser-induced autofluorescence spectroscopy of the human lung cell line, we evaluated the native fluorescence properties of cancer QU-DB and normal MRC-5 human lung cells during continuous exposure to 405 nm laser light. Two emission bands centered at ~470 nm and ~560 nm were observed. These peaks are most likely attributable to mitochondrial fluorescent reduced nicotinamide adenine dinucleotide and riboflavin fluorophores, respectively. This article highlights lung cell autofluorescence characterization and signal discrimination by collective investigation of different spectral features. The absolute intensity, the spectral shape factor or redox ratio, the full width of half-maximum and the full width of quarter maximum was evaluated. Moreover, the intensity ratio, the area under the peak and the area ratio as a contrast factor for normal and cancerous cells were also calculated. Among all these features it seems that the contrast factor precisely and significantly discriminates the spectral differences of normal and cancerous lung cells. On the other hand, the relative quantum yield for both cell types were found by comparing the quantum yield of an unknown compound with known fluorescein sodium as a reference solution.

  1. Aerosol Deposition in the Human Lung in Reduced Gravity

    PubMed Central

    2014-01-01

    Abstract The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (∼1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (∼1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system. PMID:24870702

  2. Aerosol deposition in the human lung in reduced gravity.

    PubMed

    Darquenne, Chantal

    2014-06-01

    The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (~1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (~1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system.

  3. Human mast cell progenitors use alpha4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions.

    PubMed

    Boyce, Joshua A; Mellor, Elizabeth A; Perkins, Brandy; Lim, Yaw-Chyn; Luscinskas, Francis W

    2002-04-15

    Mast cells (MCs) are central to asthma and other allergic diseases, and for responses to infection and tissue injuries. MCs arise from committed progenitors (PrMCs) that migrate from the circulation to tissues by incompletely characterized mechanisms, and differentiate in situ in perivascular connective tissues of multiple organs. PrMCs derived in vitro from human cord blood were examined for adhesion molecule expression and their ability to adhere to human umbilical vein endothelial cells (HUVECs) under conditions that mimic physiologic shear flow. The PrMCs expressed alpha(4)beta(1), low levels of beta7, and the beta2-integrins alphaLbeta2 and alphaMbeta2. The PrMCs also expressed PSGL-1, but not L-selectin. At low (0.5 dynes/cm(2)-1.0 dynes/cm(2)) shear stress, PrMCs attached and rolled on recombinant E-selectin and P-selectin and VCAM-1. An anti-PSGL-1 monoclonal antibody (mAb) blocked essentially all adhesion to P-selectin but reduced adhesion to E-selectin by only 40%, suggesting PrMCs express other ligands for E-selectin. PrMCs adhered strongly to tumor necrosis factor-alpha (TNF-alpha)-activated HUVECs, whereas adhesion to interleukin 4 (IL-4)-activated HUVECs was lower. PrMC adhesion to IL-4-activated HUVECs was totally alpha4-integrin- and VCAM-1-dependent. Adhesion to TNF-alpha-activated HUVECs was blocked by 50% by mAbs against alpha4-integrin, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, or PSGL-1, whereas combinations of mAbs to alpha4-integrin plus PSGL-1, or VCAM-1 plus E-selectin, blocked adhesion by greater than 70%. Thus, PrMCs derived in vitro predominantly use alpha4-integrin, VCAM-1, PSGL-1, and other ligands that bind E-selectin for adhesion to cytokine-activated HUVEC monolayers. These observations may explain the abundance of MCs at sites of mucosal inflammation, where VCAM-1 and E-selectin are important inducible receptors.

  4. Comparative Pathobiology of Environmentally Induced Lung Cancers in Humans and Rodents

    PubMed Central

    Pandiri, Arun

    2014-01-01

    Lung cancer is the number one cause of cancer-related deaths in humans worldwide. Environmental factors play an important role in the epidemiology of these cancers. Rodents are the most common experimental model to study human lung cancers and are frequently used in bioassays to identify environmental exposure hazards associated with lung cancer. Lung tumors in rodents are common, particularly in certain strains of mice. Rodent lung tumors are predominantly bronchioloalveolar carcinomas and usually follow a progressive continuum of hyperplasia to adenoma to carcinoma. Human lung cancers are phenotypically more diverse and broadly constitute 2 types: small cell lung cancers or non-small cell lung cancers. Rodent lung tumors resulting from exposure to environmental agents are comparable to certain adenocarcinomas that are a subset of human non-small cell lung cancers. Human pulmonary carcinomas differ from rodent lung tumors by exhibiting greater morphologic heterogeneity (encompassing squamous cell, neuroendocrine, mucinous, sarcomatoid, and multiple cell combinations), higher metastatic rate, higher stromal response, aggressive clinical behavior, and lack of a clear continuum of proliferative lesions. In spite of these differences, rodent lung tumors recapitulate several fundamental aspects of human lung tumor biology at the morphologic and molecular level especially in lung cancers resulting from exposure to environmental carcinogens. PMID:25351923

  5. Olopatadine: a drug for allergic conjunctivitis targeting the mast cell.

    PubMed

    Leonardi, Andrea; Quintieri, Luigi

    2010-04-01

    Ocular allergic diseases are characterized by specific activation of conjunctival mast cells with subsequent release of preformed and newly formed mediators. Mast cells are thus the first therapeutic target of ocular anti-allergic treatments. In this review, a Medline literature search was conducted on conjunctival mast cells, their role in ocular allergy and mast cell stabilization by ocular anti-allergic compounds. Olopatadine hydrochloride, a mast cell stabilizer and histamine receptor antagonist, has been shown to inhibit mast cell activation in an in vitro model of human mast cell culture, reducing histamine and TNF-alpha release and upregulating proinflammatory mediators in conjunctival epithelial cells. In the in vivo conjunctival allergen challenge (CAC) model in allergic subjects, combined with objective evaluations of tear mediators and cytology, olopatadine reduced histamine tear levels and all aspects of allergic inflammation, confirming the positive clinical effects observed in active allergic patients. Mast cells play a central role in the pathogenesis of ocular allergy. The CAC model is ideal for assessing the mast cell stabilizing effects of anti-allergic compounds. This review of clinical studies demonstrates the superiority of olopatadine compared with other topical allergic drugs.

  6. Effects of mucoid and non-mucoid Pseudomonas aeruginosa isolates from cystic fibrosis patients on inflammatory mediator release from human polymorphonuclear granulocytes and rat mast cells.

    PubMed Central

    Friedl, P; König, B; König, W

    1992-01-01

    Mucoid Pseudomonas aeruginosa causing chronic bronchopulmonary infection in cystic fibrosis (CF) patients may interfere with host defence mechanisms. We investigated 13 P. aeruginosa strains isolated from sputa of CF patients with regard to the induction or modulation of inflammatory mediator release from human neutrophils (PMN) and rat mast cells. The effects of mucoid as compared to non-mucoid bacteria were studied using a mucoid strain and its non-mucoid revertant. The release of leukotrienes (LT) and histamine in response to the majority of the CF strains was insignificant. However, preincubation of PMN with P. aeruginosa caused a dose-dependent decrease (50-95%) of LTB4 and LTC4 generation and LTB4 metabolism induced by the Ca(2+)-ionophore A23187 or opsonized zymosan (ZX) (P less than 0.001). The mucoid strains caused a three- to 10-fold higher impairment of LTB4 release (P less than 0.05) and a concomitant down-regulation of LTB4 receptors on neutrophils. Inhibitory effects were also obtained for mucoid and non-mucoid bacteria when the phorbol-ester or the Ca(2+)-ionophore induced luminol enhanced chemiluminescence response (P less than 0.001) or the histamine release from rat peritoneal mast cells (P less than 0.01) was studied. The bacteria-cell contact with non-mucoid strains was associated with an increased Ca2+ influx into PMN, whereas mucoid bacteria had no effect. In addition, a protein kinase C-dependent decrease of the C3bi receptor was suppressed by the mucoid--and less effectively--by the non-mucoid strain. The results suggest that the impairment of the phagocytic and inflammatory system may contribute to the pathogenesis and persistence of mucoid P. aeruginosa infection in CF. PMID:1321094

  7. The pathology of lithium induced nephropathy: a case report and review, with emphasis on the demonstration of mast cells.

    PubMed

    B N, Kumarguru; M, Natarajan; Nagarajappa, A H

    2013-02-01

    Lithium is a psychotropic agent which is widely employed in the psychiatric practice throughout the world. The therapeutic index of lithium is low and an acute intoxication may appear, which may lead to death or a permanent disability. A frequent side effect of lithium is renal toxicity. The collecting tubules have been identified as the site of action of lithium, due to the down regulation of Acquaporin-2. The mast cells have been associated with a wide range of human renal diseases. They have been documented to be associated with interstitial fibrosis and an impaired renal function. We are reporting a case of a 42 year old male who was admitted with a history of an altered sensorium of short duration. He had bipolar disorder and was on lithium. Investigations revealed a severely compromised renal function. The patient's condition worsened and he expired. A necropsy was performed. The kidneys and the lungs were subjected to a histopathological examination. The kidneys showed a significant Chronic Tubulointerstitial Nephropathy [CTIN] and a considerable glomerular pathology. Toludine blue [1%] staining demonstrated mast cells in the interstitium and the connective tissue of the renal pelvis. This appears to be the first time that mast cells were demonstrated in a case of lithium induced nephropathy in humans. It may be hypothesized that mast cells may possibly play a role in lithium induced nephropathy as a concurrent mechanism.

  8. Human Lung Small Airway-on-a-Chip Protocol.

    PubMed

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  9. C-reactive protein modulates human lung fibroblast migration.

    PubMed

    Kikuchi, Kazuhiko; Kohyama, Tadashi; Yamauchi, Yasuhiro; Kato, Jun; Takami, Kazutaka; Okazaki, Hitoshi; Desaki, Masashi; Nagase, Takahide; Rennard, Stephen I; Takizawa, Hajime

    2009-02-01

    C-reactive protein (CRP) has been classically used as a marker of inflammation. The aim of this study was to investigate the effect of CRP on migration of human fetal lung fibroblasts (HFL-1) to human plasma fibronectin (HFn). Using the blindwell chamber technique, CRP inhibited HFL-1 migration in a dose-dependent fashion (at 1 microg/mL, inhibition: 32.5% +/- 7.1%; P < .05). Western blot analysis showed that CRP inhibited the p38 mitogen-activated protein kinase (MAPK) activity in the presence of HFn. Moreover, the MAPK inhibitors SB202190 (25 microM) and SB203580 (25 microM) inhibited HFn-induced cell migration, suggesting an important role of p38 MAPK in HFn-induced migration. Taken together, these results suggest that the inhibitory effect of CRP is mediated by blocking MAPK. In summary, this study demonstrates that CRP directly modulates human lung fibroblasts migration. Thus, CRP may contribute to regulation of wound healing and may be endogenous antifibrotic factor acting on lung fibrosis.

  10. Human lung small-cell carcinoma contains bombesin.

    PubMed Central

    Erisman, M D; Linnoila, R I; Hernandez, O; DiAugustine, R P; Lazarus, L H

    1982-01-01

    The presence of immunoreactive bombesin in a human lung small-cell carcinoma grown in nude mice was established by several criteria: (i) Radioimmunoassay of tissue extracts for bombesin revealed approximately 6.5 pmol/g of tissue; (ii) bombesin was found in 12-14% of the tumor cells by immunohistochemical localization; (iii) gel filtration of small-cell carcinoma extract on Sephadex G-75 and Bio-Gel P-4 gave only a single peak of immunoreactivity, which occurred at the elution volume of bombesin; and (iv) reverse-phase HPLC of acid-solubilized extracts separated the immunoreactive material into three discrete peaks, one of which eluted with a retention time identical to that of synthetic bombesin. The presence of bombesin may represent the ectopic expression of this peptide in small-cell carcinoma, because immunoreactive bombesin was found in human fetal and neonatal lung but apparently not in adult lung tissue [Wharton, J., Polak, J. M., Bloom, S. R., Ghatei, M. A., Solcia, E., Brown, M. R. & Pearse, A. G. E. (1978) Nature (London) 273, 769-770]. The immunoreactive bombesin previously found in mammalian tissues is considerably larger than amphibian bombesin; these data substantiate the presence of a mammalian form of bombesin in a human tumor that may have a structure similar to that of the amphibian peptide. Images PMID:6285381

  11. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer.

    PubMed

    Delgado, Oliver; Batten, Kimberly G; Richardson, James A; Xie, Xian-Jin; Gazdar, Adi F; Kaisani, Aadil A; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E; Story, Michael D; Wistuba, Ignacio I; Minna, John D; Shay, Jerry W

    2014-03-15

    Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment, including the modification of inflammatory responses from antitumorigenic to protumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. K-ras(LA1) mice were irradiated with various doses and dose regimens and then monitored until death. Microarray analyses were performed using Illumina BeadChips on whole lung tissue 70 days after irradiation with a fractionated or acute dose of radiation and compared with age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Radiation exposure accelerates lung cancer progression in the K-ras(LA1) lung cancer mouse model with dose fractionation being more permissive for cancer progression. A nonrandom inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by affecting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. ©2014 AACR.

  12. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  13. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  14. Expression of Formyl-peptide Receptors in Human Lung Carcinoma.

    PubMed

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; Lucariello, Angela; De Luca, Antonio; De Rosa, Nicolina; Mazzarella, Gennaro; Bianco, Andrea; Ammendola, Rosario

    2015-05-01

    Formyl-peptide receptors (FPRs) are expressed in several tissues and cell types. The identification of markers involved in cell growth may further allow for molecular profiling of lung cancer. We investigated the possible role of FPRs as molecular markers in several types of lung carcinomas which is the main cause of cancer death worldwide. Tumor tissue samples were collected from six patients affected by lung cancer. Biopsies were analyzed for expression of FPR isoforms both in tumoral and peritumoral tissue by real-time polymerase chain reaction (PCR), western blot and immunofluorescence. Real-time PCR, western blot and immunofluorescence analyses showed that FPR expression is lower in types of human lung cancer tissues when compared to the surrounding peritumoral tissues. The study of the mechanistic basis for the control of FPR expression in normal peritumoral versus tumoral tissues could provide the basis for new diagnostic and therapeutic interventions. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Proteogenomic Analysis of Human Chromosome 9-Encoded Genes from Human Samples and Lung Cancer Tissues

    PubMed Central

    Ahn, Jung-Mo; Kim, Min-Sik; Kim, Yong-In; Jeong, Seul-Ki; Lee, Hyoung-Joo; Lee, Sun Hee; Paik, Young-Ki; Pandey, Akhilesh; Cho, Je-Yoel

    2014-01-01

    The Chromosome-centric Human Proteome Project (C-HPP) was recently initiated as an international collaborative effort. Our team adopted chromosome 9 (Chr 9) and performed a bioinformatics and proteogenomic analysis to catalog Chr 9-encoded proteins from normal tissues, lung cancer cell lines and lung cancer tissues. Approximately 74.7% of the Chr 9 genes of the human genome were identified, which included approximately 28% of missing proteins (46 of 162) on Chr 9 compared with the list of missing proteins from the neXtProt master table (2013-09). In addition, we performed a comparative proteomics analysis between normal lung and lung cancer tissues. Based on the data analysis, 15 proteins from Chr 9 were detected only in lung cancer tissues. Finally, we conducted a proteogenomic analysis to discover Chr 9-residing single nucleotide polymorphisms (SNP) and mutations described in the COSMIC cancer mutation database. We identified 21 SNPs and 4 mutations containing peptides on Chr 9 from normal human cells/tissues and lung cancer cell lines, respectively. In summary, this study provides valuable information of the human proteome for the scientific community as part of C-HPP. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD. PMID:24274035

  16. 45. VIEW OF UMBILICAL MAST TRENCH FROM BASE OF MAST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. VIEW OF UMBILICAL MAST TRENCH FROM BASE OF MAST, FROM SOUTH. ACTUATORS FOR MAST TRENCH DOORS VISIBLE CONNECTING DOORS AND WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Sterols of Pneumocystis carinii hominis Organisms Isolated from Human Lungs

    PubMed Central

    Kaneshiro, Edna S.; Amit, Zunika; Chandra, Jyotsna; Baughman, Robert P.; Contini, Carlo; Lundgren, Bettina

    1999-01-01

    The opportunistic pathogen Pneumocystis carinii causes pneumonia (P. carinii pneumonia, or PCP) in immunocompromised individuals such as AIDS patients. Rat-derived P. carinii carinii organisms have distinct sterols which are not synthesized by mammals and not found in other microbes infecting mammalian lungs. The dominant sterol present in the organism is cholesterol (which is believed to be scavenged from the host), but other sterols in P. carinii carinii have an alkyl group at C-24 of the sterol side chain (C28 and C29 24-alkylsterols) and a double bond at C-7 of the nucleus. Recently, pneumocysterol (C32), which is essentially lanosterol with a C-24 ethylidene group, was detected in lipids extracted from a formalin-fixed human P. carinii-infected lung, and its structures were elucidated by gas-liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry in conjunction with analyses of chemically synthesized authentic standards. The sterol composition of isolated P. carinii hominis organisms has yet to be reported. If P. carinii from animal models is to be used for identifying potential drug targets and for developing chemotherapeutic approaches to clear human infections, it is important to determine whether the 24-alkylsterols of organisms found in rats are also present in organisms in humans. In the present study, sterol analyses of P. carinii hominis organisms isolated from cryopreserved human P. carinii-infected lungs and from bronchoalveolar lavage fluid were performed. Several of the same distinct sterols (e.g., fungisterol and methylcholest-7-ene-3β-ol) previously identified in P. carinii carinii were also present in organisms isolated from human specimens. Pneumocysterol was detected in only some of the samples. PMID:10548595

  18. Autoradiographic localization of beta-adrenoceptors in asthmatic human lung

    SciTech Connect

    Spina, D.; Rigby, P.J.; Paterson, J.W.; Goldie, R.G. )

    1989-11-01

    The autoradiographic distribution and density of beta-adrenoceptors in human non-diseased and asthmatic bronchi were investigated using (125I)iodocyanopindolol (I-CYP). Analysis of the effects of the beta-adrenoceptor antagonists on I-CYP binding demonstrated that betaxolol (20 nM, beta 1-selective) had no significant effect on specific grain density in either nonasthmatic or asthmatic human bronchus, whereas ICI-118551 (20 nM, beta 2-selective) inhibited I-CYP binding by 85 +/- 9% and 89 +/- 3%, respectively. Thus, homogeneous populations of beta 2-adrenoceptors existed in bronchi from both sources. Large populations of beta-adrenoceptors were localized to the bronchial epithelium, submucosal glands, and airway smooth muscle. Asthmatic bronchial tissue featured epithelial damage with exfoliated cells associated with luminal mucus plugs. A thickened basement membrane and airway smooth muscle hyperplasia were also evident. High levels of specific I-CYP binding were also detected over asthmatic bronchial smooth muscle, as assessed by autoradiography and quantitation of specific grain densities. Isoproterenol and fenoterol were 10- and 13-fold less potent, respectively, in bronchi from asthmatic lung than in those from nonasthmatic lung. However, this attenuated responsiveness to beta-adrenoceptor agonists was not caused by reduced beta-adrenoceptor density in asthmatic airways. A defect may exist in the coupling between beta-adrenoceptors and postreceptor mechanisms in severely asthmatic lung.

  19. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  20. A numerical study of gas transport in human lung models

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Long; Hoffman, Eric A.

    2005-04-01

    Stable Xenon (Xe) gas has been used as an imaging agent for decades in its radioactive form, is chemically inert, and has been used as a ventilation tracer in its non radioactive form during computerized tomography (CT) imaging. Magnetic resonance imaging (MRI) using hyperpolarized Helium (He) gas and Xe has also emerged as a powerful tool to study regional lung structure and function. However, the present state of knowledge regarding intra-bronchial Xe and He transport properties is incomplete. As the use of these gases rapidly advances, it has become critically important to understand the nature of their transport properties and to, in the process, better understand the role of gas density in general in determining regional distribution of respiratory gases. In this paper, we applied the custom developed characteristic-Galerkin finite element method, which solves the three-dimensional (3D) incompressible variable-density Navier-Stokes equations, to study the transport of Xe and He in the CT-based human lung geometries, especially emulating the washin and washout processes. The realistic lung geometries are segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-064368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The simulation results show that the gas transport process depends on the gas density and the body posture. The implications of these results on the difference between washin and washout time constants are discussed.

  1. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

    PubMed Central

    Kim, Il-Jin; Quigley, David; To, Minh D.; Pham, Patrick; Lin, Kevin; Jo, Brian; Jen, Kuang-Yu; Raz, Dan; Kim, Jae; Mao, Jian-Hua; Jablons, David; Balmain, Allan

    2015-01-01

    Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes. PMID:23591868

  2. Sex-specific Differences in Hyperoxic Lung Injury in Mice: Implications for Acute and Chronic Lung Disease in Humans

    PubMed Central

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2014-01-01

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO2>0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF 2α) (LC-MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. CytochromeP450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F>M) and VEGF (M>F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. PMID:23792423

  3. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration

    PubMed Central

    Wagner, Darcy E.; Bonenfant, Nicholas R.; Sokocevic, Dino; DeSarno, Michael; Borg, Zachary; Parsons, Charles; Brooks, Elice M.; Platz, Joseph; Khalpey, Zain; Hoganson, David M.; Deng, Bin; Lam, Ying Wai; Oldinski, Rachael A.; Ashikaga, Takamaru; Weiss, Daniel J.

    2014-01-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de- and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼1–3cm3) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. PMID:24411675

  4. 3-D segmentation of human sternum in lung MDCT images.

    PubMed

    Pazokifard, Banafsheh; Sowmya, Arcot

    2013-01-01

    A fully automatic novel algorithm is presented for accurate 3-D segmentation of the human sternum in lung multi detector computed tomography (MDCT) images. The segmentation result is refined by employing active contours to remove calcified costal cartilage that is attached to the sternum. For each dataset, costal notches (sternocostal joints) are localized in 3-D by using a sternum mask and positions of the costal notches on it as reference. The proposed algorithm for sternum segmentation was tested on 16 complete lung MDCT datasets and comparison of the segmentation results to the reference delineation provided by a radiologist, shows high sensitivity (92.49%) and specificity (99.51%) and small mean distance (dmean=1.07 mm). Total average of the Euclidean distance error for costal notches positioning in 3-D is 4.2 mm.

  5. [Air distribution in the bronchial tree of human lungs].

    PubMed

    Lai, Wei; Tan, Xiaoping; Pei, Juemin

    2004-04-01

    A three-element model of lumped parameter based on the statistic data of Weible's symmetric model and on the reference anatomic figures of the bronchial tree of the lungs has been proposed using the fluid network theory. It was assumed that the upper five or seven generations of the twenty-four generations of the respiratory airway are asymmetric, while the rest are symmetric. GEAR method was used to solve the ordinary differential equations. The pressure and flow rate distributions in different positions of the lungs during normal respiration and partial bronchial obstruction were compared, respectively. This model has great significance in finding out the air distribution in the human bronchial tree under various physiological and pathological conditions.

  6. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection.

    PubMed

    Saleh, Rosine; Wedeh, Ghaith; Herrmann, Harald; Bibi, Siham; Cerny-Reiterer, Sabine; Sadovnik, Irina; Blatt, Katharina; Hadzijusufovic, Emir; Jeanningros, Sylvie; Blanc, Catherine; Legarff-Tavernier, Magali; Chapiro, Elise; Nguyen-Khac, Florence; Subra, Frédéric; Bonnemye, Patrick; Dubreuil, Patrice; Desplat, Vanessa; Merle-Béral, Hélène; Willmann, Michael; Rülicke, Thomas; Valent, Peter; Arock, Michel

    2014-07-03

    In systemic mastocytosis (SM), clinical problems arise from factor-independent proliferation of mast cells (MCs) and the increased release of mediators by MCs, but no human cell line model for studying MC activation in the context of SM is available. We have created a stable stem cell factor (SCF) -dependent human MC line, ROSA(KIT WT), expressing a fully functional immunoglobulin E (IgE) receptor. Transfection with KIT D816V converted ROSA(KIT WT) cells into an SCF-independent clone, ROSA(KIT D816V), which produced a mastocytosis-like disease in NSG mice. Although several signaling pathways were activated, ROSA(KIT D816V) did not exhibit an increased, but did exhibit a decreased responsiveness to IgE-dependent stimuli. Moreover, NSG mice bearing ROSA(KIT D816V)-derived tumors did not show mediator-related symptoms, and KIT D816V-positive MCs obtained from patients with SM did not show increased IgE-dependent histamine release or CD63 upregulation. Our data show that KIT D816V is a disease-propagating oncoprotein, but it does not activate MCs to release proinflammatory mediators, which may explain why mediator-related symptoms in SM occur preferentially in the context of a coexisting allergy. ROSA(KIT D816V) may provide a valuable tool for studying the pathogenesis of mastocytosis and should facilitate the development of novel drugs for treating SM patients.

  7. In vivo quantification of human lung dose response relationship

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter; Wang, Peng; Liu, Haisong; Fuller, David; Schell, Michael C.; Okunieff, Paul

    2007-03-01

    Purpose: To implement a new non-invasive in-vivo assay to compute the dose-response relationship following radiation-induced injury to normal lung tissue, using computed tomography (CT) scans of the chest. Methods and Materials: Follow-up volumetric CT scans were acquired in patients with metastatic tumors to the lung treated using stereotactic radiation therapy. The images reveal a focal region of fibrosis corresponding to the high-dose region and no observable long-term damage in distant sites. For each pixel in the follow-up image the treatment dose and the change in apparent tissue density was compiled. For each of 12 pre-selected dose levels the average pixel tissue density change was computed and fit to a two-parameter dose-response model. The sensitivity of the resulting fits to registration error was also quantified. Results: Complete in vivo dose-response relationships in human normal lung tissue were computed. Increasing radiation sensitivity was found with larger treatment volume. Radiation sensitivity increased also over time up to 12 months, but decreased at later time points. The time-course of dose response correlated with the time-course of levels of circulating IL-1α, TGFβ and MCP-1. The method was found to be robust to registration errors up to 3 mm. Conclusions: This approach for the first time enables the quantification of the full range dose response relationship in human subjects. The method may be used to assess quantitatively the efficacy of various agents thought to illicit radiation protection to the lung.

  8. Mast Cell and Autoimmune Diseases

    PubMed Central

    Xu, Yunzhi; Chen, Guangjie

    2015-01-01

    Mast cells are important in innate immune system. They have been appreciated as potent contributors to allergic reaction. However, increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases. PMID:25944979

  9. Are Basophils and Mast Cells Masters in HIV Infection?

    PubMed

    Marone, Gianni; Varricchi, Gilda; Loffredo, Stefania; Galdiero, Maria Rosaria; Rivellese, Felice; de Paulis, Amato

    2016-01-01

    The World Health Organization AIDS epidemic update estimates that more than 37 million people are living with HIV infection. Despite the unprecedented success of antiretroviral treatments, significant challenges remain in the fight against HIV. In particular, how uninfected cells capture HIV and transmit virions to target cells remains an unanswered question. Tissue mast cells and peripheral blood basophils can be exposed to virions or HIV products during infection. Several HIV proteins (i.e., envelope glycoproteins gp120 and gp41, Tat, and Nef) can interact with distinct surface receptors expressed by human basophils and mast cells and modulate their functional responses at different levels. Additionally, several groups have provided evidence that human mast cells can be infected in vitro, as well as in vivo, by certain strains of HIV. Recently, it has been demonstrated that basophils purified from healthy donors and intestinal mast cells can efficiently capture HIV on their cell surface and, cocultured with CD4+ T cells, they can transfer the virus to the cocultured cells leading to infection. Direct contact between human basophils or intestinal mast cells and CD4+ T cells can mediate viral trans-infection of T cells through the formation of viral synapses. Thus, basophils and mast cells can provide a cellular basis for capturing and then spreading viruses throughout the body. Collectively, these findings suggest that human basophils and mast cells play a complex and possibly distinct role in HIV infection, warranting further investigations.

  10. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  11. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    PubMed Central

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-01-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases. PMID:28262689

  12. The role of mast cells in allergic inflammation.

    PubMed

    Amin, Kawa

    2012-01-01

    The histochemical characteristics of human basophils and tissue mast cells were described over a century ago by Paul Ehrlich. When mast cells are activated by an allergen that binds to serum IgE attached to their FcɛRI receptors, they release cytokines, eicosanoids and their secretory granules. Mast cells are now thought to exert critical proinflammatory functions, as well as potential immunoregulatory roles, in various immune disorders through the release of mediators such as histamine, leukotrienes, cytokines chemokines, and neutral proteases (chymase and tryptase). The aim of this review is to describe the role of mast cells in allergic inflammation. Mast cells interact directly with bacteria and appear to play a vital role in host defense against pathogens. Drugs, such as glucocorticoids, cyclosporine and cromolyn have been shown to have inhibitory effects on mast cell degranulation and mediator release. This review shows that mast cells play an active role in such diverse diseases as asthma, rhinitis, middle ear infection, and pulmonary fibrosis. In conclusion, mast cells may not only contribute to the chronic airway inflammatory response, remodeling and symptomatology, but they may also have a central role in the initiation of the allergic immune response, that is providing signals inducing IgE synthesis by B-lymphocytes and inducing Th2 lymphocyte differentiation.

  13. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    NASA Astrophysics Data System (ADS)

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-03-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

  14. Distinguishing Mast Cell Progenitors from Mature Mast Cells in Mice.

    PubMed

    Dahlin, Joakim S; Ding, Zhoujie; Hallgren, Jenny

    2015-07-15

    Mast cells originate from the bone marrow and develop into c-kit(+) FcɛRI(+) cells. Both mast cell progenitors (MCp) and mature mast cells express these cell surface markers, and ways validated to distinguish between the two maturation forms with flow cytometry have been lacking. Here, we show that primary peritoneal MCp from naïve mice expressed high levels of integrin β7 and had a low side scatter (SSC) light profile; whereas mature mast cells expressed lower levels of integrin β7 and had a high SSC light profile. The maturation statuses of the cells were confirmed using three main strategies: (1) MCp, but not mature mast cells, were shown to be depleted by sublethal whole-body γ-irradiation. (2) The MCp were small and immature in terms of granule formation, whereas the mature mast cells were larger and had fully developed metachromatic granules. (3) The MCp had fewer transcripts of mast cell-specific proteases and the enzyme responsible for sulfation of heparin than mature mast cells. Moreover, isolated peritoneal MCp gave rise to mast cells when cultured in vitro. To summarize, we have defined MCp and mature mast cells in naïve mice by flow cytometry. Using this strategy, mast cell maturation can be studied in vivo.

  15. Decellularization of human and porcine lung tissues for pulmonary tissue engineering.

    PubMed

    O'Neill, John D; Anfang, Rachel; Anandappa, Annabelle; Costa, Joseph; Javidfar, Jeffrey; Wobma, Holly M; Singh, Gopal; Freytes, Donald O; Bacchetta, Matthew D; Sonett, Joshua R; Vunjak-Novakovic, Gordana

    2013-09-01

    The only definitive treatment for end-stage organ failure is orthotopic transplantation. Lung extracellular matrix (LECM) holds great potential as a scaffold for lung tissue engineering because it retains the complex architecture, biomechanics, and topologic specificity of the lung. Decellularization of human lungs rejected from transplantation could provide "ideal" biologic scaffolds for lung tissue engineering, but the availability of such lungs remains limited. The present study was designed to determine whether porcine lung could serve as a suitable substitute for human lung to study tissue engineering therapies. Human and porcine lungs were procured, sliced into sheets, and decellularized by three different methods. Compositional, ultrastructural, and biomechanical changes to the LECM were characterized. The suitability of LECM for cellular repopulation was evaluated by assessing the viability, growth, and metabolic activity of human lung fibroblasts, human small airway epithelial cells, and human adipose-derived mesenchymal stem cells over a period of 7 days. Decellularization with 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) showed the best maintenance of both human and porcine LECM, with similar retention of LECM proteins except for elastin. Human and porcine LECM supported the cultivation of pulmonary cells in a similar way, except that the human LECM was stiffer and resulted in higher metabolic activity of the cells than porcine LECM. Porcine lungs can be decellularized with CHAPS to produce LECM scaffolds with properties resembling those of human lungs, for pulmonary tissue engineering. We propose that porcine LECM can be an excellent screening platform for the envisioned human tissue engineering applications of decellularized lungs. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  17. GENETIC ASSOCIATION BETWEEN HUMAN CHITINASES AND LUNG FUNCTION IN COPD

    PubMed Central

    Aminuddin, F.; Akhabir, L.; Stefanowicz, D.; Paré, P.D.; Connett, J.E.; Anthonisen, N.R.; Fahy, J.V.; Seibold, M.A.; Burchard, E.G.; Eng, C.; Gulsvik, A.; Bakke, P.; Cho, M. H.; Litonjua, A.; Lomas, D.A.; Anderson, W. H.; Beaty, T.H.; Crapo, J.D.; Silverman, E.K.; Sandford, A.J.

    2013-01-01

    Two primary chitinases have been identified in humans – acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host’s immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to Chronic Obstructive Pulmonary Disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the Caucasian LHS population, the baseline forced expiratory volume in one second (FEV1) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV1 and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV1. Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups. PMID:22200767

  18. Human papillomavirus DNA in squamous cell carcinoma of the lung.

    PubMed Central

    Hirayasu, T; Iwamasa, T; Kamada, Y; Koyanagi, Y; Usuda, H; Genka, K

    1996-01-01

    AIM: To compare the incidence of squamous cell carcinoma (SCC) of the lung in Okinawa with that in Niigata on the mainland. METHODS: All patients presenting with SCC of the lung in Okinawa and Niigata in 1993 were included in the study. Diagnoses were confirmed by conventional histological examination of paraffin wax sections. Human papillomavirus (HPV) was detected by non-isotopic in situ hybridisation (NISH) and polymerase chain reaction (PCR) amplification with primers specific for the E6 and E7 regions of the HPV genome. PCR products were analysed by Southern and dot blotting. RESULTS: The incidence of well differentiated SCC of the lung was high in patients from Okinawa compared with moderately and poorly differentiated types, and compared with the incidence of SCC in patients from Niigata. This is despite similar patterns of age, sex (predominatly male), and smoking habit. More patients from Okinawa, however, were positive for HPV DNA by PCR (79%) and NISH (53%). Many patients haboured HPV types 6, 16, and 18. Only 30% of patients from Niigata were positive for HPV DNA by PCR and 20% by NISH. These patients all harboured one HPV type only. CONCLUSION: Surprisingly large numbers of patients from Okinawa were positive for HPV DNA. The detection of HPV DNA was strongly associated with well differentiated SCC. This was particularly true for HPV types 6 and 16. There was no correlation between either smoking and detection of HPV DNA, or smoking and histological differentiation. Images PMID:8943746

  19. Implications for Human Leukocyte Antigen Antibodies After Lung Transplantation

    PubMed Central

    Wang, Ziwei; Chen, Dong-Feng; Reinsmoen, Nancy L.; Finlen-Copeland, C. Ashley; Davis, W. Austin; Zaas, David W.; Palmer, Scott M.

    2013-01-01

    Background: Long-term survival after lung transplant is limited by the development of chronic and progressive airflow obstruction, a condition known as bronchiolitis obliterans syndrome (BOS). While prior studies strongly implicate cellular rejection as a strong risk factor for BOS, less is known about the clinical significance of human leukocyte antigen (HLA) antibodies and donor HLA-specific antibodies in long-term outcomes. Methods: A single-center cohort of 441 lung transplant recipients, spanning a 10-year period, was prospectively screened for HLA antibodies after transplant using flow cytometry-based methods. The prevalence of and predictors for HLA antibodies were determined. The impact of HLA antibodies on survival after transplant and the development of BOS were determined using Cox models. Results: Of the 441 recipients, 139 (32%) had detectable antibodies to HLA. Of these 139, 54 (39%) developed antibodies specific to donor HLA. The detection of posttransplant HLA antibodies was associated with BOS (HR, 1.54; P = .04) and death (HR, 1.53; P = .02) in multivariable models. The detection of donor-specific HLA antibodies was associated with death (HR, 2.42; P < .0001). The detection of posttransplant HLA antibodies was associated with pretransplant HLA-antibody detection, platelet transfusions, and the development of BOS and cytomegalovirus pneumonitis. Conclusions: Approximately one-third of lung transplant recipients have detectable HLA antibodies, which are associated with a worse prognosis regarding graft function and patient survival. PMID:23328795

  20. [The lungs in human immunodeficiency virus type 1 infection].

    PubMed

    Barić, D; Vrkić, L

    1997-01-01

    This report describes a case of two patients who were admitted to the Zadar hospital and according to clinical symptoms directed to the Department of Lung Diseases. Both patients were temporarily employed abroad. It has been established that they were infected with human immunodeficiency virus type 1 (HIV-1). One of the patients has been moved to the Department of Infectious Diseases and later to Zagreb, while the other has returned abroad. On admission to the hospital of the Zadar Medical Center none of them answered the question about being engaged in risky behavior. In 1990 there were 699 registered patients hospitalized and 745 registered in the protocol of the Outpatient Clinic of the Department of Lung Diseases. 0.069% of patients were HIV-1-infected. In 1991, there were 520 hospitalized and 453 outpatients, whereas 0.102% were HIV-1-infected and registered subjects. It must be pointed out that these are only numbers of registration and not subjects, because there were patients who were examined or hospitalized twice or more times during the corresponding calendar year. The aim of this study was to point to a new differentially-diagnostic problem present especially at the Department of Lung Diseases after AIDS has become part of our reality. There still remains a problem in regard to detection of HIV-1 seropositivity in patients at departments with opportunistic infections such as tuberculosis.

  1. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.

  2. Products from mast cells influence T lymphocyte proliferation and cytokine production--relevant to allergic asthma?

    PubMed

    de Pater-Huijsen, F L; Pompen, M; Jansen, H M; Out, T A

    1997-06-01

    In IgE allergic diseases both mast cells and T lymphocytes play an important role. Whereas mast cels have been implicated in immediate allergic responses, T lymphocytes mediate subsequent late phase responses and chronic inflammation. Here we review possible links between the early mast cell activation and the later T lymphocyte stimulation. Products from mast cells were found to exert effects on T lymphocytes. Human Mast Cell line-1 (HMC-1) mast cells modulated proliferation and cytokine production of a human CD8+ T-cell clone in vitro. Activated mast cells seemed to drive this CD8+ T-cell clone towards a more pronounced T (helper) 1 type of response, simultaneously decreasing T-cell numbers. It is hypothesized that this might be a negative feed back mechanism operating in allergic subjects, by which the Th2-driven IgE production and eosinophilia are counteracted.

  3. Cytoprotective and Antioxidant Effects of Steen Solution on Human Lung Spheroids and Human Endothelial Cells.

    PubMed

    Pagano, F; Nocella, C; Sciarretta, S; Fianchini, L; Siciliano, C; Mangino, G; Ibrahim, M; De Falco, E; Carnevale, R; Chimenti, I; Frati, G

    2017-07-01

    Respiratory diseases represent a major healthcare burden worldwide. Lung transplantation (LTx) is the "gold standard" for end-stage patients, strongly limited by shortage of available/suitable donor lungs. Normothermic ex vivo lung perfusion (EVLP) has significantly increased the number of lungs suitable for transplantation. Steen solution is used for EVLP, but the mechanisms involved in its beneficial properties remain to be clarified. We investigated the effects of Steen solution in an in vitro protocol of cold starvation and normothermic recovery on human lung spheroids, named pneumospheres (PSs), containing epithelial/basal cells, and on endothelial human umbilical vein endothelial cells (HUVEC). Steen solution significantly preserved the viability of PSs, reduced reactive oxygen species (ROS) release by PSs and HUVECs, decreased NADPH-oxidase (NOX) activity in PSs, and reduced inflammatory cytokines expression levels in HUVECs. Steen solution was able to specifically reduce NADPH oxidase 2 (NOX2) isoform activation, particularly in PSs, as detected by soluble-NOX2 peptide and p47-phosphorylation. Interestingly, a specific NOX2 inhibitor could partly mimic the pro-survival effect of Steen on PSs. We provide the first evidence that Steen solution can preserve lung epithelial/progenitor cells viability partially through NOX2 downregulation, and exert antioxidant effects on parenchymal cells, with consequent ROS reduction. These results suggest that NOX2 inhibition might be an additional strategy to reduce cellular damage during LTx procedures. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    PubMed

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E(-16)). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  5. Radiographic Comparison of Human Lung Shape During Normal Gravity and Weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; Friedman, P. J.; West, J. B.

    1979-01-01

    Chest radiographs in five seated normal volunteers at 1 G and 0 G were made with a view toward comparing human lung shape during normal gravity and weightlessness. Lung shape was assessed by measuring lung heights and widths in upper, middle and lower lung regions. No significant differences were found between any of the 1-G and 0-G measurements, although there was a slight tendency for the lung to become shorter and wider at 0 G. The evidence that gravity causes regional differences in ventilation by direct action on the lung is consistent with the theoretical analysis of West and Matthews (1972).

  6. Interferon-γ enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus

    PubMed Central

    Swindle, Emily J; Brown, Jared M; Rådinger, Madeleine; DeLeo, Frank R; Metcalfe, Dean D

    2015-01-01

    Human mast cells (huMCs) are involved in both innate and adaptive immune responses where they release mediators including amines, reactive oxygen species (ROS), eicosanoids and cytokines. We have reported that interferon-γ (IFN-γ) enhances FcγR-dependent ROS production. The aim of this study was to extend these observations by investigating the effect of IFN-γ on the biological responses of huMCs to Staphylococcus aureus. We found that exposure of huMCs to S. aureus generated intracellular and extracellular ROS, which were enhanced in the presence of IFN-γ. IFN-γ also promoted bacteria killing, β-hexosaminidase release and eicosanoid production. Interferon-γ similarly increased expression of mRNAs encoding CCL1 to CCL4, granulocyte–macrophage colony-stimulating factor (GM-CSF), tumour necrosis factor-α and CXCL8 in S. aureus-stimulated huMCs. The ability of IFN-γ to increase CXCL8 and GM-CSF protein levels was confirmed by ELISA. Fibronectin or a β1 integrin blocking antibody completely abrogated IFN-γ-dependent S. aureus binding and reduced S. aureus-dependent CXCL8 secretion. These data demonstrate that IFN-γ primes huMCs for enhanced anti-bacterial and pro-inflammatory responses to S. aureus, partially mediated by β1 integrin. PMID:26288256

  7. Degradation of human anaphylatoxin C3a by rat peritoneal mast cells: a role for the secretory granule enzyme chymase and heparin proteoglycan

    SciTech Connect

    Gervasoni, J.E. Jr.; Conrad, D.H.; Hugli, T.E.; Schwartz, L.B.; Ruddy, S.

    1986-01-01

    Purified human C3a was iodinated (/sup 125/I-C3a) and used to study the interaction of labeled peptide with rat peritoneal mast cells (RMC). Cellular binding of /sup 125/I-C3a occurred within 30 sec, followed by a rapid dissociation from the cell. Once /sup 125/I-C3a was exposed to RMC, it lost the ability to rebind to a second batch of RMC. Analysis of the supernatants by trichloroacetic acid (TCA) precipitation and electrophoresis in sodium dodecyl sulfate polyacrylamide gels (SDS PAGE) revealed a decrease in the fraction of /sup 125/I precipitable by TCA and the appearance of /sup 125/-C3a cleavage fragments. Pretreatment of RMC with enzyme inhibitors specific for chymotrypsin, but not trypsin, abrogated the degradation of /sup 125/I-C3a. Treatment of RMC bearing /sup 125/I-C3a with bis (sulfosuccinimidyl) suberate (BS/sup 3/) covalently cross-linked the /sup 125/I-C3a to chymase, the predominant enzyme found in the secretory granules. Indirect immunofluorescence of RMC by using the IgG fraction of goat anti-rat chymase showed that chymase is present on the surface of unstimulated cells. Neither purified chymase nor heparin proteoglycan alone had any appreciable effect on /sup 125/I-C3a, but together they resulted in prompt degradation of the /sup 125/I-C3a.

  8. Tetraspanins in Mast Cells

    PubMed Central

    Köberle, Martin; Kaesler, Susanne; Kempf, Wolfgang; Wölbing, Florian; Biedermann, Tilo

    2012-01-01

    Mast cells (MC) are key mediators of the immune system, most prominently known for their role in eliciting harmful allergic reactions. Mast cell mediator release (e.g. by degranulation) is triggered by FcεRI recognition of antigen – IgE complexes. Until today no therapeutic targeting of this and other mast cell activation pathways is established. Among possible new candidates there are tetraspanins that have been described on MC already several years ago. Tetraspanins are transmembrane proteins acting as scaffolds, mediating local clustering of their interaction partners, and thus amplify their activities. More recently, tetraspanins were also found to exert intrinsic receptor functions. Tetraspanins have been found to be crucial components of fundamental biological processes like cell motility and adhesion. In immune cells, they not only boost the effectiveness of antigen presentation by clustering MHC molecules, they are also key players in all kinds of degranulation events and immune receptor clustering. This review focuses on the contribution of tetraspanins clustered with FcεRI or residing in granule membranes to classical MC functions but also undertakes an outlook on the possible contribution of tetraspanins to newly described mast cell functions and discusses possible targets for drug development. PMID:22783251

  9. Cancer-associated loss of TARSH gene expression in human primary lung cancer.

    PubMed

    Terauchi, Kunihiko; Shimada, Junichi; Uekawa, Natsuko; Yaoi, Takeshi; Maruyama, Mitsuo; Fushiki, Shinji

    2006-01-01

    We have previously identified mouse Tarsh as one of the cellular senescence-related genes and showed the loss of expression of TARSH mRNA in four human lung cancer cell lines. TARSH is a presumptive signal transduction molecule interacting with NESH, which is implicated to have some roles in lung cancer metastasis. The amplification of complete ORF-encoding TARSH cDNA was done with reverse transcription-PCR. Northern blotting was carried out using TARSH cDNA probes. To clarify the relationship between TARSH and lung cancer, we quantified TARSH mRNA expression in 15 human lung cancer cell lines and 32 primary non-small cell lung cancers. We first determined the complete ORF-encoding cDNA sequence which is expressed in the human lung. On the Northern hybridization analysis, TARSH was strongly expressed in the human lung. The expression of TARSH mRNA is remarkably downregulated in all the lung cancer cell lines examined. Furthermore, TARSH expression was significantly low in all of the tumor specimens when compared to the expression in corresponding non-neoplastic lung tissue specimens. The cancer-associated transcriptional inactivation of TARSH suggests that TARSH could be used as a biomarker for lung cancer development as well as a molecular adjunct for lung carcinogenesis in human.

  10. IMP3 Predicts Invasion and Prognosis in Human Lung Adenocarcinoma.

    PubMed

    Yan, Jinhai; Wei, Qingzhu; Jian, Wenjing; Qiu, Bo; Wen, Jing; Liu, Jianghuan; Fu, Bo; Zhou, Xinhua; Zhao, Tong

    2016-02-01

    Insulin-like growth factor II mRNA-binding protein 3 (IMP3) is an oncofetal protein associated with several aggressive and advanced cancers. Whether IMP3 can predict invasion, and prognosis in patients with human lung adenocarcinoma (LAC) remains unclear. Ninety-five LAC and 75 non-tumor lung tissue samples were included in a tissue microarray. IMP3 expression was assessed by immunohistochemical examination. Correlation between IMP3 expression levels, clinicopathological characteristics, and overall prognosis was evaluated. In a separate in vitro study, RNA interference method was applied for knockdown of IMP3 gene in human LAC cell lines. Invasive potential of LAC cells was then evaluated by transwell migration assay. IMP3 immunoreactivity was observed in 39 out of 95 (41.1 %) LAC patients, but not in non-tumor lung tissues. IMP3 expression levels were closely associated with histological grade (P = 0.037), TNM stage (P = 0.034), and lymph node metastasis (P = 0.011). Patients presenting with positive IMP3 expression (P = 0.000), an advanced TNM stage (P = 0.000), and lymph node metastasis (P = 0.001) had a worse overall survival, compared to those lacking these characteristics. Both IMP3 expression (hazard ratio [HR], 2.310; 95 % confidence interval [CI] 1.192-4.476; P = 0.013) and TNM stage (HR 2.338; 95 % CI 1.393-3.925; P = 0.001) were independent predictors of poor prognosis. The invasive potential of LAC cells was significantly inhibited by IMP3 knockdown. IMP3 appears to play an important role in tumor invasion in patients with LAC and may serve as a useful prognostic biomarker in these patients.

  11. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    PubMed

    Godin, Lindsay M; Sandri, Brian J; Wagner, Darcy E; Meyer, Carolyn M; Price, Andrew P; Akinnola, Ifeolu; Weiss, Daniel J; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  12. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  13. Metabolism kinetics of beclomethasone propionate esters in human lung homogenates.

    PubMed

    Foe, K; Cutler, D J; Brown, K F; Seale, J P

    2000-08-01

    The purposes of this study were to characterize the kinetics of beclomethasone dipropionate (BDP) and its 17-monopropionate ester (17-BMP) in human lung 1000g supernatant (HLu) at 37 degrees C, and to analyze the interindividual variability in the metabolism of BDP in HLu. The concentrations of BDP and its metabolites were determined by HPLC with UV detection at 242 nm. Kinetics of BDP and 17-BMP decomposition were characterized by least-squares fitting of rate equations. The active metabolite 17-BMP was rapidly formed following the incubation of BDP in HLu. Kinetics of BDP and 17-BMP in HLu were nonlinear owing to product inhibition and enzyme saturation. A model taking into account the product inhibition provides a kinetic basis for understanding the in vivo behavior of BDP and its metabolites in human lung. There was approximately a 3.5-fold difference in the initial half-life of BDP in HLu observed in seven subjects. An effective activation of BDP was demonstrated in HLu through the rapid formation of 17-BMP. Kinetics of BDP and 17-BMP in HLu were well characterized by the nonlinear kinetic model. Interindividual difference in the initial half-life of BDP was due mainly to esterase metabolizing activity rather than binding affinity.

  14. Angiopoietin1 Inhibits Mast Cell Activation and Protects against Anaphylaxis

    PubMed Central

    Li, Meng-Tao; Liu, Yi-Nan; He, Qi-Hua; Xiao, Jun-Jun; Bai, Yun

    2014-01-01

    Since morbidity and mortality rates of anaphylaxis diseases have been increasing year by year, how to prevent and manage these diseases effectively has become an important issue. Mast cells play a central regulatory role in allergic diseases. Angiopoietin1 (Ang-1) exhibits anti-inflammatory properties by inhibiting vascular permeability, leukocyte migration and cytokine production. However, Ang-1's function in mast cell activation and anaphylaxis diseases is unknown. The results of our study suggest that Ang-1 decreased lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production of mast cells by suppressing IκB phosphorylation and NF-κB nuclear translocation. Ang-1 also strongly inhibited compound 48/80 induced and FcεRI-mediated mast cells degranulation by decreasing intracellular calcium levels in vitro. In vivo lentivirus-mediated delivery of Ang-1 in mice exhibited alleviated leakage in IgE-dependent passive cutaneous anaphylaxis (PCA). Furthermore, exogenous Ang-1 intervention treatment prevented mice from compound 48/80-induced mesentery mast cell degranulation, attenuated increases in pro-inflammatory cytokines, relieved lung injury, and improved survival in anaphylaxis shock. The results of our study reveal, for the first time, the important role of Ang-1 in the activation of mast cells, and identify a therapeutic effect of Ang-1 on anaphylaxis diseases. PMID:24586553

  15. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    PubMed

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells.

  16. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1992-09-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The locations and other parameters of the nuclei which may be damaged by [alpha] particles must be determined and compared in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This proposal includes extended morphometric studies on electron micrographs of human epithelium of defined airway generations and in parallel on electron micrographs of the dog bronchial lining. The second part of this proposal describes studies to quantitate the cycling bronchial epithelial population(s) using proliferation markers and immunocytochemistry on frozen and paraffin sections and similar labeling of isolated bronchial epithelial cells sorted flow cytometry.

  17. The Role of Serotonin Transporter in Human Lung Development and in Neonatal Lung Disorders

    PubMed Central

    Sen, P.; Parks, W. T.; Langston, C.

    2017-01-01

    Introduction. Failure of the vascular pulmonary remodeling at birth often manifests as pulmonary hypertension (PHT) and is associated with a variety of neonatal lung disorders including a uniformly fatal developmental disorder known as alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV). Serum serotonin regulation has been linked to pulmonary vascular function and disease, and serotonin transporter (SERT) is thought to be one of the key regulators in these processes. We sought to find evidence of a role that SERT plays in the neonatal respiratory adaptation process and in the pathomechanism of ACD/MPV. Methods. We used histology and immunohistochemistry to determine the timetable of SERT protein expression in normal human fetal and postnatal lungs and in cases of newborn and childhood PHT of varied etiology. In addition, we tested for a SERT gene promoter defect in ACD/MPV patients. Results. We found that SERT protein expression begins at 30 weeks of gestation, increases to term, and stays high postnatally. ACD/MPV patients had diminished SERT expression without SERT promoter alteration. Conclusion. We concluded that SERT/serotonin pathway is crucial in the process of pulmonary vascular remodeling/adaptation at birth and plays a key role in the pathobiology of ACD/MPV. PMID:28316463

  18. Radiation-enhanced Lung Cancer Progression in a Transgenic Mouse Model of Lung Cancer is Predictive of Outcomes in Human Lung and Breast Cancer

    PubMed Central

    Delgado, Oliver; Batten, Kimberly G.; Richardson, James A.; Xie, Xian-Jin; Gazdar, Adi F.; Kaisani, Aadil A.; Girard, Luc; Behrens, Carmen; Suraokar, Milind; Fasciani, Gail; Wright, Woodring E.; Story, Michael D.; Wistuba, Ignacio I.; Minna, John D.; Shay, Jerry W.

    2014-01-01

    Purpose Carcinogenesis is an adaptive process between nascent tumor cells and their microenvironment including the modification of inflammatory responses from anti-tumorigenic to pro-tumorigenic. Radiation exposure can stimulate inflammatory responses that inhibit or promote carcinogenesis. The purpose of this study is to determine the impact of radiation exposure on lung cancer progression in vivo and assess the relevance of this knowledge to human carcinogenesis. Experimental Design K-rasLA1 mice were irradiated with various doses and dose regimens and then monitored till death. Microarray analyses were performed using Illumina® BeadChips on whole lung tissue 70 days post-irradiation with a fractionated or acute dose of radiation and compared to age-matched unirradiated controls. Unique group classifiers were derived by comparative genomic analysis of three experimental cohorts. Survival analyses were performed using principal component analysis and k-means clustering on three lung adenocarcinoma, three breast adenocarcinoma, and two lung squamous carcinoma annotated microarray datasets. Results Radiation exposure accelerates lung cancer progression in the K-rasLA1 lung cancer mouse model with dose fractionation being more permissive for cancer progression. A non-random inflammatory signature associated with this progression was elicited from whole lung tissue containing only benign lesions and predicts human lung and breast cancer patient survival across multiple datasets. Immunohistochemical analyses suggest that tumor cells drive predictive signature. Conclusions These results demonstrate that radiation exposure can cooperate with benign lesions in a transgenic model of cancer by impacting inflammatory pathways, and that clinically relevant similarities exist between human lung and breast carcinogenesis. PMID:24486591

  19. Mast cells and macrophages in normal C57/BL/6 mice.

    PubMed

    Gersch, Christine; Dewald, Oliver; Zoerlein, Martin; Michael, Lloyd H; Entman, Mark L; Frangogiannis, Nikolaos G

    2002-07-01

    Mast cells and macrophages have an important role in immunity and inflammation. Because mice are used extensively for experimental studies investigating immunological and inflammatory responses, we examined mast cell and macrophage distribution in normal murine tissues. Mast cells were abundant in the murine dermis, tongue, and skeletal muscle but were rarely found in the heart, lung, spleen, kidney, liver, and the bowel mucosa. In contrast, dogs exhibited large numbers of mast cells in the lung parenchyma, liver, and bowel. Some murine dermal mast cells had long cytoplasmic projections filled with granular content. Mouse mast cells demonstrated intense histamine immunoreactivity and were identified with histochemical enzymatic techniques for tryptase and chymase. Macrophages, identified using the monoclonal antibody F4/80, were abundant in the spleen, lung, liver, kidney, and bowel but relatively rare in the heart, tongue, and dermis. Using a nuclease protection assay we investigated mRNA expression of stem cell factor (SCF), a crucial survival factor for mast cells, and the macrophage growth factors macrophage colony stimulating factor (M-CSF) and granulocyte macrophage colony stimulating factor (GM-CSF). Stem cell factor mRNA was highly expressed in the murine lung. Relatively low levels of SCF mRNA expression were found in the tongue and earlobe, which are tissues containing a high number of mast cells. Macrophage CSF and GM-CSF mRNA was highly expressed in the lung and spleen. The murine heart, an organ with a low macrophage content, expressed high levels of M-CSF but negligible levels of GM-CSF mRNA. Constitutive growth factor mRNA expression in murine tissues without significant populations of mast cells and macrophages may suggest an alternative role for these factors in tissue homeostasis.

  20. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity.

    PubMed

    Stevens, Richard L; Adachi, Roberto

    2007-06-01

    Approximately 50% of the weight of a mature mast cell (MC) consists of varied neutral proteases stored in the cell's secretory granules ionically bound to serglycin proteoglycans that contain heparin and/or chondroitin sulfate E/diB chains. Mouse MCs express the exopeptidase carboxypeptidase A3 and at least 15 serine proteases [designated as mouse MC protease (mMCP) 1-11, transmembrane tryptase/tryptase gamma/protease serine member S (Prss) 31, cathepsin G, granzyme B, and neuropsin/Prss19]. mMCP-6, mMCP-7, mMCP-11/Prss34, and Prss31 are the four members of the chromosome 17A3.3 family of tryptases that are preferentially expressed in MCs. One of the challenges ahead is to understand why MCs express so many different protease-proteoglycan macromolecular complexes. MC-like cells that contain tryptase-heparin complexes in their secretory granules have been identified in the Ciona intestinalis and Styela plicata urochordates that appeared approximately 500 million years ago. Because sea squirts lack B cells and T cells, it is likely that MCs and their tryptase-proteoglycan granule mediators initially appeared in lower organisms as part of their innate immune system. The conservation of MCs throughout evolution suggests that some of these protease-proteoglycan complexes are essential to our survival. In support of this conclusion, no human has been identified that lacks MCs. Moreover, transgenic mice lacking the beta-tryptase mMCP-6 are unable to combat a Klebsiella pneumoniae infection effectively. Here we summarize the nature and function of some of the tryptase-serglycin proteoglycan complexes found in mouse and human MCs.

  1. Growth suppressive efficacy of human lak cells against human lung-cancer implanted into scid mice.

    PubMed

    Teraoka, S; Kyoizumi, S; Suzuki, T; Yamakido, M; Akiyama, M

    1995-06-01

    The purpose of our study was to determine the efficacy of immunotherapy using human lymphokine activated killer (LAK) cells against a human-lung squamous-cell carcinoma cell line (RERF-LC-AI) implanted into severe combined immunodeficient (SCID) mice. A statistically significant growth suppressive effect on RERF-LC-AI implanted into SCID mice was observed when human LAK cells were administered into the caudal vein of the mice treated with a continuous supply (initiated prior to LAK cells injection) of rIL-2. The human LAK cells stained with PKH 2, a fluorescent dye, for later detection using flow cytometry were administered into the caudal vein of RERF-LC-AI bearing SCID mice; the cells persisted for 7 days in the implanted lung cancer tissue and in the mouse peripheral blood, but for 5 days in the mouse spleen. The number of infiltrated human LAK cells in each tissue increased dose-dependently with the number of injected cells. The results indicate that the antitumor effect most likely occurred during the early implantation period of the human LAK cells. These results demonstrate the applicability of this model to the in vivo study of human lung cancer therapy.

  2. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    PubMed

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells. © 2016 Wiley Periodicals, Inc.

  3. Red cell pulmonary transit times through the healthy human lung.

    PubMed

    Zavorsky, G S; Walley, K R; Russell, J A

    2003-03-01

    It has previously been postulated that rapid red cell capillary transit through the human lung plays a role in the mechanism of diffusion limitation in some endurance athletes. Methodological limitations currently prevent researchers from directly measuring pulmonary capillary transit times in humans during exercise; however, first pass radionuclide cardiography allows direct measurement of red blood cell (RBC) transit times through the whole lung at various exercise intensities. We examined the relationship between mean whole lung red cell pulmonary transit times (cardiopulmonary transit times or CPTT) and different levels of flow in 88 healthy humans (76 males, 12 females) from several studies (mean age 31 years). The pooled data suggest that the relationship between CPTT and cardiac index (CI), beginning at rest and progressing through to maximum exercise demonstrates that CPTT reaches its minimum value when CI is about 8.1 l m2 x min(-1) (2.5-3 times the CI value at rest), and does not significantly change with further increases in CI. Cardiopulmonary blood volume (CPBV) index also does not change significantly until CI reaches 2.5 to 3 times the CI value at rest and then increases roughly linearly after that point. Consequently, the systematic increase in CPBV index with increasing pulmonary blood flow between 8.1 and 20 l m2 x min(-1) displays an adaptive response of the cardiopulmonary system by augmenting CPBV (and perhaps pulmonary capillary blood volume through distension and recruitment) to offset the reduction in CPTT, as no significant difference in mean CPTT is observed between these levels of flow (P > 0.05). Therefore, these data demonstrate that CPBV does not reach maximum capacity during strenuous or maximum exercise. This does not support the principle of quarter-power allometric scaling for flow when explaining modifications during exercise. Therefore, we speculate that the observed relationships between CPTT, CBPV index and flow may prevent

  4. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer.

    PubMed

    Nakano, Tetsuhiro; Shimizu, Kimihiro; Kawashima, Osamu; Kamiyoshihara, Mitsuhiro; Kakegawa, Seiichi; Sugano, Masayuki; Ibe, Takashi; Nagashima, Toshiteru; Kaira, Kyoichi; Sunaga, Noriaki; Ohtaki, Youichi; Atsumi, Jun; Takeyoshi, Izumi

    2012-11-01

    Convenient and reliable multiple organ metastasis model systems might contribute to understanding the mechanism(s) of metastasis of lung cancer, which may lead to overcoming metastasis and improvement in the treatment outcome of lung cancer. We isolated a highly metastatic subline, PC14HM, from the human pulmonary adenocarcinoma cell line, PC14, using an in vivo selection method. The expression of 34,580 genes was compared between PC14HM and parental PC14 by cDNA microarray analysis. Among the differentially expressed genes, expression of four genes in human lung cancer tissues and adjacent normal lung tissues were compared using real-time reverse transcription polymerase chain reaction. Although BALB/c nude mice inoculated with parental PC14 cells had few metastases, almost all mice inoculated with PC14HM cells developed metastases in multiple organs, including the lung, bone and adrenal gland, the same progression seen in human lung cancer. cDNA microarray analysis revealed that 981 genes were differentially (more than 3-fold) expressed between the two cell lines. Functional classification revealed that many of those genes were associated with cell growth, cell communication, development and transcription. Expression of three upregulated genes (HRB-2, HS3ST3A1 and RAB7) was higher in human cancer tissue compared to normal lung tissue, while expression of EDG1, which was downregulated, was lower in the cancer tissue compared to the normal lung. These results suggest that the newly established PC14HM cell line may provide a mouse model of widespread metastasis of lung cancer. This model system may provide insights into the key genetic determinants of widespread metastasis of lung cancer.

  5. Mast cells and IgE: from history to today.

    PubMed

    Saito, Hirohisa; Ishizaka, Teruko; Ishizaka, Kimishige

    2013-03-01

    Role of mast cells in allergy had remained undetermined until the discovery of IgE in 1966. Then, IgE purified from many Liters of plasma, which had been donated from a patient with fatal myeloma, was distributed to researchers all over the world, and thus accelerated exploring the mechanisms involved in allergic reactions, particularly about the role of mast cells and basophils in the IgE-mediated reactions. Identification of mast cells as a progeny of a bone marrow hematopoietic stem cell in 1977 led us to successful in vitro culture of human mast cells. Along with the development of molecular biological techniques, the structure of the high affinity IgE receptor (FcεRI) was determined in 1989. These findings and subsequent investigations brought deeper understanding of IgE-mediated allergic diseases in the past half century, especially where mast cells are involved. We have now even obtained the information about whole genome expression of FcεRI-dependently activated mast cells. In sharp contrast to our comprehension of allergic diseases where IgE and mast cells are involved, the mechanisms involved in non-IgE-mediated allergic diseases or non-IgE-mediated phase of IgE-mediated diseases are almost left unsolved and are waiting for devoted investigators to reveal it.

  6. Evaluation of a New Ultrasound Thoracoscope for Localization of Lung Nodules in Ex Vivo Human Lungs.

    PubMed

    Ujiie, Hideki; Kato, Tatsuya; Hu, Hsin-Pei; Hasan, Suhaib; Patel, Priya; Wada, Hironobu; Lee, Daiyoon; Fujino, Kosuke; Hwang, David M; Cypel, Marcelo; de Perrot, Marc; Pierre, Andrew; Darling, Gail; Waddell, Thomas K; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2017-03-01

    Localization of small, nonvisible and nonpalpable nodules is challenging during video-assisted thoracoscopic surgery. We evaluated the feasibility of using a new ultrasound thoracoscope to localize nodules in resected ex vivo human lungs. The tumor was localized and measured in its greatest dimension with a prototype ultrasound thoracoscope (XLTF-UC180; Olympus Corporation, Tokyo, Japan) at different frequencies (5.0 to 12.0 MHz) and different lung specimen states (deflated, semiinflated). Measured tumor size and depth from lung surface were compared and correlated to the true diameter and depth from lung surface acquired from pathologic morphology. Ex vivo evaluation was performed on 16 solid nodules and nine part solid ground-glass nodules. All tumors were successfully localized in the deflated lung specimens (average size, 13.7 ± 5.2 mm). The tumor boundaries were best evaluated with an ultrasound frequency of 10 MHz. Solid nodules were more easily visualized than ground-glass nodules. Part solid ground-glass nodules were not easily detected in the semiinflated specimen owing to peritumoral air surrounding the tumor. Tumor boundaries were also difficult to identify in deeply situated tumors and in lungs with underlying disease. A strong positive correlation existed between the ultrasound measurement and true measurement of tumor size (R(2) = 0.89, p < 0.001). The ultrasound thoracoscope can be used to localize nodules in resected human lungs. The clarity of the tumor boundaries is influenced by the tumor type and depth and the underlying pulmonary disease. Complete lung deflation and the use of 10 MHz ultrasound frequency optimize the visualization of target tumors. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  8. Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software analysis.

    PubMed

    Henne, Erik; Anderson, Joseph C; Lowe, Norma; Kesten, Steven

    2012-05-14

    Quantification of lung tissue via analysis of computed tomography (CT) scans is increasingly common for monitoring disease progression and for planning of therapeutic interventions. The current study evaluates the quantification of human lung tissue mass by software analysis of a CT to physical tissue mass measurements. Twenty-two ex vivo lungs were scanned by CT and analyzed by commercially available software. The lungs were then dissected into lobes and sublobar segments and weighed. Because sublobar boundaries are not visually apparent, a novel technique of defining sublobar segments in ex vivo tissue was developed. The tissue masses were then compared to measurements by the software analysis. Both emphysematous (n = 14) and non-emphysematous (n = 8) bilateral lungs were evaluated. Masses (Mean ± SD) as measured by dissection were 651 ± 171 g for en bloc lungs, 126 ± 60 g for lobar segments, and 46 ± 23 g for sublobar segments. Masses as measured by software analysis were 598 ± 159 g for en bloc lungs, 120 ± 58 g for lobar segments, and 45 ± 23 g for sublobar segments. Correlations between measurement methods was above 0.9 for each segmentation level. The Bland-Altman analysis found limits of agreement at the lung, lobe and sublobar levels to be -13.11% to -4.22%, -13.59% to 4.24%, and -45.85% to 44.56%. The degree of concordance between the software mass quantification to physical mass measurements provides substantial evidence that the software method represents an appropriate non-invasive means to determine lung tissue mass.

  9. MiRNA molecular profiles in human medical conditions: connecting lung cancer and lung development phenomena.

    PubMed

    Aghanoori, Mohamad-Reza; Mirzaei, Behnaz; Tavallaei, Mahmood

    2014-01-01

    MiRNAs are endogenous, single stranded ~22-nucleotide non-coding RNAs (ncRNAs) which are transcribed by RNA polymerase II and mediate negative post-transcriptional gene regulation through binding to 3'untranslated regions (UTR), possibly open reading frames (ORFs) or 5'UTRs of target mRNAs. MiRNAs are involved in the normal physiology of eukaryotic cells, so dysregulation may be associated with diseases like cancer, and neurodegenerative, heart and other disorders. Among all cancers, lung cancer, with high incidence and mortality worldwide, is classified into two main groups: non-small cell lung cancer and small cell lung cancer. Recent promising studies suggest that gene expression profiles and miRNA signatures could be a useful step in a noninvasive, low-cost and repeatable screening process of lung cancer. Similarly, every stage of lung development during fetal life is associated with specific miRNAs. Since lung development and lung cancer phenomena share the same physiological, biological and molecular processes like cell proliferation, development and shared mRNA or expression regulation pathways, and according to data adopted from various studies, they may have partially shared miRNA signature. Thus, focusing on lung cancer in relation to lung development in miRNA studies might provide clues for lung cancer diagnosis and prognosis.

  10. The effects of P. gingivalis and E. coli LPS on the expression of proinflammatory mediators in human mast cells and their relevance to periodontal disease.

    PubMed

    Palaska, I; Gagari, E; Theoharides, T C

    2016-01-01

    Mast cells (MCs) are tissue-resident immune cells that participate in a variety of allergic and inflammatory conditions, including periodontal disease, through the release of cytokines, chemokines and proteolytic enzymes. Porhyromonas gingivalis (P. g) is widely recognized as a major pathogen in the development and progression of periodontitis. Here we compared the differential effects of lipopolysaccharides (LPS) from P. g and E. coli on the expression and production of tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein (MCP-1) by human MCs. Human LAD2 MCs were stimulated with LPS from either P. g or E. coli (1-1000 ng/ml). MCs were also stimulated with SP (2μM) serving as the positive control or media alone as the negative control. After 24 h, the cells and supernatant fluids were collected and analyzed for β-Hexosaminidase (β-hex) spectrophotometrically, TNF, VEGF and MCP-1 release by ELISA and real-time polymerase chain reaction (PCR) for mediator gene expression, respectively. To assess the functional role of tolllike receptors (TRL) in mediator release, MCs were pre-incubated with either anti-TLR2 or anti- TLR4 (2 μg/ml) polyclonal antibody for 1 h before stimulation with LPS. When MCs were stimulated with SP (2 μM), there was a statistically significant β-hex release as well as release of TNF, VEGF and MCP-1. Stimulation of MCs with either type of LPS did not induce degranulation based on the lack of β-hex release. However, both types of LPS stimulated expression and release of TNF, VEGF and MCP-1. Although, P. g LPS induced significant release of TNF, VEGF and MCP-1, the effect was not concentration-dependent. There was no statistically significant difference between the effects of P. g and E. coli LPS. P. g LPS stimulated TNF through TLR-2 while E. coli utilized TRL-4 instead. In contrast, VEGF release by P. g LPS required both TRL-2 and TRL-4 while E. coli LPS required TLR-4. Release of MCP-1

  11. Anaphylaxis: mechanisms of mast cell activation.

    PubMed

    Kalesnikoff, Janet; Galli, Stephen J

    2010-01-01

    Anaphylaxis is a severe systemic allergic response that is rapid in onset and potentially lethal, and that typically is induced by an otherwise innocuous substance. In IgE-dependent and other examples of anaphylaxis, tissue mast cells and circulating basophilic granulocytes (basophils) are thought to represent major (if not the major) sources of the biologically active mediators that contribute to the pathology and, in unfortunate individuals, fatal outcome, of anaphylaxis. In this chapter, we will describe the mechanisms of mast cell (and basophil) activation in anaphylaxis, with a focus on IgE-dependent activation, which is thought to be responsible for most examples of antigen-induced anaphylaxis in humans. We will also discuss the use of mouse models to investigate the mechanisms that can contribute to anaphylaxis in that species in vivo, and the relevance of such mouse studies to human anaphylaxis. Copyright 2010 S. Karger AG, Basel.

  12. A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans.

    PubMed

    Gangi, S; Johansson, O

    2000-04-01

    The relationship between exposure to electromagnetic fields (EMFs) and human health is more and more in focus. This is mainly because of the rapid increasing use of such EMFs within our modern society. Exposure to EMFs has been linked to different cancer forms, e.g. leukemia, brain tumors, neurological diseases, such as Alzheimer's disease, asthma and allergy, and recently to the phenomena of 'electrosupersensitivity' and 'screen dermatitis'. There is an increasing number of reports about cutaneous problems as well as symptoms from internal organs, such as the heart, in people exposed to video display terminals (VDTs). These people suffer from subjective and objective skin and mucosa-related symptoms, such as itch, heat sensation, pain, erythema, papules and pustules. In severe cases, people can not, for instance, use VDTs or artificial light at all, or be close to mobile telephones. Mast cells (MCs), when activated, release a spectrum of mediators, among them histamine, which is involved in a variety of biological effects with clinical relevance, e.g. allergic hypersensitivity, itch, edema, local erythema and many types of dermatoses. From the results of recent studies, it is clear that EMFs affect the MC, and also the dendritic cell, population and may degranulate these cells. The release of inflammatory substances, such as histamine, from MCs in the skin results in a local erythema, edema and sensation of itch and pain, and the release of somatostatin from the dendritic cells may give rise to subjective sensations of on-going inflammation and sensitivity to ordinary light. These are, as mentioned, the common symptoms reported from patients suffering from 'electrosupersensitivity'/'screen dermatitis'. MCs are also present in the heart tissue and their localization is of particular relevance to their function. Data from studies made on interactions of EMFs with the cardiac function have demonstrated that highly interesting changes are present in the heart after

  13. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  14. Frizzled-8 as a putative therapeutic target in human lung cancer

    SciTech Connect

    Wang, Hua-qing; Xu, Mei-lin; Ma, Jie; Zhang, Yi; Xie, Cong-hua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fzd-8 is over-expressed in human lung cancer. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 inhibits proliferation and Wnt pathway in lung cancer cells. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 suppresses tumor growth in vivo. Black-Right-Pointing-Pointer shRNA knock-down Fzd-8 sensitizes lung cancer cells to chemotherapy Taxotere. -- Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. It is necessary to better understand the molecular mechanisms involved in lung cancer in order to develop more effective therapeutics for the treatment of this disease. Recent reports have shown that Wnt signaling pathway is important in a number of cancer types including lung cancer. However, the role of Frizzled-8 (Fzd-8), one of the Frizzled family of receptors for the Wnt ligands, in lung cancer still remains to be elucidated. Here in this study we showed that Fzd-8 was over-expressed in human lung cancer tissue samples and cell lines. To investigate the functional importance of the Fzd-8 over-expression in lung cancer, we used shRNA to knock down Fzd-8 mRNA in lung cancer cells expressing the gene. We observed that Fzd-8 shRNA inhibited cell proliferation along with decreased activity of Wnt pathway in vitro, and also significantly suppressed A549 xenograft model in vivo (p < 0.05). Furthermore, we found that knocking down Fzd-8 by shRNA sensitized the lung cancer cells to chemotherapy Taxotere. These data suggest that Fzd-8 is a putative therapeutic target for human lung cancer and over-expression of Fzd-8 may be important for aberrant Wnt activation in lung cancer.

  15. Nanoparticle diffusion in respiratory mucus from humans without lung disease

    PubMed Central

    Schuster, Benjamin S.; Suk, Jung Soo; Woodworth, Graeme F.; Hanes, Justin

    2013-01-01

    A major role of respiratory mucus is to trap inhaled particles, including pathogens and environmental particulates, to limit body exposure. Despite the tremendous health implications, how particle size and surface chemistry affect mobility in respiratory mucus from humans without lung disease is not known. We prepared polymeric nanoparticles densely coated with low molecular weight polyethylene glycol (PEG) to minimize muco-adhesion, and compared their transport to that of uncoated particles in human respiratory mucus, which we collected from the endotracheal tubes of surgical patients with no respiratory comorbidities. We found that 100 and 200 nm diameter PEG-coated particles rapidly penetrated respiratory mucus, at rates exceeding their uncoated counterparts by approximately 15- and 35-fold, respectively. In contrast, PEG-coated particles ≥ 500 nm in diameter were sterically immobilized by the mucus mesh. Thus, even though respiratory mucus is a viscoelastic solid at the macroscopic level (as measured using a bulk rheometer), nanoparticles that are sufficiently small and muco-inert can penetrate the mucus as if it were primarily a viscous liquid. These findings help elucidate the barrier properties of respiratory mucus and provide design criteria for therapeutic nanoparticles capable of penetrating mucus to approach the underlying airway epithelium. PMID:23384790

  16. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration.

    PubMed

    Wagner, Darcy E; Bonenfant, Nicholas R; Sokocevic, Dino; DeSarno, Michael J; Borg, Zachary D; Parsons, Charles S; Brooks, Elice M; Platz, Joseph J; Khalpey, Zain I; Hoganson, David M; Deng, Bin; Lam, Ying W; Oldinski, Rachael A; Ashikaga, Takamaru; Weiss, Daniel J

    2014-03-01

    Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼ 1-3 cm(3)) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mast cells in rheumatic disease.

    PubMed

    Suurmond, Jolien; van der Velden, Daniël; Kuiper, Johan; Bot, Ilze; Toes, René E M

    2016-05-05

    Rheumatoid Arthritis is a chronic autoimmune disease with a complex disease pathogenesis leading to inflammation and destruction of synovial tissue in the joint. Several molecules lead to activation of immune pathways, including autoantibodies, Toll-Like Receptor ligands and cytokines. These pathways can cooperate to create the pro-inflammatory environment that results in tissue destruction. Each of these pathways can activate mast cells, inducing the release of a variety of inflammatory mediators, and in combination can markedly enhance mast cell responses. Mast cell-derived cytokines, chemokines, and proteases have the potential to induce recruitment of other leukocytes able to evoke tissue remodeling or destruction. Likewise, mast cells can secrete a plethora of factors that can contribute to tissue remodeling and fibroblast activation. Although the functional role of mast cells in arthritis pathogenesis in mice is not yet elucidated, the increased numbers of mast cells and mast cell-specific mediators in synovial tissue of rheumatoid arthritis patients suggest that mast cell activation in rheumatoid arthritis may contribute to its pathogenesis.

  18. Overview of MAST results

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Adamek, J.; Akers, R. J.; Allan, S.; Appel, L.; Asunta, O.; Barnes, M.; Ben Ayed, N.; Bigelow, T.; Boeglin, W.; Bradley, J.; Brünner, J.; Cahyna, P.; Carr, M.; Caughman, J.; Cecconello, M.; Challis, C.; Chapman, S.; Chorley, J.; Colyer, G.; Conway, N.; Cooper, W. A.; Cox, M.; Crocker, N.; Crowley, B.; Cunningham, G.; Danilov, A.; Darrow, D.; Dendy, R.; Diallo, A.; Dickinson, D.; Diem, S.; Dorland, W.; Dudson, B.; Dunai, D.; Easy, L.; Elmore, S.; Field, A.; Fishpool, G.; Fox, M.; Fredrickson, E.; Freethy, S.; Garzotti, L.; Ghim, Y. C.; Gibson, K.; Graves, J.; Gurl, C.; Guttenfelder, W.; Ham, C.; Harrison, J.; Harting, D.; Havlickova, E.; Hawke, J.; Hawkes, N.; Hender, T.; Henderson, S.; Highcock, E.; Hillesheim, J.; Hnat, B.; Holgate, J.; Horacek, J.; Howard, J.; Huang, B.; Imada, K.; Jones, O.; Kaye, S.; Keeling, D.; Kirk, A.; Klimek, I.; Kocan, M.; Leggate, H.; Lilley, M.; Lipschultz, B.; Lisgo, S.; Liu, Y. Q.; Lloyd, B.; Lomanowski, B.; Lupelli, I.; Maddison, G.; Mailloux, J.; Martin, R.; McArdle, G.; McClements, K.; McMillan, B.; Meakins, A.; Meyer, H.; Michael, C.; Militello, F.; Milnes, J.; Morris, A. W.; Motojima, G.; Muir, D.; Nardon, E.; Naulin, V.; Naylor, G.; Nielsen, A.; O'Brien, M.; O'Gorman, T.; Ono, Y.; Oliver, H.; Pamela, S.; Pangione, L.; Parra, F.; Patel, A.; Peebles, W.; Peng, M.; Perez, R.; Pinches, S.; Piron, L.; Podesta, M.; Price, M.; Reinke, M.; Ren, Y.; Roach, C.; Robinson, J.; Romanelli, M.; Rozhansky, V.; Saarelma, S.; Sangaroon, S.; Saveliev, A.; Scannell, R.; Schekochihin, A.; Sharapov, S.; Sharples, R.; Shevchenko, V.; Silburn, S.; Simpson, J.; Storrs, J.; Takase, Y.; Tanabe, H.; Tanaka, H.; Taylor, D.; Taylor, G.; Thomas, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M.; Valovic, M.; Vann, R.; Walkden, N.; Wilson, H.; van Wyk, F.; Yamada, T.; Zoletnik, S.; MAST; MAST Upgrade Teams

    2015-10-01

    The Mega Ampère Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number nRMP = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating nRMP = 3 RMPs. nRMP = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with nRMP = 4 than nRMP = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L-H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with ‘classical’ fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W-1) has been achieved

  19. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR.

    PubMed

    Brennan, Sarah C; Wilkinson, William J; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J; Kemp, Paul J; Riccardi, Daniela

    2016-02-25

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl(-)-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca(2+)-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases.

  20. Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines

    PubMed Central

    Sosonkina, Nadiya; Hong, Seung-Keun; Starenki, Dmytro; Park, Jong-In

    2014-01-01

    Neuroendocrine (NE) lung tumors comprise 20–25% of all invasive lung malignancies. Currently, no effective treatments are available to cure these tumors, and it is necessary to identify a molecular alteration(s) that characterizes NE lung tumor cells. We aimed to identify a kinase mutation(s) associated with NE lung tumor by screening 517 kinase-encoding genes in human lung cancer cell lines. Our next-generation sequencing analysis of six NE lung tumor cell lines (four small cell lung cancer lines and two non-small cell lung cancer lines) and three non-NE lung tumor lines revealed various kinase mutations, including a nonsynonymous mutation in the proto-oncogene RET (c.2071G>A; p.G691S). Further evaluation of the RET polymorphism in total 15 lung cancer cell lines by capillary sequencing suggested that the frequency of the minor allele (A-allele) in NE lung tumor lines was significantly higher than its frequency in a reference population (p = 0.0001). However, no significant difference between non-NE lung tumor lines and a reference group was detected (p = 1.0). Nevertheless, neither RET expression levels were correlated with the levels of neuron-specific enolase (NSE), a key NE marker, nor vandetanib and cabozantinib, small molecule compounds that inhibit RET, affected NSE levels in lung cancer cells. Our data suggest a potential association of G691S RET polymorphism with NE lung tumor, proposing the necessity of more thorough evaluation of this possibility. The dataset of kinase mutation profiles in this report may help choosing cell line models for study of lung cancer. PMID:25530832

  1. Application of a Neutral Community Model To Assess Structuring of the Human Lung Microbiome

    PubMed Central

    Venkataraman, Arvind; Bassis, Christine M.; Beck, James M.; Young, Vincent B.; Curtis, Jeffrey L.; Huffnagle, Gary B.

    2015-01-01

    ABSTRACT  DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Importance  Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. PMID:25604788

  2. Mast cells in atopic dermatitis

    PubMed Central

    Kawakami, Toshiaki; Ando, Tomoaki; Kimura, Miho; Wilson, Bridget S.; Kawakami, Yuko

    2009-01-01

    Summary of Recent Advances Mast cells play as the major effector cells in immediate hypersensitivity through activation via the high-affinity IgE receptor, FcεRI, although many other functions have recently been discovered for this cell type. Given the broad array of proinflammatory mediators secreted from FcεRI-activated mast cells, as well as sensitization to allergens, IgE elevation, and increased mast cells in a majority of atopic dermatitis patients, mast cells are believed to be involved in the pathogenesis of atopic dermatitis. Numerous animal models have been used to study this epidemic disease. Here we review the recent progress to synthesize our current understanding of this disease and potential mechanisms for a mast cell's role in the disease. PMID:19828304

  3. Differential response of the epithelium and interstitium in developing human fetal lung explants to hyperoxia.

    PubMed

    Bustani, Porus; Hodge, Rachel; Tellabati, Ananth; Li, Juan; Pandya, Hitesh; Kotecha, Sailesh

    2006-03-01

    Hyperoxia is closely linked with the development of chronic lung disease of prematurity (CLD), but the exact mechanisms whereby hyperoxia alters the lung architecture in the developing lung remain largely unknown. We developed a fetal human lung organ culture model to investigate (a) the morphologic changes induced by hyperoxia and (b) whether hyperoxia resulted in differential cellular responses in the epithelium and interstitium. The effects of hyperoxia on lung morphometry were analyzed using computer-assisted image analysis. The lung architecture remained largely unchanged in normoxia lasting as long as 4 d. In contrast, hyperoxic culture of pseudoglandular fetal lungs resulted in significant dilatation of airways, thinning of the epithelium, and regression of the interstitium including the pulmonary vasculature. Although there were no significant differences in Ki67 between normoxic and hyperoxic lungs, activated caspase-3 was significantly increased in interstitial cells, but not epithelial cells, under hyperoxic conditions. These changes show that exposure of pseudoglandular lungs to hyperoxia modulates the lung architecture to resemble saccular lungs.

  4. In vitro immunological degranulation of human basophils is modulated by lung histamine and Apis mellifica.

    PubMed Central

    Poitevin, B; Davenas, E; Benveniste, J

    1988-01-01

    1. The effect of high dilutions of two homeopathic drugs Lung histamine (Lung his) and Apis mellifica (Apis mel) used for the treatment of allergic diseases has been assessed on in vitro human basophil degranulation. Experiments were conducted blind. 2. Basophil degranulation induced by 1.66 X 10(-9) M anti-IgE antibody was significantly inhibited in the presence of 5 Lung his (5th centesimal dilution of Lung his) and 15 Lung his (15th centesimal dilution of Lung his) by 28.8% and 28.6% respectively and by 65.8% in the presence of 9 Apis mel (9th centesimal dilution of Apis mel). Basophil degranulation induced by 1.66 X 10(-16) to 1.66 X 10(-18) M anti-IgE antibody was also inhibited by high dilutions of Lung his and Apis mel with an inhibition of nearly 100% with 18 Lung his (18th centesimal dilution of Lung his) and 10 Apis mel (10th centesimal dilution of Apis mel). An alternance of inhibition, inactivity and stimulation was observed when basophils were incubated in the presence of serial dilutions of Lung his and Apis mel. 3. The investigation of the clinical efficacy of high dilutions of Lung his and Apis mel should be envisaged in allergic diseases in parallel with in vitro and ex vivo biological assays. PMID:3382588

  5. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    PubMed Central

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  6. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs.

    PubMed

    Duan, M; Steinfort, D P; Smallwood, D; Hew, M; Chen, W; Ernst, M; Irving, L B; Anderson, G P; Hibbs, M L

    2016-03-01

    The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment.

  7. Evidence against a role for jaagsiekte sheep retrovirus in human lung cancer.

    PubMed

    Miller, A Dusty; De Las Heras, Marcelo; Yu, Jingyou; Zhang, Fushun; Liu, Shan-Lu; Vaughan, Andrew E; Vaughan, Thomas L; Rosadio, Raul; Rocca, Stefano; Palmieri, Giuseppe; Goedert, James J; Fujimoto, Junya; Wistuba, Ignacio I

    2017-01-20

    Jaagsiekte sheep retrovirus (JSRV) causes a contagious lung cancer in sheep and goats that can be transmitted by aerosols produced by infected animals. Virus entry into cells is initiated by binding of the viral envelope (Env) protein to a specific cell-surface receptor, Hyal2. Unlike almost all other retroviruses, the JSRV Env protein is also a potent oncoprotein and is responsible for lung cancer in animals. Of concern, Hyal2 is a functional receptor for JSRV in humans. We show here that JSRV is fully capable of infecting human cells, as measured by its reverse transcription and persistence in the DNA of cultured human cells. Several studies have indicated a role for JSRV in human lung cancer while other studies dispute these results. To further investigate the role of JSRV in human lung cancer, we used highly-specific mouse monoclonal antibodies and a rabbit polyclonal antiserum against JSRV Env to test for JSRV expression in human lung cancer. JSRV Env expression was undetectable in lung cancers from 128 human subjects, including 73 cases of bronchioalveolar carcinoma (BAC; currently reclassified as lung invasive adenocarcinoma with a predominant lepidic component), a lung cancer with histology similar to that found in JSRV-infected sheep. The BAC samples included 8 JSRV DNA-positive samples from subjects residing in Sardinia, Italy, where sheep farming is prevalent and JSRV is present. We also tested for neutralizing antibodies in sera from 138 Peruvians living in an area where sheep farming is prevalent and JSRV is present, 24 of whom were directly exposed to sheep, and found none. We conclude that while JSRV can infect human cells, JSRV plays little if any role in human lung cancer.

  8. Ivermectin influence on the mast cell activity in nodules of onchocerciasis patients.

    PubMed

    Wildenburg, G; Korten, S; Mainuka, P; Büttner, D W

    1998-11-01

    Onchocercal nodules were stained immunohistochemically using antibodies specific for human mast cells and IgE to elucidate the localization and frequency of mast cells after a single oral dose of 150 microg/kg ivermectin. Tryptase-and chymase-positive mast cells occurred predominantly in mixed inflammatory infiltrates and perivascularly, and never adhered to adult worms or microfilariae. Up to three days after ivermectin, mast cells and IgE-positive cells were markedly increased in the capsular area of nodules containing female worms with embryos and microfilariae compared to untreated nodules. In the centre of these nodules, around the adult Onchocerca volvulus, we found many tryptase-positive cells. More mast cells were IgE-positive than in untreated nodules, equalling the number of tryptase-positive mast cells. There was a clear correlation between the appearance of mast cells and the attacks on damaged microfilariae by eosinophils and macrophages and in the vicinity of adult worms by neutrophils that occur soon after ivermectin treatment. Onchocercomata harbouring female worms with oocytes only revealed, after all treatment intervals, the same mast cell numbers as untreated nodules. In conclusion, during the first three days after administration, ivermectin produces increased numbers of mast cells in nodules harbouring females with embryos and microfilariae, probably as part of an allergic reaction to the attacked microfilariae. Four to 19 days after ivermectin the number of mast cells in the entire nodule is no longer elevated.

  9. Clostridium difficile toxin B inhibits the secretory response of human mast cell line-1 (HMC-1) cells stimulated with high free-Ca²⁺ and GTPγS.

    PubMed

    Balletta, Andrea; Lorenz, Dorothea; Rummel, Andreas; Gerhard, Ralf; Bigalke, Hans; Wegner, Florian

    2015-02-03

    Clostridium difficile toxins A and B (TcdA and TcdB) belong to the class of large clostridial cytotoxins and inactivate by glucosylation some low molecular mass GTPases of the Rho-family (predominantly Rho, Rac and Cdc42), known as regulators of the actin cytoskeleton. TcdA and B also represent the main virulence factors of the anaerobic gram-positive bacterium that is the causal agent of pseudomembranous colitis. In our study, TcdB was chosen instead of TcdA for the well-known higher cytotoxic potency. Inactivation of Rho-family GTPases by this toxin in our experimental conditions induced morphological changes and reduction of electron-dense mast cell-specific granules in human mast cell line-1 (HMC-1) cells, but not cell death or permeabilisation of plasma-membranes. Previously reported patch-clamp dialysis experiments revealed that high intracellular free-Ca(2+) and GTPγS concentrations are capable of inducing exocytosis as indicated by significant membrane capacitance (Cm) increases in HMC-1 cells. In this study, we investigated the direct effects of TcdB upon HMC-1 cell "stimulated" Cm increase, as well as on "constitutive" secretion of hexosaminidase and interleukin-16 (IL-16). Compared to untreated control cells, HMC-1 cells incubated with TcdB for 3-24h exhibited a significant reduction of the mean absolute and relative Cm increase in response to free-Ca(2+) and GTPγS suggesting an inhibition of secretory processes by TcdB. In conclusion, the HMC-1 cell line represents a suitable model for the study of direct effects of C. difficile toxins on human mast cell secretory activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Mast cells in the cytokine network: the what, where from and what for.

    PubMed

    Czarnetzki, B M; Grabbe, J; Kolde, G; Krüger-Krasagakes, S; Welker, P; Zuberbier, T

    1995-08-01

    The basic understanding of mast cell ontogeny and function has been fundamentally changed in recent years with observations that the cells produce and respond to a broad range of cytokines. These rapidly accruing data and their potential significance were discussed at the recent symposium "Mast Cells in the Cytokine Network", and the overview lectures of most speakers are summarized in this special journal issue. In the present introductory manuscript, the organizers of the meeting discuss data fundamental to an understanding of the topic and highlight aspects of special interest. They consider mast cells to be defined most reliably by their unique ultrastructure since the cells are highly heterogeneous in dependence of the species studied, their tissue location, their stage of development and probably also in relation to cytokines. Most other characteristics of mast cells are shared with diverse other cell types. Murine mast cell development is induced by several cytokines. These factors are mostly ineffective in human cells except for stem cell factor which causes mast cell development from CD34+/c-kit+ progenitors. There is however recent evidence that fibroblasts and keratinocytes produce additional growth factors for human mast cells. Regarding cytokine secretion, most molecules known so far are produced by both murine and human mast cells. The cells furthermore bear receptors for several cytokines, enabling them to respond in an autocrine and paracrine fashion. Mast cells may thus function within a complex cytokine network, affecting physiological as well as immunological and inflammatory processes.

  11. Mast cells in neoangiogenesis.

    PubMed

    Nienartowicz, Andrzej; Sobaniec-Łotowska, Maria E; Jarocka-Cyrta, Elzbieta; Lemancewicz, Dorota

    2006-03-01

    Mast cells (MCs) always accompany connective tissue and are located in the proximity of lymphatic and blood vessels and nerve fibers. They are round or oval mononuclear cells with a diameter of 4-20 microm containing in their cytoplasm specific exocrine granules (storing neutral proteases) enclosed by a single membrane, whose presence is regarded as an index of the MC's static state. In view of their wide distribution in the organism, they play various roles in, for example, type I hypersensitivity reactions, chronic inflammatory processes, tissue reconstruction and wound healing, and pathological pulmonary fibrosis. They also play a role in angiogenesis, both in normal conditions during tissue regeneration and in pathological neoplastic states. The microcirculation provides building and nutritional substances to cancer cells and enables cancer spread via the blood. On the other hand, a tumor with good vascularization is more prone to penetration by cytostatics, which is why angiogenesis is a very important process in the course of neoplastic disease. Many authors indicate a close association between mast cells and angiogenesis. Some substances contained in the cytoplasm of these cells are potent stimulators of angiogenesis (tryptase, heparin), while others may inhibit it (protamine, platelet factor 4), and this conditions cancer growth and the development of the metastatic process. It is not known, however, what interactions occur between stimulants and inhibitors and what the proportional involvement of particular mediators in the formation of new vessels is.

  12. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features.

    PubMed

    Yu, Guoqin; Gail, Mitchell H; Consonni, Dario; Carugno, Michele; Humphrys, Michael; Pesatori, Angela C; Caporaso, Neil E; Goedert, James J; Ravel, Jacques; Landi, Maria Teresa

    2016-07-28

    The human lung tissue microbiota remains largely uncharacterized, although a number of studies based on airway samples suggest the existence of a viable human lung microbiota. Here we characterized the taxonomic and derived functional profiles of lung microbiota in 165 non-malignant lung tissue samples from cancer patients. We show that the lung microbiota is distinct from the microbial communities in oral, nasal, stool, skin, and vagina, with Proteobacteria as the dominant phylum (60 %). Microbiota taxonomic alpha diversity increases with environmental exposures, such as air particulates, residence in low to high population density areas, and pack-years of tobacco smoking and decreases in subjects with history of chronic bronchitis. Genus Thermus is more abundant in tissue from advanced stage (IIIB, IV) patients, while Legionella is higher in patients who develop metastases. Moreover, the non-malignant lung tissues have higher microbiota alpha diversity than the paired tumors. Our results provide insights into the human lung microbiota composition and function and their link to human lifestyle and clinical outcomes. Studies among subjects without lung cancer are needed to confirm our findings.

  13. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    PubMed Central

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2011-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli. PMID:21079581

  14. [Pathomorphology of lung changes caused by gramoxone poisoning. Human pathologic and animal experimental studies].

    PubMed

    Vadnay, I; Haraszti, A

    1988-01-01

    An account is given in this paper of changes caused by Gramoxone, a week killer, to the human lung as well as to experimental material. The process of damage was found to depend on the amount of toxic substance involved and on the route of uptake. Fibrosis, eventually, is the greatest danger. Intraperitoneal application leads to squamous epithelium metaplasia in the lung.

  15. The mast cell: a multifunctional effector cell.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico; Mallardi, Franco; Beltrami, Carlo Alberto

    2003-01-01

    Mast cells (MC) are recognized key cells of type I hypersensitivity reactions. Several lines of evidence, however, indicate that MC not only express critical effector functions in classic IgE-associated allergic disorders, but also play important roles in host defence against parasites, bacteria and perhaps even viruses. Indeed, it is now clear that MC can contribute to host defence in the context of either acquired or innate immune responses through the release of a myriad of pro-inflammatory and immunoregulatory molecules and the expression of a wide spectrum of surface receptors for cytokines and chemokines. Moreover, there is growing evidence that MC exert distinct nonimmunological functions, playing a relevant role in tissue homeostasis, remodeling and fibrosis as well as in the processes of tissue angiogenesis. In this review, we provide a small insight into the biology of mast cells and their potential implications in human pathology.

  16. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography.

    PubMed

    Dickson, Robert P; Erb-Downward, John R; Freeman, Christine M; McCloskey, Lisa; Beck, James M; Huffnagle, Gary B; Curtis, Jeffrey L

    2015-06-01

    The lung microbiome is spatially heterogeneous in advanced airway diseases, but whether it varies spatially in health is unknown. We postulated that the primary determinant of lung microbiome constitution in health is the balance of immigration and elimination of communities from the upper respiratory tract (URT; "adapted island model of lung biogeography"), rather than differences in regional bacterial growth conditions. To determine if the lung microbiome is spatially varied in healthy adults. Bronchoscopy was performed on 15 healthy subjects. Specimens were sequentially collected in the lingula and right middle lobe (by bronchoalveolar lavage [BAL]), then in the right upper lobe, left upper lobe, and supraglottic space (by protected-specimen brush). Bacterial 16S ribosmal RNA-encoding genes were sequenced using MiSeq (Illumina, San Diego, CA). There were no significant differences between specimens collected by BAL and protected-specimen brush. Spatially separated intrapulmonary sites, when compared with each other, did not contain consistently distinct microbiota. On average, intrasubject variation was significantly less than intersubject variation (P = 0.00003). By multiple ecologic parameters (community richness, community composition, intersubject variability, and similarity to source community), right upper lobe microbiota more closely resembled those of the URT than did microbiota from more distal sites. As predicted by the adapted island model, community richness decreased with increasing distance from the source community of the URT (P < 0.05). In healthy lungs, spatial variation in microbiota within an individual is significantly less than variation across individuals. The lung microbiome in health is more influenced by microbial immigration and elimination (the adapted island model) than by the effects of local growth conditions on bacterial reproduction rates, which are more determinant in advanced lung diseases. BAL of a single lung segment is an

  17. Ancient origin of mast cells

    PubMed Central

    Wong, G. William; Zhuo, Lisheng; Kimata, Koji; Lam, Bing K.; Satoh, Nori; Stevens, Richard L.

    2014-01-01

    The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin•serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500 million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity. PMID:25094046

  18. Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness.

    PubMed

    Chaïr-Yousfi, Imène; Laraba-Djebari, Fatima; Hammoudi-Triki, Djelila

    2015-03-01

    Lung injury and respiratory distress syndrome are frequent symptoms observed in the most severe cases of scorpion envenomation. The uncontrolled transmigration of leukocyte cells into the lung interstitium and alveolar space and pulmonary edema may be the cause of death. Mast cells can release various inflammatory mediators known to be involved in the development of lung edema following scorpion venom injection. The present study was designed to determine the evidence of neurokinin 1 (NK1) receptor and the involvement of mast cell activation to induce pulmonary edema and to increase vascular permeability after Androctonus australis hector (Aah) venom administration. To this end, mast cells were depleted using compound 48/80 (C48/80). Furthermore, the involvement of tachykinin NK1 receptors expressed on mast cell membranes was elucidated by their blocking with an antagonist. On the other hand, the ability of Aah venom to increase vascular permeability and to induce edema was also assessed by measuring the amount of Evans blue dye (EBD) extravasation in bronchoalveolar lavage (BAL) fluid and in the lungs of mice. Pulmonary edema, as assessed by the levels of EBD extravasation, was completely inhibited in compound 48/80-treated animals. Depletion by stimuli non-immunological C48/80 component markedly reduced induced inflammatory response following the venom administration. The mast cells seem to play an important role in the development of lung injury and the increase of vascular permeability in mice following the subcutaneous administration of Aah scorpion venom through the NK1 receptor.

  19. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  20. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  1. Human metapneumovirus in lung transplant recipients: characteristics and outcomes.

    PubMed

    Niggli, Fabian; Huber, Lars C; Benden, Christian; Schuurmans, Macé M

    2016-01-01

    Human metapneumovirus (hMPV) causes serious respiratory tract infections in lung transplant recipients (LTRs). We evaluated the characteristics and adverse drug reactions (ADR) of oral ribavirin therapy for hMPV infections in LTRs. LTRs with respiratory symptoms or suspected infection of unknown origin were routinely sampled with nasopharyngeal swabs (NPS) for virological and bacteriological analysis as part of a diagnostic workup. Medical records of hMPV polymerase chain reaction (PCR)-positive LTRs at the University Hospital of Zurich were reviewed retrospectively. Between January 2012 and June 2014, 12 (80%) of 15 consecutive patients with documented hMPV infection received oral ribavirin therapy (800 mg/d, after 48 h: 400 mg/d). Mean duration of therapy was 28.6 days (range: 11-54). Mean duration of viral shedding was 16.3 days (range: 5-48). In general, oral ribavirin was well tolerated in LTRs. The most common ADR was moderate anaemia. All patients recovered from infection without immediate serious sequelae within 3 months of infection.

  2. Deposition of sulfate acid aerosols in the developing human lung

    SciTech Connect

    Martonen, T.B.; Zhang, Z.; Hester, J.

    1993-01-01

    Computations of aerosol deposition as affected by (1) aerosol hygroscopicity, (2) human age, and (3) respiratory intensity are accomplished using a validated mathematical model. The interactive effects are very complicated but systematic. Few general observations can be made; rather, the findings presented within should be addressed on a case-by-case basis. The behavior of inhaled H2SO4 particles subsequent to water vapor uptake significantly influences their total deposition values and relative spatial distribution patterns within tracheobronchial and pulmonary airways. These results must be accounted for in risk assessment protocols, since compartments of the lung have different clearance processes and sensitivities to toxic materials. There is a critical size in the 0.2-0.4 micrometer range: For larger particles the influence of hygroscopicity is to increase total deposition, whereas for smaller particles the opposite occurs. The dosimetric model was developed to provide a scientific basis for extrapolation modeling of factors (1), (2), and (3) in the hazard evaluation of airborne contaminants.

  3. Development of LC-QTOF-MS method for human lung tissue fingerprinting. A preliminary application to nonsmall cell lung cancer.

    PubMed

    Ciborowski, Michal; Kisluk, Joanna; Pietrowska, Karolina; Samczuk, Paulina; Parfieniuk, Ewa; Kowalczyk, Tomasz; Kozlowski, Miroslaw; Kretowski, Adam; Niklinski, Jacek

    2017-09-01

    The major histologic subtypes of non-small cell lung cancer (NSCLC) include adenocarcinoma (ADC), squamous cell lung carcinoma (SCC), and large-cell carcinoma (LCC). Clinical trials of targeted agents and newer chemotherapy agents yielded differences in outcomes according to histologic subgroups providing a rationale for histology-based treatment in NSCLC. Currently, NSCLC subtyping is performed based on histopathological examinations and immunohistochemistry. However available methods leave about 10% of NSCLC cases as not otherwise specified. The purpose of this study was development of an LC-QTOF-MS method for human lung tissue metabolic fingerprinting that could discriminate NSCLC histological subtypes and propose biomarkers candidates that could support proper NSCLC diagnosis. Metabolites were extracted with acetonitrile or methanol/ethanol and different chromatographic conditions were tested. In the final method 10 mg of lung tissue was homogenized with 50% methanol and metabolites were extracted with acetonitrile. Metabolites were separated on C8-RP and HILIC columns. About 3500 and 2000 of metabolic features (in both ion modes) were detected with good repeatability (CV < 20%) by RP and HILIC methods, respectively. Lung tumor and control tissue samples obtained from NSCLC patients were analyzed with developed methodology. Acylcarnitines, fatty acids, phospholipids, and amino acids were found more abundant in tumor as compared to control tissue. Acylcarnitines, lysophospholipids, creatinine, creatine, and alanine were identified as potential targets enabling classification of NSCLC subtypes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation.

    PubMed

    Henry, Everett K; Sy, Chandler B; Inclan-Rico, Juan M; Espinosa, Vanessa; Ghanny, Saleena S; Dwyer, Daniel F; Soteropoulos, Patricia; Rivera, Amariliz; Siracusa, Mark C

    2016-08-22

    Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine-mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2-associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy-like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell-mediated inflammation. © 2016 Henry et al.

  5. Carbonic anhydrase enzymes regulate mast cell–mediated inflammation

    PubMed Central

    Soteropoulos, Patricia

    2016-01-01

    Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine–mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2–associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy–like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell–mediated inflammation. PMID:27526715

  6. SNARE complex-mediated degranulation in mast cells.

    PubMed

    Woska, Joseph R; Gillespie, Marc E

    2012-04-01

    Mast cell function and dysregulation is important in the development and progression of allergic and autoimmune disease. Identifying novel proteins involved in mast cell function and disease progression is the first step in the design of new therapeutic strategies. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of proteins demonstrated to mediate the transport and fusion of secretory vesicles to the membrane in mast cells, leading to the subsequent release of the vesicle cargo through an exocytotic mechanism. The functional role[s] of specific SNARE family member complexes in mast cell degranulation has not been fully elucidated. Here, we review recent and historical data on the expression, formation and localization of various SNARE proteins and their complexes in murine and human mast cells. We summarize the functional data identifying the key SNARE family members that appear to participate in mast cell degranulation. Furthermore, we discuss the utilization of RNA interference (RNAi) methods to validate SNARE function and the use of siRNA as a therapeutic approach to the treatment of inflammatory disease. These studies provide an overview of the specific SNARE proteins and complexes that serve as novel targets for the development of new therapies to treat allergic and autoimmune disease.

  7. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad.

    PubMed

    Matsubara, Daisuke; Kanai, Yoshihiko; Ishikawa, Shumpei; Ohara, Shiori; Yoshimoto, Taichiro; Sakatani, Takashi; Oguni, Sachiko; Tamura, Tomoko; Kataoka, Hiroaki; Endo, Shunsuke; Murakami, Yoshinori; Aburatani, Hiroyuki; Fukayama, Masashi; Niki, Toshiro

    2012-12-01

    Rearranged during transfection (RET) fusions have been newly identified in approximately 1% of patients with primary lung tumors. However, patient-derived lung cancer cell lines harboring RET fusions have not yet been established or identified, and therefore, the effectiveness of an RET inhibitor on lung tumors with endogenous RET fusion has not yet been studied. In this study, we report identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line LC-2/ad. LC-2/ad showed distinctive sensitivity to the RET inhibitor, vandetanib, among 39 non-small lung cancer cell lines. The xenograft tumor of LC-2/ad showed cribriform acinar structures, a morphologic feature of primary RET fusion-positive lung adenocarcinomas. LC-2/ad cells could provide useful resources to analyze molecular functions of RET-fusion protein and its response to RET inhibitors.

  8. Direct demonstration of 25- and 50-microm arteriovenous pathways in healthy human and baboon lungs.

    PubMed

    Lovering, Andrew T; Stickland, Michael K; Kelso, Amy J; Eldridge, Marlowe W

    2007-04-01

    Postmortem microsphere studies in adult human lungs have demonstrated the existence of intrapulmonary arteriovenous pathways using nonphysiological conditions. The aim of the current study was to determine whether large diameter (>25 and 50 microm) intrapulmonary arteriovenous pathways are functional in human and baboon lungs under physiological perfusion and ventilation pressures. We used fresh healthy human donor lungs obtained for transplantation and fresh lungs from baboons (Papio c. anubis). Lungs were ventilated with room air by using a peak inflation pressure of 15 cm H(2)O and a positive end-expiratory pressure of 5 cm H(2)O. Lungs were perfused between 10 and 20 cm H(2)O by using a phosphate-buffered saline solution with 5% albumin. We infused a mixture of 25- and 50-microm microspheres (0.5 and 1 million total for baboons and human studies, respectively) into the pulmonary artery and collected the entire pulmonary venous outflow. Under these conditions, evidence of intrapulmonary arteriovenous anastomoses was found in baboon (n = 3/4) and human (n = 4/6) lungs. In those lungs showing evidence of arteriovenous pathways, 50-microm microspheres were always able to traverse the pulmonary circulation, and the fraction of transpulmonary passage ranged from 0.0003 to 0.42%. These data show that intrapulmonary arteriovenous pathways >50 microm in diameter are functional under physiological ventilation and perfusion pressures in the isolated lung. These pathways provide an alternative conduit for pulmonary blood flow that likely bypasses the areas of gas exchange at the capillary-alveolar interface that could compromise both gas exchange and the ability of the lung to filter out microemboli.

  9. Neuropeptide NGF mediates neuro-immune response and inflammation through mast cell activation.

    PubMed

    Kritas, S K; Saggini, A; Cerulli, G; Caraffa, A; Antinolfi, P; Pantalone, A; Frydas, S; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Conti, P

    2014-01-01

    Human mast cells (first described in 1879 by Paul Ehrlich) develop from committed precursors in the bone marrow expressing the differentiation marker CD34+ and distinct from the three other myeloid cells. Mast cells are present in various tissues especially near blood vessels, epithelia and nerves and they are activated by cross-linking of FcεRI, but also by a number of neuropeptides. NGF mediates a number of inflammatory and autoimmune states in conjunction with an increased accumulation of mast cells which appear to be involved in neuroimmune interactions and tissue inflammation. Here we report some relationships between mast cells and nerve growth factor (NGF).

  10. Zinc transporters are differentially expressed in human non-small cell lung cancer

    PubMed Central

    Yang, Jingxuan; Li, Min

    2016-01-01

    Lung cancer is one of the most common human malignancies worldwide, but its oncogenesis process remains unclear. Recent studies demonstrated that zinc (Zn) and Zn transporters were associated with the development and progression of human cancers. The role of Zn transporters including ZIPs and ZnTs in lung cancer, however, has never been evaluated. Thus, we aimed to investigate the expression levels of all human Zn transporters, including 14 ZIPs and 10 ZnTs, in eight different lung cancer cell lines and paired human tumor tissues. We observed great variations in ZIPs and ZnTs mRNA levels across cell lines and human lung cancer specimens. ZIPs showed a tendency to be upregulated, while ZnTs exhibited a downward expression trend. ZIP4 was overexpressed in six lung cancer cell lines and 59% (26/44) of tumor tissues, which was consistent with results from lung cancer datasets including TCGA database. Our results indicated that the dysregulation of Zn transporters may contribute to lung tumorigenesis. PMID:27611948

  11. Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in emphysema.

    PubMed

    Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew

    2017-06-01

    Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Nedocromil sodium inhibits antigen-induced contraction of human lung parenchymal and bronchial strips, and the release of sulphidopeptide-leukotriene and histamine from human lung fragments.

    PubMed Central

    Napier, F. E.; Shearer, M. A.; Temple, D. M.

    1990-01-01

    1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152

  13. Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation

    PubMed Central

    Esnault, Stephane; Torr, Elizabeth E.; Bernau, Ksenija; Johansson, Mats W.; Kelly, Elizabeth A.; Sandbo, Nathan; Jarjour, Nizar N.

    2017-01-01

    Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF). Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore

  14. Butrin, Isobutrin, and Butein from Medicinal Plant Butea monosperma Selectively Inhibit Nuclear Factor-κB in Activated Human Mast Cells: Suppression of Tumor Necrosis Factor-α, Interleukin (IL)-6, and IL-8

    PubMed Central

    Rasheed, Zafar; Akhtar, Nahid; Khan, Abubakar; Khan, Khursheed A.

    2010-01-01

    Activation of mast cells in rheumatoid synovial tissue has often been associated with tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 production and disease pathogenesis by adjacent cell types. Butea monosperma (BM) is a well known medicinal plant in India and the tropics. The aim of this study was to examine whether a standardized extract of BM flower (BME) could inhibit inflammatory reactions in human mast cells (HMC) using activated HMC-1 cells as a model. Four previously characterized polyphenols—butrin, isobutrin, isocoreopsin, and butein—were isolated from BME by preparative thin layer chromatography, and their purity and molecular weights were determined by liquid chromatography/mass spectrometry analysis. Our results showed that butrin, isobutrin, and butein significantly reduced the phorbol 12-myristate 13-acetate and calcium ionophore A23187-induced inflammatory gene expression and production of TNF-α, IL-6, and IL-8 in HMC-1 cells by inhibiting the activation of NF-κB. In addition, isobutrin was most potent in suppressing the NF-κB p65 activation by inhibiting IκBα degradation, whereas butrin and butein were relatively less effective. In vitro kinase activity assay revealed that isobutrin was a potent inhibitor of IκB kinase complex activity. This is the first report identifying the molecular basis of the reported anti-inflammatory effects of BME and its constituents butrin, isobutrin, and butein. The novel pharmacological actions of these polyphenolic compounds indicate potential therapeutic value for the treatment of inflammatory and other diseases in which activated mast cells play a role. PMID:20164300

  15. Resident Tissue-Specific Mesenchymal Progenitor Cells Contribute to Fibrogenesis in Human Lung Allografts

    PubMed Central

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H.; Keshamouni, Venkateshwar G.; Peters-Golden, Marc; Lama, Vibha N.

    2011-01-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft–derived MSCs uniquely express embryonic lung mesenchyme–associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. PMID:21641374

  16. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts.

    PubMed

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H; Keshamouni, Venkateshwar G; Peters-Golden, Marc; Lama, Vibha N

    2011-06-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Two mathematical models for predicting dispersion of particles in the human lung.

    PubMed

    Ganser, G H; Christie, I; McCawley, M A

    2007-02-01

    The dispersion of particles in the human lung is modeled as a series of virtual mixing tanks. Using the experimental results of Scherer et al. (1975, J. Appl. Physiol., 38(4), pp. 719-723) for a five-generation glass lung model, it is shown that each generation of the glass lung behaves like an independent virtual mixing tank. The corresponding resident time distribution is shown to have a variance approximately equal to the square of the average time a particle spends in the generation. By assuming that each generation of the human lung behaves as an independent virtual mixing tank, the realistic lung data provided by Weibel (1963, Morphometry of the Human Lung, Spinger-Verlag, New York) are used to validate this assumption in two ways. First, the half-width of the exhaled particle concentration profile is obtained. Second, a system of differential equations, with the concentration of particles in each mixing tank as its solution, is derived and solved numerically. This gives the exhaled concentration profile. Both techniques yield similar results to each other, and both give excellent agreement with the experimental data. The virtual mixing tank approach allows the complex mixing that occurs in the branching pathways of the lung to be more simply modeled. The model, thereby derived, is simple to change and could lead to enhancements in the understanding of the underlying processes contributing to the ventilation of the lung in health and disease.

  18. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  19. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  20. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  1. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  2. Mast Wake Reduction by Shaping

    DTIC Science & Technology

    2005-11-03

    piercing masts, hydrofoil boats 4 and oilrig platforms. Incorporating the technology will also 5 reduce the wave heights generated by such marine...on the 4 leading and trailing edges of the mast. For example: a I 5 caliber ogive with no straight mid-sections results in a 6 thickness to chord ratio...trailing edges of the mast. More specifically a 1 3 caliber ogive with no straight mid-sections results in a 4 thickness to chord ratio of 0.5 and has

  3. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  4. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation.

    PubMed

    Gennai, S; Monsel, A; Hao, Q; Park, J; Matthay, M A; Lee, J W

    2015-09-01

    The need to increase the donor pool for lung transplantation is a major public health issue. We previously found that administration of mesenchymal stem cells "rehabilitated" marginal donor lungs rejected for transplantation using ex vivo lung perfusion. However, the use of stem cells has some inherent limitation such as the potential for tumor formation. In the current study, we hypothesized that microvesicles, small anuclear membrane fragments constitutively released from mesenchymal stem cells, may be a good alternative to using stem cells. Using our well established ex vivo lung perfusion model, microvesicles derived from human mesenchymal stem cells increased alveolar fluid clearance (i.e. ability to absorb pulmonary edema fluid) in a dose-dependent manner, decreased lung weight gain following perfusion and ventilation, and improved airway and hemodynamic parameters compared to perfusion alone. Microvesicles derived from normal human lung fibroblasts as a control had no effect. Co-administration of microvesicles with anti-CD44 antibody attenuated these effects, suggesting a key role of the CD44 receptor in the internalization of the microvesicles into the injured host cell and its effect. In summary, microvesicles derived from human mesenchymal stem cells were as effective as the parent mesenchymal stem cells in rehabilitating marginal donor human lungs. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: Implications for hyperoxic lung injury

    SciTech Connect

    Bhakta, Kushal Y. Jiang, Weiwu; Couroucli, Xanthi I.; Fazili, Inayat S.; Muthiah, Kathirvel; Moorthy, Bhagavatula

    2008-12-01

    Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD.

  6. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    SciTech Connect

    Mak, J.C.; Barnes, P.J. )

    1990-06-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  7. Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors

    PubMed Central

    Zorzan, Eleonora; Hanssens, Katia; Giantin, Mery; Dacasto, Mauro; Dubreuil, Patrice

    2015-01-01

    Introduction Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10–30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs. Methods Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the “human-like” hot spot mutations of listed genes. Results No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples. Conclusion Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM. PMID:26562302

  8. Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors.

    PubMed

    Zorzan, Eleonora; Hanssens, Katia; Giantin, Mery; Dacasto, Mauro; Dubreuil, Patrice

    2015-01-01

    Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10-30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs. Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the "human-like" hot spot mutations of listed genes. No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples. Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM.

  9. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    PubMed

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  10. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Li, C.-H.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    Rationale and Objectives The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. Materials and Methods In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a “walk-in” capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. Results Initial results include two-dimensional lung images acquired with ~ 4 × 8 mm in-plane resolution and three-dimensional images with ~ 2 cm slice thickness. Conclusion Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical. PMID:18486009

  11. Reduced Gravity and Aerosol Deposition in the Human Lung

    NASA Astrophysics Data System (ADS)

    Darquenne, C.; Prisk, G. K.

    2017-06-01

    Studies during parabolic flights showed a significant effect of gravity on the amount and site of aerosol deposition in the lung, which may affect subsequent clearance and greatly increase the toxicological impact of inhaled lunar or martian dust.

  12. Immunotherapy and mast cell activation.

    PubMed

    Carlos, A G; Carlos, M L; Santos, M A; Pedro, E; Santos, S; Lopes-Pregal, A

    1998-10-01

    Tryptase is the more specific markers for mast cell activation and mediators release and can be used as an index of mast cell activation after challenge. Nasal provocation tests have been done in patients allergic to the pollen of Parietaria (pellitory wall) before and after specific systemic immunotherapy and tryptase release evaluated in nasal lavage fluid. After specific immunotherapy the concentration of tryptase in nasal lavage was significantly decreased to all the concentrations used in challenge and the peack of tryptase release was delayed. These results confirm that assays of tryptase in nasal fluid after nasal provocation are a reliable markers of mast cell activation. Immunotherapy with specific allergen decreases mast cell reactivity to the same allergen.

  13. Human Lung Carcinoma Reaction against Metabolic Serum Deficiency Stress

    PubMed Central

    Nakhjavani, Maryam; Nikounezhad, Nastaran; Ashtarinezhad, Azadeh; Shirazi, Farshad H.

    2016-01-01

    Cancer treatment is still of the greatest challenges that health care providers and patients are facing. One of the unsolved problems in cancer treatment is cells’ reaction to metabolic stress caused by harsh nutritional conditions around tumor. In order to be able to treat this disease properly, it is important to understand the true nature of the disease. In fact, the cells inside the central part of the tumor lack sufficient access to blood vessels, nutrients, and growth signals. After tumor shrinkage, the cells are exposed to favorable environmental conditions and might regrow and cause tumor recurrence. The main purpose of this study was to investigate the effect of serum starvation, as a type of metabolic stress, on human lung cancer cell line, A549. These cells were treated with 10% (control), 0.5% and 0.25% serum for 1 to 5 days. At 24 h intervals, the cells were released with 10% serum supplemented media. Starved or released cells were studied for their cycle and morphology. The results showed that the cells were actually arrested at G1 phase and following exposure to optimal conditions, the cells could be back to their cycle again. Furthermore, sub-G1 apoptotic cells population was not increased within the starvation period, while control cells had significant increase in sub-G1 cells. Morphological studies also showed that starved cells could make denser colonies while control cells were entering death phase. These observations provide some evidence for the generation of some effective resistance phenomena in cancer cells against harsh metabolic conditions. PMID:28243278

  14. 27-Hydroxycholesterol accelerates cellular senescence in human lung resident cells.

    PubMed

    Hashimoto, Yuichiro; Sugiura, Hisatoshi; Togo, Shinsaku; Koarai, Akira; Abe, Kyoko; Yamada, Mitsuhiro; Ichikawa, Tomohiro; Kikuchi, Takashi; Numakura, Tadahisa; Onodera, Katsuhiro; Tanaka, Rie; Sato, Kei; Yanagisawa, Satoru; Okazaki, Tatsuma; Tamada, Tsutomu; Kikuchi, Toshiaki; Hoshikawa, Yasushi; Okada, Yoshinori; Ichinose, Masakazu

    2016-06-01

    Cellular senescence is reportedly involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously showed that 27-hydroxycholesterol (27-OHC) is elevated in the airways of COPD patients compared with those in healthy subjects. The aim of this study was to investigate whether lung fibroblasts of COPD patients are senescent and to determine the effects of 27-OHC on senescence of lung resident cells, including fibroblasts and airway epithelial cells. Localization of senescence-associated proteins and sterol 27-hydroxylase was investigated in the lungs of COPD patients by immunohistochemical staining. To evaluate whether 27-OHC accelerates cellular senescence, lung resident cells were exposed to 27-OHC. Senescence markers and fibroblast-mediated tissue repair were investigated in the 27-OHC-treated cells. Expression of senescence-associated proteins was significantly enhanced in lung fibroblasts of COPD patients. Similarly, expression of sterol 27-hydroxylase was significantly upregulated in lung fibroblasts and alveolar macrophages in these patients. Treatment with the concentration of 27-OHC detected in COPD airways significantly augmented expression of senescence-associated proteins and senescence-associated β-galactosidase activity, and delayed cell growth through the prostaglandin E2-reactive nitrogen species pathway. The 27-OHC-treated fibroblasts impaired tissue repair function. Fibroblasts from lungs of COPD patients showed accelerated senescence and were more susceptible to 27-OHC-induced cellular senescence compared with those of healthy subjects. In conclusion, 27-OHC accelerates cellular senescence in lung resident cells and may play a pivotal role in cellular senescence in COPD. Copyright © 2016 the American Physiological Society.

  15. A computational model of the topographic distribution of ventilation in healthy human lungs

    PubMed Central

    Swan, Annalisa J; Clark, Alys R; Tawhai, Merryn H

    2012-01-01

    The topographic distribution of ventilation in the lungs is determined by the interaction of several factors, including lung shape, airway tree geometry, posture, and tissue deformation. Inter-species differences in lung structure-function and technical difficulty in obtaining high resolution imaging of the upright human lung mean that it is not straightforward to experimentally determine the contribution of each of these factors to ventilation distribution. We present a mathematical model for predicting the topological distribution of inhaled air in the upright healthy human lung, based on anatomically-structured model geometries and biophysical equations for model function. Gravitational deformation of the lung tissue is predicted using a continuum model. Air flow is simulated in anatomically-based conducting airways coupled to geometrically simplified terminal acinar units with varying volume-dependent compliances. The predicted ventilation distribution is hence governed by local tissue density and elastic recoil pressure, airway resistance and acinar compliance. Results suggest that there is significant spatial variation in intrinsic tissue properties in the lungs. The model confirms experimental evidence that in the healthy lungs tissue compliance has a far greater effect than airway resistance on the spatial distribution of ventilation, and hence a realistic description of tissue deformation is essential in models of ventilation. PMID:22326472

  16. Genome-Wide Transcriptional Profiling Reveals Connective Tissue Mast Cell Accumulation in Bronchopulmonary Dysplasia

    PubMed Central

    Bhattacharya, Soumyaroop; Go, Diana; Krenitsky, Daria L.; Huyck, Heidi L.; Solleti, Siva Kumar; Lunger, Valerie A.; Metlay, Leon; Srisuma, Sorachai; Wert, Susan E.; Pryhuber, Gloria S.

    2012-01-01

    Rationale: Bronchopulmonary dysplasia (BPD) is a major complication of premature birth. Risk factors for BPD are complex and include prenatal infection and O2 toxicity. BPD pathology is equally complex and characterized by inflammation and dysmorphic airspaces and vasculature. Due to the limited availability of clinical samples, an understanding of the molecular pathogenesis of this disease and its causal mechanisms and associated biomarkers is limited. Objectives: Apply genome-wide expression profiling to define pathways affected in BPD lungs. Methods: Lung tissue was obtained at autopsy from 11 BPD cases and 17 age-matched control subjects without BPD. RNA isolated from these tissue samples was interrogated using microarrays. Standard gene selection and pathway analysis methods were applied to the data set. Abnormal expression patterns were validated by quantitative reverse transcriptase–polymerase chain reaction and immunohistochemistry. Measurements and Main Results: We identified 159 genes differentially expressed in BPD tissues. Pathway analysis indicated previously appreciated (e.g., DNA damage regulation of cell cycle) as well as novel (e.g., B-cell development) biological functions were affected. Three of the five most highly induced genes were mast cell (MC)-specific markers. We confirmed an increased accumulation of connective tissue MCTC (chymase expressing) mast cells in BPD tissues. Increased expression of MCTC markers was also demonstrated in an animal model of BPD-like pathology. Conclusions: We present a unique genome-wide expression data set from human BPD lung tissue. Our data provide information on gene expression patterns associated with BPD and facilitated the discovery that MCTC accumulation is a prominent feature of this disease. These observations have significant clinical and mechanistic implications. PMID:22723293

  17. Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells.

    PubMed

    Ko, Seok-Chun; Lee, Dae-Sung; Park, Won Sun; Yoo, Jong Su; Yim, Mi-Jin; Qian, Zhong-Ji; Lee, Chang-Min; Oh, Junghwan; Jung, Won-Kyo; Choi, Il-Whan

    2016-01-01

    The aim of the present study was to examine whether the intestine gastrointestinal (GI) digests of abalone [Haliotis discus hannai (H. discus hannai)] modulate inflammatory responses and to elucidate the mechanisms involved. The GI digests of the abalone intestines were fractionated into fractions I (>10 kDa), II (5-10 kDa) and Ⅲ (<5 kDa). Of the abalone intestine GI digests (AIGIDs), fraction Ⅲ inhibited the passive cutaneous anaphylaxis (PCA) reaction in mice. Subsequently, a bioactive peptide [abalone intestine GI digest peptide (AIGIDP)] isolated from fraction Ⅲ was determined to be 1175.2 Da, and the amino acid sequence was found to be PFNQGTFAS. We noted that the purified nonameric peptide (AIGIDP) attenuated the phorbol‑12‑myristate 13-acetate plus calcium ionophore A23187 (PMACI)-induced histamine release and the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in human mast cells (HMC-1 cells). In addition, we also noted that AIGIDP inhibited the PMACI‑induced activation of nuclear factor‑κB (NF-κB) by suppressing IκBα phosphorylation and that it suppressed the production of cytokines by decreasing the phosphorylation of JNK. The findings of our study indicate that AIGIDP exerts a modulatory, anti-allergic effect on mast cell-mediated inflammatory diseases.

  18. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkappaB/NF-kappaB signal cascade in the human mast cell line HMC-1.

    PubMed

    Moon, Phil-Dong; Lee, Byung-Hee; Jeong, Hyun-Ja; An, Hyo-Jin; Park, Seok-Jae; Kim, Hyung-Ryong; Ko, Seong-Gyu; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2007-01-26

    Scopoletin (6-methoxy-7-hydroxycoumarin) is a coumarin compound and a pharmacologically active agent that has been isolated from several plant species. However, as yet there is no clear explanation of how scopoletin affects the production of inflammatory cytokine. We therefore used cells from the human mast cell line (HMC-1) to investigate this effect. Scopoletin significantly and dose-dependently inhibits the way in which phorbol 12-myristate 13-acetate (PMA) plus A23187 induces the production of inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-8 (P<0.05). The maximal rates at which scopoletin (0.2 mM) inhibited the production of TNF-alpha, IL-6, and IL-8 were 41.6%+/-4.2%, 71.9%+/-2.5%, and 43.0%+/-5.7%, respectively. In activated HMC-1 cells, the expression level of nuclear factor (NF)-kappaB/Rel A protein was increased in the nucleus whereas the level of NF-kappaB/Rel A in nucleus was decreased by treatment with scopoletin. Scopoletin decreased PMA plus A23187-induced luciferase activity. Scopoletin also inhibits IkappaBalpha phosphorylation and degradation in cytoplasm. These results indicate that scopoletin has a potential regulatory effect on inflammatory reactions that are mediated by mast cells.

  19. Dexamethasone rapidly suppresses IL-33-stimulated mast cell function by blocking transcription factor activity.

    PubMed

    Paranjape, Anuya; Chernushevich, Oksana; Qayum, Amina Abdul; Spence, Andrew J; Taruselli, Marcela T; Abebayehu, Daniel; Barnstein, Brian O; McLeod, Jamie Josephine Avila; Baker, Bianca; Bajaj, Gurjas S; Chumanevich, Alena P; Oskeritzian, Carole A; Ryan, John J

    2016-12-01

    Mast cells are critical effectors of allergic disease and can be activated by IL-33, a proinflammatory member of the IL-1 cytokine family. IL-33 worsens the pathology of mast cell-mediated diseases, but therapies to antagonize IL-33 are still forthcoming. Because steroids are the mainstay of allergic disease treatment and are well known to suppress mast cell activation by other stimuli, we examined the effects of the steroid dexamethasone on IL-33-mediated mast cell function. We found that dexamethasone potently and rapidly suppressed cytokine production elicited by IL-33 from murine bone marrow-derived and peritoneal mast cells. IL-33 enhances IgE-mediated mast cell cytokine production, an activity that was also antagonized by dexamethasone. These effects were consistent in human mast cells. We additionally observed that IL-33 augmented migration of IgE-sensitized mast cells toward antigen. This enhancing effect was similarly reversed by dexamethasone. Simultaneous addition of dexamethasone with IL-33 had no effect on the phosphorylation of MAP kinases or NFκB p65 subunit; however, dexamethasone antagonized AP-1- and NFκB-mediated transcriptional activity. Intraperitoneal administration of dexamethasone completely abrogated IL-33-mediated peritoneal neutrophil recruitment and prevented plasma IL-6 elevation. These data demonstrate that steroid therapy may be an effective means of antagonizing the effects of IL-33 on mast cells in vitro and in vivo, acting partly by suppressing IL-33-induced NFκB and AP-1 activity.

  20. Gs-coupled adenosine receptors differentially limit antigen-induced mast cell activation.

    PubMed

    Hua, Xiaoyang; Chason, Kelly D; Jania, Corey; Acosta, Tatiana; Ledent, Catherine; Tilley, Stephen L

    2013-02-01

    Mast cell activation results in the immediate release of proinflammatory mediators prestored in cytoplasmic granules, as well as initiation of lipid mediator production and cytokine synthesis by these resident tissue leukocytes. Allergen-induced mast cell activation is central to the pathogenesis of asthma and other allergic diseases. Presently, most pharmacological agents for the treatment of allergic disease target receptors for inflammatory mediators. Many of these mediators, such as histamine, are released by mast cells. Targeting pathways that limit antigen-induced mast cell activation may have greater therapeutic efficacy by inhibiting the synthesis and release of many proinflammatory mediators produced in the mast cell. In vitro studies using cultured human and mouse mast cells, and studies of mice lacking A(2B) receptors, suggest that adenosine receptors, specifically the G(s)-coupled A(2A) and A(2B) receptors, might provide such a target. Here, using a panel of mice lacking various combinations of adenosine receptors, and mast cells derived from these animals, we show that adenosine receptor agonists provide an effective means of inhibition of mast cell degranulation and induction of cytokine production both in vitro and in vivo. We identify A(2B) as the primary receptor limiting mast cell degranulation, whereas the combined activity of A(2A) and A(2B) is required for the inhibition of cytokine synthesis.

  1. Pulmonary malformation in transgenic mice expressing human keratinocyte growth factor in the lung.

    PubMed Central

    Simonet, W S; DeRose, M L; Bucay, N; Nguyen, H Q; Wert, S E; Zhou, L; Ulich, T R; Thomason, A; Danilenko, D M; Whitsett, J A

    1995-01-01

    Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching