Science.gov

Sample records for human malaria parasites

  1. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites.

    PubMed

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; Del Portillo, Hernando; Janse, Chris J; Heussler, Volker; Spielmann, Tobias

    2016-05-26

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.

  2. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites

    PubMed Central

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; del Portillo, Hernando; Janse, Chris J.; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  3. Mobile phones and malaria: modeling human and parasite travel

    PubMed Central

    Buckee, Caroline O.; Wesolowski, Amy; Eagle, Nathan; Hansen, Elsa; Snow, Robert W.

    2013-01-01

    Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation. PMID:23478045

  4. Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

    PubMed

    Carlton, Jane M; Adams, John H; Silva, Joana C; Bidwell, Shelby L; Lorenzi, Hernan; Caler, Elisabet; Crabtree, Jonathan; Angiuoli, Samuel V; Merino, Emilio F; Amedeo, Paolo; Cheng, Qin; Coulson, Richard M R; Crabb, Brendan S; Del Portillo, Hernando A; Essien, Kobby; Feldblyum, Tamara V; Fernandez-Becerra, Carmen; Gilson, Paul R; Gueye, Amy H; Guo, Xiang; Kang'a, Simon; Kooij, Taco W A; Korsinczky, Michael; Meyer, Esmeralda V-S; Nene, Vish; Paulsen, Ian; White, Owen; Ralph, Stuart A; Ren, Qinghu; Sargeant, Tobias J; Salzberg, Steven L; Stoeckert, Christian J; Sullivan, Steven A; Yamamoto, Marcio M; Hoffman, Stephen L; Wortman, Jennifer R; Gardner, Malcolm J; Galinski, Mary R; Barnwell, John W; Fraser-Liggett, Claire M

    2008-10-01

    The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.

  5. Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins.

    PubMed

    Salman, Ahmed M; Mogollon, Catherin Marin; Lin, Jing-Wen; van Pul, Fiona J A; Janse, Chris J; Khan, Shahid M

    2015-01-01

    We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an "additional gene" into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive-negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.The different

  6. Folate metabolism in human malaria parasites--75 years on.

    PubMed

    Müller, Ingrid B; Hyde, John E

    2013-03-01

    Malaria still poses one of the most serious threats to human health worldwide and the prevailing lack of effective, clinically licensed, vaccines means that prophylaxis and treatment depend heavily on a small number of compounds whose efficacies are progressively compromised at varying rates by the inevitable emergence of drug-resistant parasite populations. Of these antimalarials, those inhibiting steps in folate metabolism, along with chloroquine, are the oldest synthetic compounds, with origins dating back three-quarters of a century. Despite widespread parasite resistance, the antifolates still play an important role in malaria control, and our understanding of the underlying mechanisms of folate metabolism and genesis of drug resistance has increased considerably over the last twenty years. Folate de novo synthesis in the parasite, interconversion of active folate derivatives and their utilisation as multifunctional cofactors involve numerous enzymes, although only two of these have ever served as targets of clinical antimalarial inhibitors. The current application of antifolates, resistance to this class of drugs, new insights into folate metabolism in the parasite, its potential for providing novel targets of inhibition and some of the questions that are still outstanding are reviewed here.

  7. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    PubMed

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  8. Origin of the human malaria parasite Plasmodium falciparum in gorillas

    PubMed Central

    Liu, Weimin; Li, Yingying; Learn, Gerald H.; Rudicell, Rebecca S.; Robertson, Joel D.; Keele, Brandon F.; Ndjango, Jean-Bosco N.; Sanz, Crickette M.; Morgan, David B.; Locatelli, Sabrina; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V.; Muller, Martin N.; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Rayner, Julian C.; Hahn, Beatrice H.

    2010-01-01

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here, we developed a novel polymerase chain reaction based single genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in fecal samples of wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed, and almost always comprised of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas was comprised of parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla and not of chimpanzee, bonobo or ancient human origin. PMID:20864995

  9. Ape parasite origins of human malaria virulence genes.

    PubMed

    Larremore, Daniel B; Sundararaman, Sesh A; Liu, Weimin; Proto, William R; Clauset, Aaron; Loy, Dorothy E; Speede, Sheri; Plenderleith, Lindsey J; Sharp, Paul M; Hahn, Beatrice H; Rayner, Julian C; Buckee, Caroline O

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  10. Rationale for the coadministration of albendazole and ivermectin to humans for malaria parasite transmission control.

    PubMed

    Kobylinski, Kevin C; Alout, Haoues; Foy, Brian D; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E; Richardson, Jason H

    2014-10-01

    Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression.

  11. Development of humanized mouse models to study human malaria parasite infection

    PubMed Central

    Vaughan, Ashley M; Kappe, Stefan HI; Ploss, Alexander; Mikolajczak, Sebastian A

    2013-01-01

    Malaria is a disease caused by infection with Plasmodium parasites that are transmitted by mosquito bite. Five different species of Plasmodium infect humans with severe disease, but human malaria is primarily caused by Plasmodium falciparum. The burden of malaria on the developing world is enormous, and a fully protective vaccine is still elusive. One of the biggest challenges in the quest for the development of new antimalarial drugs and vaccines is the lack of accessible animal models to study P. falciparum infection because the parasite is restricted to the great apes and human hosts. Here, we review the current state of research in this field and provide an outlook of the development of humanized small animal models to study P. falciparum infection that will accelerate fundamental research into human parasite biology and could accelerate drug and vaccine design in the future. PMID:22568719

  12. The Genome of Haemoproteus tartakovskyi and Its Relationship to Human Malaria Parasites.

    PubMed

    Bensch, Staffan; Canbäck, Björn; DeBarry, Jeremy D; Johansson, Tomas; Hellgren, Olof; Kissinger, Jessica C; Palinauskas, Vaidas; Videvall, Elin; Valkiūnas, Gediminas

    2016-01-01

    The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits. PMID:27190205

  13. The Genome of Haemoproteus tartakovskyi and Its Relationship to Human Malaria Parasites

    PubMed Central

    Bensch, Staffan; Canbäck, Björn; DeBarry, Jeremy D.; Johansson, Tomas; Hellgren, Olof; Kissinger, Jessica C.; Palinauskas, Vaidas; Videvall, Elin; Valkiūnas, Gediminas

    2016-01-01

    The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi. Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits. PMID:27190205

  14. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Moon, Robert W; Sharaf, Hazem; Hastings, Claire H; Ho, Yung Shwen; Nair, Mridul B; Rchiad, Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J; Holder, Anthony A

    2016-06-28

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen. PMID:27303038

  15. Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research

    PubMed Central

    Grüring, Christof; Moon, Robert W.; Lim, Caeul; Holder, Anthony A.; Blackman, Michael J.; Duraisingh, Manoj T.

    2014-01-01

    Summary Plasmodium knowlesi is a simian malaria parasite primarily infecting macaque species in Southeast Asia. Although its capacity to infect humans has been recognized since the early part of the last century, it has recently become evident that human infections are widespread and potentially life threatening. Historically, P. knowlesi has proven to be a powerful tool in early studies of malaria parasites, providing key breakthroughs in understanding many aspects of Plasmodium biology. However, the necessity to grow the parasite either in macaques or in vitro using macaque blood restricted research to laboratories with access to these resources. The recent adaptation of P. knowlesi to grow and proliferate in vitro in human red blood cells (RBCs) is therefore a substantial step towards revitalizing and expanding research on P. knowlesi. Furthermore, the development of a highly efficient transfection system to genetically modify the parasite makes P. knowlesi an ideal model to study parasite biology. In this review we elaborate on the importance of P. knowlesi in earlier phases of malaria research and highlight the future potential of the newly available human adapted P. knowlesi parasite lines. PMID:24506567

  16. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    PubMed Central

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G.

    2015-01-01

    Background The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. Methods We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Findings Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. Interpretation This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts. PMID:26501116

  17. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  18. Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum.

    PubMed

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W; Lutz, Rolf; Long, Carole A; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-02-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria.

  19. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum.

    PubMed

    Cervantes, Serena; Bunnik, Evelien M; Saraf, Anita; Conner, Christopher M; Escalante, Aster; Sardiu, Mihaela E; Ponts, Nadia; Prudhomme, Jacques; Florens, Laurence; Le Roch, Karine G

    2014-01-01

    Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.

  20. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Goodman, Christopher D.; McFadden, Geoffrey I.

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  1. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum.

    PubMed

    Lim, Liting; Sayers, Claire P; Goodman, Christopher D; McFadden, Geoffrey I

    2016-01-01

    Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane. PMID:27442138

  2. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target.

    PubMed

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2016-06-01

    Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum (P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria. PMID:27262062

  3. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target.

    PubMed

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2016-06-01

    Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum (P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria.

  4. Variation in infection length and superinfection enhance selection efficiency in the human malaria parasite.

    PubMed

    Chang, Hsiao-Han; Childs, Lauren M; Buckee, Caroline O

    2016-01-01

    The capacity for adaptation is central to the evolutionary success of the human malaria parasite Plasmodium falciparum. Malaria epidemiology is characterized by the circulation of multiple, genetically diverse parasite clones, frequent superinfection, and highly variable infection lengths, a large number of which are chronic and asymptomatic. The impact of these characteristics on the evolution of the parasite is largely unknown, however, hampering our understanding of the impact of interventions and the emergence of drug resistance. In particular, standard population genetic frameworks do not accommodate variation in infection length or superinfection. Here, we develop a population genetic model of malaria including these variations, and show that these aspects of malaria infection dynamics enhance both the probability and speed of fixation for beneficial alleles in complex and non-intuitive ways. We find that populations containing a mixture of short- and long-lived infections promote selection efficiency. Interestingly, this increase in selection efficiency occurs even when only a small fraction of the infections are chronic, suggesting that selection can occur efficiently in areas of low transmission intensity, providing a hypothesis for the repeated emergence of drug resistance in the low transmission setting of Southeast Asia. PMID:27193195

  5. Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data

    PubMed Central

    Pokhriyal, N.; Ponts, N.; Harris, E. Y.; Le Roch, K. G.; Lonardi, S.

    2013-01-01

    Recent genome-wide studies on nucleosome positioning in model organisms have shown strong evidence that nucleosome landscapes in the proximity of protein-coding genes exhibit regular characteristic patterns. Here, we propose a computational framework to discover novel genes in the human malaria parasite genome P. falciparum using nucleosome positioning inferred from MAINE-seq data. We rely on a classifier trained on the nucleosome landscape profiles of experimentally verified genes, and then used to discover new genes (without considering the primary DNA sequence). Cross-validation experiments show that our classifier is very accurate. About two thirds of the locations reported by the classifier match experimentally determined expressed sequence tags in GenBank, for which no gene has been annotated in the human malaria parasite. PMID:25076982

  6. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thomas, James A.; Collins, Christine R.; Das, Sujaan; Hackett, Fiona; Graindorge, Arnault; Bell, Donald; Deu, Edgar; Blackman, Michael J.

    2016-01-01

    Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro. PMID:27332706

  7. Characterization of class II apurinic/apyrimidinic endonuclease activities in the human malaria parasite, Plasmodium falciparum.

    PubMed Central

    Haltiwanger, B M; Karpinich, N O; Taraschi, T F

    2000-01-01

    We have reported that the human malaria parasite, Plasmodium falciparum, repairs apurinic/apyrimidinic (AP) sites on DNA by a long-patch base excision repair (BER) pathway. This biology is different from that in mammalian cells, which predominantly repair AP sites by a DNA-polymerase-beta-dependent, one-nucleotide patch BER pathway. As a starting point for the identification and biochemical characterization of the enzymes involved in the parasite DNA BER pathway, we chose characterization of the AP endonuclease activity in a P. falciparum cell-free lysate. Evidence is provided for the presence of class II, Mg(2+)-dependent and independent AP endonucleases in the parasite lysate. The investigation of the processing of AP sites in Plasmodium will provide new information about long-patch BER pathways; if they are different from those in the human host they might provide a new target for anti-malarial chemotherapy. PMID:10600642

  8. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    PubMed Central

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  9. A transcriptional switch underlies commitment to sexual development in human malaria parasites

    PubMed Central

    Kafsack, Björn F.C.; Rovira-Graells, Núria; Clark, Taane G.; Bancells, Cristina; Crowley, Valerie M.; Campino, Susana G.; Williams, April E.; Drought, Laura G.; Kwiatkowski, Dominic P.; Baker, David A.; Cortés, Alfred; Llinás, Manuel

    2014-01-01

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited and disrupting this critical developmental transition remains a long-standing goal1. We show here that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as likely targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci2,3 prone to spontaneous activation4. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first identification of a transcriptional switch controlling a differentiation decision in protozoan parasites. PMID:24572369

  10. Ungulate malaria parasites

    PubMed Central

    Templeton, Thomas J.; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A.; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  11. Ungulate malaria parasites.

    PubMed

    Templeton, Thomas J; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium.

  12. Ungulate malaria parasites.

    PubMed

    Templeton, Thomas J; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  13. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.

    PubMed

    Phaiphinit, Suthat; Pattaradilokrat, Sittiporn; Lursinsap, Chidchanok; Plaimas, Kitiporn

    2016-01-01

    Detoxification of hemoglobin byproducts or free heme is an essential step and considered potential targets for anti-malaria drug development. However, most of anti-malaria drugs are no longer effective due to the emergence and spread of the drug resistant malaria parasites. Therefore, it is an urgent need to identify potential new targets and even for target combinations for effective malaria drug design. In this work, we reconstructed the metabolic networks of Plasmodium falciparum and human red blood cells for the simulation of steady mass and flux flows of the parasite's metabolites under the blood environment by flux balance analysis (FBA). The integrated model, namely iPF-RBC-713, was then adjusted into two stage-specific metabolic models, which first was for the pathological stage metabolic model of the parasite when invaded the red blood cell without any treatment and second was for the treatment stage of the parasite when a drug acted by inhibiting the hemozoin formation and caused high production rate of heme toxicity. The process of identifying target combinations consisted of two main steps. Firstly, the optimal fluxes of reactions in both the pathological and treatment stages were computed and compared to determine the change of fluxes. Corresponding enzymes of the reactions with zero fluxes in the treatment stage but non-zero fluxes in the pathological stage were predicted as a preliminary list of potential targets in inhibiting heme detoxification. Secondly, the combinations of all possible targets listed in the first step were examined to search for the best promising target combinations resulting in more effective inhibition of the detoxification to kill the malaria parasites. Finally, twenty-three enzymes were identified as a preliminary list of candidate targets which mostly were in pyruvate metabolism and citrate cycle. The optimal set of multiple targets for blocking the detoxification was a set of heme ligase, adenosine transporter, myo

  14. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Ponts, Nadia; Fu, Lijuan; Harris, Elena Y.; Zhang, Jing; Chung, Duk-Won D.; Cervantes, Michael C.; Prudhomme, Jacques; Atanasova-Penichon, Vessela; Zehraoui, Enric; Bunnik, Evelien; Rodrigues, Elisandra M.; Lonardi, Stefano; Hicks, Glenn R.; Wang, Yinsheng; Le Roch, Karine G.

    2014-01-01

    SUMMARY Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase, PfDNMT, that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated, in which only one DNA strand is methylated, and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated and transcript levels correlate with intra-exonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and uniqueness of PfDNMT suggest that the methylation pathway is a potential target for anti-malarial strategies. PMID:24331467

  15. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

    PubMed Central

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K.; Jiang, Rays H. Y.; Abshire, James R.; Patel, Saurabh D.; Goldberg, Jonathan M.; Moreno, Yovany; Kono, Maya; Niles, Jacquin C.; Duraisingh, Manoj T.

    2016-01-01

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. PMID:27041489

  16. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  17. Methodology and Application of Flow Cytometry for Investigation of Human Malaria Parasites

    PubMed Central

    Grimberg, Brian T.

    2011-01-01

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. PMID:21296083

  18. Methodology and application of flow cytometry for investigation of human malaria parasites.

    PubMed

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries.

  19. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd. Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K.; Sharma, Yagya D.

    2015-01-01

    Background The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Methods Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Results Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Conclusions Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host. PMID:26393350

  20. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  1. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system.

    PubMed

    Ghorbal, Mehdi; Gorman, Molly; Macpherson, Cameron Ross; Martins, Rafael Miyazawa; Scherf, Artur; Lopez-Rubio, Jose-Juan

    2014-08-01

    Genome manipulation in the malaria parasite Plasmodium falciparum remains largely intractable and improved genomic tools are needed to further understand pathogenesis and drug resistance. We demonstrated the CRISPR-Cas9 system for use in P. falciparum by disrupting chromosomal loci and generating marker-free, single-nucleotide substitutions with high efficiency. Additionally, an artemisinin-resistant strain was generated by introducing a previously implicated polymorphism, thus illustrating the value of efficient genome editing in malaria research.

  2. Water and urea transport in human erythrocytes infected with the malaria parasite Plasmodium falciparum.

    PubMed

    Zanner, M A; Galey, W R; Scaletti, J V; Brahm, J; Vander Jagt, D L

    1990-05-01

    The permeability properties of the human red cell membrane to various solutes are altered by malarial infection. In the present work we show that the permeability of the red cell membrane to water is also affected by the intraerythrocytic growth of the malaria parasite Plasmodium falciparum, whereas urea permeability appears unchanged. The data from infected cells show decreases in membrane surface area, cell volume, the osmotically active water fraction (Weff), and osmotic water permeability (Pf) as measured by stopped-flow spectroscopy. On the other hand, the data suggest an increase in diffusive water permeability (Pd) in infected cells with no change in urea permeability when measured by the continuous flow method. The decreased Pf/Pd ratio of infected cell membranes and its implications in the geometry of the red cell membrane water channel or pore are discussed. PMID:2194124

  3. Chromatin-driven de novo discovery of DNA binding motifs in the human malaria parasite

    PubMed Central

    2011-01-01

    Background Despite extensive efforts to discover transcription factors and their binding sites in the human malaria parasite Plasmodium falciparum, only a few transcription factor binding motifs have been experimentally validated to date. As a consequence, gene regulation in P. falciparum is still poorly understood. There is now evidence that the chromatin architecture plays an important role in transcriptional control in malaria. Results We propose a methodology for discovering cis-regulatory elements that uses for the first time exclusively dynamic chromatin remodeling data. Our method employs nucleosome positioning data collected at seven time points during the erythrocytic cycle of P. falciparum to discover putative DNA binding motifs and their transcription factor binding sites along with their associated clusters of target genes. Our approach results in 129 putative binding motifs within the promoter region of known genes. About 75% of those are novel, the remaining being highly similar to experimentally validated binding motifs. About half of the binding motifs reported show statistically significant enrichment in functional gene sets and strong positional bias in the promoter region. Conclusion Experimental results establish the principle that dynamic chromatin remodeling data can be used in lieu of gene expression data to discover binding motifs and their transcription factor binding sites. Our approach can be applied using only dynamic nucleosome positioning data, independent from any knowledge of gene function or expression. PMID:22165844

  4. Human Immunodeficiency Virus Co-Infection Increases Placental Parasite Density and Transplacental Malaria Transmission in Western Kenya

    PubMed Central

    Perrault, Steven D.; Hajek, Jan; Zhong, Kathleen; Owino, Simon O.; Sichangi, Moses; Smith, Geoffrey; Shi, Ya Ping; Moore, Julie M.; Kain, Kevin C.

    2009-01-01

    Plasmodium falciparum malaria and human immunodeficiency virus (HIV)-1 adversely interact in the context of pregnancy, however little is known regarding the influence of co-infection on the risk of congenital malaria. We aimed to determine the prevalence of placental and congenital malaria and impact of HIV co-infection on transplacental malaria transmission in 157 parturient women and their infants by microscopy and by quantitative real-time polymerase chain reaction (PCR) in western Kenya. The prevalence of placental and cord blood infections were 17.2% and 0% by microscopy, and 33.1% and 10.8% by PCR. HIV co-infection w as associated with a significant increase in placental parasite density (P < 0.05). Cord blood malaria prevalence was increased in co-infected women (odds ratio [OR] = 5.42; 95% confidence interval [CI] = 1.90–15.47) and correlated with placental parasite density (OR = 2.57; 95% CI = 1.80–3.67). A 1-log increase in placental monocyte count was associated with increased risk of congenital infection (P = 0.001) (OR = 48.15; 95% CI = 4.59–505.50). The HIV co-infected women have a significantly increased burden of placental malaria that increases the risk of congenital infection. PMID:19141849

  5. Rerooting the evolutionary tree of malaria parasites.

    PubMed

    Outlaw, Diana C; Ricklefs, Robert E

    2011-08-01

    Malaria parasites (Plasmodium spp.) have plagued humans for millennia. Less well known are related parasites (Haemosporida), with diverse life cycles and dipteran vectors that infect other vertebrates. Understanding the evolution of parasite life histories, including switches between hosts and vectors, depends on knowledge of evolutionary relationships among parasite lineages. In particular, inferences concerning time of origin and trait evolution require correct placement of the root of the evolutionary tree. Phylogenetic reconstructions of the diversification of malaria parasites from DNA sequences have suffered from uncertainty concerning outgroup taxa, limited taxon sampling, and selection on genes used to assess relationships. As a result, inferred relationships among the Haemosporida have been unstable, and questions concerning evolutionary diversification and host switching remain unanswered. A recent phylogeny placed mammalian malaria parasites, as well as avian/reptilian Plasmodium, in a derived position relative to the avian parasite genera Leucocytozoon and Haemoproteus, implying that the ancestral forms lacked merogony in the blood and that their vectors were non-mosquito dipterans. Bayesian, outgroup-free phylogenetic reconstruction using relaxed molecular clocks with uncorrelated rates instead suggested that mammalian and avian/reptilian Plasmodium parasites, spread by mosquito vectors, are ancestral sister taxa, from which a variety of specialized parasite lineages with modified life histories have evolved.

  6. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.

    PubMed

    Mok, Sachel; Ashley, Elizabeth A; Ferreira, Pedro E; Zhu, Lei; Lin, Zhaoting; Yeo, Tomas; Chotivanich, Kesinee; Imwong, Mallika; Pukrittayakamee, Sasithon; Dhorda, Mehul; Nguon, Chea; Lim, Pharath; Amaratunga, Chanaki; Suon, Seila; Hien, Tran Tinh; Htut, Ye; Faiz, M Abul; Onyamboko, Marie A; Mayxay, Mayfong; Newton, Paul N; Tripura, Rupam; Woodrow, Charles J; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, François; Day, Nicholas P J; Preiser, Peter R; White, Nicholas J; Dondorp, Arjen M; Fairhurst, Rick M; Bozdech, Zbynek

    2015-01-23

    Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.

  7. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.

    PubMed

    Mok, Sachel; Ashley, Elizabeth A; Ferreira, Pedro E; Zhu, Lei; Lin, Zhaoting; Yeo, Tomas; Chotivanich, Kesinee; Imwong, Mallika; Pukrittayakamee, Sasithon; Dhorda, Mehul; Nguon, Chea; Lim, Pharath; Amaratunga, Chanaki; Suon, Seila; Hien, Tran Tinh; Htut, Ye; Faiz, M Abul; Onyamboko, Marie A; Mayxay, Mayfong; Newton, Paul N; Tripura, Rupam; Woodrow, Charles J; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, François; Day, Nicholas P J; Preiser, Peter R; White, Nicholas J; Dondorp, Arjen M; Fairhurst, Rick M; Bozdech, Zbynek

    2015-01-23

    Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion. PMID:25502316

  8. The distinctive features of Indian malaria parasites.

    PubMed

    Das, Aparup

    2015-03-01

    Malaria and factors driving malaria are heterogeneous in India, unlike in other countries, and the epidemiology of malaria therefore is considered 'highly complex'. This complexity is primarily attributed to several unique features of the malaria parasites, mosquito vectors, malaria-susceptible populations, and ecoclimatic variables in India. Recent research on the genetic epidemiology of Indian malaria parasites has been successful in partly unraveling the mysteries underlying these complexities.

  9. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    SciTech Connect

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.

  10. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGESBeta

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  11. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-01-01

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

  12. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.

  13. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. PMID:26984625

  14. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    NASA Technical Reports Server (NTRS)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  15. Newly incriminated anopheline vectors of human malaria parasites in Junin Department, Peru.

    PubMed

    Hayes, J; Calderon, G; Falcon, R; Zambrano, V

    1987-09-01

    Sporozoite data from salivary gland dissections are presented that clearly incriminate Anopheles trinkae, An. pseudopunctipennis, An. sp. near fluminensis, An. oswaldoi, An. nuneztovari and An. rangeli as vectors of malaria parasites in the Rio Ene Valley, a hyperendemic malarious area in Junin Department, eastern Peru. Anopheles trinkae is considered the most important vector based on dissections, abundance and man-vector contact. Other notes are presented on the relative abundance, bionomics and previous records of these species in Peru and in the study sites.

  16. The importance of sensitive detection of malaria parasites in the human and insect hosts in epidemiological studies, as shown by the analysis of field samples from Guinea Bissau.

    PubMed

    Snounou, G; Pinheiro, L; Gonçalves, A; Fonseca, L; Dias, F; Brown, K N; do Rosario, V E

    1993-01-01

    A method based on the polymerase chain reaction (PCR) for highly sensitive detection and identification of human malaria parasites was applied to blood and mosquito samples obtained from a village in Guinea Bissau. The prevalence of parasites in the human population was shown to be greatly underestimated by microscopical examination. In particular, a high incidence of Plasmodium malariae and P. ovale parasites was revealed only by the PCR assay. Preliminary evidence was obtained to show that the distribution of P. malariae infections within the village was non-random. This was supported by analysis of the parasite species infecting the mosquito vector. The implication of these results for the design and interpretation of epidemiological surveys is discussed.

  17. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    PubMed Central

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  18. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites.

    PubMed

    Moreira, Cristina K; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites.

  19. Selective killing of the human malaria parasite Plasmodium falciparum by a benzylthiazolium dye.

    PubMed

    Kelly, Jane X; Winter, Rolf W; Braun, Theodore P; Osei-Agyemang, Myralyn; Hinrichs, David J; Riscoe, Michael K

    2007-06-01

    Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by Plasmodium falciparum which infects hundreds of millions of people and is responsible for the deaths of 1-2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study, we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel.

  20. Selective Killing of the Human Malaria Parasite Plasmodium falciparum by a Benzylthiazolium dye

    PubMed Central

    Kelly, Jane X.; Winter, Rolf W.; Braun, Theodore P.; Osei-Agyemang, Myralyn; Hinrichs, David J.; Riscoe, Michael K.

    2007-01-01

    Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by P. falciparum which infects hundreds of millions of people and is responsible for the deaths of 1 to 2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel. PMID:17266952

  1. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite

    PubMed Central

    Zhang, Yao; Kim, Sangtae; Golkaram, Mahdi; Dixon, Matthew W. A.; Tilley, Leann; Li, Ju; Zhang, Sulin; Suresh, Subra

    2015-01-01

    During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as “knobs,” introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24–48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies. PMID:25918423

  2. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria

    PubMed Central

    Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.

    2013-01-01

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

  3. Protein Export Marks the Early Phase of Gametocytogenesis of the Human Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Silvestrini, Francesco; Lasonder, Edwin; Olivieri, Anna; Camarda, Grazia; van Schaijk, Ben; Sanchez, Massimo; Younis Younis, Sumera; Sauerwein, Robert; Alano, Pietro

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent development of the elongated gametocyte. We developed a protocol to obtain for the first time highly purified preparations of early gametocytes using a transgenic line expressing a green fluorescent protein from the onset of gametocytogenesis. We determined the cellular proteome (1427 proteins) of this parasite stage by high accuracy tandem mass spectrometry and newly determined the proteomes of asexual trophozoites and mature gametocytes, identifying altogether 1090 previously undetected parasite proteins. Quantitative label-free comparative proteomics analysis determined enriched protein clusters for the three parasite developmental stages. Gene set enrichment analysis on the 251 proteins enriched in the early gametocyte proteome revealed that proteins putatively exported and involved in erythrocyte remodeling are the most overrepresented protein set in these stages. One-tenth of the early gametocyte-enriched proteome is constituted of putatively exported proteins, here named PfGEXPs (P. falciparum gametocyte-exported proteins). N-terminal processing and N-acetylation at a conserved leucine residue within the Plasmodium export element pentamotif were detected by mass spectrometry for three such proteins in the early but not in the mature gametocyte sample, further supporting a specific role in protein export in early gametocytogenesis. Previous reports and results of our experiments confirm that the three proteins are indeed exported in the erythrocyte cytoplasm. This work indicates that protein export profoundly marks early sexual differentiation in P. falciparum, probably contributing to host cell remodeling in this phase of the life cycle, and that gametocyte

  4. Malaria Parasites Produce Volatile Mosquito Attractants

    PubMed Central

    Kelly, Megan; Su, Chih-Ying; Schaber, Chad; Crowley, Jan R.; Hsu, Fong-Fu; Carlson, John R.

    2015-01-01

    ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. PMID:25805727

  5. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  6. Dynamics of the Major Histocompatibility Complex Class I Processing and Presentation Pathway in the Course of Malaria Parasite Development in Human Hepatocytes: Implications for Vaccine Development

    PubMed Central

    Ma, Jinxia; Trop, Stefanie; Baer, Samantha; Rakhmanaliev, Elian; Arany, Zita; Dumoulin, Peter; Zhang, Hao; Romano, Julia; Coppens, Isabelle; Levitsky, Victor; Levitskaya, Jelena

    2013-01-01

    Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver. PMID:24086507

  7. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    PubMed

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors. PMID:27436636

  8. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  9. Recombinant plasmepsin 1 from the human malaria parasite Plasmodium falciparum: Enzymatic characterization, active site inhibitor design, and structural analysis

    PubMed Central

    Liu, Peng; Marzahn, Melissa R.; Robbins, Arthur H.; Gutiérrez-de-Terán, Hugo; Rodríguez, David; McClung, Scott; Stevens, Stanley M.; Yowell, Charles A.; Dame, John B.; McKenna, Robert; Dunn, Ben M.

    2009-01-01

    A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in E. coli. The auto-maturation process was carried out at pH 4.0 and 4.5, and the optimal catalytic pH of the resulting mature PfPM1 was determined to be pH 5.5. This mature PfPM1 showed comparable binding affinity to peptide substrates and inhibitors with the naturally-occurring form isolated from parasites. The S3-S3’ subsite preferences of the recombinant mature PfPM1 were explored using combinatorial chemistry based peptide libraries. Based on the results, a peptidomimetic inhibitor (compound 1) was designed and yielded 5-fold selectivity for binding to PfPM1 versus the homologous human cathepsin D (hcatD). The 2.8 Å structure of the PfPMP2-compound 1 complex is reported. Modeling studies were conducted using a series of peptidomimetic inhibitors (compounds 1–6, Table 3) and three plasmepsins: the crystal structure of PfPM2, and homology derived models of PfPM1 and PfPM4. PMID:19271776

  10. The immunological balance between host and parasite in malaria.

    PubMed

    Deroost, Katrien; Pham, Thao-Thy; Opdenakker, Ghislain; Van den Steen, Philippe E

    2016-03-01

    Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.

  11. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites

    PubMed Central

    Janssen, Christoph S.; Phillips, R. Stephen; Turner, C. Michael R.; Barrett, Michael P.

    2004-01-01

    Functionally related homologues of known genes can be difficult to identify in divergent species. In this paper, we show how multi-character analysis can be used to elucidate the relationships among divergent members of gene superfamilies. We used probabilistic modelling in conjunction with protein structural predictions and gene-structure analyses on a whole-genome scale to find gene homologies that are missed by conventional similarity-search strategies and identified a variant gene superfamily in six species of malaria (Plasmodium interspersed repeats, pir). The superfamily includes rif in P.falciparum, vir in P.vivax, a novel family kir in P.knowlesi and the cir/bir/yir family in three rodent malarias. Our data indicate that this is the major multi-gene family in malaria parasites. Protein localization of products from pir members to the infected erythrocyte membrane in the rodent malaria parasite P.chabaudi, demonstrates phenotypic similarity to the products of pir in other malaria species. The results give critical insight into the evolutionary adaptation of malaria parasites to their host and provide important data for comparative immunology between malaria parasites obtained from laboratory models and their human counterparts. PMID:15507685

  12. The rediscovery of malaria parasites of ungulates.

    PubMed

    Templeton, Thomas J; Martinsen, Ellen; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-10-01

    Over a hundred years since their first description in 1913, the sparsely described malaria parasites (genus Plasmodium) of ungulates have been rediscovered using molecular typing techniques. In the span of weeks, three studies have appeared describing the genetic characterization and phylogenetic analyses of malaria parasites from African antelope (Cephalophus spp.) and goat (Capra aegagrus hircus), Asian water buffalo (Bubalus bubalis), and North American white-tailed deer (Odocoileus virginianus). Here we unify the contributions from those studies with the literature on pre-molecular characterizations of ungulate malaria parasites, which are largely based on surveys of Giemsa-reagent stained blood smears. We present a phylogenetic tree generated from all available ungulate malaria parasite sequence data, and show that parasites from African duiker antelope and goat, Asian water buffalo and New World white-tailed deer group together in a clade, which branches early in Plasmodium evolution. Anopheline mosquitoes appear to be the dominant, if not sole vectors for parasite transmission. We pose questions for future phylogenetic studies, and discuss topics that we hope will spur further molecular and cellular studies of ungulate malaria parasites.

  13. The rediscovery of malaria parasites of ungulates.

    PubMed

    Templeton, Thomas J; Martinsen, Ellen; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-10-01

    Over a hundred years since their first description in 1913, the sparsely described malaria parasites (genus Plasmodium) of ungulates have been rediscovered using molecular typing techniques. In the span of weeks, three studies have appeared describing the genetic characterization and phylogenetic analyses of malaria parasites from African antelope (Cephalophus spp.) and goat (Capra aegagrus hircus), Asian water buffalo (Bubalus bubalis), and North American white-tailed deer (Odocoileus virginianus). Here we unify the contributions from those studies with the literature on pre-molecular characterizations of ungulate malaria parasites, which are largely based on surveys of Giemsa-reagent stained blood smears. We present a phylogenetic tree generated from all available ungulate malaria parasite sequence data, and show that parasites from African duiker antelope and goat, Asian water buffalo and New World white-tailed deer group together in a clade, which branches early in Plasmodium evolution. Anopheline mosquitoes appear to be the dominant, if not sole vectors for parasite transmission. We pose questions for future phylogenetic studies, and discuss topics that we hope will spur further molecular and cellular studies of ungulate malaria parasites. PMID:27444556

  14. Paths to a malaria vaccine illuminated by parasite genomics

    PubMed Central

    Conway, David J.

    2015-01-01

    More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials. PMID:25620796

  15. African origin of the malaria parasite Plasmodium vivax.

    PubMed

    Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.

  16. African origin of the malaria parasite Plasmodium vivax

    PubMed Central

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  17. Parasites and human evolution.

    PubMed

    Perry, George H

    2014-01-01

    Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. As examples, the tapeworm life cycle is dependent on our consumption of meat, the divergence of body and head lice may have been subsequent to the development of clothing, and malaria hyperendemicity may be associated with agriculture. Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.

  18. Immune Escape Strategies of Malaria Parasites

    PubMed Central

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  19. Targeting Human Transmission Biology for Malaria Elimination

    PubMed Central

    Buckee, Caroline; Marti, Matthias

    2015-01-01

    Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps. PMID:26086192

  20. Cross-species malaria immunity induced by chemically attenuated parasites

    PubMed Central

    Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia

    2013-01-01

    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622

  1. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    M El Bakkouri; A Pow; A Mulichak; K Cheung; J Artz; M Amani; S Fell; T de Koning-Ward; C Goodman; et al.

    2011-12-31

    The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  2. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-12-31

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  3. Big bang in the evolution of extant malaria parasites.

    PubMed

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  4. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum.

    PubMed

    Koyama, Fernanda C; Azevedo, Mauro F; Budu, Alexandre; Chakrabarti, Debopam; Garcia, Célia R S

    2014-01-01

    There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  5. Protective efficacy and safety of liver stage attenuated malaria parasites

    PubMed Central

    Kumar, Hirdesh; Sattler, Julia Magdalena; Singer, Mirko; Heiss, Kirsten; Reinig, Miriam; Hammerschmidt-Kamper, Christiane; Heussler, Volker; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(–) or uis3(–) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(–) parasites protected better than uis3(–) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy. PMID:27241521

  6. Malaria.

    PubMed

    Garcia, Lynne S

    2010-03-01

    Malaria has had a greater impact on world history than any other infectious disease. More than 300 to 500 million individuals worldwide are infected with Plasmodium spp, and 1.5 to 2.7 million people a year, most of whom are children, die from the infection. Malaria is endemic in over 90 countries in which 2400 million people live; this represents 40% of the world's population. Approximately 90% of malaria deaths occur in Africa. Despite continuing efforts in vaccine development, malaria prevention is difficult, and no drug is universally effective. This article examines malaria caused by the 4 most common Plasmodium spp that infect humans, P vivax, P ovale, P malariae, and P falciparum, as well as mixed infections and the simian parasite P knowlesi. A comprehensive review of the microbiology, clinical presentation, pathogenesis, diagnosis, and treatment of these forms of malaria is given.

  7. Continuous in vitro propagation of the malaria parasite Plasmodium vivax.

    PubMed

    Golenda, C F; Li, J; Rosenberg, R

    1997-06-24

    The difficulty in controlling Plasmodium vivax, the most common cause of human malaria, has been complicated by growing drug resistance. We have established a method to cycle parasite generations in continuous culture using human blood cells. Chesson strain parasites were passaged from owl monkey erythrocytes to human reticulocytes in McCoy's 5A medium modified with L-glutamine with 25 mM Hepes buffer supplemented with 20% AB+ human serum. Reticulocytes were separated by differential centrifugation in homologous plasma from the peripheral blood of a hemochromatosis patient. Parasites were grown during each 48-hr cycle in a static candle jar environment until the beginning of schizogony, at about 36-40 hr, when reticulocytes were added and cultures transferred to a shaker for 10-12 hr. The addition of a concentration of 10% reticulocytes resulted in stabilizing parasite densities between 0.28 and 0.57 after cycle 3 and increasing the total number of parasites at least 2-fold with each generational cycle. Cultured parasites successfully infected an owl monkey. The morphology of cultured parasites was typical of P. vivax, with highly ameboid trophozoites evident; however, infected erythrocytes were enlarged and distorted on thin film preparations. The species identity of cultivated parasites was confirmed by analysis of the A and C 18S rRNA genes from genomic DNA and expression of only the A gene during erythrocytic asexual growth. The ability to culture P. vivax opens new opportunities to develop vaccines, test drugs, and clone parasites for genome sequencing.

  8. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    PubMed Central

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria. PMID:26029172

  9. Inhibition of the growth and development of asexual and sexual stages of drug-sensitive and resistant strains of the human malaria parasite Plasmodium falciparum by Neem (Azadirachta indica) fractions.

    PubMed

    Dhar, R; Zhang, K; Talwar, G P; Garg, S; Kumar, N

    1998-05-01

    Neem (Azadirachta indica) has been shown to possess anti-malarial activity. In this study we systematically evaluated extracts of neem seeds and purified fractions further enriched in polar or non-polar constituents for their effect on in vitro growth and development of asexual and sexual stages of the human malaria parasite Plasmodium falciparum. Use of synchronized stages of parasites suggested trophozoites/schizonts as the susceptible target stages to various neem extracts. In addition, all the maturation stages of gametocytes were also killed by various neem fractions tested. The anti-plasmodial effect of neem components was also observed on parasites previously shown to be resistant to other anti-malarial drugs, i.e. chloroquine and pyrimethamine suggesting a different mode of action. Neem seed fractions are thus active not only against the parasite stages that cause the clinical infection but also against the stages responsible for continued malaria transmission. PMID:9687079

  10. Plasmodium (Haemamoeba) cathemerium gene sequences for phylogenetic analysis of malaria parasites.

    PubMed

    Wiersch, S C; Maier, W A; Kampen, H

    2005-05-01

    The DNA sequence information on avian malaria parasites of the genus Plasmodium is quite limited. At present, sequences of only 6 out of 34 valid species are available. However, sequence data of avian malaria parasites are particularly important with regard to the resolution of the phylogenetic relationships of the most virulent human malaria agent, Plasmodium falciparum. The question as to whether P. falciparum originates from avian or from mammalian parasites would contribute to our understanding of its biology and would probably facilitate the interpretation of experimental results. To add to the body of molecular data, we sequenced three genes (cytochrome b, 18 SSU rRNA, caseinolytic protease C) of different organellar origin of one of the most widespread avian malaria parasites, Plasmodium (Haemamoeba) cathemerium, which once used to be an important laboratory in vivo model in human malaria research. The analysis of the new P. cathemerium sequences in direct comparison with the rodent parasite P. berghei and the four human malaria parasites by pairwise distance calculation do not suggest a closer relationship of P. cathemerium to P. falciparum than to the other species involved.

  11. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds

    PubMed Central

    Derbyshire, Emily R.; Prudêncio, Miguel; Mota, Maria M.; Clardy, Jon

    2012-01-01

    Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. All high-throughput malaria drug discovery efforts have focused on the cyclic blood stage, which has limited potential for the prophylaxis, transmission blocking, and eradication efforts that will be needed in the future. To address these unmet needs, a high-throughput phenotypic liver-stage Plasmodium parasite screen was developed to systematically identify molecules with liver-stage efficacy. The screen recapitulates liver-stage infection by isolating luciferase-expressing Plasmodium berghei parasites directly from the salivary glands of infected mosquitoes, adding them to confluent human liver cells in 384-well plates, and measuring luciferase activity after a suitable incubation period. Screening 5,375 known bioactive compounds identified 37 liver-stage malaria inhibitors with diverse modes of action, as shown by inhibition time course experiments. Further analysis of the hits in the Food and Drug Administration-approved drug subset revealed compounds that seem to act specifically on the liver stage of infection, suggesting that this phase of the parasite’s life cycle presents a promising area for new drug discovery. Notably, many active compounds in this screen have molecular structures and putative targets distinctly different from those of known antimalarial agents. PMID:22586124

  12. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Boa, Andrew N; Canavan, Shane P; Hirst, Paul R; Ramsey, Christopher; Stead, Andrew M W; McConkey, Glenn A

    2005-03-15

    A series of 2-phenyl quinoline-4-carboxylic acid derivatives related to brequinar, an inhibitor of human dihydroorotate dehydrogenase (DHODH), has been prepared and evaluated as inhibitors of DHODH from the malaria parasite Plasmodium falciparum. Brequinar was essentially inactive against PfDHODH (IC(50) 880 microM) whereas several members of the series inhibited PfDHODH. Unexpectedly, replacement of the carboxylic acid required for brequinar to inhibit hDHODH was not essential in the diisopropylamides that inhibited PfDHODH.

  13. Ecotope-based entomological surveillance and molecular xenomonitoring of multidrug resistant malaria parasites in anopheles vectors.

    PubMed

    Sorosjinda-Nunthawarasilp, Prapa; Bhumiratana, Adisak

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  14. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  15. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites

    PubMed Central

    Absalon, Sabrina; Robbins, Jonathan A.; Dvorin, Jeffrey D.

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  16. Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine.

    PubMed

    Wrenger, Carsten; Eschbach, Marie-Luise; Müller, Ingrid B; Laun, Nathan P; Begley, Tadhg P; Walter, Rolf D

    2006-01-01

    Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K(m)app values of 68 microM for THZ and 12 microM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors. PMID:16497163

  17. Giant Host Red Blood Cell Membrane Mimicking Polymersomes Bind Parasite Proteins and Malaria Parasites.

    PubMed

    Najer, Adrian; Thamboo, Sagana; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2016-01-01

    Malaria is an infectious disease that needs to be addressed using innovative approaches to counteract spread of drug resistance and to establish or optimize vaccination strategies. With our approach, we aim for a dual action with drug- and 'vaccine-like' activity against malaria. By inhibiting entry of malaria parasites into host red blood cells (RBCs) - using polymer vesicle-based (polymersome) nanomimics of RBC membranes - the life cycle of the parasite is interrupted and the exposed parasites are accessible to the host immune system. Here, we describe how host cell-sized RBC membrane mimics, formed with the same block copolymers as nanomimics, also bind the corresponding malaria parasite ligand and whole malaria parasites, similar to nanomimics. This was demonstrated using fluorescence imaging techniques and confirms the suitability of giant polymersomes (GUVs) as simple mimics for RBC membranes.

  18. The distinct proteome of placental malaria parasites.

    SciTech Connect

    Fried, Michal; Hixson, Kim K.; Anderson, Lori; Ogata, Yuko; Mutabingwa, Theonest K.; Duffy, Patrick E.

    2007-09-01

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.

  19. Monkey malaria kills four humans.

    PubMed

    Galinski, Mary R; Barnwell, John W

    2009-05-01

    Four human deaths caused by Plasmodium knowlesi, a simian malaria species, are stimulating a surge of public health interest and clinical vigilance in vulnerable areas of Southeast Asia. We, and other colleagues, emphasize that these cases, identified in Malaysia, are a clear warning that health facilities and clinicians must rethink the diagnosis and treatment of malaria cases presumed to be caused by a less virulent human malaria species, Plasmodium malariae.

  20. Malaria parasite pre-erythrocytic stage infection: Gliding and Hiding

    PubMed Central

    Vaughan, Ashley M.; Aly, Ahmed S. I.; Kappe, Stefan H. I.

    2008-01-01

    Summary Malaria is caused by red blood cell-infectious forms of Plasmodium parasites resulting in illness and possible death of infected hosts. The mosquito-borne sporozoite stage of the parasite and the initial infection in the liver, however cause little pathology and no symptoms. Nevertheless, these pre-erythrocytic parasite stages are attracting passionate research efforts not least because they are the most promising targets for malaria vaccine development. Here, we review how the infectious sporozoite makes its way to the liver, subsequently develops in hepatocytes and the factors, both parasite and host, involved in the interactions that occur during this ‘silent’ phase of infection. PMID:18779047

  1. A Class of Tricyclic Compounds Blocking Malaria Parasite Oocyst Development and Transmission

    PubMed Central

    Eastman, Richard T.; Pattaradilokrat, Sittiporn; Raj, Dipak K.; Dixit, Saurabh; Deng, Bingbing; Miura, Kazutoyo; Yuan, Jing; Tanaka, Takeshi Q.; Johnson, Ronald L.; Jiang, Hongying; Huang, Ruili; Williamson, Kim C.; Lambert, Lynn E.; Long, Carole; Austin, Christopher P.; Wu, Yimin

    2013-01-01

    Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication. PMID:23129054

  2. How can we determine the molecular clock of malaria parasites?

    PubMed

    Bensch, Staffan; Hellgren, Olof; Križanauskienė, Asta; Palinauskas, Vaidas; Valkiūnas, Gediminas; Outlaw, Diana; Ricklefs, Robert E

    2013-08-01

    The association of contemporary hosts and their parasites might reflect either cospeciation or more recent shifts among existing hosts. Cospeciation implies that lineages of hosts and parasites diverge in parallel at the same time, but testing this prediction requires time-calibrated phylogenies, which are particularly difficult to obtain in organisms that leave few fossils. It has successively become clear that host shifts have been frequent in the evolutionary history of malaria parasites, but dating these host shifts cannot be done without calibrated phylogenies. Hence, it remains unresolved how long contemporary hosts and vectors have been coevolving with their malaria parasites. This review addresses conflicting rate estimates of molecular evolution and suggests research directions to aid dating diversification events in malaria parasites.

  3. The interplay between drug resistance and fitness in malaria parasites

    PubMed Central

    Rosenthal, Philip J.

    2013-01-01

    Summary Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared to wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria. PMID:23899091

  4. Malaria

    MedlinePlus

    MENU Return to Web version Malaria Overview What is malaria? Malaria is an infection of a part of the blood called the red blood cells. It is ... by mosquitoes that carry a parasite that causes malaria. If a mosquito carrying this parasite bites you, ...

  5. Computational microscopic imaging for malaria parasite detection: a systematic review.

    PubMed

    Das, D K; Mukherjee, R; Chakraborty, C

    2015-10-01

    Malaria, being an epidemic disease, demands its rapid and accurate diagnosis for proper intervention. Microscopic image-based characterization of erythrocytes plays an integral role in screening of malaria parasites. In practice, microscopic evaluation of blood smear image is the gold standard for malaria diagnosis; where the pathologist visually examines the stained slide under the light microscope. This visual inspection is subjective, error-prone and time consuming. In order to address such issues, computational microscopic imaging methods have been given importance in recent times in the field of digital pathology. Recently, such quantitative microscopic techniques have rapidly evolved for abnormal erythrocyte detection, segmentation and semi/fully automated classification by minimizing such diagnostic errors for computerized malaria detection. The aim of this paper is to present a review on enhancement, segmentation, microscopic feature extraction and computer-aided classification for malaria parasite detection.

  6. Spatial Localisation of Actin Filaments across Developmental Stages of the Malaria Parasite

    PubMed Central

    Angrisano, Fiona; Delves, Michael J.; Zuccala, Elizabeth S.; Turnbull, Lynne; Dekiwadia, Chaitali; Olshina, Maya A.; Marapana, Danushka S.; Wong, Wilson; Mollard, Vanessa; Bradin, Clare H.; Tonkin, Christopher J.; Gunning, Peter W.; Ralph, Stuart A.; Whitchurch, Cynthia B.; Sinden, Robert E.; Cowman, Alan F.; McFadden, Geoffrey I.; Baum, Jake

    2012-01-01

    Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu. PMID:22389687

  7. Polysome profiling of the malaria parasite Plasmodium falciparum.

    PubMed

    Lacsina, Joshua R; LaMonte, Gregory; Nicchitta, Christopher V; Chi, Jen-Tsan

    2011-09-01

    In the malaria parasite Plasmodium falciparum, global studies of translational regulation have been hampered by the inability to isolate malaria polysomes. We describe here a novel method for polysome profiling in P. falciparum, a powerful approach which allows both a global view of translation and the measurement of ribosomal loading and density for specific mRNAs. Simultaneous lysis of infected erythrocytes and parasites releases stable, intact malaria polysomes, which are then purified by centrifugation through a sucrose cushion. The polysomes are resuspended, separated by velocity sedimentation and then fractionated, yielding a characteristic polysome profile reflecting the global level of translational activity in the parasite. RNA isolated from specific fractions can be used to determine the density of ribosomes loaded onto a particular transcript of interest, and is free of host ribosome contamination. Thus, our approach opens translational regulation in malaria to genome-wide analysis.

  8. Malaria parasite epigenetics: when virulence and romance collide.

    PubMed

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events.

  9. Sickle cell microRNAs inhibit the malaria parasite.

    PubMed

    Duraisingh, Manoj T; Lodish, Harvey F

    2012-08-16

    Sickle cell hemoglobin conveys resistance to malaria. In this issue of Cell Host & Microbe, LaMonte et al. (2012) demonstrate a surprising mechanism for this innate immunity. A microRNA enriched in sickle red blood cells is translocated into the parasite, incorporated covalently into P. falciparum mRNAs and inhibits parasite growth.

  10. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data

    PubMed Central

    Ruktanonchai, Nick W.; DeLeenheer, Patrick; Tatem, Andrew J.; Alegana, Victor A.; Caughlin, T. Trevor; zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W.; Smith, David L.

    2016-01-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model. PMID:27043913

  11. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data.

    PubMed

    Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J; Alegana, Victor A; Caughlin, T Trevor; Zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W; Smith, David L

    2016-04-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.

  12. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data.

    PubMed

    Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J; Alegana, Victor A; Caughlin, T Trevor; Zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W; Smith, David L

    2016-04-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model. PMID:27043913

  13. Functional dissection of the catalytic carboxyl-terminal domain of origin recognition complex subunit 1 (PfORC1) of the human malaria parasite Plasmodium falciparum.

    PubMed

    Gupta, Ashish; Mehra, Parul; Deshmukh, Abhijeet; Dar, Ashraf; Mitra, Pallabi; Roy, Nilanjan; Dhar, Suman Kumar

    2009-09-01

    Origin recognition complex subunit 1 (ORC1) is essential for DNA replication in eukaryotes. The deadly human malaria parasite Plasmodium falciparum contains an ORC1/CDC6 homolog with several interesting domains at the catalytic carboxyl-terminal region that include a putative nucleoside triphosphate-binding and hydrolysis domain, a putative PCNA-interacting-protein (PIP) motif, and an extreme C-terminal region that shows poor homology with other ORC1 homologs. Due to the unavailability of a dependable inducible gene expression system, it is difficult to study the structure and function of essential genes in Plasmodium. Using a genetic yeast complementation system and biochemical experiments, here we show that the putative PIP domain in ORC1 that facilitates in vitro physical interaction with PCNA is functional in both yeast (Saccharomyces cerevisiae) and Plasmodium in vivo, confirming its essential biological role in eukaryotes. Furthermore, despite having less sequence homology, the extreme C-terminal region can be swapped between S. cerevisiae and P. falciparum and it binds to DNA directly, suggesting a conserved role of this region in DNA replication. These results not only provide us a useful system to study the function of the essential genes in Plasmodium, they help us to identify the previously undiscovered unique features of replication proteins in general.

  14. The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution.

    PubMed

    Koch, Marion; Baum, Jake

    2016-03-01

    Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non-essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin-myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre-invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite-derived lipid material, that the merozoite may initiate cytoskeletal re-arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms.

  15. The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution.

    PubMed

    Koch, Marion; Baum, Jake

    2016-03-01

    Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non-essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin-myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre-invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite-derived lipid material, that the merozoite may initiate cytoskeletal re-arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms. PMID:26663815

  16. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed

    Hastings, Ian M; Kay, Katherine; Hodel, Eva Maria

    2015-10-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings.

  17. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed

    Hastings, Ian M; Kay, Katherine; Hodel, Eva Maria

    2015-10-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  18. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed Central

    Kay, Katherine; Hodel, Eva Maria

    2015-01-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  19. Histone H3K9 acetylation level modulates gene expression and may affect parasite growth in human malaria parasite Plasmodium falciparum.

    PubMed

    Srivastava, Sandeep; Bhowmick, Krishanu; Chatterjee, Snehajyoti; Basha, Jeelan; Kundu, Tapas K; Dhar, Suman K

    2014-12-01

    Three-dimensional positioning of the nuclear genome plays an important role in the epigenetic regulation of genes. Although nucleographic domain compartmentalization in the regulation of epigenetic state and gene expression is well established in higher organisms, it remains poorly understood in the pathogenic parasite Plasmodium falciparum. In the present study, we report that two histone tail modifications, H3K9Ac and H3K14Ac, are differentially distributed in the parasite nucleus. We find colocalization of active gene promoters such as Tu1 (tubulin-1 expressed in the asexual stages) with H3K9Ac marks at the nuclear periphery. By contrast, asexual stage inactive gene promoters such as Pfg27 (gametocyte marker) and Pfs28 (ookinete marker) occupy H3K9Ac devoid zones at the nuclear periphery. The histone H3K9 is predominantly acetylated by the PCAF/GCN5 class of lysine acetyltransferases, which is well characterized in the parasite. Interestingly, embelin, a specific inhibitor of PCAF/GCN5 family histone acetyltransferase, selectively decreases total H3K9Ac acetylation levels (but not H3K14Ac levels) around the var gene promoters, leading to the downregulation of var gene expression, suggesting interplay among histone acetylation status, as well as subnuclear compartmentalization of different genes and their activation in the parasites. Finally, we found that embelin inhibited parasitic growth at the low micromolar range, raising the possibility of using histone acetyltransferases as a target for antimalarial therapy.

  20. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  1. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.

  2. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  3. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution

    PubMed Central

    Koch, Marion

    2016-01-01

    Summary Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non‐essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin–myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre‐invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite‐derived lipid material, that the merozoite may initiate cytoskeletal re‐arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms. PMID:26663815

  4. Drug repurposing and human parasitic protozoan diseases

    PubMed Central

    Andrews, Katherine T.; Fisher, Gillian; Skinner-Adams, Tina S.

    2014-01-01

    Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis. PMID:25057459

  5. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.

    PubMed Central

    Elliott, J L; Saliba, K J; Kirk, K

    2001-01-01

    The mature, intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, is reliant on glycolysis for its energetic requirements. It produces large quantities of lactic acid, which have to be removed from the parasite's cytosol to maintain the cell's integrity and metabolic viability. Here we show that the monocarboxylates lactate and pyruvate are both transported across the parasite's plasma membrane via a H(+)/monocarboxylate symport process that is saturable and inhibited by the bioflavonoid phloretin. The results provide direct evidence for the presence at the parasite surface of a H(+)-coupled monocarboxylate transporter with features in common with members of the MCT (monocarboxylate transporter) family of higher eukaryotes. PMID:11311136

  6. Redox sensing and signaling by malaria parasite in vertebrate host.

    PubMed

    Tripathy, Satyajit; Roy, Somenath

    2015-09-01

    Plasmodium parasites, which is responsible to cause malaria, are also exceedingly receptive to oxidative stress during their intraerythrocytic life stage as they devour haemoglobin inside their food vacuoles and engender toxic haem moieties and reactive oxygen species (ROS). Other than, several studies suggest that the generation of reactive oxygen and nitrogen species (ROS and RNS) associated with oxidative stress, plays a decisive role in the ripeness of systemic complications caused by malaria. Malaria infection provokes the generation of hydroxyl radicals (OH(•)), which most probably is the main reason for the induction of oxidative stress and apoptosis. In this study, it has been described to understand how redox molecules and NO carry out their diverse functions in both parasites and host. It is very important to understand the chemical reactions that produce those outcomes and how its regulation carried out by parasite during erythrocytic phase.

  7. Enrichment of malaria parasites by antibody immobilized magnetic nanoparticles.

    PubMed

    Tangchaikeeree, Tienrat; Jangpatarapongsa, Kulachart; Polpanich, Duangporn; Thiramanas, Raweewan; Pornjarone, Atcharavalai; Udnaen, Somkiat; Udomsangpetch, Rachanee; Tangboriboonrat, Pramuan

    2013-10-01

    The simple and less expensive technique based on magnetic nanoparticles (MNPs) was developed for separation of malaria parasites containing specific antigens. The carboxylated MNPs were chemically bound with anti-P. falciparum IgG antibodies (Ab-MNPs) purified from the plasma of malaria patients and then used for removal of P. falciparum malaria-infected erythrocytes from other non-infected blood cells in malaria culture at a given percent parasitemia. The results from optical microscope showed that all blood stages parasites, i.e., ring, trophozoite and schizont, could be separated from other blood components with high purity (> or = 95%) and yield of 33.5% (the early stages of ring and trophozoite:the schizont stage were 1:1.34). Highly specific interaction between Ab-MNPs and the P. falciparum malaria infected erythrocytes was confirmed by scanning electron microscope. When compared to the centrifugation with Percoll gradient and depletion by sorbitol lysis which are specific to the mature and the ring stages, respectively, our technique would be more useful for production of high quality of parasites to use in malaria pathogenesis or immunological studies, and in detection techniques.

  8. How selection forces dictate the variant surface antigens used by malaria parasites.

    PubMed

    Severins, Maite; Klinkenberg, Don; Heesterbeek, Hans

    2012-02-01

    Red blood cells infected by the malaria parasite Plasmodium falciparum express variant surface antigens (VSAs) that evade host immunity and allow the parasites to persist in the human population. There exist many different VSAs and the differential expression of these VSAs is associated with the virulence (damage to the host) of the parasites. The aim of this study is to unravel the differences in the effect key selection forces have on parasites expressing different VSAs such that we can better understand how VSAs enable the parasites to adapt to changes in their environment (like control measures) and how this may impact the virulence of the circulating parasites. To this end, we have built an individual-based model that captures the main selective forces on malaria parasites, namely parasite competition, host immunity, host death and mosquito abundance at both the within- and between-host levels. VSAs are defined by the net growth rates they infer to the parasites and the model keeps track of the expression of, and antibody build-up against, each VSA in all hosts. Our results show an ordered acquisition of VSA-specific antibodies with host age, which causes a dichotomy between the more virulent VSAs that reach high parasitaemias but are restricted to young relatively non-immune hosts, and less virulent VSAs that do not reach such high parasitaemias but can infect a wider range of hosts. The outcome of a change in the parasite's environment in terms of parasite virulence depends on the exact balance between the selection forces, which sets the limiting factor for parasite survival. Parasites will evolve towards expressing more virulent VSAs when the limiting factor for parasite survival is the within-host parasite growth and the parasites are able to minimize this limitation by expressing more virulent VSAs.

  9. Unsupervised malaria parasite detection based on phase spectrum.

    PubMed

    Fang, Yuming; Xiong, Wei; Lin, Weisi; Chen, Zhenzhong

    2011-01-01

    In this paper, we propose a novel method for malaria parasite detection based on phase spectrum. The method first obtains the amplitude spectrum and phase spectrum for blood smear images through Quaternion Fourier Transform (QFT). Then it gets the reconstructed image based on Inverse Quaternion Fourier transform (IQFT) on a constant amplitude spectrum and the original phase spectrum. The malaria parasite areas can be detected easily from the reconstructed blood smear images. Extensive experiments have demonstrated the effectiveness of this novel method. PMID:22256196

  10. Species formation by host shifting in avian malaria parasites.

    PubMed

    Ricklefs, Robert E; Outlaw, Diana C; Svensson-Coelho, Maria; Medeiros, Matthew C I; Ellis, Vincenzo A; Latta, Steven

    2014-10-14

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host-pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts.

  11. Species formation by host shifting in avian malaria parasites

    PubMed Central

    Ricklefs, Robert E.; Outlaw, Diana C.; Svensson-Coelho, Maria; Medeiros, Matthew C. I.; Ellis, Vincenzo A.; Latta, Steven

    2014-01-01

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host–pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts. PMID:25271324

  12. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  13. Malaria parasite epigenetics: when virulence and romance collide.

    PubMed

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events. PMID:25121742

  14. Selection and refinement: the malaria parasite's infection and exploitation of host hepatocytes.

    PubMed

    Kaushansky, Alexis; Kappe, Stefan Hi

    2015-08-01

    Plasmodium parasites belong to the Apicomplexan phylum, which consists mostly of obligate intracellular pathogens that vary dramatically in host cell tropism. Plasmodium sporozoites are highly hepatophilic. The specific molecular mechanisms, which facilitate sporozoite selection and successful infection of hepatocytes, remain poorly defined. Here, we discuss the parasite and host factors which are critical to hepatocyte infection. We derive a model where sporozoites initially select host cells that constitute a permissive environment and then further refine the chosen hepatocyte during liver stage development, ensuring life cycle progression. While many unknowns of pre-erythrocytic infection remain, advancing models and technologies that enable analysis of human malaria parasites and of single infected cells will catalyze a comprehensive understanding of the interaction between the malaria parasite and its hepatocyte host. PMID:26102161

  15. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development

    PubMed Central

    Vaughan, Ashley M; O'Neill, Matthew T; Tarun, Alice S; Camargo, Nelly; Phuong, Thuan M; Aly, Ahmed S I; Cowman, Alan F; Kappe, Stefan H I

    2009-01-01

    Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F, a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ, another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro. Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood. PMID:19068099

  16. Mitochondrial genes support a common origin of rodent malaria parasites and Plasmodium falciparum's relatives infecting great apes

    PubMed Central

    2011-01-01

    Background Plasmodium falciparum is responsible for the most acute form of human malaria. Most recent studies demonstrate that it belongs to a monophyletic lineage specialized in the infection of great ape hosts. Several other Plasmodium species cause human malaria. They all belong to another distinct lineage of parasites which infect a wider range of primate species. All known mammalian malaria parasites appear to be monophyletic. Their clade includes the two previous distinct lineages of parasites of primates and great apes, one lineage of rodent parasites, and presumably Hepatocystis species. Plasmodium falciparum and great ape parasites are commonly thought to be the sister-group of all other mammal-infecting malaria parasites. However, some studies supported contradictory origins and found parasites of great apes to be closer to those of rodents, or to those of other primates. Results To distinguish between these mutually exclusive hypotheses on the origin of Plasmodium falciparum and its great ape infecting relatives, we performed a comprehensive phylogenetic analysis based on a data set of three mitochondrial genes from 33 to 84 malaria parasites. We showed that malarial mitochondrial genes have evolved slowly and are compositionally homogeneous. We estimated their phylogenetic relationships using Bayesian and maximum-likelihood methods. Inferred trees were checked for their robustness to the (i) site selection, (ii) assumptions of various probabilistic models, and (iii) taxon sampling. Our results robustly support a common ancestry of rodent parasites and Plasmodium falciparum's relatives infecting great apes. Conclusions Our results refute the most common view of the origin of great ape malaria parasites, and instead demonstrate the robustness of a less well-established phylogenetic hypothesis, under which Plasmodium falciparum and its relatives infecting great apes are closely related to rodent parasites. This study sheds light on the evolutionary history

  17. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.

    PubMed

    Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

  18. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Liu, Peng; Robbins, Arthur H.; Marzahn, Melissa R.; McClung, Scott H.; Yowell, Charles A.; Stevens, Stanley M.; Dame, John B.; Dunn, Ben M.

    2015-01-01

    The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB) in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1’, S2’ and S3’. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD). We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design. PMID:26510189

  19. Interactions between malaria parasites and the host immune system.

    PubMed

    Engwerda, Christian R; Good, Michael F

    2005-08-01

    Malaria remains one of the greatest impediments to development in many tropical regions of the world. Understanding host immune responses to malaria parasites is crucial for the effective design and implementation of new vaccines and drugs. Recent research has seen the identification of the first pattern recognition receptor (TLR9) on dendritic cells for a defined product of malaria infection (hemozoin). In addition, progress has been made in understanding the role of dendritic cell subsets in malaria, and how they promote specific components of the host immune response. Potentially important advances in vaccine design have also been made by inserting a Plasmodium sporozoite epitope into the yellow fever vaccine 17D, as well as using a whole, live-attenuated sporozoite vaccine. PMID:15950450

  20. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  1. Implications of temperature variation for malaria parasite development across Africa

    PubMed Central

    Blanford, J. I.; Blanford, S.; Crane, R. G.; Mann, M. E.; Paaijmans, K. P.; Schreiber, K. V.; Thomas, M. B.

    2013-01-01

    Temperature is an important determinant of malaria transmission. Recent work has shown that mosquito and parasite biology are influenced not only by average temperature, but also by the extent of the daily temperature variation. Here we examine how parasite development within the mosquito (Extrinsic Incubation Period) is expected to vary over time and space depending on the diurnal temperature range and baseline mean temperature in Kenya and across Africa. Our results show that under cool conditions, the typical approach of using mean monthly temperatures alone to characterize the transmission environment will underestimate parasite development. In contrast, under warmer conditions, the use of mean temperatures will overestimate development. Qualitatively similar patterns hold using both outdoor and indoor temperatures. These findings have important implications for defining malaria risk. Furthermore, understanding the influence of daily temperature dynamics could provide new insights into ectotherm ecology both now and in response to future climate change. PMID:23419595

  2. Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite.

    PubMed

    Friesen, Johannes; Matuschewski, Kai

    2011-09-16

    Despite major efforts over the past 50 years to develop a malaria vaccine, no product has been licensed yet. Irradiated sporozoites are the benchmark for an experimental live-attenuated malaria vaccine that induces potent protection against re-infection in humans and animal models. Lasting protection can also be elicited by parasite attenuation via tailored genetic modification or drug cover leading to renewed interest in whole-organism vaccination strategies. In this study, we systematically compared the protective efficacy of different whole-organism vaccination approaches in the Plasmodium berghei/C57bl/6 rodent malaria model. We applied blood stage parasitemia and quantitative RT-PCR of liver parasite loads as two complementary primary endpoints of a malaria challenge infection. We were able to demonstrate similar potency of genetic attenuation, i.e., uis3(-) and p36p(-) parasites, and prophylactic drug cover, i.e., azithromycin, pyrimethamine, primaquine and chloroquine, during sporozoite exposure in comparison to irradiated sporozoites. Importantly, when animals were covered with the antibiotic azithromycin during sporozoite exposure we observed superior protection. On the other end, immunizations with heat-killed and over-irradiated sporozoites failed to confer any detectable protection. Together, we show that systematic pre-clinical evaluation and quantification of vaccine efficacy is vital for identification of the most potent whole organism anti-malaria vaccine strategy.

  3. Parasitic diseases in humans transmitted by vectors.

    PubMed

    Cholewiński, Marcin; Derda, Monika; Hadaś, Edward

    2015-01-01

    Despite the considerable progress of medicine, parasitic diseases still pose a great threat to human health and life. Among parasitic diseases, those transmitted by vectors, mainly arthropods, play a particular role. These diseases occur most frequently in the poorest countries and affect a vast part of the human population. They include malaria, babesiosis, trypanosomiasis, leishmaniasis and filariasis. This study presents those vector-transmitted diseases that are responsible for the greatest incidence and mortality of people on a global scale. Attention is focused primarily on diseases transmitted by mosquitoes, flies, Hemiptera and ticks.

  4. Copper-transporting ATPase is important for malaria parasite fertility.

    PubMed

    Kenthirapalan, Sanketha; Waters, Andrew P; Matuschewski, Kai; Kooij, Taco W A

    2014-01-01

    Homeostasis of the trace element copper is essential to all eukaryotic life. Copper serves as a cofactor in metalloenzymes and catalyses electron transfer reactions as well as the generation of potentially toxic reactive oxygen species. Here, we describe the functional characterization of an evolutionarily highly conserved, predicted copper-transporting P-type ATPase (CuTP) in the murine malaria model parasite Plasmodium berghei. Live imaging of a parasite line expressing a fluorescently tagged CuTP demonstrated that CuTP is predominantly located in vesicular bodies of the parasite. A P. berghei loss-of-function mutant line was readily obtained and showed no apparent defect in in vivo blood stage growth. Parasite transmission through the mosquito vector was severely affected, but not entirely abolished. We show that male and female gametocytes are abundant in cutp(-) parasites, but activation of male microgametes and exflagellation were strongly impaired. This specific defect could be mimicked by addition of the copper chelator neocuproine to wild-type gametocytes. A cross-fertilization assay demonstrated that female fertility was also severely abrogated. In conclusion, we provide experimental genetic and pharmacological evidence that a healthy copper homeostasis is critical to malaria parasite fertility of both genders of gametocyte and, hence, to transmission to the mosquito vector.

  5. Chemosensitization potential of P-glycoprotein inhibitors in malaria parasites.

    PubMed

    Alcantara, Laura M; Kim, Junwon; Moraes, Carolina B; Franco, Caio H; Franzoi, Kathrin D; Lee, Sukjun; Freitas-Junior, Lucio H; Ayong, Lawrence S

    2013-06-01

    Members of the ATP-binding cassette (ABC)-type transporter superfamily have been implicated in multidrug resistance in malaria, and various mechanistic models have been postulated to explain their interaction with diverse antimalarial drugs. To gain insight into the pharmacological benefits of inhibiting ABC-type transporters in malaria chemotherapy, we investigated the in vitro chemosensitization potential of various P-glycoprotein inhibitors. A fluorescent chloroquine derivative was synthesized and used to assess the efflux dynamics of chloroquine in MDR and wild type Plasmodium falciparum parasites. This novel BODIPY-based probe accumulated in the digestive vacuole (DV) of CQ-sensitive parasites but less so in MDR cells. Pre-exposure of the MDR parasites to non-cytocidal concentrations of unlabeled chloroquine resulted in a diffused cytoplasmic retention of the probe whereas a similar treatment with the CQR-reversing agent, chlorpheniramine, resulted in DV accumulation. A diffused cytoplasmic distribution of the probe was also obtained following treatment with the P-gp specific inhibitors zosuquidar and tariquidar, whereas treatments with the tyrosine kinase inhibitors gefitinib or imatinib produced a partial accumulation within the DV. Isobologram analyses of the interactions between these inhibitors and the antimalarial drugs chloroquine, mefloquine, and artemisinin revealed distinct patterns of drug synergism, additivity and antagonism. Taken together, the data indicate that competitive tyrosine kinase and noncompetitive P-glycoprotein ATPase-specific inhibitors represent two new classes of chemosensitizing agents in malaria parasites, but caution against the indiscriminate use of these agents in antimalarial drug combinations.

  6. Understanding drug resistance in malaria parasites: basic science for public health.

    PubMed

    Sibley, Carol Hopkins

    2014-07-01

    The worlds of basic scientists and those involved in treating patients and making public health decisions do not always intersect. Yet, assuring that when patients are treated, they are efficiently and completely cured, and that public health decisions are based on solid evidence requires a broad foundation of up to date basic research. Research on the malaria parasite, Plasmodium falciparum provides a useful illustration of the role that basic scientific studies have played in the very long relationship between humans and this deadly parasite. Drugs have always been a principal tool in malaria treatment. The ongoing struggle between evolution of resistance to antimalarials by the parasite and public health responses is used here as an illustration of the key contributions of basic scientists to this long history.

  7. Malaria: a tumour necrosis factor inhibitor from parasitized erythrocytes.

    PubMed Central

    Sheikh, N A; Caro, H N; Taverne, J; Playfair, J H; Rademacher, T W

    1996-01-01

    The excessive production of tumour necrosis factor (TNF) is associated with the pathology of blood-stage malaria and phosphatidylinositol-containing phospholipid antigens from parasitized erythrocytes stimulate its secretion by macrophages, thus acting as toxins. This brief report describes some properties of an inhibitor present in lysates from erythrocytes infected with malarial parasites that blocked the detection of recombinant TNF in an enzyme-linked immunosorbent assay and diminished or abolished the cytotoxicity of TNF. It was not found in control lysates of normal erythrocytes. Its addition to macrophage cultures stimulated by toxic malarial preparations or by bacterial lipopolysaccharide also blocked the detection of TNF. These findings may explain the contradictory results obtained from different assays for TNF, and emphasize the need for caution when interpreting the results of a single assay system. If released when parasitized erythrocytes rupture in vivo, the inhibitor could help protect both parasite and host from the damaging effects of TNF. PMID:8778034

  8. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodelling.

    PubMed

    Pillai, Ajay D; Addo, Rachel; Sharma, Paresh; Nguitragool, Wang; Srinivasan, Prakash; Desai, Sanjay A

    2013-04-01

    Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na(+) and K(+) , ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasite's ionic requirements by establishing continuous culture in novel sucrose-based media. With sucrose as the primary osmoticant and K(+) and Cl(-) as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long-known increases in intracellular Na(+) via parasite-induced channels, excluding a requirement for erythrocyte cation remodelling. We also dissected Na(+) , K(+) and Cl(-) requirements and found that unexpectedly low concentrations of each ion meet the parasite's demands. Surprisingly, growth was not adversely affected by up to 148 mM K(+) , suggesting that low extracellular K(+) is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signalling in malaria and reveal fundamental differences between host and parasite ionic requirements.

  9. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass

    PubMed Central

    Bernabeu, Maria; Danziger, Samuel A.; Avril, Marion; Vaz, Marina; Babar, Prasad H.; Brazier, Andrew J.; Herricks, Thurston; Maki, Jennifer N.; Pereira, Ligia; Mascarenhas, Anjali; Gomes, Edwin; Chery, Laura; Aitchison, John D.; Rathod, Pradipsinh K.; Smith, Joseph D.

    2016-01-01

    The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence. PMID:27185931

  10. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi.

    PubMed

    Sutton, Patrick L; Luo, Zunping; Divis, Paul C S; Friedrich, Volney K; Conway, David J; Singh, Balbir; Barnwell, John W; Carlton, Jane M; Sullivan, Steven A

    2016-06-01

    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes. PMID:26980604

  11. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  12. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei.

    PubMed

    Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

    2015-03-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

  13. Erythrocytic vacuolar rafts induced by malaria parasites.

    PubMed

    Haldar, K; Samuel, B U; Mohandas, N; Harrison, T; Hiller, N L

    2001-03-01

    Studies in the past year displaced long-standing dogmas and provided many new molecular insights into how proteins and solutes move between the erythrocyte plasma membrane and the malarial vacuole. Highlights include a demonstration that (1) detergent-resistant membrane (DRM) rafts exist in the red cell membrane and their resident proteins are detected as rafts in the plasmodial vacuole, (2) a voltage-gated channel in the infected red cell membrane mediates uptake of extracellular nutrient solutes, and (3) intraerythrocytic membranes transport a parasite-encoded adherence antigen to the red cell surface.

  14. Effects of Malaria Parasite Density on Blood Cell Parameters

    PubMed Central

    Kotepui, Manas; Piwkham, Duangjai; PhunPhuech, Bhukdee; Phiwklam, Nuoil; Chupeerach, Chaowanee; Duangmano, Suwit

    2015-01-01

    Changes in blood cell parameters are already a well-known feature of malarial infections. To add to this information, the objective of this study was to investigate the varying effects that different levels of parasite density have on blood cell parameters. Patients diagnosed with malaria at Phobphra Hospital, Tak Province, Thailand between January 1st 2009 and January 1st 2012 were recruited as subjects for data collection. Blood cell parameters of 2,024 malaria-infected patients were evaluated and statistically analyzed. Neutrophil and platelet counts were significantly higher, however, RBC count was significantly lower in patients with P. falciparum infection compared to those with P. vivax infection (p<0.0001). Leukocyte counts were also significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia. In terms of differential leukocyte count, neutrophil count was significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia (p<0.0001). On the other hand, both lymphocyte and monocyte counts were significantly lower in patients with high parasitemia (p<0.0001). RBC count and Hb concentration, as well as platelet count were also significantly reduced (p<0.05) and (p<0.0001), respectively. To summarize, patients infected with different malaria parasites exhibited important distinctive hematological parameters, with neutrophil and eosinophil counts being the two hematological parameters most affected. In addition, patients infected with different malarial densities also exhibited important changes in leukocyte count, platelet count and hemoglobin concentration during the infection. These findings offer the opportunity to recognize and diagnose malaria related anemia, help support the treatment thereof, as well as relieve symptoms of severe malaria in endemic regions. PMID:25807235

  15. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  16. Timing the origin of human malarias: the lemur puzzle

    PubMed Central

    2011-01-01

    Background Timing the origin of human malarias has been a focus of great interest. Previous studies on the mitochondrial genome concluded that Plasmodium in primates, including those parasitic to humans, radiated relatively recently during a process where host switches were common. Those investigations, however, assumed constant rate of evolution and tightly bound (fixed) calibration points based on host fossils or host distribution. We investigate the effect of such assumptions using different molecular dating methods. We include parasites from Lemuroidea since their distribution provides an external validation to time estimates allowing us to disregard scenarios that cannot explain their introduction in Madagascar. Results We reject the assumption that the Plasmodium mitochondrial genome, as a unit or each gene separately, evolves at a constant rate. Our analyses show that Lemuroidea parasites are a monophyletic group that shares a common ancestor with all Catarrhini malarias except those related to P. falciparum. However, we found no evidence that this group of parasites branched with their hosts early in the evolution of primates. We applied relaxed clock methods and different calibrations points to explore the origin of primate malarias including those found in African apes. We showed that previous studies likely underestimated the origin of malarial parasites in primates. Conclusions The use of fossils from the host as absolute calibration and the assumption of a strict clock likely underestimate time when performing molecular dating analyses on malarial parasites. Indeed, by exploring different calibration points, we found that the time for the radiation of primate parasites may have taken place in the Eocene, a time consistent with the radiation of African anthropoids. The radiation of the four human parasite lineages was part of such events. The time frame estimated in this investigation, together with our phylogenetic analyses, made plausible a scenario

  17. Malaria on the move: human population movement and malaria transmission.

    PubMed Central

    Martens, P.; Hall, L.

    2000-01-01

    Reports of malaria are increasing in many countries and in areas thought free of the disease. One of the factors contributing to the reemergence of malaria is human migration. People move for a number of reasons, including environmental deterioration, economic necessity, conflicts, and natural disasters. These factors are most likely to affect the poor, many of whom live in or near malarious areas. Identifying and understanding the influence of these population movements can improve prevention measures and malaria control programs. PMID:10756143

  18. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite.

    PubMed

    Stanisic, Danielle I; Gerrard, John; Fink, James; Griffin, Paul M; Liu, Xue Q; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R; Wang, Claire Y T; Hackett, Hazel; Chan, Jo-Anne A; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L; Beeson, James G; McCarthy, James S; Good, Michael F

    2016-09-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence.

  19. Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase.

    PubMed

    Heikkilä, Timo; Ramsey, Christopher; Davies, Matthew; Galtier, Christophe; Stead, Andrew M W; Johnson, A Peter; Fishwick, Colin W G; Boa, Andrew N; McConkey, Glenn A

    2007-01-25

    Pyrimidine biosynthesis presents an attractive drug target in malaria parasites due to the absence of a pyrimidine salvage pathway. A set of compounds designed to inhibit the Plasmodium falciparum pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (PfDHODH) was synthesized. PfDHODH-specific inhibitors with low nanomolar binding affinities were identified that bind in the N-terminal hydrophobic channel of dihydroorotate dehydrogenase, the presumed site of ubiquinone binding during oxidation of dihydroorotate to orotate. These compounds also prevented growth of cultured parasites at low micromolar concentrations. Models that suggest the mode of inhibitor binding is based on shape complementarity, matching hydrophobic regions of inhibitor and enzyme, and interaction of inhibitors with amino acid residues F188, H185, and R265 are supported by mutagenesis data. These results further highlight PfDHODH as a promising new target for chemotherapeutic intervention in prevention of malaria and provide better understanding of the factors that determine specificity over human dihydroorotate dehydrogenase.

  20. Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions.

    PubMed

    Patarroyo, Manuel E; Arevalo-Pinzon, Gabriela; Reyes, Cesar; Moreno-Vranich, Armando; Patarroyo, Manuel A

    2016-01-01

    Biochemical, structural and single amino acid level analysis of 49 Plasmodium falciparum protein regions (13 sporozoite and 36 merozoite proteins) has highlighted the functional role of each conserved high activity binding peptide (cHABP) in cell host-microbe interaction, involving biological functions such as gliding motility, traversal activity, binding invasion, reproduction, nutrient ion transport and the development of severe malaria. Each protein's key function in the malaria parasite's asexual lifecycle (pre-erythrocyte and erythro-cyte) is described in terms of cHABPs; their sequences were located in elegant work published by other groups regarding critical binding regions implicated in malarial parasite invasion. Such cHABPs represent the starting point for developing a logical and rational methodology for selecting an appropriate mixture of modified cHABPs to be used in a completely effective, synthetic antimalarial vaccine. Such methodology could be used for developing vaccines against diseases scourging humanity. PMID:26317369

  1. Parasites

    MedlinePlus

    ... CME and CNE for clinicians... Parasitic Disease and Malaria Strategic Priorities: 2015—2020... Cyclosporiasis: Most U.S. cases ... R S T U V W X Y Z Malaria An ancient disease that affects millions of people ...

  2. Deconvoluting heme biosynthesis to target blood-stage malaria parasites.

    PubMed

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-07-14

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations.

  3. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    PubMed Central

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  4. Deconvoluting heme biosynthesis to target blood-stage malaria parasites.

    PubMed

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. PMID:26173178

  5. Human movement data for malaria control and elimination strategic planning.

    PubMed

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  6. Human movement data for malaria control and elimination strategic planning

    PubMed Central

    2012-01-01

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements. PMID:22703541

  7. Human movement data for malaria control and elimination strategic planning.

    PubMed

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-01-01

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements. PMID:22703541

  8. History, Dynamics, and Public Health Importance of Malaria Parasite Resistance

    PubMed Central

    Talisuna, Ambrose O.; Bloland, Peter; D’Alessandro, Umberto

    2004-01-01

    Despite considerable efforts, malaria is still one of the most devastating infectious diseases in the tropics. The rapid spread of antimalarial drug resistance currently compounds this grim picture. In this paper, we review the history of antimalarial drug resistance and the methods for monitoring it and assess the current magnitude and burden of parasite resistance to two commonly used drugs: chloroquine and sulfadoxine-pyrimethamine. Furthermore, we review the factors involved in the emergence and spread of drug resistance and highlight its public health importance. Finally, we discuss ways of dealing with such a problem by using combination therapy and suggest some of the research themes needing urgent answers. PMID:14726463

  9. Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite

    PubMed Central

    2016-01-01

    Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database. PMID:27247560

  10. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos.

    PubMed

    Krief, Sabrina; Escalante, Ananias A; Pacheco, M Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M; Crandfield, Mike; Cornejo, Omar E; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F; Rénia, Laurent; Snounou, Georges

    2010-02-12

    The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.

  11. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  12. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  13. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  14. A broad analysis of resistance development in the malaria parasite

    PubMed Central

    Corey, Victoria C.; Lukens, Amanda K.; Istvan, Eva S.; Lee, Marcus C. S.; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F.; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G.; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A.; Gamo, Francisco-Javier; Goldberg, Daniel E.; Fidock, David A.; Wirth, Dyann F.; Winzeler, Elizabeth A.

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  15. Origin of robustness in generating drug-resistant malaria parasites.

    PubMed

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W; Kamchonwongpaisan, Sumalee; Fidock, David A; Kirkman, Laura A; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-07-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs.

  16. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-06-15

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.

  17. Origin of Robustness in Generating Drug-Resistant Malaria Parasites

    PubMed Central

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H.; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W.; Kamchonwongpaisan, Sumalee; Fidock, David A.; Kirkman, Laura A.; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-01-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs. PMID:24739308

  18. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  19. Geometrical model for malaria parasite migration in structured environments

    NASA Astrophysics Data System (ADS)

    Battista, Anna; Frischknecht, Friedrich; Schwarz, Ulrich S.

    2014-10-01

    Malaria is transmitted to vertebrates via a mosquito bite, during which rodlike and crescent-shaped parasites, called sporozoites, are injected into the skin of the host. Searching for a blood capillary to penetrate, sporozoites move quickly in locally helical trajectories, that are frequently perturbed by interactions with the extracellular environment. Here we present a theoretical analysis of the active motility of sporozoites in a structured environment. The sporozoite is modelled as a self-propelled rod with spontaneous curvature and bending rigidity. It interacts with hard obstacles through collision rules inferred from experimental observation of two-dimensional sporozoite movement in pillar arrays. Our model shows that complex motion patterns arise from the geometrical shape of the parasite and that its mechanical flexibility is crucial for stable migration patterns. Extending the model to three dimensions reveals that a bent and twisted rod can associate to cylindrical obstacles in a manner reminiscent of the association of sporozoites to blood capillaries, supporting the notion of a prominent role of cell shape during malaria transmission.

  20. Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.

    PubMed

    Fricke, Jennifer M; Vardo-Zalik, Anne M; Schall, Jos J

    2010-04-01

    Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern.

  1. Feedback inhibition of pantothenate kinase regulates pantothenol uptake by the malaria parasite.

    PubMed

    Lehane, Adele M; Marchetti, Rosa V; Spry, Christina; van Schalkwyk, Donelly A; Teng, Rongwei; Kirk, Kiaran; Saliba, Kevin J

    2007-08-31

    To survive, the human malaria parasite Plasmodium falciparum must acquire pantothenate (vitamin B5) from the external medium. Pantothenol (provitamin B5) inhibits parasite growth by competing with pantothenate for pantothenate kinase, the first enzyme in the coenzyme A biosynthesis pathway. In this study we investigated pantothenol uptake by P. falciparum and in doing so gained insights into the regulation of the parasite's coenzyme A biosynthesis pathway. Pantothenol was shown to enter P. falciparum-infected erythrocytes via two routes, the furosemide-inhibited "new permeation pathways" induced by the parasite in the infected erythrocyte membrane (the sole access route for pantothenate) and a second, furosemide-insensitive pathway. Having entered the erythrocyte, pantothenol is taken up by the intracellular parasite via a mechanism showing functional characteristics distinct from those of the parasite's pantothenate uptake mechanism. On reaching the parasite cytosol, pantothenol is phosphorylated and thereby trapped by pantothenate kinase, shown here to be under feedback inhibition control by coenzyme A. Furosemide reduced this inherent feedback inhibition by competing with coenzyme A for binding to pantothenate kinase, thereby increasing pantothenol uptake. PMID:17581817

  2. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    PubMed

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.

  3. EVALUATING THE COSTS OF MOSQUITO RESISTANCE TO MALARIA PARASITES

    PubMed Central

    Hurd, H.; Taylor, P. J.; Adams, D.; Underhill, A.; Eggleston, P.

    2006-01-01

    Costly resistance mechanisms have been cited as an explanation for the widespread occurrence of parasitic infections, yet few studies have examined these costs in detail. A malaria-mosquito model has been used to test this concept by making a comparison of the fitness of highly susceptible lines of mosquitoes with lines that are resistant to infection. Malaria infection is known to cause a decrease in fecundity and fertility of mosquitoes; resistant mosquitoes were thus predicted to be fitter than susceptible ones. Anopheles gambiae were selected for refractoriness/resistance or for increased susceptibility to infection by Plasmodium yoelii nigeriensis. Additional lines that acted as controls for inbreeding depression were raised in parallel but not exposed to selection pressure. Selections were made in triplicate so that founder effects could be detected. Resistance mechanisms that were selected included melanotic encapsulation of parasites within 24 h postinfection and the complete disappearance of parasites from the gut. Costs of immune surveillance were assessed after an uninfected feed, and costs of immune deployment were assessed after exposure to infection and to infection and additional stresses. Mosquito survivorship was unaffected by either resistance to infection or by an increased burden of infection when compared with low levels of infection. In most cases reproductive fitness was equally affected by refractoriness or by infection. Resistant mosquitoes did not gain a fitness advantage by eliminating the parasites. Costs were consistently associated with larval production and egg hatch rate but rarely attributed to changes in blood feeding and never to changes in mosquito size. No advantages appeared to be gained by the offspring of resistant mosquitoes. Furthermore, we were unable to select for refractoriness in groups of mosquitoes in which 100% or 50% of the population were exposed to infection every generation for 22 generations. Under these

  4. Malaria

    MedlinePlus

    ... Malaria can be carried by mosquitoes in temperate climates, but the parasite disappears over the winter. The ... a major disease hazard for travelers to warm climates. In some areas of the world, mosquitoes that ...

  5. Malaria

    MedlinePlus

    ... a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of ... insect repellent with DEET Cover up Sleep under mosquito netting Centers for Disease Control and Prevention

  6. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum.

    PubMed

    Lee, Andrew H; Symington, Lorraine S; Fidock, David A

    2014-09-01

    Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.

  7. [Emerging and spread of the fifth Plasmodium spp. pathogenic for human malaria: Plasmodium knowlesi].

    PubMed

    Sabbatani, Sergio; Fiorino, Sirio; Manfredi, Roberto

    2010-02-01

    The beginning of the third millennium has been characterized by the emerging and progressive characterization of a novel malaria Plasmodium pathogen of simian origin (Plasmodium knowlesi), which now represents the fifth human malaria parasite. Evolutionary, environmental, and diagnostic-clinical features are briefly outlined on the ground of the most recent literature evidences.

  8. Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes

    PubMed Central

    2013-01-01

    Background Egress of Plasmodium falciparum, from erythrocytes at the end of its asexual cycle and subsequent parasite invasion into new host cells, is responsible for parasite dissemination in the human body. The egress pathway is emerging as a coordinated multistep programme that extends in time for tens of minutes, ending with rapid parasite extrusion from erythrocytes. While the Ca2+ regulation of the invasion of P. falciparum in erythrocytes is well established, the role of Ca2+ in parasite egress is poorly understood. This study analysed the involvement of cytoplasmic free Ca2+ in infected erythrocytes during the multistep egress programme of malaria parasites. Methods Live-cell fluorescence microscopy was used to image parasite egress from infected erythrocytes, assessing the effect of drugs modulating Ca2+ homeostasis on the egress programme. Results A steady increase in cytoplasmic free Ca2+ is found to precede parasite egress. This increase is independent of extracellular Ca2+ for at least the last two hours of the cycle, but is dependent upon Ca2+ release from internal stores. Intracellular BAPTA chelation of Ca2+ within the last 45 minutes of the cycle inhibits egress prior to parasitophorous vacuole swelling and erythrocyte membrane poration, two characteristic morphological transformations preceding parasite egress. Inhibitors of the parasite endoplasmic reticulum (ER) Ca2+-ATPase accelerate parasite egress, indicating that Ca2+ stores within the ER are sufficient in supporting egress. Markedly accelerated egress of apparently viable parasites was achieved in mature schizonts using Ca2+ ionophore A23187. Ionophore treatment overcomes the BAPTA-induced block of parasite egress, confirming that free Ca2+ is essential in egress initiation. Ionophore treatment of immature schizonts had an adverse effect inducing parasitophorous vacuole swelling and killing the parasites within the host cell. Conclusions The parasite egress programme requires intracellular

  9. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  10. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  11. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    NASA Astrophysics Data System (ADS)

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-07-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min-1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  12. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    PubMed Central

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-01-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min−1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts. PMID:26126714

  13. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX).

    PubMed

    Birch, Christina M; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C

    2015-01-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 10(6)) from unbound oligonucleotides at high volume throughput (~2 × 10(6) cells min(-1)). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  14. Efficient expression systems for cysteine proteases of malaria parasites

    PubMed Central

    Sarduy, Emir Salas; de los A. Chávez Planes, María

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863

  15. Human ecology and behaviour in malaria control in tropical Africa

    PubMed Central

    MacCormack, C. P.

    1984-01-01

    Since about 250 BC, human modification of African environments has created increasingly favourable breeding conditions for Anopheles gambiae. Subsequent adaptations to the increased malaria risk are briefly described and reference is made to Macdonald's mathematical model for the disease. Since values for the variables in that model are high in tropical Africa, there is little possibility that simple, inexpensive, self-help primary health care initiatives can control malaria in the region. However, in combination with more substantial public health initiatives, simple primary health care activities might be done by communities to (1) prevent mosquitos from feeding on people, (2) prevent or reduce mosquito breeding, (3) destroy adult mosquitos, and (4) eliminate malaria parasites from human hosts. Lay methods of protection and self-care are examined and some topics for further research are indicated. Culturally appropriate health education methods are also suggested. PMID:6335685

  16. Plastids in parasites of humans.

    PubMed

    McFadden, G I; Waller, R F

    1997-11-01

    It has recently emerged that malarial, toxoplasmodial and related parasites contain a vestigial plastid (the organelle in which photosynthesis occurs in plants and algae). The function of the plastid in these obligate intracellular parasites has not been established. It seems likely that modern apicomplexans derive from photosynthetic predecessors, which perhaps formed associations with protists and invertebrates and abandoned autotrophy in favour of parasitism. Recognition of a third genetic compartment in these parasites proffers alternative strategies for combating a host of important human and animal diseases. It also poses some fascinating questions about the evolutionary biology of this important group of pathogens.

  17. Discovery of HDAC Inhibitors with Potent Activity Against Multiple Malaria Parasite Life Cycle Stages

    PubMed Central

    Hansen, Finn K.; Sumanadasa, Subathdrage D. M.; Stenzel, Katharina; Duffy, Sandra; Meister, Stephan; Marek, Linda; Schmetter, Rebekka; Kuna, Krystina; Hamacher, Alexandra; Mordmüller, Benjamin; Kassack, Matthias U.; Winzeler, Elizabeth A.; Avery, Vicky M.; Andrews, Katherine T.; Kurz, Thomas

    2015-01-01

    In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage P. falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against P. berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages. PMID:24904967

  18. Identification of a vir-orthologous immune evasion gene family from primate malaria parasites.

    PubMed

    Prajapati, Surendra Kumar; Singh, Om Prakash

    2014-04-01

    The immune evasion gene family of malaria parasites encodes variant surface proteins that are expressed at the surface of infected erythrocytes and help the parasite in evading the host immune response by means of antigenic variation. The identification of Plasmodium vivax vir orthologous immune evasion gene family from primate malaria parasites would provide new insight into the evolution of virulence and pathogenesis. Three vir subfamilies viz. vir-B, vir-D and vir-G were successfully PCR amplified from primate malaria parasites, cloned and sequenced. DNA sequence analysis confirmed orthologues of vir-D subfamily in Plasmodium cynomolgi, Plasmodium simium, Plasmodium simiovale and Plasmodium fieldi. The identified vir-D orthologues are 1-9 distinct members of the immune evasion gene family which have 68-83% sequence identity with vir-D and 71.2-98.5% sequence identity within the members identified from primate malaria parasites. The absence of other vir subfamilies among primate malaria parasites reflects the limitations in the experimental approach. This study clearly identified the presence of vir-D like sequences in four species of Plasmodium infecting primates that would be useful in understanding the evolution of virulence in malaria parasites.

  19. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system.

    PubMed

    Zhang, Cui; Xiao, Bo; Jiang, Yuanyuan; Zhao, Yihua; Li, Zhenkui; Gao, Han; Ling, Yuan; Wei, Jun; Li, Shaoneng; Lu, Mingke; Su, Xin-Zhuan; Cui, Huiting; Yuan, Jing

    2014-01-01

    Malaria parasites are unicellular organisms residing inside the red blood cells, and current methods for editing the parasite genes have been inefficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and Cas9 endonuclease-mediated genome editing) system is a new powerful technique for genome editing and has been widely employed to study gene function in various organisms. However, whether this technique can be applied to modify the genomes of malaria parasites has not been determined. In this paper, we demonstrated that Cas9 is able to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. By supplying engineered homologous repair templates, we generated targeted deletion, reporter knock-in, and nucleotide replacement in multiple parasite genes, achieving up to 100% efficiency in gene deletion and 22 to 45% efficiencies in knock-in and allelic replacement. Our results establish methodologies for introducing desired modifications in the P. yoelii genome with high efficiency and accuracy, which will greatly improve our ability to study gene function of malaria parasites. Importance: Malaria, caused by infection of Plasmodium parasites, remains a world-wide public health burden. Although the genomes of many malaria parasites have been sequenced, we still do not know the functions of approximately half of the genes in the genomes. Studying gene function has become the focus of many studies; however, editing genes in malaria parasite genomes is still inefficient. Here we designed several efficient approaches, based on the CRISPR/Cas9 system, to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. Using this system, we achieved high efficiencies in gene deletion, reporter tagging, and allelic replacement in multiple parasite genes. This technique for editing the malaria parasite

  20. The epidemiology of drug resistance of malaria parasites: Memorandum from a WHO Meeting*

    PubMed Central

    1987-01-01

    This Memorandum presents current knowledge concerning the epidemiology of drug resistance of malaria parasites and outlines 33 research proposals which could lead to a better understanding of that epidemiology and to a better management of the problem. PMID:3325184

  1. Identification of mitochondrial proteins of malaria parasite using analysis of variance.

    PubMed

    Ding, Hui; Li, Dongmei

    2015-02-01

    As a parasitic protozoan, Plasmodium falciparum (P. falciparum) can cause malaria. The mitochondrial proteins of malaria parasite play important roles in the discovery of anti-malarial drug targets. Thus, accurate identification of mitochondrial proteins of malaria parasite is a key step for understanding their functions and finding potential drug targets. In this work, we developed a sequence-based method to identify the mitochondrial proteins of malaria parasite. At first, we extended adjoining dipeptide composition to g-gap dipeptide composition for discretely formulating the protein sequences. Subsequently, the analysis of variance (ANOVA) combined with incremental feature selection (IFS) was used to pick out the optimal features. Finally, the jackknife cross-validation was used to evaluate the performance of the proposed model. Evaluation results showed that the maximum accuracy of 97.1% could be achieved by using 101 optimal 5-gap dipeptides. The comparison with previous methods demonstrated that our method was accurate and efficient.

  2. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.

  3. Genomic organization, structure and possible function of histidine-rich proteins of malaria parasites.

    PubMed

    Sharma, Y D

    1988-01-01

    The current status of histidine-rich proteins in malaria parasites with regard to their genomic organization, protein structure and function is discussed, one of such protein present in an avian malaria parasite Plasmodium lophurae contains about 73% histidine and called as HRP (histidine-rich protein). Among human malaria parasites, in Plasmodium falciparum, only three such proteins have been described, namely knob protein also known as knob associated histidine-rich protein (KP or KAHRP), soluble histidine-alanine rich protein (soluble HARP or PfHRP II) and small histidine-alanine rich protein (SHARP) containing 8, 35 and 30% histidine contents respectively. With rapid emergence of powerful tools in molecular biology the genes of all these histidine-rich proteins have been cloned and sequenced within a short period of time. The genomic organizations of all these proteins are very much similar to each other, in each case the gene contains a signal peptide coding sequence (exon 1) followed by an intron. This intron is followed by the main coding region (exon 2) which has no further intervening sequences. In the main coding region of each gene, the histidine-rich sequences start after 25-30 amino acids from N-terminal end (75-90 nucleotides from 5' in exon 2). All the three histidine-rich proteins of P. falciparum share some homology with the HRP of P. lophurae; they all cross react with anti HRP and incorporate higher amount of exogenous histidine. The relationship between KP and HRP resides in the repeated polyhistidine sequences, (His) 6-9, from the core of the multiple tandem repeats of HRP, whereas, the peptide Ala-His-His is commonly shared by HRP and two other proteins of P. falciparum (soluble HARP and SHARP).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  5. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito

    PubMed Central

    Hart, Robert J.; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S.; Ben Mamoun, Choukri; Aly, Ahmed S. I.

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  6. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.

  7. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite.

    PubMed

    Wetzel, Johanna; Herrmann, Susann; Swapna, Lakshmipuram Seshadri; Prusty, Dhaneswar; John Peter, Arun T; Kono, Maya; Saini, Sidharth; Nellimarla, Srinivas; Wong, Tatianna Wai Ying; Wilcke, Louisa; Ramsay, Olivia; Cabrera, Ana; Biller, Laura; Heincke, Dorothee; Mossman, Karen; Spielmann, Tobias; Ungermann, Christian; Parkinson, John; Gilberger, Tim W

    2015-01-16

    To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.

  8. Plasma Concentration of Parasite DNA as a Measure of Disease Severity in Falciparum Malaria

    PubMed Central

    Imwong, Mallika; Woodrow, Charles J.; Hendriksen, Ilse C. E.; Veenemans, Jacobien; Verhoef, Hans; Faiz, M. Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D.; Day, Nicholas P. J.; Dondorp, Arjen M.; White, Nicholas J.

    2015-01-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples. PMID:25344520

  9. A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Yiangou, Loukia; Montandon, Ruddy; Modrzynska, Katarzyna; Rosen, Barry; Bushell, Wendy; Hale, Christine; Billker, Oliver; Rayner, Julian C.

    2016-01-01

    The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types. PMID:27362409

  10. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum.

    PubMed

    Holding, Thomas; Recker, Mario

    2015-12-01

    Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure.

  11. Intravenous Artesunate Reduces Parasite Clearance Time, Duration of Intensive Care, and Hospital Treatment in Patients With Severe Malaria in Europe: The TropNet Severe Malaria Study.

    PubMed

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu; Clerinx, Jan; Antinori, Spinello; Gjørup, Ida E; Gascon, Joaquím; Mørch, Kristine; Nicastri, Emanuele; Ramharter, Michael; Bartoloni, Alessandro; Visser, Leo; Rolling, Thierry; Zanger, Philipp; Calleri, Guido; Salas-Coronas, Joaquín; Nielsen, Henrik; Just-Nübling, Gudrun; Neumayr, Andreas; Hachfeld, Anna; Schmid, Matthias L; Antonini, Pietro; Pongratz, Peter; Kern, Peter; Saraiva da Cunha, José; Soriano-Arandes, Antoni; Schunk, Mirjam; Suttorp, Norbert; Hatz, Christoph; Zoller, Thomas

    2015-11-01

    Intravenous artesunate improves survival in severe malaria, but clinical trial data from nonendemic countries are scarce. The TropNet severe malaria database was analyzed to compare outcomes of artesunate vs quinine treatment. Artesunate reduced parasite clearance time and duration of intensive care unit and hospital treatment in European patients with imported severe malaria.

  12. Impact of Malaria Preexposure on Antiparasite Cellular and Humoral Immune Responses after Controlled Human Malaria Infection

    PubMed Central

    Obiero, Joshua M.; Shekalaghe, Seif; Hermsen, Cornelus C.; Mpina, Maxmillian; Bijker, Else M.; Roestenberg, Meta; Teelen, Karina; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Daubenberger, Claudia A.; Hoffman, Stephen L.; Abdulla, Salim

    2015-01-01

    To understand the effect of previous malaria exposure on antiparasite immune responses is important for developing successful immunization strategies. Controlled human malaria infections (CHMIs) using cryopreserved Plasmodium falciparum sporozoites provide a unique opportunity to study differences in acquisition or recall of antimalaria immune responses in individuals from different transmission settings and genetic backgrounds. In this study, we compared antiparasite humoral and cellular immune responses in two cohorts of malaria-naive Dutch volunteers and Tanzanians from an area of low malarial endemicity, who were subjected to the identical CHMI protocol by intradermal injection of P. falciparum sporozoites. Samples from both trials were analyzed in parallel in a single center to ensure direct comparability of immunological outcomes. Within the Tanzanian cohort, we distinguished one group with moderate levels of preexisting antibodies to asexual P. falciparum lysate and another that, based on P. falciparum serology, resembled the malaria-naive Dutch cohort. Positive P. falciparum serology at baseline was associated with a lower parasite density at first detection by quantitative PCR (qPCR) after CHMI than that for Tanzanian volunteers with negative serology. Post-CHMI, both Tanzanian groups showed a stronger increase in anti-P. falciparum antibody titers than Dutch volunteers, indicating similar levels of B-cell memory independent of serology. In contrast to the Dutch, Tanzanians failed to increase P. falciparum-specific in vitro recall gamma interferon (IFN-γ) production after CHMI, and innate IFN-γ responses were lower in P. falciparum lysate-seropositive individuals than in seronegative individuals. In conclusion, positive P. falciparum lysate serology can be used to identify individuals with better parasite control but weaker IFN-γ responses in circulating lymphocytes, which may help to stratify volunteers in future CHMI trials in areas where malaria is

  13. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion

    PubMed Central

    Alam, Mahmood M.; Solyakov, Lev; Bottrill, Andrew R.; Flueck, Christian; Siddiqui, Faiza A.; Singh, Shailja; Mistry, Sharad; Viskaduraki, Maria; Lee, Kate; Hopp, Christine S.; Chitnis, Chetan E.; Doerig, Christian; Moon, Robert W.; Green, Judith L.; Holder, Anthony A.; Baker, David A.; Tobin, Andrew B.

    2015-01-01

    Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion. PMID:26149123

  14. Surface Properties of Extracellular Malaria Parasites: Morphological and Cytochemical Study 1

    PubMed Central

    Seed, Thomas M.; Aikawa, Masamichi; Sterling, Charles; Rabbege, John

    1974-01-01

    Morphological and cytochemical surface characteristics of isolated malaria parasites (Plasmodium berghei) and host erythrocytes were compared by electron microscopy by using thin section and carbon replica techniques. Erythrocytes were uniform in shape and had fine, granular surfaces. In contrast, free parasites exhibited a variety of sizes, shapes, and surface textures. Fine surface stippling was a common topographical feature of isolated parasites. Small, infective forms often had patterned surfaces resulting from the protuberance of an underlying thick intermediate layer. Results of cytochemical analysis using a sialophilic colloidal iron stain indicated that the malaria parasite's surface lacked exposed sialic acid groups which would normally give rise to a net negative surface charge common to erythrocytes. Biochemical assay demonstrated that malaria parasites contained about one-half the amount of sialic acid per unit weight as did control red cell extracts. Similarly, external acidic mucopolysaccharide coats of free parasites, as revealed by ruthenium red staining were extremely thin as compared with the thick glycocalyx layer of red cells. Lipid plaques at the surface of parasites and red cells were localized by lipophilic iron colloid staining. Although the gross patchwork distribution of plaques was somewhat similar for the two cell types, the parasites were stained more intensely and had a closer-knit patchwork pattern than those exhibited by the erythrocytes. Such findings indicate that there are slight differences in the arrangement of phospholipids at the surfaces of limiting membranes of host cells and parasites. The significance of the above cytochemical surface properties of the malaria parasite (which are seemingly akin to those of intracellular organelles is discussed in relation to certain host-parasite interactions, such as parasite adhesion to target cells and enhanced clearance of extracellular parasites. Images PMID:4132619

  15. Analysis of short RNAs in the malaria parasite and its red blood cell host.

    PubMed

    Rathjen, Tina; Nicol, Clare; McConkey, Glenn; Dalmay, Tamas

    2006-10-01

    RNA interference (RNAi) is an RNA degradation process that involves short, double-stranded RNAs (dsRNA) as sequence specificity factors. The natural function of the RNAi machinery is to generate endogenous short double-stranded RNAs to regulate gene expression. It has been shown that treatment of Plasmodium falciparum, the etiologic agent of malaria, with dsRNA induces degradation of the corresponding microRNA (miRNA), yet typical RNAi-associated genes have not been identifiable in the parasite genome. To clarify this discrepancy we set out to clone short RNAs from P. falciparum-infected red blood cells and from purified parasites. We did not find any short RNA that was not a rRNA or tRNA fragment. Indeed, only known human miRNAs were isolated in parasite preparations indicating that very few if any short RNAs exist in P. falciparum. This suggests a different mechanism than classical RNAi in observations of dsRNA-mediated degradation. Of the human miRNAs identified, the human miRNA mir-451 accumulates at a very high level in both infected and healthy red blood cells. Interestingly, mir-451 was not detectable in a series of immortalised cell lines representing progenitor stages of all major blood lineages, suggesting that mir-451 may play a role in the differentiation of erythroid cells.

  16. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.

    PubMed

    Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

    2012-01-01

    We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards.

  17. Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite.

    PubMed

    Poulin, Benoit; Patzewitz, Eva-Maria; Brady, Declan; Silvie, Olivier; Wright, Megan H; Ferguson, David J P; Wall, Richard J; Whipple, Sarah; Guttery, David S; Tate, Edward W; Wickstead, Bill; Holder, Anthony A; Tewari, Rita

    2013-01-01

    The phylum Apicomplexa comprises over 5000 intracellular protozoan parasites, including Plasmodium and Toxoplasma, that are clinically important pathogens affecting humans and livestock. Malaria parasites belonging to the genus Plasmodium possess a pellicle comprised of a plasmalemma and inner membrane complex (IMC), which is implicated in parasite motility and invasion. Using live cell imaging and reverse genetics in the rodent malaria model P. berghei, we localise two unique IMC sub-compartment proteins (ISPs) and examine their role in defining apical polarity during zygote (ookinete) development. We show that these proteins localise to the anterior apical end of the parasite where IMC organisation is initiated, and are expressed at all developmental stages, especially those that are invasive. Both ISP proteins are N-myristoylated, phosphorylated and membrane-bound. Gene disruption studies suggest that ISP1 is likely essential for parasite development, whereas ISP3 is not. However, an absence of ISP3 alters the apical localisation of ISP1 in all invasive stages including ookinetes and sporozoites, suggesting a coordinated function for these proteins in the organisation of apical polarity in the parasite.

  18. Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites.

    PubMed

    Ribaut, Clotilde; Reybier, Karine; Reynes, Olivier; Launay, Jérôme; Valentin, Alexis; Fabre, Paul Louis; Nepveu, Françoise

    2009-04-15

    The malaria parasite, Plasmodium falciparum, invades human erythrocytes and induces dramatic changes in the host cell. The idea of this work was to use RBC modified electrode to perform electrochemical impedance spectroscopy (EIS) with the aim of monitoring physiological changes affecting the erythrocyte after invasion by the malaria parasite. Impedance cell-based devices are potentially useful to give insight into cellular behavior and to detect morphological changes. The modelling of impedance plots (Nyquist diagram) in equivalent circuit taking into account the presence of the cellular layer, allowed us pointing out specific events associated with the development of the parasite such as (i) strong changes in the host cell cytoplasm illustrated by changes in the film capacity, (ii) perturbation of the ionic composition of the host cell illustrated by changes in the film resistance, (iii) releasing of reducer (lactic acid or heme) and an enhanced oxygen consumption characterized by changes in the charge transfer resistance and in the Warburg coefficient characteristic of the redox species diffusion. These results show that the RBC-based device may help to analyze strategic events in the malaria parasite development constituting a new tool in antimalarial research.

  19. Parasites and progress: ethical decision-making and the Santee-Cooper Malaria study, 1944-1949.

    PubMed

    Slater, Leo; Humphreys, Margaret

    2008-01-01

    As part of a mid-1940s malaria research program, U.S. Public Health Service researchers working in South Carolina chose to withhold treatment from a group of subjects while testing the efficacy of a new insecticide. Research during World War II had generated new tools to fight malaria, including the insecticide DDT and the medication chloroquine. The choices made about how to conduct research in one of the last pockets of endemic malaria in the United States reveal much about prevailing attitudes and assumptions with regard to malaria control. We describe this research and explore the ethical choices inherent in the tension between environmentally based interventions and the individual health needs of the population living within the study domain. The singular focus on the mosquito and its lifecycle led some researchers to view the humans in their study area as little more than parasite reservoirs, an attitude fueled by the frustrating disappearance of malaria just when the scientists were on the verge of establishing the efficacy of a powerful new agent in the fight against malaria. This analysis of their choices has relevance to broader questions in public health ethics.

  20. Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and In Vivo Models of Malaria

    PubMed Central

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Kim, Peter S.; Engwerda, Christian R.; Haque, Ashraful

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  1. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria.

    PubMed

    Khoury, David S; Cromer, Deborah; Best, Shannon E; James, Kylie R; Kim, Peter S; Engwerda, Christian R; Haque, Ashraful; Davenport, Miles P

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  2. Malaria parasite strain characterization, cryopreservation, and banking of isolates: a WHO Memorandum*

    PubMed Central

    1981-01-01

    There has been considerable progress in the biological characterization of malaria parasites in the past few years. Physiological parameters such as host adaptation, virulence, exoerythrocytic development, in vitro growth of erythrocytic stages, and drug sensitivity are of particular importance to epidemiologists. Advances in enzyme analysis, 2-dimensional protein electrophoresis, and nucleic acid analysis have produced several new techniques that can be applied to the malaria parasite. Similarly, antigenic characterization is expected to progress as a result of technical improvements. Many of the biological parameters are needed for the study of parasite genetics, a field which has expanded greatly through the development of cloning techniques. The latter also hold interest for the production, and the future use in research, of biologically well characterized standard clones. In this connexion, the cryopreservation and banking of malaria parasites deserve attention, in order to ensure the supply of well defined, viable isolates and clones to interested research workers. PMID:7032732

  3. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system.

    PubMed

    Cornet, Stéphane; Bichet, Coraline; Larcombe, Stephen; Faivre, Bruno; Sorci, Gabriele

    2014-01-01

    Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenotypic variation in host exploitation by the avian malaria parasite Plasmodium relictum. We investigated how the nutritional status of birds altered parasite within-host dynamics and virulence, and how the interaction between past and current environments experienced by the parasite accounts for the variation in the infection dynamics. Experimentally infected canaries were allocated to control or supplemented diets. Plasmodium parasites experiencing the two different environments were subsequently transmitted in a full-factorial design to new hosts reared under similar control or supplemented diets. Food supplementation was effective since supplemented hosts gained body mass during a 15-day period that preceded the infection. Host nutrition had strong effects on infection dynamics and parasite virulence. Overall, parasites were more successful in control nonsupplemented birds, reaching larger population sizes and producing more sexual (transmissible) stages. However, supplemented hosts paid a higher cost of infection, and when keeping parasitaemia constant, they had lower haematocrit than control hosts. Parasites grown on control hosts were better able to exploit the subsequent hosts since they reached higher parasitaemia than parasites originating from supplemented hosts. They were also more virulent since they

  4. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    PubMed Central

    Piña-Vázquez, Carolina; Reyes-López, Magda; Ortíz-Estrada, Guillermo; de la Garza, Mireya; Serrano-Luna, Jesús

    2012-01-01

    Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa. PMID:22792442

  5. On the effects of malaria treatment on parasite drug resistance--probability modelling of genotyped malaria infections.

    PubMed

    Kum, Cletus Kwa; Thorburn, Daniel; Ghilagaber, Gebrenegus; Gil, Pedro; Björkman, Anders

    2013-10-12

    We compare the frequency of resistant genes of malaria parasites before treatment and at first malaria incidence after treatment. The data come from a clinical trial at two health facilities in Tanzania and concerns single nucleotide polymorphisms (SNPs) at three positions believed to be related to resistance to malaria treatment. A problem is that mixed infections are common, which both obscures the underlying frequency of alleles at each locus as well as the associations between loci in samples where alleles are mixed. We use combinatorics and quite involved probability methods to handle multiple infections and multiple haplotypes. The infection with the different haplotypes seemed to be independent of each other. We showed that at two of the three studied SNPs, the proportion of resistant genes had increased after treatment with sulfadoxine-pyrimethamine alone but when treated in combination with artesunate, no effect was noticed. First recurrences of malaria associated more with sulfadoxine-pyrimethamine alone as treatment than when in combination with artesunate. We also found that the recruited children had two different ongoing malaria infections where the parasites had different gene types.

  6. On the effects of malaria treatment on parasite drug resistance--probability modelling of genotyped malaria infections.

    PubMed

    Kum, Cletus Kwa; Thorburn, Daniel; Ghilagaber, Gebrenegus; Gil, Pedro; Björkman, Anders

    2013-01-01

    We compare the frequency of resistant genes of malaria parasites before treatment and at first malaria incidence after treatment. The data come from a clinical trial at two health facilities in Tanzania and concerns single nucleotide polymorphisms (SNPs) at three positions believed to be related to resistance to malaria treatment. A problem is that mixed infections are common, which both obscures the underlying frequency of alleles at each locus as well as the associations between loci in samples where alleles are mixed. We use combinatorics and quite involved probability methods to handle multiple infections and multiple haplotypes. The infection with the different haplotypes seemed to be independent of each other. We showed that at two of the three studied SNPs, the proportion of resistant genes had increased after treatment with sulfadoxine-pyrimethamine alone but when treated in combination with artesunate, no effect was noticed. First recurrences of malaria associated more with sulfadoxine-pyrimethamine alone as treatment than when in combination with artesunate. We also found that the recruited children had two different ongoing malaria infections where the parasites had different gene types. PMID:24127546

  7. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites.

    PubMed Central

    Marchesini, N; Luo, S; Rodrigues, C O; Moreno, S N; Docampo, R

    2000-01-01

    Plasmodium berghei trophozoites were loaded with the fluorescent calcium indicator, fura-2 acetoxymethyl ester, to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)). [Ca(2+)](i) was increased in the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin. Trophozoites also possess a significant amount of Ca(2+) stored in an acidic compartment. This was indicated by: (1) the increase in [Ca(2+)](i) induced by bafilomycin A(1), nigericin, monensin, or the weak base, NH(4)Cl, in the nominal absence of extracellular Ca(2+), and (2) the effect of ionomycin, which cannot take Ca(2+) out of acidic organelles and was more effective after alkalinization of this compartment by addition of bafilomycin A(1), nigericin, monensin, or NH(4)Cl. Inorganic PP(i) promoted the acidification of a subcellular compartment in cell homogenates of trophozoites. The proton gradient driven by PP(i) collapsed by addition of the K(+)/H(+) exchanger, nigericin, and eliminated by the PP(i) analogue, aminomethylenediphosphonate (AMDP). Both PP(i) hydrolysis and proton transport were dependent upon K(+), and Na(+) caused partial inhibition of these activities. PP(i) hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, sodium fluoride, dicyclohexylcarbodi-imide and to the thiol reagent, N-ethylmaleimide. Immunofluorescence microscopy using antibodies raised against conserved peptide sequences of a plant vacuolar pyrophosphatase (V-H(+)-PPase) suggested that the proton pyrophosphatase is located in intracellular vacuoles and the plasma membrane of trophozoites. AMDP caused an increase in [Ca(2+)](i) in the nominal absence of extracellular Ca(2+). Ionomycin was more effective in releasing Ca(2+) from this acidic intracellular compartment after treatment of the cells with AMDP. Taken together, these results suggest the presence in malaria parasites of acidocalcisomes with similar characteristics to those described in

  8. Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity

    PubMed Central

    Larson, Eric T.; Deng, Wei; Krumm, Brian E.; Napuli, Alberto; Mueller, Natascha; Van Voorhis, Wesley C.; Buckner, Frederick S.; Fan, Erkang; Lauricella, Angela; DeTitta, George; Luft, Joseph; Zucker, Frank; Hol, Wim G. J.; Verlinde, Christophe L. M. J.; Merritt, Ethan A.

    2008-01-01

    Summary Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial adenosine deaminase accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5′-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax adenosine deaminase in complex with adenosine, guanosine, and the picomolar inhibitor 2′-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate-binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes. PMID:18602399

  9. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    SciTech Connect

    Larson, E.T.; Deng, W.; Krumm, B.E.; Napuli, A.; Mueller, N.; Voorhis, W.C.Van; Buckner, F.S.; Fan, E.; Lauricella, A.; DeTitta, G.; Luft, J.; Zucker, F.; Hol, W.G.J.; Verlinde, C.L.M.J.; Merritt, E.A.

    2009-05-20

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.

  10. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    PubMed

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution.

  11. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    PubMed

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. PMID:26975691

  12. Malaria proteomics: insights into the parasite-host interactions in the pathogenic space.

    PubMed

    Bautista, José M; Marín-García, Patricia; Diez, Amalia; Azcárate, Isabel G; Puyet, Antonio

    2014-01-31

    Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.

  13. Malaria proteomics: insights into the parasite-host interactions in the pathogenic space.

    PubMed

    Bautista, José M; Marín-García, Patricia; Diez, Amalia; Azcárate, Isabel G; Puyet, Antonio

    2014-01-31

    Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. PMID:24140976

  14. Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum.

    PubMed

    Clark, K; Niemand, J; Reeksting, S; Smit, S; van Brummelen, A C; Williams, M; Louw, A I; Birkholtz, L

    2010-02-01

    Inhibition of polyamine biosynthesis and/or the perturbation of polyamine functionality have been exploited with success against parasitic diseases such as Trypanosoma infections. However, when the classical polyamine biosynthesis inhibitor, alpha-difluoromethylornithine, is used against the human malaria parasite, Plasmodium falciparum, it results in only a cytostatic growth arrest. Polyamine metabolism in this parasite has unique properties not shared by any other organism. These include the bifunctional arrangement of the catalytic decarboxylases and an apparent absence of the typical polyamine interconversion pathways implying different mechanisms for the regulation of polyamine homeostasis that includes the uptake of exogenous polyamines at least in vitro. These properties make polyamine metabolism an enticing drug target in P. falciparum provided that the physiological and functional consequences of polyamine metabolism perturbation are understood. This review highlights our current understanding of the biological consequences of inhibition of the biosynthetic enzymes in the polyamine pathway in P. falciparum as revealed by several global analytical approaches. Ultimately, the evidence suggests that polyamine metabolism in P. falciparum is a validated drug target worth exploiting. PMID:19997948

  15. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    NASA Astrophysics Data System (ADS)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  16. A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys.

    PubMed

    Aikawa, M; Brown, A; Smith, C D; Tegoshi, T; Howard, R J; Hasler, T H; Ito, Y; Perry, G; Collins, W E; Webster, K

    1992-04-01

    A major factor in the pathogenesis of human cerebral malaria is blockage of cerebral microvessels by the sequestration of parasitized human red blood cells (PRBC). In vitro studies indicate that sequestration of PRBC in the microvessels is mediated by the attachment of knobs on PRBC to receptors on the endothelial cell surface such as CD36, thrombospondin (TSP), and intercellular adhesion molecule-1 (ICAM-1). However, it is difficult to test this theory in vivo because fresh human brain tissues from cerebral malarial autopsy cases are not easy to obtain. Although several animal models for human cerebral malaria have been proposed, none have shown pathologic findings that are similar to those seen in humans. In order to develop an animal model for human cerebral malaria, we studied brains of rhesus monkeys infected with the primate malaria parasite, Plasmodium coatneyi. Our study demonstrated PRBC sequestration and cytoadherence of knobs on PRBC to endothelial cells in the cerebral microvessels of these monkeys. Cerebral microvessels with sequestered PRBC were shown by immunohistochemical analysis to possess CD36, TSP, and ICAM-1. These proteins were not evident in the cerebral microvessels of uninfected control monkeys. Thus, our study indicates, for the first time, that rhesus monkeys infected with P. coatneyi can be used as a primate model to study human cerebral malaria. By using this animal model, we may be able to evaluate strategies for the development of vaccines to prevent human cerebral malaria. PMID:1374220

  17. Mouse-Based Research on Quiescent Primate Malaria Parasites.

    PubMed

    Markus, Miles B

    2016-04-01

    Mice engrafted with primate tissue make two important plasmodial dormancy-related questions researchable. The first is concerned with whether latent merozoites in the lymphatic system can give rise to relapse-like, recurrent malaria in primates. The second is that genetic evidence of hypnozoite activation as the source of relapsing primate malaria can be looked for.

  18. Parasitic procrastination: late-presenting ovale malaria and schistosomiasis.

    PubMed

    Davis, T M; Singh, B; Sheridan, G

    2001-08-01

    A 29-year-old woman with ovale malaria (most likely contracted, together with asymptomatic schistosomiasis, in East Africa two years previously) had fever, nausea and confusion, jaundice, anaemia, thrombocytopenia, hyponatraemia and hypokalaemia. She was initially diagnosed with and treated for blood-smear-positive vivax malaria. Because of the unusual clinical presentation, blood was analysed by a malaria species-specific nested polymerase chain reaction (PCR) assay which identified Plasmodium ovale as the only infecting species. This case illustrates (i) that a detailed travel history remains a vital part of clinical assessment, (ii) ovale malaria can have an exceptionally long incubation period and features of a moderately severe acute infection, and (iii) PCR assay may prove a valuable adjunct to blood film examination in the diagnosis and speciation of malaria.

  19. Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon

    PubMed Central

    Coutinho, Julia Penna; Aguiar, Anna Caroline Campos; dos Santos, Pierre Alexandre; Lima, Joaquim Corsino; Rocha, Maria Gabrielle Lima; Zani, Carlos Leomar; Alves, Tânia Maria Almeida; Santana, Antônio Euzébio Goulart; Pereira, Maria de Meneses; Krettli, Antoniana Ursine

    2013-01-01

    Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials. PMID:24402150

  20. Health, human rights, and malaria control: historical background and current challenges.

    PubMed

    Brentlinger, Paula E

    2006-01-01

    Malaria, a parasitic infection, causes hundreds of millions of disease episodes and more than a million deaths every year, nearly all of them occurring in the poorer and more vulnerable sectors of the world's developing countries. In spite of the great burden of suffering caused by malaria, the human rights implications of this disease have not been well described. This article summarizes important associations between the spread of malaria and human rights abuses (such as those associated with slavery and armed conflict) and between poverty, socio-economic inequity, and access to malaria-control measures. The author concludes that malaria control merits inclusion as a core element in global strategies to achieve progressive realization of the right to health.

  1. Paleoparasitology: the origin of human parasites.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando; Pucu, Elisa; Chieffi, Pedro Paulo

    2013-09-01

    Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  2. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite.

    PubMed

    Ahmad, Moaz; Tuteja, Renu

    2014-12-01

    Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite. PMID:25771870

  3. Parasite-induced permeation of nucleosides in Plasmodium falciparum malaria.

    PubMed

    Upston, J M; Gero, A M

    1995-06-14

    A mechanism which mediates the transport of the nonphysiological nucleoside, L-adenosine, was demonstrated in Plasmodium falciparum infected erythrocytes and naturally released merozoites. L-Adenosine was not a substrate for influx in freed intraerythrocytic parasites or in normal human erythrocytes nor was L-adenosine transported in a variety of cell types including other parasitic protozoa such as Crithidia luciliae, Trichomonas vaginalis, Giardia intestinalis, or the mammalian cells, Buffalo Green Monkey and HeLa cells. L-Adenosine transport in P. falciparum infected cells was nonsaturable, with a rate of 0.13 +/- 0.01 pmol/microliter cell water per s per microM L-adenosine, yet the transport was inhibited by furosemide, phloridzin and piperine with IC50 values between 1-13 microM, distinguishing the transport pathway from simple diffusion. The channel-like permeation was selective as disaccharides were not permeable to parasitised cells. In addition, an unusual metabolic property of parasitic adenosine deaminase was found in that L-adenosine was metabolised to L-inosine by both P. falciparum infected erythrocytes and merozoites, an activity which was inhibited by 50 nM deoxycoformycin. No other cell type examined displayed this enzymic activity. The results further substantiate that nucleoside transport in P. falciparum infected cells was significantly altered compared to uninfected erythrocytes and that L-adenosine transport and metabolism was a biochemical property of Plasmodium infected cells and merozoites and not found in normal erythrocytes nor any of the other cell types investigated.

  4. Malaria Research

    MedlinePlus

    ... Malaria > Research Malaria Understanding Research NIAID Role Basic Biology Prevention and Control Strategies Strategic Partnerships and Research ... the malaria parasite. Related Links Global Research​ Vector Biology International Centers of Excellence for Malaria Research (ICEMR) ...

  5. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development

    PubMed Central

    Malleret, Benoît; Claser, Carla; Ong, Alice Soh Meoy; Suwanarusk, Rossarin; Sriprawat, Kanlaya; Howland, Shanshan Wu; Russell, Bruce; Nosten, Francois; Rénia, Laurent

    2011-01-01

    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing. PMID:22355635

  6. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Parameswaran, Uma; Piera, Kim A; Price, Ric N; Yeo, Tsin W; Anstey, Nicholas M

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  7. Evolutionary implications for the determination of gametocyte sex ratios under fecundity variation for the malaria parasite.

    PubMed

    Teboh-Ewungkem, Miranda I; Yuster, Thomas

    2016-11-01

    We investigate sex ratio determination strategies for the Malaria parasite based on putative changes in its male fecundity over the lifetime of an infection, and how such strategies might have evolved. We model fitness using the incomplete fertilization limit developed in Teboh-Ewungkem and Yuster (2010). We divide the infection lifetime of a strain into two periods, assume each human is infected by two different strains, and assume that there are two different strategies present among the many strains in the general malaria parasite population. A unique parameter dependent ESS exists for all parameter values in both of our main models, with many such strategies unbeatable. These strategies produce both male and female biased population sex ratios with female bias predominating over most of the parameter space. The first model (SKM) suggests that strains without the ability to detect characteristics of other strains present could still have evolved strategies to vary sex ratio over their lifetimes, and the second model (DKM) suggests strains with detection abilities might have evolved after that. Our analysis suggests that once the ability to detect the population sizes and fecundities of other strains has developed, detection of their sex ratio choices confers no additional selective advantage in that a DKM ESS is still an ESS among sex ratio detecting strategies. The sex ratio choices for each DKM ESS are given by the equilibrium values of the parameter equivalent sex ratio detecting strategy described in Teboh-Ewungkem and Wang (2012), in the case where two strains employing that strategy encounter each other.

  8. Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites

    PubMed Central

    Prinz, Boris; Harvey, Katherine L.; Wilcke, Louisa; Ruch, Ulrike; Engelberg, Klemens; Biller, Laura; Lucet, Isabelle; Erkelenz, Steffen; Heincke, Dorothee; Spielmann, Tobias; Doerig, Christian; Kunick, Conrad; Crabb, Brendan S.; Gilson, Paul R.; Gilberger, Tim W.

    2016-01-01

    Central to the pathogenesis of malaria is the proliferation of Plasmodium falciparum parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and host cell. One key ligand, Apical Membrane Antigen 1 (AMA1), is a leading blood-stage vaccine and previous work indicates that phosphorylation of its cytoplasmic domain (CPD) is important to its function during invasion. Here we investigate the significance of each of the six available phospho-sites in the CPD. We confirm that the cyclic AMP/protein kinase A (PKA) signalling pathway elicits a phospho-priming step upon serine 610 (S610), which enables subsequent phosphorylation in vitro of a conserved, downstream threonine residue (T613) by glycogen synthase kinase 3 (GSK3). Both phosphorylation steps are required for AMA1 to function efficiently during invasion. This provides the first evidence that the functions of key invasion ligands of the malaria parasite are regulated by sequential phosphorylation steps. PMID:27698395

  9. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    PubMed

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response. PMID:25435059

  10. Plasmodium coatneyi in Rhesus Macaques Replicates the Multisystemic Dysfunction of Severe Malaria in Humans

    PubMed Central

    Cabrera-Mora, Monica; Garcia, AnaPatricia; Orkin, Jack; Strobert, Elizabeth; Barnwell, John W.; Galinski, Mary R.

    2013-01-01

    Severe malaria, a leading cause of mortality among children and nonimmune adults, is a multisystemic disorder characterized by complex clinical syndromes that are mechanistically poorly understood. The interplay of various parasite and host factors is critical in the pathophysiology of severe malaria. However, knowledge regarding the pathophysiological mechanisms and pathways leading to the multisystemic disorders of severe malaria in humans is limited. Here, we systematically investigate infections with Plasmodium coatneyi, a simian malaria parasite that closely mimics the biological characteristics of P. falciparum, and develop baseline data and protocols for studying erythrocyte turnover and severe malaria in greater depth. We show that rhesus macaques (Macaca mulatta) experimentally infected with P. coatneyi develop anemia, coagulopathy, and renal and metabolic dysfunction. The clinical course of acute infections required suppressive antimalaria chemotherapy, fluid support, and whole-blood transfusion, mimicking the standard of care for the management of severe malaria cases in humans. Subsequent infections in the same animals progressed with a mild illness in comparison, suggesting that immunity played a role in reducing the severity of the disease. Our results demonstrate that P. coatneyi infection in rhesus macaques can serve as a highly relevant model to investigate the physiological pathways and molecular mechanisms of malaria pathogenesis in naïve and immune individuals. Together with high-throughput postgenomic technologies, such investigations hold promise for the identification of new clinical interventions and adjunctive therapies. PMID:23509137

  11. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  12. Can a single "powerless" mitochondrion in the malaria parasite contribute to parasite programmed cell death in the asexual stages?

    PubMed

    Ch'ng, Jun-Hong; Yeo, Su-Ping; Shyong-Wei Tan, Kevin

    2013-05-01

    The protozoan pathogens responsible for malaria are from the Plasmodium genus, with Plasmodium falciparum and Plasmodium vivax accounting for almost all clinical infections. With recent estimates of mortality exceeding 800,000 annually, malaria continues to take a terrible toll on lives and the early promises of medicine to eradicate the disease have yet to approach realization, in part due to the spread of drug resistant parasites. Recent reports of artemisinin-resistance have prompted renewed efforts to identify novel therapeutic options, and one such pathway being considered for antimalarial exploit is the parasite's programmed cell death (PCD) pathway. In this mini-review, we will discuss the roles of the plasmodium mitochondria in cell death and as a target of antimalarial compounds, taking into account recent data suggesting that PCD pathways involving the mitochondria may be attractive antimalarial targets.

  13. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    USGS Publications Warehouse

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  14. Assessment in mice of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite, P. falciparum.

    PubMed Central

    Etlinger, H M; Heimer, E P; Trzeciak, A; Felix, A M; Gillessen, D

    1988-01-01

    The anti-P. falciparum sporozoite vaccine consisting of the synthetic peptide, Ac-Cys-(NANP)3, conjugated to the protein tetanus toxoid (TT), [Ac-Cys-(NANP)3]25-TT, is currently undergoing human trials. The purpose of the present study was to assess various immunological parameters of this vaccine in mice, which have practical implications in humans. Two injections of [Ac-Cys-(NANP)3]25-TT adsorbed to Al(OH)3 were required to elicit a high antibody response against both Ac-Cys-(NANP)3 and TT. The vaccine initiated equivalent Ac-Cys-(NANP)3 priming for a secondary IgG response in 1-week-old and adult mice. Immunization of female mice with TT or [Ac-Cys-(NANP)3]23-TT prior to mating resulted in offspring that passively received anti-Ac-Cys-(NANP)3 and/or anti-TT antibody and that had reduced secondary responses to Ac-Cys-(NANP)3 and TT. Tertiary challenge with vaccine could substantially overcome such inhibition. Preimmunization of adult mice with TT resulted in a specific inhibition of the anti-Ac-Cys-(NANP)3 antibody response that disappeared following tertiary challenge with the vaccine. The conjugate initiated an antibody response against Ac-Cys-(NANP)3 and TT in mice of 16 different genotypes; only very low T-cell proliferative responses to (NANP)3 were observed for some of these strains. Mice injected with (NANP)3 coupled to protein demonstrated a secondary response to Ac-Cys-(NANP)3 when challenged with (NANP)3 on a heterologous carrier, indicating that B-cell priming alone may be sufficient for a secondary antibody response. These results demonstrate that the vaccine has favourable and unfavourable characteristics in mice; the potential for both exists in humans. PMID:3044983

  15. Antigen export during liver infection of the malaria parasite augments protective immunity.

    PubMed

    Montagna, Georgina N; Beigier-Bompadre, Macarena; Becker, Martina; Kroczek, Richard A; Kaufmann, Stefan H E; Matuschewski, Kai

    2014-01-01

    Protective immunity against preerythrocytic malaria parasite infection is difficult to achieve. Intracellular Plasmodium parasites likely minimize antigen presentation by surface-expressed major histocompatibility complex class I (MHC-I) molecules on infected cells, yet they actively remodel their host cells by export of parasite factors. Whether exported liver-stage proteins constitute better candidates for MHC-I antigen presentation to CD8(+) T lymphocytes remains unknown. Here, we systematically characterized the contribution of protein export to the magnitude of antigen-specific T-cell responses against Plasmodium berghei liver-stage parasites in C57BL/6 mice. We generated transgenic sporozoites that secrete a truncated ovalbumin (OVA) surrogate antigen only in the presence of an amino-terminal protein export element. Immunization with live attenuated transgenic sporozoites revealed that antigen export was not critical for CD8(+) T-cell priming but enhanced CD8(+) T-cell proliferation in the liver. Upon transfer of antigen-specific CD8(+) T cells, liver-stage parasites secreting the target protein were eliminated more efficiently. We conclude that Plasmodium parasites strictly control protein export during liver infection to minimize immune recognition. Strategies that enhance the discharge of parasite proteins into infected hepatocytes could improve the efficacy of candidate preerythrocytic malaria vaccines. Importance: Vaccine development against Plasmodium parasites remains a priority in malaria research. The most advanced malaria subunit vaccine candidates contain Plasmodium surface proteins with important roles for parasite vital functions. A fundamental question is whether recognition by effector CD8(+) T cells is restricted to sporozoite surface antigens or extends to parasite proteins that are synthesized during the extensive parasite expansion phase in the liver. Using a surrogate model antigen, we found that a cytoplasmic antigen is able to induce

  16. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.

    PubMed

    Vardo, A M; Schall, J J

    2007-07-01

    Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or

  17. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector.

    PubMed

    Urbán, Patricia; Ranucci, Elisabetta; Fernàndez-Busquets, Xavier

    2015-11-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.

  18. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus)

    PubMed Central

    Martinsen, Ellen S.; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J.; Forrester, Tavis D.; Ware, Lisa; Joyner, Priscilla H.; Perkins, Susan L.; Latch, Emily K.; Yabsley, Michael J.; Schall, Joseph J.; Fleischer, Robert C.

    2016-01-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites. PMID:26989785

  19. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus).

    PubMed

    Martinsen, Ellen S; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J; Forrester, Tavis D; Ware, Lisa; Joyner, Priscilla H; Perkins, Susan L; Latch, Emily K; Yabsley, Michael J; Schall, Joseph J; Fleischer, Robert C

    2016-02-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites.

  20. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus).

    PubMed

    Martinsen, Ellen S; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J; Forrester, Tavis D; Ware, Lisa; Joyner, Priscilla H; Perkins, Susan L; Latch, Emily K; Yabsley, Michael J; Schall, Joseph J; Fleischer, Robert C

    2016-02-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites. PMID:26989785

  1. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts.

    PubMed

    Abkallo, Hussein M; Liu, Weimin; Hokama, Sarina; Ferreira, Pedro E; Nakazawa, Shusuke; Maeno, Yoshimasa; Quang, Nguyen T; Kobayashi, Nobuyuki; Kaneko, Osamu; Huffman, Michael A; Kawai, Satoru; Marchand, Ron P; Carter, Richard; Hahn, Beatrice H; Culleton, Richard

    2014-06-01

    Following the bite of an infective mosquito, malaria parasites first invade the liver where they develop and replicate for a number of days before being released into the bloodstream where they invade red blood cells and cause disease. The biology of the liver stages of malaria parasites is relatively poorly understood due to the inaccessibility of the parasites to sampling during this phase of their life cycle. Here we report the detection in blood and faecal samples of malaria parasite DNA throughout their development in the livers of mice and before the parasites begin their growth in the blood circulation. It is shown that parasite DNA derived from pre-erythrocytic stage parasites reaches the faeces via the bile. We then show that different primate malaria species can be detected by PCR in blood and faecal samples from naturally infected captive macaque monkeys. These results demonstrate that pre-erythrocytic parasites can be detected and quantified in experimentally infected animals. Furthermore, these results have important implications for both molecular epidemiology and phylogenetics of malaria parasites. In the former case, individuals who are malaria parasite negative by microscopy, but PCR positive for parasite DNA in their blood, are considered to be "sub-microscopic" blood stage parasite carriers. We now propose that PCR positivity is not necessarily an indicator of the presence of blood stage parasites, as the DNA could derive from pre-erythrocytic parasites. Similarly, in the case of molecular phylogenetics based on DNA sequences alone, we argue that DNA amplified from blood or faeces does not necessarily come from a parasite species that infects the red blood cells of that particular host.

  2. How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria

    PubMed Central

    Kwiatkowski, Dominic P.

    2005-01-01

    Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, α+ thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine. PMID:16001361

  3. The evolution of virulence in primate malaria parasites based on Bayesian reconstructions of ancestral states.

    PubMed

    Garamszegi, László Zsolt

    2011-02-01

    Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites.

  4. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites

    PubMed Central

    Gupta, Devendra Kumar; Patra, Alok Tanala; Zhu, Lei; Gupta, Archana Patkar; Bozdech, Zbynek

    2016-01-01

    DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon. PMID:27033103

  5. Parasite and the Circulating Pool- Characterisation of Leukocyte Number and Morphology in Malaria

    PubMed Central

    Chandrashekhar, Jayaprakash

    2016-01-01

    presence of malaria and should prompt a repeat blood smear examination in case of initial negative results for the parasite. PMID:27437231

  6. Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review.

    PubMed

    Onkoba, Nyamongo W; Chimbari, Moses J; Mukaratirwa, Samson

    2015-01-01

    Mechanisms and outcomes of host-parasite interactions during malaria co-infections with gastrointestinal helminths are reasonably understood. In contrast, very little is known about such mechanisms in cases of malaria co-infections with tissue-dwelling parasites. This is lack of knowledge is exacerbated by misdiagnosis, lack of pathognomonic clinical signs and the chronic nature of tissue-dwelling helminthic infections. A good understanding of the implications of tissue-dwelling parasitic co-infections with malaria will contribute towards the improvement of the control and management of such co-infections in endemic areas. This review summarises and discusses current information available and gaps in research on malaria co-infection with gastro-intestinal helminths and tissue-dwelling parasites with emphasis on helminthic infections, in terms of the effects of migrating larval stages and intra and extracellular localisations of protozoan parasites and helminths in organs, tissues, and vascular and lymphatic circulations. PMID:26377900

  7. The Importance of Human FcγRI in Mediating Protection to Malaria

    PubMed Central

    de Koning-Ward, Tania F; Smith, Tim; Green, Judith; van Egmond, Marjolein; Leusen, Jeanette H. W; Lazarou, Maria; van de Winkel, Jan; Jones, Tarran S; Crabb, Brendan S; Holder, Anthony A; Pleass, Richard J

    2007-01-01

    The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria. PMID:17511516

  8. Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears

    PubMed Central

    Arranz, Asier; Frean, John

    2012-01-01

    Background There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite

  9. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.

    PubMed

    Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

    2012-01-01

    We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards. PMID:22326740

  10. In Vivo Function of PTEX88 in Malaria Parasite Sequestration and Virulence.

    PubMed

    Matz, Joachim M; Ingmundson, Alyssa; Costa Nunes, Jean; Stenzel, Werner; Matuschewski, Kai; Kooij, Taco W A

    2015-06-01

    Malaria pathology is linked to remodeling of red blood cells by eukaryotic Plasmodium parasites. Central to host cell refurbishment is the trafficking of parasite-encoded virulence factors through the Plasmodium translocon of exported proteins (PTEX). Much of our understanding of its function is based on experimental work with cultured Plasmodium falciparum, yet direct consequences of PTEX impairment during an infection remain poorly defined. Using the murine malaria model parasite Plasmodium berghei, it is shown here that efficient sequestration to the pulmonary, adipose, and brain tissue vasculature is dependent on the PTEX components thioredoxin 2 (TRX2) and PTEX88. While TRX2-deficient parasites remain virulent, PTEX88-deficient parasites no longer sequester in the brain, correlating with abolishment of cerebral complications in infected mice. However, an apparent trade-off for virulence attenuation was spleen enlargement, which correlates with a strongly reduced schizont-to-ring-stage transition. Strikingly, general protein export is unaffected in PTEX88-deficient mutants that mature normally in vitro. Thus, PTEX88 is pivotal for tissue sequestration in vivo, parasite virulence, and preventing exacerbation of spleen pathology, but these functions do not correlate with general protein export to the host erythrocyte. The presented data suggest that the protein export machinery of Plasmodium parasites and their underlying mechanistic features are considerably more complex than previously anticipated and indicate challenges for targeted intervention strategies.

  11. Photosensitized inactivation of infectious blood-borne human parasites

    NASA Astrophysics Data System (ADS)

    Judy, Millard M.; Sogandares-Bernal, Franklin M.; Matthews, James Lester

    1995-05-01

    Blood-borne viruses and protozoan parasites that are infectious to humans pose risk world-wide of infection transmission through blood and blood product transfusion. Blood-borne infectious viruses include human immunodeficiency virus (HIV-I), which causes AIDS; hepatitis C virus, which can cause chronic hepatitis; and cytomegalovirus, which can be dangerous to immunocompromised patients, e.g., the newborn, transplant recipients, and AIDS patients. Infectious blood-borne protozoan parasites include Trypanosoma cruzi, which causes Chagas' disease, endemic throughout Central and South America; the Trypanosoma species causing African sleeping sickness endemic in Central Africa; and Plasmodium falciparum, which causes malignant and increasingly drug- resistant human malaria prevalent throughout the tropics. Some researchers have focused on using photosensitizers to inactivate HIV-I and other viruses in whole blood, packed red cells, and platelet concentrates without compromising blood product function. Our group previously has reported photosensitized in vitro inactivation of P. falciparum and the mouse malaria organism Plasmodium berghei in whole blood using hematoporphyrin derivative (HPD) and of T. cruzi using benzoporphyrin derivatives BPDMA and BPDDA, dihematoporphyrin ether (DHE), and hydroxyethylvinyldeuteroporphyrin (HEVD). These results suggest that continued investigation is warranted to evaluate the potential for photosensitized inactivation of blood-borne parasites in blood banking.

  12. Polymorphism at the apical membrane antigen 1 gene (AMA1) of the malaria parasite Plasmodium falciparum in a Vietnamese population.

    PubMed

    Quang, Nguyen Duc; Hoa, Phan Thi Phuong; Tuan, Mai Sy; Viet, Nguyen Xuan; Jalloh, Amadu; Matsuoka, Hiroyuki

    2009-06-01

    The patterns of molecular evolution of the most diverse region of the apical membrane antigen 1 (AMA1) gene in Plasmodium falciparum from a Vietnamese subpopulation (Bao Loc) were investigated. Within the Bao Loc population, the sequenced gene region showed relatively high allelic and nucleotide diversity (0.985 and 0.02694, respectively). Further, the level of population recombination was substantial, resulting in a significant decay of linkage disequilibrium along the gene region. The results suggest that AMA1 is a useful genetic marker for studying the relationships between adaptation of parasite populations (to the human host immune system) and malaria epidemiology.

  13. Population Genomic Scan for Candidate Signatures of Balancing Selection to Guide Antigen Characterization in Malaria Parasites

    PubMed Central

    Amambua-Ngwa, Alfred; Tetteh, Kevin K. A.; Manske, Magnus; Gomez-Escobar, Natalia; Stewart, Lindsay B.; Deerhake, M. Elizabeth; Cheeseman, Ian H.; Newbold, Christopher I.; Holder, Anthony A.; Knuepfer, Ellen; Janha, Omar; Jallow, Muminatou; Campino, Susana; MacInnis, Bronwyn; Kwiatkowski, Dominic P.; Conway, David J.

    2012-01-01

    Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now

  14. Genetic Evaluation of the Performance of Malaria Parasite Clearance Rate Metrics

    PubMed Central

    Nkhoma, Standwell C.; Stepniewska, Kasia; Nair, Shalini; Phyo, Aung Pyae; McGready, Rose; Nosten, François; Anderson, Tim J. C.

    2013-01-01

    Accurate measurement of malaria parasite clearance rates (CRs) following artemisinin (ART) treatment is critical for resistance surveillance and research, and various CR metrics are currently used. We measured 13 CR metrics in 1472 ART-treated hyperparasitemia infections for which 6-hour parasite counts and parasite genotypes (93 single nucleotide polymorphisms [SNPs]) were available. We used heritability to evaluate the performance of each metric. Heritability ranged from 0.06 ± 0.06 (SD) for 50% parasite clearance times to 0.67 ± 0.04 (SD) for clearance half-lives estimated from 6-hour parasite counts. These results identify the measures that should be avoided and show that reliable clearance measures can be obtained with abbreviated monitoring protocols. PMID:23592863

  15. Genetic evaluation of the performance of malaria parasite clearance rate metrics.

    PubMed

    Nkhoma, Standwell C; Stepniewska, Kasia; Nair, Shalini; Phyo, Aung Pyae; McGready, Rose; Nosten, François; Anderson, Tim J C

    2013-07-15

    Accurate measurement of malaria parasite clearance rates (CRs) following artemisinin (ART) treatment is critical for resistance surveillance and research, and various CR metrics are currently used. We measured 13 CR metrics in 1472 ART-treated hyperparasitemia infections for which 6-hour parasite counts and parasite genotypes (93 single nucleotide polymorphisms [SNPs]) were available. We used heritability to evaluate the performance of each metric. Heritability ranged from 0.06 ± 0.06 (SD) for 50% parasite clearance times to 0.67 ± 0.04 (SD) for clearance half-lives estimated from 6-hour parasite counts. These results identify the measures that should be avoided and show that reliable clearance measures can be obtained with abbreviated monitoring protocols.

  16. X-ray microscopy of human malaria

    SciTech Connect

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  17. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    PubMed

    Costa, Daniela Camargos; Madureira, Ana Paula; Amaral, Lara Cotta; Sanchez, Bruno Antônio Marinho; Gomes, Luciano Teixeira; Fontes, Cor Jésus Fernandes; Limongi, Jean Ezequiel; Brito, Cristiana Ferreira Alves de; Carvalho, Luzia Helena

    2014-02-01

    The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

  18. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants.

    PubMed

    Cai, Shengxin; Risinger, April L; Nair, Shalini; Peng, Jiangnan; Anderson, Timothy J C; Du, Lin; Powell, Douglas R; Mooberry, Susan L; Cichewicz, Robert H

    2016-03-25

    Some of the most valuable antimalarial compounds, including quinine and artemisinin, originated from plants. While these drugs have served important roles over many years for the treatment of malaria, drug resistance has become a widespread problem. Therefore, a critical need exists to identify new compounds that have efficacy against drug-resistant malaria strains. In the current study, extracts prepared from plants readily obtained from local sources were screened for activity against Plasmodium falciparum. Bioassay-guided fractionation was used to identify 18 compounds from five plant species. These compounds included eight lupane triterpenes (1-8), four kaempferol 3-O-rhamnosides (10-13), four kaempferol 3-O-glucosides (14-17), and the known compounds amentoflavone and knipholone. These compounds were tested for their efficacy against multi-drug-resistant malaria parasites and counterscreened against HeLa cells to measure their antimalarial selectivity. Most notably, one of the new lupane triterpenes (3) isolated from the supercritical extract of Buxus sempervirens, the common boxwood, showed activity against both drug-sensitive and -resistant malaria strains at a concentration that was 75-fold more selective for the drug-resistant malaria parasites as compared to HeLa cells. This study demonstrates that new antimalarial compounds with efficacy against drug-resistant strains can be identified from native and introduced plant species in the United States, which traditionally have received scant investigation compared to more heavily explored tropical and semitropical botanical resources from around the world. PMID:26722868

  19. The Impact of Cooperative Social Organization on Reducing the Prevalence of Malaria and Intestinal Parasite Infections in Awramba, a Rural Community in South Gondar, Ethiopia

    PubMed Central

    Yihenew, Gebeyehu; Petros, Beyene

    2014-01-01

    Introduction. Parasitic diseases are the major causes of human health problem in Ethiopia. The high prevalence of parasitic infections is closely correlated with poverty, poor environmental hygiene, and impoverished health services. Objective. The study was conducted to assess the impact of health-conscious Awramba cooperative community and its neighboring communities on the prevalence of parasitic infections in South Gondar, Ethiopia. Methods. Single stool specimens were collected from 392 individuals from Awramba and the neighboring communities. Specimens were examined microscopically for the presence of parasites using microscopy. Questionnaire was administered to determine the knowledge attitude and practice (KAP) of study participants. Results. Of the total 392 study participants examined, 58(14.8%) were positive for malaria and 173 (44.1%) for intestinal parasites. The prevalence of malaria in Awramba community (5.1%) was less than that in neighboring communities (24.5%). The prevalence of parasitic infections in Awramba (18.8%) was less than that of the neighboring communities (69.4%). Conclusion. This study showed that good household and environmental hygiene, good toilet construction and usage, and proper utilization of ITN in Awramba cooperative community have significantly contributed to the reduction of the burden of parasitic infections. Thus, the positive achievement in reducing parasitic infections in Awramba cooperative community could be used as a model for affordable health intervention in the neighboring communities, in particular, and the whole country in general. PMID:25180032

  20. The impact of cooperative social organization on reducing the prevalence of malaria and intestinal parasite infections in awramba, a rural community in South gondar, ethiopia.

    PubMed

    Yihenew, Gebeyehu; Adamu, Haileeyesus; Petros, Beyene

    2014-01-01

    Introduction. Parasitic diseases are the major causes of human health problem in Ethiopia. The high prevalence of parasitic infections is closely correlated with poverty, poor environmental hygiene, and impoverished health services. Objective. The study was conducted to assess the impact of health-conscious Awramba cooperative community and its neighboring communities on the prevalence of parasitic infections in South Gondar, Ethiopia. Methods. Single stool specimens were collected from 392 individuals from Awramba and the neighboring communities. Specimens were examined microscopically for the presence of parasites using microscopy. Questionnaire was administered to determine the knowledge attitude and practice (KAP) of study participants. Results. Of the total 392 study participants examined, 58(14.8%) were positive for malaria and 173 (44.1%) for intestinal parasites. The prevalence of malaria in Awramba community (5.1%) was less than that in neighboring communities (24.5%). The prevalence of parasitic infections in Awramba (18.8%) was less than that of the neighboring communities (69.4%). Conclusion. This study showed that good household and environmental hygiene, good toilet construction and usage, and proper utilization of ITN in Awramba cooperative community have significantly contributed to the reduction of the burden of parasitic infections. Thus, the positive achievement in reducing parasitic infections in Awramba cooperative community could be used as a model for affordable health intervention in the neighboring communities, in particular, and the whole country in general. PMID:25180032

  1. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation.

    PubMed

    Davenport, Gregory C; Hittner, James B; Otieno, Vincent; Karim, Zachary; Mukundan, Harshini; Fenimore, Paul W; Hengartner, Nicolas W; McMahon, Benjamin H; Kempaiah, Prakasha; Ong'echa, John M; Perkins, Douglas J

    2016-01-01

    Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[-]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[-] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[-] organisms, respectively. Coinfected children, particularly those with G[-] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[-] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[-] coinfected children, acts to reduce malaria parasite burden. PMID:27418744

  2. Control of human parasitic diseases: Context and overview.

    PubMed

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  3. An innovative tool for moving malaria PCR detection of parasite reservoir into the field

    PubMed Central

    2013-01-01

    Background To achieve the goal of malaria elimination in low transmission areas such as in Cambodia, new, inexpensive, high-throughput diagnostic tools for identifying very low parasite densities in asymptomatic carriers are required. This will enable a switch from passive to active malaria case detection in the field. Methods DNA extraction and real-time PCR assays were implemented in an “in-house” designed mobile laboratory allowing implementation of a robust, sensitive and rapid malaria diagnostic strategy in the field. This tool was employed in a survey organized in the context of the MalaResT project (NCT01663831). Results The real-time PCR screening and species identification assays were performed in the mobile laboratory between October and November 2012, in Rattanakiri Province, to screen approximately 5,000 individuals in less than four weeks and treat parasite carriers within 24–48 hours after sample collection. An average of 240 clinical samples (and 40 quality control samples) was tested every day, six/seven days per week. Some 97.7% of the results were available <24 hours after the collection. A total of 4.9% were positive for malaria. Plasmodium vivax was present in 61.1% of the positive samples, Plasmodium falciparum in 45.9%, Plasmodium malariae in 7.0% and Plasmodium ovale in 2.0%. Conclusions The operational success of this diagnostic set-up proved that molecular testing and subsequent treatment is logistically achievable in field settings. This will allow the detection of clusters of asymptomatic carriers and to provide useful epidemiological information. Fast results will be of great help for staff in the field to track and treat asymptomatic parasitaemic cases. The concept of the mobile laboratory could be extended to other countries for the molecular detection of malaria or other pathogens, or to culture vivax parasites, which does not support long-time delay between sample collection and culture. PMID:24206649

  4. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa

    PubMed Central

    Schaer, Juliane; Perkins, Susan L.; Decher, Jan; Leendertz, Fabian H.; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

    2013-01-01

    As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems—particularly as pollinators and insectivores—and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats. PMID:24101466

  5. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa.

    PubMed

    Schaer, Juliane; Perkins, Susan L; Decher, Jan; Leendertz, Fabian H; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

    2013-10-22

    As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems--particularly as pollinators and insectivores--and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats.

  6. CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites.

    PubMed

    Lee, Marcus Cs; Fidock, David A

    2014-01-01

    The development of the CRISPR-Cas system is revolutionizing genome editing in a variety of organisms. The system has now been used to manipulate the genome of Plasmodium falciparum, the most lethal malaria-causing species. The ability to generate gene deletions or nucleotide substitutions rapidly and economically promises to accelerate the analysis of novel drug targets and to help elucidate the function of specific genes or gene families, while complementing genome-wide association studies.

  7. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut.

    PubMed

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-04-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  8. Zoonotic Parasites of Bobcats around Human Landscapes

    PubMed Central

    Scorza, Andrea V.; Bevins, Sarah N.; Riley, Seth P. D.; Crooks, Kevin R.; VandeWoude, Sue; Lappin, Michael R.

    2012-01-01

    We analyzed Lynx rufus fecal parasites from California and Colorado, hypothesizing that bobcats shed zoonotic parasites around human landscapes. Giardia duodenalis, Cryptosporidium, Ancylostoma, Uncinaria, and Toxocara cati were shed. Toxoplasma gondii serology demonstrated exposure. Giardia and Cryptosporidium shedding increased near large human populations. Genotyped Giardia may indicate indirect transmission with humans. PMID:22718941

  9. Crystallization and preliminary X-ray analysis of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae

    SciTech Connect

    Madabushi, Amrita; Chakraborty, Sibani; Fisher, S. Zoë; Clemente, José C.; Yowell, Charles; Agbandje-McKenna, Mavis; Dame, John B.; Dunn, Ben M.; McKenna, Robert

    2005-02-01

    Plasmepsin 4 from the malarial parasite P. malariae has been crystallized in complex with a small molecular inhibitor. Preliminary X-ray analysis of the diffraction data collected at 3.3 Å resolution is reported.

  10. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    PubMed

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-01

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  11. Do malaria parasites follow the algebra of sex ratio theory?

    PubMed

    Schall, Jos J

    2009-03-01

    The ratio of male to female gametocytes seen in infections of Plasmodium and related haemosporidian parasites varies substantially, both within and among parasite species. Sex ratio theory, a mainstay of evolutionary biology, accounts for this variation. The theory provides an algebraic solution for the optimal sex ratio that will maximize parasite fitness. A crucial term in this solution is the probability of selfing by clone-mates within the vector (based on the clone number and their relative abundance). Definitive tests of the theory have proven elusive because of technical challenges in measuring clonal diversity within infections. Newly developed molecular methods now provide opportunities to test the theory with an exquisite precision. PMID:19201653

  12. Recombinant tumour necrosis factor inhibits malaria parasites in vivo but not in vitro.

    PubMed Central

    Taverne, J; Tavernier, J; Fiers, W; Playfair, J H

    1987-01-01

    As tumour necrosis serum kills malarial parasites in vitro and inhibits the multiplication of some species of Plasmodium in mice, we examined the effect of recombinant mouse tumour necrosis factor (rTNF) on P. yoelii both in vitro and in vivo. Parasites incubated overnight with rTNF showed no loss of viability, but repeated injection of rTNF into infected mice reduced parasitaemia and significantly prolonged survival of mice infected with a lethal variant of the parasite. We conclude that TNF acts on blood-stage malaria in vivo via a host cell and that another molecule in tumour necrosis serum is involved in killing the parasite in vitro. PMID:3621669

  13. A paper microfluidic cartridge for automated staining of malaria parasites with an optically transparent microscopy window.

    PubMed

    Horning, Matthew P; Delahunt, Charles B; Singh, S Ryan; Garing, Spencer H; Nichols, Kevin P

    2014-06-21

    A paper microfluidic cartridge for the automated staining of malaria parasites (Plasmodium) with acridine orange prior to microscopy is presented. The cartridge enables simultaneous, sub-minute generation of both thin and thick smears of acridine orange stained parasites. Parasites are stained in a cellulose matrix, after which the parasites are ejected via capillary forces into an optically transparent chamber. The unique slanted design of the chamber ensures that a high percentage of the stained blood will be of the required thickness for a thin smear, without resorting to spacers or other methods that can increase production cost or require tight quality controls. A hydrophobic snorkel facilitates the removal of air bubbles during filling. The cartridge contains both a thin smear region, where a single layer of cells is presented unobstructed, for ease of species identification, and a thick smear region, containing multiple cell layers, for enhanced limit of detection.

  14. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei

    PubMed Central

    Matz, Joachim M.; Kooij, Taco W. A.

    2015-01-01

    Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods. PMID:25789828

  15. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei.

    PubMed

    Matz, Joachim M; Kooij, Taco W A

    2015-03-01

    Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.

  16. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites.

    PubMed

    Mita, Toshihiro; Tachibana, Shin-Ichiro; Hashimoto, Muneaki; Hirai, Makoto

    2016-01-01

    Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.

  17. Distinct Roles of Plasmodium Rhomboid 1 in Parasite Development and Malaria Pathogenesis

    PubMed Central

    Srinivasan, Prakash; Coppens, Isabelle; Jacobs-Lorena, Marcelo

    2009-01-01

    Invasion of host cells by the malaria parasite involves recognition and interaction with cell-surface receptors. A wide variety of parasite surface proteins participate in this process, most of which are specific to the parasite's particular invasive form. Upon entry, the parasite has to dissociate itself from the host-cell receptors. One mechanism by which it does so is by shedding its surface ligands using specific enzymes. Rhomboid belongs to a family of serine proteases that cleave cell-surface proteins within their transmembrane domains. Here we identify and partially characterize a Plasmodium berghei rhomboid protease (PbROM1) that plays distinct roles during parasite development. PbROM1 localizes to the surface of sporozoites after salivary gland invasion. In blood stage merozoites, PbROM1 localizes to the apical end where proteins involved in invasion are also present. Our genetic analysis suggests that PbROM1 functions in the invasive stages of parasite development. Whereas wild-type P. berghei is lethal to mice, animals infected with PbROM1 null mutants clear the parasites efficiently and develop long-lasting protective immunity. The results indicate that P. berghei Rhomboid 1 plays a nonessential but important role during parasite development and identify rhomboid proteases as potential targets for disease control. PMID:19148267

  18. The human host as active agent in malaria epidemiology.

    PubMed

    MacCormack, C P

    1987-09-01

    The literature on malaria epidemiology tends to view the human host as a passive or constant factor. However, for at least 2000 years people have been an active factor, causing vast changes in epidemiological patterns. They have cut forest and increased the breeding area of An. gambiae, or changed salinity in rice swamps causing a different change in the dominant vector. Human activity not only increases risk, but influences control by killing mosquito larvae, killing adult mosquitos or preventing mosquitos from feeding. For example, people prefer chloroquine or other anti-malarials to traditional herbal remedies that do not kill parasites, and in some areas introduce larvivorous fish into swamp rice fields and cattle ponds. Bed nets impregnated with residual insecticide simultaneously prevent mosquitos from feeding on people and kill adult mosquitos. Preferences and practices in bed net use in the Gambia are described. PMID:3432961

  19. Host immune constraints on malaria transmission: insights from population biology of within-host parasites

    PubMed Central

    2013-01-01

    Background Plasmodium infections trigger complex immune reactions from their hosts against several life stages of the parasite, including gametocytes. These immune responses are highly variable, depending on age, genetics, and exposure history of the host as well as species and strain of parasite. Although the effects of host antibodies that act against gamete stages in the mosquito (due to uptake in the blood meal) are well documented, the effects of host immunity upon within-host gametocytes are not as well understood. This report consists of a theoretical population biology-based analysis to determine constraints that host immunity impose upon gametocyte population growth. The details of the mathematical models used for the analysis were guided by published reports of clinical and animal studies, incorporated plausible modalities of immune reactions to parasites, and were tailored to the life cycl es of the two most widespread human malaria pathogens, Plasmodium falciparum and Plasmodium vivax. Results For the same ability to bind and clear a target, the model simulations suggest that an antibody attacking immature gametocytes would tend to lower the overall density of transmissible mature gametocytes more than an antibody attacking the mature forms directly. Transmission of P. falciparum would be especially vulnerable to complete blocking by antibodies to its immature forms since its gametocytes take much longer to reach maturity than those of P. vivax. On the other hand, antibodies attacking the mature gametocytes directly would reduce the time the mature forms can linger in the host. Simulation results also suggest that varying the standard deviation in the time necessary for individual asexual parasites to develop and produce schizonts can affect the efficiency of production of transmissible gametocytes. Conclusions If mature gametocyte density determines the probability of transmission, both Plasmodium species, but especially P. falciparum, could bolster

  20. Molecular Architecture of a Complex between an Adhesion Protein from the Malaria Parasite and Intracellular Adhesion Molecule 1*

    PubMed Central

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A.; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G.; Higgins, Matthew K.

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  1. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    PubMed Central

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  2. Virulence of lizard malaria: the evolutionary ecology of an ancient parasite-host association.

    PubMed

    Schall, J J

    1990-01-01

    The negative consequences of parasitic infection (virulence) were examined for two lizard malaria parasite-host associations: Plasmodium agamae and P. giganteum, parasites of the rainbow lizard, Agama agama, in Sierra Leone, West Africa; and P. mexicanum in the western fence lizard, Sceloporus occidentalis, in northern California. These malaria species vary greatly in their reproductive characteristics: P. agamae produces only 8 merozoites per schizont, P. giganteum yields over 100, and P. mexicanum an intermediate number. All three parasites appear to have had an ancient association with their host. In fence lizards, infection with malaria is associated with increased numbers of immature erythrocytes, decreased haemoglobin levels, decreased maximal oxygen consumption, and decreased running stamina. Not affected were numbers of erythrocytes, resting metabolic rate, and sprint running speed which is supported by anaerobic means in lizards. Infected male fence lizards had smaller testes, stored less fat in preparation for winter dormancy, were more often socially submissive and, unexpectedly, were more extravagantly coloured on the ventral surface (a sexually dimorphic trait) than non-infected males. Females also stored less fat and produced smaller clutches of eggs, a directly observed reduction in fitness. Infected fence lizards do not develop behavioural fevers. P. mexicanum appears to have broad thermal buffering abilities and thermal tolerance; the parasite's population growth was unaffected by experimental alterations in the lizard's body temperature. The data are less complete for A. agama, but infected lizards suffered similar haematological and physiological effects. Infected animals may be socially submissive because they appear to gather less insect prey, possibly a result of being forced into inferior territories. Infection does not reduce clutch size in rainbow lizards, but may lengthen the time between clutches. These results are compared with

  3. Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans

    PubMed Central

    2013-01-01

    Background The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. Results In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Conclusions Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in

  4. Full-Malaria/Parasites and Full-Arthropods: databases of full-length cDNAs of parasites and arthropods, update 2009.

    PubMed

    Wakaguri, Hiroyuki; Suzuki, Yutaka; Katayama, Toshiaki; Kawashima, Shuichi; Kibukawa, Eri; Hiranuka, Kazushi; Sasaki, Masahide; Sugano, Sumio; Watanabe, Junichi

    2009-01-01

    Full-Malaria/Parasites is a database for transcriptome studies of apicomplexa and other parasites, which is based on our original full-length cDNA sequences and physical cDNA clone resources. In this update, the database has been expanded to contain the shogun sequencing for the entire sequences of 14,818 non-redundant full-length cDNA clones from six apicomplexa parasites and 6.8 million of transcription start sites (TSS), both of which had been produced by novel protocols using the oligo-capping method and the Illumina GA sequencer. The former should be the ultimate data for exact annotation of the expressed genes, while the latter should be useful for ultra-deep expression analysis. Furthermore, we have launched Full-Arthropods, a full-length cDNA database for arthropods of medical importance. Full-Arthropods contains 50 343 one-pass sequences, 10 399 shotgun complete sequences and 22.4 million TSS tags in anopheles mosquitoes that transmit malaria, tsetse flies that transmit trypanosomiasis and dust mites that cause allergic dermatitis and bronchial asthma. By providing the largest integrated full-length cDNA data resources in the apicomplexa parasites as well as their vectors, Full-Malaria/Parasites and Full-Arthropods should help combat parasitic diseases. Full-Malaria/Parasites and Full-Arthropods are accessible from http://fullmal.hgc.jp/.

  5. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms.

    PubMed

    Wilson, Laurence G; Carter, Lucy M; Reece, Sarah E

    2013-11-19

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the "native" axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53-72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat. PMID:24194551

  6. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms

    PubMed Central

    Wilson, Laurence G.; Carter, Lucy M.; Reece, Sarah E.

    2013-01-01

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the “native” axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat. PMID:24194551

  7. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms.

    PubMed

    Wilson, Laurence G; Carter, Lucy M; Reece, Sarah E

    2013-11-19

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the "native" axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53-72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat.

  8. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages

    PubMed Central

    Dearnley, Megan; Chu, Trang; Zhang, Yao; Looker, Oliver; Huang, Changjin; Klonis, Nectarios; Yeoman, Jeff; Kenny, Shannon; Arora, Mohit; Osborne, James M.; Chandramohanadas, Rajesh; Zhang, Sulin; Dixon, Matthew W. A.; Tilley, Leann

    2016-01-01

    The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin cross-members and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer’s clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability. PMID:27071094

  9. Prevalence of malaria parasites (Plasmodium floridense and Plasmodium azurophilum) infecting a Puerto Rican lizard (Anolis gundlachi): a nine-year study.

    PubMed

    Schall, J J; Pearson, A R; Perkins, S L

    2000-06-01

    The prevalence of malaria parasites was studied in the lizard Anolis gundlachi over a 9-yr period at a site in the wet evergreen forest of eastern Puerto Rico. Three forms of the parasite infected the lizards; these were Plasmodium floridense, Plasmodium azurophilum in erythrocytes, and P. azurophilum in white blood cells. Overall prevalence of infection for 8 samples during the study period was significantly higher for males than females (32% of 3,296 males and 22% of 1,439 females). During the study, the site experienced substantial climatic and physical disturbance including rising temperature, droughts, and hurricanes that severely damaged the forest. Parasite prevalence in the first sample, 8 mo after the massive hurricane Hugo, was slightly, though significantly, lower than for subsequent samples. However, overall prevalence was stable during the 9-yr period. The results show malaria prevalence is more constant at the site than found for 2 studies in temperate forests, and that the Puerto Rico system may be an example of the stable, endemic malaria described by standard models for human malaria epidemiology.

  10. 3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum.

    PubMed

    Weiner, Allon; Dahan-Pasternak, Noa; Shimoni, Eyal; Shinder, Vera; von Huth, Palle; Elbaum, Michael; Dzikowski, Ron

    2011-07-01

    The deadliest form of human malaria is caused by the protozoan parasite Plasmodium falciparum. The complex life cycle of this parasite is associated with tight transcriptional regulation of gene expression. Nuclear positioning and chromatin dynamics may play an important role in regulating P. falciparum virulence genes. We have applied an emerging technique of electron microscopy to construct a 3D model of the parasite nucleus at distinct stages of development within the infected red blood cell. We have followed the distribution of nuclear pores and chromatin throughout the intra-erythrocytic cycle, and have found a striking coupling between the distributions of nuclear pores and chromatin organization. Pore dynamics involve clustering, biogenesis, and division among daughter cells, while chromatin undergoes stage-dependent changes in packaging. Dramatic changes in heterochromatin distribution coincide with a previously identified transition in gene expression and nucleosome positioning during the mid-to-late schizont phase. We also found a correlation between euchromatin positioning at the nuclear envelope and the local distribution of nuclear pores, as well as a dynamic nuclear polarity during schizogony. These results suggest that cyclic patterns in gene expression during parasite development correlate with gross changes in cellular and nuclear architecture.

  11. Fya/Fyb antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria

    PubMed Central

    King, Christopher L.; Adams, John H.; Xianli, Jia; Grimberg, Brian T.; McHenry, Amy M.; Greenberg, Lior J.; Siddiqui, Asim; Howes, Rosalind E.; da Silva-Nunes, Monica; Ferreira, Marcelo U.; Zimmerman, Peter A.

    2011-01-01

    Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fya or Fyb, resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fya, compared with Fyb, significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fya had 41–50% lower binding compared with Fyb cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fya+b− phenotype demonstrated a 30–80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fya+b− phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes. PMID:22123959

  12. Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Sigala, Paul A.; Crowley, Jan R.; Hsieh, Samantha; Henderson, Jeffrey P.; Goldberg, Daniel E.

    2012-01-01

    Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO's lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection. PMID:22992734

  13. Contrasting infection susceptibility of the Japanese macaques and cynomolgus macaques to closely related malaria parasites, Plasmodium vivax and Plasmodium cynomolgi.

    PubMed

    Tachibana, Shin-Ichiro; Kawai, Satoru; Katakai, Yuko; Takahashi, Hideo; Nakade, Toru; Yasutomi, Yasuhiro; Horii, Toshihiro; Tanabe, Kazuyuki

    2015-06-01

    Although the human malaria parasite Plasmodium vivax is closely related to Asian Old World monkey malaria parasites, there are no reports of P. vivax infections in macaques. In this study, we compared the infectivity of P. vivax and Plasmodium cynomolgi in Japanese macaques (Macaca fuscata) and in cynomolgus macaques (Macaca fascicularis). The Japanese macaques were highly susceptible to P. cynomolgi but not to P. vivax, whereas cynomolgus macaques showed mild/limited P. cynomolgi infection and were, also, not susceptible to P. vivax. Serotyping and amino acid sequence comparison of erythrocyte surface Duffy antigen/receptor for chemokines (DARC) indicate that the Japanese macaque DARC sequence is nearly identical to that of rhesus (Macaca mulatta) and cynomolgus macaques. This suggests that the macaques share a common mechanism for preventing P. vivax infection. Comparison of amino acid sequences of the Duffy-binding-like (DBL) domain from several different Plasmodium species suggests that P. vivax DBLs will not bind to macaque DARCs, which can explain the lack of P. vivax infectivity. The DBL sequence analyses also suggest that P. cynomolgi DBLs may target Japanese macaque erythrocytes through a DARC-independent interaction.

  14. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector

    PubMed Central

    Pollitt, Laura C.; Bram, Joshua T.; Blanford, Simon; Jones, Matthew J.; Read, Andrew F.

    2015-01-01

    Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors. PMID:26181518

  15. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin

    PubMed Central

    Withers-Martinez, Chrislaine; Strath, Malcolm; Hackett, Fiona; Haire, Lesley F.; Howell, Steven A.; Walker, Philip A.; Evangelos, Christodoulou; Dodson, Guy G.; Blackman, Michael J.

    2014-01-01

    Malaria is caused by a protozoan parasite that replicates within an intraerythrocytic parasitophorous vacuole. Release (egress) of malaria merozoites from the host erythrocyte is a highly regulated and calcium-dependent event that is critical for disease progression. Minutes before egress, an essential parasite serine protease called SUB1 is discharged into the parasitophorous vacuole, where it proteolytically processes a subset of parasite proteins that play indispensable roles in egress and invasion. Here we report the first crystallographic structure of Plasmodium falciparum SUB1 at 2.25 Å, in complex with its cognate prodomain. The structure highlights the basis of the calcium dependence of SUB1, as well as its unusual requirement for interactions with substrate residues on both prime and non-prime sides of the scissile bond. Importantly, the structure also reveals the presence of a solvent-exposed redox-sensitive disulphide bridge, unique among the subtilisin family, that likely acts as a regulator of protease activity in the parasite. PMID:24785947

  16. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    DOE PAGESBeta

    Davenport, Gregory C.; Hittner, James B.; Otieno, Vincent; Karim, Zachary; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Kempaiah, Prakasha; Ong’echa, John M.; et al

    2016-01-01

    Bmore » acteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) entericacilli and Plasmodium falciparum ( Pf [+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/ μ L), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children ( n = 206 , aged <3 yrs): healthy; Pf [+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN- γ , and IFN- α and decreased TNF- α relative to malaria alone. Children with G[−] coinfection had higher IL-1 β and IL-1Ra and lower IL-10 than the Pf [+] group and higher IFN- γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN- γ . Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden.« less

  17. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation

    PubMed Central

    Davenport, Gregory C.; Mukundan, Harshini; Fenimore, Paul W.; Hengartner, Nicolas W.; McMahon, Benjamin H.; Ong'echa, John M.

    2016-01-01

    Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[−]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[−] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[−] organisms, respectively. Coinfected children, particularly those with G[−] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[−] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[−] coinfected children, acts to reduce malaria parasite burden. PMID:27418744

  18. Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite.

    PubMed

    Santos, Jorge M; Duarte, Neuza; Kehrer, Jessica; Ramesar, Jai; Avramut, M Cristina; Koster, Abraham J; Dessens, Johannes T; Frischknecht, Friedrich; Chevalley-Maurel, Séverine; Janse, Chris J; Franke-Fayard, Blandine; Mair, Gunnar R

    2016-06-28

    Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission. PMID:27303037

  19. Spleen-Dependent Regulation of Antigenic Variation in Malaria Parasites: Plasmodium knowlesi SICAvar Expression Profiles in Splenic and Asplenic Hosts

    PubMed Central

    Lapp, Stacey A.; Korir-Morrison, Cindy; Jiang, Jianlin; Bai, Yaohui; Corredor, Vladimir; Galinski, Mary R.

    2013-01-01

    Background Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera. Principal Findings We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry. Significance SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results

  20. Parasitic Central Nervous System Infections in Immunocompromised Hosts: Malaria, Microsporidiosis, Leishmaniasis, and African Trypanosomiasis

    PubMed Central

    Walker, Melanie; Kublin, James G.; Zunt, Joseph R.

    2009-01-01

    Immunosuppression associated with HIV infection or following transplantation increases susceptibility to central nervous system (CNS) infections. Because of increasing international travel, parasites that were previously limited to tropical regions pose an increasing infectious threat to populations at risk for acquiring opportunistic infection, especially people with HIV infection or individuals who have received a solid organ or bone marrow transplant. Although long-term immunosuppression caused by medications such as prednisone likely also increases the risk for acquiring infection and for developing CNS manifestations, little published information is available to support this hypothesis. In an earlier article published in Clinical Infectious Diseases, we described the neurologic manifestations of some of the more common parasitic CNS infections. This review will discuss the presentation, diagnosis, and treatment of the following additional parasitic CNS infections: malaria, microsporidiosis, leishmaniasis, and African trypanosomiasis. PMID:16323101

  1. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    PubMed Central

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets. PMID:24799897

  2. REEVALUATION OF MALARIA PARASITES IN EL-FAYOUM GOVERNORATE, EGYPT USING RAPID DIAGNOSTIC TESTS (RDTS).

    PubMed

    Dahesh, Salwa M A; Mostafa, Heba I

    2015-12-01

    Malaria as a disease has been identified in Egypt since ancient times. Malaria was endemic in almost all parts of the country but prevalence showed a steady decrease by 1990, and regressed in most of the Governorates. Then by the end of 1998 till now Egypt become free from local transmission of malaria. All reported cases were imported mainly from Sudan. However, the outbreak of falciparum (1 case) and vivax (23 cases) that occurred (May 2014) in Aswan Governorate strongly indicated that malaria is reemerging in the country. El-Fayoum should be take special attention, rather than being the last residual focus. The efficient malaria vector A. sergenti, the proven vector A. pharoensis and the suspected vector A. multicolor were encountered. This work reevaluated malaria status by using RDTs in survey and Giemsa stained thick films to confirm positive cases and estimation of parasite rate, formula, densities and species, also to study the ecological and entomological efficacy factors. The result showed that out of 2044 examined persons, 14 (0.68%) were passive cases, i.e., attending themselves to El-Fayoum Malaria Units after their return from Sudan. Microscopic examination of their stained thick films obtained from MOH&P shows that 9 (64.2%) out of passive cases were positive 3 of them are P. falciparum (33.3%) and the rest P. vivax 6 (66.7%) The species formulas of P. falciparum and P. vivax were 33.3% and 66.7% respectively. Concerning the density class, only one vivax case was of low density class while the other cases were of high density class. All positive cases were males, imported from Sudan and most of them were merchants having trade activities in Sudan. All examined persons during active case detection ACD (1551) and neighborhood of detected cases NOD (479) were malaria negative by rapid diagnostic tests. The areas recording the highest number of imported cases were Abu Shanap, Aboxa (Ballona) and Kafr Aboud (Abshaway Center) but no Anopheline spp larvae

  3. REEVALUATION OF MALARIA PARASITES IN EL-FAYOUM GOVERNORATE, EGYPT USING RAPID DIAGNOSTIC TESTS (RDTS).

    PubMed

    Dahesh, Salwa M A; Mostafa, Heba I

    2015-12-01

    Malaria as a disease has been identified in Egypt since ancient times. Malaria was endemic in almost all parts of the country but prevalence showed a steady decrease by 1990, and regressed in most of the Governorates. Then by the end of 1998 till now Egypt become free from local transmission of malaria. All reported cases were imported mainly from Sudan. However, the outbreak of falciparum (1 case) and vivax (23 cases) that occurred (May 2014) in Aswan Governorate strongly indicated that malaria is reemerging in the country. El-Fayoum should be take special attention, rather than being the last residual focus. The efficient malaria vector A. sergenti, the proven vector A. pharoensis and the suspected vector A. multicolor were encountered. This work reevaluated malaria status by using RDTs in survey and Giemsa stained thick films to confirm positive cases and estimation of parasite rate, formula, densities and species, also to study the ecological and entomological efficacy factors. The result showed that out of 2044 examined persons, 14 (0.68%) were passive cases, i.e., attending themselves to El-Fayoum Malaria Units after their return from Sudan. Microscopic examination of their stained thick films obtained from MOH&P shows that 9 (64.2%) out of passive cases were positive 3 of them are P. falciparum (33.3%) and the rest P. vivax 6 (66.7%) The species formulas of P. falciparum and P. vivax were 33.3% and 66.7% respectively. Concerning the density class, only one vivax case was of low density class while the other cases were of high density class. All positive cases were males, imported from Sudan and most of them were merchants having trade activities in Sudan. All examined persons during active case detection ACD (1551) and neighborhood of detected cases NOD (479) were malaria negative by rapid diagnostic tests. The areas recording the highest number of imported cases were Abu Shanap, Aboxa (Ballona) and Kafr Aboud (Abshaway Center) but no Anopheline spp larvae

  4. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds.

    PubMed

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  5. Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand.

    PubMed

    Pattaradilokrat, Sittiporn; Tiyamanee, Wisawa; Simpalipan, Phumin; Kaewthamasorn, Morakot; Saiwichai, Tawee; Li, Jian; Harnyuttanakorn, Pongchai

    2015-05-30

    Avian malaria is one of the most common veterinary problems in Southeast Asia. The standard molecular method for detection of the avian malaria parasite involves the phenol-chloroform extraction of parasite genomic (g)DNA followed by the amplification of parasite gDNA using polymerase chain reaction (PCR). However, the phenol-chloroform extraction method is time-consuming and requires large amounts of samples and toxic organic solvents, thereby limiting its applications for parasite detection in the field. This study aimed to compare the performance of chelex-100 resin and phenol/chloroform extraction methods for the extraction of Plasmodium gallinaceum gDNA from whole avian blood that had been dried on filter papers (a common field sampling method). The specificity and sensitivity of PCR assays for P. gallinaceum cytochrome B (cytb) and cytochrome oxidase subunit I (coxI) gene fragments (544 and 588bp, respectively) were determined, and found to be more sensitive with gDNA extracted by the chelex-100 resin method than with the phenol/chloroform method. These PCR assays were also performed to detect P. gallinaceum in 29 blood samples dried on filter papers from domestic chickens in a malaria endemic area, where the reliable identification of seven field isolates of P. gallinaceum was obtained with an accuracy of 100%. The analysis of cytb and coxI gene nucleotide sequences revealed the existence of at least two genetically distinct populations of P. gallinaceum in Thailand, both of which differed from the reference strain 8A of P. gallinaceum. In conclusion, the chelex-100 resin extraction method is a simple and sensitive method for isolating gDNA from whole avian blood dried on filter paper. Genomic DNA extracted by the chelex method could subsequently be applied for the PCR-based detection of P. gallinaceum and DNA sequencing. Our PCR assays provide a reliable diagnostic tool for molecular epidemiological studies of P. gallinaceum infections in domestic chickens

  6. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds

    PubMed Central

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  7. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites

    PubMed Central

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-01-01

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein—designated tRip (tRNA import protein)—is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology. PMID:27071116

  8. Interleukin-27-Producing CD4(+) T Cells Regulate Protective Immunity during Malaria Parasite Infection.

    PubMed

    Kimura, Daisuke; Miyakoda, Mana; Kimura, Kazumi; Honma, Kiri; Hara, Hiromitsu; Yoshida, Hiroki; Yui, Katsuyuki

    2016-03-15

    Interleukin-27 (IL-27) is a heterodimeric regulatory cytokine of the IL-12 family, which is produced by macrophages, dendritic cells, and B cells upon stimulation through innate immune receptors. Here, we described regulatory CD4(+) T cells that produce IL-27 in response to T cell receptor stimulation during malaria infection, inhibiting IL-2 production and clonal expansion of other T cells in an IL-27-dependent manner. IL-27-producing CD4(+) T cells were Foxp3(-)CD11a(+)CD49d(+) malaria antigen-specific CD4(+) T cells and were distinct from interferon-γ (IFN-γ) producing Th1 or IL-10 producing Tr1 cells. In mice lacking IL-27 in T cells, IL-2 production was restored and clonal expansion and IFN-γ production by specific CD4(+) T cells were improved, culminating in reduced parasite burden. This study highlights a unique population of IL-27 producing regulatory CD4(+) T cells and their critical role in the regulation of the protective immune response against malaria parasites.

  9. Development of severe pathology in immunized pregnant mice challenged with lethal malaria parasites.

    PubMed

    Mineo, Shoichiro; Niikura, Mamoru; Inoue, Shin-Ichi; Kuroda, Masahiko; Kobayashi, Fumie

    2013-10-01

    Pregnant women are highly susceptible to malaria infection because of their low immunity and are at increased risk of maternal illness or death, in addition to spontaneous abortion, stillbirth, premature delivery, and low birth weight. However, the detailed pathogenesis of maternal malaria remains unclear. In this study, we evaluated a mouse model that shows similar severe pathological features of pregnant women during Plasmodium falciparum infection and investigated the pathogenesis of maternal malaria. Pregnant mice immunized by infection with an attenuated parasite, Plasmodium berghei XAT, were more susceptible to virulent P. berghei NK65 challenge/infection than were nonpregnant mice and showed high levels of parasitemia and a poor pregnancy outcome associated with placental pathology, such as accumulation of parasitized red blood cells, in the late phase of pregnancy. Notably, the pregnant immune mice challenged/infected with P. berghei NK65 developed liver injury associated with microvesicular fatty infiltration in late pregnancy. The pathological features were similar to acute fatty liver of pregnancy. Higher levels of gamma interferon and nitric oxide (NO) were found in plasma from pregnant immune mice infected with P. berghei NK65 than in plasma from nonpregnant mice. These findings suggest that development of liver injury and placental pathology in pregnant immune mice challenged/infected with P. berghei NK65 is accompanied by enhanced production of proinflammatory cytokines. PMID:23897619

  10. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria

    PubMed Central

    Bertin, Gwladys I.; Sabbagh, Audrey; Argy, Nicolas; Salnot, Virginie; Ezinmegnon, Sem; Agbota, Gino; Ladipo, Yélé; Alao, Jules M.; Sagbo, Gratien; Guillonneau, François; Deloron, Philippe

    2016-01-01

    Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM. PMID:27245217

  11. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito.

    PubMed

    Fuchs, Silke; Behrends, Volker; Bundy, Jacob G; Crisanti, Andrea; Nolan, Tony

    2014-01-01

    The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity.

  12. The Effect of Intestinal Parasitic Infection on the Clinical Outcome of Malaria in Coinfected Children in Cameroon

    PubMed Central

    Kwenti, Tebit E.; Nkume, Franklin A.; Tanjeko, Ajime T.; Kwenti, Tayong D. B.

    2016-01-01

    Background The interaction between intestinal parasites and malaria is still not clear. Data in published literature are conflicting. We studied the effect of intestinal parasitic infection (IPI) on the clinical outcome of malaria in coinfected children. Methods In a cross sectional study performed between October 2014 and September 2015, children infected with malaria, as demonstrated by the presence of asexual parasites in Giemsa stained blood films, were enrolled. Stool samples were obtained from participants and subjected to the formol-ether concentration technique for the detection of intestinal parasites. The Complete blood count was performed using an automated haematology analyser (Mindray, BC-2800). The risk ratio, Pearson’s chi-square and the student T test were all performed as part of the statistical analyses. Statistical significance was set at p < 0.05. Results In all, 405 children successfully took part in the study. The children were between 1 week and 120 months of age (mean ± SD = 41.5 ± 33.5). Coinfection with intestinal parasites was observed in 11.6%. The rate of severe malaria (SM) attack in this study was 10.9%. SM was not observed to be associated with age (p = 0.377) or gender (p = 0.387), meanwhile coinfection with intestinal parasites was associated with age (p = 0.003). Among SM cases, IPI prevalence was higher in children with mild (WHO group 3) severe malaria (p = 0.027). Overall, IPI was not observed to be associated with SM (p = 0.656) or malaria parasite density (p = 0.185) or haemoglobin concentration (p = 0.205). The main clinical features of SM observed were hyperpyrexia (68.2%), severe malarial anaemia (61.4%), and multiple convulsion (52.3%). Conclusion IPI was not observed to be associated with the severity of malaria, the malaria parasite density, and the haemoglobin concentration in coinfected children in Cameroon. The clinical outcome of malaria in children coinfected with intestinal parasites may depend on the

  13. Epidemiology and history of human parasitic diseases in Romania.

    PubMed

    Neghina, Raul; Neghina, Adriana M; Marincu, Iosif; Iacobiciu, Ioan

    2011-06-01

    Intestinal parasitic diseases such as enterobiasis, giardiasis, and ascariasis are detected most frequently in Romania, but their importance is definitely surpassed by trichinellosis, cystic echinococcosis, and toxoplasmosis. Malaria was common until its eradication in 1963, and only imported cases are reported nowadays. The aim of this review was to bring together essential data on the epidemiology and history of human parasitoses in Romania. Information on 43 parasitic diseases was collected from numerous sources, most of them unavailable abroad or inaccessible to the international scientific community. Over time, Romanian people of all ages have paid a significant tribute to the pathogenic influences exerted by the parasites. Sanitary and socio-economical consequences of the parasites diseases have great negative impact on the quality of life of affected individuals and the overall well-being of the population. Implementation of efficient public health measures and informative campaigns for the masses as well as changing the inadequate habits that are deeply rooted in the population are mandatory for cutting successfully this Gordian knot.

  14. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite.

    PubMed

    Kenthirapalan, Sanketha; Waters, Andrew P; Matuschewski, Kai; Kooij, Taco W A

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  15. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  16. Species concepts and malaria parasites: detecting a cryptic species of Plasmodium.

    PubMed

    Perkins, S L

    2000-11-22

    Species of malaria parasite (phylum Apicomplexa: genus Plasmodium) have traditionally been described using the similarity species concept (based primarily on differences in morphological or life-history characteristics). The biological species concept (reproductive isolation) and phylogenetic species concept (based on monophyly) have not been used before in defining species of Plasmodium. Plasmodium azurophilum, described from Anolis lizards in the eastern Caribbean, is actually a two-species cryptic complex. The parasites were studied from eight islands, from Puerto Rico in the north to Grenada in the south. Morphology of the two species is very similar (differences are indistinguishable to the eye), but one infects only erythrocytes and the other only white blood cells. Molecular data for the cytochrome b gene reveal that the two forms are reproductively isolated; distinct haplotypes are present on each island and are never shared between the erythrocyte-infecting and leucocyte-infecting species. Each forms a monophyletic lineage indicating that they diverged before becoming established in the anoles of the eastern Caribbean. This comparison of the similarity, biological and phylogenetic species concepts for malaria parasites reveals the limited value of using only similarity measures in defining protozoan species. PMID:11413654

  17. Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.

    PubMed

    Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

    2014-10-01

    Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P < 0.05) between the 2 groups for females but not for males, whereas parasitemia was significantly correlated with lymphocyte counts for males, but not for females. This study supports the theory that infection with P. mexicanum stimulates the lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear. PMID:24945903

  18. Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.

    PubMed

    Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

    2014-10-01

    Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P < 0.05) between the 2 groups for females but not for males, whereas parasitemia was significantly correlated with lymphocyte counts for males, but not for females. This study supports the theory that infection with P. mexicanum stimulates the lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear.

  19. PTEX is an essential nexus for protein export in malaria parasites.

    PubMed

    Elsworth, Brendan; Matthews, Kathryn; Nie, Catherine Q; Kalanon, Ming; Charnaud, Sarah C; Sanders, Paul R; Chisholm, Scott A; Counihan, Natalie A; Shaw, Philip J; Pino, Paco; Chan, Jo-Anne; Azevedo, Mauro F; Rogerson, Stephen J; Beeson, James G; Crabb, Brendan S; Gilson, Paul R; de Koning-Ward, Tania F

    2014-07-31

    During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target. PMID:25043043

  20. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum

    PubMed Central

    2009-01-01

    Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria. PMID:20042123

  1. Malarial pathocoenosis: beneficial and deleterious interactions between malaria and other human diseases

    PubMed Central

    Faure, Eric

    2014-01-01

    In nature, organisms are commonly infected by an assemblage of different parasite species or by genetically distinct parasite strains that interact in complex ways. Linked to co-infections, pathocoenosis, a term proposed by M. Grmek in 1969, refers to a pathological state arising from the interactions of diseases within a population and to the temporal and spatial dynamics of all of the diseases. In the long run, malaria was certainly one of the most important component of past pathocoenoses. Today this disease, which affects hundreds of millions of individuals and results in approximately one million deaths each year, is always highly endemic in over 20% of the world and is thus co-endemic with many other diseases. Therefore, the incidences of co-infections and possible direct and indirect interactions with Plasmodium parasites are very high. Both positive and negative interactions between malaria and other diseases caused by parasites belonging to numerous taxa have been described and in some cases, malaria may modify the process of another disease without being affected itself. Interactions include those observed during voluntary malarial infections intended to cure neuro-syphilis or during the enhanced activations of bacterial gastro-intestinal diseases and HIV infections. Complex relationships with multiple effects should also be considered, such as those observed during helminth infections. Moreover, reports dating back over 2000 years suggested that co- and multiple infections have generally deleterious consequences and analyses of historical texts indicated that malaria might exacerbate both plague and cholera, among other diseases. Possible biases affecting the research of etiological agents caused by the protean manifestations of malaria are discussed. A better understanding of the manner by which pathogens, particularly Plasmodium, modulate immune responses is particularly important for the diagnosis, cure, and control of diseases in human populations

  2. A more appropriate white blood cell count for estimating malaria parasite density in Plasmodium vivax patients in northeastern Myanmar.

    PubMed

    Liu, Huaie; Feng, Guohua; Zeng, Weilin; Li, Xiaomei; Bai, Yao; Deng, Shuang; Ruan, Yonghua; Morris, James; Li, Siman; Yang, Zhaoqing; Cui, Liwang

    2016-04-01

    The conventional method of estimating parasite densities employ an assumption of 8000 white blood cells (WBCs)/μl. However, due to leucopenia in malaria patients, this number appears to overestimate parasite densities. In this study, we assessed the accuracy of parasite density estimated using this assumed WBC count in eastern Myanmar, where Plasmodium vivax has become increasingly prevalent. From 256 patients with uncomplicated P. vivax malaria, we estimated parasite density and counted WBCs by using an automated blood cell counter. It was found that WBC counts were not significantly different between patients of different gender, axillary temperature, and body mass index levels, whereas they were significantly different between age groups of patients and the time points of measurement. The median parasite densities calculated with the actual WBC counts (1903/μl) and the assumed WBC count of 8000/μl (2570/μl) were significantly different. We demonstrated that using the assumed WBC count of 8000 cells/μl to estimate parasite densities of P. vivax malaria patients in this area would lead to an overestimation. For P. vivax patients aged five years and older, an assumed WBC count of 5500/μl best estimated parasite densities. This study provides more realistic assumed WBC counts for estimating parasite densities in P. vivax patients from low-endemicity areas of Southeast Asia.

  3. Palaeoparasitology - Human Parasites in Ancient Material.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando

    2015-01-01

    Parasite finds in ancient material launched a new field of science: palaeoparasitology. Ever since the pioneering studies, parasites were identified in archaeological and palaeontological remains, some preserved for millions of years by fossilization. However, the palaeoparasitological record consists mainly of parasites found specifically in human archaeological material, preserved in ancient occupation sites, from prehistory until closer to 2015. The results include some helminth intestinal parasites still commonly found in 2015, such as Ascaris lumbricoides, Trichuris trichiura and hookworms, besides others such as Amoebidae and Giardia intestinalis, as well as viruses, bacteria, fungi and arthropods. These parasites as a whole provide important data on health, diet, climate and living conditions among ancient populations. This chapter describes the principal findings and their importance for knowledge on the origin and dispersal of infectious diseases.

  4. Palaeoparasitology - Human Parasites in Ancient Material.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando

    2015-01-01

    Parasite finds in ancient material launched a new field of science: palaeoparasitology. Ever since the pioneering studies, parasites were identified in archaeological and palaeontological remains, some preserved for millions of years by fossilization. However, the palaeoparasitological record consists mainly of parasites found specifically in human archaeological material, preserved in ancient occupation sites, from prehistory until closer to 2015. The results include some helminth intestinal parasites still commonly found in 2015, such as Ascaris lumbricoides, Trichuris trichiura and hookworms, besides others such as Amoebidae and Giardia intestinalis, as well as viruses, bacteria, fungi and arthropods. These parasites as a whole provide important data on health, diet, climate and living conditions among ancient populations. This chapter describes the principal findings and their importance for knowledge on the origin and dispersal of infectious diseases. PMID:26597072

  5. Membrane-associated antigens of blood stages of Plasmodium, brasilianum, a quartan malaria parasite.

    PubMed Central

    Cochrane, A H; Matsumoto, Y; Kamboj, K K; Maracic, M; Nussenzweig, R S; Aikawa, M

    1988-01-01

    The localization of Plasmodium brasilianum-derived antigens in short and long clefts within the cytoplasm of infected erythrocytes and in association with knobs of the host cell membrane was demonstrated by immunoelectron microscopy with monoclonal antibodies. Our results document that malaria-induced short and long clefts, previously distinguishable only by morphology, differ also in antigenic composition. Another parasite-derived antigen was found to be associated with the parasitophorous vacuole space in schizonts. In segmenters, this antigen was present in large amounts between merozoites and in the cytoplasm of infected cells. These antigens were characterized by biosynthetic labeling and gel electrophoresis. Images PMID:3397184

  6. Predicting Secretory Proteins of Malaria Parasite by Incorporating Sequence Evolution Information into Pseudo Amino Acid Composition via Grey System Model

    PubMed Central

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2012-01-01

    The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival. Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria. Unfortunately, with the increasing resistance to the drugs thus developed, the situation has become more complicated. To cope with the drug resistance problem, one strategy is to timely identify the secreted proteins by malaria parasite, which can serve as potential drug targets. However, it is both expensive and time-consuming to identify the secretory proteins of malaria parasite by experiments alone. To expedite the process for developing effective drugs against malaria, a computational predictor called “iSMP-Grey” was developed that can be used to identify the secretory proteins of malaria parasite based on the protein sequence information alone. During the prediction process a protein sample was formulated with a 60D (dimensional) feature vector formed by incorporating the sequence evolution information into the general form of PseAAC (pseudo amino acid composition) via a grey system model, which is particularly useful for solving complicated problems that are lack of sufficient information or need to process uncertain information. It was observed by the jackknife test that iSMP-Grey achieved an overall success rate of 94.8%, remarkably higher than those by the existing predictors in this area. As a user-friendly web-server, iSMP-Grey is freely accessible to the public at http://www.jci-bioinfo.cn/iSMP-Grey. Moreover, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematical equations involved in this paper. PMID:23189138

  7. Predicting secretory proteins of malaria parasite by incorporating sequence evolution information into pseudo amino acid composition via grey system model.

    PubMed

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2012-01-01

    The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival. Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria. Unfortunately, with the increasing resistance to the drugs thus developed, the situation has become more complicated. To cope with the drug resistance problem, one strategy is to timely identify the secreted proteins by malaria parasite, which can serve as potential drug targets. However, it is both expensive and time-consuming to identify the secretory proteins of malaria parasite by experiments alone. To expedite the process for developing effective drugs against malaria, a computational predictor called "iSMP-Grey" was developed that can be used to identify the secretory proteins of malaria parasite based on the protein sequence information alone. During the prediction process a protein sample was formulated with a 60D (dimensional) feature vector formed by incorporating the sequence evolution information into the general form of PseAAC (pseudo amino acid composition) via a grey system model, which is particularly useful for solving complicated problems that are lack of sufficient information or need to process uncertain information. It was observed by the jackknife test that iSMP-Grey achieved an overall success rate of 94.8%, remarkably higher than those by the existing predictors in this area. As a user-friendly web-server, iSMP-Grey is freely accessible to the public at http://www.jci-bioinfo.cn/iSMP-Grey. Moreover, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematical equations involved in this paper.

  8. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  9. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    PubMed

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  10. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites

    PubMed Central

    Lee, Andrew H.; Fidock, David A.

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  11. Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite.

    PubMed

    Portela, César; Afonso, Carlos M M; Pinto, Madalena M M; Ramos, Maria João

    2004-06-15

    Malaria is one of the most important parasitic diseases, affecting almost half of the world and posing a threat to the other half. Xanthone derivatives can behave as antimalarial drugs in the same mechanistic way as chloroquine and other related quinolines. This action is due to the inhibition of the detoxification pathway of the parasite, responsible for the production of hemozoin. We report a study of the electronic properties of the xanthonic and quinolinic compounds based on DFT calculations, in order to determine a pattern that could be applied to the development of new potentially active antimalarial molecules. As a result, a new interpretation of structure-activity relationship of the quinoline antimalarial drugs, and of the active hydroxylated xanthones is proposed here. We conclude that electronic features rather than steric factors control primarily the inhibitory activity of the studied compounds against hematin aggregation, concurring to a potential antimalarial activity.

  12. Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission.

    PubMed

    Naissant, Bernina; Dupuy, Florian; Duffier, Yoann; Lorthiois, Audrey; Duez, Julien; Scholz, Judith; Buffet, Pierre; Merckx, Anais; Bachmann, Anna; Lavazec, Catherine

    2016-06-16

    Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission. PMID:27136945

  13. Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission.

    PubMed

    Naissant, Bernina; Dupuy, Florian; Duffier, Yoann; Lorthiois, Audrey; Duez, Julien; Scholz, Judith; Buffet, Pierre; Merckx, Anais; Bachmann, Anna; Lavazec, Catherine

    2016-06-16

    Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission.

  14. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    PubMed

    Biswas, Sumi; Choudhary, Prateek; Elias, Sean C; Miura, Kazutoyo; Milne, Kathryn H; de Cassan, Simone C; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Osier, Faith H; Hodgson, Susanne H; Duncan, Christopher J A; O'Hara, Geraldine A; Long, Carole A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases

  15. Malaria parasite-inhibitory antibody epitopes on Plasmodium falciparum merozoite surface protein-1(19) mapped by TROSY NMR.

    PubMed

    Morgan, William D; Lock, Matthew J; Frenkiel, Thomas A; Grainger, Munira; Holder, Anthony A

    2004-11-01

    Plasmodium falciparum merozoite surface protein 1 (MSP1)(19), the C-terminal fragment of merozoite surface protein 1, is a leading candidate antigen for development of a vaccine against the blood stages of the malaria parasite. Many human and animal studies have indicated the importance of MSP1(19)-specific immune responses. Anti-MSP1(19) antibodies can prevent invasion of red blood cells by P. falciparum parasites in vitro. However, the fine specificity of anti-MSP1(19) antibodies is also important, as only a fraction of monoclonal antibodies (mAbs) have parasite-inhibitory activity in vitro. Human sera from malaria-endemic locations show strong MSP1(19) reactivity, but individual serum samples vary greatly in inhibitory activity. NMR is an excellent method for studying protein-protein interactions, and has been used widely to study binding of peptides representing known epitopes (as well as non-protein antigens) to antibodies and antibody fragments. The recent development of transverse relaxation optimized spectroscopy (TROSY) and related methods has significantly extended the maximum size limit of molecules that can be studied by NMR. TROSY NMR experiments produce high quality spectra of Fab complexes that allow the mapping of epitopes by the chemical shift perturbation technique on a complete, folded protein antigen such as MSP1(19). We studied the complexes of P. falciparum MSP1(19) with Fab fragments from three monoclonal antibodies. Two of these antibodies have parasite-inhibitory activity in vitro, while the third is non-inhibitory. NMR epitope mapping showed a close relationship between binding sites for the two inhibitory antibodies, distinct from the location of the non-inhibitory antibody. Together with a previously published crystal structure of the P. falciparum MSP1(19) complex with the Fab fragment of another non-inhibitory antibody, these results revealed a surface on MSP1(19) where inhibitory antibodies bind. This information will be useful in

  16. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors.

    PubMed

    Pain, Margaret; Fuller, Alexandra W; Basore, Katherine; Pillai, Ajay D; Solomon, Tsione; Bokhari, Abdullah A B; Desai, Sanjay A

    2016-01-01

    Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing. PMID:26866812

  17. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors

    PubMed Central

    Pain, Margaret; Fuller, Alexandra W.; Basore, Katherine; Pillai, Ajay D.; Solomon, Tsione; Bokhari, Abdullah A. B.; Desai, Sanjay A.

    2016-01-01

    Malaria parasites increase their host erythrocyte’s permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel’s structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing. PMID:26866812

  18. Manipulation of the vertebrate host's testosterone does not affect gametocyte sex ratio of a malaria parasite.

    PubMed

    Osgood, Sarah M; Eisen, Rebecca J; Wargo, Andrew R; Schall, Jos J

    2003-02-01

    Gametocyte sex ratio of the malaria parasite Plasmodium mexicanum is variable in its host, the western fence lizard (Sceloporus occidentalis), both among infections and within infections over time. We sought to determine the effect of host physiological quality on the gametocyte sex ratio in experimentally induced infections of P. mexicanum. Adult male lizards were assigned to 4 treatment groups: castrated, castrated + testosterone implant, sham implant, and unmanipulated control. No significant difference in gametocyte sex ratio was found among the 4 treatment groups. Two other analyses were performed. A surgery stress analysis compared infection sex ratio of castrated, castrated + testosterone implant, and sham implant groups with the unmanipulated control group. A testosterone alteration analysis compared infection sex ratio of the castrated and castrated + testosterone implant groups with the sham implant and unmanipulated control groups. Again, no significant difference was observed for these 2 comparisons. Thus, physiological changes expected for experimentally induced variation in host testosterone and the stress of surgery were not associated with any change in the gametocyte sex ratio. Also, theex-periment suggests testosterone is not a cue for shaping the sex ratio of gametocytes in P. mexicanum. These results are related to the evolutionary theory of sex ratios as applied to malaria parasites. PMID:12659329

  19. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission

    PubMed Central

    Thompson, Eloise; Breil, Florence; Lorthiois, Audrey; Dupuy, Florian; Cummings, Ross; Duffier, Yoann; Corbett, Yolanda; Mercereau-Puijalon, Odile; Vernick, Kenneth; Taramelli, Donatella; Baker, David A.; Langsley, Gordon; Lavazec, Catherine

    2015-01-01

    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites. PMID:25951195

  20. Microbial control of malaria: biological warfare against the parasite and its vector.

    PubMed

    Abdul-Ghani, Rashad; Al-Mekhlafi, Abdulsalam M; Alabsi, Mogeeb S

    2012-02-01

    Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.

  1. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium.

    PubMed

    Rao, Pavitra N; Santos, Jorge M; Pain, Arnab; Templeton, Thomas J; Mair, Gunnar R

    2016-10-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  2. Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria.

    PubMed

    Llewellyn, David; Miura, Kazutoyo; Fay, Michael P; Williams, Andrew R; Murungi, Linda M; Shi, Jianguo; Hodgson, Susanne H; Douglas, Alexander D; Osier, Faith H; Fairhurst, Rick M; Diakite, Mahamadou; Pleass, Richard J; Long, Carole A; Draper, Simon J

    2015-09-16

    The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field.

  3. Flagellar motility in eukaryotic human parasites.

    PubMed

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future.

  4. Flagellar motility in eukaryotic human parasites.

    PubMed

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future. PMID:26523344

  5. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum.

    PubMed

    Ukaegbu, Uchechi E; Zhang, Xu; Heinberg, Adina R; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W

    2015-05-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent "true" switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent "default" switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation in

  6. A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface*

    PubMed Central

    Wong, Wilson; Webb, Andrew I.; Olshina, Maya A.; Infusini, Giuseppe; Tan, Yan Hong; Hanssen, Eric; Catimel, Bruno; Suarez, Cristian; Condron, Melanie; Angrisano, Fiona; NebI, Thomas; Kovar, David R.; Baum, Jake

    2014-01-01

    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. PMID:24371134

  7. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Heinberg, Adina R.; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W.

    2015-01-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent “true” switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent “default” switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation

  8. Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection

    PubMed Central

    Hodgson, Susanne H.; Llewellyn, David; Silk, Sarah E.; Milne, Kathryn H.; Elias, Sean C.; Miura, Kazutoyo; Kamuyu, Gathoni; Juma, Elizabeth A.; Magiri, Charles; Muia, Alfred; Jin, Jing; Spencer, Alexandra J.; Longley, Rhea J.; Mercier, Thomas; Decosterd, Laurent; Long, Carole A.; Osier, Faith H.; Hoffman, Stephen L.; Ogutu, Bernhards; Hill, Adrian V. S.; Marsh, Kevin; Draper, Simon J.

    2016-01-01

    Background: The timing of infection is closely determined in controlled human malaria infection (CHMI) studies, and as such they provide a unique opportunity to dissect changes in immunological responses before and after a single infection. The first Kenyan Challenge Study (KCS) (Pan African Clinical Trial Registry: PACTR20121100033272) was performed in 2013 with the aim of establishing the CHMI model in Kenya. This study used aseptic, cryopreserved, attenuated Plasmodium falciparum sporozoites administered by needle and syringe (PfSPZ Challenge) and was the first to evaluate parasite dynamics post-CHMI in individuals with varying degrees of prior exposure to malaria. Methods: We describe detailed serological and functional immunological responses pre- and post-CHMI for participants in the KCS and compare these with those from malaria-naïve UK volunteers who also underwent CHMI (VAC049) (ClinicalTrials.gov NCT01465048) using PfSPZ Challenge. We assessed antibody responses to three key blood-stage merozoite antigens [merozoite surface protein 1 (MSP1), apical membrane protein 1 (AMA1), and reticulocyte-binding protein homolog 5 (RH5)] and functional activity using two candidate measures of anti-merozoite immunity; the growth inhibition activity (GIA) assay and the antibody-dependent respiratory burst activity (ADRB) assay. Results:Clear serological differences were observed pre- and post-CHMI by ELISA between malaria-naïve UK volunteers in VAC049, and Kenyan volunteers who had prior malaria exposure. Antibodies to AMA1 and schizont extract correlated with parasite multiplication rate (PMR) post-CHMI in KCS. Serum from volunteer 110 in KCS, who demonstrated a dramatically reduced PMR in vivo, had no in vitro GIA prior to CHMI but the highest level of ADRB activity. A significant difference in ADRB activity was seen between KCS volunteers with minimal and definite prior exposure to malaria and significant increases were seen in ADRB activity post-CHMI in Kenyan

  9. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    PubMed Central

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  10. Human malaria in the highlands of Yemen

    PubMed Central

    AL-Mekhlafi, A M; AL-Mekhlafi, H M; Mahdy, M A K; Azazy, A A; Fong, M Y

    2011-01-01

    Between June 2008 and March 2009, a cross-sectional study of human malaria was carried out in four governorates of Yemen, two (Taiz and Hodiedah) representing the country’s highlands and the others (Dhamar and Raymah) the country’s coastal plains/foothills. The main aims were to determine the prevalences of Plasmodium infection among 455 febrile patients presenting for care at participating health facilities and to investigate the potential risk factors for such infection. Malarial infection was detected in 78 (17·1%) of the investigated patients and was more likely to be detected among the febrile patients from the highlands than among those presenting in the coastal plains/foothills (22·6% v.13·9%; χ2 = 10·102; P = 0·018). Binary logistic-regression models identified low household income [odds ratio (OR) = 13·52; 95% confidence interval (CI) = 2·62–69·67; P = 0·002], living in a household with access to a water pump (OR = 4·18; CI = 1·60–10·96; P = 0·004) and living in a household near a stream (OR = 4·43; CI = 1·35–14·56; P = 0·014) as significant risk factors for malarial infection in the highlands. Low household income was the only significant risk factor identified for such infection in the coastal plains and foothills (OR = 8·20; CI = 1·80–37·45; P = 0·007). It is unclear why febrile patients in the highlands of Yemen are much more likely to be found to have malarial infection than their counterparts from the coastal plains and foothills. Although it is possible that malarial transmission is relatively intense in the highlands, it seems more likely that, compared with those who live at lower altitudes, those who live in the highlands are less immune to malaria, and therefore more likely to develop febrile illness following malarial infection. Whatever the cause of the symptomatic malarial infection commonly found in the highlands of Yemen, it is a matter of serious

  11. Human malaria in the highlands of Yemen.

    PubMed

    Al-Mekhlafi, A M; Al-Mekhlafi, H M; Mahdy, M A K; Azazy, A A; Fong, M Y

    2011-04-01

    Between June 2008 and March 2009, a cross-sectional study of <span class="hlt">human</span> <span class="hlt">malaria</span> was carried out in four governorates of Yemen, two (Taiz and Hodiedah) representing the country's highlands and the others (Dhamar and Raymah) the country's coastal plains/foothills. The main aims were to determine the prevalences of Plasmodium infection among 455 febrile patients presenting for care at participating health facilities and to investigate the potential risk factors for such infection. Malarial infection was detected in 78 (17·1%) of the investigated patients and was more likely to be detected among the febrile patients from the highlands than among those presenting in the coastal plains/foothills (22·6% v.13·9%; χ(2)=10·102; P=0·018). Binary logistic-regression models identified low household income [odds ratio (OR)=13·52; 95% confidence interval (CI)=2·62-69·67; P=0·002], living in a household with access to a water pump (OR=4·18; CI=1·60-10·96; P=0·004) and living in a household near a stream (OR=4·43; CI=1·35-14·56; P=0·014) as significant risk factors for malarial infection in the highlands. Low household income was the only significant risk factor identified for such infection in the coastal plains and foothills (OR = 8·20; CI=1·80-37·45; P=0·007). It is unclear why febrile patients in the highlands of Yemen are much more likely to be found to have malarial infection than their counterparts from the coastal plains and foothills. Although it is possible that malarial transmission is relatively intense in the highlands, it seems more likely that, compared with those who live at lower altitudes, those who live in the highlands are less immune to <span class="hlt">malaria</span>, and therefore more likely to develop febrile illness following malarial infection. Whatever the cause of the symptomatic malarial infection commonly found in the highlands of Yemen, it is a matter of serious concern that should be addressed in the national strategy to control <span class="hlt">malaria</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/15305692','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/15305692"><span id="translatedtitle">[New drugs for the treatment of <span class="hlt">human</span> <span class="hlt">parasitic</span> protozoa].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dupouy-Camet, J</p> <p>2004-06-01</p> <p>Whereas <span class="hlt">parasitic</span> diseases are always a heavy burden for <span class="hlt">humanity</span>, few are the new antiparasitic molecules marketed during the last 25 years. Thus on the 1393 new molecules marketed between 1975 and 1999, only 7 have antiprotozoan properties. This talk will detail the progress made in the treatment of the intestinal protozoa, <span class="hlt">malaria</span>, visceral leishmaniasis and toxoplasmosis, problems with which are especially confronted the European parasitologists. The treatment of Giardia and intestinal amoebas is based on 5-nitro-imidazoles derivatives. Single-dose treatments can be used with tinidazole or secnidazole. Resistance to these compounds of Giardia were described and in these cases, treatment by quinacrine or nitazoxanide are possible alternatives. Nitazoxanide is marketed in the United States and in Australia. It seems to be a well tolerated antiparasitic agent with a broad spectrum because it is active on a lot of intestinal protozoa and helminths. It acts on the same metabolic way as the 5-nitro-imidazoles (inhibition of the ferredoxine reductase) but without synthesis of free radicals and DNA deterioration of the target cell. It is thus neither teratogenic nor mutagenic. Artemisinin derivatives allowed considerable progress in the treatment of <span class="hlt">malaria</span>. They have short half-lifes, allowing a fast <span class="hlt">parasitic</span> clearance and these derivatives do no provoke resistance. They are first line drugs for the treatment of <span class="hlt">malaria</span> in areas of drug resistance. The arthemeter-lumefantrine association (Riamet, Coartem) ensures a rapid disappearance of the circulating <span class="hlt">parasites</span> and is well tolerated. Atovaquone-proguanil (Malarone) is usable in the treatment of acute <span class="hlt">malaria</span> but also in disease prevention with the advantage of continuing drug intake for only 7 days after having left the infected area. The treatment of leishmaniasis is always delicate and is characterized by the worrying development of antimony resistances, probably related in the European zones to the treatment of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4361616','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4361616"><span id="translatedtitle">SYBR Green Real-Time PCR-RFLP Assay Targeting the Plasmodium Cytochrome B Gene – A Highly Sensitive Molecular Tool for <span class="hlt">Malaria</span> <span class="hlt">Parasite</span> Detection and Species Determination</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Weiping; Morris, Ulrika; Aydin-Schmidt, Berit; Msellem, Mwinyi I.; Shakely, Delér; Petzold, Max; Björkman, Anders; Mårtensson, Andreas</p> <p>2015-01-01</p> <p>A prerequisite for reliable detection of low-density Plasmodium infections in <span class="hlt">malaria</span> pre-elimination settings is the availability of ultra-sensitive and high-throughput molecular tools. We developed a SYBR Green real-time PCR restriction fragment length polymorphism assay (cytb-qPCR) targeting the cytochrome b gene of the four major <span class="hlt">human</span> Plasmodium species (P. falciparum, P. vivax, P. <span class="hlt">malariae</span>, and P. ovale) for <span class="hlt">parasite</span> detection and species determination with DNA extracted from dried blood spots collected on filter paper. The performance of cytb-qPCR was first compared against four reference PCR methods using serially diluted Plasmodium samples. The detection limit of the cytb-qPCR was 1 <span class="hlt">parasite</span>/μl (p/μl) for P. falciparum and P. ovale, and 2 p/μl for P. vivax and P. <span class="hlt">malariae</span>, while the reference PCRs had detection limits of 0.5–10 p/μl. The ability of the PCR methods to detect low-density Plasmodium infections was then assessed using 2977 filter paper samples collected during a cross-sectional survey in Zanzibar, a <span class="hlt">malaria</span> pre-elimination setting in sub-Saharan Africa. Field samples were defined as ‘final positive’ if positive in at least two of the five PCR methods. Cytb-qPCR preformed equal to or better than the reference PCRs with a sensitivity of 100% (65/65; 95%CI 94.5–100%) and a specificity of 99.9% (2910/2912; 95%CI 99.7–100%) when compared against ‘final positive’ samples. The results indicate that the cytb-qPCR may represent an opportunity for improved molecular surveillance of low-density Plasmodium infections in <span class="hlt">malaria</span> pre-elimination settings. PMID:25774805</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25774805','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25774805"><span id="translatedtitle">SYBR Green real-time PCR-RFLP assay targeting the plasmodium cytochrome B gene--a highly sensitive molecular tool for <span class="hlt">malaria</span> <span class="hlt">parasite</span> detection and species determination.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Weiping; Morris, Ulrika; Aydin-Schmidt, Berit; Msellem, Mwinyi I; Shakely, Delér; Petzold, Max; Björkman, Anders; Mårtensson, Andreas</p> <p>2015-01-01</p> <p>A prerequisite for reliable detection of low-density Plasmodium infections in <span class="hlt">malaria</span> pre-elimination settings is the availability of ultra-sensitive and high-throughput molecular tools. We developed a SYBR Green real-time PCR restriction fragment length polymorphism assay (cytb-qPCR) targeting the cytochrome b gene of the four major <span class="hlt">human</span> Plasmodium species (P. falciparum, P. vivax, P. <span class="hlt">malariae</span>, and P. ovale) for <span class="hlt">parasite</span> detection and species determination with DNA extracted from dried blood spots collected on filter paper. The performance of cytb-qPCR was first compared against four reference PCR methods using serially diluted Plasmodium samples. The detection limit of the cytb-qPCR was 1 <span class="hlt">parasite</span>/μl (p/μl) for P. falciparum and P. ovale, and 2 p/μl for P. vivax and P. <span class="hlt">malariae</span>, while the reference PCRs had detection limits of 0.5-10 p/μl. The ability of the PCR methods to detect low-density Plasmodium infections was then assessed using 2977 filter paper samples collected during a cross-sectional survey in Zanzibar, a <span class="hlt">malaria</span> pre-elimination setting in sub-Saharan Africa. Field samples were defined as 'final positive' if positive in at least two of the five PCR methods. Cytb-qPCR preformed equal to or better than the reference PCRs with a sensitivity of 100% (65/65; 95%CI 94.5-100%) and a specificity of 99.9% (2910/2912; 95%CI 99.7-100%) when compared against 'final positive' samples. The results indicate that the cytb-qPCR may represent an opportunity for improved molecular surveillance of low-density Plasmodium infections in <span class="hlt">malaria</span> pre-elimination settings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=281989','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=281989"><span id="translatedtitle">Green Synthesis of Silver Nanoparticles from Botanical Sources and Their Use for Control of Medical Insects and <span class="hlt">Malaria</span> <span class="hlt">Parasites</span></span></a></p> <p><a target="_blank" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p></p> <p></p> <p>The use of "green" processes for the synthesis of nanoparticles is a new branch of nanotechnology. However, knowledge of the bioactivity of nanoparticles against mosquitoes and <span class="hlt">malaria</span> <span class="hlt">parasites</span> is limited. We tested silver nanoparticles (average size 450 nm) bio-reduced in 5% Cassia occidentalis ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27605792','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27605792"><span id="translatedtitle">A simple, efficient and inexpensive method for <span class="hlt">malaria</span> <span class="hlt">parasites</span>' DNA catching from fixed Giemsa-stained blood slides.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eskandarian, Abbas Ali; Moradi, Sara; Abedi, Saeed</p> <p>2016-09-01</p> <p>As parasitological or microscopic method is the gold standard and the best method for diagnosis of <span class="hlt">malaria</span>, so fixed Geimsa-stained blood slides in the form of thick and thin blood smears are the most important data collections of <span class="hlt">malaria</span>, especially historical slides. The <span class="hlt">parasites</span> are dead but their DNA is valuable for many molecular biologic researches. A simple and efficient method for catching and extraction <span class="hlt">malaria</span> <span class="hlt">parasites</span>' DNA with a desired yield from dried and stained blood on slides is the first and major step. Introduction of an applicable, efficient and inexpensive DNA catching method and assessment of its performance in following molecular applications  was the main objective of present study. PMID:27605792</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25597498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25597498"><span id="translatedtitle"><span class="hlt">Human</span>-to-mosquito transmission efficiency increases as <span class="hlt">malaria</span> is controlled.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Churcher, Thomas S; Trape, Jean-François; Cohuet, Anna</p> <p>2015-01-19</p> <p>The efficiency of <span class="hlt">malaria</span> transmission between <span class="hlt">human</span> and mosquito has been shown to be influenced by many factors in the laboratory, although their impact in the field and how this changes with disease endemicity are unknown. Here we estimate how <span class="hlt">human</span>-mosquito transmission changed as <span class="hlt">malaria</span> was controlled in Dielmo, Senegal. Mathematical models were fit to data collected between 1990 and the start of vector control in 2008. Results show that asexual <span class="hlt">parasite</span> slide prevalence in <span class="hlt">humans</span> has reduced from 70 to 20%, but that the proportion of infectious mosquitoes has remained roughly constant. Evidence suggests that this is due to an increase in transmission efficiency caused by a rise in gametocyte densities, although the uneven distribution of mosquito bites between hosts could also contribute. The resilience of mosquito infection to changes in endemicity will have important implications for planning disease control, and the development and deployment of transmission-reducing interventions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4728587','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4728587"><span id="translatedtitle">Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the <span class="hlt">malaria</span> <span class="hlt">parasite</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cobbold, Simon A.; Santos, Joana M.; Ochoa, Alejandro; Perlman, David H.; Llinás, Manuel</p> <p>2016-01-01</p> <p>Lysine acetylation is a ubiquitous post-translational modification in many organisms including the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum, yet the full extent of acetylation across the <span class="hlt">parasite</span> proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known <span class="hlt">parasite</span> ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome. PMID:26813983</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/12099417','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/12099417"><span id="translatedtitle">Gametocyte sex ratio of a <span class="hlt">malaria</span> <span class="hlt">parasite</span>: experimental test of heritability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Osgood, Sarah M; Eisen, Rebecca J; Schall, Jos J</p> <p>2002-06-01</p> <p>The gametocyte sex ratio of Plasmodium mexicanum, a <span class="hlt">malaria</span> <span class="hlt">parasite</span> of western fence lizards, was studied in a modified garden experiment. Each of 6 naturally infected lizards was used to initiate 20 replicate-infections in naive western fence lizards. A significant donor effect was observed for the sex ratios of recipient infections at their maximal parasitemia, and this effect was associated with the sex ratio of the donor infection. In 20 infections in which sex ratio was followed during the course of the infection, 9 revealed constant sex ratios and 11 showed an increase in proportion of males over time. Recipient sex ratio was correlated with another life-history trait, a composite of rate of asexual replication and peak parasitemia, such that higher Rate-Peak scores were associated with infections with less female-biased sex ratios. These results are placed into the context of sex ratio theory that concludes that the degree of selfing of <span class="hlt">parasite</span> genotypes (number of <span class="hlt">parasite</span> clones) within the vector will influence the evolution of gametocyte sex ratio. The theory predicts that the sex ratio should be under some genetic control and thus be heritable as observed in the experiment. Clonal diversity should also influence the life-history trait, Rate-Peak, which was found to be correlated with sex ratio. PMID:12099417</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25091832','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25091832"><span id="translatedtitle">Molecular cloning and biochemical characterization of iron superoxide dismutase from the rodent <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium vinckei.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prakash, Kirtika; Goyal, Manish; Soni, Awakash; Siddiqui, Arif Jamal; Bhardwaj, Jyoti; Puri, Sunil K</p> <p>2014-12-01</p> <p>Plasmodium <span class="hlt">parasite</span> utilizes superoxide dismutase family proteins to limit the toxicity of reactive oxygen species, such as produced through hemoglobin degradation. These proteins play an important role in <span class="hlt">parasite</span> survival during intra-erythrocytic phase. We have identified, and biochemically characterized a putative iron dependent superoxide dismutase from rodent <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium vinckei (PvSOD1). The recombinant PvSOD1 protein was purified to homogeneity through a combination of affinity and gel filtration chromatography. Crosslinking, Native-PAGE and FPLC gel filtration analyses documented that PvSOD1 exists as a dimer in solution, a common feature shared by other Fe-SODs. PvSOD1 is cytosolic in localization and its expression is comparatively higher during trophozoite as compared to that of ring and schizont stages. Enzymatic activity of recombinant PvSOD1 was validated using conventional zymogram analyses and xanthine-xanthine oxidase system. Under optimal conditions, PvSOD1 was highly active and catalyzed the dismutation of superoxide radicals. Furthermore, PvSOD1 showed activity over a broad range of pH and temperature. Inhibition studies suggested that PvSOD1 was inactivated by hydrogen peroxide, and peroxynitrite, but not by cyanide and azide. Since, PvSOD1 plays a central role in oxidative defense mechanism, therefore, characterization of PvSOD1 will be exploited in the screening of new superoxide dismutase inhibitors for their antimalarial activity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3095412','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3095412"><span id="translatedtitle"><span class="hlt">Malaria</span> Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and <span class="hlt">Humans</span>?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bargieri, Daniel Y.; Soares, Irene S.; Costa, Fabio T. M.; Braga, Catarina J.; Ferreira, Luis C. S.; Rodrigues, Mauricio M.</p> <p>2011-01-01</p> <p>In the past 25 years, the development of an effective <span class="hlt">malaria</span> vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of <span class="hlt">malaria</span> <span class="hlt">parasites</span>. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a <span class="hlt">human</span> vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and <span class="hlt">humans</span>. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of <span class="hlt">malaria</span> vaccine development. The available information indicates that bacterial flagellins should be seriously considered for <span class="hlt">malaria</span> vaccine formulations to the development of effective <span class="hlt">human</span> vaccines. PMID:21603205</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4015677','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4015677"><span id="translatedtitle">The role played by alternative splicing in antigenic variability in <span class="hlt">human</span> endo-<span class="hlt">parasites</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Endo-<span class="hlt">parasites</span> that affect <span class="hlt">humans</span> include Plasmodium, the causative agent of <span class="hlt">malaria</span>, which remains one of the leading causes of death in <span class="hlt">human</span> beings. Despite decades of research, vaccines to this and other endo-<span class="hlt">parasites</span> remain elusive. This is in part due to the hyper-variability of the <span class="hlt">parasites</span> surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-<span class="hlt">parasitic</span> infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as <span class="hlt">parasitic</span> infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of <span class="hlt">parasite</span> surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the <span class="hlt">parasitic</span> worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-<span class="hlt">parasites</span>. PMID:24472559</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26217836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26217836"><span id="translatedtitle">Molecular and morphological characterization of two avian <span class="hlt">malaria</span> <span class="hlt">parasites</span> (Haemosporida: Plasmodiidae), with description of Plasmodium homonucleophilum n. sp.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ilgūnas, Mikas; Palinauskas, Vaidas; Iezhova, Tatjana A; Valkiūnas, Gediminas</p> <p>2013-01-01</p> <p>Plasmodium hoionucleophilum n. sp. was described from the Common Grasshopper Warbler Locustella naevia based on the morphology of blood stages and partial sequences of the mitochondrial cytochrome b (cyt b) gene. This <span class="hlt">malaria</span> <span class="hlt">parasite</span> belongs to the subgenus Novyella; it can be readily distinguished from all described Novyella <span class="hlt">parasites</span> due to two features, i. e. the strict adherence of its meronts to the nuclei of infected erythrocytes and the lack of such adherence in the case of gametocytes. We also found the lineage pLZFUS01 in Red-Backed Shrike Lanius collurio, identified this <span class="hlt">parasite</span> and conclude that it belongs to Plasiodium relictum. Illustrations of blood stages of these two <span class="hlt">parasites</span> are given. DNA lineages associated with P. hoionucleophilum (pSW2, GenBank KC342643) and P. relictum (pLZFUS01, GenBank KC342644) are reported and can be used for molecular identification of these malarial infections. Phylogenetic analysis determines DNA lineages closely related to both reported <span class="hlt">parasites</span> and is in accordance with the <span class="hlt">parasites</span>' morphological identification. This study contributes to barcoding of avian <span class="hlt">malaria</span> <span class="hlt">parasites</span> using partial sequences of cyt b gene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25394267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25394267"><span id="translatedtitle">Multiple dimensions of epigenetic gene regulation in the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ay, Ferhat; Bunnik, Evelien M; Varoquaux, Nelle; Vert, Jean-Philippe; Noble, William Stafford; Le Roch, Karine G</p> <p>2015-02-01</p> <p>Plasmodium falciparum is the most deadly <span class="hlt">human</span> malarial <span class="hlt">parasite</span>, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the <span class="hlt">parasite</span> actively regulates a large fraction of its genes throughout its replicative cycle inside <span class="hlt">human</span> red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of <span class="hlt">malaria</span> research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1220899','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1220899"><span id="translatedtitle">Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hanada, K; Mitamura, T; Fukasawa, M; Magistrado, P A; Horii, T; Nishijima, M</p> <p>2000-01-01</p> <p>Sphingolipid metabolism and metabolites are important in various cellular events in eukaryotes. However, little is known about their function in plasmodial <span class="hlt">parasites</span>. Here we demonstrate that neutral sphingomyelinase (SMase) involved in the sphingomyelin (SM) catabolism is retained by the intraerythrocytic <span class="hlt">parasite</span> Plasmodium falciparum. When assayed in a neutral pH buffer supplemented with Mg(2+) and phosphatidylserine, an activity for the release of the phosphocholine group from SM was detected in <span class="hlt">parasite</span>-infected, but not in uninfected, erythrocyte ghosts. The SMase activity in the <span class="hlt">parasite</span>-infected erythrocyte ghosts was enhanced markedly by anionic phospholipids including unsaturated but not saturated phosphatidylserine. Mn(2+) could not substitute for Mg(2+) to activate SMase in <span class="hlt">parasite</span>-infected erythrocyte ghosts, whereas both Mn(2+) and Mg(2+) activated mammalian neutral SMase. The specific activity level of SMase was higher in isolated <span class="hlt">parasites</span> than in infected erythrocyte ghosts; further fractionation of lysates of the isolated <span class="hlt">parasites</span> showed that the activity was bound largely to the membrane fraction of the <span class="hlt">parasites</span>. The plasmodial SMase seemed not to hydrolyse phosphatidylcholine or phosphatidylinositol. The plasmodial SMase, but not SM synthase, was sensitive to scyphostatin, an inhibitor of mammalian neutral SMase, indicating that the plasmodial activities for SM hydrolysis and SM synthesis are mediated by different catalysts. Our finding that the <span class="hlt">malaria</span> <span class="hlt">parasites</span> possess SMase activity might explain why the <span class="hlt">parasites</span> seem to have an SM synthase activity but no activity to synthesize ceramide de novo. PMID:10698693</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23152794','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23152794"><span id="translatedtitle">Biochemical characterization of Anopheles gambiae SRPN6, a <span class="hlt">malaria</span> <span class="hlt">parasite</span> invasion marker in mosquitoes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>An, Chunju; Hiromasa, Yasuaki; Zhang, Xin; Lovell, Scott; Zolkiewski, Michal; Tomich, John M; Michel, Kristin</p> <p>2012-01-01</p> <p>Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African <span class="hlt">malaria</span> mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against <span class="hlt">malaria</span> <span class="hlt">parasites</span>. Based on reverse genetic and cell biological analyses, AgSRPN6 limits <span class="hlt">parasite</span> numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP)1, PAP3, and Hemolymph protein (HP)6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases. PMID:23152794</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=Mosquito&pg=4&id=ED312080','ERIC'); return false;" href="http://eric.ed.gov/?q=Mosquito&pg=4&id=ED312080"><span id="translatedtitle"><span class="hlt">Malaria</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dupasquier, Isabelle</p> <p>1989-01-01</p> <p><span class="hlt">Malaria</span>, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part <span class="hlt">malaria</span> is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of <span class="hlt">malaria</span> which have developed because of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24763470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24763470"><span id="translatedtitle">Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi <span class="hlt">malaria</span> <span class="hlt">parasites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pollitt, Laura C; Huijben, Silvie; Sim, Derek G; Salathé, Rahel M; Jones, Matthew J; Read, Andrew F</p> <p>2014-04-01</p> <p>The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For <span class="hlt">malaria</span> <span class="hlt">parasites</span>, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower <span class="hlt">parasite</span> clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for <span class="hlt">parasites</span> is uncertain. Here, we show that Plasmodium chabaudi <span class="hlt">malaria</span> <span class="hlt">parasites</span> selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the <span class="hlt">parasite</span> through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible <span class="hlt">parasites</span> by drug treatment led to substantial increases in the densities and transmission potential of resistant <span class="hlt">parasites</span> (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no <span class="hlt">parasites</span> survived aggressive chemotherapy, but after selection, the fitness advantage for resistant <span class="hlt">parasites</span> was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant <span class="hlt">parasites</span> dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3999151','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3999151"><span id="translatedtitle">Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Plasmodium chabaudi <span class="hlt">Malaria</span> <span class="hlt">Parasites</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pollitt, Laura C.; Huijben, Silvie; Sim, Derek G.; Salathé, Rahel M.; Jones, Matthew J.; Read, Andrew F.</p> <p>2014-01-01</p> <p>The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For <span class="hlt">malaria</span> <span class="hlt">parasites</span>, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower <span class="hlt">parasite</span> clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for <span class="hlt">parasites</span> is uncertain. Here, we show that Plasmodium chabaudi <span class="hlt">malaria</span> <span class="hlt">parasites</span> selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the <span class="hlt">parasite</span> through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible <span class="hlt">parasites</span> by drug treatment led to substantial increases in the densities and transmission potential of resistant <span class="hlt">parasites</span> (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no <span class="hlt">parasites</span> survived aggressive chemotherapy, but after selection, the fitness advantage for resistant <span class="hlt">parasites</span> was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant <span class="hlt">parasites</span> dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17393186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17393186"><span id="translatedtitle">Bayesian analysis of new and old <span class="hlt">malaria</span> <span class="hlt">parasite</span> DNA sequence data demonstrates the need for more phylogenetic signal to clarify the descent of Plasmodium falciparum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hagner, S C; Misof, B; Maier, W A; Kampen, H</p> <p>2007-08-01</p> <p>Molecular systematic studies published during the last 15 years to clarify the phylogenetic relationships among the <span class="hlt">malaria</span> <span class="hlt">parasites</span> have led to two major hypotheses on the descent of Plasmodium falciparum: One supports an avian origin as a result of a relatively recent host switch, and another one favours the evolutionary development of P. falciparum together with its <span class="hlt">human</span> host from primate ancestors. In this paper, we present phylogenetic analyses of three different Plasmodium genes, the nuclear 18 small sub-unit (SSU) ribosomal ribonucleic acid (rRNA), the mitochondrial cytochrome b (cyt b) and the plastid caseinolytic protease C (ClpC) gene, using numerous haemosporidian <span class="hlt">parasite</span> DNA sequences obtained from the GenBank as well as several new sequences for major <span class="hlt">malaria</span> <span class="hlt">parasites</span> including the avian one Plasmodium cathemerium, which has never been considered in molecular phylogenetic analyses before. Most modern and sophisticated DNA substitution models based on Bayesian inference analysis were applied to estimate the cyt b and ClpC phylogenetic trees, whereas the 18 SSU rRNA gene was examined with regards to its secondary structure using PHASE software. Our results indicate that the data presently available are generally neither sufficient in number nor in information to solve the problem of the phylogenetic origin of P. falciparum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4112465','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4112465"><span id="translatedtitle">A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in <span class="hlt">malaria</span> <span class="hlt">parasites</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Edwards, Rachel L.; Kelly, Megan L.; Hodge, Dana M.; Tolia, Niraj H.; Odom, Audrey R.</p> <p>2014-01-01</p> <p>Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. We employ a forward genetics approach to understand MEP pathway regulation in the <span class="hlt">malaria</span> <span class="hlt">parasite</span>, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. <span class="hlt">Parasites</span> lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologs in plants and bacteria, other HAD proteins may be MEP pathway regulators. PMID:25058848</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052687','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052687"><span id="translatedtitle">The structural basis for CD36 binding by the <span class="hlt">malaria</span> <span class="hlt">parasite</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hsieh, Fu-Lien; Turner, Louise; Bolla, Jani Reddy; Robinson, Carol V.; Lavstsen, Thomas; Higgins, Matthew K.</p> <p>2016-01-01</p> <p>CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty acids. It is also the most common target of the PfEMP1 proteins of the <span class="hlt">malaria</span> <span class="hlt">parasite</span>, Plasmodium falciparum, tethering <span class="hlt">parasite</span>-infected erythrocytes to endothelial receptors. This prevents their destruction by splenic clearance and allows increased parasitaemia. Here we describe the structure of CD36 in complex with long chain fatty acids and a CD36-binding PfEMP1 protein domain. A conserved hydrophobic pocket allows the hugely diverse PfEMP1 protein family to bind to a conserved phenylalanine residue at the membrane distal tip of CD36. This phenylalanine is also required for CD36 to interact with lipoprotein particles. By targeting a site on CD36 that is required for its physiological function, PfEMP1 proteins maintain the ability to tether to the endothelium and avoid splenic clearance. PMID:27667267</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899306','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899306"><span id="translatedtitle">Use of Peptide Nucleic Acids to Manipulate Gene Expression in the <span class="hlt">Malaria</span> <span class="hlt">Parasite</span> Plasmodium falciparum</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Naik, Shankar; Yavin, Eylon; Dzikowski, Ron</p> <p>2014-01-01</p> <p>One of the major concerns in treating <span class="hlt">malaria</span> by conventional small drug molecules is the rapid emergence of drug resistance. Specific silencing of essential genes by antisense oliogomers has been proposed as an alternative approach that may result in antimalarial activity which is not associated with drug resistance. In addition, such an approach could be an important biological tool for studying many genes' function by reverse genetics. Here we present a novel methodology of using peptide nucleic acids (PNAs) as a useful tool for gene silencing in Plasmodium falciparum. PNAs, designed as specific antisense molecules, were conjugated to a cell penetrating peptide (CPP); namely, octa-D-lysine via the C-terminus, to allow facile delivery through cell membranes. PNAs added to P. falciparum cultures were found exclusively in infected erythrocytes and were eventually localized in nuclei of the <span class="hlt">parasites</span> at all stages of intra erythrocytic development. We show that these PNAs specifically down regulated both a stably expressed transgene as well as an endogenous essential gene, which significantly reduced <span class="hlt">parasites</span>' viability. This study paves the way for a simple approach to silence a variety of P. falciparum genes as means of deciphering their function and potentially to develop highly specific and potent antimalarial agents. PMID:24466246</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8757284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8757284"><span id="translatedtitle">Complete gene map of the plastid-like DNA of the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, R J; Denny, P W; Preiser, P R; Rangachari, K; Roberts, K; Roy, A; Whyte, A; Strath, M; Moore, D J; Moore, P W; Williamson, D H</p> <p>1996-08-16</p> <p><span class="hlt">Malaria</span> <span class="hlt">parasites</span>, and other <span class="hlt">parasitic</span> protists of the Phylum Apicomplexa, carry a plastid-like genome with greatly reduced sequence complexity. This 35 kb DNA circle resembles the plastid DNA of non-photosynthetic plants, encoding almost exclusively components involved in gene expression. The complete gene map described here includes genes for duplicated large and small subunit rRNAs, 25 species of tRNA, three subunits of a eubacterial RNA polymerase, 17 ribosomal proteins, and a translation elongation factor. In addition, it codes for an unusual member of the Clp family of chaperones, as well as an open reading frame of unknown function found in red algal plastids. Transcription is polycistronic. This plastid-like DNA molecule is conserved in several genera of apicomplexans and is conjectured to have been acquired by an early progenitor of the Phylum by secondary endosymbiosis. The function of the organelle (plastid) carrying this DNA remains obscure, but appears to be specified by genes transferred to the nucleus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25959003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25959003"><span id="translatedtitle">Clonal reproduction shapes evolution in the lizard <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium floridense.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Falk, Bryan G; Glor, Richard E; Perkins, Susan L</p> <p>2015-06-01</p> <p>The preponderant clonal evolution hypothesis (PCE) predicts that frequent clonal reproduction (sex between two clones) in many pathogens capable of sexual recombination results in strong linkage disequilibrium and the presence of discrete genetic subdivisions characterized by occasional gene flow. We expand on the PCE and predict that higher rates of clonal reproduction will result in: (1) morphologically cryptic species that exhibit (2) low within-species variation and (3) recent between-species divergence. We tested these predictions in the Caribbean lizard <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium floridense using 63 single-infection samples in lizards collected from across the <span class="hlt">parasite</span>'s range, and sequenced them at two mitochondrial, one apicoplast, and five nuclear genes. We identified 11 provisionally cryptic species within P. floridense, each of which exhibits low intraspecific variation and recent divergence times between species (some diverged approximately 110,000 years ago). Our results are consistent with the hypothesis that clonal reproduction can profoundly affect diversification of species capable of sexual recombination, and suggest that clonal reproduction may have led to a large number of unrecognized pathogen species. The factors that may influence the rates of clonal reproduction among pathogens are unclear, and we discuss how prevalence and virulence may relate to clonal reproduction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24880788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24880788"><span id="translatedtitle">Distribution, prevalence and host specificity of avian <span class="hlt">malaria</span> <span class="hlt">parasites</span> across the breeding range of the migratory lark sparrow (Chondestes grammacus).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swanson, Bethany L; Lyons, Amanda C; Bouzat, Juan L</p> <p>2014-06-01</p> <p>The lark sparrow (Chondestes grammacus) is a ground-nesting passerine that breeds across much of the central North American steppe and sand barrens. Through genotyping and sequencing of avian <span class="hlt">malaria</span> <span class="hlt">parasites</span> we examined levels of <span class="hlt">malaria</span> prevalence and determined the distribution of Haemoproteus and Plasmodium lineages across the breeding range of the lark sparrow. Analysis of 365 birds collected from five breeding locations revealed relatively high levels of <span class="hlt">malaria</span> prevalence in adults (80 %) and juveniles (46 %), with infections being primarily of Haemoproteus (91 % of sequenced samples). Levels of genetic diversity and genetic structure of <span class="hlt">malaria</span> <span class="hlt">parasites</span> with respect to the avian host populations revealed distinct patterns for Haemoproteus and Plasmodium, most likely as a result of their distinct life histories, host specificity, and transmission vectors. With the exception of one common Haemoproteus haplotype detected in all populations, all other haplotypes were either population-specific or shared by two to three populations. A hierarchical analysis of molecular variance of Haemoproteus sequences revealed that 15-18 % of the genetic variation can be explained by differences among host populations/locations (p < 0.001). In contrast to the regional patterns of genetic differentiation detected for the lark sparrow populations, Haemoproteus <span class="hlt">parasites</span> showed high levels of population-specific variation and no significant differences among regions, which suggests that the population dynamics of the <span class="hlt">parasites</span> may be driven by evolutionary processes operating at small spatial scales (e.g., at the level of host populations). These results highlight the potential effects of host population structure on the demographic and evolutionary dynamics of <span class="hlt">parasites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4498649','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4498649"><span id="translatedtitle">Treatment of Whole Blood With Riboflavin and UV Light: Impact on <span class="hlt">Malaria</span> <span class="hlt">Parasite</span> Viability and Whole Blood Storage</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Owusu-Ofori, Shirley; Kusi, Joseph; Owusu-Ofori, Alex; Freimanis, Graham; Olver, Christine; Martinez, Caitlyn R.; Wilkinson, Shilo; Mundt, Janna M.; Keil, Shawn D.; Goodrich, Raymond P.; Allain, Jean-Pierre</p> <p>2015-01-01</p> <p>ABSTRACT Background: Sub-Saharan African countries utilize whole blood (WB) to treat severe anemia secondary to severe blood loss or <span class="hlt">malaria</span> on an emergency basis. In many areas with high prevalence of transfusion-transmissible agents, blood safety measures are insufficient. Pathogen reduction technology applied to WB might considerably improve blood safety. Methods: Whole blood from 40 different donors were treated with riboflavin and UV light (pathogen reduction technology) in order to inactivate <span class="hlt">malaria</span> <span class="hlt">parasite</span> replication. The extent of <span class="hlt">parasite</span> inactivation was determined using quantitative polymerase chain reaction methods and was correlated to studies evaluating the replication of <span class="hlt">malaria</span> <span class="hlt">parasites</span> in culture. Products were also stored for 21 days at +4°C and monitored for cell quality throughout storage. Results: Plasmodium amplicon was present in 21 samples (>100 copies/mL), doubtful in four (10–100 genome equivalents [gEq]/mL), and negative in 15 U. The majority of asymptomatic parasitemic donors carried low <span class="hlt">parasite</span> levels, with only six donors above 5,000 copies/mL (15%). After treatment with riboflavin and UV light, these six samples demonstrated a 0.5 to 1.2 log reduction in quantitative polymerase chain reaction amplification. This correlated to equal to or greater than 6.4 log reductions in infectivity. In treated WB units, cell quality parameters remained stable; however, plasma hemoglobin increased to 0.15 g/dL. All markers behaved similarly to published data for stored, untreated WB. Conclusions: Pathogen reduction technology treatment can inactivate <span class="hlt">malaria</span> <span class="hlt">parasites</span> in WB while maintaining adequate blood quality during posttreatment cold storage for 21 days. PMID:25423125</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16940297','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16940297"><span id="translatedtitle">Interactions between merozoite surface proteins 1, 6, and 7 of the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kauth, Christian W; Woehlbier, Ute; Kern, Michaela; Mekonnen, Zeleke; Lutz, Rolf; Mücke, Norbert; Langowski, Jörg; Bujard, Hermann</p> <p>2006-10-20</p> <p>Merozoites of the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum expose at their surface a large multiprotein complex, composed of proteolytically processed, noncovalently associated products of at least three genes, msp-1, msp-6, and msp-7. During invasion of erythrocytes, this complex is shed from the surface except for a small glycosylphosphatidylinositol-anchored portion originating from MSP-1. The proteolytic cleavage separating the C-terminal portion of MSP-1 is required for successful invasion. Little is known about the structure and function of the abundant and essential multipartite complex. Using heterologously produced MSP-1, MSP-6, and MSP-7 in precursor and with the exception of MSP-7 in processed form, we have studied in vitro the complex formation between the different proteins to identify the interaction partners within the complex. Both MSP-6(36) and MSP-7 bind only to MSP-1 subunits that are shed, but although MSP-6(36) contacts just subunit p38, MSP-7 interacts with p83, p30, and p38. The intact C-terminal region of MSP-6 is required for the association with p38 as well as for its multimerization into tetramers. Furthermore, our data suggest that only the processed form and not the precursor form of MSP-1 interacts with MSP-6(36). MSP-6- as well as MSP-7-specific rabbit antibodies inhibit <span class="hlt">parasite</span> multiplication in vitro as shown previously for antibodies directed against MSP-1. Our findings raise interesting questions with regard to proteolysis-mediated mechanisms of maturation of the MSP-1-MSP-6-MSP-7 complex and to the mode by which antibodies directed against this complex interfere with <span class="hlt">parasite</span> multiplication.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25891072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25891072"><span id="translatedtitle">Cloning, expression and functional characterization of heme detoxification protein (HDP) from the rodent <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium vinckei.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soni, Awakash; Goyal, Manish; Prakash, Kirtika; Bhardwaj, Jyoti; Siddiqui, Arif Jamal; Puri, Sunil K</p> <p>2015-07-15</p> <p><span class="hlt">Malaria</span> <span class="hlt">parasite</span> resides within the host red blood cells, where it degrades vast amount of haemoglobin. During haemoglobin degradation, toxic free heme is liberated which subsequently gets converted into hemozoin. This process is facilitated by action of various proteins viz. heme detoxification protein (HDP), and histidine rich proteins II and III (HRP II & III). Out of these, HDP is the most potent in hemozoin formation and plays indispensible role for <span class="hlt">parasite</span> survival. Despite this, the detailed study of HDP from rodent and simian <span class="hlt">parasite</span> has not been performed till date. Here, we have cloned and sequenced hdp gene from different <span class="hlt">malaria</span> <span class="hlt">parasites</span> Plasmodium vinckei, Plasmodium yoelii, Plasmodium knowlesi, and Plasmodium cynomolgi. Furthermore, HDP from P. vinckei (PvHDP) was over-expressed and purified for detailed characterization. The PvHDP is cytosolic, expressed throughout the intra erythrocytic stages and its expression is higher in late trophozoite and schizont stages of <span class="hlt">parasite</span>. The PvHDP interacts with free heme (KD=89 nM) and efficiently converts heme into hemozoin in a time and concentration dependent manner. Moreover, PvHDP showed activity in acidic pH and over a broad range of temperature. Histidine modification of PvHDP using DEPC showed reduction in heme binding and hemozoin formation, thus emphasizing the importance of histidine residues in heme binding and subsequent hemozoin production. Furthermore, applicability of PvHDP to screen anti-plasmodial agents (targeting heme to hemozoin conversion) was also determined using chloroquine, and mefloquine as reference antimalarials. Results showed that these drugs inhibit heme polymerization effectively in a concentration dependent manner. In conclusion, our study identified and biochemically characterized HDP from rodent <span class="hlt">malaria</span> <span class="hlt">parasite</span> P. vinckei and this will help to develop a high throughput assay to evaluate new antimalarials targeting hemozoin pathway.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3116895','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3116895"><span id="translatedtitle">Resistance of a Rodent <span class="hlt">Malaria</span> <span class="hlt">Parasite</span> to a Thymidylate Synthase Inhibitor Induces an Apoptotic <span class="hlt">Parasite</span> Death and Imposes a Huge Cost of Fitness</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Muregi, Francis W.; Ohta, Isao; Masato, Uchijima; Kino, Hideto; Ishih, Akira</p> <p>2011-01-01</p> <p>Background The greatest impediment to effective <span class="hlt">malaria</span> control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the <span class="hlt">parasite</span>'s fitness and pathogenicity may aid in <span class="hlt">malaria</span> control strategy. Methodology/Principal Findings To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of <span class="hlt">parasites</span> to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant <span class="hlt">parasite</span> maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant <span class="hlt">parasite</span> showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. Conclusions/Significance The resistant <span class="hlt">parasite</span> was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless <span class="hlt">parasite</span> death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular <span class="hlt">parasite</span>. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the <span class="hlt">parasite</span>'s apoptotic machinery may</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4676544','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4676544"><span id="translatedtitle">A Basis for Rapid Clearance of Circulating Ring-Stage <span class="hlt">Malaria</span> <span class="hlt">Parasites</span> by the Spiroindolone KAE609</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Rou; Suwanarusk, Rossarin; Malleret, Benoit; Cooke, Brian M.; Nosten, Francois; Lau, Yee-Ling; Dao, Ming; Lim, Chwee Teck; Renia, Laurent; Tan, Kevin Shyong Wei; Russell, Bruce</p> <p>2016-01-01</p> <p>Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with <span class="hlt">malaria</span> <span class="hlt">parasites</span> by the spiroindolone KAE609. Here, we show that ring-stage parasite–infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the <span class="hlt">parasite</span>'s sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax– and Plasmodium falciparum–infected RBCs. PMID:26136472</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25911365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25911365"><span id="translatedtitle">PfEMP1 - A <span class="hlt">Parasite</span> Protein Family of Key Importance in Plasmodium falciparum <span class="hlt">Malaria</span> Immunity and Pathogenesis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hviid, Lars; Jensen, Anja T R</p> <p>2015-04-01</p> <p>Plasmodium falciparum causes the most severe form of <span class="hlt">malaria</span> and is responsible for essentially all <span class="hlt">malaria</span>-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum <span class="hlt">parasites</span> can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of <span class="hlt">parasite</span> ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of <span class="hlt">malaria</span>, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against <span class="hlt">malaria</span> are also covered briefly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27092873','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27092873"><span id="translatedtitle">Anti-Schistosoma IgG responses in Schistosoma haematobium single and concomitant infection with <span class="hlt">malaria</span> <span class="hlt">parasites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morenikeji, Olajumoke A; Adeleye, Olumide; Omoruyi, Ewean C; Oyeyemi, Oyetunde T</p> <p>2016-03-01</p> <p>Areas prone to schistosomiasis are also at risk of <span class="hlt">malaria</span> transmission. The interaction between the causal agents of the two diseases could modulate immune responses tailored toward protecting or aggravating morbidity dynamics and impair Schistosoma diagnostic precision. This study aimed at assessing the effect of Plasmodium spp. in concomitant infection with Schistosoma haematobium in modulation of anti-Schistosoma IgG antibodies. The school-based cross-sectional study recruited a total of 322 children screened for S. haematobium and Plasmodium spp. Levels of IgG against S. haematobium-soluble egg antigen (SEA) in single S. haematobium/<span class="hlt">malaria</span> <span class="hlt">parasites</span> infection and co-infection of the two <span class="hlt">parasites</span> in schoolchildren were determined. Data were analyzed using χ(2), Fisher's exact test, and Tukey's multiple comparison test analyses. The prevalence of single infection by S. haematobium, Plasmodium spp., and concurrent infection due to the two pathogens was 27.7, 41.0, and 9.3%, respectively (p < 0.0001). Anti-Schistosoma IgG production during co-infection of the two pathogens (1.950 ± 0.742 AU) was significantly higher than the value recorded for single <span class="hlt">malaria</span> <span class="hlt">parasites</span>' infection (1.402 ± 0.670 AU) (p < 0.01) but not in S. haematobium infection (1.591 ± 0.604 AU) (p > 0.05). The anti-Schistosoma IgG production in co-infection status was however dependent on the intensity of Plasmodium spp. with individuals having high intensity of <span class="hlt">malaria</span> <span class="hlt">parasites</span> recording lower anti-Schistosoma IgG. This study has implication for diagnosis of schistosomiasis where anti-Schistosoma IgG is used as an indicator of infection. Efforts should be made to control the two infections simultaneously in order not to undermine the efforts targeted toward the control of one.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4474419','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4474419"><span id="translatedtitle">Network-based gene prediction for Plasmodium falciparum <span class="hlt">malaria</span> towards genetics-based drug discovery</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Background <span class="hlt">Malaria</span> is the most deadly <span class="hlt">parasitic</span> infectious disease. Existing drug treatments have limited efficacy in <span class="hlt">malaria</span> elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel <span class="hlt">malaria</span>-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-<span class="hlt">malaria</span> drugs. Methods In this study, we developed a network-based approach to predict <span class="hlt">malaria</span>-associated genes. We constructed a cross-species network to integrate <span class="hlt">human-human</span>, <span class="hlt">parasite-parasite</span> and <span class="hlt">human-parasite</span> protein interactions. Then we extended the random walk algorithm on this network, and used known <span class="hlt">malaria</span> genes as the seeds to find novel candidate genes for <span class="hlt">malaria</span>. Results We validated our algorithms using 77 known <span class="hlt">malaria</span> genes: 14 <span class="hlt">human</span> genes and 63 <span class="hlt">parasite</span> genes were ranked averagely within top 2% and top 4%, respectively among <span class="hlt">human</span> and <span class="hlt">parasite</span> genomes. We also evaluated our method for predicting novel <span class="hlt">malaria</span> genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked <span class="hlt">malaria</span> genes through pathway analysis. In summary, the candidate <span class="hlt">malaria</span>-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-<span class="hlt">malaria</span> drug discovery. PMID:26099491</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2586635','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2586635"><span id="translatedtitle"><span class="hlt">Human</span> population, urban settlement patterns and their impact on Plasmodium falciparum <span class="hlt">malaria</span> endemicity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I</p> <p>2008-01-01</p> <p>Background The efficient allocation of financial resources for <span class="hlt">malaria</span> control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of <span class="hlt">malaria</span> risk and of the <span class="hlt">human</span> populations it affects. Low population densities in rural areas and high population densities in urban areas can influence <span class="hlt">malaria</span> transmission substantially. Here, the <span class="hlt">Malaria</span> Atlas Project (MAP) global database of Plasmodium falciparum <span class="hlt">parasite</span> rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining <span class="hlt">malaria</span> risk maps with those of <span class="hlt">human</span> population distribution in order to define populations at risk more accurately. Methods First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as <span class="hlt">malaria</span> free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying <span class="hlt">malaria</span> free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Results Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 <span class="hlt">malaria</span> free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7171233','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7171233"><span id="translatedtitle">A vaccine against <span class="hlt">human</span> <span class="hlt">malaria</span>--an utopia?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peltola, H</p> <p>1982-12-01</p> <p>At the beginning of the 1980s, the future of the <span class="hlt">malaria</span> vaccines looks bright; in recent years a number of basic problems have been solved. Among the major landmarks have been the discovery of a suitable animal model for <span class="hlt">human</span> <span class="hlt">malaria</span> infections; the technique of culturing Plasmodium falciparum; the findings that sporozoites, merozoites and gametocytes, or possibly antigens characterized with the hybridoma technique, can be used as vaccine antigens at least in animals; and that excellent protection from fatal disease is obtainable in owl monkeys by using the merozoite vaccine with a suitable adjuvant. Many questions remain still unanswered. The foremost, of course, is whether the vaccine(s) is efficient in <span class="hlt">humans</span>. Other major problems still existing are identification, characterization and purification of the protective antigen(s) of <span class="hlt">human</span> <span class="hlt">malarias</span>, assessment of the clinical effects of the vaccines produced, new methods for the mass production of the antigens, and studies on duration of the clinical protection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3521437','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3521437"><span id="translatedtitle">Duffy Blood Group System and the <span class="hlt">malaria</span> adaptation process in <span class="hlt">humans</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Carvalho, Gledson Barbosa; de Carvalho, Glauber Barbosa</p> <p>2011-01-01</p> <p><span class="hlt">Malaria</span> is an acute infectious disease caused by the protozoa of the genus Plasmodium. The antigens of the Duffy Blood Group System, in addition to incompatibilities in transfusions and hemolytic disease of the newborn, are of great interest in medicine due to their association with the invasion of red blood cells by the <span class="hlt">parasite</span> Plasmodium vivax. For invasions to occur an interaction between the <span class="hlt">parasites</span> and antigens of the Duffy Blood Group System is necessary. In Caucasians six antigens are produced by the Duffy locus (Fya, Fyb, F3, F4, F5 and F6). It has been observed that Fy(a-b-) individuals are resistant to Plasmodium knowlesi and P. vivax infection, because the invasion requires at least one of these antigens. The P. vivax Duffy Binding Protein (PvDBP) is functionally important in the invasion process of these <span class="hlt">parasites</span> in Duffy / DARC positive <span class="hlt">humans</span>. The proteins or fractions may be considered, therefore, an important and potential inoculum to be used in immunization against <span class="hlt">malaria</span>. PMID:23284245</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27071693','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27071693"><span id="translatedtitle">High resolution FTIR imaging provides automated discrimination and detection of single <span class="hlt">malaria</span> <span class="hlt">parasite</span> infected erythrocytes on glass.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perez-Guaita, David; Andrew, Dean; Heraud, Philip; Beeson, James; Anderson, David; Richards, Jack; Wood, Bayden R</p> <p>2016-06-23</p> <p>New highly sensitive tools for <span class="hlt">malaria</span> diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify <span class="hlt">parasite</span> infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose <span class="hlt">malaria</span> <span class="hlt">parasites</span> at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the <span class="hlt">parasite</span>'s digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for <span class="hlt">malaria</span> detection at the single cell level. PMID:27071693</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25471322','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25471322"><span id="translatedtitle">Antibody and T-cell responses associated with experimental <span class="hlt">human</span> <span class="hlt">malaria</span> infection or vaccination show limited relationships.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walker, Karen M; Okitsu, Shinji; Porter, David W; Duncan, Christopher; Amacker, Mario; Pluschke, Gerd; Cavanagh, David R; Hill, Adrian V S; Todryk, Stephen M</p> <p>2015-05-01</p> <p>This study examined specific antibody and T-cell responses associated with experimental <span class="hlt">malaria</span> infection or <span class="hlt">malaria</span> vaccination, in <span class="hlt">malaria</span>-naive <span class="hlt">human</span> volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. <span class="hlt">Malaria</span> infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with <span class="hlt">parasite</span> load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. <span class="hlt">Malaria</span>-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with <span class="hlt">parasite</span> load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-<span class="hlt">parasite</span> responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against <span class="hlt">malaria</span>, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related. PMID:25471322</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/12427765','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/12427765"><span id="translatedtitle">Acidification of the <span class="hlt">malaria</span> <span class="hlt">parasite</span>'s digestive vacuole by a H+-ATPase and a H+-pyrophosphatase.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saliba, Kevin J; Allen, Richard J W; Zissis, Stephanie; Bray, Patrick G; Ward, Stephen A; Kirk, Kiaran</p> <p>2003-02-21</p> <p>As it grows within the <span class="hlt">human</span> erythrocyte, the <span class="hlt">malaria</span> <span class="hlt">parasite</span>, Plasmodium falciparum, ingests the erythrocyte cytosol, depositing it via an endocytotic feeding mechanism in the "digestive vacuole," a specialized acidic organelle. The digestive vacuole is the site of hemoglobin degradation, the storage site for hemozoin (an inert biocrystal of toxic heme), the site of action of many antimalarial drugs, and the site of proteins known to be involved in antimalarial drug resistance. The acidic pH of this organelle is thought to play a critical role in its various functions; however, the mechanisms by which the pH within the vacuole is maintained are not well understood. In this study, we have used a combination of techniques to demonstrate the presence on the P. falciparum digestive vacuole membrane of two discrete H(+) pumping mechanisms, both capable of acidifying the vacuole interior. One is a V-type H(+)-ATPase, sensitive to concanamycin A and bafilomycin A(1). The other is a H(+)-pyrophosphatase, which was inhibited by NaF and showed a partial dependence on K(+). The operation of the H(+)-pyrophosphatase was dependent on the presence of a Mg(2+)-pyrophosphate complex, and kinetic experiments gave results consistent with free pyrophosphate acting as an inhibitor of the protein. The presence of the combination of a H(+)-ATPase and a H(+)-pyrophosphatase on the P. falciparum digestive vacuole is similar to the situation in the acidic tonoplasts (vacuoles) of plant cells. PMID:12427765</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2805293','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2805293"><span id="translatedtitle">The <span class="hlt">Malaria</span> <span class="hlt">Parasite</span> Cyclic GMP-Dependent Protein Kinase Plays a Central Role in Blood-Stage Schizogony▿ † §</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taylor, Helen M.; McRobert, Louisa; Grainger, Munira; Sicard, Audrey; Dluzewski, Anton R.; Hopp, Christine S.; Holder, Anthony A.; Baker, David A.</p> <p>2010-01-01</p> <p>A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the <span class="hlt">malaria</span> <span class="hlt">parasite</span> was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the <span class="hlt">parasite</span> life cycle, the stage that causes <span class="hlt">malaria</span> pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage <span class="hlt">parasites</span> allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for ≥6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum <span class="hlt">parasites</span> expressing a compound 1-insensitive PfPKG. The mutant <span class="hlt">parasites</span> were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against <span class="hlt">malaria</span>. PMID:19915077</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11036781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11036781"><span id="translatedtitle">[<span class="hlt">Parasitic</span> zoonotic disease agents in <span class="hlt">human</span> and animal drinking water].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karanis, P</p> <p>2000-08-01</p> <p><span class="hlt">Human</span>- and veterinary important <span class="hlt">parasites</span> of the subkingdom of protozoans and helminths infect <span class="hlt">humans</span> and animals by ingestion of <span class="hlt">parasites</span> in contaminated water. The <span class="hlt">parasites</span> are excreted from the body of infected <span class="hlt">humans</span>, livestock, zoo animals, companion animals or wild animals in the feces. Recreational waters, agricultural practices and wild animals serve as vehicles of transmission of the <span class="hlt">parasites</span> in the water supplies. The following topics are addressed: a) the life cycles of <span class="hlt">parasitic</span> diseases-causing agents with proven or potential transmission via water b) the development and the current research status of the analytical techniques for the detection of <span class="hlt">parasitic</span> diseases-causing agents from water c) the occurrence of Cryptosporidium and Giardia in surface water supplies and in treated water d) the possible water sources and transmission ways of the <span class="hlt">parasites</span> into the water supplies e) the behaviour and the possibilities for the removal or elimination of the <span class="hlt">parasites</span> by water treatment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26531301','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26531301"><span id="translatedtitle"><span class="hlt">Malaria</span> and blood transfusion: major issues of blood safety in <span class="hlt">malaria</span>-endemic countries and strategies for mitigating the risk of Plasmodium <span class="hlt">parasites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdullah, Saleh; Karunamoorthi, Kaliyaperumal</p> <p>2016-01-01</p> <p><span class="hlt">Malaria</span> inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the <span class="hlt">malaria</span>-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically <span class="hlt">malaria</span>. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial <span class="hlt">parasites</span>. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and <span class="hlt">malaria</span>. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26531301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26531301"><span id="translatedtitle"><span class="hlt">Malaria</span> and blood transfusion: major issues of blood safety in <span class="hlt">malaria</span>-endemic countries and strategies for mitigating the risk of Plasmodium <span class="hlt">parasites</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdullah, Saleh; Karunamoorthi, Kaliyaperumal</p> <p>2016-01-01</p> <p><span class="hlt">Malaria</span> inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the <span class="hlt">malaria</span>-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically <span class="hlt">malaria</span>. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial <span class="hlt">parasites</span>. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and <span class="hlt">malaria</span>. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24399475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24399475"><span id="translatedtitle">[<span class="hlt">Malaria</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burchard, G D</p> <p>2014-02-01</p> <p><span class="hlt">Malaria</span> is the most important infectious disease imported by travelers and migrants from tropical and subtropical areas. It is imported quite frequently. It is a life-threatening disease. Symptoms are nonspecific and cannot easily be distinguished from a wide range of other febrile conditions. Therefore, travel history must be taken in all patients with fever of unknown origin and <span class="hlt">malaria</span> diagnostics must be performed immediately on suspicion of <span class="hlt">malaria</span>. Uncomplicated falciparum <span class="hlt">malaria</span> should be treated in the hospital with either atovaquone-proguanil or with an artemisinin-based combination preparation. If there is evidence of severe <span class="hlt">malaria</span>, the patient must be moved to an intensive care unit. The antiparasitic agent of choice is then artesunate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26472355','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26472355"><span id="translatedtitle">Gift from Nature: Cyclomarin A Kills Mycobacteria and <span class="hlt">Malaria</span> <span class="hlt">Parasites</span> by Distinct Modes of Action.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bürstner, Nathalie; Roggo, Silvio; Ostermann, Nils; Blank, Jutta; Delmas, Cecile; Freuler, Felix; Gerhartz, Bernd; Hinniger, Alexandra; Hoepfner, Dominic; Liechty, Brigitta; Mihalic, Manuel; Murphy, Jason; Pistorius, Dominik; Rottmann, Matthias; Thomas, Jason R; Schirle, Markus; Schmitt, Esther K</p> <p>2015-11-01</p> <p><span class="hlt">Malaria</span> continues to be one of the most devastating <span class="hlt">human</span> diseases despite many efforts to limit its spread by prevention of infection or by pharmaceutical treatment of patients. We have conducted a screen for antiplasmodial compounds by using a natural product library. Here we report on cyclomarin A as a potent growth inhibitor of Plasmodium falciparum and the identification of its molecular target, diadenosine triphosphate hydrolase (PfAp3Aase), by chemical proteomics. Using a biochemical assay, we could show that cyclomarin A is a specific inhibitor of the plasmodial enzyme but not of the closest <span class="hlt">human</span> homologue hFHIT. Co-crystallisation experiments demonstrate a unique binding mode of the inhibitor. One molecule of cyclomarin A binds a dimeric PfAp3Aase and prevents the formation of the enzyme⋅substrate complex. These results validate PfAp3Aase as a new drug target for the treatment of <span class="hlt">malaria</span>. We have previously elucidated the structurally unrelated regulatory subunit ClpC1 of the ClpP protease as the molecular target of cyclomarin A in Mycobacterium tuberculosis. Thus, cyclomarin A is a rare example of a natural product with two distinct and specific modes of action. PMID:26472355</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3100106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3100106"><span id="translatedtitle"><span class="hlt">Parasite</span> Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat <span class="hlt">Human</span> Protozoan Pathogens</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brumlik, Michael J.; Pandeswara, Srilakshmi; Ludwig, Sara M.; Murthy, Kruthi; Curiel, Tyler J.</p> <p>2011-01-01</p> <p>Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant <span class="hlt">human</span> pathogens. One group of protozoan pathogens includes obligate intracellular <span class="hlt">parasites</span> such as agents of <span class="hlt">malaria</span>, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most <span class="hlt">human</span> protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known. PMID:21637385</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25952567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25952567"><span id="translatedtitle">Molecular inference of sources and spreading patterns of Plasmodium falciparum <span class="hlt">malaria</span> <span class="hlt">parasites</span> in internally displaced persons settlements in Myanmar-China border area.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun</p> <p>2015-07-01</p> <p>In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted <span class="hlt">malaria</span> transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and <span class="hlt">parasite</span> gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense <span class="hlt">malaria</span> control within the IDP settlement. <span class="hlt">Human</span> movement was a key factor to the spread of <span class="hlt">malaria</span> both locally in Myanmar and across the international border.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4077696','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4077696"><span id="translatedtitle">Inhibition of Plasmepsin V Activity Demonstrates Its Essential Role in Protein Export, PfEMP1 Display, and Survival of <span class="hlt">Malaria</span> <span class="hlt">Parasites</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sleebs, Brad E.; Lopaticki, Sash; Marapana, Danushka S.; O'Neill, Matthew T.; Rajasekaran, Pravin; Gazdik, Michelle; Günther, Svenja; Whitehead, Lachlan W.; Lowes, Kym N.; Barfod, Lea; Hviid, Lars; Shaw, Philip J.; Hodder, Anthony N.; Smith, Brian J.; Cowman, Alan F.; Boddey, Justin A.</p> <p>2014-01-01</p> <p>The <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the <span class="hlt">parasite</span> protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum–infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed <span class="hlt">parasites</span> at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for <span class="hlt">parasite</span> survival in <span class="hlt">human</span> erythrocytes and validates PMV as an antimalarial drug target. PMID:24983235</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27490374','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27490374"><span id="translatedtitle">Plant-Mediated Effects on Mosquito Capacity to Transmit <span class="hlt">Human</span> <span class="hlt">Malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hien, Domonbabele F D S; Dabiré, Kounbobr R; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S; Cohuet, Anna; Yameogo, Bienvenue K; Gouagna, Louis-Clément; Hopkins, Richard J; Ouedraogo, Georges A; Simard, Frédéric; Ouedraogo, Jean-Bosco; Ignell, Rickard; Lefevre, Thierry</p> <p>2016-08-01</p> <p>The ecological context in which mosquitoes and <span class="hlt">malaria</span> <span class="hlt">parasites</span> interact has received little attention, compared to the genetic and molecular aspects of <span class="hlt">malaria</span> transmission. Plant nectar and fruits are important for the nutritional ecology of <span class="hlt">malaria</span> vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for <span class="hlt">malaria</span> <span class="hlt">parasites</span> is unclear. To test this, we infected Anopheles coluzzi, an important African <span class="hlt">malaria</span> vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on <span class="hlt">parasite</span> and mosquito traits that are key for determining the intensity of <span class="hlt">malaria</span> transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the <span class="hlt">parasites</span>, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and <span class="hlt">parasite</span> growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of <span class="hlt">malaria</span> transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4973987','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4973987"><span id="translatedtitle">Plant-Mediated Effects on Mosquito Capacity to Transmit <span class="hlt">Human</span> <span class="hlt">Malaria</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hien, Domonbabele F. d. S.; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S.; Cohuet, Anna; Yameogo, Bienvenue K.; Gouagna, Louis-Clément; Hopkins, Richard J.; Ouedraogo, Georges A.; Simard, Frédéric; Ignell, Rickard; Lefevre, Thierry</p> <p>2016-01-01</p> <p>The ecological context in which mosquitoes and <span class="hlt">malaria</span> <span class="hlt">parasites</span> interact has received little attention, compared to the genetic and molecular aspects of <span class="hlt">malaria</span> transmission. Plant nectar and fruits are important for the nutritional ecology of <span class="hlt">malaria</span> vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for <span class="hlt">malaria</span> <span class="hlt">parasites</span> is unclear. To test this, we infected Anopheles coluzzi, an important African <span class="hlt">malaria</span> vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on <span class="hlt">parasite</span> and mosquito traits that are key for determining the intensity of <span class="hlt">malaria</span> transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the <span class="hlt">parasites</span>, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and <span class="hlt">parasite</span> growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of <span class="hlt">malaria</span> transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27490374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27490374"><span id="translatedtitle">Plant-Mediated Effects on Mosquito Capacity to Transmit <span class="hlt">Human</span> <span class="hlt">Malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hien, Domonbabele F D S; Dabiré, Kounbobr R; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S; Cohuet, Anna; Yameogo, Bienvenue K; Gouagna, Louis-Clément; Hopkins, Richard J; Ouedraogo, Georges A; Simard, Frédéric; Ouedraogo, Jean-Bosco; Ignell, Rickard; Lefevre, Thierry</p> <p>2016-08-01</p> <p>The ecological context in which mosquitoes and <span class="hlt">malaria</span> <span class="hlt">parasites</span> interact has received little attention, compared to the genetic and molecular aspects of <span class="hlt">malaria</span> transmission. Plant nectar and fruits are important for the nutritional ecology of <span class="hlt">malaria</span> vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for <span class="hlt">malaria</span> <span class="hlt">parasites</span> is unclear. To test this, we infected Anopheles coluzzi, an important African <span class="hlt">malaria</span> vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on <span class="hlt">parasite</span> and mosquito traits that are key for determining the intensity of <span class="hlt">malaria</span> transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the <span class="hlt">parasites</span>, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and <span class="hlt">parasite</span> growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of <span class="hlt">malaria</span> transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3182068','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3182068"><span id="translatedtitle">Modeling the Effects of Relapse in the Transmission Dynamics of <span class="hlt">Malaria</span> <span class="hlt">Parasites</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Águas, Ricardo; Ferreira, Marcelo U.; Gomes, M. Gabriela M.</p> <p>2012-01-01</p> <p>Often regarded as “benign,” Plasmodium vivax infections lay in the shadows of the much more virulent P. falciparum infections. However, about 1.98 billion people are at risk of both <span class="hlt">parasites</span> worldwide, stressing the need to understand the epidemiology of Plasmodium vivax, particularly under the scope of decreasing P. falciparum prevalence and ecological interactions between both species. Two epidemiological observations put the dynamics of both species into perspective: (1) ACT campaigns have had a greater impact on P. falciparum prevalence. (2) Complete clinical immunity is attained at younger ages for P. vivax, under similar infection rates. We systematically compared two mathematical models of transmission for both Plasmodium species. Simulations suggest that an ACT therapy combined with a hypnozoite killing drug would eliminate both species. However, P. vivax elimination is predicted to be unstable. Differences in age profiles of clinical <span class="hlt">malaria</span> can be explained solely by P. vivax's ability to relapse, which accelerates the acquisition of clinical immunity and serves as an immunity boosting mechanism. P. vivax transmission can subsist in areas of low mosquito abundance and is robust to drug administration initiatives due to relapse, making it an inconvenient and cumbersome, yet less lethal alternative to P. falciparum. PMID:21966590</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22901539','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22901539"><span id="translatedtitle">Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits <span class="hlt">parasite</span> translation and contributes to <span class="hlt">malaria</span> resistance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>LaMonte, Gregory; Philip, Nisha; Reardon, Joseph; Lacsina, Joshua R; Majoros, William; Chapman, Lesley; Thornburg, Courtney D; Telen, Marilyn J; Ohler, Uwe; Nicchitta, Christopher V; Haystead, Timothy; Chi, Jen-Tsan</p> <p>2012-08-16</p> <p>Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the <span class="hlt">parasite</span>. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated <span class="hlt">parasite</span> growth. Surprisingly, we found that miR-451 and let-7i integrated into essential <span class="hlt">parasite</span> messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to <span class="hlt">malaria</span> in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11526203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11526203"><span id="translatedtitle">Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in <span class="hlt">humans</span> by a <span class="hlt">malaria</span> DNA vaccine.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, R; Epstein, J; Baraceros, F M; Gorak, E J; Charoenvit, Y; Carucci, D J; Hedstrom, R C; Rahardjo, N; Gay, T; Hobart, P; Stout, R; Jones, T R; Richie, T L; Parker, S E; Doolan, D L; Norman, J; Hoffman, S L</p> <p>2001-09-11</p> <p>We assessed immunogenicity of a <span class="hlt">malaria</span> DNA vaccine administered by needle i.m. or needleless jet injection [i.m. or i.m./intradermally (i.d.)] in 14 volunteers. Antigen-specific IFN-gamma responses were detected by enzyme-linked immunospot (ELISPOT) assays in all subjects to multiple 9- to 23-aa peptides containing class I and/or class II restricted epitopes, and were dependent on both CD8(+) and CD4(+) T cells. Overall, frequency of response was significantly greater after i.m. jet injection. CD8(+)-dependent cytotoxic T lymphocytes (CTL) were detected in 8/14 volunteers. Demonstration in <span class="hlt">humans</span> of elicitation of the class I restricted IFN-gamma responses we believe necessary for protection against the liver stage of <span class="hlt">malaria</span> <span class="hlt">parasites</span> brings us closer to an effective <span class="hlt">malaria</span> vaccine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19107524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19107524"><span id="translatedtitle">New <span class="hlt">malaria</span> <span class="hlt">parasites</span> of the subgenus Novyella in African rainforest birds, with remarks on their high prevalence, classification and diagnostics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valkiūnas, Gediminas; Iezhova, Tatjana A; Loiseau, Claire; Smith, Thomas B; Sehgal, Ravinder N M</p> <p>2009-04-01</p> <p>Blood samples from 655 passerine birds were collected in rainforests of Ghana and Cameroon and examined both by microscopy and polymerase chain reaction (PCR)-based techniques. The overall prevalence of Plasmodium spp. was 46.6%, as determined by combining the results of both these diagnostic methods. In comparison to PCR-based diagnostics, microscopic examination of blood films was more sensitive in determining simultaneous infection of Plasmodium spp., but both detection methods showed similar trends of prevalence of <span class="hlt">malaria</span> <span class="hlt">parasites</span> in the same study sites. Plasmodium (Novyella) lucens n. sp., Plasmodium (Novyella) multivacuolaris n. sp. and Plasmodium (Novyella) parahexamerium n. sp. were found in the olive sunbird Cyanomitra olivacea (Nectariniidae), yellow-whiskered greenbul Andropadus latirostris (Picnonotidae), and white-tailed alethe Alethe diademata (Turdidae), respectively. These <span class="hlt">parasites</span> are described based on the morphology of their blood stages and a segment of the mitochondrial cytochrome b (cyt b) gene, which can be used for molecular identification and diagnosis of these species. Illustrations of blood stages of new species are given, and phylogenetic analysis identifies DNA lineages closely related to these <span class="hlt">parasites</span>. <span class="hlt">Malaria</span> <span class="hlt">parasites</span> of the subgenus Novyella with small erythrocytic meronts clearly predominate in African passerines. It is probable that the development of such meronts is a characteristic feature of evolution of Plasmodium spp. in African rainforest birds. Subgeneric taxonomy of avian Plasmodium spp. is discussed based on the recent molecular phylogenies of these <span class="hlt">parasites</span>. It is concluded that a multi-genome phylogeny is needed before revising the current subgeneric classification of Plasmodium. We supported a hypothesis by Hellgren, Krizanauskiene, Valkiūnas, Bensch (J Parasitol 93:889-896, 2007), according to which, haemosporidian species with a genetic differentiation of over 5% in mitochondrial cyt b gene are expected to be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136057','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136057"><span id="translatedtitle">Emergence of Resistance to Atovaquone-Proguanil in <span class="hlt">Malaria</span> <span class="hlt">Parasites</span>: Insights from Computational Modeling and Clinical Case Reports</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Musset, Lise; Hubert, Véronique; Le Bras, Jacques</p> <p>2014-01-01</p> <p>The usefulness of atovaquone-proguanil (AP) as an antimalarial treatment is compromised by the emergence of atovaquone resistance during therapy. However, the origin of the <span class="hlt">parasite</span> mitochondrial DNA (mtDNA) mutation conferring atovaquone resistance remains elusive. Here, we report a patient-based stochastic model that tracks the intrahost emergence of mutations in the multicopy mtDNA during the first erythrocytic <span class="hlt">parasite</span> cycles leading to the <span class="hlt">malaria</span> febrile episode. The effect of mtDNA copy number, mutation rate, mutation cost, and total <span class="hlt">parasite</span> load on the mutant <span class="hlt">parasite</span> load per patient was evaluated. Computer simulations showed that almost any infected patient carried, after four to seven erythrocytic cycles, de novo mutant <span class="hlt">parasites</span> at low frequency, with varied frequencies of <span class="hlt">parasites</span> carrying varied numbers of mutant mtDNA copies. A large interpatient variability in the size of this mutant reservoir was found; this variability was due to the different parameters tested but also to the relaxed replication and partitioning of mtDNA copies during mitosis. We also report seven clinical cases in which AP-resistant infections were treated by AP. These provided evidence that parasiticidal drug concentrations against AP-resistant <span class="hlt">parasites</span> were transiently obtained within days after treatment initiation. Altogether, these results suggest that each patient carries new mtDNA mutant <span class="hlt">parasites</span> that emerge before treatment but are killed by high starting drug concentrations. However, because the size of this mutant reservoir is highly variable from patient to patient, we propose that some patients fail to eliminate all of the mutant <span class="hlt">parasites</span>, repeatedly producing de novo AP treatment failures. PMID:24867967</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27367318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27367318"><span id="translatedtitle">Climate, environment and transmission of <span class="hlt">malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi</p> <p>2016-06-01</p> <p><span class="hlt">Malaria</span>, the most common <span class="hlt">parasitic</span> disease in the world, is transmitted to the <span class="hlt">human</span> host by mosquitoes of the genus Anopheles. The transmission of <span class="hlt">malaria</span> requires the interaction between the host, the vector and the <span class="hlt">parasite</span>.The four species of <span class="hlt">parasites</span> responsible for <span class="hlt">human</span> <span class="hlt">malaria</span> are Plasmodium falciparum, Plasmodium ovale, Plasmodium <span class="hlt">malariae</span> and Plasmodium vivax. Occasionally <span class="hlt">humans</span> can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of <span class="hlt">human</span> <span class="hlt">malaria</span> in South-East Asia since 2004. While P. falciparum is responsible for most <span class="hlt">malaria</span> cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of <span class="hlt">human</span> <span class="hlt">malaria</span> <span class="hlt">parasites</span> is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to <span class="hlt">humans</span> and 41 are considered as dominant vector capable of transmitting <span class="hlt">malaria</span>. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for <span class="hlt">malaria</span> transmission needs strong interaction between <span class="hlt">humans</span>, the ecosystem and infected vectors. Global warming induced by <span class="hlt">human</span> activities has increased the risk of vector-borne diseases such as <span class="hlt">malaria</span>. Recent decades have witnessed changes in the ecosystem and climate without precedent in <span class="hlt">human</span> history although the emphasis in the role of temperature on the epidemiology of <span class="hlt">malaria</span> has given way to predisposing conditions such as ecosystem changes, political</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27367318','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27367318"><span id="translatedtitle">Climate, environment and transmission of <span class="hlt">malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi</p> <p>2016-06-01</p> <p><span class="hlt">Malaria</span>, the most common <span class="hlt">parasitic</span> disease in the world, is transmitted to the <span class="hlt">human</span> host by mosquitoes of the genus Anopheles. The transmission of <span class="hlt">malaria</span> requires the interaction between the host, the vector and the <span class="hlt">parasite</span>.The four species of <span class="hlt">parasites</span> responsible for <span class="hlt">human</span> <span class="hlt">malaria</span> are Plasmodium falciparum, Plasmodium ovale, Plasmodium <span class="hlt">malariae</span> and Plasmodium vivax. Occasionally <span class="hlt">humans</span> can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of <span class="hlt">human</span> <span class="hlt">malaria</span> in South-East Asia since 2004. While P. falciparum is responsible for most <span class="hlt">malaria</span> cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of <span class="hlt">human</span> <span class="hlt">malaria</span> <span class="hlt">parasites</span> is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to <span class="hlt">humans</span> and 41 are considered as dominant vector capable of transmitting <span class="hlt">malaria</span>. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for <span class="hlt">malaria</span> transmission needs strong interaction between <span class="hlt">humans</span>, the ecosystem and infected vectors. Global warming induced by <span class="hlt">human</span> activities has increased the risk of vector-borne diseases such as <span class="hlt">malaria</span>. Recent decades have witnessed changes in the ecosystem and climate without precedent in <span class="hlt">human</span> history although the emphasis in the role of temperature on the epidemiology of <span class="hlt">malaria</span> has given way to predisposing conditions such as ecosystem changes, political</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4187867','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4187867"><span id="translatedtitle">Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent <span class="hlt">Malaria</span> <span class="hlt">Parasites</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.</p> <p>2014-01-01</p> <p>A multistage <span class="hlt">malaria</span> vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the <span class="hlt">parasite</span>, respectively. This strategy could help prevent <span class="hlt">malaria</span> infections in individuals and, on a larger scale, prevent <span class="hlt">malaria</span> transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei <span class="hlt">parasites</span> expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4006898','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4006898"><span id="translatedtitle"><span class="hlt">Malaria</span> <span class="hlt">Parasite</span> Infection Compromises Control of Concurrent Systemic Non-typhoidal Salmonella Infection via IL-10-Mediated Alteration of Myeloid Cell Function</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Butler, Brian P.; Xavier, Mariana N.; Chau, Jennifer Y.; Schaltenberg, Nicola; Begum, Ramie H.; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M.</p> <p>2014-01-01</p> <p>Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum <span class="hlt">malaria</span> can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which <span class="hlt">malaria</span> contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, <span class="hlt">malaria</span> <span class="hlt">parasite</span> infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the <span class="hlt">parasites</span>. In the absence of <span class="hlt">malaria</span> <span class="hlt">parasite</span> infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of <span class="hlt">malaria</span> <span class="hlt">parasite</span>-induced IL-10. Thus, IL-10 produced during the immune response to <span class="hlt">malaria</span> increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection. PMID:24787713</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2572374','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2572374"><span id="translatedtitle">Progress with new <span class="hlt">malaria</span> vaccines.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Webster, Daniel; Hill, Adrian V. S.</p> <p>2003-01-01</p> <p><span class="hlt">Malaria</span> is a <span class="hlt">parasitic</span> disease of major global health significance that causes an estimated 2.7 million deaths each year. In this review we describe the burden of <span class="hlt">malaria</span> and discuss the complicated life cycle of Plasmodium falciparum, the <span class="hlt">parasite</span> responsible for most of the deaths from the disease, before reviewing the evidence that suggests that a <span class="hlt">malaria</span> vaccine is an attainable goal. Significant advances have recently been made in vaccine science, and we review new vaccine technologies and the evaluation of candidate <span class="hlt">malaria</span> vaccines in <span class="hlt">human</span> and animal studies worldwide. Finally, we discuss the prospects for a <span class="hlt">malaria</span> vaccine and the need for iterative vaccine development as well as potential hurdles to be overcome. PMID:14997243</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=Parasite&pg=3&id=EJ305821','ERIC'); return false;" href="http://eric.ed.gov/?q=Parasite&pg=3&id=EJ305821"><span id="translatedtitle">Biology Today: <span class="hlt">Parasites</span> and <span class="hlt">Human</span> Ecology.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Flannery, Maura C.</p> <p>1984-01-01</p> <p>Offers various reasons why the study of <span class="hlt">parasites</span> and the diseases they cause should be incorporated into classroom biology discussions. Examples of several <span class="hlt">parasitic</span> diseases and their ecological significance are provided. (JN)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3541746','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3541746"><span id="translatedtitle">Controlled <span class="hlt">Human</span> <span class="hlt">Malaria</span> Infections by Intradermal Injection of Cryopreserved Plasmodium falciparum Sporozoites</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Roestenberg, Meta; Bijker, Else M.; Sim, B. Kim Lee; Billingsley, Peter F.; James, Eric R.; Bastiaens, Guido J. H.; Teirlinck, Anne C.; Scholzen, Anja; Teelen, Karina; Arens, Theo; van der Ven, André J. A. M.; Gunasekera, Anusha; Chakravarty, Sumana; Velmurugan, Soundarapandian; Hermsen, Cornelus C.; Sauerwein, Robert W.; Hoffman, Stephen L.</p> <p>2013-01-01</p> <p>Controlled <span class="hlt">human</span> <span class="hlt">malaria</span> infection with sporozoites is a standardized and powerful tool for evaluation of <span class="hlt">malaria</span> vaccine and drug efficacy but so far only applied by exposure to bites of Plasmodium falciparum (Pf)-infected mosquitoes. We assessed in an open label Phase 1 trial, infection after intradermal injection of respectively 2,500, 10,000, or 25,000 aseptic, purified, vialed, cryopreserved Pf sporozoites (PfSPZ) in three groups (N = 6/group) of healthy Dutch volunteers. Infection was safe and parasitemia developed in 15 of 18 volunteers (84%), 5 of 6 volunteers in each group. There were no differences between groups in time until parasitemia by microscopy or quantitative polymerase chain reaction, <span class="hlt">parasite</span> kinetics, clinical symptoms, or laboratory values. This is the first successful infection by needle and syringe with PfSPZ manufactured in compliance with regulatory standards. After further optimization, the use of such PfSPZ may facilitate and accelerate clinical development of novel <span class="hlt">malaria</span> drugs and vaccines. PMID:23149582</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21312235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21312235"><span id="translatedtitle">Two nucleus-localized CDK-like kinases with crucial roles for <span class="hlt">malaria</span> <span class="hlt">parasite</span> erythrocytic replication are involved in phosphorylation of splicing factor.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agarwal, Shruti; Kern, Selina; Halbert, Jean; Przyborski, Jude M; Baumeister, Stefan; Dandekar, Thomas; Doerig, Christian; Pradel, Gabriele</p> <p>2011-05-01</p> <p>The kinome of the <span class="hlt">human</span> <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum comprises representatives of most eukaryotic protein kinase groups, including kinases which regulate proliferation and differentiation processes. Despite extensive research on most plasmodial enzymes, little information is available regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family. In other eukaryotes, CLKs regulate mRNA splicing through phosphorylation of Serine/Arginine-rich proteins. Here, we investigate two of the PfCLKs, the Lammer kinase homolog PfCLK-1, and PfCLK-2. Both PfCLKs show homology with the yeast Serine/Arginine protein kinase Sky1p and are transcribed throughout the asexual blood stages and in gametocytes. PfCLK-1/Lammer possesses two nuclear localization signal sites and PfCLK-2 possesses one of these signal sites upstream of the C-terminal catalytic domains. Indirect immunofluorescence, Western blot, and electron microscopy data confirm that the kinases are primarily localized in the <span class="hlt">parasite</span> nucleus, and PfCLK-2 is further present in the cytoplasm. The two kinases are important for completion of the asexual replication cycle of P. falciparum, as demonstrated by reverse genetics approaches. In vitro kinase assays show substrate phosphorylation by the PfCLKs, including the Sky1p substrate, splicing factor Npl3p, and the plasmodial alternative splicing factor PfASF-1. Mass spectrometric analysis of co-immunoprecipitated proteins indicates assembly of the two PfCLKs with proteins with predicted nuclease, phosphatase, or helicase functions. Our data indicate a crucial role of PfCLKs for <span class="hlt">malaria</span> blood stage <span class="hlt">parasites</span>, presumably by participating in gene regulation through the post-transcriptional modification of mRNA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21396372','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21396372"><span id="translatedtitle">Relative clonal proportions over time in mixed-genotype infections of the lizard <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium mexicanum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ford, Alice Flynn; Schall, Jos J</p> <p>2011-06-01</p> <p>Vertebrate hosts of <span class="hlt">malaria</span> <span class="hlt">parasites</span> (Plasmodium) often harbour two or more genetically distinct clones of a single species, and interaction among these co-existing clones can play an important role in Plasmodium biology. However, how relative clonal proportions vary over time in a host is still poorly known. Experimental mixed-clone infections of the lizard <span class="hlt">malaria</span> <span class="hlt">parasite</span>, Plasmodium mexicanum, were followed in its natural host, the western fence lizard using microsatellite markers to determine the relative proportions of two to five co-existing clones over time (2-3 months). Results for two markers, and two PCR primer pairs for one of those, matched very closely, supporting the efficacy of the method. Of the 54 infections, 67% displayed stable relative clonal proportions, with the others showing a shift in proportions, usually with one clone outpacing the others. Infections with rapidly increasing or slowly increasing parasitemia were stable, showing that all clones within these infections reproduced at the same rapid or slow rate. Replicate infections containing the same clones did not always reveal the same growth rate, final parasitemia or dominant clone; thus there was no clone effect for these life history measures. The rate of increase in parasitemia was not associated with stable versus unstable relative proportions, but infections with four to five clones were more likely to be unstable than those with two to three clones. This rare look into events in genetically complex Plasmodium infections suggests that <span class="hlt">parasite</span> clones may be interacting in complex and unexpected ways. PMID:21396372</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1664581','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1664581"><span id="translatedtitle">The separate and combined effects of MHC genotype, <span class="hlt">parasite</span> clone, and host gender on the course of <span class="hlt">malaria</span> in mice</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wedekind, Claus; Walker, Mirjam; Little, Tom J</p> <p>2006-01-01</p> <p>Background The link between host MHC (major histocompatibility complex) genotype and <span class="hlt">malaria</span> is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC × <span class="hlt">parasite</span> clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. Results We found that MHC haplotype and <span class="hlt">parasite</span> clone each have a significant influence on the course of the disease, but there was no significant host genotype by <span class="hlt">parasite</span> genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. Conclusion When tested under experimental conditions, variation in the MHC can significantly influence the course of <span class="hlt">malaria</span>. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections. PMID:17118203</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27349510','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27349510"><span id="translatedtitle">Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian <span class="hlt">malaria</span> <span class="hlt">parasite</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palinauskas, Vaidas; Žiegytė, Rita; Iezhova, Tatjana A; Ilgūnas, Mikas; Bernotienė, Rasa; Valkiūnas, Gediminas</p> <p>2016-10-01</p> <p>Plasmodium elongatum causes severe avian <span class="hlt">malaria</span> and is distributed worldwide. This <span class="hlt">parasite</span> is of particular importance due to its ability to develop and cause lethal <span class="hlt">malaria</span> not only in natural hosts, but also in non-adapted endemic birds such as the brown kiwi and different species of penguins. Information on vectors of this infection is available but is contradictory. PCR-based analysis indicated the possible existence of a cluster of closely related P. elongatum lineages which might differ in their ability to develop in certain mosquitoes and birds. This experimental study provides information about molecular and morphological characterisation of a virulent P. elongatum strain (lineage pERIRUB01) isolated from a naturally infected European robin, Erithacus rubecula. Phylogenetic analysis based on partial cytochrome b gene sequences showed that this <span class="hlt">parasite</span> lineage is closely related to P. elongatum (lineage pGRW6). Blood stages of both <span class="hlt">parasite</span> lineages are indistinguishable, indicating that they belong to the same species. Both pathogens develop in experimentally infected canaries, Serinus canaria, causing death of the hosts. In both these lineages, trophozoites and erythrocytic meronts develop in polychromatic erythrocytes and erythroblasts, gametocytes <span class="hlt">parasitize</span> mature erythrocytes, exoerythrocytic stages develop in cells of the erythrocytic series in bone marrow and are occasionally reported in spleen and liver. Massive infestation of bone marrow cells is the main reason for bird mortality. We report here on syncytium-like remnants of tissue meronts, which slip out of the bone marrow into the peripheral circulation, providing evidence that the syncytia can be a template for PCR amplification. This finding contributes to better understanding positive PCR amplifications in birds when parasitemia is invisible and improved diagnostics of abortive haemosporidian infections. Sporogony of P. elongatum (pERIRUB01) completes the cycle and sporozoites develop in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3219121','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3219121"><span id="translatedtitle"><span class="hlt">Malaria</span> antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in <span class="hlt">humans</span> and Anopheles mosquitoes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A. P.; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J.; Sullivan, David J.; Thuma, Philip E.; Liu, Kun; Agre, Peter</p> <p>2011-01-01</p> <p>Surveillance for drug-resistant <span class="hlt">parasites</span> in <span class="hlt">human</span> blood is a major effort in <span class="hlt">malaria</span> control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when <span class="hlt">parasites</span> in <span class="hlt">human</span> blood were compared with <span class="hlt">parasites</span> in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in <span class="hlt">human</span> P. falciparum infections—S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30–80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in <span class="hlt">parasites</span> from <span class="hlt">human</span> blood samples—S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2–12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent—S108T (90%), with A16V and the 108T+16V double mutant (49–57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in <span class="hlt">humans</span> and mosquitoes. Thus, it may be useful to sample both <span class="hlt">human</span> and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685452','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685452"><span id="translatedtitle">A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of <span class="hlt">malaria</span> <span class="hlt">parasites</span> by mosquitoes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vos, Martijn W.; Stone, Will J. R.; Koolen, Karin M.; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W.; Bousema, Teun; Dechering, Koen J.</p> <p>2015-01-01</p> <p>Current first-line treatments for uncomplicated falciparum <span class="hlt">malaria</span> rapidly clear the asexual stages of the <span class="hlt">parasite</span>, but do not fully prevent <span class="hlt">parasite</span> transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter <span class="hlt">parasite</span> without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for <span class="hlt">Malaria</span> Venture validation and <span class="hlt">malaria</span> boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting <span class="hlt">parasite</span> infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the <span class="hlt">malaria</span> box that may serve as a starting point for further discovery and development of <span class="hlt">malaria</span> transmission blocking drugs. PMID:26687564</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25091627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25091627"><span id="translatedtitle">Interactive transcriptome analysis of <span class="hlt">malaria</span> patients and infecting Plasmodium falciparum.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E M; Mongan, Arthur E; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef; Suzuki, Yutaka</p> <p>2014-09-01</p> <p>To understand the molecular mechanisms of <span class="hlt">parasitism</span> in vivo, it is essential to elucidate how the transcriptomes of the <span class="hlt">human</span> hosts and the infecting <span class="hlt">parasites</span> affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the <span class="hlt">malaria</span> <span class="hlt">parasite</span> Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and <span class="hlt">parasite</span> transcripts and mapped the RNA-seq tags to the <span class="hlt">human</span> and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both <span class="hlt">humans</span> and <span class="hlt">parasites</span>. We identified <span class="hlt">human</span> and <span class="hlt">parasite</span> genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the <span class="hlt">human</span> innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the <span class="hlt">malaria</span> infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of <span class="hlt">humans</span> and <span class="hlt">parasites</span>. We also identified several genetic variations in important anti-<span class="hlt">malaria</span> drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe <span class="hlt">malaria</span> symptoms both in <span class="hlt">humans</span> and <span class="hlt">parasites</span>. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field <span class="hlt">malaria</span> <span class="hlt">parasites</span>, which are far more complex than those observed under laboratory conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22123959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22123959"><span id="translatedtitle">Fy(a)/Fy(b) antigen polymorphism in <span class="hlt">human</span> erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax <span class="hlt">malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>King, Christopher L; Adams, John H; Xianli, Jia; Grimberg, Brian T; McHenry, Amy M; Greenberg, Lior J; Siddiqui, Asim; Howes, Rosalind E; da Silva-Nunes, Monica; Ferreira, Marcelo U; Zimmerman, Peter A</p> <p>2011-12-13</p> <p>Plasmodium vivax (Pv) is a major cause of <span class="hlt">human</span> <span class="hlt">malaria</span> and is increasing in public health importance compared with falciparum <span class="hlt">malaria</span>. Pv is unique among <span class="hlt">human</span> <span class="hlt">malarias</span> in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fy(a) or Fy(b), resulting from a single-point mutation. This mutation occurs within the binding domain of the <span class="hlt">parasite</span>'s red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax <span class="hlt">malaria</span> is unknown. Here we show that Fy(a), compared with Fy(b), significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in <span class="hlt">humans</span>. Erythrocytes expressing Fy(a) had 41-50% lower binding compared with Fy(b) cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fy(a+b-) phenotype demonstrated a 30-80% reduced risk of clinical vivax, but not falciparum <span class="hlt">malaria</span> in a prospective cohort study in the Brazilian Amazon. The Fy(a+b-) phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax <span class="hlt">malaria</span>. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26883585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26883585"><span id="translatedtitle">Serological Conservation of <span class="hlt">Parasite</span>-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood <span class="hlt">Malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C</p> <p>2016-05-01</p> <p>Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to <span class="hlt">malaria</span>. Previous studies have demonstrated that in areas where <span class="hlt">malaria</span> is endemic, antibodies to infected erythrocytes from children with severe <span class="hlt">malaria</span> tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere <span class="hlt">malaria</span>. These data have led to a working hypothesis that PfEMP1 variants associated with <span class="hlt">parasite</span> virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the <span class="hlt">parasite</span> population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe <span class="hlt">malaria</span>. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe <span class="hlt">malaria</span>. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe <span class="hlt">malaria</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26410104','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26410104"><span id="translatedtitle"><span class="hlt">Human</span> immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective <span class="hlt">human</span> humoral immunity against <span class="hlt">malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya</p> <p>2015-12-01</p> <p>In this study, we developed <span class="hlt">human</span> immune system (HIS) mice that possess functional <span class="hlt">human</span> CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various <span class="hlt">human</span> cytokines and <span class="hlt">human</span> B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting <span class="hlt">human</span> hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of <span class="hlt">human</span> CD4+ T and B cells resembles to that of <span class="hlt">humans</span>, produced a significant level of <span class="hlt">human</span> IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in <span class="hlt">humans</span>, are functional, since PfCS protein-specific <span class="hlt">human</span> CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the <span class="hlt">parasite</span> invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective <span class="hlt">human</span> anti-<span class="hlt">malaria</span> immunity, consisting of <span class="hlt">human</span> IgG and <span class="hlt">human</span> CD4+ T cell responses both specific for a <span class="hlt">human</span> <span class="hlt">malaria</span> antigen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26410104','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26410104"><span id="translatedtitle"><span class="hlt">Human</span> immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective <span class="hlt">human</span> humoral immunity against <span class="hlt">malaria</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya</p> <p>2015-12-01</p> <p>In this study, we developed <span class="hlt">human</span> immune system (HIS) mice that possess functional <span class="hlt">human</span> CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various <span class="hlt">human</span> cytokines and <span class="hlt">human</span> B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting <span class="hlt">human</span> hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of <span class="hlt">human</span> CD4+ T and B cells resembles to that of <span class="hlt">humans</span>, produced a significant level of <span class="hlt">human</span> IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in <span class="hlt">humans</span>, are functional, since PfCS protein-specific <span class="hlt">human</span> CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the <span class="hlt">parasite</span> invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective <span class="hlt">human</span> anti-<span class="hlt">malaria</span> immunity, consisting of <span class="hlt">human</span> IgG and <span class="hlt">human</span> CD4+ T cell responses both specific for a <span class="hlt">human</span> <span class="hlt">malaria</span> antigen. PMID:26410104</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4775975','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4775975"><span id="translatedtitle">Maduramicin Rapidly Eliminates <span class="hlt">Malaria</span> <span class="hlt">Parasites</span> and Potentiates the Gametocytocidal Activity of the Pyrazoleamide PA21A050</span></a></p> <p><a ta