Science.gov

Sample records for human lung microsomes

  1. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. [Rats, rabbits, mice, human

    SciTech Connect

    Kornbrust, D.J.; Mavis, R.D.

    1980-01-01

    Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely among different tissues and species. In rats and rabbits, lung microsomes peroxidized at 25- to 50-fold lower rate than liver, kidney, testes and brain microsomes. Heart microsomes peroxidized at a rate slightly greater than, but most similar to, lung microsomes. Comparison of tissue homogenates also revealed the unique resistance of lung and heart to lipid peroxidation. Higher rates of peroxidation in mouse lung microsomes relative to rabbit, rat and human lung microsomes were similarly correlated with a lower ratio of vitamin E to peroxidizable fatty acids in mouse lung microsomes. These data provide strong support for the role of vitamin E as the major cellular antioxidant, especially in the highly oxygenated tissues of heart and lung, and demonstrate the utility of the microsomal system in characterizing tissue differences in susceptibility to peroxidative membrane decomposition.

  2. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes

    SciTech Connect

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Morre, Jeffrey T.; Krueger, Sharon K.; Williams, David E.

    2008-12-15

    Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.

  3. Stereoselective biotransformation of ketamine in equine liver and lung microsomes

    PubMed Central

    Schmitz, A.; Portier, C. J.; Thormann, W.; Theurillat, R.; Mevissen, M.

    2010-01-01

    Stereoselectivity has to be considered for pharmacodynamic and pharmacokinetic features of ketamine. Stereoselective biotransformation of ketamine was investigated in equine microsomes in vitro. Concentration curves were constructed over time, and enzyme activity was determined for different substrate concentrations using equine liver and lung microsomes. The concentrations of R/S-ketamine and R/S-norketamine were determined by enantioselective capillary electrophoresis. A two-phase model based on Hill kinetics was used to analyze the biotransformation of R/S-ketamine into R/S-norketamine and, in a second step, into R/S-downstream metabolites. In liver and lung microsomes, levels of R-ketamine exceeded those of S-ketamine at all time points and S-norketamine exceeded R-norketamine at time points below the maximum concentration. In liver and lung microsomes, significant differences in the enzyme velocity (Vmax) were observed between Sand R-norketamine formation and between Vmax of S-norketamine formation when S-ketamine was compared to S-ketamine of the racemate. Our investigations in microsomal reactions in vitro suggest that stereoselective ketamine biotransformation in horses occurs in the liver and the lung with a slower elimination of S-ketamine in the presence of R-ketamine. Scaling of the in vitro parameters to liver and lung organ clearances provided an excellent fit with previously published in vivo data and confirmed a lung first-pass effect. PMID:19000264

  4. Prostaglandin synthesis by chicken and rat lung microsomes

    SciTech Connect

    Craig-Schmidt, M.C.; Faircloth, S.A.; Wu-Wang, C.Y.

    1986-03-01

    A comparison between chicken and rat lung was made for microsomal prostaglandin (PG) synthesis from 1-/sup 14/C-arachidonic acid. Microsomal protein (2.0 mg) from chicken or rat lung was incubated in the presence of 20 ..mu..g of 1-/sup 14/C-arachidonic acid (specific activity = 3 x 10/sup 6/ dpm/..mu..mol for chicken; 6 x 10/sup 6/ dpm/..mu..mol for rat), 0.05 M Tris-HCl buffer (pH = 8.0), 0.5 mM epinephrine, and 1 mM reduced glutathione in a total volume of 0.5 ml in a 37/sup 0/C water bath with shaking for 15 min. After acidification with 1 M HCl to pH 3, prostaglandins were extracted with ethyl acetate. The products of the reactions were separated by reversed phase chromatography, and the radioactivity of each prostanoid fraction was determined. The predominant prostanoid synthesized by chicken lung microsomes was PGE/sub 2/, followed by much lower amounts of thromboxane B/sub 2/ (TXB/sub 2/), PGF/sub 2//sub ..cap alpha../ and PGD/sub 2/. In at lung, 6-keto-PGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGE/sub 1/, TXB/sub 2/, PGF/sub 2//sub ..cap alpha../ and PGD/sub 2/. In rat lung, 6-keto-FGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGE/sub 1/, TXB/sub 2/, PGF/sub 2//sub ..cap alpha../, PGE/sub 2/ and PGD/sub 2/ being formed. Enzyme specific activity (pmol of PG produced per mg microsomal protein per min) was 11.9 for PGE/sub 2/ produced by chicken lung and 16. 7 for 6-keto-P/sub 1//sub ..cap alpha../ produced by rat lung. Thus, there appears to be a species variation in chicken compared to rat for the lung prostanoids which are known to cause bronchial dilation.

  5. Cyclosporin metabolism by human gastrointestinal mucosal microsomes.

    PubMed Central

    Webber, I R; Peters, W H; Back, D J

    1992-01-01

    The in vitro metabolism of the immunosuppressant cyclosporin (CsA) by human gastrointestinal mucosal microsomes has been studied. Macroscopically normal intestinal (n = 4) and liver (n = 2) tissue was obtained from kidney transplant donors, and microsomes prepared. Intestinal metabolism was most extensive with duodenal protein (15% conversion to metabolites M1/M17 after 2 h incubation at 37 degrees C; metabolite measurement by h.p.l.c). Western blotting confirmed the presence of P-4503A (enzyme subfamily responsible for CsA metabolism) in duodenum and ileum tissue, but not in colon tissue. The results of this study indicate that the gut wall may play a role in the first-pass metabolism of CsA, and could therefore be a contributory factor to the highly variable oral bioavailability of CsA. PMID:1389941

  6. Human liver microsomal metabolism of (+)-discodermolide.

    PubMed

    Fan, Yun; Schreiber, Emanuel M; Day, Billy W

    2009-10-01

    The polyketide natural product (+)-discodermolide is a potent microtubule stabilizer that has generated considerable interest in its synthetic, medicinal, and biological chemistry. It progressed to early clinical oncology trials, where it showed some efficacy in terms of disease stabilization but also some indications of causing pneumotoxicity. Remarkably, there are no reports of its metabolism. Here, we examined its fate in mixed human liver microsomes. Due to limited availability of the agent, we chose a nanoflow liquid chromatography-electrospray ionization-mass spectrometry analytical approach employing quadrupolar ion trap and quadrupole-quadrupole-time-of-flight instruments for these studies. (+)-Discodermolide was rapidly converted to eight metabolites, with the left-side lactone (net oxidation) and the right-side diene (epoxidation followed by hydrolysis, along with an oxygen insertion product) being the most metabolically labile sites. Other sites of metabolism were the allylic and pendant methyl moieties in the C12-C14 region of the molecule. The results provide information on the metabolic soft spots of the molecule and can be used in further medicinal chemistry efforts to optimize discodermolide analogues.

  7. Etoxazole is Metabolized Enantioselectively in Liver Microsomes of Rat and Human in Vitro.

    PubMed

    Yao, Zhoulin; Qian, Mingrong; Zhang, Hu; Nie, Jing; Ye, Jingqing; Li, Zuguang

    2016-09-01

    Acaricide etoxazole belongs to the ovicides/miticides diphenyloxazole class, affecting adults to lay sterile eggs by inhibiting chitin biosynthesis possibly. The reverse-phase HPLC-MS/MS method was used to determine the etoxazole enantiomers. The enantioselective degradation behavior of rac-etoxazole in liver microsomes of rat and human in vitro with NADPH was dramatically different. The t1/2 of (R)-etoxazole was 15.23 min in rat liver microsomes and 30.54 min in human liver microsomes, while 21.73 and 23.50 min were obtained for (S)-etoxazole, respectively. The Vmax of (R)-etoxazole was almost 5-fold of (S)-etoxazole in liver microsomes of rat in vitro. However, the Vmax of (S)-etoxazole was almost 2-fold of (R)-etoxazole in liver microsomes of human in vitro. The CLint of etoxazole was also shown the enantioselectivity on the contrary in liver microsomes of rat and human. These results indicated that the metabolism of two etoxazole enantiomers was selective in liver microsomes of rat and human in vitro, and enantioselectivity in the two kinds of liver microsomes was in the difference in degradation performance. The reason might be related to the composition and content involved in the enzyme system. PMID:27479246

  8. Coupled motions direct electrons along human microsomal P450 Chains.

    PubMed

    Pudney, Christopher R; Khara, Basile; Johannissen, Linus O; Scrutton, Nigel S

    2011-12-01

    Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR) to all microsomal cytochrome P450s (CYPs). Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron transfer along complex

  9. In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes.

    PubMed

    Maul, Ronald; Warth, Benedikt; Schebb, Nils Helge; Krska, Rudolf; Koch, Matthias; Sulyok, Michael

    2015-06-01

    The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate.

  10. Identification of human liver microsomal proteins adducted by a reactive metabolite using shotgun proteomics.

    PubMed

    Yang, Yanou; Xiao, Qing; Humphreys, W Griffith; Dongre, Ashok; Shu, Yue-Zhong

    2014-09-15

    Covalent modification of cellular proteins by chemically reactive compounds/metabolites has the potential to disrupt biological function and elicit serious adverse drug reactions. Information on the nature and binding patterns of protein targets are critical toward understanding the mechanism of drug induced toxicity. Protein covalent binding studies established in liver microsomes can quantitively estimate the extent of protein modification, but they provide little information on the nature of the modified proteins. In this article, we describe a label-free shotgun proteomic workflow for the identification of target proteins modified in situ by reactive metabolites in human liver microsome incubations. First, we developed a shotgun proteomic workflow for the characterization of the human liver microsomal subproteome, which consists of predominately membrane-bound proteins. Human liver microsomes were solubilized with a combination of MS-compatible organic solvents followed by protein reduction, alkylation, and tryptic digestion. The unmodified samples were analyzed by UHPLC-MS/MS, and the proteins were identified by database searching. This workflow led to the successful identification of 329 human liver microsomal subproteome proteins with 1% FDR (false discovery rate). The same method was then applied to identify the modifications of human liver microsomal proteins by a known reactive metabolite 2-(methylsulfonyl)benzo[d]thiazole (2), either after incubation directly with 2 or with its parent compound 2-(methylthio)benzo[d]thiazole (1). A total of 19 modified constituent peptides which could be mapped to 18 proteins were identified in human liver microsomes incubated directly with 2. Among these, 5 modified constituent peptides which could be mapped to 4 proteins were identified in incubation with 1, which is known to generate 2 in human liver microsomal incubations. This label-free workflow is generally applicable to the identification and characterization of

  11. Transesterification of a series of 12 parabens by liver and small-intestinal microsomes of rats and humans.

    PubMed

    Fujino, Chieri; Watanabe, Yoko; Uramaru, Naoto; Kitamura, Shigeyuki

    2014-02-01

    Hydrolytic transformation of parabens (4-hydroxybenzoic acid esters; used as antibacterial agents) to 4-hydroxybenzoic acid and alcohols by tissue microsomes is well-known both in vitro and in vivo. Here, we investigated transesterification reactions of parabens catalyzed by rat and human microsomes, using a series of 12 parabens with C1-C12 alcohol side chains. Transesterification of parabens by rat liver and small-intestinal microsomes occurred in the presence of alcohols in the microsomal incubation mixture. Among the 12 parabens, propylparaben was most effectively transesterified by rat liver microsomes with methanol or ethanol, followed by butylparaben. Relatively low activity was observed with longer-side-chain parabens. In contrast, small-intestinal microsomes exhibited higher activity towards moderately long side-chain parabens, and showed the highest activity toward octylparaben. When parabens were incubated with liver or small-intestinal microsomes in the presence of C1-C12 alcohols, ethanol and decanol were most effectively transferred to parabens by rat liver microsomes and small-intestinal microsomes, respectively. Human liver and small-intestinal microsomes also exhibited significant transesterification activities with different substrate specificities, like rat microsomes. Carboxylesterase isoforms, CES1b and CES1c, and CES2, exhibited significant transesterification activity toward parabens, and showed similar substrate specificity to human liver and small-intestinal microsomes, respectively.

  12. Glycerophosphate acylation by microsomes and mitochondria of normal and dystrophic human muscle.

    PubMed

    Kunze, D; Rüstow, B; Olthoff, D

    1984-07-16

    The incorporation of [14C]glycerophosphate into phosphatidic acid, diacylglycerol, triacylglycerol and phosphatidylcholine by microsomes and mitochondria prepared from normal and dystrophic human muscle incubated in vitro in the presence of 0.3 mmol/l CDP-choline was measured. In mitochondria only phosphatidic acid and diacylglycerol are labelled; the rate of incorporation into these two compounds showed no difference between dystrophic and normal mitochondria. In dystrophic microsomes the incorporation into phosphatidic acid was delayed and decreased. No incorporation of glycerol into diacylglycerol, phosphatidylcholine and triacylglycerol could be measured. Thus in dystrophic muscle microsomes only PA was labelled during an incubation of up to 45 min. In both types of microsomes the concentration of endogenous free fatty acids and diacylglycerol was nearly identical. The level of phosphatidylcholine was 186 and 79 nmol/mg microsomal protein in normal and dystrophic muscle microsomes, respectively. Whether the results could be explained as secondary changes was discussed. Despite some unsolved problems the conclusion was drawn that a better explanation of the results is to assume a primary defect involving microsomal-bound phosphatidic acid phosphohydrolase and possibly glycerol-P-acyltransferases.

  13. Metabolism of 17α-hydroxyprogesterone caproate by hepatic and placental microsomes of human and baboons

    PubMed Central

    Yan, Ru; Nanovskaya, Tatiana N.; Zharikova, Olga L.; Mattison, Donald R.; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2008-01-01

    Recent data from our laboratory revealed the formation of an unknown metabolite of 17 hydroxyprogestrone caproate (17-HPC), used for treatment of preterm deliveries, during its perfusion across the dually perfused human placental lobule. Previously, we demonstrated that the drug is not hydrolyzed, neither in vivo nor in vitro, to progesterone and caproate. Therefore, the hypothesis for this investigation is that 17-HPC is actively metabolized by human and baboon (Papio cynocephalus) hepatic and placental microsomes. Baboon hepatic and placental microsomes were investigated to validate the nonhuman primate as an animal model for drug use during pregnancy. Data presented here indicate that human and baboon hepatic microsomes formed several mono-, di-, and tri-hydroxylated derivatives of 17-HPC. However, microsomes of human and baboon placentas metabolized 17-HPC to its mono-hydroxylated derivatives only in quantities that were a fraction of those formed by their respective livers, except for two metabolites (M16’ and M17’) that are unique for placenta and contributed to 25% and 75% of the total metabolites formed by human and baboon, respectively. The amounts of metabolites formed, relative to each other, by human and baboon microsomes were different suggesting that the affinity of 17-HPC to CYP enzymes and their activity could be species-dependent. PMID:18329004

  14. Metabolism of chamaechromone in vitro with human liver microsomes and recombinant human drug-metabolizing enzymes.

    PubMed

    Lou, Yan; Hu, Haihong; Qiu, Yunqing; Zheng, Jinqi; Wang, Linrun; Zhang, Xingguo; Zeng, Su

    2014-04-01

    Chamaechromone is a major component in the dried roots of Stellera chamaejasme with antihepatitis B virus and insecticidal activity. In this study, metabolic profiles of chamaechromone were investigated in human liver microsomes. One monohydroxide and two monoglucuronides of chamaechromone were identified. The enzyme kinetics for both hydroxylation and glucuronidation were fitted to the Michaelis-Menten equation. The hydroxylation of chamaechromone was inhibited by α-naphthoflavone, and predominantly catalyzed by recombinant human cytochrome P450 1A2, whereas the glucuronidation was inhibited by quercetin, 1-naphthol, and fluconazole, and mainly catalyzed by recombinant human UDP-glucuronosyltransferase 1A3, 1A7, 1A9, and 2B7.

  15. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants.

    PubMed

    Václavíková, Radka; Horský, Stanislav; Simek, Petr; Gut, Ivan

    2003-09-01

    Paclitaxel is an important, recently introduced anti-neoplastic drug. Paclitaxel metabolites are virtually inactive in comparison with the parent drug. The study investigated whether phenolic antioxidants could inhibit metabolic inactivation sufficiently to increase paclitaxel effects. Cytochrome p450 (CYP)-catalysed metabolism of paclitaxel was investigated in rat and human liver microsomes. In rat microsomes, paclitaxel was metabolised mainly to C3'-hydroxypaclitaxel (C3'-OHP), less to C2-hydroxypaclitaxel (C2-OHP), di-hydroxypaclitaxel (di-OHP) and another monohydroxylated paclitaxel. In human liver microsomes, 6alpha-hydroxypaclitaxel (6alpha-OHP), formed by CYP2C8, was the main metabolite, while C3'-OHP, C2-OHP and another product different from di-OHP were minor metabolites, formed by CYP3A4. In individual human livers 6alpha-OHP was formed at 1.8-fold to 13-fold higher rates than C3'-OHP. Kinetic parameters (K(m) and V(max)) of production of various metabolites in rat and human liver microsomes revealed differences between species as well as human individual differences. Nine phenolic antioxidants ((+)-catechin, (-)-epicatechin, fisetin, gallic acid, morin, myricetin, naringenin, quercetin and resveratrol) were tested for inhibition of paclitaxel metabolism. In rat microsomes, resveratrol was more inhibitory than fisetin; the other phenolic antioxidants were without effect. In human microsomes, the inhibiting potency decreased in the order fisetin >quercetin >morin >resveratrol, while the other phenolic antioxidants were not inhibitory; the formation of 6alpha-OHP (CYP2C8) was generally more inhibited than that of C3'-OHP. The inhibition was mostly mixed-type. The results suggest that oral administration of some phenolic substances might increase paclitaxel blood concentrations during chemotherapy.

  16. Liver and lung microsomal metabolism of the tobacco alkaloid beta-nicotyrine.

    PubMed

    Shigenaga, M K; Kim, B H; Caldera-Munoz, P; Cairns, T; Jacob, P; Trevor, A J; Castagnoli, N

    1989-01-01

    The in vitro metabolic fate of beta-nicotyrine has been examined in rabbit lung and liver microsomal preparations as part of an effort to characterize the formation of potentially reactive metabolic species that may contribute to the toxic properties of tobacco products. HPLC analysis revealed the formation of an unstable metabolite which displayed HPLC-MS/MS characteristics consistent with the structure 1-methyl-5-(3-pyridyl)-3-pyrrolin-2-one. Attempted synthesis of this pyrrolinone, however, resulted in the isolation of the isomeric 1-methyl-5-(3-pyridyl)-2-pyrrolin-2-one. The HPLC, diode array UV, and mass spectral characteristics of this delta 4,5-isomer proved to be identical with those of the metabolite derived from beta-nicotyrine. Studies in D2O suggest that the 2- and 3-pyrrolinones are in equilibrium in aqueous solution. The metabolite undergoes autoxidation, possibly via radical intermediates, to yield 1-methyl-5-(3-pyridyl)-5-hydroxy-3-pyrrolin-2-one.

  17. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  18. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  19. The metabolism of trifluoperazine (TFP) exhibits atypical kinetic behavior in both human liver microsomes (HLMs) and monkey liver microsomes (MyLM).

    PubMed

    Xiao, Jin-Fang; Liu, Xiao-Jun; Liu, Gao-Wang; Yang, Xue-Ying; Xiao, Pan; Hou, Xiao-Min; Wang, Hai-Tang; Tang, Jian-Jun; Zhang, Ya-Ting; Zhen, Chen; Fang, Hai-Hong

    2014-12-01

    Glucuronidation reaction of trifluoperazine (TFP) is a typical probe reaction to phenotype the activity of UDP-glucuronosyltransferase 1A4. The present study aims to compare the metabolic behavior of TFP in the liver microsomes from human and cynomolgus monkey, including the kinetic type and parameters. In vitro human liver microsome incubation system was used. The Eadie-Hofstee plot was used to determine the kinetic type. The results showed that the data for human liver microsomes (HLMs) and monkey liver microsomes (MyLMs)-catalyzed glucuronidation were best fit to the substrate inhibition model. For the metabolism of TFP in HLMs, the kinetic parameters were calculated to be 40 ± 5 and 140 ± 20 μM for K m and K si values, respectively. For the MyLM-mediated metabolism of TFP, the K m and K si values were calculated to be 108 ± 10 and 250 ± 30 μM, respectively. The same metabolic kinetic type and different kinetic parameters were demonstrated for the metabolism of TFP between HLMs and MyLMs. All these data were helpful for understanding the metabolism difference of TFP between human and monkey.

  20. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    PubMed

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-01

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  1. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo

    PubMed Central

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-01-01

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines. PMID:26635233

  2. Content and activity of human liver microsomal protein and prediction of individual hepatic clearance in vivo.

    PubMed

    Zhang, Haifeng; Gao, Na; Tian, Xin; Liu, Tingting; Fang, Yan; Zhou, Jun; Wen, Qiang; Xu, Binbin; Qi, Bing; Gao, Jie; Li, Hongmeng; Jia, Linjing; Qiao, Hailing

    2015-12-04

    The lack of information concerning individual variation in content and activity of human liver microsomal protein is one of the most important obstacles for designing personalized medicines. We demonstrated that the mean value of microsomal protein per gram of liver (MPPGL) was 39.46 mg/g in 128 human livers and up to 19-fold individual variations existed. Meanwhile, the metabolic activities of 10 cytochrome P450 (CYPs) were detected in microsomes and liver tissues, respectively, which showed huge individual variations (200-fold). Compared with microsomes, the activities of liver tissues were much suitable to express the individual variations of CYP activities. Furthermore, individual variations in the in vivo clearance of tolbutamide were successfully predicted with the individual parameter values. In conclusion, we offer the values for MPPGL contents in normal liver tissues and build a new method to assess the in vitro CYP activities. In addition, large individual variations exist in predicted hepatic clearance of tolbutamide. These findings provide important physiological parameters for physiologically-based pharmacokinetics models and thus, establish a solid foundation for future development of personalized medicines.

  3. Lung cancer risk in relation to genetic polymorphisms of microsomal epoxide hydrolase among African-Americans and Caucasians in Los Angeles County.

    PubMed

    London, S J; Smart, J; Daly, A K

    2000-05-01

    Microsomal epoxide hydrolase participates in the metabolism of benzo[a]pyrene, an important carcinogen in tobacco smoke. Two relatively common polymorphisms of the microsomal epoxide hydrolase gene that influence enzyme activity have been described. An association between genetic variation in microsomal epoxide hydrolase and lung cancer risk has been reported in one of two studies of Caucasians. We examined the relation between these two polymorphisms and lung cancer risk among 337 incident cases and 700 population controls of African-American and Caucasian ethnicity enrolled in a case-control study in Los Angeles County. African-Americans, homozygous for the exon 3 variant allele conferring reduced activity, were at decreased risk of lung cancer (odds ratio (OR)=0.08, 95% CI 0.01-0.62). When data from both the exon 3 and exon 4 polymorphisms were combined into indices of predicted microsomal epoxide hydrolase activity, a decreased risk was seen among African-American subjects with very low predicted activity OR=0.10 (95% CI 0.01-0.83). No comparable association was seen among Caucasians. Although the three published results for Caucasians are somewhat variable, the association among African-Americans in these data provides some support for the hypothesis that genetically reduced microsomal epoxide hydrolase activity may be protective against lung cancer.

  4. The tyrosine kinase inhibitor nilotinib selectively inhibits CYP2C8 activities in human liver microsomes.

    PubMed

    Kim, Min-Jung; Lee, Jae-Won; Oh, Kyung-Suk; Choi, Chang-Soo; Kim, Kwang Hee; Han, Won Seok; Yoon, Chang-No; Chung, Eun Sook; Kim, Dong-Hyun; Shin, Jae-Gook

    2013-01-01

    The tyrosine kinase inhibitor nilotinib was examined for its inhibition of cytochrome P450s (CYPs) in human liver microsomes and in human CYPs expressed in a baculovirus-insect cell system. Nilotinib demonstrated preferential inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation, rosiglitazone hydroxylation and amodiaquine N-deethylation in human liver microsomes, with IC₅₀ values of 0.4, 7.5 and 0.7 µM, respectively. The IC₅₀ value of nilotinib for paclitaxel 6α-hydroxylation was 20-fold lower than that of the other five tyrosine-kinase inhibitors tested. Nilotinib appears to display competitive inhibition against paclitaxel 6α-hydroxylation and amodiaquine N-deethylation, with estimated mean Ki values of 0.90 and 0.15 µM in human liver microsomes and 0.10 and 0.61 µM in recombinant human CYP2C8, respectively. These results are consistent with those of molecular docking simulations, where paclitaxel could not access the CYP2C8 catalytic site in the presence of nilotinib, but the binding of midazolam, a substrate of CYP3A4, to the catalytic site of CYP3A4 was not affected by nilotinib. The demonstrated inhibitory activity of nilotinib against CYP2C8 at concentrations less than those observed in patients who received nilotinib therapy is of potential clinical relevance and further in vivo exploration is warranted.

  5. Norcocaine and N-hydroxynorcocaine formation in human liver microsomes: role of cytochrome P-450 3A4.

    PubMed

    LeDuc, B W; Sinclair, P R; Shuster, L; Sinclair, J F; Evans, J E; Greenblatt, D J

    1993-05-01

    Cocaine was metabolized to norcocaine by microsomes prepared from lymphoblastoid cells expressing transfected human P-450 3A4. The specific activities of norcocaine formation by microsomes prepared from three human liver samples correlated with the amount of P-450 3A immunoreactive protein detected by immunoblot. Triacetyloleandomycin, a specific inhibitor of P-450 3A isoforms, inhibited formation of norcocaine from cocaine, but not formation of N-hydroxynorcocaine from norcocaine. The chemical identity of the norcocaine and N-hydroxynorcocaine produced by human liver microsomes was established by combination of gas chromatography and mass spectrometry. Thus, human P-450 3A4 is a cocaine demethylase, and P-450 isoforms of the 3A family are responsible for the majority of norcocaine production by human hepatic microsomes.

  6. Prediction of Drug-Induced Liver Injury in HepG2 Cells Cultured with Human Liver Microsomes.

    PubMed

    Choi, Jong Min; Oh, Soo Jin; Lee, Ji-Yoon; Jeon, Jang Su; Ryu, Chang Seon; Kim, Young-Mi; Lee, Kiho; Kim, Sang Kyum

    2015-05-18

    Drug-induced liver injury (DILI) via metabolic activation by drug-metabolizing enzymes, especially cytochrome P450 (CYP), is a major cause of drug failure and drug withdrawal. In this study, an in vitro model using HepG2 cells in combination with human liver microsomes was developed for the prediction of DILI. The cytotoxicity of cyclophosphamide, a model drug for bioactivation, was augmented in HepG2 cells cultured with microsomes in a manner dependent on exposure time, microsomal protein concentration, and NADPH. Experiments using pan- or isoform-selective CYP inhibitors showed that CYP2B6 and CYP3A4 are responsible for the bioactivation of cyclophosphamide. In a metabolite identification study employing LC-ESI-QTrap and LC-ESI-QTOF, cyclophosphamide metabolites including phosphoramide mustard, a toxic metabolite, were detected in HepG2 cells cultured with microsomes, but not without microsomes. The cytotoxic effects of acetaminophen and diclofenac were also potentiated by microsomes. The potentiation of acetaminophen cytotoxicity was dependent on CYP-dependent metabolism, and the augmentation of diclofenac cytotoxicity was not mediated by either CYP- or UDP-glucuronosyltransferase-dependent metabolism. The cytotoxic effects of leflunomide, nefazodone, and bakuchiol were attenuated by microsomes. The detoxication of leflunomide by microsomes was attributed to mainly CYP3A4-dependent metabolism. The protective effect of microsomes against nefazodone cytotoxicity was dependent on both CYP-mediated metabolism and nonspecific protein binding. Nonspecific protein binding but not CYP-dependent metabolism played a critical role in the attenuation of bakuchiol cytotoxicity. The present study suggests that HepG2 cells cultured with human liver microsomes can be a reliable model in which to predict DILI via bioactivation by drug metabolizing enzymes.

  7. VARIANCE OF MICROSOMAL PROTEIN AND CYTOCHROME P450 2E1 AND 3A FORMS IN ADULT HUMAN LIVER

    EPA Science Inventory

    Differences in the pharmacokinetics of xenobiotics among humans makes them differentially susceptible to risk. Differences in enzyme content can mediate pharmacokinetic differences. Microsomal protein is often isolated fromliver to characterize enzyme content and activity, but no...

  8. In vitro metabolism of a new cardioprotective agent, KR-32570, in human liver microsomes.

    PubMed

    Kim, Hyojin; Kang, Suil; Kim, Hyunmi; Yoon, Yune-Jung; Cha, Eun-Young; Lee, Hye Suk; Kim, Jeong-Han; Yea, Sung Su; Lee, Sang-Seop; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2006-01-01

    KR-32570 (5-(2-methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new reversible Na+/H+ exchanger inhibitor for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-32570 in human liver microsomes. Human liver microsomal incubation of KR-32570 in the presence of NADPH and UDPGA resulted in the formation of six metabolites, M1-M6. M1 was identified as O-desmethyl-KR-32570, on the basis of liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis with the synthesized authentic standard. M2 and M3 were suggested to be hydroxy-KR-32570 and hydroxy-O-desmethyl-KR-32570, respectively. M1, M2, and M3 were further metabolized to their glucuronide conjugates, M4, M5, and M6, respectively. In addition, the specific P450 isoforms responsible for KR-32570 oxidation to two major metabolites, O-desmethyl-KR-32570 and hydroxy-KR-32570, were identified using a combination of correlation analysis, chemical inhibition in human liver microsomes and metabolism by expressed recombinant P450 isoforms. The inhibitory potency of KR-32570 on clinically major P450s was investigated in human liver microsomes. The results show that CYP3A4 contributes to the oxidation of KR-32570 to hydroxy-KR-32570, and CYP1A2 play the predominant role in O-demethylation of KR-32570. KR-32570 was found to inhibit moderately the metabolism of CYP2C8 substrates.

  9. Prediction of hepatic microsomal intrinsic clearance and human clearance values for drugs.

    PubMed

    Nikolic, Katarina; Agababa, Danica

    2009-10-01

    Twenty-nine drugs of different structures were used in theoretical QSAR analysis of human hepatic microsomal intrinsic clearance (in vitro T(1/2) and in vitro CL'(int)) and whole body clearance (CL(blood)). The examined compounds demonstrated a wide range of scaled intrinsic clearance values. Constitutional, geometrical, physico-chemical and electronic descriptors were computed for the examined structures by use of the Marvin Sketch 5.1.3_2, the Chem3D Ultra 7.0.0 and the Dragon 5.4 program. Partial least squares regression (PLSR), has been applied for selection of the most relevant molecular descriptors and development of quantitative structure-activity relationship (QSAR) model for human hepatic microsomal intrinsic clearance (in vitro T(1/2)). Optimal QSAR models with nine and ten variables, R(2)>0.808 and cross-validation parameter q(pre)(2)>0.623, were selected and compared. Since the microsomal in vitro T(1/2) data can be used for calculation of in vitro CL'(int) and in vivo CL(blood), the developed QSAR model will enable one to analyze the kinetics of cytochrome P450-mediated reactions in term of intrinsic clearance and whole body clearance. A comparison is made between predictions produced from the QSAR analysis and experimental data, and there appears to be generally satisfactory correlations with the literature values for intrinsic clearance data. PMID:19713138

  10. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes.

    PubMed Central

    Coleman, S; Linderman, R; Hodgson, E; Rose, R L

    2000-01-01

    Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (< 0.001 nmol/min/mg). We have determined that both rat and human livers metabolize both CMEPA to MEA (0.308 nmol/min/mg and 0.541 nmol/min/mg, respectively) and CDEPA to DEA (0.350 nmol/min/mg and 0.841 nmol/min/mg, respectively). We have shown that both rat and human liver microsomes metabolize MEA (0.035 nmol/min/mg and 0.069 nmol/min/mg, respectively

  11. Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.

    PubMed

    Hu, Yongbo; Unwalla, Ray; Denny, R Aldrin; Bikker, Jack; Di, Li; Humblet, Christine

    2010-01-01

    High throughput microsomal stability assays have been widely implemented in drug discovery and many companies have accumulated experimental measurements for thousands of compounds. Such datasets have been used to develop in silico models to predict metabolic stability and guide the selection of promising candidates for synthesis. This approach has proven most effective when selecting compounds from proposed virtual libraries prior to synthesis. However, these models are not easily interpretable at the structural level, and thus provide little insight to guide traditional synthetic efforts. We have developed global classification models of rat, mouse and human liver microsomal stability using in-house data. These models were built with FCFP_6 fingerprints using a Naïve Bayesian classifier within Pipeline Pilot. The test sets were correctly classified as stable or unstable with satisfying accuracies of 78, 77 and 75% for rat, human and mouse models, respectively. The prediction confidence was assigned using the Bayesian score to assess the applicability of the models. Using the resulting models, we developed a novel data mining strategy to identify structural features associated with good and bad microsomal stability. We also used this approach to identify structural features which are good for one species but bad for another. With these findings, the structure-metabolism relationships are likely to be understood faster and earlier in drug discovery.

  12. Kinetic characteristics of norcocaine N-hydroxylation in mouse and human liver microsomes: involvement of CYP enzymes.

    PubMed

    Pellinen, P; Kulmala, L; Konttila, J; Auriola, S; Pasanen, M; Juvonen, R

    2000-11-01

    The first step in the oxidative metabolism of cocaine is N-demethylation to norcocaine, which is further N-hydroxylated to more toxic N-hydroxynorcocaine. In this study we examined the kinetics of norcocaine N-hydroxylation mediated by cytochrome P450 (CYP) in mouse and human liver microsomes. N-hydroxynorcocaine was identified by analytical HPLC-MS after incubation of norcocaine with mouse liver microsomes in the presence of NADPH. In mouse liver microsomes, there was no apparent difference in Km values for norcocaine N-hydroxylation between male and female microsomes, while the Vmax rate was approximately two times higher in female than in male microsomes (34+/-10 v. 16+/-4 pmol/min per mg protein). The Km value for norcocaine N-hydroxylation in human liver microsomes was approximately three times higher than that observed in comparable incubations using mouse liver microsomes, whereas the Vmax rate was ten times lower. Both cocaine and norcocaine induced type I difference spectra upon interaction with CYP in mouse liver microsomes. In contrast, in human microsomes both type I and type II spectra were recorded. In the 0.01 to 1 mM concentration range, cocaine and norcocaine inhibited mouse microsomal testosterone 6alpha-, 7alpha- and 16alpha-hydroxylation reactions by 20% to 30%. Testosterone 6beta- and 15alpha-hydroxylations were blocked by 60% and 50%, respectively, by 1 mM norcocaine, while only 40% inhibition was obtained with 1 mM cocaine. Coumarin 7-hydroxylation and pentoxyresorufin O-deethylation were inhibited by 50% by 1 and 0.4 mM norcocaine, respectively. In contrast, 10 and 2 mM cocaine, respectively, were needed to obtain the same degrees of inhibition. In human liver microsomes, 1 mM norcocaine and cocaine blocked testosterone 6beta-hydroxylase by 60% and 40%, respectively. Coumarin 7-hydroxylation was inhibited by only 30% by norcocaine (5.4 mM) and cocaine (10 mM). Norcocaine N-hydroxylation in mouse and human liver microsomes was blocked by 30

  13. Microsomal Epoxide Hydrolase 1 (EPHX1): Gene, Structure, Function, and Role in Human Disease

    PubMed Central

    Václavíková, Radka; Hughes, David J; Souček, Pavel

    2015-01-01

    Microsomal epoxide hydrolase (EPHX1) is an evolutionarily highly conserved biotransformation enzyme for converting epoxides to diols. Notably, the enzyme is able to either detoxify or bioactivate a wide range of substrates. Mutations and polymorphic variants in the EPHX1 gene have been associated with susceptibility to several human diseases including cancer. This review summarizes the key knowledge concerning EPHX1 gene and protein structure, expression pattern and regulation, and substrate specificity. The relevance of EPHX1 for human pathology is especially discussed. PMID:26216302

  14. In vitro metabolism of 2-ethylhexyldiphenyl phosphate (EHDPHP) by human liver microsomes.

    PubMed

    Ballesteros-Gómez, Ana; Erratico, Claudio A; Eede, Nele Van den; Ionas, Alin C; Leonards, Pim E G; Covaci, Adrian

    2015-01-01

    2-ethylhexyl diphenyl phosphate (EHDPHP) is used as flame retardant and plasticizer additive in a variety of consumer products. Since EHDPHP is toxic to aquatic organisms and has been detected in environmental samples, concerns about human exposure and toxicity are emerging. With the aim of identifying human-specific metabolites, the biotransformation of EHDPHP was investigated using human liver microsomes. Using an in silico program (Meteor) for the prediction of metabolites, untargeted screening tools (agilent Mass Hunter) and a suitable analysis platform based on ultra-high performance liquid chromatography (UPLC) and quadrupole time-of-flight high resolution mass spectrometer (QTOF-MS), for the first time a wide variety of phases-I and II metabolites of EHDPHP were identified. Mono- and di-hydroxylated metabolites, keto metabolites, mixed keto and hydroxylated metabolites and diphenyl phosphate were the major phase-I metabolites of EHDPHP. Glucuronidated metabolites of phase-I metabolites of EHDPHP were also formed by human liver microsomes. Using these results, we propose a general metabolism pathway for EHDPHP in humans and a number of candidate biomarkers for assessing the human exposure to this ubiquitous phosphate flame retardant and plasticizer in future biomonitoring studies. Furthermore, we provide a template analytical approach based on the combination of untargeted and targeted screening and UPLC-QTOF-MS analysis suitable for use in future metabolism studies. PMID:25448284

  15. Glucuronidation of Monohydroxylated Warfarin Metabolites by Human Liver Microsomes and Human Recombinant UDP-Glucuronosyltransferases

    PubMed Central

    Zielinska, Agnieszka; Lichti, Cheryl F.; Bratton, Stacie; Mitchell, Neil C.; Gallus-Zawada, Anna; Le, Vi-Huyen; Finel, Moshe; Miller, Grover P.; Radominska-Pandya, Anna; Moran, Jeffery H.

    2008-01-01

    Our understanding of human phase II metabolic pathways which facilitate detoxification and excretion of warfarin (Coumadin) is limited. The goal of this study was to test the hypothesis that there are specific human hepatic and extrahepatic UDP-glucuronosyltransferase (UGT) isozymes, which are responsible for conjugating warfarin and hydroxylated metabolites of warfarin. Glucuronidation activity of human liver microsomes (HLMs) and eight human recombinant UGTs toward (R)- and (S)-warfarin, racemic warfarin, and major cytochrome P450 metabolites of warfarin (4′-, 6-, 7-, 8-, and 10-hydroxywarfarin) has been assessed. HLMs, UGT1A1, 1A8, 1A9, and 1A10 showed glucuronidation activity toward 4′-, 6-, 7-, and/or 8-hydroxywarfarin with Km values ranging from 59 to 480 μM and Vmax values ranging from 0.03 to 0.78 μM/min/mg protein. Tandem mass spectrometry studies and structure comparisons suggested glucuronidation was occurring at the C4′-,C6-, C7-, and C8-positions. Of the hepatic UGT isozymes tested, UGT1A9 exclusively metabolized 8-hydroxywarfarin, whereas UGT1A1 metabolized 6-, 7-, and 8-hydroxywarfarin. Studies with extrahepatic UGT isoforms showed that UGT1A8 metabolized 7- and 8-hydroxywarfarin and that UGT1A10 glucuronidated 4′-, 6-, 7-, and 8-hydroxywarfarin. UGT1A4, 1A6, 1A7, and 2B7 did not have activity with any substrate, and none of the UGT isozymes evaluated catalyzed reactions with (R)- and (S)-warfarin, racemic warfarin, or 10-hydroxywarfarin. This is the first study identifying and characterizing specific human UGT isozymes, which glucuronidate major cytochrome P450 metabolites of warfarin with similar metabolic rates known to be associated with warfarin metabolism. Continued characterization of these pathways may enhance our ability to reduce life-threatening and costly complications associated with warfarin therapy. PMID:17921187

  16. Determination of theophylline and its metabolites in rat liver microsomes and human urine by capillary electrophoresis.

    PubMed

    Zhang, Z Y; Fasco, M J; Kaminsky, L S

    1995-03-10

    A capillary electrophoretic (CE) method has been developed for the determination of theophylline and all of its identified and potential metabolites. The method is rapid, resolves all metabolites to baseline, and requires extraction of only some biological fluids. It has been applied to the analysis of theophylline metabolism by hepatic microsomes from rats treated with a variety of inducing agents for different forms of P450 enzymes which metabolize theophylline, and to human urine spiked with theophylline and its metabolites, and concentrated by solid-phase extraction.

  17. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  18. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes

    PubMed Central

    Ryu, Chang Seon; Oh, Soo Jin; Oh, Jung Min; Lee, Ji-Yoon; Lee, Sang Yoon; Chae, Jung-woo; Kwon, Kwang-il; Kim, Sang Kyum

    2016-01-01

    Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2. PMID:27437087

  19. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    PubMed

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  20. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes

    SciTech Connect

    Yamano, Shigeru; Tatsuno, Jun; Gonzalez, F.J. )

    1990-02-06

    Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a {lambda}gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu{sup 160}{yields}His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94% amino acid similarity with IIA3 and IIA3v. The three cDNAs were inserted into vaccinia virus, and recombinant viruses were used to infect human hepatoma Hep G2 cells. Only IIA3 was able to produce an enzyme that had a reduced CO-bound spectrum with a {lambda}{sub max} at 450 nm. This expressed enzyme was able to carry out coumarin 7-hydroxylation and ethoxycoumarin O-deethylation. cDNA-expressed IIA3v and IIA4 failed to incorporate heme and were enzymatically inactive. Analysis of IIA proteins in human liver microsomes, using antibody against rat IIA2, revealed two proteins of 49 and 50 kDa, the former of which appeared to correlate with human microsomal coumarin 7-hydroxylase activity. A more striking correlation was found between IIa mRNA and enzyme activity. The rat antibody was able to completely abolish coumarin 7-hydroxylase activity in 12 liver samples. These data establish that the CYP2A3 gene product is primarily responsible for coumarin 7-hydroxylase activity in human liver. The level of expression of this activity varied up to 40-fold between livers. Levels of IIA mRNA also varied significantly between liver specimens, and three specimens had no detectable mRNA.

  1. Vanadium-mediated lipid peroxidation in microsomes from human term placenta

    SciTech Connect

    Byczkowski, J.Z.; Wan, B.; Kulkarni, A.P.

    1988-11-01

    Vanadium is considered an essential element present in living organisms in trace amounts but it is toxic when introduced in excessive doses to animals and humans. Vanadium compounds are extensively used in modern industry and occupational exposure to high doses of vanadium is quite common. In pregnant mice, vanadium accumulates preferentially in the placenta and to lower extent in fetal skeleton and mammary gland during exposure to radioactive vanadium. Accumulation of vanadium in fetoplacental unit may present threat to the fetus by interacting with enzymes and ion-transporting systems in membranes. It is also possible that accumulation of vanadium with its concomitant reduction to vanadyl may lead to lipid peroxidation, followed by damage to biological membranes, lysosomal enzymes release and destruction of placental tissue. To explore some of these possibilities the authors decided to examine whether vanadate can undergo redox cycling in microsomes from human term placenta (HTP) that can lead to lipid peroxidation.

  2. Differences in metabolite-mediated toxicity of tamoxifen in rodents versus humans elucidated with DNA/microsome electro-optical arrays and nanoreactors.

    PubMed

    Zhao, Linlin; Krishnan, Sadagopan; Zhang, Yun; Schenkman, John B; Rusling, James F

    2009-02-01

    Tamoxifen, a therapeutic and chemopreventive breast cancer drug, was chosen as a model compound because of acknowledged species specific toxicity differences. Emerging approaches utilizing electro-optical arrays and nanoreactors based on DNA/microsome films were used to compare metabolite-mediated toxicity differences of tamoxifen in rodents versus humans. Hits triggered by liver enzyme metabolism were first provided by arrays utilizing a DNA damage end point. The arrays feature thin-film spots containing an electrochemiluminescent (ECL) ruthenium polymer ([Ru(bpy)(2)PVP(10)](2+); PVP, polyvinylpyridine), DNA, and liver microsomes. When DNA damage resulted from reactions with tamoxifen metabolites, it was detected by an increase in light from the oxidation of the damaged DNA by the ECL metallopolymer. The slope of ECL generation versus enzyme reaction time correlated with the rate of DNA damage. An approximate 2-fold greater ECL turnover rate was observed for spots with rat liver microsomes compared to that with human liver microsomes. These results were supported by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of reaction products using nanoreactors featuring analogous films on silica nanoparticles, allowing the direct measurement of the relative formation rate for alpha-(N(2)-deoxyguanosinyl)tamoxifen. We observed 2-5-fold more rapid formation rates for three major metabolites, i.e., alpha-hydroxytamoxifen, 4-hydroxytamoxifen, and tamoxifen N-oxide, catalyzed by rat liver microsomes compared to human liver microsomes. Comparable formation rates were observed for N-desmethyl tamoxifen with rat and human liver microsomes. A better detoxifying capacity for human liver microsomes than rat liver microsomes was confirmed utilizing glucuronyltransferase in microsomes together with UDP-glucuronic acid. Taken together, lower genotoxicity and higher detoxication rates presented by human liver microsomes correlate with the lower risk of tamoxifen in

  3. Differences in Metabolite-mediated Toxicity of Tamoxifen in Rodents vs. Humans Elucidated with DNA/microsomes Electro-optical Arrays and Nanoreactors

    PubMed Central

    Zhao, Linlin; Krishnan, Sadagopan; Zhang, Yun; Schenkman, John B.; Rusling, James F.

    2009-01-01

    Tamoxifen, a therapeutic and chemopreventive breast cancer drug, was chosen as a model compound because of acknowledged species specific toxicity differences. Emerging approaches utilizing electro-optical arrays and nanoreactors based on DNA/microsomes films were used to compare metabolite-mediated toxicity differences of tamoxifen in rodents vs. humans. “Hits” triggered by liver enzyme metabolism were first provided by arrays utilizing a DNA damage endpoint. The arrays feature thin-film spots containing electrochemiluminescent (ECL) ruthenium polymer ([Ru(bpy)2PVP10]2+; PVP = polyvinylpyridine), DNA, and liver microsomes. When DNA damage resulted from reactions with tamoxifen metabolites, it was detected by an increase in light from the oxidation of the damaged DNA by the ECL metallopolymer. The slope of ECL generation vs. enzyme reaction time correlated with the rate of DNA damage. An approximate 2-fold ECL turnover rate was observed for spots with rat liver microsomes compared to human liver microsomes. These results were supported by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of reaction products using nanoreactors featuring analogous films on silica nanoparticles, allowing direct measurement of relative formation rate for α-(N2-deoxyguanosinyl)tamoxifen. We observed 2–5 fold more rapid formation rates for three major metabolites, i.e. α-hydroxytamoxifen, 4-hydroxytamoxifen, and tamoxifen N-oxide catalyzed by rat liver microsomes compared to human liver microsomes. Comparable formation rates were observed for N-desmethyl tamoxifen with rat and human liver microsomes. A better detoxifying capacity for human liver microsomes than rat liver microsomes was confirmed utilizing glucuronyltransferase in microsomes together with UDP-glucuronic acid. Taken together, lower genotoxicity and higher detoxication rates presented by human liver microsomes correlate with the lower risk of tamoxifen in causing liver carcinoma in humans, provided

  4. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts - A comparative study

    SciTech Connect

    Meeuwen, J.A. van Nijmeijer, S.; Mutarapat, T.; Ruchirawat, S.; Jong, P.C. de; Piersma, A.H.; Berg, M. van den

    2008-05-01

    Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissue in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts.

  5. Recombinant production of human microsomal cytochrome P450 2D6 in the methylotrophic yeast Pichia pastoris.

    PubMed

    Dietrich, Matthias; Grundmann, Lisa; Kurr, Katja; Valinotto, Laura; Saussele, Tanja; Schmid, Rolf D; Lange, Stefan

    2005-11-01

    Microsomal cytochrome P450 monooxygenases of groups 1-3 are mainly expressed in the liver and play a crucial role in phase 1 reactions of xenobiotic metabolism. The cDNAs encoding human CYP2D6 and human NADPH-P450 oxidoreductase (CPR) were transformed into the methylotrophic yeast Pichia pastoris and expressed with control of the methanol-inducible AOX1 promoter. The determined molecular weights of the recombinant CYP2D6 and CPR closely matched the calculated values of 55.8 and 76.6 kDa. CPR activity was detected by conversion of cytochrome c by using isolated microsomes. Nearly all of the recombinant CYP was composed of the active holoenzyme, as confirmed by reduced CO difference spectra, which showed a single peak at 450 nm. Only by coexpression of human CPR and CYP was CYP2D6 activity obtained. Microsomes containing human CPR and CYP2D6 converted different substrates, such as 3-cyano-7-ethoxycoumarin, parathion and dextrometorphan. The kinetic parameters of dextrometorphan conversion closely matched those of CYP2D6 from other recombinant expression systems and human microsomes. The endogenous NADPH-P450 oxidoreductase of Pichia pastoris seems to be incompatible with human CYP2D6, as expression of CYP2D6 without human CPR did not result in any CYP activity. These recombinant strains provide a novel, easy-to-handle and cheap source for the biochemical characterisation of single microsomal cytochromes, as well as their allelic variants.

  6. Metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes.

    PubMed

    Li, Yan; Wu, Linan; Gu, Yuan; Si, Duanyun; Liu, Changxiao

    2014-06-01

    Aildenafil, 1-{[3-(6, 7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo [4, 3-d] primidin-5-yl)-4-ethoxyphenyl] sulfonyl}-cis-3, 5-dimethylpiperazine, a phosphodiesterase type V enzyme inhibitor (PDE5I), is under development for treatment of erectile dysfunction (ED). The purpose of this study was to elucidate metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes. Thirty-one phase I metabolites have been found by LTQ/Orbitrap hybrid mass spectrometry in rat urine, faeces, and bile after oral administration. Major biotransformation pathways of aildenafil included N-dealkylation of the piperazine ring, hydroxylation and dehydrogenation, aliphatic hydroxylation and loss of alkyl group of piperazine ring. Minor pathways involved hydroxylation on the phenyl ring, pyrazole N-demethylation, O-deethylation, loss of piperazine ring (cleavage of N-S bond) and dehydrogenation on the piperazine ring. Similar metabolic pathways of aildenafil were observed in the incubations of liver microsomes from mouse, rat, and dog as well as from human. The depletion rate of parent drug in mouse and rat liver microsomes was significantly different from that in human liver microsomes. The cytochrome P450 reaction phenotyping analysis was conducted using isozyme-specific inhibitors. The results indicated that CYP3A was the main isoenzyme involved in oxidative metabolism of aildenafil. Overall, these in vitro and in vivo findings should provide valuable information on possible metabolic behaviours of aildenafil in humans. PMID:24311535

  7. In vitro metabolic clearance of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms

    EPA Science Inventory

    Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...

  8. Metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes.

    PubMed

    Li, Yan; Wu, Linan; Gu, Yuan; Si, Duanyun; Liu, Changxiao

    2014-06-01

    Aildenafil, 1-{[3-(6, 7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo [4, 3-d] primidin-5-yl)-4-ethoxyphenyl] sulfonyl}-cis-3, 5-dimethylpiperazine, a phosphodiesterase type V enzyme inhibitor (PDE5I), is under development for treatment of erectile dysfunction (ED). The purpose of this study was to elucidate metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes. Thirty-one phase I metabolites have been found by LTQ/Orbitrap hybrid mass spectrometry in rat urine, faeces, and bile after oral administration. Major biotransformation pathways of aildenafil included N-dealkylation of the piperazine ring, hydroxylation and dehydrogenation, aliphatic hydroxylation and loss of alkyl group of piperazine ring. Minor pathways involved hydroxylation on the phenyl ring, pyrazole N-demethylation, O-deethylation, loss of piperazine ring (cleavage of N-S bond) and dehydrogenation on the piperazine ring. Similar metabolic pathways of aildenafil were observed in the incubations of liver microsomes from mouse, rat, and dog as well as from human. The depletion rate of parent drug in mouse and rat liver microsomes was significantly different from that in human liver microsomes. The cytochrome P450 reaction phenotyping analysis was conducted using isozyme-specific inhibitors. The results indicated that CYP3A was the main isoenzyme involved in oxidative metabolism of aildenafil. Overall, these in vitro and in vivo findings should provide valuable information on possible metabolic behaviours of aildenafil in humans.

  9. Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions.

    PubMed

    Golizeh, Makan; Schneider, Christina; Ohlund, Leanne B; Sleno, Lekha

    2015-06-01

    Rat, mouse and human liver microsomes and S9 fractions were analyzed using an optimized method combining ion exchange fractionation of digested peptides, and ultra-high performance liquid chromatography (UHPLC) coupled to high resolution tandem mass spectrometry (HR-MS/MS). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (Vizcaíno et al., 2013 [1]) with the dataset identifiers PXD000717, PXD000720, PXD000721, PXD000731, PXD000733 and PXD000734. Data related to the peptides (trypsin digests only) were also uploaded to Peptide Atlas (Farrah et al., 2013 [2]) and are available with the dataset identifiers PASS00407, PASS00409, PASS00411, PASS00412, PASS00413 and PASS00414. The present dataset is associated with a research article published in EuPA Open Proteomics [3].

  10. Calcium channel antagonists and cyclosporine metabolism: in vitro studies with human liver microsomes.

    PubMed Central

    Tjia, J F; Back, D J; Breckenridge, A M

    1989-01-01

    The effects of four Ca2+ channel antagonists on the metabolism of cyclosporine (CsA) by human liver microsomes (n = 4) in vitro have been examined. Nicardipine produced marked inhibition of both M17 and M21 (IC50 = 7.0 microM) formation. In contrast nifedipine produced less than 20% inhibition of M17 and M21 even at the highest concentration examined (50 microM). Diltiazem data were comparable to those for nifedipine. Verapamil (50 microM) produced 30 and 28% inhibition of M17 and M21 formation, respectively. These findings give a basis to the increase in CsA blood concentrations seen in transplant patients who are also given nicardipine. PMID:2789931

  11. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes.

    PubMed Central

    Spaldin, V; Madden, S; Pool, W F; Woolf, T F; Park, B K

    1994-01-01

    1. Tacrine (1,2,3,4-tetrahydro-9-aminoacridine-hydrochloride: THA) underwent metabolism in vitro by a panel (n = 12) of human liver microsomes genotyped for CYP2D6, in the presence of NADPH, to both protein-reactive and stable metabolites. 2. There was considerable variation in the extent of THA metabolism amongst human livers. Protein-reactive metabolite formation showed a 10-fold variation (0.6 +/- 0.1%-5.2 +/- 0.8% of incubated radioactivity mg-1 protein) whilst stable metabolites showed a 3-fold variation (24.3 +/- 1.7%-78.6 +/- 2.6% of incubated radioactivity). 3. Using cytochrome P450 isoform specific inhibitors CYP1A2 was identified as the major enzyme involved in all routes of THA metabolism. 4. There was a high correlation between aromatic and alicyclic hydroxylation (r = 0.92, P < 0.0001) consistent with these biotransformations being catalysed by the same enzymes. 5. Enoxacin (ENOX), cimetidine (CIM) and chloroquine (CQ) inhibited THA metabolism by a preferential decrease in the bioactivation to protein-reactive, and hence potentially toxic, species. The inhibitory potency of ENOX and CIM was increased significantly upon pre-incubation with microsomes and NADPH. 6. Covalent binding correlated with 7-OH-THA formation before (r = 0.792, P < 0.0001) and after (r = 0.73, P < 0.0001) inhibition by CIM, consistent with a two-step mechanism in the formation of protein-reactive metabolite(s) via a 7-OH intermediate. 7. The use of enzyme inhibitors may provide a useful tool for examining the relationship between the metabolism and toxicity of THA in vivo. PMID:7946932

  12. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  13. Identification of cytochrome P450 isoform involved in the metabolism of YM992, a novel selective serotonin re-uptake inhibitor, in human liver microsomes.

    PubMed

    Noguchi, K; Mera, A; Watanabe, T; Higuchi, S; Chiba, K

    2000-05-01

    1. In vitro studies were conducted to identify the hepatic cytochrome P450 isoform involved in the metabolism of YM992, ((S)-2-[[(fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride), a novel serotonin re-uptake inhibitor, in human liver microsomes. 2. Microsomes prepared from yeast expressing CYP1A1, CYP1A2 and CYP2D6 effectively metabolized YM992. A significant correlation was observed between the rate of YM992 metabolism and 7-ethoxyresorufin O-deethylation, CYP1A1/2 specific activity, in liver microsomes from 16 individual donors (r2 = 0.628, p < 0.001). Alpha-naphtoflavone and isosafrole, CYP1A1/2 inhibitors, suppressed the metabolism of YM992 in human liver microsomes in a concentration-dependent manner. 3. The metabolism of YM992 in human liver microsomes was inhibited by approximately 95% by antibodies which recognize both CYP1A1 and CYP1A2 whereas antibodies specific for CYP1A1 did not show inhibitory effects. 4. The same major metabolites, M6 and M7, were generated from YM992 after incubation with human liver microsomes and recombinant human CYP1A2. 5. These results suggest that the metabolism of YM992 in human liver microsomes is mainly catalysed by CYP1A2, and that YM992 might increase plasma concentration of concomitant drugs metabolized by CYP1A2 due to competitive inhibition.

  14. Synthesis of stereospecifically deuterated 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) iastereomers and metabolism by A/J mouse lung microsomes and cytochrome p450 2A5.

    PubMed

    Jalas, John R; Hecht, Stephen S

    2003-06-01

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a lung carcinogen in mice and rats and is a putative human lung carcinogen. NNK undergoes cytochrome p450-mediated metabolic activation to DNA-binding intermediates but is also extensively reduced to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in vivo. Because NNAL is also tumorigenic, the carcinogenicity of NNK may actually be governed by the metabolic activation of NNAL, rather than direct activation of NNK. Metabolism of NNK and NNAL at the 4-position generates the same critical DNA lesion, O(6)-methylguanine, the levels of which are correlated to tumorigenicity in the A/J mouse model. In an effort to better understand the bioactivation of NNAL and the effect of carbinol-carbon stereochemistry on prochiral selectivity at the 4-position, (R)- and (S)-NNAL, along with the stereospecifically 4-deuterated diastereomers (1R,4R)-[4-(2)H(1)]NNAL, (1R,4S)-[4-(2)H(1)]NNAL, (1S,4R)-[4-(2)H(1)]NNAL, and (1S,4S)-[4-(2)H(1)]NNAL, were synthesized. The in vitro metabolism of these compounds was investigated using A/J mouse lung microsomes and Spodoptera frugiperda-expressed mouse cytochrome p450 2A5. Carbinol-carbon stereochemistry did not appreciably influence stereoselectivity at the 4-position in the metabolism of these compounds by mouse lung microsomes or p450 2A5 but did influence the regiochemistry of metabolism. The ratio of 4- to N-methyl hydroxylation was approximately 1:1 for the A/J mouse lung microsome-mediated metabolism of all substrates, but this ratio was higher for (1S) substrates than for their (1R) counterparts when p450 2A5 was used. Interestingly, p450 2A5 converted substrates with (1S) stereochemistry to the respective N-oxides, but this metabolite was not formed from substrates with (1R) stereochemistry. Furthermore, p450 2A5 catalyzed the formation of NNK from (1S) substrates at significantly greater maximal rates than from (1R) substrates. The

  15. Troglitazone thiol adduct formation in human liver microsomes: enzyme kinetics and reaction phenotyping.

    PubMed

    Gan, Jinping; Qu, Qinling; He, Bing; Shyu, Wen C; Rodrigues, A David; He, Kan

    2008-08-01

    Troglitazone (TGZ) induced hepatotoxicity has been linked to cytochrome P450 (CYP)-catalyzed reactive metabolite formation. Therefore, the kinetics and CYP specificity of reactive metabolite formation were studied using dansyl glutathione (dGSH) as a trapping agent after incubation of TGZ with human liver microsomes (HLM) and recombinant human CYP proteins. CYP2C8 exhibited the highest rate of TGZ adduct (TGZ-dGS) formation, followed by CYP3A4, CYP3A5, and CYP2C19. The involvement of CYP2C8 and CYP3A4 was confirmed with CYP form-selective chemical inhibitors. The impact of TGZ concentration on the rate of TGZ-dGS formation was also evaluated. In this instance, two distinctly different profiles were observed with recombinant CYP3A4 and CYP2C8. It is concluded that both CYP3A4/5 and CYP2C8 play a major role in the formation of TGZ adduct in HLM. However, the contribution of these CYPs varies depending on their relative expression and the concentration of TGZ. PMID:19356091

  16. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues

    PubMed Central

    Suzuki, Takashi; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  17. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    PubMed

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  18. 3'-azido-3'-deoxythymidine drug interactions. Screening for inhibitors in human liver microsomes.

    PubMed

    Rajaonarison, J F; Lacarelle, B; Catalin, J; Placidi, M; Rahmani, R

    1992-01-01

    Zidovudine is a widely used antiretroviral drug active against human immunodeficiency virus. The drug interactions of this compound, which are primarily eliminated as a glucuronide, have not yet been extensively studied. Because zidovudine is frequently combined with other drugs, complete knowledge of interactions is essential to optimize AIDS therapy. We therefore screened the effect of 55 molecules, representative of 20 different therapeutic classes, on 3'-azido-3'-deoxythymidine (AZT) glucuronidation by human liver microsomes. We demonstrate that many drugs caused more than 15% inhibition of AZT glucuronidation in vitro, whereas major antibiotics (ceftazidine, isoniazid, aminoglycosides, macrolides, and sulfamides), antivirals (2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and acyclovir), flucytosine, metronidazole, acetaminophen, and ranitidine had no effect. For compounds that appeared to inhibit AZT glucuronidation, extrapolation to the clinical situation must take into account both the in vitro apparent Ki values and the usual expected plasma level for the coadministered drug. By considering these parameters, this work indicates that clinically relevant inhibition of AZT glucuronidation may be observed with the following drugs: cefoperazone, penicillin G, amoxicilin, piperacillin, chloramphenicol, vancomycin, miconazole, rifampicin, phenobarbital, carbamazepine, phenytoin, valproic acid, quinidine, phenylbutazone, ketoprofen, probenecid, and propofol. Complementary clinical and pharmacokinetic studies should be performed to validate these assumptions.

  19. Kinetics of tris (1-chloro-2-propyl) phosphate (TCIPP) metabolism in human liver microsomes and serum.

    PubMed

    Van den Eede, Nele; Tomy, Gregg; Tao, Fang; Halldorson, Thor; Harrad, Stuart; Neels, Hugo; Covaci, Adrian

    2016-02-01

    Tris(1-chloro-2-propyl) phosphate (TCIPP) is an emerging contaminant which is ubiquitous in the indoor and outdoor environment. Moreover, its presence in human body fluids and biota has been evidenced. Since no quantitative data exist on the biotransformation or stability of TCIPP in the human body, we performed an in vitro incubation of TCIPP with human liver microsomes (HLM) and human serum (HS). Two metabolites, namely bis(2-chloro-isopropyl) phosphate (BCIPP) and bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), were quantified in a kinetic study using HLM or HS (only BCIPP, the hydrolysis product) and LC-MS. The Michaelis-Menten model fitted best the NADPH-dependent formation of BCIPHIPP and BCIPP in HLM, with respective V(MAX) of 154 ± 4 and 1470 ± 110 pmol/min/mg protein and respective apparent K(m) of 80.2 ± 4.4 and 96.1 ± 14.5 μM. Hydrolases, which are naturally present in HLM, were also involved in the production of BCIPP. A HS paraoxonase assay could not detect any BCIPP formation above 38.6 ± 10.8 pmol/min/μL serum. Our data indicate that BCIPP is the major metabolite of TCIPP formed in the liver. To our knowledge, this is the first quantitative assessment of the stability of TCIPP in tissues of humans or any other species. Further research is needed to confirm whether these biotransformation reactions are associated with a decrease or increase in toxicity. PMID:26473552

  20. Evidence of in vitro glucuronidation and enzymatic transformation of paralytic shellfish toxins by healthy human liver microsomes fraction.

    PubMed

    García, Carlos; Rodriguez-Navarro, Alberto; Díaz, Juan Carlos; Torres, Rafael; Lagos, Néstor

    2009-02-01

    Paralytic Shellfish Toxins (PST) are endemic components found in filter bivalves in Southern Chile. Post-mortems analysis of fluid and tissue samples has shown biotransformation of PST in humans. The Gonyautoxin 3 (GTX3) and Gonyautoxin 2 (GTX2) are the major PST components in the toxin profile found in Chilean shellfish extracts, being as much as 65% of the total content of PST in filter bivalves. Therefore, they are the major accountable components of the human intoxication by shellfish consumption. The aim of this study is to show in vitro glucuronidation and biotransformation of GTX3 and GTX2 when they are incubated with microsomal fraction isolated from healthy human livers. Microsomes fractions isolated from human livers were incubated with GTX3 and GTX2 purified from contaminated mussels. After different incubation times, incubated samples were extracted and analyzed by HPLC with fluorescent on line detection and HPLC-MS analysis. The results revealed that GTX3 and GTX2, only when they were incubated with microsomal fraction and appropriated cofactors, showed to be enzymatic transformed in vitro. The glucuronidation of GTX3 and GTX2 followed typical Michaelis-Menten kinetics, resulting in apparent kinetic parameters of Km=39.4+/-0.24 microM and Vmax=6.0x10(-3) pmol/min/mg protein. In addition, the microsomes fraction also oxidized GTX3 and GTX2 into Gonyautoxin 4 (GTX 4) and Gonyautoxin 1 (GTX 1) resulting in 0.339x10(-3) pmol/min/mg protein. In conclusion, this study reports oxidation and glucuronidation of GTX3 and GTX2 when they are incubated with human liver microsomal fraction. The metabolism occurs via a glucuronidation reaction, the basis first step of biotransformation in human liver. Also it is showed that GTX4 and GTX1 came by biotransformation from GTX3 and GTX2 in humans. This data confirm human biotransformation found in human post-mortem fluid and tissue samples described previously. This data is the first evidence of in vitro glucuronidation

  1. Human Lung Angiotensin Converting Enzyme

    PubMed Central

    Friedland, Joan; Silverstein, Emanuel; Drooker, Martin; Setton, Charlotte

    1981-01-01

    To enable its immunohistologic localization, angiotensin converting enzyme (EC 3.4.15.1) from human lung was solubilized by trypsinization and purified ∼2,660-fold to apparent homogeneity from a washed lung particulate fraction. The specific activity of pure enzyme was estimated to be 117 μmol/min per mg protein with the substrate hippuryl-l-histidyl-l-leucine. Consistent with previously described lung enzyme studies, catalytic activity was strongly inhibited by EDTA, O-phenanthroline, SQ 20,881, and SQ 14,225 and increased by CoCl2. SQ 20,881 was a somewhat more potent inhibitor than SQ 14,225, unlike rabbit lung enzyme. The Michaelis constant (Km) with hippuryl-l-histidyl-l-leucine was 1.6 mM. The molecular weight was estimated at 150,000 from sucrose density gradient centrifugation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a single polypeptide chain estimated at 130,000 daltons. Rabbit antibody to human lung enzyme was prepared by parenteral administration of pure angiotensin-converting enzyme in Freund's adjuvant. Rabbit antibody to human lung angiotensin-converting enzyme appeared to crossreact weakly with the rabbit enzyme and strongly inhibited the catalytic activity of the enzymes from human serum, lung, and lymph node. The specificity of the rabbit antibody and purity of the final human lung enzyme preparation was suggested by the single precipitin lines obtained by radial double immunodiffusion, and by the coincidence of enzyme catalytic activity and immunoreactivity on polyacrylamide gel electrophoresis, with both relatively pure and highly impure enzymes. Generally applicable sensitive analysis of acrylamide gels for immunoreactivity (and subsequently for any other activity) by use of intact gel slices in radial double immunodiffusion was devised. Human lung enzyme was very tightly bound to and catalytically active on anti-human enzyme antibody covalently bound to Sepharose 4B, and could not be readily dissociated without

  2. Metabolic profile of glyburide in human liver microsomes using LC-DAD-Q-TRAP-MS/MS.

    PubMed

    Ravindran, Selvan; Basu, Sudipta; Gorti, Santosh Kapil Kumar; Surve, Prashant; Sloka, Navya

    2013-05-01

    The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography-diode array detector-quadruple-ion trap-mass spectrometry/mass spectrometry (LC-DAD-Q-TRAP-MS/MS). An enhanced mass scan-enhanced product ion scan with information-dependent acquisition mode in a Q-TRAP-MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. PMID:23070832

  3. Effect of cefixime and cefdinir, oral cephalosporins, on cytochrome P450 activities in human hepatic microsomes.

    PubMed

    Niwa, Toshiro; Shiraga, Toshifumi; Hashimoto, Tomoko; Kagayama, Akira

    2004-01-01

    The effects of two kinds of oral cephalosporins, cefixime and cefdinir, on cytochrome P450 (CYP) activities in human hepatic microsomes were investigated. Both cefixime and cefdinir at 2 mM concentration neither inhibited nor stimulated CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, CYP3A4-mediated nifedipine oxidation, or CYP3A4-mediated testosterone 6beta-hydroxylation. The free fractions of cefixime and cefdinir in the incubation mixture, which were measured by ultracentrifugation, were 86.1-93.8% and 94.1-97.8%, respectively. These results suggest that both cefixime and cefdinir would not cause clinically significant interactions with other drugs, which are metabolized by CYPs, via the inhibition of metabolism.

  4. In vitro metabolism of phenoxypropoxybiguanide analogues in human liver microsomes to potent antimalarial dihydrotriazines.

    PubMed

    Shearer, Todd W; Kozar, Michael P; O'Neil, Michael T; Smith, Philip L; Schiehser, Guy A; Jacobus, David P; Diaz, Damaris S; Yang, Young-Sun; Milhous, Wilbur K; Skillman, Donald R

    2005-04-21

    Phenoxypropoxybiguanides, such as 1 (PS-15), are prodrugs analogous to the relationship of proguanil and its active metabolite cycloguanil. Unlike cycloguanil, however, 1a (WR99210), the active metabolite of 1, has retained in vitro potency against newly emerging antifolate-resistant malaria parasites. Unfortunately, manufacturing processes and gastrointestinal intolerance have prevented the clinical development of 1. In vitro antimalarial activity and in vitro metabolism studies have been performed on newly synthesized phenoxypropoxybiguanide analogues. All of the active dihydrotriazine metabolites exhibited potent antimalarial activity with in vitro IC(50) values less than 0.04 ng/mL. In vitro metabolism studies in human liver microsomes identified the production of not only the active dihydrotriazine metabolite, but also a desalkylation on the carbonyl chain, and multiple hydroxylated metabolites. The V(max) for production of the active metabolites ranged from 10.8 to 27.7 pmol/min/mg protein with the K(m) ranging from 44.8 to 221 microM. The results of these studies will be used to guide the selection of a lead candidate.

  5. Enzyme kinetic study of a new cardioprotective agent, KR-32570 using human liver microsomes and recombinant CYP isoforms.

    PubMed

    Kim, Hyojin; Seo, Kyung-Ah; Kim, Hyunmi; Lee, Hye Suk; Lee, Choong-Hwan; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2007-04-01

    KR-32570 (5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. Human liver microsomal incubation of KR-32570 in the presence of NADPH resulted in the formation of two metabolites, hydroxy-KR-32570 and O-desmethyl-KR-32570. In this study, a kinetic analysis of the metabolism of two metabolites from KR-32570 was performed in human liver microsomes, and recombinant CYP1A2, and CYP3A4. The metabolism for hydroxy- and O-desmethyl-KR-32570 formation from KR-32570 by human liver microsomes was best described by a Michaelis-Menten equation and a Hill equation, respectively. The Cl(int) values of hydroxy- and O-desmethyl-KR-32570 formation were similar to each other (0.03 vs 0.04 microL/min/pmol CYP, respectively). CYP3A4 mediated the formation of hydroxy-KR-32570 from KR-32570 with Cl(int) = 0.24 microL/min/pmol CYP3A4. The intrinsic clearance for O-desmethyl-KR-32570 formation by CYP1A2 was 0.83 AL/min/pmol CYP1A2. These findings suggest that CYP3A4 and CYP1A2 enzymes are major enzymes contributing to the metabolism of KR-32570.

  6. LIVER MICROSOMES

    PubMed Central

    Palade, G. E.; Siekevitz, P.

    1956-01-01

    Rat liver, liver homogenates, and microsome fractions separated therefrom were examined systematically in the electron microscope in sections of OsO4-fixed, methacrylate-embedded tissue and pellets. It was found that most microsomes are morphologically identical with the rough surfaced elements of the endoplasmic reticula of hepatic cells. They appear as isolated, membrane-bound vesicles, tubules, and cisternae which contain an apparently homogeneous material of noticeable density, and bear small, dense particles (100 to 150 A) attached to their outer aspect. In solutions of various osmolar concentrations they behave like osmometers. The findings suggest that they derive from the endoplasmic reticulum by a generalized pinching-off process rather than by mechanical fragmentation. The microsome fractions contain in addition relatively few vesicles free of attached particles, probably derived from the smooth surfaced parts of the endoplasmic reticula. Dense, peribiliary bodies represent a minor component of the same fractions. The microsomes derived from 1 gm. wet weight liver pulp contained (averages of 10 experiments) 3.09 mg. protein N, 3.46 mg. RNA (RNA/protein N = 1.12), and 487 µg. phospholipide P. They displayed DPNH-cytochrome c reductase activity and contained an alcohol-soluble hemochromogen. The microsome preparations proved resistant to washing and "aging." Treatment with versene and incubation with ribonuclease (30 minutes at 37°C.) resulted in appreciable losses of RNA and in partial or total disappearance of attached particles. Treatment with deoxycholate (0.3 to 0.5 per cent, pH = 7.5) induced a partial clarification of the microsome suspensions which, upon centrifugation, yielded a small pellet of conglomerated small, dense particles (100 to 150 A) with only occasionally interspersed vesicles. The pellet contained ∼80 to 90 per cent of the RNA and ∼20 per cent of the protein N of the original microsomes. The supernatant accounted satisfactorily

  7. Metabolic activation of chemicals to mutagenic carcinogens by human hepatoma microsomal extracts in Chinese hamster ovary cells (in vitro).

    PubMed

    Darroudi, F; Natarajan, A T

    1993-01-01

    The efficiency of human hepatoma (Hep G2) S9 microsomal fractions to activate indirectly acting genotoxic carcinogens was evaluated. The extract was prepared from Hep G2 epithelial cells, following sonication and centrifugation. The mutagenic activity of cyclophosphamide, benzo[a]pyrene, pyrene, hexamethylphosphoramide and safrole was assessed by the ability of their activated metabolites to induce sister chromatid exchange (SCE) and micronuclei (MN) in Chinese hamster ovary cells (CHO) (treated in vitro). All promutagenic carcinogens tested were found to be effective only following metabolic activation by Hep G2 cell extracts. Non-carcinogen pyrene was not able to induce an increase in the frequencies of SCE or MN in CHO cells even in the presence of Hep G2 S9 microsomal fractions. Parallel experiments were carried out using rat liver homogenate (S9 fraction) as an exogenous activation system, and comparisons were made between these two in vitro systems and in vivo assays using the rodent.

  8. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    PubMed

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  9. Formation of the Thiol Conjugates and Active Metabolite of Clopidogrel by Human Liver Microsomes

    PubMed Central

    Lau, Wei C.; Hollenberg, Paul F.

    2012-01-01

    We reported previously the formation of a glutathionyl conjugate of the active metabolite (AM) of clopidogrel and the covalent modification of a cysteinyl residue of human cytochrome P450 2B6 in a reconstituted system (Mol Pharmacol 80:839–847, 2011). In this work, we extended our studies of the metabolism of clopidogrel to human liver microsomes in the presence of four reductants, namely, GSH, l-Cys, N-acetyl-l-cysteine (NAC), and ascorbic acid. Our results demonstrated that formation of the AM was greatly affected by the reductant used and the relative amounts of the AM formed were increased in the following order: NAC (17%) < l-Cys (53%) < ascorbic acid (61%) < GSH (100%). AM-thiol conjugates were observed in the presence of NAC, l-Cys, and GSH. In the case of GSH, the formation of both the AM and the glutathionyl conjugate was dependent on the GSH concentrations, with similar Km values of ∼0.5 mM, which indicates that formation of the thiol conjugates constitutes an integral part of the bioactivation processes for clopidogrel. It was observed that the AM was slowly converted to the thiol conjugate, with a half-life of ∼10 h. Addition of dithiothreitol to the reaction mixture reversed the conversion, which resulted in a decrease in AM-thiol conjugate levels and a concomitant increase in AM levels, whereas addition of NAC led to the formation of AM-NAC and a concomitant decrease in AM-GSH levels. These results not only confirm that the AM is formed through oxidative opening of the thiolactone ring but also suggest the existence of an equilibrium between the AM, the thiol conjugates, and the reductants. These factors may affect the effective concentrations of the AM in vivo. PMID:22584220

  10. In vitro glucuronidation of five rhubarb anthraquinones by intestinal and liver microsomes from humans and rats.

    PubMed

    Wu, Wenjin; Hu, Nan; Zhang, Qingwen; Li, Yaping; Li, Peng; Yan, Ru; Wang, Yitao

    2014-08-01

    Anthraquinones naturally distribute in many plants including rhubarb and have widespread applications throughout industry and medicine. Recent studies provided new insights in potential applications of these traditional laxative constituents. Glucuronidation was the main metabolic pathway of rhubarb anthraquinones in vivo. This study examined the activity and regioselectivity of glucuronidation of rhubarb anthraquinones (aloe-emodin, emodin, chrysophanol, physcion, rhein) in liver and intestinal microsomes from rats and humans, by comparing with the core structure danthron. All anthraquinones formed mono-glucuronides and, except for rhein, the conjugation sites of the main metabolites were unambiguously identified. Two minor glucuronides of emodin were first reported together with the dominant emodin-3-O-β-D-glucuronide. The substitution on the anthraquinone ring was crucial to the activity and regioselectivity of glucuronidation. In general, the activity was decreased greatly with a β-COOH (rhein), while enhanced dramatically with a β-OH (emodin). Glucuronidation showed an absolute preference towards β-OH, followed by α-OH and β-alcoholic OH. The glucuronidation activity and regioselectivity also varied slightly with organs and species. All glucuronides of aloe-emodin, emodin, chrysophanol and physcion were formed by multiple human UGT isoforms with 1A9 being the most prominent in most cases. The UGT2B subfamily (2B7 and 2B15) only showed high activity towards a β-OH. In conclusion, the substitution at the anthraquinone ring was crucial to the rate and preference of glucuronidation. The high glucuronidation activity of UGT1A9 towards anthraquinones highlighted potential drug interactions.

  11. Inhibition of aromatase activity in human placental microsomes by 13-retro-antiprogestins.

    PubMed

    Shimizu, Y; Yarborough, C P; Elger, W; Chwalisz, K; Osawa, Y

    1995-02-01

    Mifepristone (RU 486), used clinically for the termination of early pregnancy, and its acetyl and 13-retro (13 alpha) analogs show potent antiproliferative effects against estrogen-dependent human breast tumors and endometriosis. However, there has been no report on direct inhibition of aromatase by antiprogesterones. Aromatase inhibitors have been shown to be effective against estrogen-dependent breast cancer. We evaluated the inhibition of aromatase by various antiprogestins (ZK 112.993, ZK 98.734, ZK 114.043, ZK 98.299, and ZK 114.863). Human placental microsomes were incubated with [1 beta-3H,4-14C] androstenedione (3-114 nM) in the presence of NADPH, with or without putative inhibitors (10-200 microM). Aromatase activity was assessed by tritium release to water from the 1 beta-position of the substrate. ZK 112.993 and ZK 98.734 did not show any inhibitory effect. The statistical analysis of the data using standard errors was obtained from replicate experiments. ZK 114.043 showed slight inhibition with a Ki of 54.8 +/- 6.4 microM (m +/- SE, n = 6) against androstenedione aromatization. The two 13-retro-steroids, ZK 98.299 and ZK 114.863, showed aromatase inhibition with Ki values of 19.0 +/- 1.5 microM (n = 7) and 12.7 +/- 0.94 microM (n = 7), respectively, which is weak with respect to some known potent inhibitors, but significant when compared with the other antiprogestins which were tested. The results suggest that the unnatural 13-retro-antiprogestin conformation may have a better fit to the aromatase active site than the natural 13 beta-antiprogestin conformation. (Steroids 60:234-238, 1995).

  12. Microsomal proteomics.

    PubMed

    Wong, Diana M; Adeli, Khosrow

    2009-01-01

    Proteomic profiling of subcellular compartments has many advantages over traditional proteomic approaches using whole cell lysates as it allows for detailed proteome analysis of a specific organelle and corresponding functional characteristics. The microsome is a critical, membranous compartment involved in the synthesis, sorting, and secretion of proteins as well as other metabolic functions. This chapter will describe detailed methods for the isolation of microsomal organelles including the ER, Golgi, and prechylomicron transport vesicle (PCTV), a recently identified vesicular system involved in intestinal lipoprotein assembly and secretion. Particular focus is given to the isolation of microsomes from primary hepatocytes and enterocytes freshly isolated from rodent liver and intestinal tissue, and their proteomic profiling using a combination of two-dimensional gel electrophoresis and mass spectrometry.

  13. Cytochrome P450 responsible for the stereoselective S-oxidation of flosequinan in hepatic microsomes from rats and humans.

    PubMed

    Kashiyama, E; Yokoi, T; Odomi, M; Funae, Y; Inoue, K; Kamataki, T

    1997-06-01

    The forms of cytochrome P450 involved in the stereoselective S-oxidation of flosequinan [(+/-)-7-fluoro-1-methyl-3-methylsulfinyl-4-quinolone] were investigated in vitro using liver microsomes from rats and humans. Rat liver microsomes supplemented with NADPH catalyzed the four different S-oxidations, which were from flosequinan sulfide (FS; 7-fluoro-1-methyl-3-methylthio-4-quinolone) to R(+)- and S(-)-flosequinan (R-FSO and S-FSO, respectively) and from R-FSO and S-FSO to flosequinan sulfone (FSO2; 7-fluoro-1-methyl-3-methylsulfonyl-4-quinolone). The activities of all the S-oxidases in liver microsomes from male rats were higher than those from female rats. The activities of the S-oxidases measured at a high substrate concentration (1 mM) were induced by treatment of rats with phenobarbital and dexamethasone. Treatment of rats with 3-methylcholanthrene also induced the activities, but only at a low substrate concentration (50 microM), except for the S-oxidase catalyzing the reaction from FS to R-FSO. Enzymes induced by clofibrate and ethanol were not involved in the oxidations at a low substrate concentration. The activities of S-oxidases were correlated with the contents of cytochrome P450 (CYP)3A enzymes. Anti-CYP3A2 antisera inhibited the activities of the S-oxidases catalyzing the reactions from FS to R-FSO (40%) and to S-FSO (60%) at the high substrate concentration and inhibited the activities of the S-oxidases, thus catalyzing reactions from R-FSO and S-FSO to FSO2 (70%) at both high and low substrate concentrations. These results suggest that CYP3A is the major enzyme involved in all S-oxidation pathways in flosequinan metabolism in rats. On the other hand, except for the S-oxidation of FS to R-FSO, the rates of the other three S-oxidations by liver microsomes from 30 individual humans correlated highly with each other, suggesting that the same enzyme would be involved in the three S-oxidations. Anti-CYP3A2 antisera inhibited the activities of all the S

  14. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.

    PubMed

    Liu, Ruifeng; Schyman, Patric; Wallqvist, Anders

    2015-08-24

    To lower the possibility of late-stage failures in the drug development process, an up-front assessment of absorption, distribution, metabolism, elimination, and toxicity is commonly implemented through a battery of in silico and in vitro assays. As in vitro data is accumulated, in silico quantitative structure-activity relationship (QSAR) models can be trained and used to assess compounds even before they are synthesized. Even though it is generally recognized that QSAR model performance deteriorates over time, rigorous independent studies of model performance deterioration is typically hindered by the lack of publicly available large data sets of structurally diverse compounds. Here, we investigated predictive properties of QSAR models derived from an assembly of publicly available human liver microsomal (HLM) stability data using variable nearest neighbor (v-NN) and random forest (RF) methods. In particular, we evaluated the degree of time-dependent model performance deterioration. Our results show that when evaluated by 10-fold cross-validation with all available HLM data randomly distributed among 10 equal-sized validation groups, we achieved high-quality model performance from both machine-learning methods. However, when we developed HLM models based on when the data appeared and tried to predict data published later, we found that neither method produced predictive models and that their applicability was dramatically reduced. On the other hand, when a small percentage of randomly selected compounds from data published later were included in the training set, performance of both machine-learning methods improved significantly. The implication is that 1) QSAR model quality should be analyzed in a time-dependent manner to assess their true predictive power and 2) it is imperative to retrain models with any up-to-date experimental data to ensure maximum applicability. PMID:26170251

  15. The Nonspecific Binding of Tyrosine Kinase Inhibitors to Human Liver Microsomes.

    PubMed

    Burns, Kushari; Nair, Pramod C; Rowland, Andrew; Mackenzie, Peter I; Knights, Kathleen M; Miners, John O

    2015-12-01

    Drugs and other chemicals frequently bind nonspecifically to the constituents of an in vitro incubation mixture, particularly the enzyme source [e.g., human liver microsomes (HLM)]. Correction for nonspecific binding (NSB) is essential for the accurate calculation of the kinetic parameters Km, Clint, and Ki. Many tyrosine kinase inhibitors (TKIs) are lipophilic organic bases that are nonionized at physiologic pH. Attempts to measure the NSB of several TKIs to HLM by equilibrium dialysis proved unsuccessful, presumably due to the limited aqueous solubility of these compounds. Thus, the addition of detergents to equilibrium dialysis samples was investigated as an approach to measure the NSB of TKIs. The binding of six validation set nonionized lipophilic bases (felodipine, isradipine, loratidine, midazolam, nifedipine, and pazopanib) to HLM (0.25 mg/ml) was shown to be unaffected by the addition of CHAPS (6 mM) to the dialysis medium. This approach was subsequently applied to measurement of the binding of axitinib, dabrafenib, erlotinib, gefitinib, ibrutinib, lapatinib, nilotinib, nintedanib, regorafenib, sorafenib, and trametinib to HLM (0.25 mg/ml). As with the validation set drugs, attainment of equilibrium was demonstrated in HLM-HLM and buffer-buffer control dialysis experiments. Values of the fraction unbound to HLM ranged from 0.14 (regorafenib and sorafenib) to 0.93 (nintedanib), and were generally consistent with the known physicochemical determinants of drug NSB. The extensive NSB of many TKIs to HLM underscores the importance of correction for TKI binding to HLM and, presumably, other enzyme sources present in in vitro incubation mixtures.

  16. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies.

  17. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies. PMID:16258079

  18. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.

    PubMed

    Liu, Ruifeng; Schyman, Patric; Wallqvist, Anders

    2015-08-24

    To lower the possibility of late-stage failures in the drug development process, an up-front assessment of absorption, distribution, metabolism, elimination, and toxicity is commonly implemented through a battery of in silico and in vitro assays. As in vitro data is accumulated, in silico quantitative structure-activity relationship (QSAR) models can be trained and used to assess compounds even before they are synthesized. Even though it is generally recognized that QSAR model performance deteriorates over time, rigorous independent studies of model performance deterioration is typically hindered by the lack of publicly available large data sets of structurally diverse compounds. Here, we investigated predictive properties of QSAR models derived from an assembly of publicly available human liver microsomal (HLM) stability data using variable nearest neighbor (v-NN) and random forest (RF) methods. In particular, we evaluated the degree of time-dependent model performance deterioration. Our results show that when evaluated by 10-fold cross-validation with all available HLM data randomly distributed among 10 equal-sized validation groups, we achieved high-quality model performance from both machine-learning methods. However, when we developed HLM models based on when the data appeared and tried to predict data published later, we found that neither method produced predictive models and that their applicability was dramatically reduced. On the other hand, when a small percentage of randomly selected compounds from data published later were included in the training set, performance of both machine-learning methods improved significantly. The implication is that 1) QSAR model quality should be analyzed in a time-dependent manner to assess their true predictive power and 2) it is imperative to retrain models with any up-to-date experimental data to ensure maximum applicability.

  19. The Nonspecific Binding of Tyrosine Kinase Inhibitors to Human Liver Microsomes.

    PubMed

    Burns, Kushari; Nair, Pramod C; Rowland, Andrew; Mackenzie, Peter I; Knights, Kathleen M; Miners, John O

    2015-12-01

    Drugs and other chemicals frequently bind nonspecifically to the constituents of an in vitro incubation mixture, particularly the enzyme source [e.g., human liver microsomes (HLM)]. Correction for nonspecific binding (NSB) is essential for the accurate calculation of the kinetic parameters Km, Clint, and Ki. Many tyrosine kinase inhibitors (TKIs) are lipophilic organic bases that are nonionized at physiologic pH. Attempts to measure the NSB of several TKIs to HLM by equilibrium dialysis proved unsuccessful, presumably due to the limited aqueous solubility of these compounds. Thus, the addition of detergents to equilibrium dialysis samples was investigated as an approach to measure the NSB of TKIs. The binding of six validation set nonionized lipophilic bases (felodipine, isradipine, loratidine, midazolam, nifedipine, and pazopanib) to HLM (0.25 mg/ml) was shown to be unaffected by the addition of CHAPS (6 mM) to the dialysis medium. This approach was subsequently applied to measurement of the binding of axitinib, dabrafenib, erlotinib, gefitinib, ibrutinib, lapatinib, nilotinib, nintedanib, regorafenib, sorafenib, and trametinib to HLM (0.25 mg/ml). As with the validation set drugs, attainment of equilibrium was demonstrated in HLM-HLM and buffer-buffer control dialysis experiments. Values of the fraction unbound to HLM ranged from 0.14 (regorafenib and sorafenib) to 0.93 (nintedanib), and were generally consistent with the known physicochemical determinants of drug NSB. The extensive NSB of many TKIs to HLM underscores the importance of correction for TKI binding to HLM and, presumably, other enzyme sources present in in vitro incubation mixtures. PMID:26443648

  20. [Progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes].

    PubMed

    Wang, Huanhuan; Lu, Yayao; Peng, Bo; Qian, Xiaohong; Zhang, Yangjun

    2015-06-01

    Cytochrome P450 (CYP) enzymes and uridine 5-diphospho-glucuronosyltransferase (UGT) enzymes are critical enzymes for drug metabolism. Both chemical drugs and traditional Chinese medicines are converted to more readily excreted compounds by drug metabolizing enzymes in human livers. Because of the disparate expression of CYP and UGT enzymes among different individuals, accurate quantification of these enzymes is essential for drug pharmacology, drug-drug interactions and drug clinical applications. The research progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes in the recent decade is reviewed. PMID:26536756

  1. [Progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes].

    PubMed

    Wang, Huanhuan; Lu, Yayao; Peng, Bo; Qian, Xiaohong; Zhang, Yangjun

    2015-06-01

    Cytochrome P450 (CYP) enzymes and uridine 5-diphospho-glucuronosyltransferase (UGT) enzymes are critical enzymes for drug metabolism. Both chemical drugs and traditional Chinese medicines are converted to more readily excreted compounds by drug metabolizing enzymes in human livers. Because of the disparate expression of CYP and UGT enzymes among different individuals, accurate quantification of these enzymes is essential for drug pharmacology, drug-drug interactions and drug clinical applications. The research progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes in the recent decade is reviewed.

  2. Biotransformation of lovastatin--III. Effect of cimetidine and famotidine on in vitro metabolism of lovastatin by rat and human liver microsomes.

    PubMed

    Vyas, K P; Kari, P H; Wang, R W; Lu, A Y

    1990-01-01

    The effects of the H2-receptor antagonists, cimetidine and famotidine, on the microsomal metabolism of [14C]lovastatin were investigated. Liver microsomes were prepared from control, phenobarbital- and 3-methylcholanthrene-pretreated rats and humans (male and female). Concentration-dependent inhibition of the metabolism of lovastatin (0.1 mM) was observed with cimetidine (0.1 to 1.0 mM). In contrast, famotidine at a similar concentration was a very weak inhibitor. The formation of 6'beta-hydroxy-lovastatin, the major microsomal metabolite of lovastatin, was similarly inhibited. The results suggest that in vivo metabolic interaction with concomitantly administered lovastatin is less likely with famotidine than with cimetidine. Phenobarbital pretreatment produced 58% stimulation in overall metabolism, whereas 3-methylcholanthrene pretreatment had no effect relative to control rats (5.4 nmol/mg protein/min). Liver microsomes from phenobarbital-pretreated rats produced 67% more of the 6'beta-hydroxy-lovastatin but 63-66% less of the 3''-hydroxy and 6'-exomethylene metabolites. Liver microsomes from 3-methylcholanthrene-treated rats also produced less 3"-hydroxy-lovastatin (49%) but similar quantities of the other two metabolites. 6'beta-Hydroxy-lovastatin was a major metabolite with human liver microsomes. Interestingly with these microsomes, hydroxylation at the 3''-position of the molecule was a negligible pathway and hydrolysis to the hydroxy acid form was not observed. The formation of 6'-exomethylene-lovastatin was also catalyzed by human liver microsomes (0.5 to 0.8 nmol/mg protein/min). PMID:2297361

  3. Intronic DNA elements regulate Nrf-2 chemical responsiveness of the human microsomal epoxide hydrolase gene (EPHX1) through a far upstream alternative promoter

    PubMed Central

    Su, Shengzhong; Yang, Xi; Omiecinski, Curtis J.

    2014-01-01

    In humans, microsomal epoxide hydrolase (mEH) contributes important biological functions that underlie both detoxification and bioactivation fates arising from exposures to foreign chemicals. Previously, we discovered that human mEH gene transcription is initiated from alternative promoters. The respective transcripts are programmed with tissue specificity and the upstream E1b promoter contributes predominantly to mEH expression. The results presented demonstrate that exposures to the Nrf2 activators, sulforaphane (SFN) and tert-butylhydroquinone (tBHQ), markedly activate E1b transcription in human lung and liver cells. Genomic analyses identified two major DNase I hypersensitive regions (HS-1 and HS-2) within the ~15 kb intervening sequence separating E1b from the downstream E1 promoter. In BEAS-2B cells, the Nrf2 effectors, SFN and tBHQ, selectively activated the more distal HS-2 through an antioxidant-response element (ARE). An activator protein 1/12-O-tetradecanoylphorbol-13-acetate interaction was further identified within the HS-2 enhancer that functioned to additionally contribute to ARE-mediated induction responsiveness of the E1b promoter. The results demonstrate that ARE modulation, integrated with additional transcriptional complexes, regulates the tissue-specific expression of mEH and that these processes likely coordinate both the protective and bioactivation functions contributed by mEH activities in human tissues. PMID:24704207

  4. In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes.

    PubMed

    Crowell, S R; Hanson-Drury, S; Williams, D E; Corley, R A

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis-Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, μM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored.

  5. Comparative 1-substituted imidazole inhibition of cytochrome p450 isozyme-selective activities in human and mouse hepatic microsomes.

    PubMed

    Franklin, Michael R; Constance, Jonathan E

    2007-01-01

    Inhibition of cytochrome P450(CYP)-selective reactions in a single human and a single mouse hepatic microsome preparation by fourteen 1-substituted imidazoles provides a simultaneous ranking of reaction susceptibility to a specific imidazole and the relative inhibitory potency of the imidazoles for a given reaction. CYP3A4/5 activity was inhibited (IC(50) <5 microM) by the greatest number of imidazoles, followed closely by CYP2C9. Seven imidazoles exhibited IC(50) values for CYP3A4/5 <0.3 microM (none for CYP2C9) and were exclusively above 300 MW. Nafimidone (MW, 236) exhibited an IC(50) value <0.3 microM towards CYP2D6 and CYP1A2 reactions. CYP2E1 and CYP2A6 were exclusively inhibited (IC(50) <5 microM) by imidazoles with MWs below approximately 200. In general, mouse activities exhibited lower IC(50) values than in human microsomes. PMID:17786623

  6. Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes

    PubMed Central

    Li, Jia; He, Chunyong; Fang, Lianxiang; Yang, Li; Wang, Zhengtao

    2016-01-01

    20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4. PMID:27005621

  7. In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450.

    PubMed

    Koga, Nobuyuki; Ohta, Chiho; Kato, Yoshihisa; Haraguchi, Koichi; Endo, Tetsuya; Ogawa, Kazunori; Ohta, Hideaki; Yano, Masamichi

    2011-11-01

    Cytochrome P450 enzymes (CYPs) in the liver metabolize drugs prior to excretion, with different enzymes acting at different molecular motifs. At present, the human CYPs responsible for the metabolism of the flavonoid, nobiletin (NBL), are unidentified. We investigated which enzymes were involved using human liver microsomes and 12 cDNA-expressed human CYPs. Human liver microsomes metabolized NBL to three mono-demethylated metabolites (4'-OH-, 7-OH- and 6-OH-NBL) with a relative ratio of 1:4.1:0.5, respectively, by aerobic incubation with nicotinamide adenine dinucleotide phosphate (NADPH). Of 12 human CYPs, CYP1A1, CYP1A2 and CYP1B1 showed high activity for the formation of 4'-OH-NBL. CYP3A4 catalyzed the formation of 7-OH-NBL with the highest activity and of 6-OH-NBL with lower activity. CYP3A5 also catalyzed the formation of both metabolites but considerably more slowly than CYP3A4. In contrast, seven CYPs (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1) were inactive for NBL. Both ketoconazole and troleandomycin (CYP3A inhibitors) almost completely inhibited the formation of 7-OH- and 6-OH-NBL. Similarly, α-naphthoflavone (CYP1A1 inhibitor) and furafylline (CYP1A2 inhibitor) significantly decreased the formation of 4'-OH-NBL. These results suggest that CYP1A2 and CYP3A4 are the key enzymes in human liver mediating the oxidative demethylation of NBL in the B-ring and A-ring, respectively.

  8. Effects of capsaicin and dihydrocapsaicin on human and rat liver microsomal CYP450 enzyme activities in vitro and in vivo.

    PubMed

    Zhang, Qing-Hao; Hu, Jin-Ping; Wang, Bao-Lian; Li, Yan

    2012-01-01

    Capsaicin and dihydrocapsaicin, the two most abundant members of capsaicinoids in chili peppers, are widely used as food additives and for other purposes. In this study, we examined the inhibitory potentials of capsaicin and dihydrocapsaicin against CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 activities in human liver microsomes. The effects of these two capsaicinoids on CYP450 enzymes were also evaluated in vivo in rats. The results demonstrated that capsaicin and dihydrocapsaicin moderately inhibited five isozymes (IC₅₀) values ranging from 4.4 to 61.8 μM), with the exception of CYP2E1 (IC₅₀ > 200 μM). Both capsaicinoids exhibited competitive, mixed, and noncompetitive inhibition on these isozymes (K (i) = 3.1 ± 0.5 - 78.6 ± 8.4 μM). Time-dependent inhibition of CYP3A4/5 by capsaicin was found. After multiple administrations of capsaicin and dihydrocapsaicin (1, 4, and 10 mg/kg) to rats, chlorzoxazone 6-hydroxylase activity and the expression of CYP2E1 were increased in liver microsomes. Our findings indicated that the possibility of food-drug interactions mediated by capsaicin and dihydrocapsaicin could not be excluded, and provided the useful information for evaluating the anticarcinogenic potentials of these two capsaicinoids. PMID:22375877

  9. Roles of different cytochrome P-450 enzymes in bioactivation of the hepatocarcinogen 3-methoxy-4-aminoazobenzene by rat and human liver microsomes

    SciTech Connect

    Shimada, T.; Yamazaki, H.; Degawa, M.; Funae, Y.; Imaoka, S.; Inui, Y.; Guengerich, F.P. Tohoku Univ., Aobayama Osaka City Univ., Abenoku Center for Adult Diseases, Nakamichi, Higashinariku, Osaka Vanderbilt Univ., Nashville, TN )

    1991-03-11

    The potent hepatocarcinogen 3-methoxy-4-aminoazobenzene (3-MeO-AAB) has been reported to be bioactivated to mutagenic intermediates by rat liver microsomal cytochrome P-450 (P-450) and to be a selective inducer of rat P-450IA2. 3-MeO-AAB was found to be bioactivated by liver microsomal enzymes from rats and humans in a Salmonella typhimurium TA1535/pSK1002 system where umu response is indicative of DNA damage. The liver microsomal activities are increased by pretreatment of rats with various P-450 inducers. Evidence has also been obtained that specific antibodies raised against P-4502B1, P-4501A1 or 1A2, P-4502E1, and P4503A inhibited the activation in rat liver microsomes suggesting the possible roles of several P-450 enzymes in the bioactivation of 3-MeO-AAB, and results obtained with various purified rat P-450 enzymes support this view. Human liver microsomal activation of 3-MeO-AAB was also inhibited to various extents by antibodies raised against P-4501A, P-4502C, P-4502E1, and P-4503A enzymes. Purified P-4501A2 was the most active human P-450 in oxidizing 3-MeO-AAB, followed by P-4503A4 and P-450{sub MP} (P4502C). From these results it is concluded that multiple P-450 enzymes in rat and human liver microsomes are involved in the bioactivation of 3-MeO-AAB, regardless of its selective induction of the P4501A2 gene.

  10. [Inhibitory effect of imperatorin and isoimperatorin on activity of cytochrome P450 enzyme in human and rat liver microsomes].

    PubMed

    Cao, Yan; Zhong, Yu-Huan; Yuan, Mei; Li, Hua; Zhao, Chun-Jie

    2013-04-01

    Imperatorin (IM) and isoimperatorin (ISOIM) are major active components of common herbal medicines from Umbelliferae plants, and widely used in clinic. This article studies the inhibitory effect of IM and ISOIM on the activity of cytochrome P450 (CYP) enzyme, and assesses their potential drug-drug interaction. IM and ISOIM were incubated separately with human or rat liver microsomes for 30 min, with phenacetin, bupropion, tolbutamide, S-mephenytoin, dextromethorphan and midazolam as probe substrates. Metabolites of the CYP probe substrates were determined by LC-MS/MS, and IC50 values were calculated to assess the inhibitory effect of the two drugs on human CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4 enzymes, as well as on rat CYP1A2, 2B6, 2D2 and 3A1/2, and grade their inhibitory intensity. In human liver microsomes, IM and ISOIM showed different inhibitory effects on all of the six CYP isoenzymes. They were strong inhibitors for 1A2 and 2B6. The IC50 values were 0.05 and 0.20 micromol x L(-1) for 1A2, and 0.18 and 1.07 micromol x L(-1) for 2B6, respectively. They also showed moderate inhibitory effect on 2C19, and weak effect on 2C9, 2D6 and 3A4. In rat liver microsomes, IM and ISOIM were identified as moderate inhibitors for 1A2, with IC50 values of 1.95 and 2.98 micromol x L(-1). They were moderate and weak inhibitors for 2B6, with IC50 values of 6.22 and 21.71 micromol x L(-1), respectively. They also had weaker inhibitory effect on 2D2 and 3A1/2. The results indicated that IM and ISOIM had extensive inhibitory effects on human CYP enzymes. They are strong inhibitors of CYP1 A2 and 2B6 enzymes. However, it is worth noting the interaction arising from the inhibitory effect of CYP enzymes in clinic.

  11. Acylation of lysophosphatidylcholine and glycerolphosphate and fatty acid pattern in phosphatidylcholine and -ethanolamine in microsomes of normal and dystrophic human muscle.

    PubMed

    Kunze, D; Rüstow, B; Kuksis, A; Myher, J J

    1986-02-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were isolated from microsomes obtained from normal and dystrophic human muscle and the fatty acid (FA) pattern estimated by GLC. In PC a decrease of the fatty acids of 16:0 and 18:2 and an increase of 18:0 and 18:1 was observed. In PE the decrease measured 18:2 and the increase 18:0 and 18:1. The acylation of lysophosphatidylcholine (LPC) and glycerol-3-phosphate (G3P) was measured in a microsomal system containing exogenously added LPC or G3P and labelled palmitic and oleic acid CoA esters. The incorporation of both labelled fatty acids in LPC-forming PC is reduced in dystrophic microsomes. On the other hand the acylation of glycerolphosphate and the formation of phosphatidic acid (PA) is greater in dystrophic microsomes when compared with normal controls. Possible correlations between the shifted FA pattern and the acylation rate by dystrophic microsomes measured in vitro in the two systems are discussed.

  12. [Investigation of metabolic kinetics and reaction phenotyping of ligustrazin by using liver microsomes and recombinant human enzymes].

    PubMed

    Tan, Yan; Zhuang, Xiao-Mei; Shen, Guo-Lin; Li, Hua; Gao, Yue

    2014-03-01

    The metabolic characteristics of ligustrazin (TMPz) in liver microsomes were investigated in the present study. The reaction phenotyping of TMPz metabolism was also identified by in vitro assessment using recombinant human cytochrome P450 enzymes (CYP) and UDP glucuronosyltransferases (UGT). TMPz was incubated at 37 degrees C with human (HLM) and rat liver microsomes (RLM) in the presence of different co-factors. The metabolic stability and enzyme kinetics of TMPz were studied by determining its remaining concentrations with a LC-MS/MS method. TMPz was only metabolically eliminated in the microsomes with NADPH or NADPH+UDPGA. In the HLM and RLM with NADPH+UDPGA, t1/2, K(m) and V(max) of TMPz were 94.24 +/- 4.53 and 105.07 +/- 9.44 min, 22.74 +/- 1.89 and 33.09 +/- 2.74 micromol x L(-1), 253.50 +/- 10.06 and 190.40 +/- 8.35 nmol x min(-1) x mg(-1) (protein), respectively. TMPz showed a slightly higher metabolic rate in HLM than that in RLM. Its primary oxidative metabolites, 2-hydroxymethyl-3, 5, 6-trimethylpyrazine (HTMP), could undergo glucuronide conjugation. The CYP reaction phenotyping of TMPz metabolism was identified using a panel of recombinant CYP isoforms (rCYP) and specific CYP inhibitors in HLM. CYP1A2, 2C9 and 3A4 were found to be the major CYP isoforms involved in TMPz metabolism. Their individual contributions were assessed b) using the method of the total normalized rate to be 19.32%, 27.79% and 52.90%, respectively. It was observed that these CYP isoforms mediated the formation of HTMP in rCYP incubation. The UGT reaction phenotyping of HTMP glucuronidation was also investigated preliminarily by using a panel of 6 UGT isoforms (rUGT). UGT1A1, 1A4 and 1A6 were the predominant isoforms mediated the HTMP glucuronidation. The results above indicate that the metabolism of TMPz involves multiple enzymes mediated phase I and phase II reactions.

  13. Metabolites profiling of 10 bufadienolides in human liver microsomes and their cytotoxicity variation in HepG2 cell.

    PubMed

    Han, Lingyu; Wang, Hongjie; Si, Nan; Ren, Wei; Gao, Bo; Li, Yan; Yang, Jian; Xu, Miao; Zhao, Haiyu; Bian, Baolin

    2016-04-01

    Bufadienolides, a class of polyhydroxy steroids, exhibit significant antitumor activity. In this study, a total of 39 metabolites from 10 bufadienolides were detected and identified by ultrahigh-performance liquid chromatography (UHPLC) coupled with an LTQ Orbitrap mass spectrometer. The results showed that hydroxylation and dehydrogenation were the major metabolic pathways of bufadienolides in human liver microsomes (HLMs). CYP3A4 was found to be the major metabolic enzyme and CYP2D6 only mediated the dehydrogenation reaction. A systematic validated cytotoxicity evaluation method for bufadienolide metabolites at equal equivalents was established. Hellebrigenin (1), hellebrigenol (2), arenobufagin (3), bufotalin (5), and bufalin (6) were selected to determine their cytotoxicity against HepG2 cells before and after incubation in HLMs. All the test samples were enriched by a validated solid-phase extraction (SPE) method. Although the cytotoxicities of metabolites were weaker than those of the parent compounds to different degrees, their effects were still strong.

  14. Metabolism-mediated interaction potential of standardized extract of Tinospora cordifolia through rat and human liver microsomes

    PubMed Central

    Bahadur, Shiv; Mukherjee, Pulok K.; Milan Ahmmed, S. K.; Kar, Amit; Harwansh, Ranjit K.; Pandit, Subrata

    2016-01-01

    Objective: Tinospora cordifolia is used for treatment of several diseases in Indian system of medicine. In the present study, the inhibition potential of T. cordifolia extracts and its constituent tinosporaside to cause herb-drug interactions through rat and human liver cytochrome enzymes was evaluated. Materials and Methods: Bioactive compound was quantified through reverse phase high-performance liquid chromatography, to standardize the plant extracts and interaction potential of standardized extract. Interaction potential of the test sample was evaluated through cytochrome P450-carbon monoxide complex (CYP450-CO) assay with pooled rat liver microsome. Influence on individual recombinant human liver microsomes such as CYP3A4, CYP2D6, CYP2C9, and CYP1A2 isozymes was analyzed through fluorescence microplate assay, and respective IC50 values were determined. Results: The content of tinosporaside was found to be 1.64% (w/w) in T. cordifolia extract. Concentration-dependent inhibition was observed through T. cordifolia extract. Observed IC50 (μg/ml) value was 136.45 (CYP3A4), 144.37 (CYP2D6), 127.55 (CYP2C9), and 141.82 (CYP1A2). Tinosporaside and extract showed higher IC50 (μg/ml) value than the known inhibitors. T. cordifolia extract showed significantly less interaction potential and indicates that the selected plant has not significant herb-drug interactions relating to the inhibition of major CYP450 isozymes. Conclusions: Plant extract showed significantly higher IC50 value than respective positive inhibitors against CYP3A4, 2D6, 2C9, and 1A2 isozymes. Consumption of T. cordifolia may not cause any adverse effects when consumed along with other xenobiotics. PMID:27721546

  15. Comparative metabolism study of β-lapachone in mouse, rat, dog, monkey, and human liver microsomes using liquid chromatography-tandem mass spectrometry.

    PubMed

    Lee, Sangkyu; Kim, In Sook; Kwak, Tae Hwan; Yoo, Hye Hyun

    2013-09-01

    β-Lapachone (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione) is a natural compound extracted from the bark of the lapacho tree (Tabebuia avellanedae) and is undergoing phase II clinical trials as an antitumor drug candidate. The present study characterized in vitro metabolites of β-lapachone in mouse, rat, dog, monkey and human liver microsomes. β-Lapachone (10 μM) was incubated with mouse, rat, dog, monkey, and human liver microsomes in the presence of NADPH. The reaction mixtures were analyzed by LC/MS and the metabolites were identified based on their elemental composition and product ion spectra. A total of 6 metabolites (M1-M6) were detected in liver microsomes with a slight difference between species. M1 and M6 were identified as a decarbonated metabolite and a carboxylated metabolite, respectively; M2, M3, and M4 were identified as monohydroxylated metabolites; and M5 was identified as an O-methylated metabolite. M5, an O-methylated metabolite was found in rat and human liver microsomes, which is thought to be formed from a catechol intermediate by MB-COMT-mediated methylation and reported here for the first time.

  16. The human lung mast cell.

    PubMed Central

    Wasserman, S I

    1984-01-01

    Mast cells are present in human lung tissue, pulmonary epithelium, and free in the bronchial lumen. By virtue of their location and their possession of specific receptors for IgE and complement fragments, these cells are sentinel cells in host defense. The preformed granular mediators and newly generated lipid mediators liberated upon activation of mast cells by a variety of secretagogues supply potent vasoactive-spasmogenic mediators, chemotactic factors, active enzymes, and proteoglycans to the local environment. These factors acting together induce an immediate response manifest as edema, smooth muscle constriction, mucus production, and cough. Later these mediators and those provided from plasma and leukocytes generate a tissue infiltrate of inflammatory cells and more prolonged vasoactive-bronchospastic responses. Acute and prolonged responses may be homeostatic and provide for defense of the host, but if excessive in degree or duration may provide a chronic inflammatory substrate upon which such disorders as asthma and pulmonary fibrosis may ensue. PMID:6428878

  17. Comparison of 3 alpha-hydroxysteroid dehydrogenase activities in the microsomal fractions of hyperplastic, malignant and normal human prostatic tissues.

    PubMed

    Hudson, R W

    1984-04-01

    The conversion of dihydrotestosterone (DHT) to 3 alpha-androstanediol (3 alpha-adiol) was studied using the microsomal fractions of 15 hyperplastic, 5 malignant and 6 normal human prostatis tissues. Standard assay conditions were: 0.2 microM DHT, 1.0 mM NADPH, 1.0 mM NADH, 2.0 mM EDTA and the microsomal fractions equivalent to 200 mg of prostatic tissue, in 0.1 M MES buffer, pH 6.5. Under the conditions of this assay, the back-conversion of 3 alpha-adiol to DHT or the conversion of DHT to androstanediol were negligible. Optimum enzyme activity was achieved under standard assay conditions. In the absence of EDTA: enzyme activity was 65% of the standard assay; activity was diminished further by 2 mM Ca2+ and virtually eliminated by 2 mM Mg2+ or 2 microM Zn2+. Activity in the absence of either NADPH or NADH was only 50% of the activities seen in the presence of both cofactors. The pH optimum of the enzyme was between 6.0 and 6.5. The apparent Km values of the enzymes in hyperplastic, malignant and normal tissues were 0.03, 0.02 and 0.03 microM, respectively. The Vmax values for these tissues were 6.0 +/- 2.1, 1.6 +/- 0.5 and 14.0 +/- 3.0 pmol/mg protein/20 min incubation, respectively. The results of these experiments offer further explanation for the differences in DHT and 3 alpha-adiol levels seen in the 3 prostatic tissues.

  18. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    SciTech Connect

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sanoh, Seigo; Sugihara, Kazumi; Kitamura, Shigeyuki; Ohta, Shigeru

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  19. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes.

    PubMed

    Lassila, Toni; Rousu, Timo; Mattila, Sampo; Chesné, Christophe; Pelkonen, Olavi; Turpeinen, Miia; Tolonen, Ari

    2015-11-10

    The objective was to compare several in vitro human liver-derived subcellular and cellular incubation systems for the formation of GSH-trapped reactive metabolites. Incubations of pooled human liver microsomes, human liver S9 fractions, HepaRG-cells, and human hepatocytes were performed with glutathione as a trapping agent. Experiments with liver S9 were performed under two conditions, using only NADPH and using a full set of cofactors enabling also conjugative metabolism. Ten structurally different compounds were used as a test set, chosen as either "positive" (ciprofloxacin, clozapine, diclofenac, ethinyl estradiol, pulegone, and ticlopidine) or "negative" (caffeine, citalopram, losartan, montelukast) compounds, based on their known adverse reactions on liver or bone marrow. GSH conjugates were observed for seven of the ten compounds; while no conjugates were observed for caffeine, citalopram, or ciprofloxacin. Hepatocyte and HepaRG assays produced a clearly lower number and lower relative abundance of GSH conjugates compared to assays with microsomes and S9 fractions. The major GSH conjugates were different for many compounds in cellular subfractions and cell-based systems. Hepatocytes generally produced a higher number of GSH conjugates than HepaRG cells, although the differences were minor. The results show that the hepatic enzyme system used for screening of GSH-trapped reactive metabolites do have a high impact on the results, and results between different systems are comparable only qualitatively. PMID:26263063

  20. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes.

    PubMed

    Clement, B; Behrens, D; Möller, W; Cashman, J R

    2000-10-01

    For the reduction of N-hydroxylated derivatives of strongly basic functional groups, such as amidines, guanidines, and aminohydrazones, an oxygen-insensitive liver microsomal system, the benzamidoxime reductase, has been described. To reconstitute the complete activity of the benzamidoxime reductase, the system required cytochrome b(5), NADH-cytochrome b(5)-reductase, and the benzamidoxime reductase, a cytochrome P450 enzyme, which has been purified to homogeneity from pig liver. It was not known if this enzyme system was also capable of reducing aliphatic hydroxylamines. The N-hydroxylation of aliphatic amines is a well-known metabolic process. It was of interest to study the possibility of benzamidoxime reductase reducing N-hydroxylated metabolites of aliphatic amines back to the parent compound. Overall, N-hydroxylation and reduction would constitute a futile metabolic cycle. As examples of medicinally relevant compounds, the hydroxylamines of methamphetamine, amphetamine, and N-methylamine as model compounds were investigated. Formation of methamphetamine and amphetamine was analyzed by newly developed HPLC methods. All three hydroxylamines were easily reduced by benzamidoxime reductase to their parent amines with reduction rates of 220.6 nmol min(-1) (mg of protein)(-1) for methamphetamine, 5.25 nmol min(-1) (mg of protein)(-1) for amphetamine, and 153 nmol min(-1) (mg of protein)(-1) for N-methylhydroxylamine. Administration of synthetic hydroxylamines of amphetamine and methamphetamine to primary rat neuronal cultures produced frank cell toxicity. Compared with amphetamine or the oxime of amphetamine, the hydroxylamines were significantly more toxic to primary neuronal cells. The benzamidoxime reductase is therefore involved in the detoxication of these reactive hydroxylamines.

  1. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  2. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation.

    PubMed

    Zhu, Yanlin; Wang, Fen; Li, Quan; Zhu, Mingshe; Du, Alicia; Tang, Wei; Chen, Weiqing

    2014-02-01

    Amlodipine is a commonly prescribed calcium channel blocker for the treatment of hypertension and ischemic heart disease. The drug is slowly cleared in humans primarily via dehydrogenation of its dihydropyridine moiety to a pyridine derivative (M9). Results from clinical drug-drug interaction studies suggest that CYP3A4/5 mediate metabolism of amlodipine. However, attempts to identify a role of CYP3A5 in amlodipine metabolism in humans based on its pharmacokinetic differences between CYP3A5 expressers and nonexpressers failed. Objectives of this study were to determine the metabolite profile of amlodipine (a racemic mixture and S-isomer) in human liver microsomes (HLM), and to identify the cytochrome P450 (P450) enzyme(s) involved in the M9 formation. Liquid chromatography/mass spectrometry analysis showed that amlodipine was mainly converted to M9 in HLM incubation. M9 underwent further O-demethylation, O-dealkylation, and oxidative deamination to various pyridine derivatives. This observation is consistent with amlodipine metabolism in humans. Incubations of amlodipine with HLM in the presence of selective P450 inhibitors showed that both ketoconazole (an inhibitor of CYP3A4/5) and CYP3cide (an inhibitor of CYP3A4) completely blocked the M9 formation, whereas chemical inhibitors of other P450 enzymes had little effect. Furthermore, metabolism of amlodipine in expressed human P450 enzymes showed that only CYP3A4 had significant activity in amlodipine dehydrogenation. Metabolite profiles and P450 reaction phenotyping data of a racemic mixture and S-isomer of amlodipine were very similar. The results from this study suggest that CYP3A4, rather than CYP3A5, plays a key role in metabolic clearance of amlodipine in humans. PMID:24301608

  3. Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps.

    PubMed

    Ahmad, Shabbir; Niegowski, Damian; Wetterholm, Anders; Haeggström, Jesper Z; Morgenstern, Ralf; Rinaldo-Matthis, Agnes

    2013-03-12

    Microsomal glutathione S-transferase 2 (MGST2) is a 17 kDa trimeric integral membrane protein homologous to leukotriene C4 synthase (LTC4S). MGST2 has been suggested to catalyze the biosynthesis of the pro-inflammatory mediator leukotriene C4 (LTC4) in cells devoid of LTC4S. A detailed biochemical study of MGST2 is critical for the understanding of its cellular function and potential role as an LTC4-producing enzyme. Here we have characterized the substrate specificity and catalytic properties of purified MGST2 by steady-state and pre-steady-state kinetic experiments. In comparison with LTC4S, which has a catalytic efficiency of 8.7 × 10(5) M(-1) s(-1), MGST2, with a catalytic efficiency of 1.8 × 10(4) M(-1) s(-1), is considerably less efficient in producing LTC4. However, the two enzymes display a similar KM(LTA4) of 30-40 μM. While LTC4S has one activated glutathione (GSH) (forming a thiolate) per enzyme monomer, the MGST2 trimer seems to display only third-of-the-sites reactivity for thiolate activation, which in part would explain its lower catalytic efficiency. Furthermore, MGST2 displays GSH-dependent peroxidase activity of ∼0.2 μmol min(-1) mg(-1) toward several lipid hydroperoxides. MGST2, but not LTC4S, is efficient in catalyzing conjugation of the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the lipid peroxidation product 4-hydroxy-2-nonenal with GSH. Using stopped-flow pre-steady-state kinetics, we have characterized the full catalytic reaction of MGST2 with CDNB and GSH as substrates, showing an initial rapid equilibrium binding of GSH followed by thiolate formation. Burst kinetics for the CDNB-GSH conjugation step was observed only at low GSH concentrations (thiolate anion formation becoming rate-limiting under these conditions). Product release is rapid and does not limit the overall reaction. Therefore, in general, the chemical conjugation step is rate-limiting for MGST2 at physiological GSH concentrations. MGST2 and LTC4S

  4. Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model and human liver microsomes.

    PubMed

    Geldof, Lore; Lootens, Leen; Decroix, Lieselot; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Van Eenoo, Peter

    2016-03-01

    Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their adverse health and performance enhancing effects. Effective control of their misuse by detection in urine requires knowledge about their metabolism. In case of designer steroids, ethical objections limit the use of human volunteers to perform excretion studies. Therefore the suitability of alternative models needs to be investigated. In this study pooled human liver microsomes (HLM) and an uPA(+/+)-SCID chimeric mouse model were used to examine the metabolism of the designer steroid prostanozol as a reference standard. Metabolites were detected by GC-MS (full scan) and LC-MS/MS (precursor ion scan). In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively identified as C-3'; C-4 and C-16. Moreover, 3'- and 16β-hydroxy-17-ketoprostanozol could be unequivocally identified, since authentic reference material was available, in both models. Comparison with published data from humans showed a good correlation, except for phase II metabolism. As metabolites were in contrast to the human studies predominantly present in the free fraction. Two types of metabolites ((di)hydroxylated prostanozol metabolites) that have not been described before could be confirmed in a real positive doping control sample. Hence, the results provide further evidence for the applicability of chimeric mice and HLM to perform metabolism studies of designer steroids. PMID:26774429

  5. Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes.

    PubMed Central

    Back, D J; Tjia, J F

    1991-01-01

    Four antimycotic drugs, the azoles ketoconazole, itraconazole and fluconazole, and the allylamine terbinafine have been studied for their effect on the metabolism of cyclosporin by human liver microsomes (n = 3) in vitro. Ketoconazole caused marked inhibition of cyclosporin hydroxylase (to metabolites M17 and M1) with IC50 and Ki values of 0.24 +/- 0.01 and 0.022 +/- 0.004 microM, respectively. Based on IC50 values, itraconazole was ten times less potent (IC50 value of 2.2 +/- 0.2 microM) and both fluconazole and terbinafine had values above 100 microM. Ki values for itraconazole and fluconazole were 0.7 +/- 0.2 and 40 +/- 5.6 microM, respectively. No kinetic parameters were calculated for terbinafine because of the lack of inhibitory effects. Based on these data, ketoconazole is confirmed as being a potent inhibitor of cyclosporin metabolism and this has clinical relevance. Although inhibition by fluconazole was much less than that by itraconazole at equimolar concentrations, it should be noted that in patients plasma concentrations of fluconazole are much greater than those of itraconazole. Clinical interactions of cyclosporin with both fluconazole and itraconazole have been reported. In contrast to the azoles, terbinafine does not have the same potential for interaction. PMID:1659439

  6. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes.

    PubMed

    Albassam, Ahmed A; Mohamed, Mohamed-Eslam F; Frye, Reginald F

    2015-05-01

    1. Herbal supplements widely used in the US were screened for the potential to inhibit CYP2C8 activity in human liver microsomes. The herbal extracts screened were garlic, echinacea, saw palmetto, valerian, black cohosh and cranberry. N-desethylamodiaquine (DEAQ) and hydroxypioglitazone metabolite formation were used as indices of CYP2C8 activity. 2. All herbal extracts showed inhibition of CYP2C8 activity for at least one of three concentrations tested. A volume per dose index (VDI) was calculated to determine the volume in which a dose should be diluted to obtain IC50 equivalent concentration. Cranberry and saw palmetto had a VDI value > 5.0 l per dose unit, suggesting a potential for interaction. 3. Inhibition curves were constructed and the IC50 (mean ± SE) values were 24.7 ± 2.7 μg/ml for cranberry and 15.4 ± 1.7 μg/ml for saw palmetto. 4. The results suggest a potential for cranberry or saw palmetto extracts to inhibit CYP2C8 activity. Clinical studies are needed to evaluate the significance of this interaction. PMID:25430798

  7. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  8. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    PubMed

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-01

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data. PMID:27381871

  9. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    PubMed

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-01

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data.

  10. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study.

  11. In vitro metabolism of a novel PPAR gamma agonist, KR-62980, and its stereoisomer, KR-63198, in human liver microsomes and by recombinant cytochrome P450s.

    PubMed

    Kim, K-B; Seo, K-A; Yoon, Y-J; Bae, M-A; Cheon, H G; Shin, J-G; Liu, K-H

    2008-09-01

    1. KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPAR gamma) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes. 2. Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a beta-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198. 3. The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CL(int) of 0.012 +/- 0.001 versus 0.004 +/- 0.001 microl min(-1) pmol(-1) P450, respectively). 4. In a drug-drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC(50) > 50 microM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.

  12. Metabolism of BYZX in Human Liver Microsomes and Cytosol: Identification of the Metabolites and Metabolic Pathways of BYZX

    PubMed Central

    Yu, Lushan; Jiang, Yan; Wang, Lu; Sheng, Rong; Hu, Yongzhou; Zeng, Su

    2013-01-01

    BYZX, [(E)-2-(4-((diethylamino)methyl)benzylidene)-5,6-dimethoxy-2,3-dihydroinden-one], belongs to a series of novel acetylcholinesterase inhibitors and has been synthesized as a new chemical entity for the treatment of Alzheimer’s disease symptoms. When incubated with human liver microsomes (HLMs), BYZX was rapidly transformed into its metabolites M1, M2, and M3. The chemical structures of these metabolites were identified using liquid chromatography tandem mass spectrometry and nuclear magnetic resonance, which indicated that M1 was an N-desethylated and C = C hydrogenation metabolite of BYZX. M2 and M3 were 2 precursor metabolites, which resulted from the hydrogenation and desethylation of BYZX, respectively. Further studies with chemical inhibitors and human recombinant cytochrome P450s (CYPs), and correlation studies were performed. The results indicated that the N-desethylation of BYZX and M2 was mediated by CYP3A4 and CYP2C8. The reduced form of β-nicotinamide adenine dinucleotide 2′-phosphate was involved in the hydrogenation of BYZX and M3, and this reaction occurred in the HLMs and in the human liver cytosol. The hydrogenation reaction was not inhibited by any chemical inhibitors of CYPs, but it was significantly inhibited by some substrates of α,β-ketoalkene C = C reductases and their inhibitors such as benzylideneacetone, dicoumarol, and indomethacin. Our results suggest that α,β-ketoalkene C = C reductases may play a role in the hydrogenation reaction, but this issue requires further clarification. PMID:23555822

  13. Stereoselective Metabolism of α-, β-, and γ-Hexabromocyclododecanes (HBCDs) by Human Liver Microsomes and CYP3A4.

    PubMed

    Erratico, Claudio; Zheng, Xiaobo; van den Eede, Nele; Tomy, Gregg; Covaci, Adrian

    2016-08-01

    This is the first study investigating the in vitro metabolism of α-, β-, and γ-hexabromocyclododecane (HBCD) stereoisomers in humans and providing semiquantitative metabolism data. Human liver microsomes were incubated with individual racemic mixtures and with individual stereoisomers of α-, β-, and γ-HBCDs, the hydroxylated metabolites formed were analyzed by liquid chromatography-tandem mass spectrometry, and the value of the intrinsic in vitro clearance (Clint,vitro) was calculated. Several mono- and dihydroxylated metabolites of α-, β-, and γ-HBCDs were formed, with mono-OH-HBCDs being the major metabolites. No stereoisomerization of any of the six α-, β-, and γ-HBCD isomers catalyzed by cytochrome P450 (CYP) enzymes occurred. The value of Clint,vitro of α-HBCDs was significantly lower than that of β-HBCDs, which, in turn, was significantly lower than that of γ-HBCDs (p < 0.05). Such differences were explained by the significantly lower values of Clint,vitro of each α-HBCD stereoisomer than those of the β- and γ-HBCD stereoisomers. In addition, significantly lower values of Clint,vitro of the (-) over the (+)α- and β-HBCD stereoisomers, but not γ-HBCDs, were obtained. Our data offer a possible explanation of the enrichment of α-HBCDs over β- and γ-HBCDs on the one hand and, on the other hand, of (-)α-HBCDs over (+)α-HBCDs previously reported in human samples. It also offers information about the mechanism resulting in such enrichments, the stereoisomer-selective metabolism of α-, β-, and γ-HBCDs catalyzed by CYPs with the lack of stereoisomerization.

  14. Development and validation of an enzyme-linked immunosorbent assay for the quantification of cytochrome 3A4 in human liver microsomes.

    PubMed

    De Bock, Lies; Colin, Pieter; Boussery, Koen; Van Bocxlaer, Jan

    2012-09-15

    Little is known about the influence of hepatic pathologies on cytochrome P450 (CYP) mediated drug metabolism in children. The determination of the abundance of the different isoforms in pediatric microsomes may provide valuable information on the mechanisms of possible changes in activity. Until now, western blotting was mostly used for abundance measurements, but this technique only provides semi-quantitative data. Therefore, this study aimed to develop and validate an indirect ELISA for the quantification of the most important CYP isoform, CYP3A4, in human liver microsomes, using commercially available reagents. Samples, calibrators and validation samples were diluted to a final concentration of 10 μg microsomal protein/ml. A polyclonal antibody raised against the full length human protein was used as primary antibody; horseradish peroxidase conjugated secondary antibodies for detection. The assay was validated for sensitivity, working range and calibration, accuracy and precision. Amounts of CYP3A4 between 2 and 300 pmol/mg microsomal protein could be quantified with a 5-parameter logistics function with 1/x weighting factor. Coefficients of variation of intra and inter assay variability were between 9.54 and 13.98% (16.34% at LLOQ), and between 10.51 and 14.55% (19.44% at LLOQ), respectively. The relative error (%RE) varied between -5.96 and 6.68% (11.53% at LLOQ), and the total error between 11.93 and 21.23% (30.97% at LLOQ). The cross-reactivity of the method with human CYP2E1 showed to have no significant effect on the accuracy of the results. Successful analysis of five samples from an ongoing study demonstrated the usefulness of the method.

  15. Human Lung Cancer Cells Grown on Acellular Rat Lung Matrix Create Perfusable Tumor Nodules

    PubMed Central

    Mishra, Dhruva K.; Thrall, Michael J.; Baird, Brandi N.; Ott, Harald C.; Blackmon, Shanda H.; Kurie, Jonathan M.; Kim, Min P.

    2015-01-01

    Background Extracellular matrix allows lung cancer to form its shape and grow. Recent studies on organ reengineering for orthotopic transplantation have provided a new avenue for isolating purified native matrix to use for growing cells. Whether human lung cancer cells grown in a decellularized rat lung matrix would create perfusable human lung cancer nodules was tested. Methods Rat lungs were harvested and native cells were removed using sodium dodecyl sulfate and Triton X-100 in a decellularization chamber to create a decellularized rat lung matrix. Human A549, H460, or H1299 lung cancer cells were placed into the decellularized rat lung matrix and grown in a customized bioreactor with perfusion of oxygenated media for 7 to 14 days. Results Decellularized rat lung matrix showed preservation of matrix architecture devoid of all rat cells. All three human lung cancer cell lines grown in the bioreactor developed tumor nodules with intact vasculature. Moreover, the lung cancer cells developed a pattern of growth similar to the original human lung cancer. Conclusions Overall, this study shows that human lung cancer cells form perfusable tumor nodules in a customized bioreactor on a decellularized rat lung matrix created by a customized decellularization chamber. The lung cancer cells grown in the matrix had features similar to the original human lung cancer. This ex vivo model can be used potentially to gain a deeper understanding of the biologic processes involved in human lung cancer. PMID:22385822

  16. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  17. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  18. OXIDATIVE AND HYDROLYTIC METABOLISM OF TYPE I PYRETHROIDS IN RAT AND HUMAN HEPATIC MICROSOMES

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic insecticides used in a variety of agricultural and household activities. Increased potential for human exposure to pyrethroids has prompted pharmacokinetic research. To that end, our laboratory has determined the in vitro clearance of the T...

  19. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    PubMed

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  20. Identification and characterization of oxymetazoline glucuronidation in human liver microsomes: evidence for the involvement of UGT1A9.

    PubMed

    Mahajan, Mukesh K; Uttamsingh, Vinita; Gan, Liang-Shang; Leduc, Barbara; Williams, David A

    2011-02-01

    The incubation of oxymetazoline, a nonprescription nasal decongestant, with human liver microsomes (HLMs) supplemented with uridine-5-diphosphoglucuronic acid (UDPGA) generated glucuronide metabolite as observed by LC/MS/MS. The uridine glucuronosyltransferases (UGTs) responsible for the O-glucuronidation of oxymetazoline remain thus far unidentified. The glucuronide formed in HLMs was identified by LC/MS/MS and characterized by one- and two-dimensional NMR to be the β-O-glucuronide of oxymetazoline. UGT screening with expressed UGTs identified UGT1A9 as the single UGT isoform catalyzing O-glucuronidation of oxymetazoline. Oxymetazoline O-glucuronidation by using HLMs was best fitted to the allosteric sigmoidal model. The derived S(50) and V(max) values were 2.42 ± 0.40 mM and 8.69 ± 0.58 pmole/(min mg of protein), respectively, and maximum clearance (CL(max)) was 3.61 L/min/mg. Oxymetazoline O-glucuronidation by using expressed UGT1A9 was best fitted to the substrate inhibition model. The derived K(m) and V(max) values were 2.53 ± 1.03 mM and 54.18 ± 16.92 pmole/(min mg of protein), respectively, and intrinsic clearance (CL(int)) was 21.41 L/(min mg). Our studies indicate that oxymetazoline is not glucuronidated at its nanomolar intranasal dose and thus is eliminated unchanged, because UGT1A9 would only contribute to its elimination at the toxic plasma concentrations.

  1. Drug-drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Hayakawa, Toru; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-06-01

    The cytochrome P450 (CYP) 2C8*3 allele is associated with reduced metabolic activity of paclitaxel. This study was aimed to investigate the inhibitory effect of losartan on paclitaxel metabolism in human liver microsomes (HLMs) and to determine the impact of the CYP2C8*3 polymorphism. HLMs that contained the CYP2C8*1 homozygote (HL60) or CYP2C8*3 heterozygote (HL54) genotype were used for the inhibition study. Losartan, at a concentration of 50 μmol/L, significantly inhibited paclitaxel metabolism by 29% and 57% in the HL60 (p < 0.001) and HL54 (p < 0.01), respectively. When using HL60, losartan and the CYP3A4-selective inhibitors, erythromycin and ketoconazole, caused a greater inhibition of the paclitaxel metabolism than quercetin, a CYP2C8-selective inhibitor. This demonstrated that the paclitaxel metabolism was mainly catalysed by CYP3A4 in HL60. There were no significant differences found for the inhibitory effects caused by the four inhibitors of the paclitaxel metabolism in HL54, indicating that both CYP2C8 and CYP3A4 play important roles in paclitaxel metabolism in HL54. These findings suggest that 50 μmol/L of losartan inhibits both CYP2C8 and CYP3A4 in HLMs. In summary, losartan inhibited paclitaxel metabolism, with concentrations over 50 μmol/L in HLMs. The CYP2C8*3 allele carriers are likely susceptible to the interactions of losartan and CYP3A4 inhibitors to paclitaxel metabolism.

  2. Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: evaluation of a dual-radiolabel strategy.

    PubMed

    Shaffer, Christopher L; Langer, Connie S

    2007-03-12

    The metabolism of 2-{[2-(3-fluoropyrid-2-yl)-1H-imidazol-1-yl]methyl}-1-propyl-5-cyano-1H-benzimidazole (1), a potent subtype-selective GABA(A) receptor partial agonist, was investigated in rat, dog and human liver microsomes. Due to its significant metabolic cleavage at C(8) observed in preliminary biotransformation studies with non-radiolabeled 1, both [(14)C]1 and [(3)H]1 were synthesized with respective radioisotopes placed on either side of C(8) to determine if all microsomal metabolites formed after C(8)N-dealkylation of 1 (or its core-intact metabolites) could be detected and quantified adequately. Both radiolabeled forms of 1, used separately in mono-radiolabel studies in cross-species microsomes and concomitantly in dual-radiolabel studies in rat microsomes, permitted the detection and quantification of all metabolites of 1, and a combination of radioactive and mass spectral data allowed structural elucidation of its Phase I metabolites. As expected, the sum of (14)C-only metabolites equaled that of (3)H-only metabolites in all incubations. In-line radiometric analysis worked extremely well (and was very reproducible) for quantifying either (14)C- or (3)H-compounds within separate incubations when using mono-radiolabeled 1. However, although the in-line radiodetector provided a comprehensive qualitative metabolic profile using dual-radiolabled 1, its inability to exclude completely (14)C- from (3)H-generated counts caused a degree of ambiguity pertaining to metabolite quantification. Thus, off-line liquid scintillation counting of collected dual-radiolabeled incubation LC-fractions was employed to quantify both (14)C- and (3)H-metabolites simultaneously, while in-line radiodetection was only used for qualitative analyses accompanying MS and MS/MS experiments. These studies demonstrated the analytical feasibility of using a dual-radiolabel approach for subsequent in vivo ADME studies with 1. PMID:17150324

  3. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    SciTech Connect

    Duan, Hongying; Takagi, Akira; Kayano, Hidekazu; Koyama, Isamu; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  4. Antithyroid microsomal antibody

    MedlinePlus

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... Granulomatous thyroiditis Hashimoto thyroiditis High levels of these antibodies have also been linked with an increased risk ...

  5. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.

    PubMed

    Urban, G; Speerschneider, P; Dekant, W

    1994-01-01

    1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) has been developed as a substitute for ozone-depleting chlorofluorocarbons. The atmospheric lifetime of HCFC-123 is expected to be much shorter than those of chlorofluorocarbons; however, due to its lower stability and the presence of carbon-hydrogen bonds, metabolism of HCFC-123 in mammals and metabolism-dependent toxicity is likely. We compared the metabolism of HCFC-123 and its analog halothane in rat and human liver microsomes. 19F-NMR studies showed that trifluoroacetic acid is a major metabolite of HCFC-123. Besides trifluoroacetic acid, chlorodifluoroacetic acid and inorganic fluoride were identified as products of the enzymatic oxidation of HCFC-123 in rat and human liver microsomes by 19F-NMR and mass spectrometry. The metabolites were not detected in incubations with halothane. HCFC-123 and halothane were transformed by liver microsomes from untreated rats at low rates. Microsomes from ethanol-and pyridine-treated rats metabolized both HCFC-123 and halothane at much higher rates. These microsomes also exhibited high rates of p-nitrophenol oxidation. p-Nitrophenol is a model substrate mainly oxidized by P450 2E1 to p-nitrocatechol. Samples of human liver microsomes showed considerable differences in the extent of HCFC-123, p-nitrophenol oxidation, and chlorzoxazone hydroxylation. In human liver microsomes, rabbit anti-rat P450 2E1 IgG recognized a single protein band corresponding in apparent molecular weight to human P450 2E1. Immunoblot analysis revealed considerable heterogenity in the P450 2E1 protein content of the human liver samples. Trifluoroacetic acid formation from HCFC-123 and halothane and p-nitrocatechol formation from p-nitrophenol were significantly reduced by the P450 2E1 inhibitor diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8199305

  6. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.

    PubMed

    Urban, G; Speerschneider, P; Dekant, W

    1994-01-01

    1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123) has been developed as a substitute for ozone-depleting chlorofluorocarbons. The atmospheric lifetime of HCFC-123 is expected to be much shorter than those of chlorofluorocarbons; however, due to its lower stability and the presence of carbon-hydrogen bonds, metabolism of HCFC-123 in mammals and metabolism-dependent toxicity is likely. We compared the metabolism of HCFC-123 and its analog halothane in rat and human liver microsomes. 19F-NMR studies showed that trifluoroacetic acid is a major metabolite of HCFC-123. Besides trifluoroacetic acid, chlorodifluoroacetic acid and inorganic fluoride were identified as products of the enzymatic oxidation of HCFC-123 in rat and human liver microsomes by 19F-NMR and mass spectrometry. The metabolites were not detected in incubations with halothane. HCFC-123 and halothane were transformed by liver microsomes from untreated rats at low rates. Microsomes from ethanol-and pyridine-treated rats metabolized both HCFC-123 and halothane at much higher rates. These microsomes also exhibited high rates of p-nitrophenol oxidation. p-Nitrophenol is a model substrate mainly oxidized by P450 2E1 to p-nitrocatechol. Samples of human liver microsomes showed considerable differences in the extent of HCFC-123, p-nitrophenol oxidation, and chlorzoxazone hydroxylation. In human liver microsomes, rabbit anti-rat P450 2E1 IgG recognized a single protein band corresponding in apparent molecular weight to human P450 2E1. Immunoblot analysis revealed considerable heterogenity in the P450 2E1 protein content of the human liver samples. Trifluoroacetic acid formation from HCFC-123 and halothane and p-nitrocatechol formation from p-nitrophenol were significantly reduced by the P450 2E1 inhibitor diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans.

    PubMed

    Lang, D; Freudenberger, C; Weinz, C

    2009-05-01

    The in vitro metabolism of rivaroxaban, a novel, oral, direct factor Xa inhibitor for the prevention and treatment of thromboembolic disorders, was investigated in several species, including humans. The objective of this study was to elucidate metabolite structures and identify the metabolic pathways to provide support for in vivo safety and clinical studies. [(14)C]Rivaroxaban was incubated with liver microsomes and hepatocytes of rats, dogs, and humans. The samples were analyzed by high-performance liquid chromatography-(14)C-tandem mass spectroscopy, to generate metabolite profiles and propose or confirm the structures of the metabolites formed. In vitro metabolite profiles showed no major differences between species. The main oxidative metabolic pathways identified for all species were hydroxylation at the morpholinone moiety (M-2, M-3, and M-8) and to a lesser extent at the oxazolidinone moiety (M-9). M-2 was the main metabolite in all microsomal incubations. M-1, a morpholinone ring-opened product formed by further oxidation of M-2, was the main metabolite in all hepatocyte incubations. Other pathways were amide hydrolysis at the morpholinone ring (M-7) and the chlorothiophene amide moiety (M-13 and M-15). In hepatocytes, M-13 was readily conjugated with glycine, leading to M-4. The metabolic fate of unlabeled M-15 was investigated separately. Incubations with human liver microsomes and hepatocytes showed that M-15 was first oxidized to the aldehyde intermediate M-16 and subsequently reduced to M-17 (alcohol) or oxidized to M-18 (carboxylic acid). No metabolism at the chlorothiophene moiety itself was found. Overall, rivaroxaban showed no species differences in metabolism, with different independent metabolic pathways and no formation of reactive metabolites. PMID:19196846

  8. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    SciTech Connect

    Duan, Hongying; Yoshimura, Kazunori; Kobayashi, Nobuharu; Sugiyama, Kazuo; Sawada, Jun-ichi; Saito, Yoshiro; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  9. Regioselective differences in C(8)- and N-oxidation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline by human and rat liver microsomes and cytochromes P450 1A2.

    PubMed

    Turesky, R J; Parisod, V; Huynh-Ba, T; Langouët, S; Guengerich, F P

    2001-07-01

    The metabolism of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was investigated with human and rat liver microsomes, recombinant human cytochrome P450 1A2 (P450 1A2) expressed in Escherichia coli cells, and rat P450 1A2. Human liver microsomes and human P450 1A2 catalyzed the oxidation of the exocyclic amine group of MeIQx to form the genotoxic product 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline (HONH-MeIQx). Human P450 1A2 also catalyzed the oxidation of C(8)-methyl group of MeIQx to form 2-amino-(8-hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH(2)OH-IQx), 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carbaldehyde (IQx-8-CHO), and 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH). Thus, chemically stable C(8)-oxidation products of MeIQx may be useful biomarkers of P450 1A2 activity in humans. Rat liver microsomes were 10-15-fold less active than the human counterpart at both N-oxidation and C(8)-oxidation of MeIQx when expressed as nanomoles of product formed per minute per nanomoles of P450 1A2. Differences in regioselective oxidation of MeIQx were also observed with human and rat liver microsomes and the respective P450 1A2 orthologs. In contrast to human liver microsomes and P450 1A2, rat liver microsomes and purified rat P4501A2 were unable to catalyze the oxidation of MeIQx to the carboxylic derivative IQx-8-COOH, an important detoxication product formed in humans. However, rat liver microsomes and rat P4501A2, but not human liver microsomes or human P450 1A2, extensively catalyzed ring oxidation at the C-5 position of MeIQx to form the detoxication product 2-amino-3,8-dimethyl-5-hydroxyimidazo[4,5-f]quinoxaline (5-HO-MeIQx). There are important differences between human and rat P450 1A2, both in catalytic activities and oxidation pathways of MeIQx, that may affect the biological activity of this carcinogen and must be considered when assessing human health risk.

  10. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated. PMID:26014283

  11. Kinetics of Ethylene and Ethylene Oxide in Subcellular Fractions of Lungs and Livers of Male B6C3F1 Mice and Male Fischer 344 Rats and of Human Livers

    PubMed Central

    Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg

    2011-01-01

    Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163

  12. Slow oxidation of acetoxime and methylethyl ketoxime to the corresponding nitronates and hydroxy nitronates by liver microsomes from rats, mice, and humans.

    PubMed

    Völkel, W; Wolf, N; Derelanko, M; Dekant, W

    1999-02-01

    Acetoxime and methylethyl ketoxime (MEKO) are tumorigenic in rodents, inducing liver tumors in male animals. The mechanisms of tumorigenicity for these compounds are not well defined. Oxidation of the oximes to nitronates of secondary-nitroalkanes, which are mutagenic and tumorigenic in rodents, has been postulated to play a role in the bioactivation of ketoximes. In these experiments, we have compared the oxidation of acetoxime and methylethyl ketoxime to corresponding nitronates in liver microsomes from different species. The oximes were incubated with liver microsomes from mice, rats, and several human liver samples. After tautomeric equilibration and extraction with n-hexane, 2-nitropropane and 2-nitrobutane were quantitated by GC/MS-NCI (limit of detection of 250 fmol/injection volume). In liver microsomes, nitronate formation from MEKO and acetoxime was dependent on time, enzymatically active proteins, and the presence of NADPH. Nitronate formation was increased in liver microsomes of rats pretreated with inducers of cytochrome P450 and reduced in the presence of inhibitors (n-octylamine and diethyldithiocarbamate). Rates of oxidation of MEKO (Vmax) were 1.1 nmol/min/mg (mice), 0.5 nmol/min/mg (humans), and 0.1 nmol/min/mg (rats). In addition to nitronates, several minor metabolites were also enzymatically formed (two diastereoisomers of 3-nitro-2-butanol, 2-hydroxy-3-butanone oxime and 2-nitro-1-butanol). Acetoxime was also metabolized to the corresponding nitronate at rates approximately 50% of those observed with MEKO oxidation in the three species examined. 2-Nitro-1-propanol was identified as a minor product formed from acetoxime. No sex differences in the capacity to oxidize acetoxime and MEKO were observed in the species examined. The observed results show that formation of sec-nitronates from ketoximes occurs slowly, but is not the only pathway involved in the oxidative biotransformation of these compounds. Due to the lack of sex-specific oxidative

  13. Effects of mitragynine and 7-hydroxymitragynine (the alkaloids of Mitragyna speciosa Korth) on 4-methylumbelliferone glucuronidation in rat and human liver microsomes and recombinant human uridine 5’-diphospho-glucuronosyltransferase isoforms

    PubMed Central

    Haron, Munirah; Ismail, Sabariah

    2015-01-01

    Background: Glucuronidation catalyzed by uridine 5’- diphospho-glucuronosyltransferase (UGT) is a major phase II drug metabolism reaction which facilitates drug elimination. Inhibition of UGT activity can cause drug-drug interaction. Therefore, it is important to determine the inhibitory potentials of drugs on glucuronidation. Objective: The objective was to evaluate the inhibitory potentials of mitragynine, 7-hydroxymitragynine, ketamine and buprenorphine, respectively on 4-methylumbelliferone (4-MU) glucuronidation in rat liver microsomes, human liver microsomes and recombinant human UGT1A1 and UGT2B7 isoforms. Materials and Methods: The effects of the above four compounds on the formation of 4-MU glucuronide from 4-MU by rat liver microsomes, human liver microsomes, recombinant human UGT1A1 and UGT2B7 isoforms were determined using high-performance liquid chromatography with ultraviolet detection. Results: For rat liver microsomes, ketamine strongly inhibited 4-MU glucuronidation with an IC50 value of 6.21 ± 1.51 μM followed by buprenorphine with an IC50 value of 73.22 ± 1.63 μM. For human liver microsomes, buprenorphine strongly inhibited 4-MU glucuronidation with an IC50 value of 6.32 ± 1.39 μM. For human UGT1A1 isoform, 7-hydroxymitragynine strongly inhibited 4-MU glucuronidation with an IC50 value of 7.13 ± 1.16 μM. For human UGT2B7 isoform, buprenorphine strongly inhibited 4-MU glucuronidation followed by 7-hydroxymitragynine and ketamine with respective IC50 values of 5.14 ± 1.30, 26.44 ± 1.31, and 27.28 ± 1.18 μM. Conclusions: These data indicate the possibility of drug-drug interaction if 7-hydroxymitragynine, ketamine, and buprenorphine are co-administered with drugs that are UGT2B7 substrates since these three compounds showed significant inhibition on UGT2B7 activity. In addition, if 7-hydroxymitragynine is to be taken with other drugs that are highly metabolized by UGT1A1, there is a possibility of drug-drug interaction to occur. PMID

  14. Metabolism studies on prim-O-glucosylcimifugin and cimifugin in human liver microsomes by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Jia, Peipei; Zhang, Yuqian; Zhang, Qiaoyue; Sun, Yupeng; Yang, Haotian; Shi, He; Zhang, Xiaoxu; Zhang, Lantong

    2016-09-01

    Prim-O-glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti-inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O-glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP-glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection.

    PubMed

    Kawakami, Hirotaka; Ohtsuki, Sumio; Kamiie, Junichi; Suzuki, Takashi; Abe, Takaaki; Terasaki, Tetsuya

    2011-01-01

    Cytochrome P450 (CYP) proteins are involved in the biological oxidation and reduction of xenobiotics, affecting the pharmacological efficiency of drugs. This study aimed to establish a method to simultaneously quantify 11 CYP isoforms by multiplexed-multiple reaction monitoring analysis with liquid chromatography tandem mass spectrometry and in silico peptide selection to clarify CYP isoform expression profiles in human liver tissue. CYP1A2, 2A6, and 2D6 target peptides were identified by shot-gun proteomic analysis, and those of other isoforms were selected by in silico peptide selection criteria. The established quantification method detected target peptides at 10  fmol, and the dynamic range of calibration curves was at least 500-fold. The quantification value of CYP1A2 in Supersomes was not significantly different between the established method and quantitative immunoblot analysis. The absolute protein expression levels of 11 CYP isoforms were determined from one pooled and 10 individual human liver microsomes. In the individual microsomes, CYP2C9 showed the highest protein expression level, and CYP1A2, 2A6, 2C19, and 3A4 protein expression exhibited more than a 20-fold difference among individuals. This highly sensitive and selective quantification method is a useful tool for the analysis of highly homologous CYP isoforms and the contribution made by each CYP isoform to drug metabolism. PMID:20564338

  16. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1.

    PubMed

    Koeberle, Andreas; Northoff, Hinnak; Werz, Oliver

    2009-08-01

    Prostaglandin E(2) (PGE(2)) plays a crucial role in the apparent link between tumor growth and chronic inflammation. Cyclooxygenase (COX)-2 and microsomal PGE(2) synthase-1, which are overexpressed in many cancers, are functionally coupled and thus produce massive PGE(2) in various tumors. Curcumin, a polyphenolic beta-diketone from tumeric with anti-carcinogenic and anti-inflammatory activities, was shown to suppress PGE(2) formation and to block the expression of COX-2 and of microsomal PGE(2) synthase-1. Here, we identified microsomal PGE(2) synthase-1 as a molecular target of curcumin and we show that inhibition of microsomal PGE(2) synthase-1 activity is the predominant mechanism of curcumin to suppress PGE(2) biosynthesis. Curcumin reversibly inhibited the conversion of PGH(2) to PGE(2) by microsomal PGE(2) synthase-1 in microsomes of interleukin-1beta-stimulated A549 lung carcinoma cells with an IC(50) of 0.2 to 0.3 micromol/L. Closely related polyphenols (e.g., resveratrol, coniferyl alcohol, eugenol, rosmarinic acid) failed in this respect, and isolated ovine COX-1 and human recombinant COX-2 were not inhibited by curcumin up to 30 micromol/L. In lipopolysaccharide-stimulated human whole blood, curcumin inhibited COX-2-derived PGE(2) formation from endogenous or from exogenous arachidonic acid, whereas the concomitant formation of COX-2-mediated 6-keto PGF(1)alpha and COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid was suppressed only at significant higher concentrations. Based on the key function of PGE(2) in inflammation and carcinogenesis, inhibition of microsomal PGE(2) synthase-1 by curcumin provides a molecular basis for its anticarcinogenic and anti-inflammatory activities.

  17. Drug interactions of diclofenac and its oxidative metabolite with human liver microsomal cytochrome P450 1A2-dependent drug oxidation.

    PubMed

    Ohyama, Katsuhiro; Murayama, Norie; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-01-01

    1.  The purpose of this study was to investigate the inhibitory effects of diclofenac on human cytochrome P450 1A2-, 2C19- and 3A4-mediated drug oxidations and to evaluate the drug interaction potential of diclofenac and 4'-hydroxydiclofenac. 2.  Diclofenac was converted to 4'-hydroxydiclofenac by recombinantly expressed human P450 1A2 with Km and Vmax values of 33 µM and 0.20 min(-1), respectively. Diclofenac and 4'-hydroxydiclofenac suppressed flurbiprofen 4'-hydroxylation by P450 2C9 strongly and moderately, respectively; however, they did not affect P450 2C19-dependent S-mephenytoin hydroxylation or P450 3A4-dependent midazolam hydroxylation. 3.  Although the caffeine 3-N-demethylation activity of liver microsomal P450 1A2 was inhibited by simultaneous incubation with diclofenac, the riluzole N-hydroxylation activities of recombinant P450 1A2 and human liver microsomes were inhibited after preincubation with diclofenac or 4'-hydroxydiclofenac for 20 min in the presence of NADPH. Using the inhibition constant (37 µM) of diclofenac on caffeine 3-N-demethylation and the reported 95th percentiles of maximum plasma concentration (10.5 µM) after an oral dose of diclofenac, the in vivo estimated increase in area under the plasma concentration-time curve was 29%. 4.  These results suggest that diclofenac could inhibit drug clearance to a clinically important degree that depends on P450 1A2. Clinically relevant drug interactions in vivo with diclofenac are likely to be invoked via human P450 1A2 function in addition to those caused by the effect of diclofenac on P450 2C9.

  18. Identification of Metabolite Biomarkers of the Designer Hallucinogen 25I-NBOMe in Mouse Hepatic Microsomal Preparations and Human Urine Samples Associated with Clinical Intoxication

    PubMed Central

    Poklis, Justin L.; Dempsey, Sara K.; Liu, Kai; Ritter, Joseph K.; Wolf, Carl; Zhang, Shijun; Poklis, Alphonse

    2015-01-01

    ‘NBOMe’ (dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine) derivatives are a new class of designer hallucinogenic drugs widely available on the Internet. Currently, 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) is the most popular abused derivative in the USA. There are little published data on the absorption, metabolism and elimination of 25I-NBOMe, or any of the other NBOMe derivatives. Therefore, there are no definitive metabolite biomarkers. We present the identification of fifteen 25I-NBOMe metabolites in phase I and II mouse hepatic microsomal preparations, and analysis of two human urine samples from 25I-NBOMe-intoxicated patients to test the utility of these metabolites as biomarkers of 25I-NBOMe use. The synthesis of two major urinary metabolites, 2-iodo-4-methoxy-5-[2-[(2-methoxyphenyl) methylamino]ethyl]phenol (2-O-desmethyl-5-I-NBOMe, M5) and 5-iodo-4-methoxy-2-[2-[(2-methoxyphenyl)methylamino]ethyl]phenol (5-O-desmethyl-2-I-NBOMe), is also presented. Seven phase II glucuronidated metabolites of the O-desmethyl or the hydroxylated phase I metabolites were identified. One human urine sample contained 25I-NBOMe as well as all 15 metabolites identified in mouse hepatic microsomal preparations. Another human urine sample contained no parent 25I-NBOMe, but was found to contain three O-desmethyl metabolites. We recommend β-glucuronidase enzymatic hydrolysis of urine prior to 25I-NBOMe screening and the use of M5 as the primary biomarker in drug testing. PMID:26378134

  19. Spironolactone and canrenone inhibit UGT2B7-catalyzed human liver and kidney microsomal aldosterone 18beta-glucuronidation: a potential drug interaction.

    PubMed

    Knights, Kathleen M; Bowalgaha, Kushari; Miners, John O

    2010-07-01

    Elevated plasma concentrations of aldosterone (ALDO) are observed in patients treated with spironolactone. Because ALDO is eliminated via UGT2B7-catalyzed 18beta-glucuronidation, this study aimed to determine whether spironolactone and its primary metabolites, canrenone and canrenoic acid, inhibit ALDO 18beta-glucuronidation by recombinant UGT2B7 and by human liver (HLM) and human kidney cortical (HKCM) microsomes. Initial experiments characterized the effects of all three compounds on 4-methylumbelliferone and ALDO glucuronidation by recombinant human UGT2B7. IC(50) values for spironolactone and canrenone ranged from 26 to 50 microM, whereas canrenoic acid was a weak inhibitor. Inhibitor constant (K(i)) values for spironolactone and canrenone inhibition of ALDO 18beta-glucuronidation were subsequently determined with HLM, HKCM, and UGT2B7 as the enzyme sources. Spironolactone and canrenone were competitive inhibitors of ALDO 18beta-glucuronidation by HLM, HKCM, and UGT2B7. Mean (+/-) K(i) values for spironolactone were 52 +/- 22 (HLM) and 34 +/- 4 microM (HKCM), and mean (+/-) K(i) values for canrenone were 41 +/- 19 (HLM) and 23 +/- 2 microM (HKCM). K(i) values for spironolactone and canrenone inhibition of ALDO 18beta-glucuronidation by recombinant UGT2B7 were 23 and 11 microM, respectively. "Actual" K(i) values for spironolactone and canrenone inhibition of ALDO 18beta-glucuronidation, which take into account the role of endogenous microsomal inhibitors, are predicted to be 3 to 5 and 2 to 4 microM, respectively. The data indicate that the elevated ALDO concentrations observed in patients treated with spironolactone may be due, at least in part, to a pharmacokinetic interaction, and spironolactone and canrenone should be considered to be potential inhibitors of the UGT2B7-mediated metabolic clearance of drugs in both liver and kidney. PMID:20304966

  20. Identification of Metabolite Biomarkers of the Designer Hallucinogen 25I-NBOMe in Mouse Hepatic Microsomal Preparations and Human Urine Samples Associated with Clinical Intoxication.

    PubMed

    Poklis, Justin L; Dempsey, Sara K; Liu, Kai; Ritter, Joseph K; Wolf, Carl; Zhang, Shijun; Poklis, Alphonse

    2015-10-01

    'NBOMe' (dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine) derivatives are a new class of designer hallucinogenic drugs widely available on the Internet. Currently, 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) is the most popular abused derivative in the USA. There are little published data on the absorption, metabolism and elimination of 25I-NBOMe, or any of the other NBOMe derivatives. Therefore, there are no definitive metabolite biomarkers. We present the identification of fifteen 25I-NBOMe metabolites in phase I and II mouse hepatic microsomal preparations, and analysis of two human urine samples from 25I-NBOMe-intoxicated patients to test the utility of these metabolites as biomarkers of 25I-NBOMe use. The synthesis of two major urinary metabolites, 2-iodo-4-methoxy-5-[2-[(2-methoxyphenyl) methylamino]ethyl]phenol (2-O-desmethyl-5-I-NBOMe, M5) and 5-iodo-4-methoxy-2-[2-[(2-methoxyphenyl)methylamino]ethyl]phenol (5-O-desmethyl-2-I-NBOMe), is also presented. Seven phase II glucuronidated metabolites of the O-desmethyl or the hydroxylated phase I metabolites were identified. One human urine sample contained 25I-NBOMe as well as all 15 metabolites identified in mouse hepatic microsomal preparations. Another human urine sample contained no parent 25I-NBOMe, but was found to contain three O-desmethyl metabolites. We recommend β-glucuronidase enzymatic hydrolysis of urine prior to 25I-NBOMe screening and the use of M5 as the primary biomarker in drug testing.

  1. Ceramide path in human lung cell death.

    PubMed

    Chan, C; Goldkorn, T

    2000-04-01

    Lung epithelium plays a significant role in modulating the inflammatory response to lung injury. Airway epithelial cells are targeted by hydrogen peroxide (H(2)O(2)) and oxygen radicals, which are agents commonly produced during inflammatory processes. The mechanisms and molecular sites affected by H(2)O(2) are largely unknown but may involve the induction of sphingomyelin (SM) hydrolysis to generate ceramide, which serves as a second messenger in initiating an apoptotic response. Here we show that exposure of human airway epithelial (HAE) cells to 50 to 100 microM H(2)O(2) induces within 5 to 10 min a greater than 2-fold activation of neutral sphingomyelinase activity with concomitant SM hydrolysis, ceramide generation, and apoptosis. On the other hand, activation of protein kinase C (PKC) by 12-O-tetradecanoylphorbol-13-acetate inhibits both H(2)O(2)-induced ceramide production and apoptosis. The apoptotic response could be restored by the addition of 25 microM cell-permeant C6-ceramide. These findings indicate that ceramide, the product of SM hydrolysis, plays an important role in H(2)O(2)-induced apoptosis in HAE cells, and that PKC counteracts ceramide-mediated apoptosis in these cells. We suggest that the mediation of epithelial cell apoptosis by ceramide and its inhibition by PKC constitute a central mechanism by which inflammatory processes are modulated in the epithelium of the lung.

  2. Activation of amino-alpha-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes.

    PubMed

    Shimada, T; Guengerich, F P

    1991-10-01

    The ability of cigarette smoke condensate to induce a genotoxic response has been measured in liver microsomal and reconstituted monooxygenase systems containing rat and human cytochrome P-450 (P-450) enzymes, as determined by umu gene expression in Salmonella typhimurium TA1535/pSK1002. The reactivities of amino-alpha-carboline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), two compounds known to be present at considerable levels in cigarette smoke condensate, were also determined and compared with regard to genotoxicity. Amino-alpha-carboline and PhIP are activated principally by P-450 1A2 enzymes in human and rat liver microsomes: (a) activation of both compounds was catalyzed efficiently by liver microsomes prepared from rats treated with 5,6-benzoflavone, isosafrole, or the commercial polychlorinated biphenyl mixture Aroclor 1254, and the activities could be considerably inhibited by antibodies raised against P-450 1A1 or 1A2; (b) the rates of activation of these compounds were correlated with the amount of human P-450 1A2 and of phenacetin O-deethylation activity in different human liver microsomal preparations, and these activities were inhibited by anti-P-450 1A2; (c) reconstituted enzyme systems containing P-450 1A enzymes isolated from rats and humans showed the highest rates of activation of amino-alpha-carboline and PhIP. In rat liver microsomes PhIP may also be activated by P-450 3A enzymes; activity was induced in rats treated with pregnenolone 16 alpha-carbonitrile and was inhibited by anti-human P-450 3A4. However, in humans the contribution of P-450 3A enzymes could be excluded as judged by the very low effects of anti-P-450 3A4 on the microsomal activities and poor correlation with P-450 3A4-catalyzed activities in various liver samples. Cigarette smoke condensate strongly inhibited the activation of several potent procarcinogens by human liver microsomes, particularly the reactions catalyzed by P-450 1A2, but was not so inhibitory of

  3. Identification of stable and reactive metabolite(s) of nelfinavir in human liver microsomes and rCYP3A4.

    PubMed

    Jhajra, Shalu; Singh, Saranjit

    2016-01-25

    The present study was performed to detect trace level stable and reactive metabolites of nelfinavir in human liver microsomes and rCYP3A4. Initially, chromatographic and MS parameters were optimized and fragmentation pattern of the drug was delineated. The structures of metabolites were then elucidated by comparison of their MS/MS fragmentation patterns with the drug. A total of thirty nine stable metabolites were formed, of which twelve were established to be monohydroxylated, eighteen dihydroxy, two dehydrogenated, and one each a diquinone, keto, carboxylic, N-deacylated, dealkylated, oxo and dehydro monohydroxyl metabolite. Previously, a biotransformation product with hydroxylation at tert-butyl group of nelfinavir is reported as an active metabolite of the drug. In our case, ortho-diquinone and N-oxide metabolites were detected, which are known to be reactive in nature. However, these metabolites did not show any interaction with nucleophiles, possibly due to steric hindrance at the site of interface.

  4. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  5. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  6. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    NASA Astrophysics Data System (ADS)

    Ye, Meiling; Tang, Ling; Luo, Mengjun; Zhou, Jing; Guo, Bin; Liu, Yangyuan; Chen, Bo

    2014-11-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  7. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    PubMed Central

    2014-01-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  8. Lack of appreciable species differences in nonspecific microsomal binding.

    PubMed

    Zhang, Ying; Yao, Lili; Lin, Jing; Gao, Hua; Wilson, Theresa C; Giragossian, Craig

    2010-08-01

    Species differences in microsomal binding were evaluated for 43 drug molecules in human, monkey, dog and rat liver microsomes, using a fixed concentration of microsomal protein. The dataset included 32 named drugs and 11 proprietary compounds encompassing a broad spectrum of physicochemical properties (11 acids, 24 bases, 8 neutral, c log D -1 to 7, MW 200 to 700 and free fraction <0.001 to 1). Free fractions (f(u,mic)) in monkey, dog, rat and human microsomes were highly correlated, with linear regression correlation coefficients greater than 0.97. The average fold-difference in f(u,mic) between monkey, dog, or rat, and human was 1.6-, 1.3-, and 1.5-fold, respectively. Species differences in f(u,mic) were also assessed for a range of microsomal protein concentrations (0.2-2 mg/mL) for midazolam, clomipramine, astemizole, and tamoxifen, drugs with low to high microsomal binding. The mean fold species-difference in f(u,mic) for midazolam, clomipramine, astemizole, and tamoxifen was 1.1-, 1.2-, 1.3-, and 2.0-fold, respectively, and was independent of normalized microsomal protein concentration. For a fixed concentration of microsomal protein, greater than 76% and 90% of drugs examined in this study had preclinical species f(u,mic) within 1.5- and 2-fold, respectively, of experimentally measured human values. PMID:20229604

  9. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  10. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment.

    PubMed

    Winkler-Heil, R; Hussain, M; Hofmann, W

    2015-05-01

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

  11. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes.

    PubMed

    Kilford, Peter J; Stringer, Rowan; Sohal, Bindi; Houston, J Brian; Galetin, Aleksandra

    2009-01-01

    Glucuronidation via UDP-glucuronosyltransferase (UGT) is an increasingly important clearance pathway. In this study intrinsic clearance (CL(int)) values for buprenorphine, carvedilol, codeine, diclofenac, gemfibrozil, ketoprofen, midazolam, naloxone, raloxifene, and zidovudine were determined in pooled human liver microsomes using the substrate depletion approach. The in vitro clearance data indicated a varying contribution of glucuronidation to the clearance of the compounds studied, ranging from 6 to 79% for midazolam and gemfibrozil, respectively. The CL(int) was obtained using either individual or combined cofactors for cytochrome P450 (P450) and UGT enzymes with alamethicin activation and in the presence and absence of 2% bovine serum albumin (BSA). In the presence of combined P450 and UGT cofactors, CL(int) ranged from 2.8 to 688 microl/min/mg for zidovudine and buprenorphine, respectively; the clearance was approximately equal to the sum of the CL(int) values obtained in the presence of individual cofactors. The unbound intrinsic clearance (CL(int, u)) was scaled to provide an in vivo predicted CL(int); the data obtained in the presence of combined cofactors resulted in 5-fold underprediction on average. Addition of 2% BSA to the incubation with both P450 and UGT cofactors reduced the bias in the clearance prediction, with 8 of 10 compounds predicted within 2-fold of in vivo values with the exception of raloxifene and gemfibrozil. The current study indicates the applicability of combined cofactor conditions in the assessment of clearance for compounds with a differential contribution of P450 and UGT enzymes to their elimination. In addition, improved predictability of microsomal data is observed in the presence of BSA, in particular for UGT2B7 substrates.

  12. Use of the human monocytic leukemia THP-1 cell line and co-incubation with microsomes to identify and differentiate hapten and prohapten sensitizers.

    PubMed

    Chipinda, Itai; Ruwona, Tinashe B; Templeton, Steven P; Siegel, Paul D

    2011-02-27

    Consumer and medical products can contain leachable chemical allergens which can cause skin sensitization. Recent efforts have been directed at the development of non-animal based tests such as in vitro cell activation assays for the identification of skin sensitizers. Prohapten identification by in vitro assays is still problematic due to the lack of prohapten bioactivation. The present study evaluated the effect of hapten and prohapten exposure on cell surface markers expression (CD86, CD54 and CD40) in the human monocytic leukemia, THP-1, cell line. Upregulation of activation and costimulatory markers are key events in the allergic sensitization process and have been reported to serve as indicators of skin sensitization. Cells were exposed to the prohaptens benzo(a)pyrene (BaP), 7,12-dimethylbenz(a)anthracene (DMBA), carvone oxime (COx), cinnamic alcohol (CA) and isoeugenol (IEG) at concentrations ranging from 1 to 10 μM for 24 and 48 h. The direct-binding haptens dinitrochlorobenzene (DNCB), benzoquinone (BQ), hydroxylethyl acrylate (HEA) and benzylbromide (BB) were used as positive controls. Cells were also exposed to the irritants sodium dodecyl sulfate (SDS) and sulfanilamide (SFA). Bioactivation of prohaptens was achieved by adding aroclor-induced rat liver microsomes (S9) to the cell cultures. Consistent upregulation of surface expressions of CD86, CD54 (ICAM-1) and CD40 was observed in THP-1 cells treated with direct-acting haptens (±S9) or prohapten (+S9). Upregulation of these markers was not observed after exposure to skin irritants or prohaptens in the absence of exogenously added S9. In conclusion, modification of in vitro cell culture assays to include co-incubation with microsomes enhances identification of prohaptens and allows them to be clearly distinguished from direct-binding haptens. PMID:21163322

  13. Evaluation of pharmaceutical excipients as cosolvents in 4-methyl umbelliferone glucuronidation in human liver microsomes: applications for compounds with low solubility.

    PubMed

    Argikar, Upendra A; Liang, Guiqing; Bushee, Jennifer L; Hosagrahara, Vinayak P; Lee, Wendy

    2011-01-01

    Standard incubation procedures for carrying out microsomal assays involve the use of less than 1% w/v organic solvents to minimize the potential inhibitory effects of organic solvents on metabolic activity. This presents a practical limitation for poorly soluble xenobiotics, which cannot be incubated at concentrations high enough to obtain a V(max), and therefore subsequent values for K(m) and Cl(int) cannot be calculated. Our goal was to study the application of a variety of pharmaceutical excipients to aid the solubilization of compounds in vitro in glucuronidation incubations, without affecting the reaction kinetics. In vitro glucuronidation incubations were carried out in human liver microsomes with 4-methylumbelliferone (4-MU) and the kinetics of 4-MU glucuronidation in the presence of excipients were compared to that in control incubations without any excipients. In addition, IC(75) values were calculated for each excipient. We observed that HPBCD (Hydroxypropyl-β-cyclodextrin) may be employed in in vitro glucuronidation incubations up to 0.5% w/v without affecting the Cl(int) of 4-MU. Although NMP (N-methyl-2-pyrrolidone) and DMA (N,N-dimethylacetamide); showed low IC(75) values approximately 0.1% w/v each, neither excipients altered the Cl(int) of 4-MUG (4-methylumbelliferyl-β-D-glucuronide) formation. Our studies point toward possible applications of pharmaceutical excipients to carry out in vitro glucuronidation of substrates with poor aqueous solubility, in order to estimate Cl(int) and subsequently scaled organ clearance values.

  14. The quantitative determination of cilostazol and its four metabolites in human liver microsomal incubation mixtures by high-performance liquid chromatography.

    PubMed

    Tata, P N; Fu, C H; Browder, N J; Chow, P C; Bramer, S L

    1998-11-01

    A high-performance liquid chromatography-ultraviolet (HPLC-UV) method for the quantitation of cilostazol and four of its principal metabolites (i.e. OPC-13015, OPC-13213, OPC-13217 and OPC-13326) in human liver microsomal solutions was developed and validated. Cilostazol, its metabolites, and the internal standard (OPC-3930), were analyzed by protein precipitation followed by reverse-phase HPLC separation on a TSK-Gel ODS-80TM (150 x 4.6 mm, 5 microm) column and a Cosmil C-18 column (150 x 4.6 mm, 5 microm) in tandem and UV detection at 254 nm. An 80 min gradient elution of mobile phase acetonitrile in acetate buffer (pH = 6.50) was used to obtain quality chromatography and peak resolution. All the analytes were separated from each other, with the resolution being 2.43-17.59. The components of liver microsomal incubation mixture and five metabolic inhibitor probes (quinidine sulfate, diethyl dithiocarbamate (DEDTC), omeprazole, ketoconazole and furafylline) did not interfere with this analytical method. The LOQ was 1000 ng ml(-1) for cilostazol and 100 ng ml(-1) for each of the metabolites. This method has been validated for linear ranges of 100-4000 ng ml(-1) for OPC-13213, OPC-13217 and OPC-13326; 100-2000 ng ml(-1) for OPC-13015; and 1000-20000 ng ml(-1) for cilostazol. The percent relative recovery of this method was established to be 81.2-101.0% for analytes, with the precision (% coefficient of variation (CV)) being 2.8-7.7%. The autosampler stability of the analytes was evaluated and it was found that all analytes were stable at room temperature for a period of at least 17 h. This assay has been shown to be precise, accurate and reproducible.

  15. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk.

    PubMed Central

    Mauderly, J L

    1997-01-01

    Rats and other rodents are exposed by inhalation to identify agents that might present hazards for lung cancer in humans exposed by inhalation. In some cases, the results are used in attempts to develop quantitative estimates of human lung cancer risk. This report reviews evidence for the usefulness of the rat for evaluation of lung cancer hazards from inhaled particles. With the exception of nickel sulfate, particulate agents thought to be human lung carcinogens cause lung tumors in rats exposed by inhalation. The rat is more sensitive to carcinogenesis from nonfibrous particles than mice or Syrian hamsters, which have both produced false negatives. However, rats differ from mice and nonhuman primates in both the pattern of particle retention in the lung and alveolar epithelial hyperplastic responses to chronic particle exposure. Present evidence warrants caution in extrapolation from the lung tumor response of rats to inhaled particles to human lung cancer hazard, and there is considerable uncertainty in estimating unit risks for humans from rat data. It seems appropriate to continue using rats in inhalation carcinogenesis assays of inhaled particles, but the upper limit of exposure concentrations must be set carefully to avoid false-positive results. A positive finding in both rats and mice would give greater confidence that an agent presents a carcinogenic hazard to man, and both rats and mice should be used if the agent is a gas or vapor. There is little justification for including Syrian hamsters in assays of the intrapulmonary carcinogenicity of inhaled agents. PMID:9400748

  16. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM.

    PubMed

    Nakamura, Kenji; Hirayama-Kurogi, Mio; Ito, Shingo; Kuno, Takuya; Yoneyama, Toshihiro; Obuchi, Wataru; Terasaki, Tetsuya; Ohtsuki, Sumio

    2016-08-01

    The purpose of the present study was to examine simultaneously the absolute protein amounts of 152 membrane and membrane-associated proteins, including 30 metabolizing enzymes and 107 transporters, in pooled microsomal fractions of human liver, kidney, and intestine by means of SWATH-MS with stable isotope-labeled internal standard peptides, and to compare the results with those obtained by MRM/SRM and high resolution (HR)-MRM/PRM. The protein expression levels of 27 metabolizing enzymes, 54 transporters, and six other membrane proteins were quantitated by SWATH-MS; other targets were below the lower limits of quantitation. Most of the values determined by SWATH-MS differed by less than 50% from those obtained by MRM/SRM or HR-MRM/PRM. Various metabolizing enzymes were expressed in liver microsomes more abundantly than in other microsomes. Ten, 13, and eight transporters listed as important for drugs by International Transporter Consortium were quantified in liver, kidney, and intestinal microsomes, respectively. Our results indicate that SWATH-MS enables large-scale multiplex absolute protein quantification while retaining similar quantitative capability to MRM/SRM or HR-MRM/PRM. SWATH-MS is expected to be useful methodology in the context of drug development for elucidating the molecular mechanisms of drug absorption, metabolism, and excretion in the human body based on protein profile information.

  17. Quantitative Anatomy of the Growing Lungs in the Human Fetus

    PubMed Central

    Szpinda, Michał; Siedlaczek, Waldemar; Szpinda, Anna; Woźniak, Alina; Mila-Kierzenkowska, Celestyna; Badura, Mateusz

    2015-01-01

    Using anatomical, digital, and statistical methods we examined the three-dimensional growth of the lungs in 67 human fetuses aged 16–25 weeks. The lung dimensions revealed no sex differences. The transverse and sagittal diameters and the base circumference were greater in the right lungs while the lengths of anterior and posterior margins and the lung height were greater in the left lungs. The best-fit curves for all the lung parameters were natural logarithmic models. The transverse-to-sagittal diameter ratio remained stable and averaged 0.56 ± 0.08 and 0.52 ± 0.08 for the right and left lungs, respectively. For the right and left lungs, the transverse diameter-to-height ratio significantly increased from 0.74 ± 0.09 to 0.92 ± 0.08 and from 0.56 ± 0.07 to 0.79 ± 0.09, respectively. The sagittal diameter-to-height ratio significantly increased from 1.41 ± 0.23 to 1.66 ± 0.18 in the right lung, and from 1.27 ± 0.17 to 1.48 ± 0.22 in the left lung. In the fetal lungs, their proportionate increase in transverse and sagittal diameters considerably accelerates with relation to the lung height. The lung dimensions in the fetus are relevant in the evaluation of the normative pulmonary growth and the diagnosis of pulmonary hypoplasia. PMID:26413517

  18. In vitro studies on the oxidative metabolism of 20(s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9.

    PubMed

    Li, Liang; Chen, Xiaoyan; Zhou, Jialan; Zhong, Dafang

    2012-10-01

    20(S)-Ginsenoside Rh2 (Rh2)-containing products are widely used in Asia, Europe, and North America. However, extremely limited metabolism information greatly impedes the complete understanding of its clinical safety and effectiveness. The present study aims to systematically investigate the oxidative metabolism of Rh2 using a complementary set of in vitro models. Twenty-five oxidative metabolites were found using liquid chromatography-electrospray ionization ion-trap mass spectrometry. Six metabolites and a metabolic intermediate were synthesized. The metabolites were structurally identified as 26-hydroxy Rh2 (M1-1), (20S,24S)-epoxydammarane-12,25-diol-3-β-d-glucopyranoside (M1-3), (20S,24R)-epoxydammarane-12,25-diol-3-β-d-glucopyranoside (M1-5), 26,27-dihydroxy Rh2 (M3-6), (20S,24S)-epoxydammarane-12,25,26-triol-3-β-d-glucopyranoside (M3-10), (20S,24R)-epoxydammarane-12,25,26-triol-3-β-d-glucopyranoside (M3-11), and 26-aldehyde Rh2 on the basis of detailed mass spectrometry and nuclear magnetic resonance data analysis. Double-bond epoxidation followed by rearrangement and vinyl-methyl group hydroxylation represent the initial metabolic pathways generating monooxygenated metabolites M1-1 to M1-5. Further sequential metabolites (M2-M5) from the dehydrogenation and/or oxygenation of M1 were also detected. CYP3A4 was the predominant enzyme involved in the oxidative metabolism of Rh2, whereas alcohol dehydrogenase and aldehyde dehydrogenase mainly catalyzed the metabolic conversion of alcohol to the corresponding carboxylic acid. No significant differences were observed in the phase I metabolite profiles of Rh2 among the five species tested. Reactive epoxide metabolite formation in both humans and animals was evident. However, GSH conjugate M6 was detected only in cynomolgus monkey liver microsomal incubations. In conclusion, Rh2 is a good substrate for CYP3A4 and could undergo extensive oxidative metabolism under the catalysis of CYP3A4. PMID:22829543

  19. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants.

    PubMed

    Zheng, Xiaobo; Erratico, Claudio; Luo, Xiaojun; Mai, Bixian; Covaci, Adrian

    2016-05-01

    BDE-99 is different by cat and human liver microsomes. This suggests that cats are not a suitable sentinel to represent internal exposure of PBDEs for humans, but is likely a promising sentinel for internal HBCDs exposure for humans. PMID:26923239

  20. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II

  1. Human sweat metabolomics for lung cancer screening.

    PubMed

    Calderón-Santiago, Mónica; Priego-Capote, Feliciano; Turck, Natacha; Robin, Xavier; Jurado-Gámez, Bernabé; Sanchez, Jean C; Luque de Castro, María D

    2015-07-01

    Sweat is one of the less employed biofluids for discovery of markers in spite of its increased application in medicine for detection of drugs or for diagnostic of cystic fibrosis. In this research, human sweat was used as clinical sample to develop a screening tool for lung cancer, which is the carcinogenic disease with the highest mortality rate owing to the advanced stage at which it is usually detected. In this context, a method based on the metabolite analysis of sweat to discriminate between patients with lung cancer versus smokers as control individuals is proposed. The capability of the metabolites identified in sweat to discriminate between both groups of individuals was studied and, among them, a trisaccharide phosphate presented the best independent performance in terms of the specificity/sensitivity pair (80 and 72.7%, respectively). Additionally, two panels of metabolites were configured using the PanelomiX tool as an attempt to reduce false negatives (at least 80% specificity) and false positives (at least 80% sensitivity). The first panel (80% specificity and 69% sensitivity) was composed by suberic acid, a tetrahexose, and a trihexose, while the second panel (69% specificity and 80% sensitivity) included nonanedioic acid, a trihexose, and the monoglyceride MG(22:2). Thus, the combination of the five metabolites led to a single panel providing 80% specificity and 79% sensitivity, reducing the false positive and negative rates to almost 20%. The method was validated by estimation of within-day and between-days variability of the quantitative analysis of the five metabolites.

  2. Monoester-Diterpene Aconitum Alkaloid Metabolism in Human Liver Microsomes: Predominant Role of CYP3A4 and CYP3A5

    PubMed Central

    Ye, Ling; Yang, Xiao-Shan; Lu, Lin-lin; Chen, Wei-Ying; Zeng, Shan; Yan, Tong-Meng; Dong, Ling-Na; Peng, Xiao-Juan; Shi, Jian; Liu, Zhong-Qiu

    2013-01-01

    Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC), benzoylmesaconine (BMA), and benzoylhypaconine (BHA), are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP) enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA. PMID:23864901

  3. Metabolism of bupropion by baboon hepatic and placental microsomes

    PubMed Central

    Wang, Xiaoming; Abdelrahman, Doaa R.; Fokina, Valentina M.; Hankins, Gary D.V.; Ahmed, Mahmoud S.; Nanovskaya, Tatiana N.

    2011-01-01

    The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 µM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB. PMID:21570381

  4. Gomisin A is a Novel Isoform-Specific Probe for the Selective Sensing of Human Cytochrome P450 3A4 in Liver Microsomes and Living Cells.

    PubMed

    Wu, Jing-Jing; Ge, Guang-Bo; He, Yu-Qi; Wang, Ping; Dai, Zi-Ru; Ning, Jing; Hu, Liang-Hai; Yang, Ling

    2016-01-01

    Nearly half of prescription medicines are metabolized by human cytochrome P450 (CYP) 3A. CYP3A4 and 3A5 are two major isoforms of human CYP3A and share most of the substrate spectrum. A very limited previous study distinguished the activity of CYP3A4 and CYP3A5, identifying the challenge in predicting CYP3A-mediated drug clearance and drug-drug interaction. In the present study, we introduced gomisin A (GA) with a dibenzocyclooctadiene skeleton as a novel selective probe of CYP3A4. The major metabolite of GA was fully characterized as 8-hydroxylated GA by LC-MS and NMR. CYP3A4 was assigned as the predominant isozyme involved in GA 8-hydroxylation by reaction phenotyping assays, chemical inhibition assays, and correlation studies. GA 8-hydroxylation in both recombinant human CYP3A4 and human liver microsomes followed classic Michaelis-Menten kinetics. The intrinsic clearance values indicated that CYP3A4 contributed 12.8-fold more than CYP3A5 to GA 8-hydroxylation. Molecular docking studies indicated different hydrogen bonds and π-π interactions between CYP3A4 and CYP3A5, which might result in the different catalytic activity for GA 8-hydroxylation. Furthermore, GA exhibited a stronger inhibitory activity towards CYP3A4 than CYP3A5, which further suggested a preferred selectivity of CYP3A4 for the transformation of GA. More importantly, GA has been successfully applied to selectively monitor the modulation of CYP3A4 activities by the inducer rifampin in hepG2 cells, which is consistent with the level change of CYP3A4 mRNA expression. In summary, our results suggested that GA could be used as a novel probe for the selective sensing of CYP3A4 in tissue and cell preparations.

  5. In vitro enantioselective metabolism of TJ0711 hydrochloride by human liver microsomes using a novel chiral liquid chromatography-tandem mass spectrometry method.

    PubMed

    Huang, Jiangeng; Hu, Lei; Xu, Li; Sun, Minghui; Fan, Zhaoze; Qiu, Jun; Li, Gao; Si, Luqin

    2012-04-01

    A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing chiral analytical techniques was developed and validated for in vitro enantioselective metabolic stability study of racemic 1-[4-(2-methoxyethyl) phenoxy]-3-[[2-(2-methoxyphenoxy) ethyl]amino]-2-propanol hydrochloride (TJ0711 HCl), a newly developed vasodilatory β-blocker. Robust enantiomeric separations were achieved on a chiral SUMICHIRAL OA-2500 column using ethanol and hexane (40:60, v/v) as a mobile phase. Metabolic stability results demonstrated that both TJ0711 enantiomers underwent a rapid phase I metabolism, but preferential metabolism of R-TJ0711 was observed. Our previously reported ultra-performance liquid chromatography-multiple reaction monitoring-information dependent acquisition-enhanced product ion (UPLC-MRM-IDA-EPI) method was finally chosen for metabolite profiling study of TJ0711 enantiomers, because the newly developed HPLC-based method resulted in compromised chromatographic separation, particularly for TJ0711 metabolites. A number of metabolic products were detected and the structures of formed metabolites were predicted. Similar to racemic TJ0711 HCl, demethylation and hydroxylation were proposed to be the principle metabolism pathways during in vitro incubations of each enantiomer with human liver microsomes. PMID:22406105

  6. Mechanism-based inhibition of human liver microsomal cytochrome P450 2D6 (CYP2D6) by alkamides of Piper nigrum.

    PubMed

    Subehan; Usia, Tepy; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2006-05-01

    Nineteen alkamides isolated from Piper nigrum L. were tested for their mechanism-based inhibition on human liver microsomal dextromethorphan O-demethylation activity, a prototype marker for cytochrome P450 2D6 (CYP2D6). All compounds increased their inhibitory activity with increasing preincubation time. Among them, 15 and 17 showed more than 50 % decrease of the CYP2D6 residual activity after 20 min preincubation. Further investigations on 15 and 17 showed that the characteristic time- and concentration-dependent inhibition, which required a catalytic step with NADPH, was not protected by nucleophiles, and was decreased by the presence of a competitive inhibitor. The kinetic parameters for inactivation (kinact and KI) were 0.028 min-1 and 0.23 microM for 15 and 0.064 min-1 and 0.71 microM for 17, respectively, which were stronger than the known mechanism-based inhibitor, paroxetine (a positive control). Thus, 15 and 17 are potent mechanism-based inhibitors of CYP2D6.

  7. Identification of a new P450 expressed in human lung: complete cDNA sequence, cDNA-directed expression, and chromosome mapping.

    PubMed

    Nhamburo, P T; Gonzalez, F J; McBride, O W; Gelboin, H V; Kimura, S

    1989-10-01

    A cDNA coding for a P450 expressed in human lung was isolated from a lambda gt11 library constructed from human lung mRNA using a cDNA probe to rat P450 IVA1. The cDNA-deduced amino acid sequence of this P450, designated IVB1, consisted of 511 amino acids and had a calculated molecular weight of 59,558. The IVB1 amino acid sequence bore 51%, 53%, and 52% similarities to rat IVA1, IVA2, and rabbit P450p-2, respectively. Comparison of the primary amino acid sequence of human IVB1 with rat IVA and rabbit p-2 P450 sequences revealed a region of absolute sequence identity of 17 amino acids between residues 304 and 320. However, the functional significance of this conserved sequence is unknown. Human IVB1 also appears to be related to P450 isozyme 5 that has been extensively characterized in rabbits. The IVB1 cDNA was inserted into a vaccinia virus expression vector and the enzyme expressed in human cell lines. The expressed enzyme had an absorption spectrum with a lambda max at 450 nm when reduced and complexed with carbon monoxide, typical of other cytochrome P450s. Unlike rabbit P450 isozyme 5, however, human IVB1 was unable to activate the promutagen 2-aminofluorene. Human lung microsomal P450s were also unable to metabolize this compound despite the presence of IVB1 mRNA in three out of four human lungs analyzed. In contrast to its expression in lung, IVB1 mRNA was undetectable in livers from 14 individuals, including those from which the lungs were derived. IVB1-related mRNA was also expressed in rat lung and was undetectable in untreated rat liver.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Human microsomal cyttrochrome P450-mediated reduction of oxysophocarpine, an active and highly toxic constituent derived from Sophora flavescens species, and its intestinal absorption and metabolism in rat.

    PubMed

    Wu, Lili; Zhong, Wanping; Liu, Junjin; Han, Weichao; Zhong, Shilong; Wei, Qiang; Liu, Shuwen; Tang, Lan

    2015-09-01

    Oxysophocarpine (OSC), an active and toxic quinolizidine alkaloid, is highly valued in Sophora flavescens Ait. and Subprostrate sophora Root. OSC is used to treat inflammation and hepatitis for thousands of years in China. This study aims to investigate the CYP450-mediated reduction responsible for metabolizing OSC and to evaluate the absorption and metabolism of OSC in rat in situ. Four metabolites were identified, with sophocarpine (SC) as the major metabolite. SC formation was rapid in human and rat liver microsomes (HLMs and RLMs, respectively). The reduction rates in the liver are two fold higher than in the intestine, both in humans and rats. In HLMs, inhibitors of CYP2C9, 3A4/5, 2D6, and 2B6 had strong inhibitory effects on SC formation. Meanwhile, inhibitors of CYP3A and CYP2D6 had significant inhibition on SC formation in RLMs. Human recombinant CYP3A4/5, 2B6, 2D6, and 2C9 contributed significantly to SC production. The permeability in rat intestine and the excretion rates of metabolites were highest in the duodenum (p<0.05), and the absorbed amount of OSC in duodenum and jejunum was concentration-dependent. The metabolism could be significantly decreased by CYP3A inhibitor ketoconazole. In conclusion, the liver was the main organ responsible for OSC metabolism. First-pass metabolism via CYP3A4/5, 2B6, 2D6, and 2C9 may be the main reason for the poor OSC bioavailability.

  9. Cytochrome P450 dependent metabolism of the new designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP). In vivo studies in Wistar and Dark Agouti rats as well as in vitro studies in human liver microsomes.

    PubMed

    Staack, Roland F; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-01-15

    1-(3-Trifluoromethylphenyl)piperazine (TFMPP) is a designer drug with serotonergic properties. Previous studies with male Wistar rats (WI) had shown, that TFMPP was metabolized mainly by aromatic hydroxylation. In the current study, it was examined whether this reaction may be catalyzed by cytochrome P450 (CYP)2D6 by comparing TFMPP vs. hydroxy TFMPP ratios in urine from female Dark Agouti rats, a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats, an intermediate model, and WI, a model of the human CYP2D6 extensive metabolizer phenotype. Furthermore, the human hepatic CYPs involved in TFMPP hydroxylation were identified using cDNA-expressed CYPs and human liver microsomes. Finally, TFMPP plasma levels in the above mentioned rats were compared. The urine studies suggested that TFMPP hydroxylation might be catalyzed by CYP2D6 in humans. Studies using human CYPs showed that CYP1A2, CYP2D6 and CYP3A4 catalyzed TFMPP hydroxylation, with CYP2D6 being the most important enzyme accounting for about 81% of the net intrinsic clearance, calculated using the relative activity factor approach. The hydroxylation was significantly inhibited by quinidine (77%) and metabolite formation in poor metabolizer genotype human liver microsomes was significantly lower (63%) compared to pooled human liver microsomes. Analysis of the plasma samples showed that female Dark Agouti rats exhibited significantly higher TFMPP plasma levels compared to those of male Dark Agouti rats and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher TFMPP plasma levels. In conclusion, the presented data give hints for possible differences in pharmacokinetics in human PM and human CYP2D6 extensive metabolizer phenotype subjects relevant for risk assessment.

  10. Metabolic activation of 2-methylfuran by rat microsomal systems

    SciTech Connect

    Ravindranath, V.; Boyd, M.R.

    1985-05-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins.

  11. The accumulation of nickel in human lungs

    SciTech Connect

    Edelman, D.A.; Roggli, V.L. )

    1989-05-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predicted nickel concentrations that were in the range of those of persons without known nickel exposure. Nickel is a suspected carcinogen and has been associated with an increased risk of respiratory tract cancer among nickel workers. However, before the nickel content of cigarettes can be implicated in the etiology of lung cancer, further studies are needed to evaluate the independent effects of smoking and exposure to nickel.

  12. A gel-free MS-based quantitative proteomic approach accurately measures cytochrome P450 protein concentrations in human liver microsomes.

    PubMed

    Wang, Michael Zhuo; Wu, Judy Qiju; Dennison, Jennifer B; Bridges, Arlene S; Hall, Stephen D; Kornbluth, Sally; Tidwell, Richard R; Smith, Philip C; Voyksner, Robert D; Paine, Mary F; Hall, James Edwin

    2008-10-01

    The human cytochrome P450 (P450) superfamily consists of membrane-bound proteins that metabolize a myriad of xenobiotics and endogenous compounds. Quantification of P450 expression in various tissues under normal and induced conditions has an important role in drug safety and efficacy. Conventional immunoquantification methods have poor dynamic range, low throughput, and a limited number of specific antibodies. Recent advances in MS-based quantitative proteomics enable absolute protein quantification in a complex biological mixture. We have developed a gel-free MS-based protein quantification strategy to quantify CYP3A enzymes in human liver microsomes (HLM). Recombinant protein-derived proteotypic peptides and synthetic stable isotope-labeled proteotypic peptides were used as calibration standards and internal standards, respectively. The lower limit of quantification was approximately 20 fmol P450. In two separate panels of HLM examined (n = 11 and n = 22), CYP3A, CYP3A4 and CYP3A5 concentrations were determined reproducibly (CV or=0.87) and marker activities (r(2)>or=0.88), including testosterone 6beta-hydroxylation (CYP3A), midazolam 1'-hydroxylation (CYP3A), itraconazole 6-hydroxylation (CYP3A4) and CYP3A5-mediated vincristine M1 formation (CYP3A5). Taken together, our MS-based method provides a specific, sensitive and reliable means of P450 protein quantification and should facilitate P450 characterization during drug development, especially when specific substrates and/or antibodies are unavailable.

  13. In vitro oxidative metabolism of cajaninstilbene Acid by human liver microsomes and hepatocytes: involvement of cytochrome p450 reaction phenotyping, inhibition, and induction studies.

    PubMed

    Hua, Xin; Peng, Xiao; Tan, Shengnan; Li, Chunying; Wang, Wei; Luo, Meng; Fu, Yujie; Zu, Yuangang; Smyth, Hugh

    2014-10-29

    Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid), an active constituent of pigeonpea leaves, an important tropical crop, is known for its clinical effects in the treatment of diabetes, hepatitis, and measles and its potential antitumor effect. In this study, the effect of the cytochrome P450 isozymes on the activity of CSA was investigated. Two hydroxylation metabolites were identified in the study. The reaction phenotype study showed that CYP3A4, CYP2C9, and CYP1A2 were the major cytochrome P450 isozymes in the metabolism of CSA. The metabolic food-drug interaction potential was also evaluated in vitro. The effect of CSA inhibition/induction of enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro was estimated by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques. CSA showed different inhibitory effects on different isozymes. CSA reversibly inhibited CYP3A4 and CYP2C9 activities in human liver microsomes with IC50 values of 28.3 and 31.3 μM, respectively, but exhibited no inhibition activities to CYP1A2, CYP2A6, CYP2C19, CYP2D6, and CYP2E1. CSA showed a weak effect on CYP450 enzymes in a time-dependent manner. CSA did not substantially induce CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM in primary human hepatocytes. The results of our experiments may be helpful to predict clinically significant food-drug interactions when other drugs are administered in combination with CSA. PMID:25272989

  14. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    PubMed

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans.

  15. Linear dimensions and volumes of human lungs

    SciTech Connect

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does not improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.

  16. Linear dimensions and volumes of human lungs

    DOE PAGESBeta

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  17. Solubility of Freon 22 in human blood and lung tissue.

    PubMed

    Varene, N; Choukroun, M L; Marthan, R; Varene, P

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. (J. Appl. Physiol. 36: 600-605, 1974). In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  18. Solubility of Freon 22 in human blood and lung tissue

    SciTech Connect

    Varene, N.; Choukroun, M.L.; Marthan, R.; Varene, P.

    1989-05-01

    The solubility of Freon 22 in human blood and lung tissue was determined using the chromatographic method of Wagner et al. In normal human blood, the mean Bunsen coefficient of solubility (alpha B) was 0.804 cm3 STPD.cm-3.ATA-1 at 37 degrees C. It increased with hematocrit (Hct) according to the equation alpha B = 0.274 Hct + 0.691. Tissue homogenates were prepared from macroscopically normal lung pieces obtained at thoracotomy from eight patients undergoing resection for lung carcinoma. The Bunsen solubility coefficients were 0.537 +/- 0.068 and 0.635 +/- 0.091 in washed and unwashed lung, respectively. These values can be used in the determination of both cardiac output and pulmonary tissue volume in humans by use of the rebreathing technique.

  19. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans.

    PubMed

    Francke, Stephan; Mamidi, Rao N V S; Solanki, Bhavna; Scheers, Ellen; Jadwin, Andrew; Favis, Reyna; Devineni, Damayanthi

    2015-09-01

    O-glucuronidation is the major metabolic elimination pathway for canagliflozin. The objective was to identify enzymes and tissues involved in the formation of 2 major glucuronidated metabolites (M7 and M5) of canagliflozin and subsequently to assess the impact of genetic variations in these uridine diphosphate glucuronosyltransferases (UGTs) on in vivo pharmacokinetics in humans. In vitro incubations with recombinant UGTs revealed involvement of UGT1A9 and UGT2B4 in the formation of M7 and M5, respectively. Although M7 and M5 were formed in liver microsomes, only M7 was formed in kidney microsomes. Participants from 7 phase 1 studies were pooled for pharmacogenomic analyses. A total of 134 participants (mean age, 41 years; men, 63%; white, 84%) were included in the analysis. In UGT1A9*3 carriers, exposure of plasma canagliflozin (Cmax,ss , 11%; AUCτ,ss , 45%) increased relative to the wild type. An increase in exposure of plasma canagliflozin (Cmax,ss , 21%; AUCt,ss , 18%) was observed in participants with UGT2B4*2 genotype compared with UGT2B4*2 noncarriers. Metabolites further delineate the role of both enzymes. The pharmacokinetic findings in participants carrying the UGT1A9*3 and UGT2B4*2 allele implicate that UGT1A9 and UGT2B4 are involved in the metabolism of canagliflozin to M7 and M5, respectively. PMID:25827774

  20. Application of the fluorescent probe 1-anilinonaphthalene-8-sulfonate to the measurement of the nonspecific binding of drugs to human liver microsomes.

    PubMed

    McLure, James A; Birkett, Donald J; Elliot, David J; Williams, J Andrew; Rowland, Andrew; Miners, John O

    2011-09-01

    The fluorescence of 1-anilinonaphthalene-8-sulfonate (ANS) in the presence of human liver microsomes (HLMs) is altered by drugs that bind nonspecifically to the lipid bilayer. The present study characterized the relationship between the nonspecific binding (NSB) of drugs to HLMs as measured by equilibrium dialysis and the magnitude of the change in baseline ANS fluorescence. Fraction unbound in incubations of HLMs (f(u(mic))) was determined for 16 drugs (12 bases, 3 acids, and 1 neutral) with log P values in the range 0.1 to 6.7 at three concentrations (100, 200, and 500 μM). Changes in ANS fluorescence induced by each of the drugs in the presence of HLMs were measured by spectrofluorometry. Values of f(u(mic)) determined by equilibrium dialysis ranged from 0.08 to 1.0. Although NSB of the basic drugs tended to increase with increasing log P, exceptions occurred. Basic drugs generally caused an increase in ANS fluorescence, whereas the acidic and neutral drugs resulted in a decrease in ANS fluorescence. There were highly significant (p < 0.001) linear relationships between the modulus (absolute value) of the increment/decrement in ANS fluorescence and both f(u(mic)) (r = 0.90 to 0.96) and log(1 - f(u(mic))/f(u(mic))) (r = 0.85 to 0.92) at the three drug concentrations. Agreement between measured f(u(mic)) and that predicted by ANS fluorescence was very good (<10% variance) for a validation set of six compounds. The ANS fluorescence method provides an accurate measure of the NSB of drugs to HLMs. Physicochemical determinants other than log P and charge type influence the NSB of drugs to HLMs.

  1. Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay.

    PubMed

    Liu, Xidong; Hu, Lianghai; Ge, Guangbo; Yang, Bo; Ning, Jing; Sun, Shixin; Yang, Ling; Pors, Klaus; Gu, Jingkai

    2014-08-01

    Cytochrome P450 (CYP) is one of the most important drug-metabolizing enzyme families, which participates in the biotransformation of many endogenous and exogenous compounds. Quantitative analysis of CYP expression levels is important when studying the efficacy of new drug molecules and assessing drug-drug interactions in drug development. At present, chemical probe-based assay is the most widely used approach for the evaluation of CYP activity although there are cross-reactions between the isoforms with high sequence homologies. Therefore, quantification of each isozyme is highly desired in regard to meeting the ever-increasing requirements for carrying out pharmacokinetics and personalized medicine in the academic, pharmaceutical, and clinical setting. Herein, an absolute quantification method was employed for the analysis of the seven isoforms CYP1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1 using a proteome-derived approach in combination with stable isotope dilution assay. The average absolute amount measured from twelve human liver microsomes samples were 39.3, 4.3, 54.0, 4.6, 10.3, 3.0, and 9.3 (pmol/mg protein) for 1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1, respectively. Importantly, the expression level of CYP3A4 showed high correlation (r = 0.943, p < 0.0001) with the functional activity, which was measured using bufalin-a highly selective chemical probe we have developed. The combination of MRM identification and analysis of the functional activity, as in the case of CYP3A4, provides a protocol which can be extended to other functional enzyme studies with wide application in pharmaceutical research.

  2. Ex Vivo Perfusion Treatment of Infection in Human Donor Lungs.

    PubMed

    Nakajima, D; Cypel, M; Bonato, R; Machuca, T N; Iskender, I; Hashimoto, K; Linacre, V; Chen, M; Coutinho, R; Azad, S; Martinu, T; Waddell, T K; Hwang, D M; Husain, S; Liu, M; Keshavjee, S

    2016-04-01

    Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high-dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic-treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad-spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL-1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad-spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function. PMID:26730551

  3. An ultra-high performance liquid chromatography-tandem mass spectrometric assay for quantifying 3-ketocholanoic acid: Application to the human liver microsomal CYP3A-dependent lithocholic acid 3-oxidation assay.

    PubMed

    Bansal, Sumit; Chai, Swee Fen; Lau, Aik Jiang

    2016-06-15

    Lithocholic acid (LCA), a hepatotoxic and carcinogenic bile acid, is metabolized to 3-ketocholanoic acid (3-KCA) by cytochrome P450 3A (CYP3A). In the present study, the objectives were to develop and validate an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify 3-KCA and apply it to the human liver microsomal CYP3A-dependent LCA 3-oxidation assay. Chromatographic separation was achieved on a Waters ACQUITY™ UPLC C18 column (50×2.1mm, 1.7μm) with a gradient system consisting of 0.1% v/v formic acid in water (solvent A) and 0.1% v/v formic acid in acetonitrile (solvent B). The retention time was 3.73min for 3-KCA and 2.73min for cortisol (internal standard). Positive electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify 3-KCA (m/z 375.4→135.2) and cortisol (m/z 363.5→121.0). The limit of detection of 3-KCA was 10μM, the lower limit of quantification was 33.3μM, and the calibration curve was linear from 0.05-10μM with r(2)>0.99. Intra-day and inter-day accuracy and precision were <13.7%. The quality control samples were stable when assessed after 4h at room temperature, 24h at 4°C, 14days at -20°C, and three freeze-thaw cycles. The liver microsomal matrix did not affect 3-KCA quantification. The amount of KCA formed in the human liver microsomal LCA 3-oxidation assay was linear with respect to the amount of microsomal protein (up to 40μg) and incubation time (5-30min). Enzyme kinetics experiment indicated that LCA 3-oxidation followed the Michaelis-Menten model with an apparent Km of 26±7μM and Vmax of 303±50pmol/min/mg protein. This novel UPLC-MS/MS method for quantifying 3-KCA offers a specific, sensitive, and fast approach to determine liver microsomal LCA 3-oxidation.

  4. Roles of human CYP2A6 and 2B6 and rat CYP2C11 and 2B1 in the 10-hydroxylation of (-)-verbenone by liver microsomes.

    PubMed

    Miyazawa, Mitsuo; Sugie, Atsushi; Shimada, Tsutomu

    2003-08-01

    (-)-Verbenone, a monoterpene bicyclic ketone, is a component of the essential oil from rosemary species such as Rosmarinus officinalis L., Verbena triphylla, and Eucalyptus globulus and is used for an herb tea, a spice, and a perfume. In this study, (-)-verbenone was found to be converted to 10-hydroxyverbenone by rat and human liver microsomal cytochrome p450 (p450) enzymes. The product formation was determined by high-performance liquid chromatography with UV detection at 251 nm. There was a good correlation between activities of coumarin 7-hydroxylation and (-)-verbenone 10-hydroxylation catalyzed by liver microsomes of 16 human samples, indicating that CYP2A6 is a principal enzyme in (-)-verbenone 10-hydroxylation in humans. Human recombinant CYP2A6 and CYP2B6 catalyzed (-)verbenone 10-hydroxylation at Vmax values of 15 and 21 nmol/min/nmol p450 with apparent Km values of 16 and 91 microM, respectively. In contrast, rat CYP2A1 and 2A2 did not catalyze (-)-verbenone 10-hydroxylation at all, suggesting that there were species-related differences in the catalytic properties of human and rat CYP2A enzymes in the metabolism of (-)-verbenone. In the rat, recombinant CYP2C11, CYP2B1, and CYP3A2 catalyzed (-)-verbenone 10-hydroxylation with Vmax and Km ratios (ml/min/nmol p450) of 0.73, 0.20, and 0.03, respectively. Male-specific CYP2C11 was a major enzyme in (-)-verbenone 10-hydroxylation by untreated rat livers, and CYP2B1 catalyzed this reaction in liver microsomes of phenobarbital-treated rats. Rat CYP2C12, a female-specific enzyme, did not catalyze (-)verbenone 10-hydroxylation. These results suggest that human CYP2A6 and rat CYP2C11 are the major catalysts in the metabolism of (-)-verbenone by liver microsomes and that there are species-related differences in human and rat CYP2A enzymes and sex-related differences in male and female rats in the metabolism of (-)-verbenone.

  5. Second-hand smoke and human lung cancer

    PubMed Central

    Besaratinia, Ahmad; Pfeifer, Gerd P.

    2009-01-01

    Since the early 1980s, there has been growing concern about potential health consequences of exposure to second-hand smoke (SHS). Despite SHS being established as a risk factor for lung cancer development, the estimated risk has remained small yet somehow debatable. Human exposure to SHS is complicated because of temporal variabilities in source, composition, and concentration of SHS. The temporality of exposure to SHS is important for human lung carcinogenesis with a latency of many years. To explore the causal effect of SHS in lung carcinogenesis, exposure assessments should estimate chronic exposure to SHS on an individual basis. However, conventional exposure assessment for SHS relies on one-off or short-term measurements of SHS indices. A more reliable approach would be to use biological markers that are specific for SHS exposure and pertinent to lung cancer. This approach requires an understanding of the underlying mechanisms through which SHS could contribute to lung carcinogenesis. This Review is a synopsis of research on SHS and lung cancer, with special focus on hypothetical modes of action of SHS for carcinogenesis, including genotoxic and epigenetic effects. PMID:18598930

  6. Impaired oxidative phosphorylation regulates necroptosis in human lung epithelial cells.

    PubMed

    Koo, Michael Jakun; Rooney, Kristen T; Choi, Mary E; Ryter, Stefan W; Choi, Augustine M K; Moon, Jong-Seok

    2015-08-28

    Cellular metabolism can impact cell life or death outcomes. While metabolic dysfunction has been linked to cell death, the mechanisms by which metabolic dysfunction regulates the cell death mode called necroptosis remain unclear. Our study demonstrates that mitochondrial oxidative phosphorylation (OXPHOS) activates programmed necrotic cell death (necroptosis) in human lung epithelial cells. Inhibition of mitochondrial respiration and ATP synthesis induced the phosphorylation of mixed lineage kinase domain-like protein (MLKL) and necroptotic cell death. Furthermore, we demonstrate that the activation of AMP-activated protein kinase (AMPK), resulting from impaired mitochondrial OXPHOS, regulates necroptotic cell death. These results suggest that impaired mitochondrial OXPHOS contributes to necroptosis in human lung epithelial cells.

  7. UPLC/ESI-MS/MS-based determination of metabolism of several new illicit drugs, ADB-FUBINACA, AB-FUBINACA, AB-PINACA, QUPIC, 5F-QUPIC and α-PVT, by human liver microsome.

    PubMed

    Takayama, Takahiro; Suzuki, Mayu; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Toyo'oka, Toshimasa

    2014-06-01

    The metabolism by human liver microsomes of several new illicit drugs, that is, N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3- carboxamide (ADB-FUBINACA), N-(1-amino-3-methyl-1-oxobutan-2-yl)-1- (4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA), N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA), quinolin-8-yl 1-pentyl-(1H-indole)-3-carboxylate (QUPIC), quinolin-8-yl 1-(5-fluoropentyl)-(1H-indole)-3-carboxylate (5 F-QUPIC) and α-pyrrolidinovalerothiophenone (α-PVT), which have indole, indazole, quinolinol ester and thiophene structures, was investigated using reversed-phase chromatography and mass spectrometry. The present method is based upon the oxidation by cytochrome p450 superfamily enzymes in the microsomes. The oxidation of ADB-FUBINACA and AB-FUBINACA mainly occurred on the N-(1-amino-alkyl-1-oxobutan) moiety. However, the oxidation of AB-PINACA seemed to occur on the 1-pentyl moiety. On the other hand, QUPIC and 5 F-QUPIC, which have a quinolinol ester structure, predominantly underwent a cleavage reaction to produce indoleacetic acid type metabolites. In contrast, the metabolism reaction of α-PVT was different from that of the other tested drugs, and various oxidation products were observed on the chromatograms. The obtained metabolites are not in conflict with the results predicted by MetaboLynx software. However, the exact structures of the metabolites, except for 1-pentyl-1H-indole-3-carboxylic acid (QUPIC metabolite) and 1-(5-fluoropentyl)-1H-indole-3-carboxylic acid (5 F-QUPIC metabolite), are currently not proven, because we have no authentic compounds for comparison. The proposed approach using human liver microsome seems to provide a new technology for the prediction of possible metabolites occuring in humans. PMID:24861751

  8. Development and validation of a LC-MS/MS method for the in vitro analysis of 1-hydroxymidazolam in human liver microsomes: application for determining CYP3A4 inhibition in complex matrix mixtures.

    PubMed

    Mooiman, K D; Maas-Bakker, R F; Rosing, H; Beijnen, J H; Schellens, J H M; Meijerman, I

    2013-09-01

    Complementary and alternative medicines (CAM) can affect the pharmacokinetics of anticancer drugs by interacting with the metabolizing enzyme cytochrome P450 (CYP) 3A4. To evaluate changes in the activity of CYP3A4 in patients, levels of 1-hydroxymidazolam in plasma are often determined with liquid chromatography-quadrupole mass spectrometry (LC-MS/MS). However, validated LC-MS/MS methods to determine in vitro CYP3A4 inhibition in human liver microsomes are scarce and not optimized for evaluating CYP3A4 inhibition by CAM. The latter is necessary because CAM are often complex mixtures of numerous compounds that can interfere with the selective measurement of 1-hydroxymidazolam. Therefore, the aim was to validate and optimize an LC-MS/MS method for the adequate determination of CYP3A4 inhibition by CAM in human liver microsomes. After incubation of human liver microsomes with midazolam, liquid-liquid extraction with tert-butyl methyl ether was applied and dried samples were reconstituted in 50% methanol. These samples were injected onto a reversed-phase chromatography consisting of a Zorbax Extend-C18 column (2.1 × 150 mm, 5.0 µm particle size), connected to a triple quadrupole mass spectrometer with electrospray ionization. The described LC-MS/MS method was validated over linear range of 1.0-500 nm for 1-hydroxymidazolam. The results revealed good inter-assay accuracy (≥85% and ≤115%) and within-day and between-day precisions (coefficient of variation ≤ 4.43%). Furthermore, the applicability of this assay for the determination of CYP3A4 inhibition in complex matrix mixtures was successfully demonstrated in an in vitro experiment in which CYP3A4 inhibition by known CAM (β-carotene, green tea, milk thistle and St. John's wort) was determined.

  9. Hyperpolarized 129Xe MRI of the Human Lung

    PubMed Central

    Mugler, John P.; Altes, Talissa A.

    2012-01-01

    By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432

  10. Histologic, immunohistochemical, and ultrastructural findings in human blast lung injury.

    PubMed

    Tsokos, Michael; Paulsen, Friedrich; Petri, Susan; Madea, Burkhard; Puschel, Klaus; Turk, Elisabeth E

    2003-09-01

    The objective of this autopsy-based study was to investigate the pathology of human blast lung injury using histology, Fat Red 7B staining, immunohistochemistry, and scanning electron microscopy on lung specimens from eight medicolegal autopsy cases of fatal close-range detonations of chemical explosives. The micromorphologic equivalents of human blast lung injury can be summarized as follows: diffuse alveolar overdistension, circumscribed interstitial hemorrhages showing a cufflike pattern around pulmonary vessels, venous air embolism, bone marrow embolism, and pulmonary fat embolism. Hemorrhages within the lung parenchyma that were present in this study in blast victims without coexisting blunt or penetrating chest trauma must be regarded as potentially life-threatening intrapulmonary bleeding sites in survivors. In addition, the potential clinical importance of the presence of massive pulmonary fat embolism, which has, to the best of our knowledge, not been described previously in human blast lung injury, must be emphasized because pulmonary fat embolism may be a leading cause of the rapid respiratory deterioration with progressive hypoxia and development of acute respiratory distress syndrome in blast victims who survive. Furthermore, this study provides evidence that air embolism presenting in blast victims is not a mere ventilation-induced artifact.

  11. Radioactivity and lung cancer-mathematical models of radionuclide deposition in the human lungs

    PubMed Central

    Sturm, Robert

    2011-01-01

    The human respiratory tract is regarded as pathway for radionuclides and other hazardous airborne materials to enter the body. Radioactive particles inhaled and deposited in the lungs cause an irradiation of bronchial/alveolar tissues. At the worst, this results in a malignant cellular transformation and, as a consequence of that, the development of lung cancer. In general, naturally occurring radionuclides (e.g., 222Rn, 40K) are attached to so-called carrier aerosols. The aerodynamic diameters of such radioactively labeled particles generally vary between several nanometers (ultrafine particles) and few micrometers, whereby highest particle fractions adopt sizes around 100 nm. Theoretical simulations of radioactive particle deposition in the human lungs were based on a stochastic lung geometry and a particle transport/deposition model using the random-walk algorithm. Further a polydisperse carrier aerosol (diameter: 1 nm–10 µm, ρ ≈ 1 g cm−3) with irregularly shaped particles and the effect of breathing characteristics and certain respiratory parameters on the transport of radioactive particles to bronchial/alveolar tissues were considered. As clearly shown by the results of deposition modeling, distribution patterns of radiation doses mainly depend on the size of the carrier aerosol. Ultrafine (< 10 nm) and large (> 2 µm) aerosol particles are preferentially deposited in the extrathoracic and upper bronchial region, whereas aerosol particles with intermediate size (10 nm–2 µm) may penetrate to deeper lung regions, causing an enhanced damage of the alveolar tissue by the attached radionuclides. PMID:22263097

  12. Development and implementation of a stereoselective normal-phase liquid chromatography-tandem mass spectrometry method for the determination of intrinsic metabolic clearance in human liver microsomes.

    PubMed

    Zhang, Yingru; Caporuscio, Christian; Dai, Jun; Witkusa, Michael; Rose, Anne; Santella, Joseph; D'Arienzo, Celia; Wang-Iverson, David B; Tymiak, Adrienne A

    2008-11-01

    The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated

  13. Impact of Statins on Gene Expression in Human Lung Tissues

    PubMed Central

    Lane, Jérôme; van Eeden, Stephan F.; Obeidat, Ma’en; Sin, Don D.; Tebbutt, Scott J.; Timens, Wim; Postma, Dirkje S.; Laviolette, Michel; Paré, Peter D.; Bossé, Yohan

    2015-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin

  14. The association between human papillomavirus infection and female lung cancer

    PubMed Central

    Lin, Frank Cheau-Feng; Huang, Jing-Yang; Tsai, Stella Ching-Shao; Nfor, Oswald Ndi; Chou, Ming-Chih; Wu, Ming-Fang; Lee, Chun-Te; Jan, Cheng-Feng; Liaw, Yung-Po

    2016-01-01

    Abstract Lung cancer is the leading cause of cancer deaths among Taiwanese women. Human papillomavirus (HPV) has been detected in lung cancer tissues. The aim of this study was to investigate the association between HPV infection and lung cancer among the Taiwanese women. The analytical data were collected from the longitudinal health insurance databases (LHID 2005 and 2010) of the National Health Insurance Research Database (NHIRD). The study participants were 30 years and older and included 24,162 individuals who were identified with HPV infection from 2001 to 2004 and 1,026,986 uninfected individuals. Lung cancer incidence among infected and uninfected individuals was compared using the univariate and multivariate regression models. Among the total participants, 24,162 individuals were diagnosed with HPV. After adjusting for age, gender, low income, residential area, and comorbidity, the risk of lung cancer was higher in women (hazard ratio [HR] 1.263, 95% CI 1.015–1.571), while all cancer risks were high in both men and women with corresponding hazard ratios (HR) of 1.161 (95% CI 1.083–1.245) and HR 1.240 (95% CI 1.154–1.331), respectively. This study showed a significant increase in lung cancer risk among Taiwanese women who were exposed to HPV infection. PMID:27281096

  15. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  16. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  17. Mathematical model of the human lungs during phonation

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, R. V.

    2012-08-01

    Modeling of the human lungs during phonation is considered. The main relationships during physiological phonation process and air passage through vocal folds are established. Results of investigation are presented for statements of various types corresponding to different intonation patterns of the statement.

  18. Asbestos fibers in human lung: forensic significance

    SciTech Connect

    Ehrenreich, T.; Selikoff, I.J.

    1981-03-01

    Asbestos is a fibrous mineral which, because of its unique properties, has innumerable applications in many industries and is used in a large variety of consumer products. It has become ubiquitous and is woven, literally and figuratively, into the fabric of our present-day civilization. However, its presence is sometimes unknown and unsuspected by those who are exposed to asbestos by virtue of occupation or environment and inhale its fibers. Exposed workers and even urban dwellers may have a variable lung burden of asbestos fibers. There is indisputable clinical, pathological, experimental and epidemiological proof that, after varying periods of latency, asbestos may cause benign and malignant disease often leading to disability or death. Forensic investigation of suspected asbestos-related deaths includes a life-time occupational history, a complete autopsy, and identification of the asbestos fiber tissue burden. The latter usually requires special procedures.

  19. Microsomal activation of constituents of white snakeroot (Eupatorium rugosum Houtt) to form toxic products.

    PubMed

    Beier, R C; Norman, J O; Irvin, T R; Witzel, D A

    1987-04-01

    Components of white snakeroot, a plant toxic to livestock and human beings, were activated by Aroclor 1254-induced rat liver microsomes. The toxic products of microsomal activation were evaluated in murine melanoma (B16F1) cell cultures. Toxic products in white snakeroot were inactive in cell culture systems without microsomal activation. This activation system revealed that at least 2 fractions of white snakeroot were metabolically activated to cytotoxic agents. The autocatalytic inactivator of cytochrome P-450, 1-aminobenzotriazole, inhibited activation of white snakeroot constituents by rat liver microsomes. PMID:3592355

  20. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  1. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells.

    PubMed

    Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico

    2015-01-01

    Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493

  2. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells

    PubMed Central

    Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M.; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico

    2015-01-01

    Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493

  3. Discrimination and quantification of autofluorescence spectra of human lung cells

    NASA Astrophysics Data System (ADS)

    Rahmani, Mahya; Khani, Mohammad Mehdi; Khazaei Koohpar, Zeinab; Molik, Paria

    2016-10-01

    To study laser-induced autofluorescence spectroscopy of the human lung cell line, we evaluated the native fluorescence properties of cancer QU-DB and normal MRC-5 human lung cells during continuous exposure to 405 nm laser light. Two emission bands centered at ~470 nm and ~560 nm were observed. These peaks are most likely attributable to mitochondrial fluorescent reduced nicotinamide adenine dinucleotide and riboflavin fluorophores, respectively. This article highlights lung cell autofluorescence characterization and signal discrimination by collective investigation of different spectral features. The absolute intensity, the spectral shape factor or redox ratio, the full width of half-maximum and the full width of quarter maximum was evaluated. Moreover, the intensity ratio, the area under the peak and the area ratio as a contrast factor for normal and cancerous cells were also calculated. Among all these features it seems that the contrast factor precisely and significantly discriminates the spectral differences of normal and cancerous lung cells. On the other hand, the relative quantum yield for both cell types were found by comparing the quantum yield of an unknown compound with known fluorescein sodium as a reference solution.

  4. Comparative Pathobiology of Environmentally Induced Lung Cancers in Humans and Rodents

    PubMed Central

    Pandiri, Arun

    2014-01-01

    Lung cancer is the number one cause of cancer-related deaths in humans worldwide. Environmental factors play an important role in the epidemiology of these cancers. Rodents are the most common experimental model to study human lung cancers and are frequently used in bioassays to identify environmental exposure hazards associated with lung cancer. Lung tumors in rodents are common, particularly in certain strains of mice. Rodent lung tumors are predominantly bronchioloalveolar carcinomas and usually follow a progressive continuum of hyperplasia to adenoma to carcinoma. Human lung cancers are phenotypically more diverse and broadly constitute 2 types: small cell lung cancers or non-small cell lung cancers. Rodent lung tumors resulting from exposure to environmental agents are comparable to certain adenocarcinomas that are a subset of human non-small cell lung cancers. Human pulmonary carcinomas differ from rodent lung tumors by exhibiting greater morphologic heterogeneity (encompassing squamous cell, neuroendocrine, mucinous, sarcomatoid, and multiple cell combinations), higher metastatic rate, higher stromal response, aggressive clinical behavior, and lack of a clear continuum of proliferative lesions. In spite of these differences, rodent lung tumors recapitulate several fundamental aspects of human lung tumor biology at the morphologic and molecular level especially in lung cancers resulting from exposure to environmental carcinogens. PMID:25351923

  5. HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes.

    PubMed

    Welsch, Tanja; Humpf, Hans-Ulrich

    2012-10-10

    Glucuronides of the mycotoxin T-2 toxin and its phase I metabolite HT-2 toxin are important phase II metabolites under in vivo and in vitro conditions. Since standard substances are essential for the direct quantitation of these glucuronides, a method for the enzymatic synthesis of T-2 and HT-2 toxin glucuronides employing liver microsomes was optimized. Structure elucidation by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry revealed that besides T-2 toxin glucuronide and HT-2 toxin 3-glucuronide also the newly identified isomer HT-2 toxin 4-glucuronide was formed. Glucuronidation of T-2 and HT-2 toxin in liver microsomes of rat, mouse, pig, and human was compared and metabolites were analyzed directly by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). A distinct, species specific pattern of glucuronidation of T-2 and HT-2 toxin was observed with interesting interindividual differences. Until recently, glucuronides have frequently been analyzed indirectly by quantitation of the aglycone after enzymatic cleavage of the glucuronides by β-glucuronidase. Therefore, the hydrolysis efficiencies of T-2 and HT-2 toxin glucuronides using β-glucuronidases from Helix pomatia, bovine liver, and Escherichia coli were compared. PMID:22967261

  6. Generation of leukotrienes by purified human lung mast cells.

    PubMed Central

    MacGlashan, D W; Schleimer, R P; Peters, S P; Schulman, E S; Adams, G K; Newball, H H; Lichtenstein, L M

    1982-01-01

    Although mediator release from mast cells and basophils plays a central role in the pathogenesis of human allergic disease, biochemical studies have been restricted to rat peritoneal mast cells and basophilic leukemia cells because they could be easily purified. We have used two new techniques of cell separation to purify human lung mast cells to 98% homogeneity. Lung cell suspensions were obtained by dispersion of chopped lung tissue with proteolytic enzymes. Mast cells were then purified from the suspensions by countercurrent centrifugal elutriation and affinity chromatography. The purified mast cells released both histamine and slow-reacting substance of anaphylaxis (SRS-A) (leukotriene C and D) during stimulation with goat anti-human IgE antibody. Moreover, these preparations were able to generate significant quantities of SRS-A (32 +/- 7 x 10(-17) LTD mole-equivalents/mast cell) at all stages of purification, indicating that a secondary cell is not necessary for the antigen-induced release of SRS. Images PMID:7119113

  7. Evaluation of metabolism dependent inhibition of CYP2B6 mediated bupropion hydroxylation in human liver microsomes by monoamine oxidase inhibitors and prediction of potential as perpetrators of drug interaction.

    PubMed

    Nirogi, Ramakrishna; Palacharla, Raghava Choudary; Mohammed, Abdul Rasheed; Manoharan, Arunkumar; Ponnamaneni, Ranjith Kumar; Bhyrapuneni, Gopinadh

    2015-03-25

    The objective of the study was to evaluate the metabolism dependent inhibition of CYP2B6 catalyzed bupropion hydroxylation in human liver microsomes by monoamine oxidase (MAO) inhibitors and to predict the drug-drug interaction potential of monoamine oxidase inhibitors as perpetrators of drug interaction. Human liver microsomal CYP2B6 activities were investigated using bupropion hydroxylation as probe substrate marker. The results from single point time dependent inhibition and shift assays suggest that clorgyline, pargyline, phenelzine, and selegiline were metabolism based inhibitors of CYP2B6. In IC50 shift assays, clorgyline, pargyline, phenelzine and selegiline are metabolism based inhibitors of CYP2B6 with fold shit of 3.0-, 3.7-, 2.9-, and 11.4-fold respectively. The inactivation of clorgyline was characterized by KI value of 2.5 ± 0.3 and k(inact) value of 0.045 ± 0.001 min(-1). Phenelzine inactivated CYP2B6 with KI and k(inact) values of 44.9 ± 6.9 μM and 0.085 ± 0.003 min(-1) respectively. Inactivation of selegiline was characterized with KI and k(inact) values of 22.0 ± 3.3 and 0.074 ± 0.002 min(-1) respectively. The inactivation caused by these inhibitors was not reversed by dialysis indicating irreversible inhibition. Based on the mechanistic static model, selegiline showed an increase in the area under the curve (AUC) of efavirenz and bupropion by 1.01-fold. Phenelzine predicted to cause an increase in the AUC of efavirenz and bupropion by 9.4- and 2.4-fold respectively considering unbound hepatic inlet concentrations of phenelzine. In conclusion, the results from this study demonstrated that MAO inhibitors can inactivate human liver microsomal CYP2B6. The likelihood of drug interaction when selegiline co-administered with CYP2B6 substrates is remote. Caution is required while co-administering phenelzine with substrates that are exclusively metabolized by CYP2B6 enzyme and substrates that have narrow therapeutic index.

  8. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  9. Ribonuclease-neutralized pancreatic microsomal membranes from livestock for in vitro co-translational protein translocation.

    PubMed

    Vermeire, Kurt; Allan, Susanne; Provinciael, Becky; Hartmann, Enno; Kalies, Kai-Uwe

    2015-09-01

    Here, we demonstrate that pancreatic microsomal membranes from pigs, sheep, or cattle destined for human consumption can be used as a valuable and ethically correct alternative to dog microsomes for cell-free protein translocation. By adding adequate ribonuclease (RNase) inhibitors to the membrane fraction, successful in vitro co-translational translocation of wild-type and chimeric pre-prolactin into the lumen of rough microsomes was obtained. In addition, the human type I integral membrane proteins CD4 and VCAM-1 were efficiently glycosylated in RNase-treated microsomes. Thus, RNase-neutralized pancreatic membrane fractions from pig, cow, or sheep are a cheap, easily accessible, and fulfilling alternative to canine microsomes. PMID:26050631

  10. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  11. CYP2C subfamily, primarily CYP2C9, catalyses the enantioselective demethylation of the endocrine disruptor pesticide methoxychlor in human liver microsomes: use of inhibitory monoclonal antibodies in P450 identification.

    PubMed

    Hu, Y; Krausz, K; Gelboin, H V; Kupfer, D

    2004-02-01

    1. The endocrine disruptor pesticide methoxychlor undergoes O-demethylation by mammalian liver microsomes forming chiral mono-phenolic (1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane, i.e. mono-OH-M) and achiral bis-phenolic oestrogenic metabolites. Human liver microsomes (HLM) generated primarily the S-mono-OH-M. 2. Inhibitory monoclonal antibodies (MAb) identified those P450s catalysing the enantioselective O-demethylation of methoxychlor. In HLM, O-demethylation was inhibited by MAb anti-2C9 (30-40%), diminishing the per cent of S-mono-OH-M from about 80 to 55-60%. MAb anti-CYP1A2, 2A6, 2B6, 2C8, 2C19, 2D6 and 3A4 did not affect the demethylation rate in HLM. Nevertheless, MAb anti-CYP1A2 decreased the formation of R-mono-OH-M from 21-23 to 10-17%, indicating that CYP1A2 exhibits a role in generating the R-enantiomer. 3. Among cDNA-expressed human P450s (supersomes), CYP2C19 was the most active in demethylation, but in HLM, CYP2C19 appeared inactive (no inhibition by MAb anti-CYP2C19). There was a substantial difference in the per cent inhibition of demethylation by MAb anti-CYP2C9 and anti-rat CYP2C (MAb inhibiting all human CYP2C forms) and in altering the enantioselectivity, suggesting that demethylation by combined CYP2C8, 2C18 and 2C19 was significant (20-30%). 4. Polymorphism of methoxychlor demethylation was examined with supersomes and HLM-expressing CYP2C9 allelic variants. CYP2C9*1 and 2C9*2 were highly active; however, CYP2C9*3 appeared inactive.

  12. Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice.

    PubMed

    Carratt, S A; Morin, D; Buckpitt, A R; Edwards, P C; Van Winkle, L S

    2016-03-30

    Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20 ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10 ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure.

  13. Induction of cytochrome P-450 1A1 in human hepatoma HepG2 and lung carcinoma NCI-H322 cells by motorcycle exhaust particulate.

    PubMed

    Ueng, T H; Hu, S H; Chen, R M; Wang, H W; Kuo, M L

    2000-05-26

    The effects of motorcycle exhaust particulate (MEP) on human cytochrome P-450 (P-450)-dependent monooxygenases were determined using human hepatoma cell line HepG2 and lung carcinoma cell line NCI-H322 treated with organic extracts of MEP from a two-stroke engine. Gas chromatography and mass spectrometry analysis of MEP extract revealed the presence of carcinogens benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, chrysene, and indeno[1,2,3-c,d]pyrene in the chemical mixture. Treatment with MEP extract produced concentration- and time-dependent increases of monooxygenase activity in HepG2 cells. Treatment of the cells with 100 microg/ ml MEP extract for 24 h markedly increased benzo[a]pyrene hydroxylation, 7-ethoxycoumarin, and 7-ethoxyresorufin O-deethylation activities in microsomes. Immunoblot analysis of microsomal proteins using mouse monoclonal antibody 1-12-3 against P-450 1A1 revealed that MEP extract induced a P-450-immunorelated protein in the hepatoma cells. RNA blot analysis of cellular total RNA using a human P-450 1A1 3'-end cDNA probe showed that MEP extract increased the level of a hybridizable P-450 mRNA. These P-450 1A1 inductive effects of MEP extract were similar to those from treatment with 10 microM benzo[a]pyrene or 3-methylcholanthrene (3-MC) in HepG2 cells. Treatment of lung carcinoma NCI-H322 cells with 100 microg/ml MEP extract, 10 microM benzo[a]pyrene, or 3-MC resulted in induction of monooxygenase activity, protein, and mRNA of P-450 1A1, similar to the induction observed with the hepatoma cells. The present study demonstrates that MEP extract has the ability to induce human hepatic and pulmonary P-450 1A1 in the liver- and lung-derived cell lines, and the induction involves a pretranslational mechanism. Induction of the human hepatic and pulmonary P-450 1A1 in vitro may provide important information in the assessment of MEP metabolism and toxicity in humans.

  14. Human Peripheral Lung Tumours: Light and Electron Microscopic Correlation

    PubMed Central

    Mollo, Franco; Canese, Maria G.; Campobasso, Onofrio

    1973-01-01

    Thirteen human peripheral lung tumours have been studied in both light and electron microscopy. They were classified as epidermoid carcinoma, mucus-secreting cell adenocarcinoma, and alveolar cell adenocarcinoma, the latter made up of granular pneumocytes. Alveolar cell cancer, as defined by ultrastructural features, could assume different gross histological patterns in light microscopy, and therefore electron microscopy is required for its identification. Since neither squamous nor mucous metaplasia was observed in any alveolar cell tumour, it is tentatively suggested that all peripheral lung tumours which lack these features may be derived from granular pneumocytes, irrespective of whether they appear to be adenocarcinomata or large cell carcinomata when examined by light microscopy. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:4348471

  15. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  16. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis

    PubMed Central

    Kim, Jihye; Sato, Mitsuo; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Larsen, Jill E.; Minna, John D.; Cha, Jeong-Heon; Jeong, Yangsik

    2015-01-01

    Lung cancer is caused by combinations of diverse genetic mutations. Here, to understand the relevance of nuclear receptors (NRs) in the oncogene-associated lung cancer pathogenesis, we investigated the expression profile of the entire 48 NR members by using QPCR analysis in a panel of human bronchial epithelial cells (HBECs) that included precancerous and tumorigenic HBECs harboring oncogenic K-rasV12 and/or p53 alterations. The analysis of the profile revealed that oncogenic alterations accompanied transcriptional changes in the expression of 19 NRs in precancerous HBECs and 15 NRs according to the malignant progression of HBECs. Amongst these, peroxisome proliferator-activated receptor gamma (PPARγ), a NR chosen as a proof-of-principle study, showed increased expression in precancerous HBECs, which was surprisingly reversed when these HBECs acquired full in vivo tumorigenicity. Notably, PPARγ activation by thiazolidinedione (TZD) treatment reversed the increased expression of pro-inflammatory cyclooxygenase 2 (COX2) in precancerous HBECs. In fully tumorigenic HBECs with inducible expression of PPARγ, TZD treatments inhibited tumor cell growth, clonogenecity, and cell migration in a PPARγ-sumoylation dependent manner. Mechanistically, the sumoylation of liganded-PPARγ decreased COX2 expression and increased 15-hydroxyprostaglandin dehydrogenase expression. This suggests that ligand-mediated sumoylation of PPARγ plays an important role in lung cancer pathogenesis by modulating prostaglandin metabolism. PMID:26244663

  17. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    PubMed

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  18. GENETIC ASSOCIATION BETWEEN HUMAN CHITINASES AND LUNG FUNCTION IN COPD

    PubMed Central

    Aminuddin, F.; Akhabir, L.; Stefanowicz, D.; Paré, P.D.; Connett, J.E.; Anthonisen, N.R.; Fahy, J.V.; Seibold, M.A.; Burchard, E.G.; Eng, C.; Gulsvik, A.; Bakke, P.; Cho, M. H.; Litonjua, A.; Lomas, D.A.; Anderson, W. H.; Beaty, T.H.; Crapo, J.D.; Silverman, E.K.; Sandford, A.J.

    2013-01-01

    Two primary chitinases have been identified in humans – acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host’s immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to Chronic Obstructive Pulmonary Disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the Caucasian LHS population, the baseline forced expiratory volume in one second (FEV1) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV1 and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV1. Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups. PMID:22200767

  19. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.

  20. Human papillomavirus in lung carcinomas among three Latin American countries.

    PubMed

    Castillo, Andres; Aguayo, Francisco; Koriyama, Chihaya; Shuyama, Karem; Akiba, Suminori; Herrera-Goepfert, Roberto; Carrascal, Edwin; Klinge, German; Sánchez, Juvenal; Eizuru, Yoshito

    2006-04-01

    The presence of human papillomavirus (HPV) genome in lung carcinomas has been reported worldwide but its frequency varies from country to country. We examined HPV genome in 36 lung carcinomas, consisting of 14 squamous cell carcinomas, 13 adenocarcinomas, and 9 small cell carcinomas, collected from Colombia, Mexico and Peru. PCR analysis using GP5+/GP6+ primers, combined with Southern blot hybridization, found the presence of HPV genome in 10 (28%) of 36 cases. This percentage is similar to the value of 22% reported by Syrjänen, who conducted a meta-analysis of nearly 2500 lung carcinomas examined to date. Genotype analysis revealed that the most predominant genotype was HPV-16 (7 cases), followed by HPV-18 (2 cases) and HPV-33 (1 case). HPV-16 was more frequently found among female than male cases (P=0.008) but was not detected in any adenocarcinoma cases. On the other hand, HPV-18 and HPV-33 were detected only among male cases. These HPV genotypes were detected only in adenocarcinomas, and all the HPV genotypes detected in this histological type were HPV-18 or HPV-33. The frequency of HPV-16 positive cases among all the HPV positive cases differed in the sexes (P=0.033) and differed in the three histological types (P=0.017). The presence of HPV tended to be more frequent in well-differentiated tumors when squamous cell carcinomas and adenocarcinomas were combined. However, it was not statistically significant (P=0.093). Neither p16 nor p53 expression in carcinoma cells was related to the proportion of HPV-positive cases. In conclusion, high-risk HPV DNA was detected in 28% of lung carcinomas. The predisposition of HPV-16 to female cases and to non-adenomatous carcinomas warrants further investigation. PMID:16525675

  1. Radiographic Comparison of Human Lung Shape During Normal Gravity and Weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; Friedman, P. J.; West, J. B.

    1979-01-01

    Chest radiographs in five seated normal volunteers at 1 G and 0 G were made with a view toward comparing human lung shape during normal gravity and weightlessness. Lung shape was assessed by measuring lung heights and widths in upper, middle and lower lung regions. No significant differences were found between any of the 1-G and 0-G measurements, although there was a slight tendency for the lung to become shorter and wider at 0 G. The evidence that gravity causes regional differences in ventilation by direct action on the lung is consistent with the theoretical analysis of West and Matthews (1972).

  2. Benzylmorpholine Analogs as Selective Inhibitors of Lung Cytochrome P450 2A13 for the Chemoprevention of Lung Cancer in Tobacco Users

    PubMed Central

    Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.

    2013-01-01

    Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756

  3. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1991-03-01

    One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs.

  4. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1990-09-01

    One hundred and twenty one bronchial samples from 58 patients (54 useable; 32 female, 22 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are being kept. In addition, mongol dog bronchi dissected from different lobes of 23 dog lungs have been used to establish protocols. Ninety human samples have been completely processed for electron microscopy and have yielded 913 electron micrographs of which 471 have been entered into the Computerized Stereological Analysis System (COSAS) and used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. We have, using the COSAS planimetry program, established a small data base which describes the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, nonsmokers and ex-smokers. The data is being used to develop weighting factors for dosimetry and radon risk analysis. The electron micrographs of dog bronchial epithelium are unanalyzed as yet. 4 figs., 2 tabs.

  5. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  6. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1992-09-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The locations and other parameters of the nuclei which may be damaged by [alpha] particles must be determined and compared in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This proposal includes extended morphometric studies on electron micrographs of human epithelium of defined airway generations and in parallel on electron micrographs of the dog bronchial lining. The second part of this proposal describes studies to quantitate the cycling bronchial epithelial population(s) using proliferation markers and immunocytochemistry on frozen and paraffin sections and similar labeling of isolated bronchial epithelial cells sorted flow cytometry.

  7. Subacute cytotoxicity testing with cultured human lung cells.

    PubMed

    Yang, A; Cardona, D L; Barile, F A

    2002-02-01

    This study was designed to evaluate the potential of an in vitro cell culture method for its ability to determine subacute cytotoxicity and to compare the cytotoxic concentrations with rodent LD(50)s and clinical human toxicity data. Human fetal lung fibroblasts (HFL1) were incubated in the absence or presence of increasing concentrations of test chemicals for 72 h, and cell proliferation was used as a marker for toxicity. Inhibitory concentrations were extrapolated from concentration-effect curves after linear regression analysis. Comparison of the cytotoxicity data from testing 50 chemicals, with available human lethal concentrations for the same chemicals, revealed that the 72-h experimental IC(50)s are as accurate predictors of human toxicity as equivalent toxic blood concentrations derived from rodent LD(50)s. In addition, our results demonstrate that subacute 72-h exposure of HFL1 cells more accurately predicts cytotoxicity than a 24-h mitochondrial assay previously conducted in our laboratory, although the experimental IC(50) values were not statistically different in the two assays. It is anticipated that this procedure, together with a related battery of tests, may supplement or replace currently used animal protocols to screen chemicals for human risk assessment.

  8. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    PubMed

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells.

  9. Microsomal lipid peroxidation. II. Stimulation by carbon tetrachloride

    SciTech Connect

    Kornbrust, D.J.; Mavis, R.D.

    1980-01-01

    Carbon tetrachloride initiated lipid peroxidation in isolated rat liver microsomes in the absence of free metal ions. In contrast to the nonenzymatic process stimulated by ferrous iron, CCl/sub 4/-induced peroxidation showed an absolute requirement for NADPH and appeared dependent on the integrity of cytochrome. No detectable peroxidation was induced by CCl/sub 4/ in microsomes from brain, kidney, or lung, and microsomal aminopyrine demethylase and aniline hydroxylase activities were more than 10-fold lower in these tissues compared to liver. These results are consistent with activation of CCl/sub 4/ by cytochrome P-450 to a reactive short lived radical which initiated peroxidation in the immediate vicinity of the cytochrome and thereby initiates peroxidation in the immediate vicinity of the cytochrome and thereby inhibits enzyme activity either by destruction of essential lipids or by direct attack on the enzyme by reactive intermediates of the peroxidative process. Loss of cytochrome P-450 activity then results in cessation of the CCl/sub 4/-induced peroxidative response prior to more extensive reaction of membrane polyunsaturated lipids.

  10. Reexamination of the microsomal transformation of N-hydroxynorcocaine to norcocaine nitroxide.

    PubMed

    Lloyd, R V; Shuster, L; Mason, R P

    1993-04-01

    Cocaine is known to be associated with hepatotoxicity in laboratory animals, and there is recent evidence that it also induces liver damage in humans. In both cases an N-oxidative pathway is responsible. Cocaine (NCN) is first N-demethylated to norcocaine, followed by oxidation to N-hydroxynorcocaine (NCNOH) and norcocaine nitroxide (NCNO.). On the basis of ESR studies of NCNOH with rat liver microsomes, it has been proposed that NCNO. induces hepatotoxicity by futile redox cycling between NCNO. and NCNOH at the expense of NADPH. The reaction is reported to be accompanied by formation of superoxide and lipid peroxyl radicals. It has also been reported that the same toxic sequence occurs with rat brain microsomes, leading to the formation of reactive free radicals in the brain. We have reexamined the microsomal metabolism of NCNOH to investigate the mechanism more thoroughly. Spin traps [5,5-dimethyl-1-pyrroline N-oxide and alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone] were used to investigate the formation of reactive free radicals, including superoxide, in liver and brain microsomal incubations. In agreement with the literature, we detected a six-line spectrum of a radical adduct of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone from liver microsome incubations. In contrast, our results showed that brain microsomes were completely inactive, contrary to the literature. In addition, we did not find any NCNO.- or NCNOH-dependent formation of superoxide with either brain or liver microsomes.

  11. Human lung cancer-derived microparticles enhanced angiogenesis and growth of hepatoma cells in rodent lung parenchyma.

    PubMed

    Ko, Sheung-Fat; Hsu, Shu-Yuan; Chen, Chih-Hung; Sung, Pei-Hsun; Zhen, Meng-Shen TongYen-Yi; Chen, Yi-Ling; Huang, Tien-Hung; Chen, Sheng-Yi; Kao, Gour-Shenq; Chen, Hong-Hwa; Chang, Chia-Lo; Sun, Cheuk-Kwan; Chang, Hsueh-Wen; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that human lung cancer-derived microparticles (LcD-MPs) played an important role in tumor angiogenesis and growth. Fischer 344 rats (F344, n=18) were equally categorized into group 1 [Sham Control (3.0 mL normal saline intravenous injection (IV))], group 2 [hepatoma cell line (2.0 x 10(6) cells, IV)], and group 3 [hepatoma cell line + LcD-MPs (3.0 x 10(6), IV)]. Animals were euthanized by day 28 after hepatoma cells transfusion. Our result showed that the gross pathology confirmed growth of hepatoma cell line in lung parenchyma. The size and weight of the lungs were significantly increased in group 2 and further elevated in group 3 than in group 1 (all p<0.001). Histopathological analysis demonstrated that the lung crowded score and number of small vessel exhibited an identical pattern, whereas the number of alveolar sacs showed an opposite pattern compared to that of total lung weight among the three groups (all p<0.0001). The cellular expressions of CD34(+), CXCR4(+), c-Kit(+), CK19(+), VEGF(+) and vimentin+ cells in lung parenchyma exhibited an identical pattern compared to those of total lung weight among all groups (all p<0.001). The protein expressions of apoptotic (Bax, cleaved caspase-3 and c-PARP), fibrotic (Smad3, TGF-β), and tumor suppression (PTEN) biomarkers showed an identical pattern, whereas that of anti-apoptotic (Bcl-2) and anti-fibrotic (Smad1/5, BMP-2) biomarkers were displayed an opposite pattern compared to that of total lung weight among all groups (all p<0.001). The MPs could enhance angiogenesis and accelerated hepatoma cell growth in rodent lung parenchyma.

  12. Human lung cancer-derived microparticles enhanced angiogenesis and growth of hepatoma cells in rodent lung parenchyma

    PubMed Central

    Ko, Sheung-Fat; Hsu, Shu-Yuan; Chen, Chih-Hung; Sung, Pei-Hsun; Zhen, Meng-Shen TongYen-Yi; Chen, Yi-Ling; Huang, Tien-Hung; Chen, Sheng-Yi; Kao, Gour-Shenq; Chen, Hong-Hwa; Chang, Chia-Lo; Sun, Cheuk-Kwan; Chang, Hsueh-Wen; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that human lung cancer-derived microparticles (LcD-MPs) played an important role in tumor angiogenesis and growth. Fischer 344 rats (F344, n=18) were equally categorized into group 1 [Sham Control (3.0 mL normal saline intravenous injection (IV))], group 2 [hepatoma cell line (2.0 x 106 cells, IV)], and group 3 [hepatoma cell line + LcD-MPs (3.0 x 106, IV)]. Animals were euthanized by day 28 after hepatoma cells transfusion. Our result showed that the gross pathology confirmed growth of hepatoma cell line in lung parenchyma. The size and weight of the lungs were significantly increased in group 2 and further elevated in group 3 than in group 1 (all p<0.001). Histopathological analysis demonstrated that the lung crowded score and number of small vessel exhibited an identical pattern, whereas the number of alveolar sacs showed an opposite pattern compared to that of total lung weight among the three groups (all p<0.0001). The cellular expressions of CD34+, CXCR4+, c-Kit+, CK19+, VEGF+ and vimentin+ cells in lung parenchyma exhibited an identical pattern compared to those of total lung weight among all groups (all p<0.001). The protein expressions of apoptotic (Bax, cleaved caspase-3 and c-PARP), fibrotic (Smad3, TGF-β), and tumor suppression (PTEN) biomarkers showed an identical pattern, whereas that of anti-apoptotic (Bcl-2) and anti-fibrotic (Smad1/5, BMP-2) biomarkers were displayed an opposite pattern compared to that of total lung weight among all groups (all p<0.001). The MPs could enhance angiogenesis and accelerated hepatoma cell growth in rodent lung parenchyma. PMID:27186261

  13. Extensive exchange of rat liver microsomal phospholipids.

    PubMed

    Zilversmit, D B; Hughes, M E

    1977-08-15

    Liver microsomal fractions were prepared from rats injected with a single dose of choline [14C]methylchloride or with single or multiple doses of 32Pi. Exchangeability of microsomal phospholipids was determined by incubation with an excess of mitochondria and phospholipid exchange proteins derived from beef heart, beef liver or rat liver. Labeled phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were found to act as a single pool and were 85--95% exchangeable in 1--2h. High latencies of mannose-6-phosphate phosphohydrolase activities and impermeability of microsomes to EDTA proved that phospholipid exchange proteins did not have access to the intracisternal space. If microsomal membranes are largely composed of phospholipid bilayers, the experiments suggest that one or more of the phospholipid classes in microsomal membranes undergo rapid translocation between the inner and outer portions of the bilayer.

  14. Extensive exchange of rat liver microsomal phospholipids.

    PubMed

    Zilversmit, D B; Hughes, M E

    1977-08-15

    Liver microsomal fractions were prepared from rats injected with a single dose of choline [14C]methylchloride or with single or multiple doses of 32Pi. Exchangeability of microsomal phospholipids was determined by incubation with an excess of mitochondria and phospholipid exchange proteins derived from beef heart, beef liver or rat liver. Labeled phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were found to act as a single pool and were 85--95% exchangeable in 1--2h. High latencies of mannose-6-phosphate phosphohydrolase activities and impermeability of microsomes to EDTA proved that phospholipid exchange proteins did not have access to the intracisternal space. If microsomal membranes are largely composed of phospholipid bilayers, the experiments suggest that one or more of the phospholipid classes in microsomal membranes undergo rapid translocation between the inner and outer portions of the bilayer. PMID:889827

  15. Monoclonal antibodies that demonstrate specificity for several types of human lung cancer.

    PubMed Central

    Cuttitta, F; Rosen, S; Gazdar, A F; Minna, J D

    1981-01-01

    Monoclonal antibodies with selectivity for human lung cancer were produced by immunizing BALB/c mice with an established line of human small cell lung cancer (NCI-H69) and fusing the mouse spleen cells to mouse myeloma line X63-Ag8.653. The resulting hybrid cells were initially screened by immunoautoradiography for production of antibodies that would react with NCI-H69 and another small cell lung cancer line (NCI-H128) but not its autologous B-lymphoblastoid line (NCI-H128BL). Stable monoclonal antibody-producing lines were isolated by repeated cloning. Three independently derived monoclonal antibodies, designated 525A5, 534F8, and 538F12, were found to react with three of the major types of human lung cancer (small cell, adenocarcinoma, and squamous carcinoma). They did not react with bronchioloalveolar and large cell lung cancers, myeloma, lymphomas, leukemias, osteogeneic sarcoma, mesothelioma, hypernephroma, malignant melanoma, simian virus 40-transformed human fetal lung cells, skin fibroblast lines, human B-lymphoblastoid lines, human erythrocytes, and rodent cells. Interestingly, these antibodies also bound to three out of three human neuroblastomas and two out of three breast cancers but failed to react with mouse neuroblastoma and rat pheochromocytoma. The monoclonal antibodies reacted with human small cell lung cancer tumors obtained at autopsy, but had insignificant reactions with normal human lung, liver, spleen, and skeletal muscle. We conclude that monoclonal antibodies have been generated that react with common antigenic determinants expressed on several human lung cancer types, neuroblastoma, and some breast cancers, but are not detectable by our current assays on a variety of other human tumors or normal adult human tissues. Such antibodies are of potential clinical and biological importance. PMID:6270685

  16. Potential effect of Olea europea leaves, Sonchus oleraceus leaves and Mangifera indica peel extracts on aromatase activity in human placental microsomes and CYP19A1 expression in MCF-7 cell line: Comparative study.

    PubMed

    Shaban, N Z; Hegazy, W A; Abdel-Rahman, S M; Awed, O M; Khalil, S A

    2016-01-01

    Aromatase inhibitors (AIs) provide novel approaches to the adjuvant therapy for postmenopausal women with estrogen-receptor-positive (ER+) breast cancers. In this study, different plant extracts from Olea europaea leaves (OLE), Sonchus oleraceus L. (SOE) and Mangifera indica peels (MPE) were prepared to identify phytoconstituents and measure antioxidant capacities. The effects of these three extracts on aromatase activity in human placental microsomes were evaluated. Additionally, the effects of these extracts on tissue-specific promoter expression of CYP19A1 gene in cell culture model (MCF-7) were assessed using qRT-PCR. Results showed a concentration-dependent decrease in aromatase activity after treatment with OLE and MPE, whereas, SOE showed a biphasic effect. The differential effects of OLE, SOE and MPE on aromatase expression showed that OLE seems to be the most potent suppressor followed by SOE and then MPE. These findings indicate that OLE has effective inhibitory action on aromatase at both the enzymatic and expression levels, in addition to its cytotoxic effect against MCF-7 cells. Also, MPE may be has the potential to be used as a tissue-specific aromatase inhibitor (selective aromatase inhibitor) and it may be promising to develop a new therapeutic agent against ER+ breast cancer. PMID:27585256

  17. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  18. Frizzled-8 as a putative therapeutic target in human lung cancer

    SciTech Connect

    Wang, Hua-qing; Xu, Mei-lin; Ma, Jie; Zhang, Yi; Xie, Cong-hua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fzd-8 is over-expressed in human lung cancer. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 inhibits proliferation and Wnt pathway in lung cancer cells. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 suppresses tumor growth in vivo. Black-Right-Pointing-Pointer shRNA knock-down Fzd-8 sensitizes lung cancer cells to chemotherapy Taxotere. -- Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. It is necessary to better understand the molecular mechanisms involved in lung cancer in order to develop more effective therapeutics for the treatment of this disease. Recent reports have shown that Wnt signaling pathway is important in a number of cancer types including lung cancer. However, the role of Frizzled-8 (Fzd-8), one of the Frizzled family of receptors for the Wnt ligands, in lung cancer still remains to be elucidated. Here in this study we showed that Fzd-8 was over-expressed in human lung cancer tissue samples and cell lines. To investigate the functional importance of the Fzd-8 over-expression in lung cancer, we used shRNA to knock down Fzd-8 mRNA in lung cancer cells expressing the gene. We observed that Fzd-8 shRNA inhibited cell proliferation along with decreased activity of Wnt pathway in vitro, and also significantly suppressed A549 xenograft model in vivo (p < 0.05). Furthermore, we found that knocking down Fzd-8 by shRNA sensitized the lung cancer cells to chemotherapy Taxotere. These data suggest that Fzd-8 is a putative therapeutic target for human lung cancer and over-expression of Fzd-8 may be important for aberrant Wnt activation in lung cancer.

  19. Nanoparticle diffusion in respiratory mucus from humans without lung disease.

    PubMed

    Schuster, Benjamin S; Suk, Jung Soo; Woodworth, Graeme F; Hanes, Justin

    2013-04-01

    A major role of respiratory mucus is to trap inhaled particles, including pathogens and environmental particulates, to limit body exposure. Despite the tremendous health implications, how particle size and surface chemistry affect mobility in respiratory mucus from humans without lung disease is not known. We prepared polymeric nanoparticles densely coated with low molecular weight polyethylene glycol (PEG) to minimize muco-adhesion, and compared their transport to that of uncoated particles in human respiratory mucus, which we collected from the endotracheal tubes of surgical patients with no respiratory comorbidities. We found that 100 and 200 nm diameter PEG-coated particles rapidly penetrated respiratory mucus, at rates exceeding their uncoated counterparts by approximately 15- and 35-fold, respectively. In contrast, PEG-coated particles ≥500 nm in diameter were sterically immobilized by the mucus mesh. Thus, even though respiratory mucus is a viscoelastic solid at the macroscopic level (as measured using a bulk rheometer), nanoparticles that are sufficiently small and muco-inert can penetrate the mucus as if it were primarily a viscous liquid. These findings help elucidate the barrier properties of respiratory mucus and provide design criteria for therapeutic nanoparticles capable of penetrating mucus to approach the underlying airway epithelium. PMID:23384790

  20. Lung Epithelial Cell-Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa(-/-) Mice.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2016-08-01

    Lysosomal acid lipase (LAL), a key enzyme in the metabolic pathway of neutral lipids, has a close connection with inflammation and tumor progression. One major manifestation in LAL-deficient (Lipa(-/-)) mice is an increase of tumor growth and metastasis associated with expansion of myeloid-derived suppressor cells. In the lung, LAL is highly expressed in alveolar type II epithelial cells. To assess how LAL in lung epithelial cells plays a role in this inflammation-related pathogenic process, lung alveolar type II epithelial cell-specific expression of human LAL (hLAL) in Lipa(-/-) mice was established by crossbreeding of CCSP-driven rtTA transgene and (TetO)7-CMV-hLAL transgene into Lipa(-/-) mice (CCSP-Tg/KO). hLAL expression in lung epithelial cells not only reduced tumor-promoting myeloid-derived suppressor cells in the lung, but also down-regulated the synthesis and secretion of tumor-promoting cytokines and chemokines into the bronchoalveolar lavage fluid of Lipa(-/-) mice. hLAL expression reduced the immunosuppressive functions of bronchoalveolar lavage fluid cells, inhibited bone marrow cell transendothelial migration, and inhibited endothelial cell proliferation and migration in Lipa(-/-) mice. As a result, hLAL expression in CCSP-Tg/KO mice corrected pulmonary damage, and inhibited tumor cell proliferation and migration in vitro, and tumor metastasis to the lung in vivo. These results support a concept that LAL is a critical metabolic enzyme in lung epithelial cells that regulates lung homeostasis, immune response, and tumor metastasis. PMID:27461363

  1. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  2. Microsomal metabolism of NDMA and analogs

    SciTech Connect

    Wade, D.; Yang, C.S.

    1987-05-01

    The metabolism of N-nitrosodimethylamine (NDMA), dimethylamine (DMA), N-nitro-DMA (N x NO/sub 2/ x DMA), N-nitrosodiethylamine (NDEA), and diethylamine (DEA) was studied using control, acetone (Ac)-, butylated hydroxytoluene (BHT)-, pregnenolone 16- ..cap alpha..-carbonitrile (PCN)-, and phenobarbital (PB)-induced rat liver microsomes. At low substrate concentrations, the NDMA demethylase activity of Ac-induced microsomes was 5-fold greater than that of control, BHT-, and PCN-induced microsomes. The rate of NDMA denitrosation was ca. 10% that of demethylation. N x NO/sub 2/ x DMA was metabolized to HCHO, but not to NO/sub 2//sup -/, and the rate of metabolism was greatest with Ac-induced microsomes; the K/sub m/ and V/sub max/ of Ac-induced microsomes were similar to those of NDMA. For the dealkylation of NDEA, Ac- and BHT-induced microsomes were twice as active as the control. Ratios of dealkylation/denitrosation for NDEA remained constant over a broad range of low substrate concentrations. BHT- or Ac-treatment appeared to cause a selective increase in the ability of microsomes to denitrosate NDEA. The activity of all microsome preparations with the amines, DMA and DEA was less than that with the nitrosamine or nitramine substrates. The results suggest that both the N-nitroso and N-nitro compounds are good substrates for microsomal P-450; the amines, which bear positive charges, are not. Denitrosation appeared to be a more important pathway with NDEA than with NDMA.

  3. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  4. 4D model generator of the human lung, "Lung4Cer".

    PubMed

    Kitaoka, Hiroko; Koc, Salim; Tetsumoto, Satoshi; Koumo, Satoshi; Hirata, Haruhiko; Kijima, Takashi

    2013-01-01

    We have developed a free software applications which generates 4D (= 3D + time) lung models for the purpose of studying lung anatomy, physiology, and pathophysiology. The coinage of 4C is originated from Japanese words, Catachi (= shape, structure) and Calacli (= machine, function). Lung4Cer makes 4D finite element models from the trachea to alveoli, which allow airflow simulation by means of computational fluid dynamics. Visualization of the generated models is expected to use a popular free software application, ParaView. There are several versions of Lung4Cer from basic lung morphology to advanced airflow computations simulating various clinical pulmonary function tests (PFT4Cer). All versions are designed so as to be operated on a common PC. Users can select model types and the element number according to their purposes and available computer resources.

  5. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    PubMed Central

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  6. Methaqualone metabolism by rat liver microsomes.

    PubMed

    Manowitz, P; Shull, C M

    1976-01-01

    A rat hepatic microsomal system has been established which metabolizes methaqualone. The microsomes are obtained from livers of rats treated with phenobarbital. The methaqualone is dissolved in polyethylene glycol-200 prior to addition to the incubation mixture. A comparison is made between the metabolites obtained in this in vitro system and metabolites obtained from urines of phenobarbital treated rats injected with methaqualone. The same two and sometimes three metabolites, as determined by thin layer and gas liquid chromatography, were found in both the complete microsomal incubation system and the urines.

  7. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    SciTech Connect

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita; Payne, N. Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M.

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases in paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig.

  8. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture.

    PubMed

    Jewell, Christopher; Prusakiewicz, Jeffery J; Ackermann, Chrisita; Payne, N Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases in paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig.

  9. Qualitative and quantitative changes in cytochrome P-450-dependent xenobiotic metabolism in pulmonary microsomes and isolated Clara cell populations derived from ozone-exposed rats

    SciTech Connect

    Rietjens, I.M.C.M.; Dormans, J.A.M.A.; Rombout, P.J.A.; van Bree, L.

    1988-01-01

    The effect of a prolonged ozone exposure (1.6 mg ozone/m/sup 3/; 7 d; 24 h/d) on pulmonary cytochrome P-450-dependent xenobiotic metabolism was studied both in whole rat lung as well as in isolated bronchiolar Clara cell preparations. Ozone exposure was demonstrated to result in significant quantitative but also qualitative changes. All components of the pulmonary microsomal electron transport system appeared to be significantly increased in the lungs of exposed animals both per lung and per gram lung, although increases were no longer observed when expressed per milligram microsomal lung protein. Remarkably, it was demonstrated that the increases in the components of the pulmonary cytochrome P-450 system were not accompanied by a concomitant increase in all cytochrome P-450-dependent substrate conversions. In whole-lung microsomes ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase activities were unchanged or even significantly reduced when expressed per lung, per gram lung, per milligram microsomal protein, or per picomole cytochrome P-450. In contrast to these observations, pentoxyresorufin O-dealkylation appeared to be significantly increased upon ozone exposure when expressed per lung, per gram lung, and even per picomole cytochrome P-450.

  10. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  11. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  12. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    SciTech Connect

    Nagahama, Yu; Obama, Takashi; Usui, Michihiko; Kanazawa, Yukari; Iwamoto, Sanju; Suzuki, Kazushige; Miyazaki, Akira; Yamaguchi, Tomohiro; Yamamoto, Matsuo; Itabe, Hiroyuki

    2011-10-07

    Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  13. Formation and metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol enantiomers in vitro in mouse, rat and human tissues.

    PubMed

    Upadhyaya, P; Carmella, S G; Guengerich, F P; Hecht, S S

    2000-06-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a major metabolite of the tobacco-specific lung carcino- gen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNAL has a chiral center at the 1-position, but little is known about the stereochemical aspects of its metabolic formation from NNK or its further metabolism. We investigated the metabolism of NNK to enantiomers of NNAL in microsomes and cytosol from male F-344 rat liver and lung, female A/J mouse liver and lung, and human liver, as well as in red blood cells from rats, mice and humans. In all systems, (S)-NNAL was the predominant enantiomer formed, ranging from 90 to 98% in the rodent tissues and averaging 64, 90 and >95% in human liver microsomes, liver cytosol and red blood cells, respectively. In rat liver microsomes, (R)- and (S)-NNAL were metabolized at similar rates by alpha-hydroxylation, considered to be the major metabolic activation pathway of NNAL. Pyridine-N-oxidation and adenosine dinucleotide phosphate adduct formation also occurred at similar rates from both enantiomers, while reoxidation to NNK was favored with (S)-NNAL as substrate. In rat lung microsomes, (S)-NNAL was more rapidly metabolized than (R)-NNAL by all oxidative pathways. In human liver microsomes, there were no significant differences in the rates of alpha-hydroxylation, pyridine-N-oxidation and reoxidation to NNK between the two enantiomers. The results of this study demonstrate that (S)-NNAL, the more tumorigenic enantiomer in mice, is preferentially formed from NNK in rodent and human tissues, and is a substrate for oxidative metabolism in rodent and human tissue microsomes.

  14. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  15. Comparative effects of cadmium, zinc, and lead in vitro on pulmonary, adrenal, and hepatic microsomal metabolism in the guinea pig

    SciTech Connect

    Colby, H.D.; Johnson, P.B.; Zulkoski, J.S.; Pope, M.R.; Miles, P.R.

    1981-11-01

    The in vitro effects of Cd, Zn, and Pb on pulmonary, adrenal, and hepatic microsomal enzyme activities in guinea pigs were compared. Cd and Zn produced concentration-dependent (20-200 ..mu..M) decreases in benzphetamine demethylase and biphenyl hydrozylase activities in adrenal, liver, and lung. Pb had no significant effect on either enzyme in any of the tissues studied. Adrenal and pulmonary enzymes were more sensitive to the effects of Cd and Zn than were hepatic enzymes. Benzo(a)pyrene hydroxylase and ethoxycoumarin demethylase activities were decreased by Zn, Cd and Pb in adrenal, liver, and lung microsomes. The inhibitory effects on benzo(a)pyrene and ethoxycoumarin methabolism were far greater than those on benzphetamine or biphenyl metabolism. The relative potencies of the metals as inhibitors of xenobiotic metabolism were Zn > Cd > Pb. Cd and Zn also inhibited steroid 21-hydroxylase activity in adrenal microsomes, but Pb had no effect on steroid metabolism. In addition, microsomal epoxide hydratase activity in adrenal, liver, and lung was inhibited by Cd but not by Zn or Pb. The results demonstrate that adrenal and pulmonary microsomal enzyme, like those in liver, are inhibited by various metals. Inhibition of mixed-function oxidases by metals in vitro is apparently not related to changes in cytochrome P-450 levels or substrate binding to cytochrome P-450. In addition, the actions of Cd, Zn, and Pb in each tissue are highly dependent on the substrates employed.

  16. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts.

    PubMed

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H; Keshamouni, Venkateshwar G; Peters-Golden, Marc; Lama, Vibha N

    2011-06-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs.

  17. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  18. Functional repair of human donor lungs by IL-10 gene therapy.

    PubMed

    Cypel, Marcelo; Liu, Mingyao; Rubacha, Matt; Yeung, Jonathan C; Hirayama, Shin; Anraku, Masaki; Sato, Masaaki; Medin, Jeffrey; Davidson, Beverly L; de Perrot, Marc; Waddell, Thomas K; Slutsky, Arthur S; Keshavjee, Shaf

    2009-10-28

    More than 80% of potential donor lungs are injured during brain death of the donor and from complications experienced in the intensive care unit, and therefore cannot be used for transplantation. These lungs show inflammation and disruption of the alveolar-capillary barrier, leading to poor gas exchange. Although the number of patients in need of lung transplantation is increasing, the number of donors is static. We investigated the potential to use gene therapy with an adenoviral vector encoding human interleukin-10 (AdhIL-10) to repair injured donor lungs ex vivo before transplantation. IL-10 is an anti-inflammatory cytokine that mainly exerts its suppressive functions by the inactivation of antigen-presenting cells with consequent inhibition of proinflammatory cytokine secretion. In pigs, AdhIL-10-treated lungs exhibited attenuated inflammation and improved function after transplantation. Lungs from 10 human multiorgan donors that had suffered brain death were determined to be clinically unsuitable for transplantation. They were then maintained for 12 hours at body temperature in an ex vivo lung perfusion system with or without intra-airway delivery of AdhIL-10 gene therapy. AdhIL-10-treated lungs showed significant improvement in function (arterial oxygen pressure and pulmonary vascular resistance) when compared to controls, a favorable shift from proinflammatory to anti-inflammatory cytokine expression, and recovery of alveolar-blood barrier integrity. Thus, treatment of injured human donor lungs with the cytokine IL-10 can improve lung function, potentially rendering injured lungs suitable for transplantation into patients. PMID:20368171

  19. Receptor Tyrosine Kinase EphA5 Is a Functional Molecular Target in Human Lung Cancer*

    PubMed Central

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. PMID:25623065

  20. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  1. The roles of diol epoxide and o-quinone pathways in mouse lung tumorigenesis induced by benzo(a)pyrene: relevance to human lung carcinogenesis

    EPA Science Inventory

    There is sufficient epidemiological evidence supported by experimental data that some PAH-containing complex environmental mixtures pose risks to human health by increasing lung cancer incidence. The International Agency for Research on Cancer has determined that human respirator...

  2. Estrogenic activity of an environmental pollutant, 2-nitrofluorene, after metabolic activation by rat liver microsomes.

    PubMed

    Fujimoto, Takashi; Kitamura, Shigeyuki; Sanoh, Seigo; Sugihara, Kazumi; Yoshihara, Shin'ichi; Fujimoto, Nariaki; Ohta, Shigeru

    2003-04-01

    In this study, the metabolic activation of 2-nitrofluorene (NF) to estrogenic compounds was examined. NF was negative in estrogen reporter assays using estrogen-responsive yeast and human breast cancer cell line MCF-7. However, the compound exhibited estrogenic activity after incubation with liver microsomes of 3-methylcholanthrene-treated rats in the presence of NADPH. Minor estrogenic activity was observed when liver microsomes of untreated or phenobarbital-treated rats were used instead of those from 3-methylcholanthrene-treated rats. When the compound was incubated with the liver microsomes of 3-methylcholanthrene-treated rats in the presence of NADPH, 7-hydroxy-2-nitrofluorene (7-OH-NF) was formed as a major metabolite. However, little of the metabolite was formed by liver microsomes of untreated or phenobarbital-treated rats. Rat recombinant cytochrome P450 1A1 exhibited a significant oxidase activity toward NF, affording 7-OH-NF. Liver microsomes of phenobarbital-treated rats also enhanced oxidase activity toward NF. In this case, 9-hydroxy-2-nitrofluorene was formed. 7-OH-NF exhibited a significant estrogenic activity, while the activity of 9-hydroxy-2-nitrofluorene was much lower. These results suggest that the estrogenic activity of NF was due to formation of the 7-hydroxylated metabolite by liver microsomes. PMID:12659833

  3. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    SciTech Connect

    Mak, J.C.; Barnes, P.J. )

    1990-06-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  4. Studies on the mechanism of activation of microsomal benzo(a)pyrene hydroxylation by flavonoids

    SciTech Connect

    Huang, M.T.; Chang, R.L.; Fortner, J.G.; Conney, A.H.

    1981-07-10

    7,8-benzoflavone or flavone stimulates the hydroxylation of benzo(a)pyrene by liver microsomes from rabbit, hamster, and man severalfold. Little or no activation by the flavonoid occurs in liver microsomes from rat or guinea pig. Intact liver microsomal membranes are not required for the activation. Although 7,8-benzoflavone does not stimulate the NADPH-dependent reduction of cytochrome c by rabbit liver microsomes, the NADPH-dependent reduction of cytochrome P-450 is stimulated by 7,8-benzoflavone either in the presence or absence of benzo(a)pyrene. Purified cytochrome P-450 reductase causes an increase in the rate of benzo(a)pyrene hydroxylation in cholate-solubilized liver microsomes from all of the species studied. In cholate-solubilized microsomes from all of the species susceptible for flavonoid activation, 7,8-benzoflavone decreases the K/sub m/ for cytochrome P-450 reductase and increases the V/sub max/ for benzo(a)pyrene hydroxylation. With cholate-solubilized human liver microsomes, the K/sub m/ for cytochrome P-450 reductase in the absence of flavonoids was about 3-fold higher than in the presence of 100 ..mu..M 7,8-benzoflavone or 500 ..mu..M flavone. 7,8-benzoflavone and flavone stimulate the hydroxylation of benzo(a)pyrene in liver microsomes at least in part by enhancing the interaction between cytochrome P-450 and cytochrome P-450 reductase. 7,8-benzoflavone does not influence the K/sub m/ for benzo(a)pyrene or NADPH, but the V/sub max/ values for benzo(a)pyrene are increased from 2.5- to 4-fold in rabbit liver microsomes. 7,8-benzoflavone does not stimulate the cumene hydroperoxide-dependent hydroxylation of benzo(a)pyrene by rabbit liver microsomes. In two partially purified cytochrome P-450 fractions from rabbit liver microsomes, flavone has a specific stimulatory effect on one of the reconstituted partially purified cytochrome P-450 systems, but an inhibitory effect on the other.

  5. The study of histamine H1- and H2-receptors in human lung cancer.

    PubMed

    Kondratenko, T Y; Zacharova, I V; Katukov VYu; Kuzina, N V; Severin, E S; Kornilova, Z Ch; Perelman, M I

    1993-11-01

    Data on human lung histamine H1- and H2-receptors in cancer and chronic inflammatory processes are reported. It has been found that the number of histamine H1-receptors significantly increases both in cancer and chronic pneumonia and does not practically change in tuberculosis lung parenchyma. The binding parameters of histamine H2-receptors both in cancer and inflammatory processes were similar to those obtained for the normal tissue. The important role of parenchymal histamine H1-receptors in the neuromodulation of airways in human lung adenocarcinoma is discussed.

  6. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma

    PubMed Central

    Cotroneo, Chiara E.; Galvan, Antonella; Noci, Sara; Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Incarbone, Matteo; Palleschi, Alessandro; Rosso, Lorenzo; Santambrogio, Luigi; Dragani, Tommaso A.; Colombo, Francesca

    2016-01-01

    Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1–TIMM44, FAM162B–ZUFSP, IFNAR2–IL10RB, INMT–FAM188B, KIAA1841–C2orf74, NFATC3–PLA2G15, SIRPB1–SIRPD, and SHANK3–ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue. PMID:27058892

  7. ADH IB expression, but not ADH III, is decreased in human lung cancer.

    PubMed

    Mutka, Sarah C; Green, Lucia H; Verderber, Evie L; Richards, Jane P; Looker, Doug L; Chlipala, Elizabeth A; Rosenthal, Gary J

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer.

  8. ADH IB Expression, but Not ADH III, Is Decreased in Human Lung Cancer

    PubMed Central

    Mutka, Sarah C.; Green, Lucia H.; Verderber, Evie L.; Richards, Jane P.; Looker, Doug L.; Chlipala, Elizabeth A.; Rosenthal, Gary J.

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer. PMID:23285246

  9. ADH IB expression, but not ADH III, is decreased in human lung cancer.

    PubMed

    Mutka, Sarah C; Green, Lucia H; Verderber, Evie L; Richards, Jane P; Looker, Doug L; Chlipala, Elizabeth A; Rosenthal, Gary J

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer. PMID:23285246

  10. Cytochrome P-450 epitope typing in animals and humans with monoclonal antibodies to ethanol induced rat liver microsomal cytochrome P-450 (P-450et)

    SciTech Connect

    Park, S.S.; Ko, I.Y.; Yang, C.; Guengerich, F.G.; Schenkman, J.B.; Coon, M.J.; Gelboin, H.V.

    1986-05-01

    Hybridomas were prepared from mouse myeloma cells and spleen cells derived from BALB/c female mice that had been immunized with P-450et. The monoclonal antibody (MAb)-producing hybridomas were screened by RIA. Thirty one independent hybrid clones were isolated with each producing an MAb of a single immunoglobulin subclass. All of these MAbs had high affinities for P-450et but only one MAb had a strong inhibitory effect on aniline rho-hydroxylase and N-nitrosodimethylamine demethylase. Western blots and RIAs based on ten MAbs (C1-C10) were used to determine the epitope homology of purified cytochromes P-450 from rats, rabbits, and humans. All ten MAbs had high affinity for both P-450et and a rat P-450 which is induced by acetone (P-450ac). Classes of these MAbs were identified which crossreacted toward different forms of rat P-450. In addition, several MAbs (C3, C6, C9) recognized a P-450 form of human liver, while other MAbs (C7, C9) recognized P-450/sub LM2/ of rabbits. Three MAbs (C4, C5, C8) were specific for only P-450et and P-450ac. These results demonstrate the different degrees of epitope relatedness among the multiple forms of cytochrome P-450.

  11. 27-Hydroxycholesterol accelerates cellular senescence in human lung resident cells.

    PubMed

    Hashimoto, Yuichiro; Sugiura, Hisatoshi; Togo, Shinsaku; Koarai, Akira; Abe, Kyoko; Yamada, Mitsuhiro; Ichikawa, Tomohiro; Kikuchi, Takashi; Numakura, Tadahisa; Onodera, Katsuhiro; Tanaka, Rie; Sato, Kei; Yanagisawa, Satoru; Okazaki, Tatsuma; Tamada, Tsutomu; Kikuchi, Toshiaki; Hoshikawa, Yasushi; Okada, Yoshinori; Ichinose, Masakazu

    2016-06-01

    Cellular senescence is reportedly involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously showed that 27-hydroxycholesterol (27-OHC) is elevated in the airways of COPD patients compared with those in healthy subjects. The aim of this study was to investigate whether lung fibroblasts of COPD patients are senescent and to determine the effects of 27-OHC on senescence of lung resident cells, including fibroblasts and airway epithelial cells. Localization of senescence-associated proteins and sterol 27-hydroxylase was investigated in the lungs of COPD patients by immunohistochemical staining. To evaluate whether 27-OHC accelerates cellular senescence, lung resident cells were exposed to 27-OHC. Senescence markers and fibroblast-mediated tissue repair were investigated in the 27-OHC-treated cells. Expression of senescence-associated proteins was significantly enhanced in lung fibroblasts of COPD patients. Similarly, expression of sterol 27-hydroxylase was significantly upregulated in lung fibroblasts and alveolar macrophages in these patients. Treatment with the concentration of 27-OHC detected in COPD airways significantly augmented expression of senescence-associated proteins and senescence-associated β-galactosidase activity, and delayed cell growth through the prostaglandin E2-reactive nitrogen species pathway. The 27-OHC-treated fibroblasts impaired tissue repair function. Fibroblasts from lungs of COPD patients showed accelerated senescence and were more susceptible to 27-OHC-induced cellular senescence compared with those of healthy subjects. In conclusion, 27-OHC accelerates cellular senescence in lung resident cells and may play a pivotal role in cellular senescence in COPD. PMID:27036870

  12. Expression and alternative splicing pattern of human telomerase reverse transcriptase in human lung cancer cells.

    PubMed

    Fujiwara, Masachika; Kamma, Hiroshi; Wu, Wenwen; Hamasaki, Makoto; Kaneko, Setsuko; Horiguchi, Hisashi; Matsui-Horiguchi, Miwa; Satoh, Hiroaki

    2004-04-01

    Telomerase activity is generally considered to be necessary for cancer cells to avoid senescence. The expression of human telomerase reverse transcriptase (hTERT) is believed to be a rate-limiting step in telomerase activation. Recently, it has been proposed that the alternative splicing of hTERT is also involved in regulation of telomerase activity. However, the regulatory mechanism of telomerase in cancer cells has not been thoroughly investigated. To clarify it in lung cancer cells, we measured the expression of the hTERT transcript, analyzed its alternative splicing by RT-PCR, and compared it with telomerase activity and telomere length. The expression of the hTERT transcript was positively correlated with telomerase activity in lung cancer cells. Cancer cells with high telomerase activity contained 4 splicing variants of hTERT, and the full-length variant was 31.3-54.2% of the total transcripts. Cells of the TKB-20 cell line, which has extremely low telomerase activity, showed a different splicing pattern of hTERT in addition to low expression. The functional full-length variant was scarcely detected in TKB-20 cells, suggesting that the telomerase activity was repressed by alternative splicing of hTERT. Telomere length was not necessarily correlated with telomerase activity or hTERT expression in lung cancer cells. Cells of the TKB-4 cell line that also showed relatively low telomerase activity (as TKB-20 cells) had long telomeres. In conclusion, hTERT expression is regulated at both the transcriptional and post-transcriptional levels in lung cancer cells, and the alternative splicing of hTERT is involved in the control of telomerase activity.

  13. Ultrastructural changes in the human lung following cardiopulmonary bypass.

    PubMed

    Anyanwu, E; Dittrich, H; Gieseking, R; Enders, H J

    1982-01-01

    In order to assess the degree of the pathological changes presenting in the lungs of patients after elective cardiac operations in cardiopulmonary bypass and to determine their prognosis, lung biopsies were taken from the right lower lobe of 36 patients after extracorporeal circulation and studied ultrastructurally. Prepump biopsies from the same presenting anterior portion of the lower lobe of the lung served as controls. Perivascular and interstitial edema featured prominently. Intraalveolar edema and extravasated corpuscular blood elements were observed, too. Damages to the mitochondria and to the lamellar bodies and swelling of the endothelial and alveolar cells were major observations following cardiopulmonary bypass lasting more than 60 minutes. These changes were also prominent in those lungs presenting with severe edema and fibrosis. Many intact type-II pneumocytes presented with enhanced metabolic and secretory activities. Merocrine and apocrine secretions were observed after extracorporeal circulation. The alveoli of the postpump lungs contained numerous detached normal appearing type-II pneumocytes, in contrast to the paucity of such cells in the alveoli of the control biopsies. The prognosis for the patients depends on any one or combination of any of the following factors: the pathological changes present in the lungs prior to the extracorporeal circulation, the duration of the cardiopulmonary bypass, the rate of the elimination of the surfactant and finally the ability of the undamaged type-II pneumocytes to step up the synthesis and secretion of the surface acting agent.

  14. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea.

    PubMed

    Lee, Jehoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-08-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combination. All 517 cases of human leukemia and 162 lung cancer were negative for a PCR of the BLV proviral DNA. In conclusion, although meat has been imported from BLV endemic areas, the BLV infection does not appear to be the cause of human leukemia or lung cancer in Koreans. These results can be used as a control for further studies on the BLV in Koreans. PMID:16100451

  15. Demethylation of neferine in human liver microsomes and formation of quinone methide metabolites mediated by CYP3A4 accentuates its cytotoxicity.

    PubMed

    Shen, Qi; Zuo, Minjuan; Ma, Li; Tian, Ye; Wang, Lu; Jiang, Huidi; Zhou, Quan; Zhou, Hui; Yu, Lushan; Zeng, Su

    2014-12-01

    Neferine is a bisbenzylisoquinoline alkaloid isolated from the seed embryos of Nelumbonucifera Gaertn (Lotus) with various potent pharmacological effects. Recently, neferine has attracted attention for its anti-tumor activities. Our study explored its metabolism and cytotoxicity mechanism. Approaches using chemical inhibitors and recombinant human enzymes to characterize the involved enzymes and kinetic studies indicated that the demethylation of neferine by cytochrome P450 (CYP) 2D6 and CYP3A4 fitted a biphasic kinetic profile. Glutathione (GSH) was used as a trapping agent to identify reactive metabolites of neferine, and four novel GSH conjugates were detected with [M+H](+) ions at m/z 902.4, 916.2, 916.1, and 930.4. Based on its structure containing para-methylene phenol and results from a product ion scan, GSH tends to conjugate with C9' after undergoing oxidative metabolism to form the binding site predominated by CYP3A4. Furthermore, the addition of recombinant human GSTA1, GSTT1, and GSTP1 had little effect on the production of the GSH conjugates. In a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, combined with the GSH modulators l-buthionine sulfoximine or N-acetyl-l-cysteine, neferine treatment of MDCK-hCYP3A4 and HepG2 cells revealed that CYP3A4 expression and cellular GSH content could cause an EC50 shift. Metabolic activation mediated by CYP3A4 and GSH depletion significantly enhanced neferine-induced cytotoxicity. PMID:25451576

  16. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  17. Epithelial Cell Differentiation of Human Mesenchymal Stromal Cells in Decellularized Lung Scaffolds

    PubMed Central

    Mendez, Julio J.; Ghaedi, Mahboobe; Steinbacher, Derek

    2014-01-01

    Identification of appropriate donor cell types is important for lung cell therapy and for lung regeneration. Previous studies have indicated that mesenchymal stromal cells derived from human bone marrow (hBM-MSCs) and from human adipose tissue (hAT-MSCs) may have the ability to trans-differentiate into lung epithelial cells. However, these data remain controversial. Herein, the ability of hBM-MSCs and hAT-MSCs to repopulate acellular rodent lung tissue was evaluated. hBM-MSCs and hAT-MSCs were isolated from bone marrow aspirate and lipoaspirate, respectively. Rat lungs were decellularized with CHAPS detergent, followed by seeding the matrix with hBM-MSCs and hAT-MSCs. Under appropriate culture conditions, both human MSC populations attached to and proliferated within the lung tissue scaffold. In addition, cells were capable of type 2 pneumocyte differentiation, as assessed by marker expression of surfactant protein C (pro-SPC) at the protein and the RNA level, and by the presence of lamellar bodies by transmission electron microscopy. Additionally, hAT-MSCs contributed to Clara-like cells that lined the airways in the lung scaffolds, whereas the hBM-MSCs did not. We also tested the differentiation potential of MSCs on different extracellular matrix components in vitro, and found that protein substrate influences MSC epithelial differentiation. Together our data show the capacity for human MSCs to differentiate toward lung epithelial phenotypes, and the possibility of using these cells for lung cell therapies and tissue engineering. PMID:24393055

  18. A Human-Mouse Chimeric Model of Obliterative Bronchiolitis after Lung Transplantation

    PubMed Central

    Xue, Jianmin; Zhu, Xuehai; George, M. Patricia; Myerburg, Michael M.; Stoner, Michael W.; Pilewski, Joseph W.; Duncan, Steven R.

    2011-01-01

    Obliterative bronchiolitis is a frequent, morbid, and usually refractory complication of lung transplantation. Mechanistic study of obliterative bronchiolitis would be aided by development of a relevant model that uses human immune effector cells and airway targets. Our objective was to develop a murine chimera model that mimics obliterative bronchiolitis of lung allograft recipients in human airways in vivo. Human peripheral blood mononuclear cells were adoptively transferred to immunodeficient mice lacking activity of T, B, and NK cells, with and without concurrent transplantations of human small airways dissected from allogeneic cadaveric lungs. Chimerism with human T cells occurred in the majority of recipient animals. The chimeric T cells became highly activated, rapidly infiltrated into the small human airway grafts, and caused obliterative bronchiolitis. In contrast, airways implanted into control mice that did not also receive human peripheral blood mononuclear cell transfers remained intact. In vitro proliferation assays indicated that the chimeric T cells had enhanced specific proliferative responses to donor airway alloantigens. This model confirms the critical role of T cells in development of obliterative bronchiolitis among human lung allograft recipients and provides a novel and easily implemented mechanism for detailed, reductionist in vivo studies of human T-cell responses to allogeneic human small airways. PMID:21801868

  19. Identification of Genetic Mutations in Human Lung Cancer by Targeted Sequencing

    PubMed Central

    Feng, Hongxiang; Wang, Xiaowei; Zhang, Zhenrong; Tang, Chuanning; Ye, Hua; Jones, Lindsey; Lou, Feng; Zhang, Dandan; Jiang, Shouwen; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Nandakumar, Vijayalakshmi; Huang, Xue F; Chen, Si-Yi; Liu, Deruo

    2015-01-01

    Lung cancer remains the most prevalent malignancy and the primary cause of cancer-related deaths worldwide. Unique mutations patterns can be found in lung cancer subtypes, in individual cancers, or within a single tumor, and drugs that target these genetic mutations and signal transduction pathways are often beneficial to patients. In this study, we used the Ion Torrent AmpliSeq Cancer Panel to sequence 737 loci from 45 cancer-related genes and oncogenes to identify genetic mutations in 48 formalin-fixed, paraffin-embedded (FFPE) human lung cancer samples from Chinese patients. We found frequent mutations in EGFR, KRAS, PIK3CA, and TP53 genes. Moreover, we observed that a portion of the lung cancer samples harbored two or more mutations in these key genes. This study demonstrates the feasibility of using the Ion Torrent sequencing to efficiently identify genetic mutations in individual tumors for targeted lung cancer therapy. PMID:26244006

  20. Human Lung Cancer Cells Grown in an Ex Vivo 3D Lung Model Produce Matrix Metalloproteinases Not Produced in 2D Culture

    PubMed Central

    Mishra, Dhruva K.; Sakamoto, Jason H.; Thrall, Michael J.; Baird, Brandi N.; Blackmon, Shanda H.; Ferrari, Mauro; Kurie, Jonathan M.; Kim, Min P.

    2012-01-01

    We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture. PMID:23028922

  1. Interactions between CYP2C9 and CYP2C19 in reconstituted binary systems influence their catalytic activity: possible rationale for the inability of CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes.

    PubMed

    Hazai, Eszter; Kupfer, David

    2005-01-01

    Previous studies in our laboratory showed that among cDNA-expressed human cytochrome P450 (P450) supersomes, CYP2C19 was the most active in methoxychlor-O-demethylation. However, based on the lack of inhibition of methoxychlor-O-demethylation by monoclonal anti-CYP2C19 antibodies in human liver microsomes (HLM), CYP2C19 did not seem to catalyze that reaction in HLM. By contrast, CYP2C9, much less active than CYP2C19 in supersomes, was the most active in HLM. The current study examines whether the lack of methoxychlor-O-demethylation by CYP2C19 in HLM was due to CYP2C19 exhibiting inferior competition for the NADPH-cytochrome P450 reductase (CPR) versus CYP2C9 and explores the interactions between CYP2C9 and CYP2C19 in a singular and binary complex of a reconstituted system. When reconstituted with CPR, cytochrome b(5), and lipid, purified CYP2C19 and CYP2C9 catalyzed methoxychlor-O-demethylation. However, whereas equimolar CPR to CYP2C9 supported maximal rates of methoxychlor demethylation and diclofenac hydroxylation, the rate of methoxychlor demethylation by CYP2C19 was not fully saturated, even with a 9-fold molar excess of CPR over CYP2C19. This behavior of CYP2C19 was also observed with S-mephenytoin as the substrate. When a binary reconstitution system was prepared by mixing CYP2C9 and CYP2C19 enzymes, methoxychlor-O-demethylation and S-mephenytoin hydroxylation by CYP2C19 were dramatically inhibited. Inhibition depended on the amount of CPR and substrate used. By contrast, in the incubation containing CYP2C9, diclofenac hydroxylation was activated by the presence of CYP2C19. These results show that interactions among P450 enzymes can modulate their catalytic rates, which depend on the substrate undergoing metabolism.

  2. CYP4F Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-Demethylation of the Antiparasitic Prodrug DB289 [2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime

    PubMed Central

    Wang, Michael Zhuo; Saulter, Janelle Y.; Usuki, Etsuko; Cheung, Yen-Ling; Hall, Michael; Bridges, Arlene S.; Loewen, Greg; Parkinson, Oliver T.; Stephens, Chad E.; Allen, James L.; Zeldin, Darryl C.; Boykin, David W.; Tidwell, Richard R.; Parkinson, Andrew; Paine, Mary F.; Hall, James Edwin

    2007-01-01

    DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime] is biotransformed to the potent antiparasitic diamidine DB75 [2,5-bis(4-amidinophenyl) furan] by sequential oxidative O-demethylation and reductive N-dehydroxylation reactions. Previous work demonstrated that the N-dehydroxylation reactions are catalyzed by cytochrome b5/NADH-cytochrome b5 reductase. Enzymes responsible for catalyzing the DB289 O-demethylation pathway have not been identified. We report an in vitro metabolism study to characterize enzymes in human liver microsomes (HLMs) that catalyze the initial O-demethylation of DB289 (M1 formation). Potent inhibition by 1-aminobenzotriazole confirmed that M1 formation is catalyzed by P450 enzymes. M1 formation by HLMs was NADPH-dependent, with a Km and Vmax of 0.5 μM and 3.8 nmol/min/mg protein, respectively. Initial screening showed that recombinant CYP1A1, CYP1A2, and CYP1B1 were efficient catalysts of M1 formation. However, none of these three enzymes was responsible for M1 formation by HLMs. Further screening showed that recombinant CYP2J2, CYP4F2, and CYP4F3B could also catalyze M1 formation. An antibody against CYP4F2, which inhibited both CYP4F2 and CYP4F3B, inhibited 91% of M1 formation by HLMs. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, effectively inhibited M1 formation by HLMs. Inhibition studies with ebastine and antibodies against CYP2J2 suggested that CYP2J2 was not involved in M1 formation by HLMs. Additionally, ketoconazole preferentially inhibited CYP4F2, but not CYP4F3B, and partially inhibited M1 formation by HLMs. We conclude that CYP4F enzymes (e.g., CYP4F2, CYP4F3B) are the major enzymes responsible for M1 formation by HLMs. These findings indicate that, in human liver, members of the CYP4F subfamily biotransform not only endogenous compounds but also xenobiotics. PMID:16997912

  3. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair. PMID:27622532

  4. Short-term hypoxic exposure at rest and during exercise reduces lung water in healthy humans.

    PubMed

    Snyder, Eric M; Beck, Kenneth C; Hulsebus, Minelle L; Breen, Jerome F; Hoffman, Eric A; Johnson, Bruce D

    2006-12-01

    Hypoxia and hypoxic exercise increase pulmonary arterial pressure, cause pulmonary capillary recruitment, and may influence the ability of the lungs to regulate fluid. To examine the influence of hypoxia, alone and combined with exercise, on lung fluid balance, we studied 25 healthy subjects after 17-h exposure to 12.5% inspired oxygen (barometric pressure = 732 mmHg) and sequentially after exercise to exhaustion on a cycle ergometer with 12.5% inspired oxygen. We also studied subjects after a rapid saline infusion (30 ml/kg over 15 min) to demonstrate the sensitivity of our techniques to detect changes in lung water. Pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (D(M)) were determined by measuring the diffusing capacity of the lungs for carbon monoxide and nitric oxide. Lung tissue volume and density were assessed using computed tomography. Lung water was estimated by subtracting measures of Vc from computed tomography lung tissue volume. Pulmonary function [forced vital capacity (FVC), forced expiratory volume after 1 s (FEV(1)), and forced expiratory flow at 50% of vital capacity (FEF(50))] was also assessed. Saline infusion caused an increase in Vc (42%), tissue volume (9%), and lung water (11%), and a decrease in D(M) (11%) and pulmonary function (FVC = -12 +/- 9%, FEV(1) = -17 +/- 10%, FEF(50) = -20 +/- 13%). Hypoxia and hypoxic exercise resulted in increases in Vc (43 +/- 19 and 51 +/- 16%), D(M) (7 +/- 4 and 19 +/- 6%), and pulmonary function (FVC = 9 +/- 6 and 4 +/- 3%, FEV(1) = 5 +/- 2 and 4 +/- 3%, FEF(50) = 4 +/- 2 and 12 +/- 5%) and decreases in lung density and lung water (-84 +/- 24 and -103 +/- 20 ml vs. baseline). These data suggest that 17 h of hypoxic exposure at rest or with exercise resulted in a decrease in lung water in healthy humans. PMID:16902060

  5. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  6. Anaphylactic release of a prekallikrein activator from human lung in vitro.

    PubMed Central

    Meier, H L; Kaplan, A P; Lichtenstein, L M; Revak, S; Cochrane, C G; Newball, H H

    1983-01-01

    We have demonstrated the in vitro IgE-mediated release of a prekallikrein activator from human lung. The lung prekallikrein activator was partially purified by sequential chromatography on sulfopropyl-Sephadex, DEAE-Sephacel, and Sepharose 6B. Purified human prekallikrein was converted to its active form (kallikrein) by the lung protease. The generated kallikrein was shown to be biologically active; that is, it generates bradykinin from purified human high-molecular weight kininogen and also cleaves benzoyl-propyl-phenyl-arginyl-p-nitroanilide, a known synthetic substrate of kallikrein. The lung prekallikrein activator differs from the known physiologic activators of prekallikrein (the activated forms of Hageman factor) with respect to: (a) size (it has a mol wt of approximately 175,000); (b) synthetic substrate specificity (D-propyl/phenyl/arginyl-p-nitroanilide is a substrate for the activated forms of Hageman factor, but not the lung protease); (c) antigenic specificity (an anti-Hageman factor immunoadsorbent column did not remove significant amounts of the lung protease, while it removed most of the activity of activated Hageman factor fragments); and (d) inhibition profile (the lung proteases was not inhibited by corn trypsin inhibitor). This prekallikrein activator provides a physiologic mechanism by which prekallikrein can be directly activated during IgE-mediated reactions of the lung. While the role of this lung prekallikrein activator in immediate hypersensitivity reactions and in other inflammatory processes is not clear, it does represent a first and important interface between IgE-mediated reactions and the Hageman factor-dependent pathways of the inflammatory response. Images FIGURE 6 PMID:6192147

  7. Expression of secretory phospholipase A2 enzymes in lungs of humans with pneumonia and their potential prostaglandin-synthetic function in human lung-derived cells

    PubMed Central

    Masuda, Seiko; Murakami, Makoto; Mitsuishi, Michiko; Komiyama, Kazuo; Ishikawa, Yukio; Ishii, Toshiharu; Kudo, Ichiro

    2004-01-01

    Although a number of sPLA2 (secretory phospholipase A2) enzymes have been identified in mammals, the localization and functions of individual enzymes in human pathologic tissues still remain obscure. In the present study, we have examined the expression and function of sPLA2s in human lung-derived cells and in human lungs with pneumonia. Group IID, V and X sPLA2s were expressed in cultured human bronchial epithelial cells (BEAS-2B) and normal human pulmonary fibroblasts with distinct requirement for cytokines (interleukin-1β, tumour necrosis factor α and interferon-γ). Lentivirus- or adenovirus-mediated transfection of various sPLA2s into BEAS-2B or normal human pulmonary fibroblast cells revealed that group V and X sPLA2s increased arachidonate release and prostaglandin production in both cell types, whereas group IIA and IID sPLA2s failed to do so. Immunohistochemistry of human lungs with pneumonia demonstrated that group V and X sPLA2s were widely expressed in the airway epithelium, interstitium and alveolar macrophages, in which group IID sPLA2 was also positive, whereas group IIA sPLA2 was restricted to the pulmonary arterial smooth muscle layers and bronchial chondrocytes, and group IIE and IIF sPLA2s were minimally detected. These results suggest that group V and X sPLA2s affect lung pathogenesis by facilitating arachidonate metabolism or possibly through other functions. PMID:15509193

  8. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGESBeta

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; et al

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  9. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    PubMed

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  10. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging

    PubMed Central

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  11. The cytotoxicity and genotoxicity of hexavalent chromium in Steller sea lion lung fibroblasts compared to human lung fibroblasts.

    PubMed

    Wise, John Pierce; Wise, Sandra S; Holmes, Amie L; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim

    2010-06-01

    In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on an administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760

  12. The Cytotoxicity and Genotoxicity of Hexavalent Chromium in Steller Sea Lion Lung Fibroblasts Compared to Human Lung Fibroblasts

    PubMed Central

    Wise, John Pierce; Wise, Sandra S.; Holmes, Amie L.; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim

    2010-01-01

    In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760

  13. Gastrin-releasing peptide, a mammalian analog of bombesin, is present in human neuroendocrine lung tumors.

    PubMed Central

    Bostwick, D. G.; Roth, K. A.; Evans, C. J.; Barchas, J. D.; Bensch, K. G.

    1984-01-01

    Several reports have indicated that the amphibian peptide bombesin is present in oat-cell carcinoma of the human lung. The recent observation that gastrin-releasing peptide (GRP), a 27-amino acid peptide isolated from porcine intestine, may be the mammalian analog of bombesin led the authors to look for this peptide in human pulmonary tumors. Examination of 36 human lung tumors (8 carcinoids, 8 oat-cell carcinomas, and 20 non-oat-cell carcinomas) by immunohistochemistry and radioimmunoassay demonstrated the presence of high, although variable, levels of GRP in neuroendocrine tumors, and not in other histologic types. These findings indicate that bombesin immunoreactivity in human lung tumors should be attributed to GRP or GRP-like molecules and that GRP may be a useful marker of neuroendocrine differentiation. Images Figure 1 PMID:6093543

  14. A Genomics-Based Classification of Human Lung Tumors

    PubMed Central

    2014-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic intervention, including several personalized treatment approaches that are already in clinical evaluation. Marked differences in the pattern of genomic alterations existed between and within histological subtypes, thus challenging the original histomorphological diagnosis. Immunohistochemical studies confirmed many of these reassigned subtypes. The reassignment eliminated almost all cases of large cell carcinomas, some of which had therapeutically relevant alterations. Prospective testing of our genomics-based diagnostic algorithm in 5145 lung cancer patients enabled a genome-based diagnosis in 3863 (75%) patients, confirmed the feasibility of rational reassignments of large cell lung cancer, and led to improvement in overall survival in patients with EGFR-mutant or ALK-rearranged cancers. Thus, our findings provide support for broad implementation of genome-based diagnosis of lung cancer. PMID:24174329

  15. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  16. EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON OZONE-INDUCED LUNG INJURY IN HUMAN SUBJECTS

    EPA Science Inventory

    Epidemiological, in vitro and animal studies suggest that dietary antioxidants can modulate the cellular and physiologic effects of ozone (O3) inhalation in humans. To determine whether antioxidants can influence human susceptibility to O3-induced changes in lung function and a...

  17. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    SciTech Connect

    Ohshimo, Shinichiro; Yokoyama, Akihito . E-mail: yokoyan@hiroshima-u.ac.jp; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-12-30

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-{beta}. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases.

  18. Cell-associated bacteria in the human lung microbiome

    PubMed Central

    2014-01-01

    Background Recent studies have revealed that bronchoalveolar lavage (BAL) fluid contains previously unappreciated communities of bacteria. In vitro and in vivo studies have shown that host inflammatory signals prompt bacteria to disperse from cell-associated biofilms and adopt a virulent free-living phenotype. The proportion of the lung microbiota that is cell-associated is unknown. Results Forty-six BAL specimens were obtained from lung transplant recipients and divided into two aliquots: ‘whole BAL’ and ‘acellular BAL,’ the latter processed with a low-speed, short-duration centrifugation step. Both aliquots were analyzed via bacterial 16S rRNA gene pyrosequencing. The BAL specimens represented a wide spectrum of lung health, ranging from healthy and asymptomatic to acutely infected. Bacterial signal was detected in 52% of acellular BAL aliquots, fewer than were detected in whole BAL (96%, p ≤ 0.0001). Detection of bacteria in acellular BAL was associated with indices of acute infection [BAL neutrophilia, high total bacterial (16S) DNA, low community diversity, p < 0.01 for all] and, independently, with low relative abundance of specific taxonomic groups (p < 0.05). When whole and acellular aliquots from the same bronchoscopy were directly compared, acellular BAL contained fewer bacterial species (p < 0.05); whole and acellular BAL similarity was positively associated with evidence of infection and negatively associated with relative abundance of several prominent taxa (p < 0.001). Acellular BAL contained decreased relative abundance of Prevotella spp. (p < 0.05) and Pseudomonas fluorescens (p < 0.05). Conclusions We present a novel methodological and analytical approach to the localization of lung microbiota and show that prominent members of the lung microbiome are cell-associated, potentially via biofilms, cell adhesion, or intracellularity. PMID:25206976

  19. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes

    PubMed Central

    2014-01-01

    Introduction Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes. Methods Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry. Results The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage. Conclusion These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions. PMID:24886859

  20. Formation of (4R)- and (4S)-4-hydroxyochratoxin A from ochratoxin A by liver microsomes from various species.

    PubMed Central

    Størmer, F C; Hansen, C E; Pedersen, J I; Hvistendahl, G; Aasen, A J

    1981-01-01

    Two metabolic products were formed from ochratoxin A by human, pig, and rat liver microsomal fractions in the presence of reduced nicotinamide adenine dinucleotide phosphate. They were isolated from the incubation mixture in the presence of pig liver microsomes by extraction, thin-layer chromatography, and high-pressure liquid chromatography Their structures are suggested to be (4R)- and (4S)-4-hydroxyochratoxin A on the basis of mass and nuclear magnetic resonance spectroscopy. Km and the maximum velocity for the formation of the two metabolites by human, pig, and rat microsomes were determined. Their formation was inhibited by carbon monoxide and metyrapone. The results indicate that the microsomal hydroxylation system is a cytochrome P-450 and that different species are involved in the formation of the two epimeric forms of 4-hydroxyochratoxin A. PMID:7316512

  1. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    SciTech Connect

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P.

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  2. Quantitation of microsomal alpha-hydroxylation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Peterson, L A; Mathew, R; Hecht, S S

    1991-10-15

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is activated to DNA alkylating species via two different alpha-hydroxylation pathways. Methylene hydroxylation leads to DNA methylation, whereas methyl hydroxylation yields DNA pyridyloxobutylation. We have developed a high-pressure liquid chromatography assay utilizing radiochemical detection that permits the determination of the extent of metabolism through each pathway in microsomal preparations. Levels of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) were used to measure the extent of methyl hydroxylation, whereas levels of the aldehyde, 4-oxo-1-(3-pyridyl)-1-butanone (OPB), were used to quantify the extent of methylene hydroxylation. Incubations of [5-3H]NNK with microsomes and cofactors were conducted in the presence of 5 mM sodium bisulfite to trap the reactive OPB. The inclusion of bisulfite did not affect the rate of NNK metabolism. Trapping the aldehyde also inhibited its further oxidation to the corresponding acid or reduction to HPB. Furthermore, the conversion of HPB to OPB made only a minor contribution to the OPB levels under our incubation conditions. Analysis of incubation mixtures containing [5-3H]NNK, cofactors, and either A/J mouse liver or lung microsomes demonstrated that OPB was a significant metabolite of NNK. The OPB:HPB ratio was greater in liver (1.5) than in lung (0.2-1) microsomal preparations. Apparent Km values for OPB and HPB formation in lung microsomes were 23.7 and 3.6 microM, respectively, whereas the corresponding values for liver microsomes were 19.1 and 73.8 microM, respectively. These data are consistent with the involvement of more than one cytochrome P-450 isozyme in the activation of NNK to DNA reactive species. PMID:1913670

  3. Influenza-Induced Priming and Leak of Human Lung Microvascular Endothelium upon Exposure to Staphylococcus aureus.

    PubMed

    Wang, Changsen; Armstrong, Susan M; Sugiyama, Michael G; Tabuchi, Arata; Krauszman, Adrienn; Kuebler, Wolfgang M; Mullen, Brendan; Advani, Suzanne; Advani, Andrew; Lee, Warren L

    2015-10-01

    A major cause of death after influenza virus infection is lung injury due to a bacterial superinfection, yet the mechanism is unknown. Death has been attributed to virus-induced immunosuppression and bacterial overgrowth, but this hypothesis is based on data from the preantibiotic era and animal models that omit antimicrobial therapy. Because of diagnostic uncertainty, most patients with influenza receive antibiotics, making bacterial overgrowth unlikely. Respiratory failure after superinfection presents as acute respiratory distress syndrome, a disorder characterized by lung microvascular leak and edema. The objective of this study was to determine whether the influenza virus sensitizes the lung endothelium to leak upon exposure to circulating bacterial-derived molecular patterns from Staphylococcus aureus. In vitro as well as in vivo models of influenza followed by S. aureus superinfection were used. Molecular mechanisms were explored using molecular biology, knockout mice, and human autopsy specimens. Influenza virus infection sensitized human lung endothelium to leak when challenged with S. aureus, even at low doses of influenza and even when the pathogens were given days apart. Influenza virus increased endothelial expression of TNFR1 both in vitro and in intact lungs, a finding corroborated by human autopsy specimens of patients with influenza. Leak was recapitulated with protein A, a TNFR1 ligand, and sequential infection caused protein A-dependent loss of IκB, cleavage of caspases 8 and 3, and lung endothelial apoptosis. Mice infected sequentially with influenza virus and S. aureus developed significantly increased lung edema that was protein A and TNFR1 dependent. Influenza virus primes the lung endothelium to leak, predisposing patients to acute respiratory distress syndrome upon exposure to S. aureus.

  4. A Re-evaluation of CD22 Expression by Human Lung Cancer

    PubMed Central

    Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821

  5. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    PubMed

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species. PMID:27468999

  6. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    PubMed

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species.

  7. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity.

  8. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. PMID:24823294

  9. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-01

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. PMID:27392435

  10. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-01

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells.

  11. No causal association identified for human papillomavirus infections in lung cancer.

    PubMed

    Anantharaman, Devasena; Gheit, Tarik; Waterboer, Tim; Halec, Gordana; Carreira, Christine; Abedi-Ardekani, Behnoush; McKay-Chopin, Sandrine; Zaridze, David; Mukeria, Anush; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Mates, Dana; Janout, Vladimir; Foretova, Lenka; Bencko, Vladimir; Rudnai, Peter; Fabianova, Eleonora; Tjønneland, Anne; Travis, Ruth C; Boeing, Heiner; Quirós, J Ramón; Johansson, Mikael; Krogh, Vittorio; Bueno-de-Mesquita, H Bas; Kotanidou, Anastasia; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Johansson, Mattias; Pawlita, Michael; Scelo, Ghislaine; Tommasino, Massimo; Brennan, Paul

    2014-07-01

    Human papillomavirus (HPV) infections have been implicated in lung carcinogenesis, but causal associations remain uncertain. We evaluated a potential causal role for HPV infections in lung cancer through an analysis involving serology, tumor DNA, RNA, and p16 protein expression. Association between type-specific HPV antibodies and risk of lung cancer was examined among 3,083 cases and 4,328 controls in two case-control studies (retrospective) and one nested case-control study (prospective design). Three hundred and thirty-four available tumors were subjected to pathologic evaluation and subsequent HPV genotyping following stringent conditions to detect all high-risk and two low-risk HPV types. All HPV DNA-positive tumors were further tested for the expression of p16 protein and type-specific HPV mRNA. On the basis of the consistency of the results, although HPV11 and HPV31 E6 antibodies were associated with lung cancer risk in the retrospective study, no association was observed in the prospective design. Presence of type-specific antibodies correlated poorly with the presence of the corresponding HPV DNA in the tumor. Although nearly 10% of the lung tumors were positive for any HPV DNA (7% for HPV16 DNA), none expressed the viral oncogenes. No association was observed between HPV antibodies or DNA and lung cancer survival. In conclusion, we found no supportive evidence for the hypothesized causal association between HPV infections and lung cancer.

  12. Detection of thrombomodulin in human lung cancer cells.

    PubMed Central

    Tamura, A.; Matsubara, O.; Hirokawa, K.; Aoki, N.

    1993-01-01

    Thrombomodulin (TM), which usually exists in vascular endothelial cells and exerts an anticoagulant activity, was detected by Western blot analyses and immunocytochemical staining using three anti-TM monoclonal antibodies in cultured cell lines derived from a squamous cell carcinoma and an adenocarcinoma of the lung, but was not detected in a cell line derived from a small cell carcinoma. Functional assays indicated that TM detected in these cells was functionally active. The presence of TM in 22 specimens of surgically removed lung cancer tissue was also examined by an immunohistochemical method. TM was present along the cell membranes in 4 (36%) of 11 squamous cell carcinomas examined, but was not detected in 10 adenocarcinomas and 1 large cell carcinoma examined. Because TM is identical to fetomodulin, which modulates embryogenesis, the authors have concluded that TM is an oncodevelopmental antigen. The authors have also suggested that functionally active TM on lung cancer cells may modulate cancer cell behaviors in such ways as exhibiting anticoagulant activity. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8380956

  13. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  14. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  15. Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system.

    PubMed

    Tomita, S; Tsujita, M; Matsuo, Y; Yubisui, T; Ichikawa, Y

    1993-12-01

    1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes. 2. The maximum pH of the reaction in the liver microsomes was 7.6. 3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined. 4. The reaction proceeded in the presence of NADPH and molecular oxygen. 5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation. 6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and anti-NADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG. 7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm. 8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra. 9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or beta-naphthoflavone. 10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system. PMID:8138015

  16. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles

    PubMed Central

    Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter–driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter’s tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP’s gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter–driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk–carrying JCPyV VLPs. In mice injected with pSPB-tk–carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma. PMID:27322500

  17. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    PubMed

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma. PMID:27322500

  18. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    SciTech Connect

    Smith, Leah J.; Holmes, Amie L.; Kandpal, Sanjeev Kumar; Mason, Michael D.; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  19. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  20. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells.

    PubMed

    Martino, Julieta; Holmes, Amie L; Xie, Hong; Wise, Sandra S; Wise, John Pierce

    2015-10-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification.

  1. Vascular endothelial growth factor in human preterm lung.

    PubMed

    Lassus, P; Ristimäki, A; Ylikorkala, O; Viinikka, L; Andersson, S

    1999-05-01

    Endothelial cell damage is characteristic for respiratory distress syndrome and development of chronic lung disease. Vascular endothelial growth factor (VEGF) is an endothelial mitogen that takes part in the growth and repair of vascular endothelial cells. We measured VEGF in 189 tracheal aspirate samples (TAF), and in 24 plasma samples from 44 intubated preterm infants (gestational age, 27.3 +/- 2.0 wk; birth weight, 962 +/- 319 g) during their first postnatal week. VEGF in TAF increased from 25 +/- 12 pg/ml (mean +/- SEM) on Day 1 to 526 +/- 120 pg/ml on Day 7 (mean concentrations, 106 +/- 25 pg/ml on Days 1 to 3 and 342 +/- 36 pg/ml on Days 4 to 7). In plasma, mean concentration of VEGF during the first week was 48 +/- 6 pg/ml, with no increase observed. In TAF, higher VEGF was found in patients born to mothers with premature rupture of the membranes, or chorionamnionitis, whereas preeclampsia of the mother was associated with lower VEGF (all p < 0.05). In TAF, no correlations existed between VEGF and gestational age or birth weight, but a correlation existed between lecithin/sphengomyelin ratio and VEGF (p < 0.05). During Days 4 to 7 patients developing bronchopulmonary dysplasia (BPD) had lower VEGF in TAF than did those surviving without BPD (235 +/- 31 versus 383 +/- 50; p < 0.05). VEGF increased rapidly in the lungs of the preterm infant during the first days of life. VEGF may be indicative of pulmonary maturity and may participate in pulmonary repair after acute lung injury.

  2. Possible risks to human lungs from magnetometric dust clearance experiments

    NASA Astrophysics Data System (ADS)

    Sterling, T. D.

    1981-03-01

    Cohen, Arai and Brain did a magnetization study on smokers and nonsmokers from which they conclude that the dust clearance ability of the cigarette smoker's lungs is markedly impaired. Their conclusion may be incorrect because they overlooked that during the magnetization phase of their experiment, iron oxide clusters were preferentially formed in smoker's bronchi because of their high mucus content and consequent low resistance to redistribution of particles. Prudence dictates avoidance of the Cohen, Arai, Brain type study until health hazards related to this work are investigated.

  3. Establishing normal values for nickel in human lung disease.

    PubMed

    Andersen, I; Svenes, K

    1999-12-01

    People working in the nickel refining industry are known to have a higher concentration of nickel in lung tissue than the general population. To be able to evaluate a potential nickel exposure from other sources, e.g., welding, it is important to have sufficient data on what is normal for a local population. Several local factors such as the content of nickel in air and soil can have a significant impact on this so-called normal value. As almost all surgical equipment contains nickel, the sampling process can in itself be a source of contamination. The scope of this work was to investigate if there was any measurable contamination from the sampling instruments routinely used in hospitals, and if the presence of a nickel refinery had any effect on the nickel content in the lungs of the general population. Autopsy lung tissue samples were collected in situ from 50 people who had lived in the county of Vest Agder in Norway. Two samples were collected from each person; one with a regular scalpel (Swann-Norton) and forceps, and one with a titanium knife and plastic forceps. None of the persons had any known connection to the nickel refinery. The samples were collected at random and no special attention was given to age, sex and place of residence. The autopsies were performed according to Norwegian law and in understanding with the next of kin. The arithmetic mean value +/- s of nickel was 0.64 +/- 0.56 microgram g-1 and 0.29 +/- 0.20 microgram g-1 dry weight, respectively, for samples collected with a regular scalpel and a titanium knife (P < 0.0001). For people who lived 8 km and closer to the refinery by the time of death, the nickel content was 0.41 +/- 0.19 microgram g-1 and for those who had lived between 8 and 70 km away from the refinery it was 0.18 +/- 0.13 microgram g-1 (P < 0.015). No statistical difference was established between results for males and females. Previous investigations have shown that the nickel content in lung tissue varies in the so

  4. The release of spasmogenic substances from human chopped lung tissue and its inhibition

    PubMed Central

    Piper, Priscilla J.; Walker, Joyce L.

    1973-01-01

    1. Human lung tissue, passively sensitized with reaginic antibodies, released prostaglandins E1, E2 and F2α in addition to histamine and slow reacting substance (SRS-A), when exposed to the appropriate antigen. No rabbit aorta contracting substance (RCS) was detected. 2. Experiments with rats and guinea-pigs showed that the release of RCS is not confined to anaphylactic reactions mediated by non-reaginic antibodies but may be a feature of anaphylaxis in guinea-pigs alone. 3. Human lung tissue gently agitated with a blunt nylon rod liberated an E-type prostaglandin and RCS in addition to histamine and SRS-A. 4. Human isolated bronchial muscle was contracted by RCS. 5. Disodium cromoglycate antagonized the release of prostaglandins during anaphylaxis but not during agitation of human lung tissue, whereas indomethacin blocked the release of prostaglandins during agitation and anaphylaxis. 6. The release of an E-type prostaglandin during anaphylaxis in human lung tissue, which inhibits the further release of histamine could be another example of the regulatory role of prostaglandins in body functions. PMID:4352867

  5. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  6. Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume

    PubMed Central

    ANTONINI, JAMES M.; ROBERTS, JENNY R.; SCHWEGLER-BERRY, DIANE; MERCER, ROBERT R.

    2015-01-01

    particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable. PMID:23798603

  7. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    PubMed

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.

  8. Mechanism of action of ozone on the human lung

    SciTech Connect

    Hazucha, M.J.; Bates, D.V.; Bromberg, P.A. )

    1989-10-01

    Fourteen healthy normal volunteers were randomly exposed to air and 0.5 ppm of ozone (O3) in a controlled exposure chamber for a 2-h period during which 15 min of treadmill exercise sufficient to produce a ventilation of approximately 40 l/min was alternated with 15-min rest periods. Before testing an esophageal balloon was inserted, and lung volumes, flow rates, maximal inspiratory (at residual volume and functional residual capacity) and expiratory (at total lung capacity and functional residual capacity) mouth pressures, and pulmonary mechanics (static and dynamic compliance and airway resistance) were measured before and immediately after the exposure period. After the postexposure measurements had been completed, the subjects inhaled an aerosol of 20% lidocaine until response to citric acid aerosol inhalation was abolished. All of the measurements were immediately repeated. We found that the O3 exposure (1) induced a significant mean decrement of 17.8% in vital capacity (this change was the result of a marked fall in inspiratory capacity without significant increase in residual volume), (2) significantly increased mean airway resistance and specific airway resistance but did not change dynamic or static pulmonary compliance or viscous or elastic work, (3) significantly reduced maximal transpulmonary pressure (by 19%) but produced no changes in inspiratory or expiratory maximal mouth pressures, and (4) significantly increased respiratory rate (in 5 subjects by more than 6 breaths/min) and decreased tidal volume.

  9. Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: Role of the human SULT1A3

    SciTech Connect

    Yasuda, Shin; Yasuda, Tomoko; Liu, Ming-Yih; Shetty, Sreerama; Idell, Steven; Boggaram, Vijayakumar; Suiko, Masahito; Sakakibara, Yoichi; Fu Jian; Liu, Ming-Cheh

    2011-03-01

    During inflammation, potent reactive oxidants formed may cause chlorination and nitration of both free and protein-bound tyrosine. In addition to serving as biomarkers of inflammation-mediated oxidative stress, elevated levels of chlorotyrosine and nitrotyrosine have been linked to the pathogenesis of lung and vascular disorders. The current study was designed to investigate whether the lung cells are equipped with mechanisms for counteracting these tyrosine derivatives. By metabolic labeling, chlorotyrosine O-[{sup 35}S]sulfate and nitrotyrosine O-[{sup 35}S]sulfate were found to be generated and released into the labeling media of human lung endothelial and epithelial cells labeled with [{sup 35}S]sulfate in the presence of added chlorotyrosine and nitrotyrosine. Enzymatic assays using the eleven known human cytosolic sulfotransferases (SULTs) revealed SULT1A3 as the enzyme responsible for catalyzing the sulfation of chlorotyrosine and nitrotyrosine. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the expression of SULT1A3 in the lung endothelial and epithelial cells used in this study. Kinetic constants of the sulfation of chlorotyrosine and nitrotyrosine by SULT1A3 were determined. Collectively, these results suggest that sulfation by SULT1A3 in lung endothelial and epithelial cells may play a role in the inactivation and/or disposal of excess chlorotyrosine and nitrotyrosine generated during inflammation.

  10. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    PubMed Central

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.

    2013-01-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327

  11. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    SciTech Connect

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua . E-mail: hhcheng@whu.edu.cn; Zhou Rongjia . E-mail: rjzhou@whu.edu.cn

    2006-04-14

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-{kappa}B was up-regulated. Interference analysis of NF-{kappa}B in A549 cells showed that knock down of NF-{kappa}B resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-{kappa}B inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.

  12. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status. PMID:27602120

  13. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status.

  14. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood.

    PubMed

    Lim, Jong Hyun; Park, Juhun; Oh, Eun Hae; Ko, Hwi Jin; Hong, Seunghun; Park, Tai Hyun

    2014-03-01

    A human nose-mimetic diagnosis system that can distinguish the odor of a lung cancer biomarker, heptanal, from human blood is presented. Selective recognition of the biomarker is mimicked in the human olfactory system. A specific olfactory receptor recognizing the chemical biomarker is first selected through screening a library of human olfactory receptors (hORs). The selected hOR is expressed on the membrane of human embryonic kidney (HEK)-293 cells. Nanovesicles containing the hOR on the membrane are produced from these cells, and are then used for the functionalization of single-walled carbon nanotubes. This strategy allows the development of a sensitive and selective nanovesicle-based bioelectronic nose (NvBN). The NvBN is able to selectively detect heptanal at a concentration as low as 1 × 10(-14) m, a sufficient level to distinguish the blood of a lung cancer patient from the blood of a healthy person. In actual experiments, NvBN could detect an extremely small increase in the amount of heptanal from human blood plasma without any pretreatment processes. This result offers a rapid and easy method to analyze chemical biomarkers from human blood in real-time and to diagnose lung cancer.

  15. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  16. OZONE-INDUCED RESPIRATORY SYMPTOMS AND LUNG FUNCTION DECREMENTS IN HUMANS: EXPOSURE-RESPONSE MODELS

    EPA Science Inventory

    Short duration exposure to ozone (<8 hr) is known to result in lung function decrements and respiratory symptoms in humans. The magnitudes of these responses are functions of ozone concentration (C), activity level measured by minute ventilation (Ve), duration of exposure (T), a...

  17. Diesel Exhaust Modulates Ozone-induced Lung Function Decrements in Healthy Human Volunteers

    EPA Science Inventory

    The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (03), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min...

  18. Effects of combinations of diesel exhaust and ozone exposure on lung function in human volunteers.

    EPA Science Inventory

    Ozone (03) exposure induces changes in human lung function, typically seen as a decrease in forced expiratory volume in one sec (FEV1) and forced vital capacity (FVC). Because people are usually exposed to other ambient air pollutants simultaneously with 03, there may be interact...

  19. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy

    PubMed Central

    Tobe, Ryuta; Carlson, Bradley A.; Tsuji, Petra A.; Lee, Byeong Jae; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2015-01-01

    A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system. PMID:26569310

  20. In vivo and in vitro studies of the cellular defense system of the human lung.

    PubMed

    Stahlhofen, W; Möller, W

    1994-06-01

    Magnetic microparticles were used to investigate the defence system of the human lungs against foreign material. About 0.5 mg of spherical monodisperse magnetite particles were deposited in the alveolar region of the human lung by voluntary inhalation. After primary magnetization a remanent magnetic field (RMF) of the lung can be measured that allows estimation of the amount of dust retained in the lung. The decay of this RMF, called relaxation, results from a misalignment of the dipole particles due to the activity of pulmonary macrophages. This macrophage activity was characterized by a cell energy Ez. With a secondary magnetization the lung can be remagnetized by rotation of the dipole particles. This allows estimation of the intracellular viscosity and the motility of the alveolar macrophages in vivo. The macrophage cell-line J774 was used to verify the dynamic processes of the magnetic particles within the cells in vitro. In vitro and in vivo relaxation curves of polydisperse and of spherical monodisperse magnetite particles are presented. Thermal relaxation of mono-disperse and polydisperse particles within a viscous standard could be verified with the Brownian rotary diffusion model. Relaxation with monodisperse particles was double exponential in vivo as well as in vitro, suggesting that 2 different viscous compartments of the cytoplasm should be considered. Relaxation in the macrophage cell-line J774 was particle-size-dependent.

  1. Influence of acute lung volume change on contractile properties of human diaphragm.

    PubMed

    Polkey, M I; Hamnegård, C H; Hughes, P D; Rafferty, G F; Green, M; Moxham, J

    1998-10-01

    The effect of stimulus frequency on the in vivo pressure generating capacity of the human diaphragm is unknown at lung volumes other than functional residual capacity. The transdiaphragmatic pressure (Pdi) produced by a pair of phrenic nerve stimuli may be viewed as the sum of the Pdi elicited by the first (T1 Pdi) and second (T2 Pdi) stimuli. We used bilateral anterior supramaximal magnetic phrenic nerve stimulation and a digital subtraction technique to obtain the T2 Pdi at interstimulus intervals of 999, 100, 50, 33, and 10 ms in eight normal subjects at lung volumes between residual volume and total lung capacity. The reduction in T2 Pdi that we observed as lung volume increased was greatest at long interstimulus intervals, whereas the T2 Pdi obtained with short interstimulus intervals remained relatively stable over the 50% of vital capacity around functional residual capacity. For all interstimulus intervals, the total pressure produced by the pair decreased as a function of increasing lung volume. These data demonstrate that, in the human diaphragm, hyperinflation has a disproportionately severe effect on the summation of pressure responses elicited by low-frequency stimulations; this effect is distinct from and additional to the known length-tension relationship. PMID:9760323

  2. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  3. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  4. Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.

    PubMed

    Kramer, W; Burger, H J; Arion, W J; Corsiero, D; Girbig, F; Weyland, C; Hemmerle, H; Petry, S; Habermann, P; Herling, A

    1999-05-01

    The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver. PMID:10215602

  5. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  6. SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression.

    PubMed

    Xu, Yan; Hu, Brian; Alnajm, Sammy S; Lu, Yin; Huang, Yangxin; Allen-Gipson, Diane; Cheng, Feng

    2015-01-01

    Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information

  7. CYLD Promotes TNF-α-Induced Cell Necrosis Mediated by RIP-1 in Human Lung Cancer Cells

    PubMed Central

    Lin, Xing; Chen, Qianshun; Huang, Chen

    2016-01-01

    Lung cancer is one of the most common cancers in the world. Cylindromatosis (CYLD) is a deubiquitination enzyme and contributes to the degradation of ubiquitin chains on RIP1. The aim of the present study is to investigate the levels of CYLD in lung cancer patients and explore the molecular mechanism of CYLD in the lung cancer pathogenesis. The levels of CYLD were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis and necrosis were determined by FACS assay. The results demonstrated that low levels of CYLD were detected in clinical lung carcinoma specimens. Three pairs of siRNA were used to knock down the endogenous CYLD in lung cancer cells. Knockdown of CYLD promoted cell proliferation of lung cancer cells. Otherwise overexpression of CYLD induced TNF-α-induced cell death in A549 cells and H460 cells. Moreover, CYLD-overexpressed lung cancer cells were treated with 10 μM of z-VAD-fmk for 12 hours and the result revealed that TNF-α-induced cell necrosis was significantly enhanced. Additionally, TNF-α-induced cell necrosis in CYLD-overexpressed H460 cells was mediated by receptor-interacting protein 1 (RIP-1) kinase. Our findings suggested that CYLD was a potential target for the therapy of human lung cancers. PMID:27738385

  8. Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Wasowicz, Wojciech

    2007-07-01

    Available data indicate that there are significant differences in individual susceptibility to lung cancer within the human population. It is believed to be underlie by inherited genetic predispositions related to the genetic polymorphism of several enzymes involved in the detoxification and xenobiotic metabolism. In this review, we collect and discuss the evidence reported up to date on the association between lung cancer and genetic polymorphism of cytochromes P450, N-acetyltransferase, glutathione S-transferases, microsomal epoxide hydrolase, NAD(P)H:quinone oxidoreductase, myeloperoxidase and glutathione peroxidase. All these genes might appear to be candidates for lung cancer susceptibility genes, nevertheless, the present state of the art still offers only a limited explanation of the link between such polymorphisms and increased risk of lung cancer. PMID:17337085

  9. Metabolism of the carcinogen alpha-asarone in liver microsomes.

    PubMed

    Cartus, Alexander T; Schrenk, Dieter

    2016-01-01

    Alpha-asarone (1) is a naturally occurring phenylpropene found in several plants, e.g. Acorus calamus. 1-containing plant materials and essential oils thereof are used for flavoring foods and in many phytopharmaceuticals. 1 has been claimed to have positive pharmacological effects, however, it is carcinogenic in male mice (liver) and probably genotoxic. Since the metabolic pathways of 1 have not been investigated and its carcinogenic mode of action is unknown, we investigated the metabolism of 1 in liver microsomes of rat, bovine, porcine, and human origin using HPLC-DAD and LC-ESI-MS/MS and derived kinetic data on the metabolite formation. The main metabolic pathway was the side-chain hydroxylation leading to (E)-3'-hydroxyasarone (2). Epoxidation of 1 presumably led to (E)-asarone-1',2'-epoxide (4) which instantly hydrolyzed to form erythro- and threo-configured diols (5b+5a). As a minor reaction O-demethylation of 1 was observed. The metabolite formation showed little species-specific differences with the exception of porcine liver microsomes for which the formation of diols 5b+5a exceeded the formation of alcohol 2. The kinetic parameters imply a dependence of the pattern of metabolite formation from substrate concentration. On the basis of our results and earlier findings we hypothesize the genotoxic epoxide 4 being the ultimate carcinogen metabolically formed from 1.

  10. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  11. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development

    PubMed Central

    Williams, Andrew E.; Moschos, Sterghios A.; Perry, Mark M.; Barnes, Peter J.; Lindsay, Mark A.

    2008-01-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding genes that regulate the translation of target mRNA. More than 300 miRNAs have now been discovered in humans, although the function of most is still unknown. A highly sensitive, semi-quantitative RT-PCR method was utilised to reveal the differential expression of a number of miRNAs during the development of both mouse and human lung. Of note was the upregulation in neonatal mouse and fetal human lung of a maternally imprinted miRNA cluster located at human chromosome 14q32.21 (mouse chromosome 12F2), which includes the miR-154 and miR-335 families and is situated within the Gtl2-Dio3 domain. Conversely, several miRNAs were upregulated in adult compared to neonatal/fetal lung including miR-29a and miR-29b. Differences in the spatial expression patterns of miR-154, miR-29a and miR-26a was demonstrated using in situ hybridisation of mouse neonatal and adult tissue using miRNA-specific LNA probes. Interestingly, miR-154 appeared to be localised to the stroma of fetal but not adult lungs. The overall expression profile was similar for mouse and human tissue suggesting evolutionary conservation of miRNA expression during lung development and demonstrating the importance of maternally imprinted miRNAs in the developmental process. PMID:17191223

  12. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer.

    PubMed

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-10-13

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.

  13. In Vitro Drug Metabolism Using Liver Microsomes.

    PubMed

    Knights, Kathleen M; Stresser, David M; Miners, John O; Crespi, Charles L

    2016-01-01

    Knowledge of the metabolic stability of newly discovered drug candidates eliminated by metabolism is essential for predicting the pharmacokinetic (PK) parameters that underpin dosing and dosage frequency. Further, characterization of the enzyme(s) responsible for metabolism (reaction phenotyping) allows prediction, at least at the qualitative level, of factors (including metabolic drug-drug interactions) likely to alter the clearance of both new chemical entities (NCEs) and established drugs. Microsomes are typically used as the enzyme source for the measurement of metabolic stability and for reaction phenotyping because they express the major drug-metabolizing enzymes cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), along with others that contribute to drug metabolism. Described in this unit are methods for microsome isolation, as well as for the determination of metabolic stability and metabolite formation (including kinetics). © 2016 by John Wiley & Sons, Inc. PMID:27636111

  14. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  15. Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

    PubMed Central

    Shi, Jianxin; Marconett, Crystal N.; Duan, Jubao; Hyland, Paula L.; Li, Peng; Wang, Zhaoming; Wheeler, William; Zhou, Beiyun; Campan, Mihaela; Lee, Diane S.; Huang, Jing; Zhou, Weiyin; Triche, Tim; Amundadottir, Laufey; Warner, Andrew; Hutchinson, Amy; Chen, Po-Han; Chung, Brian S.I.; Pesatori, Angela C.; Consonni, Dario; Bertazzi, Pier Alberto; Bergen, Andrew W.; Freedman, Mathew; Siegmund, Kimberly D.; Berman, Benjamin P.; Borok, Zea; Chatterjee, Nilanjan; Tucker, Margaret A.; Caporaso, Neil E.; Chanock, Stephen J.; Laird-Offringa, Ite A.; Landi, Maria Teresa

    2014-01-01

    The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome. PMID:24572595

  16. Ferromagnetic contamination in the lungs and other organs of the human body.

    PubMed

    Cohen, D

    1973-05-18

    Contaminating particles which are ferromagnetic have been found in the human body. Their distribution was measured by applying an external magnetic field to the torso for a short time, and then, in a shielded room, mapping the steady magnetic field around the torso due to the magnetized particles. Maps of subjects show various distributions, including particles in the stomach from food cans and in the lungs from are welding. The fields from these two sources are strong enough to be detected with a flux-gate magnetometer, without the need for a shielded room. This simplicity of detection of larger amounts of ferromagnetic contamination suggests that this method may be used in two applications: in detecting the presence of large amounts of asbestos (ferromagnetic and harmful) in the lungs of asbestos workers, and in tests of the condition of the lung where FE(3)O(4) dust (ferromagnetic and harmless) would be used as an inhaled tracer material. PMID:4702572

  17. Three Dimensional Imaging of Paraffin Embedded Human Lung Tissue Samples by Micro-Computed Tomography

    PubMed Central

    Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.

    2015-01-01

    Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902

  18. Human papillomavirus infection in lung vs. oral squamous cell carcinomas: a polymerase chain reaction study.

    PubMed

    Halimi, M; Morshedi Asl, S

    2011-06-01

    The role of Human Papillomavirus (HPV) has been suspected in pathogenesis of various malignancies; however, the available data are not conclusive. This study aimed to determine and compare the frequency of HPV infection in oral and lung Squamous Cell Carcinoma (SCC) by a sensitive method. Sixty specimens of oral and lung SCC (30 cases each one) were reevaluated in Tabriz Imam Reza Centre in a 24 month period. Following genomic DNA extract, the Polymerase Chain Reaction (PCR) amplification was performed in presence of specific MY11 and MY09 primers for HPV infection. Three cervical specimens and a combination of PCR solution lacking DNA plus healthy persons' DNA samples were employed as positive and negative controls, respectively. The oral group was significantly older than the lung group (68.90 vs. 56.67 y, p < 0.001) with more males in the latter (83.3 vs. 60%; p = 0.04). Percentages of HPV infection in the oral and lung groups were comparable (20 vs. 10%, respectively; p = 0.47). Majority of patients with HPV infection were older than 60 years (88.9%) or male (88.9%). In the oral group, all these cases were well differentiated and the majority was of lower lip origin (83.3%). In the lung group, 66.7% of these specimens were moderately differentiated and the origin was bronchus in all cases. In conclusion, the rate of HPV infection in lung and oral SCC samples is rather lower than the previous reports in the literature. This rate is apparently higher in the oral than the lung SCC specimens. PMID:22235505

  19. Biopersistence of man-made vitreous silicate fibers in the human lung.

    PubMed Central

    Sébastien, P

    1994-01-01

    There is now a substantial body of experimental data on the pulmonary biopersistence of man-made vitreous silicate fibers (MMVSF), but human data are seriously lacking. Our knowledge in this field is essentially limited to a few reports of measurements of fibers retained in lung tissue samples taken at autopsy from workers manufacturing these products. Three types of exposure were studied: fibrous glass, mineral wool, and refractory ceramic fibers. Overall, the available data do not provide evidence for substantial long-term retention of fibers in the human lung after occupational exposure to MMVSF dusts. A word of caution, however; the amount of data supporting the previous statement is much greater for fibrous glass than for either mineral wool or refractory ceramic fibers. There is no human data on the key question of the kinetics of pulmonary clearance of inhaled MMVSF. PMID:7882938

  20. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  1. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    SciTech Connect

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin . E-mail: pplin@nhri.org.tw

    2007-05-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.

  2. A preliminary study of the effect of guaiphenesin on mucociliary clearance from the human lung

    PubMed Central

    Thomson, M. L.; Pavia, D.; McNicol, M. W.

    1973-01-01

    Thomson, M. L., Pavia, D., and McNicol, M. W. (1973).Thorax, 28, 742-747. A preliminary study of the effect of guaiphenesin on mucociliary clearance from the human lung. The effect of guaiphenesin (administered as Robitussin1) on mucociliary clearance has been assessed in 15 subjects from the rate of removal from the lung of previously inhaled radioactive tracer particles. The guaiphenesin was compared with a positive control preparation consisting of the guaiphenesin vehicle only in two double-blind crossover trials. The first trial examined eight aged `healthy' volunteer subjects and the second trial examined seven chronic bronchitic patients. Sequential gamma counts were made from the whole lung by scintillation counters for 6 hours after inhalation and the chest was also scanned rectilinearly. In the first 5 hours after inhalation the mean rate of removal of particles and therefore of secretions was faster after guaiphenesin than after the control preparation. This difference was not statistically significant in the healthy volunteers but achieved significance (P <0·05) in the chronic bronchitic patients. Lung scans after inhaling the tracer aerosol indicated that on average the initial penetration of the particles into the lung was similar in the guaiphenesin and control runs. The faster clearance after guaiphenesin was unlikely to be due to bulk movements of mucus caused by coughing since the mean frequency of coughing during the experiment was somewhat less after the drug. PMID:4595814

  3. 4DCT-based assessment of regional airflow distribution in healthy human lungs during tidal breathing

    NASA Astrophysics Data System (ADS)

    Choi, Jiwoong; Jahani, Nariman; Choi, Sanghun; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    Nonlinear dynamics of regional airflow distribution in healthy human lungs are studied with four-dimensional computed tomography (4DCT) quantitative imaging of four subjects. During the scanning session, subjects continuously breathed with tidal volumes controlled by the dual piston system. For each subject, 10 instantaneous volumetric image data sets (5 inspiratory and 5 expiratory phases) were reconstructed. A mass-preserving image registration was then applied to pairs of these image data to construct a breathing lung model. Regional distributions of local flow rate fractions are computed from time-varying local air volumes. The 4DCT registration-based method provides the link between local and global air volumes of the lung, allowing derivation of time-varying regional flow rates during the tidal breathing for computational fluid dynamics analysis. The local flow rate fraction remains greater in the lower lobes than in the upper lobes, being qualitatively consistent with those derived from three static CT (3SCT) images (Yin et al. JCP 2013). However, unlike 3SCT, the 4DCT data exhibit lung hysteresis between inspiration and expiration, providing more sensitive measures of regional ventilation and lung mechanics. NIH Grants U01-HL114494, R01-HL094315 and S10-RR022421.

  4. Chemoprevention of Lung Cancer: Prospects and Disappointments in Human Clinical Trials

    PubMed Central

    Greenberg, Alissa K.; Tsay, Jun-Chieh; Tchou-Wong, Kam-Meng; Jorgensen, Anna; Rom, William N.

    2013-01-01

    Decreasing the risk of lung cancer, or preventing its development in high-risk individuals, would have a huge impact on public health. The most effective means to decrease lung cancer incidence is to eliminate exposure to carcinogens. However, with recent advances in the understanding of pulmonary carcinogenesis and the identification of intermediate biomarkers, the prospects for the field of chemoprevention research have improved dramatically. Here we review the most recent research in lung cancer chemoprevention—focusing on those agents that have been investigated in human clinical trials. These agents fall into three major categories. First, oxidative stress plays an important role in pulmonary carcinogenesis; and therefore, antioxidants (including vitamins, selenium, green tea extracts, and isothiocyanates) may be particularly effective in preventing the development of lung cancer. Second, inflammation is increasingly accepted as a crucial factor in carcinogenesis, and many investigators have focused on anti-inflammatory agents, such as glucocorticoids, NSAIDs, statins, and PPARγ agonists. Finally, the PI3K/AKT/mTOR pathway is recognized to play a central role in tobacco-induced carcinogenesis, and inhibitors of this pathway, including myoinositol and metformin, are promising agents for lung cancer prevention. Successful chemoprevention will likely require targeting of multiple pathways to carcinogenesis—both to minimize toxicity and maximize efficacy. PMID:24216701

  5. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  6. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    SciTech Connect

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.

  7. Blood flow in capillaries of the human lung.

    PubMed

    Haber, Shimon; Clark, Alys; Tawhai, Merryn

    2013-10-01

    A novel model for the blood system is postulated focusing on the flow rate and pressure distribution inside the arterioles and venules of the pulmonary acinus. Based upon physiological data it is devoid of any ad hoc constants. The model comprises nine generations of arterioles, venules, and capillaries in the acinus, the gas exchange unit of the lung. Blood is assumed incompressible and Newtonian and the blood vessels are assumed inextensible. Unlike previous models of the blood system, the venules and arterioles open up to the capillary network in numerous locations along each generation. The large number of interconnected capillaries is perceived as a porous medium in which the flow is macroscopically unidirectional from arterioles to venules openings. In addition, the large number of capillaries extending from each arteriole and venule allows introduction of a continuum theory and formulation of a novel system of ordinary, nonlinear differential equations which governs the blood flow and pressure fields along the arterioles, venules, and capillaries. The solution of the differential equations is semianalytical and requires the inversion of three diagonal, 9 × 9 matrices only. The results for the total flow rate of blood through the acinus are within the ballpark of physiological observations despite the simplifying assumptions used in our model. The results also manifest that the contribution of the nonlinear convection term of the Navier-Stokes equations has little effect (less than 2%) on the total blood flow entering/leaving the acinus despite the fact that the Reynolds number is not much smaller than unity at the proximal generations. The model makes it possible to examine some pathological cases. Here, centri-acinar and distal emphysema were investigated yielding a reduction in inlet blood flow rate.

  8. Differential Transcriptomic Analysis of Spontaneous Lung Tumors in B6C3F1 Mice: Comparison to Human Non–Small Cell Lung Cancer

    PubMed Central

    Pandiri, Arun R.; Sills, Robert C.; Ziglioli, Vincent; Ton, Thai-Vu T.; Hong, Hue–Hua L.; Lahousse, Stephanie A.; Gerrish, Kevin E.; Auerbach, Scott S.; Shockley, Keith R.; Bushel, Pierre R.; Peddada, Shyamal D.; Hoenerhoff, Mark J.

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in people and is mainly due to environmental factors such as smoking and radon. The National Toxicology Program (NTP) tests various chemicals and mixtures for their carcinogenic hazard potential. In the NTP chronic bioassay using B6C3F1 mice, the incidence of lung tumors in treated and control animals is second only to the liver tumors. In order to study the molecular mechanisms of chemically induced lung tumors, an understanding of the genetic changes that occur in spontaneous lung (SL) tumors from untreated control animals is needed. The authors have evaluated the differential transcriptomic changes within SL tumors compared to normal lungs from untreated age-matched animals. Within SL tumors, several canonical pathways associated with cancer (eukaryotic initiation factor 2 signaling, RhoA signaling, PTEN signaling, and mammalian target of rapamycin signaling), metabolism (Inositol phosphate metabolism, mitochondrial dysfunction, and purine and pyramidine metabolism), and immune responses (FcγR-mediated phagocytosis, clathrin-mediated endocytosis, interleukin 8 signaling, and CXCR4 signaling) were altered. Meta-analysis of murine SL tumors and human non–small cell lung cancer transcriptomic data sets revealed a high concordance. These data provide important information on the differential transcriptomic changes in murine SL tumors that will be critical to our understanding of chemically induced lung tumors and will aid in hazard analysis in the NTP 2-year carcinogenicity bioassays. PMID:22688403

  9. Sinomenine inhibits A549 human lung cancer cell invasion by mediating the STAT3 signaling pathway

    PubMed Central

    Jiang, Shulong; Gao, Yebo; Hou, Wei; Liu, Rui; Qi, Xin; Xu, Xia; Li, Jie; Bao, Yanju; Zheng, Honggang; Hua, Baojin

    2016-01-01

    Increasing evidence suggests that the failure of lung cancer treatment may occur as a result of tumor invasion and metastasis. Signal transducer and activator of transcription 3 (STAT3), an epithelial-mesenchymal transition-inducing transcription factor, is a key signaling molecule involved in the proliferation, apoptosis, invasion and metastasis of tumor cells. Sinomenine is an alkaloid compound with an antineoplastic potential against a variety of cancer cells. The aim of the present study was to assess the antitumor mechanisms of sinomenine in the A549 human lung cancer cell line. The results demonstrated that sinomenine manifested dose-dependent cytotoxicity and induced apoptosis in A549 cells. The protein expression of Janus kinase 2, STAT3, phosphorylated-STAT3, Snail, N-cadherin and vimentin decreased in sinomenine-treated cells, while E-cadherin protein expression increased. The regulation of STAT3, N-cadherin and E-cadherin by sinomenine was further confirmed by reverse transcription-quantitative polymerase chain reaction and immunofluorescent staining. It was demonstrated that sinomenine exerts inhibitory effects on A549 human lung cancer cell invasion, possibly through the inhibition of STAT3 signaling. These results provide a novel insight into the role of sinomenine in the treatment of non-small cell lung cancer. PMID:27446441

  10. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors.

    PubMed

    Politi, Katerina; Zakowski, Maureen F; Fan, Pang-Dian; Schonfeld, Emily A; Pao, William; Varmus, Harold E

    2006-06-01

    Somatic mutations in exons encoding the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are found in human lung adenocarcinomas and are associated with sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib. Nearly 90% of the EGFR mutations are either short, in-frame deletions in exon 19 or point mutations that result in substitution of arginine for leucine at amino acid 858 (L858R). To study further the role of these mutations in the initiation and maintenance of lung cancer, we have developed transgenic mice that express an exon 19 deletion mutant (EGFR(DeltaL747-S752)) or the L858R mutant (EGFR(L858R)) in type II pneumocytes under the control of doxycycline. Expression of either EGFR mutant leads to the development of lung adenocarcinomas. Two weeks after induction with doxycycline, mice that express the EGFR(L858R) allele show diffuse lung cancer highly reminiscent of human bronchioloalveolar carcinoma and later develop interspersed multifocal adenocarcinomas. In contrast, mice expressing EGFR(DeltaL747-S752) develop multifocal tumors embedded in normal lung parenchyma with a longer latency. With mice carrying either EGFR allele, withdrawal of doxycycline (to reduce expression of the transgene) or treatment with erlotinib (to inhibit kinase activity) causes rapid tumor regression, as assessed by magnetic resonance imaging and histopathology, demonstrating that mutant EGFR is required for tumor maintenance. These models may be useful for developing improved therapies for patients with lung cancers bearing EGFR mutations.

  11. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  12. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  13. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  14. Expression and Localization of Lung Surfactant Proteins in Human Testis

    PubMed Central

    Wagner, Walter; Matthies, Cord; Ruf, Christian; Hartmann, Arndt; Garreis, Fabian; Paulsen, Friedrich

    2015-01-01

    Background Surfactant proteins (SPs) have been described in various tissues and fluids including tissues of the nasolacrimal apparatus, airways and digestive tract. Human testis have a glandular function as a part of the reproductive and the endocrine system, but no data are available on SPs in human testis and prostate under healthy and pathologic conditions. Objective The aim of the study was the detection and characterization of the surfactant proteins A, B, C and D (SP-A, SP-B, SP-C, SP-D) in human testis. Additionally tissue samples affected by testicular cancer were investigated. Results Surfactant proteins A, B, C and D were detected using RT-PCR in healthy testis. By means of Western blot analysis, these SPs were detected at the protein level in normal testis, seminoma and seminal fluid, but not in spermatozoa. Expression of SPs was weaker in seminoma compared to normal testicular tissue. SPs were localized in combination with vimentin immunohistochemically in cells of Sertoli and Leydig. Conclusion Surfactant proteins seem to be inherent part of the human testis. By means of physicochemical properties the proteins appear to play a role during immunological and rheological process of the testicular tissue. The presence of SP-B and SP-C in cells of Sertoli correlates with their function of fluid secretion and may support transportation of spermatozoa. In seminoma the expression of all SP's was generally weaker compared to normal germ cells. This could lead to a reduction of immunomodulatory and rheology processes in the germ cell tumor. PMID:26599233

  15. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  16. Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non small cell lung cancer.

    PubMed

    Joh, Joongho; Jenson, A Bennett; Moore, Grace D; Rezazedeh, Arash; Slone, Stephen P; Ghim, Shin-je; Kloecker, Goetz H

    2010-12-01

    Certain types of human papillomavirus (HPV) induce cancers, especially cervical cancers in women. A meta-analysis of the literature suggests that HPV is also associated with 20%-25% of non small cell lung carcinoma (NSCLC). Merkel cell Polyomavirus (MCPyV) causes most Merkel cell carcinomas in immunocompromised hosts, and is associated with some squamous carcinomas of skin in immunocompetent individuals. Since both oncogenic viruses appear to involve the tonsils and, therefore, have clear access to the lungs, we examined that the possible association of HPV and MCPyV infections with lung cancers, especially, NSCLC. DNAs were extracted from 51 frozen tissues from 30 lung cancer patients, and examined for the presence of HPV and MCPyV by PCR and DNA sequencing analysis. Clinical data was correlated with the viral status. HPVs were only detected in 5 adenocarcinomas (16.7% of all lung cancers examined). Three were positive for HPV-16, 1 for HPV-11 and 1 had an unknown HPV type DNA. None was identified in benign tissue. MCPyV DNA was detected in 5 NSCLCs (16.7%). Three of the 5 were identified in squamous carcinomas, 1 in adenocarcinoma, and 1 in an unspecified NSCLC. Two additional samples were positive for MCPyV DNA within benign adjacent lung tissue only. In one adenocarcinoma, HPV-11 was identified in an adenocarcinoma, and MCPyV DNA was detected in the adjacent "benign" tissue. HPV and MCPyV were directly associated with 33.3% of NSCLC. Further studies are necessary to determine if polyomavirus and papillomavirus are necessary risk factors for some cases of NSCLC.

  17. Distribution of particulate matter and tissue remodeling in the human lung.

    PubMed Central

    Pinkerton, K E; Green, F H; Saiki, C; Vallyathan, V; Plopper, C G; Gopal, V; Hung, D; Bahne, E B; Lin, S S; Ménache, M G; Schenker, M B

    2000-01-01

    We examined the relationship between intrapulmonary particle distribution of carbonaceous and mineral dusts and remodeling of the airways along anatomically distinct airway paths in the lungs of Hispanic males from the central valley of California. Lung autopsy specimens from the Fresno County Coroner's Office were prepared by intratracheal instillation of 2% glutaraldehyde at 30 cm H(2)O pressure. Two distinct airway paths into the apico-posterior and apico-anterior portions of the left upper lung lobe were followed. Tissue samples for histologic analysis were generally taken from the intrapulmonary second, fourth, sixth, and ninth airway generations. Parenchymal tissues beyond the 12th airway generation of each airway path were also analyzed. There was little evidence of visible particle accumulation in the larger conducting airways (generations 2-6), except in bronchial-associated lymphoid tissues and within peribronchial connective tissue. In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying degrees of wall thickening and remodeling. Walls with marked thickening contained moderate to heavy amounts of carbonaceous and mineral dusts. Wall thickening was associated with increases in collagen and interstitial inflammatory cells, including dust-laden macrophages. These changes were significantly greater in first-generation respiratory bronchioles compared to second- and third-generation respiratory bronchioles. These findings suggest that accumulation of carbonaceous and mineral dust in the lungs is significantly affected by lung anatomy with the greatest retention in centers of lung acini. Furthermore, there is significant remodeling of this transitional zone in humans exposed to ambient particulate matter. PMID:11102298

  18. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  19. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    PubMed

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  20. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity

    PubMed Central

    Sangar, Michelle C; Bansal, Seema

    2010-01-01

    Importance of the field Microsomal cytochrome P450s are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. Areas covered in this review This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. What the readers will gain A comprehensive review of the literature on drug metabolism in the mitochondrial compartment, and their potential for inducing mitochondrial dysfunction. Take home message Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity. PMID:20629582

  1. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices

    SciTech Connect

    Switalla, S.; Lauenstein, L.; Prenzler, F.; Knothe, S.; Foerster, C.; Fieguth, H.-G.; Pfennig, O.; Schaumann, F.; Martin, C.; Guzman, C.A.; Ebensen, T.; Mueller, M.; Hohlfeld, J.M.; Krug, N.; Braun, A.; Sewald, K.

    2010-08-01

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1{beta}, MIP-1{beta}, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-{gamma}, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation > 0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1{beta}, and IFN-{gamma}. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans.

  2. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce

    2006-11-01

    One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer. PMID:17112237

  3. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    SciTech Connect

    Pechurskaya, Tatiana A. . E-mail: usanov@iboch.bas-net.by

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.

  4. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells.

    PubMed

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  5. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium.

    PubMed

    Viswanathan, P; Ephstein, Y; Garcia, J G N; Cho, M; Dudek, S M

    2016-09-16

    Vascular integrity is primarily determined by endothelial cell (EC) cytoskeletal structure that is differentially regulated by various stimuli. In this study, atomic force microscopy (AFM) was used to characterize structural and mechanical properties in the cytoskeleton of cultured human pulmonary artery EC (HPAEC) and human lung microvascular EC (HLMVEC) by determining elastic properties (Young's modulus) in response to endogenous barrier protective agents sphingosine 1-phosphate (S1P) and hepatocyte growth factor (HGF), or the barrier disruptive molecule thrombin. Initial studies in unstimulated cells indicate higher baseline peripheral elastic modulus values in HPAEC (mean 2.9 KPa) than in HLMVEC (1.8 KPa). After 30 min of stimulation, S1P induced the highest Young's modulus increase (6.1 KPa) compared to the other barrier enhancing stimuli, HGF (5.8 KPa) and the pharmaceutical agent and S1P analog FTY720 (4.1 KPa). In contrast, the barrier disruptive agent thrombin decreased values from 2.5 KPa to 0.7 KPa depending on the cell type and treatment time. AFM topographical imaging supports these quantitative biophysical data regarding differential peripheral elastic properties in EC. Overall, these AFM studies provide novel insights into the biomechanical properties of human lung EC that regulate vascular barrier function and have potential applicability to pathophysiologic vascular leak syndromes such as acute lung injury. PMID:27473658

  6. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  7. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells

    PubMed Central

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S.; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  8. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells.

    PubMed

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections.

  9. Metabolism of phenanthrene by brown bullhead liver microsomes.

    PubMed

    Pangrekar, Jyotsna; Kole, Panna L; Honey, Sangeet A; Kumar, Subodh; Sikka, Harish C

    2003-09-10

    We have investigated the regio- and stereoselective metabolism of phenanthrene by the liver microsomes of brown bullhead (Ameriurus nebulosus), a bottom dwelling fish species. The liver microsomes from untreated and 3-methylcholanthrene (3-MC)-treated brown bullheads metabolized phenanthrene at a rate of 14.1 and 20.7 pmol/mg protein/min, respectively, indicating that the hydrocarbon is a rather poor substrate for bullhead liver microsomes contrary to what has been reported for rat liver microsomes. The major phenanthrene metabolites formed by liver microsomes from untreated and 3-MC-treated bullheads included benzo-ring 1,2-dihydrodiol (25.3 and 11.6%), K-region 9,10-dihydrodiol (9.6 and 9.6%), and phenols (40.5 and 54.5%). The 3,4-dihydrodiol represented a minor proportion of the total phenanthrene metabolites. The low proportion of the 9,10-dihydrodiol formed by both control and 3-MC-treated bullhead microsomes sharply contrasts the previous data reported for the corresponding rat liver microsomes which metabolized phenanthrene predominantly to its 9,10-dihydrodiol representing 76.6 and 67.1%, respectively of the total metabolites. Liver microsomes from 3-MC-treated bullheads, like rat liver microsomes, were more selective in their attack at the 1,2-position of the benzo-ring than at the 3,4-position of the benzo-ring. Phenanthrene 1,2-dihydrodiol and 3,4-dihydrodiol formed by liver microsomes from both control and 3-MC-treated bullheads consisted predominantly of their R,R enantiomer. Phenanthrene, compared with benzo[a]pyrene and chrysene, is metabolized by bullhead liver microsomal enzymes to its benzo-ring dihydrodiols with a relatively low degree of stereoselectivity.

  10. Aerosolized human extracellular superoxide dismutase prevents hyperoxia-induced lung injury.

    PubMed

    Yen, Chih-Ching; Lai, Yi-Wen; Chen, Hsiao-Ling; Lai, Cheng-Wei; Lin, Chien-Yu; Chen, Wei; Kuan, Yu-Ping; Hsu, Wu-Huei; Chen, Chuan-Mu

    2011-01-01

    An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute

  11. An alternatively spliced surfactant protein B mRNA in normal human lung: disease implication.

    PubMed Central

    Lin, Z; Wang, G; Demello, D E; Floros, J

    1999-01-01

    We identified an alternatively-spliced surfactant protein B (SP-B) mRNA from normal human lung with a 12 nt deletion at the beginning of exon 8. This deletion causes a loss of four amino acids in the SP-B precursor protein. Sequence comparison of the 3' splice sites reveals only one difference in the frequency of U/C in the 11 predominantly-pyrimidine nucleotide tract, 73% for the normal and 45% for the alternatively-spliced SP-B mRNA (77-99% for the consensus sequence). Analysis of SP-B mRNA in lung indicates that the abundance of the alternatively-spliced form is very low and varies among individuals. Although the relative abundance of the deletion form of SP-B mRNA remains constant among normal lungs, it is found with relatively higher abundance in the lungs of some individuals with diseases such as congenital alveolar proteinosis, respiratory distress syndrome, bronchopulmonary dysplasia, alveolar capillary dysplasia and hypophosphatasia. This observation points to the possibility that the alternative splicing is a potential regulatory mechanism of SP-B and may play a role in the pathogenesis of disease under certain circumstances. PMID:10493923

  12. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy.

  13. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications

    PubMed Central

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  14. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications.

    PubMed

    Vilema-Enríquez, Gabriela; Arroyo, Aurora; Grijalva, Marcelo; Amador-Zafra, Ricardo Israel; Camacho, Javier

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  15. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury.

    PubMed

    Moodley, Yuben; Sturm, Marian; Shaw, Kathryn; Shimbori, Chiko; Tan, Dino B A; Kolb, Martin; Graham, Ruth

    2016-07-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC) have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC) can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n=6) to intravenous oleic acid (OA) injury, ventilation and hMSC infusion, while the controls (n=5) had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1h after the administration of OA. The animals were monitored for additional 4h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB), a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p=0.04). There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p=0.063). There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.

  16. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage.

    PubMed Central

    Hunninghake, G. W.; Gadek, J. E.; Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1979-01-01

    Bronchoalveolar lavage is an invaluable means of accurately evaluating the inflammatory and immune processes of the human lung. Although lavage recovers only those cells and proteins present on the epithelial surface of the lower respiratory tract, comparison with open lung biopsies shows that these constituents are representative of the inflammatory and immune systems of the alveolar structures. With the use of these techniques, sufficient materials are obtained from normal individuals to allow characterization of not only the types of cells and proteins present but their functions as well. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease. Lavage methods have been used to characterize inflammatory and immune processes of the lower respiratory tract in destructive, infectious, neoplastic, and interstitial disorders. From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders. (Am J Pathol 97:149--206, 1979). Images Figure 9 Figure 1 Figure 2 Figure 10 Figure 7 Figure 8 Figure 4 Figure 5 Figure 6 Figure 3 PMID:495693

  17. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer

    PubMed Central

    Eruslanov, Evgeniy B.; Bhojnagarwala, Pratik S.; Quatromoni, Jon G.; Stephen, Tom Li; Ranganathan, Anjana; Deshpande, Charuhas; Akimova, Tatiana; Vachani, Anil; Litzky, Leslie; Hancock, Wayne W.; Conejo-Garcia, José R.; Feldman, Michael; Albelda, Steven M.; Singhal, Sunil

    2014-01-01

    Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%–25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62LloCD54hi) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses. PMID:25384214

  18. Interactions among Cytochromes P450 in Microsomal Membranes

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Halpert, James R.

    2015-01-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  19. Radon dosimetry based on the depth distribution of nuclei in human and rat lungs

    SciTech Connect

    Mercer, R.R.; Russell, M.L.; Crapo, J.D. )

    1991-07-01

    Calculation of the absorbed dose by different lung cells is necessary for predicting the critical cells that are subject to injury from inhaled Rn and other alpha-particle sources. The absorbed dose was determined for cells in the airways of human and rat lungs, based on airway epithelial thickness and on cell cytoplasm and nuclear volume density as a function of depth from the luminal surface of the airway epithelium. The thickness of the stratified columnar epithelium of human airways varied from 57.8 micron in bronchi to 9.8 microns in bronchioles. The cell populations of all bronchi in human lungs were comparable. The cell populations of trachea and intrapulmonary airways in rats, however, were significantly different. Basal cell populations in rat trachea and human bronchi were similar and formed a nearly continuous layer. In rat bronchi, basal cells were not present in significant numbers. Measurements of epithelial thickness and volume density were used to estimate the absorbed dose for an alpha-particle source (214Po or 218Po) distributed uniformly in the mucus with an equivalent activity of 1 dpm per cm2 of epithelial surface. The following model predictions of dose to human bronchial epithelial cell nuclei for a 218Po alpha-particle source are provided in units of nanogray (nGy) for specific cell types: secretory 158, preciliated 114, ciliated 44, goblet 86, basal 78, and indeterminate cell nuclei 73. The absorbed dose to specific types of rat bronchial epithelial cell nuclei was also predicted: secretory 237, precillated 216, ciliated 203, goblet 204, basal 200, and indeterminate cell nuclei 166 nGy. These and other results indicate that human and rat airway dosimetry have significant differences that may contribute to the differences in cancer cell induction between the two species.

  20. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  1. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    NASA Technical Reports Server (NTRS)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  2. Effect of cigarette smoke condensate on gene promoter methylation in human lung cells

    PubMed Central

    2014-01-01

    Background In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. Methods Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 μg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 μg/ml CSC. Results Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 μg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. Conclusions Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings. PMID:25214829

  3. Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice

    PubMed Central

    Liou, Chian-Jiun; Lai, You-Rong; Chen, Ya-Ling; Chang, Yi-Hsien; Li, Zih-Ying; Huang, Wen-Chung

    2016-01-01

    Matrine is isolated from Sophora flavescens and shows anti-inflammatory effects in macrophages. Here we evaluated matrine's suppressive effects on cyclooxygenase 2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) expressions in lipopolysaccharide- (LPS-) stimulated human lung epithelial A549 cells. Additionally, BALB/c mice were given various matrine doses by intraperitoneal injection, and then lung injury was induced via intratracheal instillation of LPS. In LPS-stimulated A549 cells, matrine inhibited the productions of interleukin-8 (IL-8), monocyte chemotactic protein-1, and IL-6 and decreased COX-2 expression. Matrine treatment also decreased ICAM-1 protein expression and suppressed the adhesion of neutrophil-like cells to inflammatory A549 cells. In vitro results demonstrated that matrine significantly inhibited mitogen-activated protein kinase phosphorylation and decreased nuclear transcription factor kappa-B subunit p65 protein translocation into the nucleus. In vivo data indicated that matrine significantly inhibited neutrophil infiltration and suppressed productions of tumor necrosis factor-α and IL-6 in mouse bronchoalveolar lavage fluid and serum. Analysis of lung tissue showed that matrine decreased the gene expression of proinflammatory cytokines, chemokines, COX-2, and ICAM-1. Our findings suggest that matrine improved lung injury in mice and decreased the inflammatory response in human lung epithelial cells. PMID:26880863

  4. Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice.

    PubMed

    Liou, Chian-Jiun; Lai, You-Rong; Chen, Ya-Ling; Chang, Yi-Hsien; Li, Zih-Ying; Huang, Wen-Chung

    2016-01-01

    Matrine is isolated from Sophora flavescens and shows anti-inflammatory effects in macrophages. Here we evaluated matrine's suppressive effects on cyclooxygenase 2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) expressions in lipopolysaccharide- (LPS-) stimulated human lung epithelial A549 cells. Additionally, BALB/c mice were given various matrine doses by intraperitoneal injection, and then lung injury was induced via intratracheal instillation of LPS. In LPS-stimulated A549 cells, matrine inhibited the productions of interleukin-8 (IL-8), monocyte chemotactic protein-1, and IL-6 and decreased COX-2 expression. Matrine treatment also decreased ICAM-1 protein expression and suppressed the adhesion of neutrophil-like cells to inflammatory A549 cells. In vitro results demonstrated that matrine significantly inhibited mitogen-activated protein kinase phosphorylation and decreased nuclear transcription factor kappa-B subunit p65 protein translocation into the nucleus. In vivo data indicated that matrine significantly inhibited neutrophil infiltration and suppressed productions of tumor necrosis factor-α and IL-6 in mouse bronchoalveolar lavage fluid and serum. Analysis of lung tissue showed that matrine decreased the gene expression of proinflammatory cytokines, chemokines, COX-2, and ICAM-1. Our findings suggest that matrine improved lung injury in mice and decreased the inflammatory response in human lung epithelial cells.

  5. EGF receptor mutations in lung cancer: from humans to mice and maybe back to humans.

    PubMed

    Arteaga, Carlos L

    2006-06-01

    Deletions in exon 19 and nucleotide substitutions in exon 21 are the most common mutations of the EGFR (ErbB1) in NSCLC. These mutations endow the receptor with constitutive kinase activity. Most tumors expressing these mutants respond well to EGFR tyrosine kinase inhibitors, suggesting that they are dependent on mutant EGFR signaling. Two groups developed transgenic mice in which expression of these mutants is temporally induced in mouse lung. Mice expressing EGFR mutants develop bronchioloalveolar cancer and lung adenocarcinoma, which are highly sensitive to EGFR inhibitors. These mouse models provide important opportunities for studying the biology of NSCLC and the refinement of anti-EGFR therapies.

  6. The microsomal glucose-6-phosphatase enzyme of pancreatic islets.

    PubMed Central

    Waddell, I D; Burchell, A

    1988-01-01

    Microsomal fractions isolated from pancreatic islet cells were shown to contain high specific glucose-6-phosphatase activity. The islet-cell glucose-6-phosphatase enzyme has the same Mr (36,500), similar immunological properties and kinetic characteristics to the hepatic microsomal glucose-6-phosphatase enzyme. Images Fig. 1. Fig. 2. PMID:2849415

  7. A simple construction of electrochemical liver microsomal bioreactor for rapid drug metabolism and inhibition assays.

    PubMed

    Walgama, Charuksha; Nerimetla, Rajasekhara; Materer, Nicholas F; Schildkraut, Deniz; Elman, James F; Krishnan, Sadagopan

    2015-01-01

    In order to design a green microsomal bioreactor on suitably identified carbon electrodes, it is important to understand the direct electrochemical properties at the interfaces between various carbon electrode materials and human liver microsomes (HLM). The novelty of this work is on the investigation of directly adsorbed HLM on different carbon electrodes with the goal to develop a simple, rapid, and new bioanalytical platform of HLM useful for drug metabolism and inhibition assays. These novel biointerfaces are designed in this study by a one step adsorption of HLM directly onto polished basal plane pyrolytic graphite (BPG), edge plane pyrolytic graphite (EPG), glassy carbon (GC), or high-purity graphite (HPG) electrodes. The estimated direct electron transfer (ET) rate constant of HLM on the smooth GC surface was significantly greater than that of the other electrodes. On the other hand, the electroactive surface coverage and stability of microsomal films were greater on highly surface defective, rough EPG and HPG electrodes compared to the smooth GC and less defective hydrophobic BPG surfaces. The presence of significantly higher oxygen functionalities and flatness of the GC surface is attributed to favoring faster ET rates of the coated layer of thin HLM film compared to other electrodes. The cytochrome P450 (CYP)-specific bioactivity of the liver microsomal film on the catalytically superior, stable HPG surface was confirmed by monitoring the electrocatalytic conversion of testosterone to 6β-hydroxytestosterone and its inhibition by the CYP-specific ketoconazole inhibitor. The identification of optimal HPG and EPG electrodes to design biologically active interfaces with liver microsomes is suggested to have immense significance in the design of one-step, green bioreactors for stereoselective drug metabolite synthesis and drug metabolism and inhibition assays.

  8. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma.

    PubMed

    Viard-Leveugle, Isabelle; Veyrenc, Sylvie; French, Lars E; Brambilla, Christian; Brambilla, Elisabeth

    2003-10-01

    Fas (CD95) and its ligand FasL signal apoptosis and are involved in tissue homeostasis and the elimination of target cells by cytotoxic T cells. Corruption of this signalling pathway in tumour cells, for example by reduced Fas expression or increased FasL expression, can participate in tumour development and immune escape. The present study has analysed Fas/FasL expression and Fas death signalling function in vivo in lung tumour tissues [57 non-small cell lung carcinomas and 64 neuroendocrine lung tumours including small cell lung carcinoma (SCLC)] in comparison with normal lung tissue, and in vitro in neuroendocrine tumour cell lines in comparison with normal human bronchial epithelial cells. The Fas expression score was markedly decreased compared with normal lung tissue in 90% of the 121 lung tumours and was completely lost in 24%. The Fas staining pattern suggested cytoplasmic Fas expression in tumours, whereas membrane expression was observed in normal lung tissue. Loss of Fas at the cell surface was also shown in vitro by FACS analysis of neuroendocrine tumour cell lines and was concomitant with the resistance of tumour cells to FasL-mediated apoptosis according to in vitro cell viability. The lack of cell surface Fas expression in tumour cell lines resulted from the lack of intracellular Fas protein due to impaired Fas gene transcription. The FasL expression score was also decreased in most non-small cell lung carcinomas compared with normal bronchial cells, whereas 91% of SCLCs had higher expression than normal cells. FasL overexpression was related to advanced tumour stage as well as to a Fas/FasL ratio less than 1. It is concluded that a marked decrease in Fas expression may be part of lung tumourigenesis allowing tumour cells to escape from apoptosis. FasL overexpression in the context of Fas down-regulation in SCLC predicts the ability of SCLC cells to induce paracrine killing of Fas-expressing cytotoxic T cells. In lung tumours, Fas restoration may

  9. Carotenoid incorporation into microsomes: yields, stability and membrane dynamics.

    PubMed

    Socaciu, C; Jessel, R; Diehl, H A

    2000-12-01

    The carotenoids beta-carotene (BC), lycopene (LYC), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CTX) and astaxanthin (ASTA) have been incorporated into pig liver microsomes. Effective incorporation concentrations in the range of about 1-6 nmol/mg microsomal protein were obtained. A stability test at room temperature revealed that after 3 h BC and LYC had decayed totally whereas, gradually, CTX (46%), LUT (21%), ASTA (17%) and ZEA (5%) decayed. Biophysical parameters of the microsomal membrane were changed hardly by the incorporation of carotenoids. A small rigidification may occur. Membrane anisotropy seems to offer only a small tolerance for incorporation of carotenoids and seems to limit the achievable incorporation concentrations of the carotenoids into microsomes. Microsomes instead of liposomes should be preferred as a membrane model to study mutual effects of carotenoids and membrane dynamics.

  10. Bcl2 Family Functions as Signaling Target in Nicotine-/NNK-Induced Survival of Human Lung Cancer Cells.

    PubMed

    Deng, Xingming

    2014-01-01

    Lung cancer is the leading cause of cancer death and has a strong etiological association with cigarette smoking. Nicotine and nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are two major components in cigarette smoke that significantly contribute to the development of human lung cancer. Nicotine is able to stimulate survival of both normal human lung epithelial and lung cancer cells. In contrast to nicotine, NNK is a more potent carcinogen that not only induces single-strand DNA breaks and oxidative DNA damage but also stimulates survival and proliferation of normal lung epithelial and lung cancer cells. However, the molecular mechanism(s) by which nicotine and NNK promote cell survival, proliferation, and lung tumor development remains elusive. The fate of cells (i.e., survival or death) is largely decided by the Bcl2 family members. In the past several years, multiple signaling links between nicotine/NNK and Bcl2 family members have been identified that regulate survival and proliferation. This review provides a concise, systematic overview of the current understanding of the role of the pro- or antiapoptotic proteins in cigarette smoking, lung cancer development, and treatment resistance. PMID:24967145

  11. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  12. The human lung during the embryonic period: vasculogenesis and primitive erythroblasts circulation

    PubMed Central

    Pereda, J; Sulz, L; San Martin, S; Godoy-Guzmán, C

    2013-01-01

    Vascularization and blood cell circulation are crucial steps during lung development. However, how blood vessels are generated and when lung circulation is initiated is still a matter of debate. A morpho-functional analysis of pulmonary vasculature was done using human lung samples between 31 and 56 days post-fertilization (pf). The immunolocalization and expression of CD31, CD34, FLT-1, KDR and the vascular growth factor (VEGF) were investigated. The results showed that at day 31 pf, a capillary plexus is already installed, and a few primitive erythroblasts were seen for the first time within the lumen of some blood vessels. Around day 45 pf, an increase in the amount of primitive erythroblasts was detected in the parenchyma surrounding the distal segment of the bronchial tree. The expression of FLT-1, KDR, CD31 and CD34 was observed in endothelial cells of the capillary plexus and the VEGF was detected in the endodermal epithelium. Our results support the hypothesis that the initial formation of the capillary plexus around the tip of the growing airway bud occurs by vasculogenesis, probably regulated by VEGF and KDR. We also showed a very early onset of blood circulation, starting from day 34 pf, concomitant with the generation of new lung buds. In addition, the increasing number of primitive erythroblasts from week 6 onward, associated with a change in the shape of the blood vessels, suggests a remodeling process and that the generation of new distal vessels at the tip of the lung bud occurs mainly by a process of angiogenesis. PMID:23520979

  13. The human lung during the embryonic period: vasculogenesis and primitive erythroblasts circulation.

    PubMed

    Pereda, J; Sulz, L; San Martin, S; Godoy-Guzmán, C

    2013-05-01

    Vascularization and blood cell circulation are crucial steps during lung development. However, how blood vessels are generated and when lung circulation is initiated is still a matter of debate. A morpho-functional analysis of pulmonary vasculature was done using human lung samples between 31 and 56 days post-fertilization (pf). The immunolocalization and expression of CD31, CD34, FLT-1, KDR and the vascular growth factor (VEGF) were investigated. The results showed that at day 31 pf, a capillary plexus is already installed, and a few primitive erythroblasts were seen for the first time within the lumen of some blood vessels. Around day 45 pf, an increase in the amount of primitive erythroblasts was detected in the parenchyma surrounding the distal segment of the bronchial tree. The expression of FLT-1, KDR, CD31 and CD34 was observed in endothelial cells of the capillary plexus and the VEGF was detected in the endodermal epithelium. Our results support the hypothesis that the initial formation of the capillary plexus around the tip of the growing airway bud occurs by vasculogenesis, probably regulated by VEGF and KDR. We also showed a very early onset of blood circulation, starting from day 34 pf, concomitant with the generation of new lung buds. In addition, the increasing number of primitive erythroblasts from week 6 onward, associated with a change in the shape of the blood vessels, suggests a remodeling process and that the generation of new distal vessels at the tip of the lung bud occurs mainly by a process of angiogenesis.

  14. Primary human adult lung epithelial cells in vitro: response to interferon-gamma and cytomegalovirus.

    PubMed Central

    Ibrahim, L; Dominguez, M; Yacoub, M

    1993-01-01

    Primary human adult lung epithelial cells (ALEC) were established in culture using the most distal parts of the lung to avoid the airways. Immunocytochemical peroxidase staining and semiquantitative flow cytometry were used to characterize the cells in conjunction with a panel of monoclonal antibodies (mAb). The cells showed a constitutive expression of major histocompatibility complex (MHC) class I antigens, patchy expression of intercellular adhesion molecule-1 (ICAM-1) and a weak patchy expression of MHC class II antigens (detected using immunocytochemical staining). Incubation of the primary ALEC with interferon-gamma (IFN-gamma) (250 U/ml) stimulated an up-regulation of the expression of these three antigens to varying degrees; expression of MHC class I antigens and ICAM-1 molecules showed an up-regulation at 10 hr after the start of the treatment, reaching a peak at 48 hr, maintaining it for the next 24 hr and then, steadily and progressively, losing it towards the end of the experiment at 96 hr. Expression of HLA-DR showed an up-regulation at 17 hr after the start of the treatment, reaching a peak at 72 hr and maintaining it for the next 24 hr. Cytomegalovirus (CMV) infection of ALEC in culture caused an up-regulation of expression of class I antigens and ICAM-1, but not DR. However, when the infected cells were incubated with IFN-gamma, an up-regulation in the expression of DR took place. Therefore, within the micro-environment of the transplanted lung the presence of cytokines (IFN-gamma) produced by infiltrating activated mononuclear cells, may render the lung epithelial cells capable of acting as antigen-presenting cells, expressing high levels of class I antigens, ICAM-1 and class II antigens, activating CD8 and CD4 cells thus playing a major part in the process of rejection of the lung allograft; themselves becoming a primary target in the process. Images Figure 1 Figure 2 PMID:8099565

  15. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer

    PubMed Central

    Marquez-Garban, Diana C.; Mah, Vei; Alavi, Mohammad; Maresh, Erin L.; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J.

    2011-01-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC. PMID:21600232

  16. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  17. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes

    PubMed Central

    Gandhi, Adarsh S.; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B.; Huestis, Marilyn A.

    2014-01-01

    N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolic profiles. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 μmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h phase I metabolites predominated, while at 3 h phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 μmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 7.2±0.6 min and intrinsic clearance (CLint) was 93.6 mL·min−1·kg−1. This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing. PMID:24827428

  18. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135), using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes.

    PubMed

    Gandhi, Adarsh S; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B; Huestis, Marilyn A

    2015-03-01

    N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on Internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolites. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 µmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation, and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h, phase I metabolites predominated, while at 3 h, phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 µmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 3.1 ± 0.2 min and intrinsic clearance (CLint ) was 208.8 mL · min(-1)  · kg(-1) . This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing.

  19. Synchrotron-based Micro-CT Imaging of the Human Lung Acinus

    PubMed Central

    Litzlbauer, Horst Detlef; Korbel, Kathrin; Kline, Timothy L.; Jorgensen, Steven M.; Eaker, Diane R.; Bohle, Rainer M.; Ritman, Erik L.; Langheinrich, Alexander C.

    2012-01-01

    Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact 3-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, n = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4μm)3 voxel size. The lung functional unit (acinus, n = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intraacinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 ± 29.2 mm3 (range 92.5 – 171.3 mm3) and the mean acinar surface was calculated with 1012 ± 26 cm2. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 ± 0.04 mm to 0.34 ± 0.06 mm (p < 0.001) and remains constant after the 7th generation (p < 0.5). The length of each generation ranges between 0.52 – 0.93 mm and did not show significant differences between the second and 11th generation. The branching angle between daughter branches varies between 113–134° without significant differences between the generations (p < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT. PMID:20687188

  20. Synchrotron-Based Micro-CT Imaging of the Human Lung Acinus

    SciTech Connect

    Litzlbauer, H.; Korbel, K; Kline, T; Jorgensen, S; Eaker, D; Bohle, R; Ritman, E; Langheinrich, A

    2010-01-01

    Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact three-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, N = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4 {micro}m){sup 3} voxel size. The lung functional unit (acinus, N = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intra-acinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 {+-} 29.2 mm{sup 3} (range, 92.5-171.3 mm{sup 3}) and the mean acinar surface was calculated with 1012 {+-} 26 cm{sup 2}. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 {+-} 0.04 mm to 0.34 {+-} 0.06 mm (P < 0.001) and remains constant after the seventh generation (P < 0.5). The length of each generation ranges between 0.52 and 0.93 mm and did not show significant differences between the second and eleventh generation. The branching angle between daughter branches varies between 113-degree and 134-degree without significant differences between the generations (P < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT.

  1. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  2. Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4.

    PubMed

    Fang, Xiaohui; Abbott, Jason; Cheng, Linda; Colby, Jennifer K; Lee, Jae Woo; Levy, Bruce D; Matthay, Michael A

    2015-08-01

    Previous studies demonstrated that bone marrow-derived mesenchymal stem (stromal) cells (MSCs) reduce the severity of acute lung injury in animal models and in an ex vivo perfused human lung model. However, the mechanisms by which MSCs reduce lung injury are not well understood. In the present study, we tested the hypothesis that human MSCs promote the resolution of acute lung injury in part through the effects of a specialized proresolving mediator lipoxin A4 (LXA4). Human alveolar epithelial type II cells and MSCs expressed biosynthetic enzymes and receptors for LXA4. Coculture of human MSCs with alveolar epithelial type II cells in the presence of cytomix significantly increased the production of LXA4 by 117%. The adoptive transfer of MSCs after the onset of LPS-induced acute lung injury (ALI) in mice led to improved survival (48 h), and blocking the LXA4 receptor with WRW4, a LXA4 receptor antagonist, significantly reversed the protective effect of MSCs on both survival and the accumulation of pulmonary edema. LXA4 alone improved survival in mice, and it also significantly decreased the production of TNF-α and MIP-2 in bronchoalveolar lavage fluid. In summary, these experiments demonstrated two novel findings: human MSCs promote the resolution of lung injury in mice in part through the proresolving lipid mediator LXA4, and LXA4 itself should be considered as a therapeutic for acute respiratory distress syndrome.

  3. Genetic Variation of αENaC Influences Lung Diffusion During Exercise in Humans

    PubMed Central

    Baker, Sarah E.; Wheatley, Courtney M.; Cassuto, Nicholas A.; Foxx-Lupo, William T.; Sprissler, Ryan; Snyder, Eric M.

    2011-01-01

    Exercise, decompensated heart failure, and exposure to high altitude have been shown to cause symptoms of pulmonary edema in some, but not all, subjects, suggesting a genetic component to this response. Epithelial Na+ Channels (ENaC) regulate Na+ and fluid reabsorption in the alveolar airspace in the lung. An increase in number and/or activity of ENaC has been shown to increase lung fluid clearance. Previous work has demonstrated common functional genetic variants of the α-subunit of ENaC, including an A→T substitution at amino acid 663 (αA663T). We sought to determine the influence of the T663 variant of αENaC on lung diffusion at rest and at peak exercise in healthy humans. Thirty healthy subjects were recruited for study and grouped according to their SCNN1A genotype [n= 17vs.13, age=25±7vs.30±10yrs., BMI= 23±4vs.25±4kg/m2, V̇O2peak= 95±30vs.100±31%pred., mean±SD, for AA (homozygous for αA663) vs. AT/TT groups (at least one αT663), respectively]. Measures of the diffusing capacity of the lungs for carbon monoxide (DLCO), the diffusing capacity of the lungs for nitric oxide (DLNO), alveolar volume (VA), and alveolar-capillary membrane conductance (DM) were taken at rest and at peak exercise. Subjects expressing the AA polymorphism of ENaC showed a significantly greater percent increase in DLCO and DLNO, and a significantly greater decrease in systemic vascular resistance from rest to peak exercise than those with the AT/TT variant (DLCO=51±12vs.36±17%, DLNO=51±24vs.32±25%, SVR=−67±3vs.−50±8%, p<0.05). The AA ENaC group also tended to have a greater percent increase in DLCO/VA from rest to peak exercise, although this did not reach statistical significance (49±26vs.33±26%, p=0.08). These results demonstrate that genetic variation of the α-subunit of ENaC at amino acid 663 influences lung diffusion at peak exercise in healthy humans, suggesting differences in alveolar Na+ and, therefore, fluid handling. These findings could be important

  4. Activation of endoplasmic reticulum stress is involved in the activity of icariin against human lung adenocarcinoma cells.

    PubMed

    Di, Shouyin; Fan, Chongxi; Yang, Yang; Jiang, Shuai; Liang, Miaomiao; Wu, Guiling; Wang, Bodong; Xin, Zhenlong; Hu, Wei; Zhu, Yifang; Li, Weimiao; Zhou, Yongan; Li, Xiaofei; Yan, Xiaolong

    2015-09-01

    In this study, we investigated the anticancer activity of icariin (ICA) against human lung adenocarcinoma cells in vitro and in vivo and explored the role of endoplasmic reticulum (ER) stress (ERS) signaling in this process. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human lung adenocarcinoma A549 cells. Additionally, ICA exhibited potent anticancer activity, as evidenced by reductions in A549 cell adhesion, migration and intracellular glutathione (GSH) levels and increases in the apoptotic index, Caspase 3 activity, and reactive oxygen species. Furthermore, ICA treatment increased the expression of ERS-related molecules (p-PERK, ATF6, GRP78, p-eIF2α, and CHOP), up-regulated the apoptosis-related protein PUMA and down-regulated the anti-apoptosis-related protein Bcl2. The down-regulation of ERS signaling using PERK siRNA desensitized lung adenocarcinoma cells to ICA treatment, whereas the up-regulation of ERS signaling using thapsigargin (THA) sensitized lung adenocarcinoma cells to ICA treatment. Additionally, ICA inhibited the growth of human lung adenocarcinoma A549 cell xenografts by increasing the expression of ERS-related molecules (p-PERK and CHOP), up-regulating PUMA, and down-regulating Bcl2. These data indicate that ICA is a potential inhibitor of lung adenocarcinoma cell growth by targeting ERS signaling and suggest that the activation of ERS signaling may represent a novel therapeutic intervention for lung adenocarcinoma.

  5. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells

    PubMed Central

    SHI, SHAOMIN; TAN, PING; YAN, BINGDI; GAO, RONG; ZHAO, JIANJUN; WANG, JING; GUO, JIA; LI, NING; MA, ZHONGSEN

    2016-01-01

    Cisplatin [cis-diamminedichloroplatinum II (CDDP)] is one of the most classical and effective chemotherapeutic drugs for the treatment of cancers including lung cancer. However, the presence of cisplatin resistance in cancer lowers its curative effect and limits its usage in the clinic. The aim of the present study was to investigate the underlying mechanisms of cisplatin resistance in lung cancer involving endoplasmic reticulum (ER) stress and autophagy. In the present study, we detected the effect of cisplatin on cell viability, ER stress and autophagy in lung cancer cell lines A549 and H460. We also tested the effects of ER stress and autophagy on apoptosis induced by cisplatin. The results showed that cisplatin induced apoptosis, ER stress and autophagy in lung cancer cell lines. In addition, the inhibition of ER stress by 4-phenylbutyric acid (4-PBA) or tauroursodeoxycholic acid sodium (TUDC) enhanced cisplatin-induced apoptosis in the human lung cancer cells. Meanwhile, combination treatment with the autophagic inhibitor 3-methyladenine (3-MA) or chloroquine (CQ) further increased the apoptosis induced by cisplatin in the human lung cancer cells. The present study provides a novel treatment strategy - cisplatin in combination with an autophagic inhibitor or an ER stress inhibitor leads to increased apoptosis in human lung cancer cells. PMID:26985651

  6. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  7. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein. PMID:27621875

  8. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein.

  9. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway

    PubMed Central

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K.; Gairola, C. Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6–4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6–4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke. PMID:27391141

  10. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    SciTech Connect

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  11. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    PubMed

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K; Gairola, C Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke. PMID:27391141

  12. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    PubMed

    Holcomb, Nathaniel; Goswami, Mamta; Han, Sung Gu; Clark, Samuel; Orren, David K; Gairola, C Gary; Mellon, Isabel

    2016-01-01

    Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  13. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report.

    PubMed

    2000-01-01

    On 23-24 March 1998, the International Life Sciences Institute (ILSI) Risk Science Institute convened a workshop entitled "Relevance of the Rat Lung Response to Particle Overload for Human Risk Assessment." The workshop addressed the numerous study reports of lung tumors in rats resulting from chronic inhalation exposures to poorly soluble, nonfibrous particles of low acute toxicity and not directly genotoxic. These poorly soluble particles, indicated by the acronym PSPs (e.g., carbon black, coal dust, diesel soot, nonasbestiform talc, and titanium dioxide), elicit tumors in rats when deposition overwhelms the clearance mechanisms of the lung resulting in a condition referred to as "overload." These PSPs have been shown not to induce tumors in mice and hamsters, and the available data in humans are consistently negative. The objectives were twofold: (1) to provide guidance for risk assessment on the interpretation of neoplastic and nonneoplastic responses of the rat lung to PSPs; and (2) to identify important data gaps in our understanding of the lung responses of rats and other species to PSPs. Utilizing the five critical reviews of relevant literature that follow herein and the combined expertise and experience of the 30 workshop participants, a number of questions were addressed. The consensus views of the workshop participants are presented in this report. Because it is still not known with certainty whether high lung burdens of PSPs can lead to lung cancer in humans via mechanisms similar to those of the rat, in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential carcinogenic hazards to humans. Since the apparent responsiveness of the rat model at overload is dependent on coexistent chronic active inflammation and cell proliferation, at lower lung doses where chronic active inflammation and cell proliferation are not present, no lung cancer hazard is anticipated.

  14. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells

    PubMed Central

    ODEWUMI, CAROLINE; LATINWO, LEKAN M.; SINCLAIR, ANDRE; BADISA, VEERA L.D.; ABDULLAH, AHKINYALA; BADISA, RAMESH B.

    2015-01-01

    Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)-1α and IL-10 cytokines at various concentrations and incubation durations were assessed in MRC-9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme-linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC-9 lung cells. In the normal MRC-9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC-9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity. PMID:26397147

  15. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  16. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  17. Metabolism of chrysene by brown bullhead liver microsomes.

    PubMed

    Pangrekar, Jyotsna; Kole, Panna L; Honey, Sangeet A; Kumar, Subodh; Sikka, Harish C

    2003-01-01

    We have investigated the regio- and stereoselective metabolism of chrysene, a four-ring symmetrical carcinogenic polycyclic aromatic hydrocarbon (PAH), by the liver microsomes of brown bullhead (Ameriurus nebulosus), a bottom-dwelling fish species. The liver microsomes from untreated and 3-methylcholanthrene (3-MC)-treated brown bullheads metabolized chrysene at the rate of 30.1 and 82.2 pmol/mg protein/min, respectively. Benzo-ring diols (1,2-diol and 3,4-diol) were the major chrysene metabolites formed by liver microsomes from control and 3-MC-treated fish. However, the control microsomes produced a considerably higher proportion of chrysene 1,2-diol (benzo-ring diol with a bay region double bond) plus 1-hydroxychrysene, than 3,4-diol plus 3-hydroxychrysene, indicating that these microsomes are selective in attacking the 1,2- position of the benzo-ring. On the other hand, 3-MC-induced microsomes did not show such a regioselectivity in the metabolism of chrysene. Control bullhead liver microsomes, compared to control rat liver microsomes, produced a considerably higher proportion of chrysene 1,2-diol, the putative proximate carcinogenic metabolite of chrysene. Like rat liver microsomes, bullhead liver microsomes produced only trace amounts of the K-region diol. Chrysene 1,2-diol and 3,4-diol formed by the liver microsomes</