Science.gov

Sample records for human malaria parasites

  1. Topoisomerase II from Human Malaria Parasites

    PubMed Central

    Mudeppa, Devaraja G.; Kumar, Shiva; Kokkonda, Sreekanth; White, John; Rathod, Pradipsinh K.

    2015-01-01

    Historically, type II topoisomerases have yielded clinically useful drugs for the treatment of bacterial infections and cancer, but the corresponding enzymes from malaria parasites remain understudied. This is due to the general challenges of producing malaria proteins in functional forms in heterologous expression systems. Here, we express full-length Plasmodium falciparum topoisomerase II (PfTopoII) in a wheat germ cell-free transcription-translation system. Functional activity of soluble PfTopoII from the translation lysates was confirmed through both a plasmid relaxation and a DNA decatenation activity that was dependent on magnesium and ATP. To facilitate future drug discovery, a convenient and sensitive fluorescence assay was established to follow DNA decatenation, and a stable, truncated PfTopoII was engineered for high level enzyme production. PfTopoII was purified using a DNA affinity column. Existing TopoII inhibitors previously developed for other non-malaria indications inhibited PfTopoII, as well as malaria parasites in culture at submicromolar concentrations. Even before optimization, inhibitors of bacterial gyrase, GSK299423, ciprofloxacin, and etoposide exhibited 15-, 57-, and 3-fold selectivity for the malarial enzyme over human TopoII. Finally, it was possible to use the purified PfTopoII to dissect the different modes by which these varying classes of TopoII inhibitors could trap partially processed DNA. The present biochemical advancements will allow high throughput chemical screening of compound libraries and lead optimization to develop new lines of antimalarials. PMID:26055707

  2. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites

    PubMed Central

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; del Portillo, Hernando; Janse, Chris J.; Heussler, Volker; Spielmann, Tobias

    2016-01-01

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence. PMID:27225796

  3. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites.

    PubMed

    De Niz, Mariana; Ullrich, Ann-Katrin; Heiber, Arlett; Blancke Soares, Alexandra; Pick, Christian; Lyck, Ruth; Keller, Derya; Kaiser, Gesine; Prado, Monica; Flemming, Sven; Del Portillo, Hernando; Janse, Chris J; Heussler, Volker; Spielmann, Tobias

    2016-05-26

    Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.

  4. Comparative genomics of the neglected human malaria parasite Plasmodium vivax

    PubMed Central

    Carlton, Jane M.; Adams, John H.; Silva, Joana C.; Bidwell, Shelby L.; Lorenzi, Hernan; Caler, Elisabet; Crabtree, Jonathan; Angiuoli, Samuel V.; Merino, Emilio F.; Amedeo, Paolo; Cheng, Qin; Coulson, Richard M. R.; Crabb, Brendan S.; del Portillo, Hernando A.; Essien, Kobby; Feldblyum, Tamara V.; Fernandez-Becerra, Carmen; Gilson, Paul R.; Gueye, Amy H.; Guo, Xiang; Kang’a, Simon; Kooij, Taco W. A.; Korsinczky, Michael; Meyer, Esmeralda V.-S.; Nene, Vish; Paulsen, Ian; White, Owen; Ralph, Stuart A.; Ren, Qinghu; Sargeant, Tobias J.; Salzberg, Steven L.; Stoeckert, Christian J.; Sullivan, Steven A.; Yamamoto, Marcio Massao; Hoffman, Stephen L.; Wortman, Jennifer R.; Gardner, Malcolm J.; Galinski, Mary R.; Barnwell, John W.; Fraser-Liggett, Claire M.

    2008-01-01

    The human malaria parasite Plasmodium vivax is responsible for 25-40% of the ~515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated in the laboratory except in non-human primates. We determined the genome sequence of P. vivax in order to shed light on its distinctive biologic features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternate invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance scientific investigation into this neglected species. PMID:18843361

  5. Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins.

    PubMed

    Salman, Ahmed M; Mogollon, Catherin Marin; Lin, Jing-Wen; van Pul, Fiona J A; Janse, Chris J; Khan, Shahid M

    2015-01-01

    We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an "additional gene" into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive-negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.The different

  6. Origin of the human malaria parasite Plasmodium falciparum in gorillas

    PubMed Central

    Liu, Weimin; Li, Yingying; Learn, Gerald H.; Rudicell, Rebecca S.; Robertson, Joel D.; Keele, Brandon F.; Ndjango, Jean-Bosco N.; Sanz, Crickette M.; Morgan, David B.; Locatelli, Sabrina; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V.; Muller, Martin N.; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Rayner, Julian C.; Hahn, Beatrice H.

    2010-01-01

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here, we developed a novel polymerase chain reaction based single genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in fecal samples of wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed, and almost always comprised of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas was comprised of parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla and not of chimpanzee, bonobo or ancient human origin. PMID:20864995

  7. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  8. Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

    PubMed Central

    Kobylinski, Kevin C.; Alout, Haoues; Foy, Brian D.; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E.; Richardson, Jason H.

    2014-01-01

    Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression. PMID:25070998

  9. Development of humanized mouse models to study human malaria parasite infection.

    PubMed

    Vaughan, Ashley M; Kappe, Stefan H I; Ploss, Alexander; Mikolajczak, Sebastian A

    2012-05-01

    Malaria is a disease caused by infection with Plasmodium parasites that are transmitted by mosquito bite. Five different species of Plasmodium infect humans with severe disease, but human malaria is primarily caused by Plasmodium falciparum. The burden of malaria on the developing world is enormous, and a fully protective vaccine is still elusive. One of the biggest challenges in the quest for the development of new antimalarial drugs and vaccines is the lack of accessible animal models to study P. falciparum infection because the parasite is restricted to the great apes and human hosts. Here, we review the current state of research in this field and provide an outlook of the development of humanized small animal models to study P. falciparum infection that will accelerate fundamental research into human parasite biology and could accelerate drug and vaccine design in the future.

  10. Heritability of the Human Infectious Reservoir of Malaria Parasites

    PubMed Central

    Marrama, Laurence; Konate, Lassana; Phimpraphi, Waraphon; Sokhna, Cheikh; Tall, Adama; Diène Sarr, Fatoumata; Peerapittayamongkol, Chayanon; Louicharoen, Chalisa; Schneider, Bradley S.; Levescot, Anaïs; Talman, Arthur; Casademont, Isabelle; Menard, Didier; Trape, Jean-François; Rogier, Christophe; Kaewkunwal, Jaranit; Sura, Thanyachai; Nuchprayoon, Issarang; Ariey, Frederic; Baril, Laurence; Singhasivanon, Pratap; Mercereau-Puijalon, Odile; Paul, Rick

    2010-01-01

    Background Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. Methods and Findings We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2–8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site). A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. Conclusions The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained. PMID:20613877

  11. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    PubMed Central

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes. PMID:21317311

  12. Proteomics of the human malaria parasite Plasmodium falciparum.

    PubMed

    Sims, Paul F G; Hyde, John E

    2006-02-01

    The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.

  13. Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans

    PubMed Central

    Verhulst, Niels O.; Smallegange, Renate C.; Takken, Willem

    2012-01-01

    Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and chimpanzees that are closely related to human Plasmodium species. Moreover, P. knowlesi, long known as a parasite of monkeys, frequently infects humans. The requirements for such a cross-species exchange and especially the role of mosquitoes in this process are discussed, as the latter may act as bridge vectors of Plasmodium species between different primates. Little is known about the mosquito species that would bite both humans and NHPs and if so, whether humans and NHPs share the same Plasmodium vectors. To understand the vector-host interactions that can lead to an increased Plasmodium transmission between species, studies are required that reveal the nature of these interactions. Studying the potential role of NHPs as a Plasmodium reservoir for humans will contribute to the ongoing efforts of human malaria elimination, and will help to focus on critical areas that should be considered in achieving this goal. PMID:22701434

  14. Genome sequence of the human malaria parasite Plasmodium falciparum.

    PubMed

    Gardner, Malcolm J; Hall, Neil; Fung, Eula; White, Owen; Berriman, Matthew; Hyman, Richard W; Carlton, Jane M; Pain, Arnab; Nelson, Karen E; Bowman, Sharen; Paulsen, Ian T; James, Keith; Eisen, Jonathan A; Rutherford, Kim; Salzberg, Steven L; Craig, Alister; Kyes, Sue; Chan, Man-Suen; Nene, Vishvanath; Shallom, Shamira J; Suh, Bernard; Peterson, Jeremy; Angiuoli, Sam; Pertea, Mihaela; Allen, Jonathan; Selengut, Jeremy; Haft, Daniel; Mather, Michael W; Vaidya, Akhil B; Martin, David M A; Fairlamb, Alan H; Fraunholz, Martin J; Roos, David S; Ralph, Stuart A; McFadden, Geoffrey I; Cummings, Leda M; Subramanian, G Mani; Mungall, Chris; Venter, J Craig; Carucci, Daniel J; Hoffman, Stephen L; Newbold, Chris; Davis, Ronald W; Fraser, Claire M; Barrell, Bart

    2002-10-03

    The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

  15. Intraerythrocytic Killing of Malaria Parasites

    DTIC Science & Technology

    1989-05-12

    immunity (23, 24) and its relevance to human malaria (25). 4. The effect of the B- thalassemia mutation on ralaria-infectcd mice arid the role of the spleen...detected. Thus, Pc96 shares a cross-reactive epitope with these three primate malaria antigens. 4. Effect of B- thalassemia on malaria-infected mice and...B- thalassemia against malaria, rodent malaria parasites were studied in C57BL/6J mice with B- thalassemia , in mice in which the thalassemia had been

  16. The Genome of Haemoproteus tartakovskyi and Its Relationship to Human Malaria Parasites

    PubMed Central

    Bensch, Staffan; Canbäck, Björn; DeBarry, Jeremy D.; Johansson, Tomas; Hellgren, Olof; Kissinger, Jessica C.; Palinauskas, Vaidas; Videvall, Elin; Valkiūnas, Gediminas

    2016-01-01

    The phylogenetic relationships among hemosporidian parasites, including the origin of Plasmodium falciparum, the most virulent malaria parasite of humans, have been heavily debated for decades. Studies based on multiple-gene sequences have helped settle many of these controversial phylogenetic issues. However, denser taxon sampling and genome-wide analyses are needed to confidently resolve the evolutionay relationships among hemosporidian parasites. Genome sequences of several Plasmodium parasites are available but only for species infecting primates and rodents. To root the phylogenetic tree of Plasmodium, genomic data from related parasites of birds or reptiles are required. Here, we use a novel approach to isolate parasite DNA from microgametes and describe the first genome of a bird parasite in the sister genus to Plasmodium, Haemoproteus tartakovskyi. Similar to Plasmodium parasites, H. tartakovskyi has a small genome (23.2 Mb, 5,990 genes) and a GC content (25.4%) closer to P. falciparum (19.3%) than to Plasmodium vivax (42.3%). Combined with novel transcriptome sequences of the bird parasite Plasmodium ashfordi, our phylogenomic analyses of 1,302 orthologous genes demonstrate that mammalian-infecting malaria parasites are monophyletic, thus rejecting the repeatedly proposed hypothesis that the ancestor of Laverania parasites originated from a secondary host shift from birds to humans. Genes and genomic features previously found to be shared between P. falciparum and bird malaria parasites, but absent in other mammal malaria parasites, are therefore signatures of maintained ancestral states. We foresee that the genome of H. tartakovskyi will open new directions for comparative evolutionary analyses of malarial adaptive traits. PMID:27190205

  17. Microsatellite analysis of malaria parasites.

    PubMed

    Orjuela-Sánchez, Pamela; Brandi, Michelle C; Ferreira, Marcelo U

    2013-01-01

    Microsatellites have been increasingly used to investigate the population structure of malaria parasites, to map genetic loci contributing to phenotypes such as drug resistance and virulence in laboratory crosses and genome-wide association studies and to distinguish between treatment failures and new infections in clinical trials. Here, we provide optimized protocols for genotyping highly polymorphic microsatellites sampled from across the genomes of the human malaria parasites Plasmodium falciparum and P. vivax that have been extensively used in research laboratories worldwide.

  18. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi

    PubMed Central

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul B.; Rchiad, Zineb; Knuepfer, Ellen; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen. PMID:27303038

  19. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi.

    PubMed

    Moon, Robert W; Sharaf, Hazem; Hastings, Claire H; Ho, Yung Shwen; Nair, Mridul B; Rchiad, Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J; Holder, Anthony A

    2016-06-28

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  20. Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections

    PubMed Central

    Kaushansky, Alexis; Mikolajczak, Sebastian A.; Vignali, Marissa; Kappe, Stefan H.I.

    2014-01-01

    Forty percent of people worldwide are at risk of malaria infection, and despite control efforts it remains the most deadly parasitic disease. Unfortunately, rapid discovery and development of new interventions for malaria are hindered by the lack of small animal models that support the complex life cycles of the main parasite species infecting humans. Such tools must accommodate human parasite tropism for human tissue. Mouse models with human tissue developed to date have already enhanced our knowledge of human parasites, and are useful tools for assessing anti-parasitic interventions. Although these systems are imperfect, their continued refinement will likely broaden their utility. Some of the malaria parasite’s interactions with human hepatocytes and human erythrocytes can already be modeled with available humanized mouse systems. However, interactions with other relevant human tissues such as the skin and immune system, as well as most transitions between life cycle stages in vivo will require refinement of existing humanized mouse models. Here, we review the recent successes achieved in modeling human malaria parasite biology in humanized mice, and discuss how these models have potential to become an valuable part of the toolbox used for understanding the biology of, and development of interventions to, malaria. PMID:24506682

  1. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.

    PubMed

    Hikosaka, Kenji; Hirai, Makoto; Komatsuya, Keisuke; Ono, Yasuo; Kita, Kiyoshi

    2015-06-01

    The intraerythrocytic form of the human malaria parasite Plasmodium falciparum relies on glycolysis for its energy requirements. In glycolysis, lactate is an end product. It is therefore known that lactate accumulates in in vitro culture; however, its influence on parasite growth remains unknown. Here we investigated the effect of lactate on the development of P. falciparum during in vitro culture under lactate supplementation in detail. Results revealed that lactate retarded parasite development and reduced the number of merozoites in the schizont stage. These findings suggest that lactate has the potential to affect parasite development.

  2. Malaria

    MedlinePlus

    Quartan malaria; Falciparum malaria; Biduoterian fever; Blackwater fever; Tertian malaria; Plasmodium ... Malaria is caused by a parasite that is passed to humans by the bite of infected Anopheles ...

  3. In Vitro Activity of Riboflavin against the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Akompong, Thomas; Ghori, Nafisa; Haldar, Kasturi

    2000-01-01

    The human malaria parasite Plasmodium falciparum digests hemoglobin and polymerizes the released free heme into hemozoin. This activity occurs in an acidic organelle called the food vacuole and is essential for survival of the parasite in erythrocytes. Since acidic conditions are known to enhance the auto-oxidation of hemoglobin, we investigated whether hemoglobin ingested by the parasite was oxidized and whether the oxidation process could be a target for chemotherapy against malaria. We released parasites from their host cells and separately analyzed hemoglobin ingested by the parasites from that remaining in the erythrocytes. Isolated parasites contained elevated amounts (38.5% ± 3.5%) of oxidized hemoglobin (methemoglobin) compared to levels (0.8% ± 0.2%) found in normal, uninfected erythrocytes. Further, treatment of infected cells with the reducing agent riboflavin for 24 h decreased the parasite methemoglobin level by 55%. It also inhibited hemozoin production by 50% and decreased the average size of the food vacuole by 47%. Administration of riboflavin for 48 h resulted in a 65% decrease in food vacuole size and inhibited asexual parasite growth in cultures. High doses of riboflavin are used clinically to treat congenital methemoglobinemia without any adverse side effects. This activity, in conjunction with its impressive antimalarial activity, makes riboflavin attractive as a safe and inexpensive drug for treating malaria caused by P. falciparum. PMID:10602728

  4. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    PubMed

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  5. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    PubMed Central

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G.

    2015-01-01

    Background The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. Methods We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Findings Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. Interpretation This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts. PMID:26501116

  6. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  7. Malaria parasite clearance.

    PubMed

    White, Nicholas J

    2017-02-23

    Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order processes. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deformable, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-pharmacodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeutic responses and in dose-optimization.

  8. Malaria parasite development in mosquitoes.

    PubMed

    Beier, J C

    1998-01-01

    Mosquitoes of the genus Anopheles transmit malaria parasites to humans. Anopheles mosquito species vary in their vector potential because of environmental conditions and factors affecting their abundance, blood-feeding behavior, survival, and ability to support malaria parasite development. In the complex life cycle of the parasite in female mosquitoes, a process termed sporogony, mosquitoes acquire gametocyte-stage parasites from blood-feeding on an infected host. The parasites carry out fertilization in the midgut, transform to ookinetes, then oocysts, which produce sporozoites. Sporozoites invade the salivary glands and are transmitted when the mosquito feeds on another host. Most individual mosquitoes that ingest gametocytes do not support development to the sporozoite stage. Bottle-necks occur at every stage of the cycle in the mosquito. Powerful new techniques and approaches exist for evaluating malaria parasite development and for identifying mechanisms regulating malaria parasite-vector interactions. This review focuses on those interactions that are important for the development of new approaches for evaluating and blocking transmission in nature.

  9. Polymerase chain reaction detection of human host preference and Plasmodium parasite infections in field collected potential malaria vectors.

    PubMed

    Dhiman, Sunil; Bhola, Rakesh Kumar; Goswami, Diganta; Rabha, Bipul; Kumar, Dinesh; Baruah, Indra; Singh, Lokendra

    2012-07-01

    This study was carried out to determine the human host preference and presence of Plasmodium parasite in field collected Anopheles mosquitoes among four villages around a military cantonment located in malaria endemic Sonitpur district of Assam, India. Encountered malaria vector mosquitoes were identified and tested for host preference and Plasmodium presence using PCR method. Human host preference was detected using simple PCR, whereas vectorial status for Plasmodium parasite was confirmed using first round PCR with genus specific primers and thereafter nested PCR with three Plasmodium species specific primers. Out of 1874 blood fed vector mosquitoes collected, 187 (10%) were processed for PCR, which revealed that 40·6% had fed on human blood; 9·2% of human blood fed mosquito were harbouring Plasmodium parasites, 71·4% of which were confirmed to Plasmodium falciparum. In addition to An. minimus, An. annularis and An. culicifacies were also found positive for malaria parasites. The present study exhibits the human feeding tendency of Anopheles vectors highlighting their malaria parasite transmission potential. The present study may serve as a model for understanding the human host preference of malaria vectors and detection of malaria parasite inside the anopheline vector mosquitoes in order to update their vectorial status for estimating the possible role of these mosquitoes in malaria transmission. The study has used PCR method and suggests that PCR-based method should be used in this entire malarious region to correctly report the vectorial position of different malaria vectors.

  10. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum.

    PubMed

    Cervantes, Serena; Bunnik, Evelien M; Saraf, Anita; Conner, Christopher M; Escalante, Aster; Sardiu, Mihaela E; Ponts, Nadia; Prudhomme, Jacques; Florens, Laurence; Le Roch, Karine G

    2014-01-01

    Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.

  11. Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum.

    PubMed

    Carucci, D J

    2001-05-01

    Infection with any of the four species of Plasmodium single cell parasites that infects humans causes the clinical disease, malaria. Of these, it is Plasmodium falciparum that is responsible for the majority of the 1.5-2.3 million deaths due to this disease each year. Worldwide there are between 300-500 million cases of malaria annually. To date there is no licensed vaccine and resistance to most of the available drugs used to prevent and/or treat malaria is spreading. There is therefore an urgent need to develop new and effective drugs and vaccines against this devastating parasite. We have outlined a strategy using a combination of DNA-based vaccines and the data derived from the soon-to-be completed P. falciparum genome and the genomes of other species of Plasmodium to develop new vaccines against malaria. Much of the technology that we are developing for vaccine target identification is directly applicable to the identification of potential targets for drug discovery. The publicly available genome sequence data also provides a means for researchers whose focus may not be primarily malaria to leverage their research on cancer, yeast biology and other research areas to the biological problems of malaria.

  12. Unusual presentation of Plasmodium vivax: a neglected human malaria parasite.

    PubMed

    Kute, Vivek B; Goswami, Jitendra G; Vanikar, Aruna V; Shah, Pankaj R; Gumber, Manoj R; Patel, Himanshu V; Kanodia, Kamal V; Trivedi, Hargovind L

    2012-06-01

    Severe and complicated malaria is usually caused by Plasmodium falciparum malaria (PF) but it has been increasingly observed that Plasmodium vivax malaria (PV), which was otherwise considered to be benign malaria, with a low case-fatality ratio, can also occasionally result in severe disease as with PF malaria. There is an urgent need to re-examine the clinical spectrum and burden of PV so that adequate control measures can be implemented against this emerging but neglected disease. We report a case of severe PV malaria with multi-organ dysfunction. Patients exhibited acute kidney injury, severe anemia/thrombocytopenia, jaundice, hypoglycemia, hyponatremia, and pulmonary edema. Peripheral blood microscopy by trained and expert pathologist and rapid diagnostic test showed the presence of PV and absence of PF. The patient recovered completely with anti-malarial drugs, supportive measures, and hemodialysis.Recent microrheologic research that analyzed malaria severity in PV clearly demonstrated enhanced aggregation, erythrocyte clumping, and reduced deformability affecting microcirculation. Our case report highlights the fact that PV malaria is benign by name but not always by nature. PV can lead to unusual and potentially life-threatening complications. Further large-scale multi-centric studies are needed to define this less known entity.

  13. Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins

    PubMed Central

    Brazier, Andrew J.; Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell

    2017-01-01

    ABSTRACT Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P

  14. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    PubMed

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching.

  15. Enhanced choline and Rb+ transport in human erythrocytes infected with the malaria parasite Plasmodium falciparum.

    PubMed Central

    Kirk, K; Wong, H Y; Elford, B C; Newbold, C I; Ellory, J C

    1991-01-01

    Human erythrocytes infected in vitro with the malaria parasite Plasmodium falciparum showed a markedly increased rate of choline influx compared with normal cells. Choline transport into uninfected cells (cultured in parallel with infected cells) obeyed Michaelis-Menten kinetics (Km approximately 11 microM). In malaria-parasite-infected cells there was an additional choline-transport component which failed to saturate at extracellular concentrations of up to 500 microM. This component was less sensitive than the endogenous transporter to inhibition by the Cinchona bark alkaloids quinine, quinidine, cinchonine and cinchonidine, but showed a much greater sensitivity than the native system to inhibition by piperine. The sensitivity of the induced choline transport to these reagents was similar to that of the malaria-induced (ouabain- and bumetanide-resistant) Rb(+)-transport pathway; however, the relative magnitudes of the piperine-sensitive choline and Rb+ fluxes in malaria-parasite-infected cells varied between cultures. This suggests either that the enhanced transport of the two cations was via functionally distinct (albeit pharmacologically similar) pathways, or that the transport was mediated by a pathway with variable substrate selectivity. PMID:1898345

  16. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thomas, James A.; Collins, Christine R.; Das, Sujaan; Hackett, Fiona; Graindorge, Arnault; Bell, Donald; Deu, Edgar; Blackman, Michael J.

    2016-01-01

    Malaria is caused by an obligate intracellular protozoan parasite that replicates within and destroys erythrocytes. Asexual blood stages of the causative agent of the most virulent form of human malaria, Plasmodium falciparum, can be cultivated indefinitely in vitro in human erythrocytes, facilitating experimental analysis of parasite cell biology, biochemistry and genetics. However, efforts to improve understanding of the basic biology of this important pathogen and to develop urgently required new antimalarial drugs and vaccines, suffer from a paucity of basic research tools. This includes a simple means of quantifying the effects of drugs, antibodies and gene modifications on parasite fitness and replication rates. Here we describe the development and validation of an extremely simple, robust plaque assay that can be used to visualise parasite replication and resulting host erythrocyte destruction at the level of clonal parasite populations. We demonstrate applications of the plaque assay by using it for the phenotypic characterisation of two P. falciparum conditional mutants displaying reduced fitness in vitro. PMID:27332706

  17. High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA

    PubMed Central

    2011-01-01

    Background Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. Methods High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. Results High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. Conclusions High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots. PMID:21824391

  18. Vacuolar proton pumps in malaria parasite cells.

    PubMed

    Moriyama, Yoshinori; Hayashi, Mitsuko; Yatsushiro, Shouki; Yamamoto, Akitsugu

    2003-08-01

    The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.

  19. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    PubMed Central

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  20. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum.

    PubMed

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    2012-08-01

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of (1)O(2) by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While (1) O(2) is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of (1)O(2) we have established a new cytometric method that allows the stage specific quantification of (1)O(2). Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200-600 pixels for rings, 700-1,200 pixels for trophozoites and 1,400-2,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous (1)O(2) of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that (1)O(2) derives predominantly from the digestion of hemoglobin.

  1. Ungulate malaria parasites

    PubMed Central

    Templeton, Thomas J.; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A.; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  2. Malaria parasite sequences from chimpanzee support the co-speciation hypothesis for the origin of virulent human malaria (Plasmodium falciparum).

    PubMed

    Hughes, Austin L; Verra, Federica

    2010-10-01

    Phylogenetic analyses of the mitochondrial cytochrome b (cytb), apicoplast caseinolytic protease C (clpC), and 18S rRNA sequences of Plasmodium isolates from chimpanzees along with those of the virulent human malaria parasite P. falciparum showed that the common chimpanzee (Pan troglodytes) malaria parasites, assigned by Rich et al. (2009) to P. reichenowi, constitute a paraphyletic assemblage. The assumption that P. falciparum diverged from P. reichenowi as recently as 5000-50,000 years ago would require a rate of synonymous substitution/site/year in cytb and clpC on the order of 10(-5)-10(-6), several orders of magnitude higher than any known from eukaryotic organelle genomes, and would imply an unrealistically recent timing of the most recent common ancestor of P. falciparum mitochondrial genomes. The available data are thus most consistent with the hypothesis that P. reichenowi (in the strict sense) and P. falciparum co-speciated with their hosts about 5-7 million years ago.

  3. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.

    PubMed

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K; Jiang, Rays H Y; Abshire, James R; Patel, Saurabh D; Goldberg, Jonathan M; Moreno, Yovany; Kono, Maya; Niles, Jacquin C; Duraisingh, Manoj T

    2016-04-04

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.

  4. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

    PubMed Central

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K.; Jiang, Rays H. Y.; Abshire, James R.; Patel, Saurabh D.; Goldberg, Jonathan M.; Moreno, Yovany; Kono, Maya; Niles, Jacquin C.; Duraisingh, Manoj T.

    2016-01-01

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. PMID:27041489

  5. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR)

    PubMed Central

    Koepfli, Cristian; Nguitragool, Wang; Hofmann, Natalie E.; Robinson, Leanne J.; Ome-Kaius, Maria; Sattabongkot, Jetsumon; Felger, Ingrid; Mueller, Ivo

    2016-01-01

    Accurate quantification of parasite density in the human host is essential for understanding the biology and pathology of malaria. Semi-quantitative molecular methods are widely applied, but the need for an external standard curve makes it difficult to compare parasite density estimates across studies. Droplet digital PCR (ddPCR) allows direct quantification without the need for a standard curve. ddPCR was used to diagnose and quantify P. falciparum and P. vivax in clinical patients as well as in asymptomatic samples. ddPCR yielded highly reproducible measurements across the range of parasite densities observed in humans, and showed higher sensitivity than qPCR to diagnose P. falciparum, and equal sensitivity for P. vivax. Correspondence in quantification was very high (>0.95) between qPCR and ddPCR. Quantification between technical replicates by ddPCR differed 1.5–1.7-fold, compared to 2.4–6.2-fold by qPCR. ddPCR facilitates parasite quantification for studies where absolute densities are required, and will increase comparability of results reported from different laboratories. PMID:27982132

  6. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  7. Methodology and Application of Flow Cytometry for Investigation of Human Malaria Parasites

    PubMed Central

    Grimberg, Brian T.

    2011-01-01

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. PMID:21296083

  8. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    PubMed

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  9. Sequence and diversity of DRB genes of Aotus nancymaae, a primate model for human malaria parasites.

    PubMed

    Nino-Vasquez, J J; Vogel, D; Rodriguez, R; Moreno, A; Patarroyo, M E; Pluschke, G; Daubenberger, C A

    2000-03-01

    The New World primate Aotus nancymaae is susceptible to infection with the human malaria parasite Plasmodium falciparum and Plasmodium vivax and has therefore been recommended by the World Health Organization as a model for evaluation of malaria vaccine candidates. We present here a first step in the molecular characterization of the major histocompatibility complex (MHC) class II DRB genes of Aotus nancymaae (owl monkey or night monkey) by nucleotide sequence analysis of the polymorphic exon 2 segments. In a group of 15 nonrelated animals captivated in the wild, 34 MHC DRB alleles could be identified. Six allelic lineages were detected, two of them having human counterparts, while two other lineages have not been described in any other New World monkey species studied. As in the common marmoset, the diversity of DRB alleles appears to have arisen largely by point mutations in the beta-pleated sheets and by frequent exchange of fixed sequence motifs in the alpha-helical portion. Pairs of alleles differing only at amino acid position b86 by an exchange of valine to glycine are present in Aotus, as in humans. Essential amino acid residues contributing to MHC DR peptide binding pockets number 1 and 4 are conserved or semiconserved between HLA-DR and Aona-DRB molecules, indicating a capacity to bind similar peptide repertoires. These results support fully our using Aotus monkeys as an animal model for evaluation of future subunit vaccine candidates.

  10. Malaria, microscopic view of cellular parasites (image)

    MedlinePlus

    Malaria is a disease caused by parasites that are carried by mosquitoes. Once in the bloodstream, the parasite inhabits the red blood cell (RBC). This picture shows purple-stained malaria parasites inside red blood cells.

  11. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

    2012-01-01

    SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

  12. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  13. Inhibition of malaria parasite invasion of human erythrocytes by a lymphocyte membrane polypeptide.

    PubMed

    Benzaquen-Geffin, R; Milner, Y; Ginsburg, H

    1987-02-01

    Extraction by boiling of the buffy coat of human blood yields a protein solution which inhibits the propagation of the human malaria parasite Plasmodium falciparum in culture with a 50% inhibitory dose of 105 micrograms of protein per ml. The inhibitory activity is associated exclusively with the lymphocytes and affects solely the invasion of erythrocytes by free merozoites. Boiled extracts of isolated lymphocytes had a 50% inhibitory dose of 22 micrograms/ml. Fractionation of surface-labeled or pronase-treated lymphocytes revealed that the antimalarial lymphocyte factor is associated with the intracellular aspect of the membrane fraction and is probably not involved in the host defense system against malaria. Further purification by salt extraction, ion-exchange chromatography, molecular gel filtration, and electroelution from lithium dodecyl sulfate-polyacrylamide gels resulted in 300- to 550-fold purification, i.e., a 50% inhibitory dose of 40 to 70 ng/ml. All inhibitory fractions contained a 48-kilodalton polypeptide which eluted from a gel filtration column as a 400-kilodalton species, implying multimeric association. Some 6,000 molecules of the 48-kilodalton polypeptide bind with high affinity to one merozoite, the free form of the parasite. The Kd of 0.1 to 0.5 nM for the binding of the 48-kilodalton polypeptide correlated well with the 50% inhibitory dose of 0.3 to 0.4 nM obtained with purified active antimalarial lymphocyte factor. We therefore suggest that the 48-kilodalton polypeptide partially purified from lymphocyte membranes is the antimalarial lymphocyte factor and that it exerts its inhibitory activity by binding to merozoites, thereby preventing their invasion into erythrocytes. The antimalarial lymphocyte factor or a polypeptide sequence thereof could serve for further probing of invasion at the molecular level.

  14. Inhibition of malaria parasite invasion of human erythrocytes by a lymphocyte membrane polypeptide.

    PubMed Central

    Benzaquen-Geffin, R; Milner, Y; Ginsburg, H

    1987-01-01

    Extraction by boiling of the buffy coat of human blood yields a protein solution which inhibits the propagation of the human malaria parasite Plasmodium falciparum in culture with a 50% inhibitory dose of 105 micrograms of protein per ml. The inhibitory activity is associated exclusively with the lymphocytes and affects solely the invasion of erythrocytes by free merozoites. Boiled extracts of isolated lymphocytes had a 50% inhibitory dose of 22 micrograms/ml. Fractionation of surface-labeled or pronase-treated lymphocytes revealed that the antimalarial lymphocyte factor is associated with the intracellular aspect of the membrane fraction and is probably not involved in the host defense system against malaria. Further purification by salt extraction, ion-exchange chromatography, molecular gel filtration, and electroelution from lithium dodecyl sulfate-polyacrylamide gels resulted in 300- to 550-fold purification, i.e., a 50% inhibitory dose of 40 to 70 ng/ml. All inhibitory fractions contained a 48-kilodalton polypeptide which eluted from a gel filtration column as a 400-kilodalton species, implying multimeric association. Some 6,000 molecules of the 48-kilodalton polypeptide bind with high affinity to one merozoite, the free form of the parasite. The Kd of 0.1 to 0.5 nM for the binding of the 48-kilodalton polypeptide correlated well with the 50% inhibitory dose of 0.3 to 0.4 nM obtained with purified active antimalarial lymphocyte factor. We therefore suggest that the 48-kilodalton polypeptide partially purified from lymphocyte membranes is the antimalarial lymphocyte factor and that it exerts its inhibitory activity by binding to merozoites, thereby preventing their invasion into erythrocytes. The antimalarial lymphocyte factor or a polypeptide sequence thereof could serve for further probing of invasion at the molecular level. Images PMID:3542831

  15. Defining the protein interaction network of human malaria parasite Plasmodium falciparum.

    PubMed

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225 million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network.

  16. Comparison of modeling methods to determine liver-to-blood inocula and parasite multiplication rates during controlled human malaria infection.

    PubMed

    Douglas, Alexander D; Edwards, Nick J; Duncan, Christopher J A; Thompson, Fiona M; Sheehy, Susanne H; O'Hara, Geraldine A; Anagnostou, Nicholas; Walther, Michael; Webster, Daniel P; Dunachie, Susanna J; Porter, David W; Andrews, Laura; Gilbert, Sarah C; Draper, Simon J; Hill, Adrian V S; Bejon, Philip

    2013-07-15

    Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasite's liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials. We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model.

  17. Malaria, photomicrograph of cellular parasites (image)

    MedlinePlus

    Malaria is a disease caused by parasites. This picture shows dark orange-stained malaria parasites inside red blood cells (a) and outside the cells (b). Note the large cells that look like targets; ...

  18. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    PubMed Central

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-01-01

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs. PMID:25761669

  19. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    DOE PAGES

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; ...

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties ofmore » PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.« less

  20. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi

    SciTech Connect

    Garg, Aprajita; Lukk, Tiit; Kumar, Vidya; Choi, Jae-Yeon; Augagneur, Yoann; Voelker, Dennis R.; Nair, Satish; Mamoun, Choukri Ben

    2015-03-12

    Phosphoethanolamine methyltransferases (PMTs) catalyze the three-step methylation of phosphoethanolamine to form phosphocholine, a critical step in the synthesis of phosphatidylcholine in a select number of eukaryotes including human malaria parasites, nematodes and plants. Genetic studies in the malaria parasite Plasmodium falciparum have shown that the methyltransferase PfPMT plays a critical function in parasite development and differentiation. The presence of PMT orthologs in other malaria parasites that infect humans and their absence in mammals make them ideal targets for the development of selective antimalarials with broad specificity against different Plasmodium species. Here we describe the X-ray structures and biochemical properties of PMT orthologs from Plasmodium vivax and Plasmodium knowlesi and show that both enzymes are inhibited by amodiaquine and NSC158011, two drugs with potent antimalarial activity. Metabolic studies in a yeast mutant that relies on PkPMT or PvPMT for survival demonstrated that these compounds inhibit phosphatidylcholine biosynthesis from ethanolamine. Our structural and functional data provide insights into the mechanism of catalysis and inhibition of PMT enzymes and set the stage for a better design of more specific and selective antimalarial drugs.

  1. Comparative Genomics of Transcriptional Control in the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Coulson, Richard M.R.; Hall, Neil; Ouzounis, Christos A.

    2004-01-01

    The life cycle of the parasite Plasmodium falciparum, responsible for the most deadly form of human malaria, requires specialized protein expression for survival in the mammalian host and insect vector. To identify components of processes controlling gene expression during its life cycle, the malarial genome—along with seven crown eukaryote group genomes—was queried with a reference set of transcription-associated proteins (TAPs). Following clustering on the basis of sequence similarity of the TAPs with their homologs, and together with hidden Markov model profile searches, 156 P. falciparum TAPs were identified. This represents about a third of the number of TAPs usually found in the genome of a free-living eukaryote. Furthermore, the P. falciparum genome appears to contain a low number of sequences, which are highly conserved and abundant within the kingdoms of free-living eukaryotes, that contribute to gene-specific transcriptional regulation. However, in comparison with these other eukaryotic genomes, the CCCH-type zinc finger (common in proteins modulating mRNA decay and translation rates) was found to be the most abundant in the P. falciparum genome. This observation, together with the paucity of malarial transcriptional regulators identified, suggests Plasmodium protein levels are primarily determined by posttranscriptional mechanisms. PMID:15256513

  2. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    PubMed Central

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  3. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. © 2016 The Author(s).

  4. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.

    PubMed

    Mok, Sachel; Ashley, Elizabeth A; Ferreira, Pedro E; Zhu, Lei; Lin, Zhaoting; Yeo, Tomas; Chotivanich, Kesinee; Imwong, Mallika; Pukrittayakamee, Sasithon; Dhorda, Mehul; Nguon, Chea; Lim, Pharath; Amaratunga, Chanaki; Suon, Seila; Hien, Tran Tinh; Htut, Ye; Faiz, M Abul; Onyamboko, Marie A; Mayxay, Mayfong; Newton, Paul N; Tripura, Rupam; Woodrow, Charles J; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, François; Day, Nicholas P J; Preiser, Peter R; White, Nicholas J; Dondorp, Arjen M; Fairhurst, Rick M; Bozdech, Zbynek

    2015-01-23

    Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion. Copyright © 2015, American Association for the Advancement of Science.

  5. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    NASA Technical Reports Server (NTRS)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  6. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    PubMed Central

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  7. Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum

    PubMed Central

    Murphy, Sean C.; Fernandez-Pol, Sebastian; Chung, Paul H.; Prasanna Murthy, S. N.; Milne, Stephen B.; Salomao, Marcela; Brown, H. Alex; Lomasney, Jon W.; Mohandas, Narla

    2007-01-01

    Studies of detergent-resistant membrane (DRM) rafts in mature erythrocytes have facilitated identification of proteins that regulate formation of endovacuolar structures such as the parasitophorous vacuolar membrane (PVM) induced by the malaria parasite Plasmodium falciparum. However, analyses of raft lipids have remained elusive because detergents interfere with lipid detection. Here, we use primaquine to perturb the erythrocyte membrane and induce detergent-free buoyant vesicles, which are enriched in cholesterol and major raft proteins flotillin and stomatin and contain low levels of cytoskeleton, all characteristics of raft microdomains. Lipid mass spectrometry revealed that phosphatidylethanolamine and phosphatidylglycerol are depleted in endovesicles while phosphoinositides are highly enriched, suggesting raft-based endovesiculation can be achieved by simple (non–receptor-mediated) mechanical perturbation of the erythrocyte plasma membrane and results in sorting of inner leaflet phospholipids. Live-cell imaging of lipid-specific protein probes showed that phosphatidylinositol (4,5) bisphosphate (PIP2) is highly concentrated in primaquine-induced vesicles, confirming that it is an erythrocyte raft lipid. However, the malarial PVM lacks PIP2, although another raft lipid, phosphatidylserine, is readily detected. Thus, different remodeling/sorting of cytoplasmic raft phospholipids may occur in distinct endovacuoles. Importantly, erythrocyte raft lipids recruited to the invasion junction by mechanical stimulation may be remodeled by the malaria parasite to establish blood-stage infection. PMID:17526861

  8. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.

    PubMed

    Zhang, Yao; Huang, Changjin; Kim, Sangtae; Golkaram, Mahdi; Dixon, Matthew W A; Tilley, Leann; Li, Ju; Zhang, Sulin; Suresh, Subra

    2015-05-12

    During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as "knobs," introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24-48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.

  9. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria.

    PubMed

    Sundararaman, Sesh A; Liu, Weimin; Keele, Brandon F; Learn, Gerald H; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P; Shaw, George M; Rayner, Julian C; Peeters, Martine; Sharp, Paul M; Bushman, Frederic D; Hahn, Beatrice H

    2013-04-23

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures.

  10. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria

    PubMed Central

    Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.

    2013-01-01

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

  11. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote

    PubMed Central

    Ward, Pauline; Equinet, Leila; Packer, Jeremy; Doerig, Christian

    2004-01-01

    Background Malaria, caused by the parasitic protist Plasmodium falciparum, represents a major public health problem in the developing world. The P. falciparum genome has been sequenced, which provides new opportunities for the identification of novel drug targets. Eukaryotic protein kinases (ePKs) form a large family of enzymes with crucial roles in most cellular processes; hence malarial ePKS represent potential drug targets. We report an exhaustive analysis of the P. falciparum genomic database (PlasmoDB) aimed at identifying and classifying all ePKs in this organism. Results Using a variety of bioinformatics tools, we identified 65 malarial ePK sequences and constructed a phylogenetic tree to position these sequences relative to the seven established ePK groups. Predominant features of the tree were: (i) that several malarial sequences did not cluster within any of the known ePK groups; (ii) that the CMGC group, whose members are usually involved in the control of cell proliferation, had the highest number of malarial ePKs; and (iii) that no malarial ePK clustered with the tyrosine kinase (TyrK) or STE groups, pointing to the absence of three-component MAPK modules in the parasite. A novel family of 20 ePK-related sequences was identified and called FIKK, on the basis of a conserved amino acid motif. The FIKK family seems restricted to Apicomplexa, with 20 members in P. falciparum and just one member in some other Apicomplexan species. Conclusion The considerable phylogenetic distance between Apicomplexa and other Eukaryotes is reflected by profound divergences between the kinome of malaria parasites and that of yeast or mammalian cells. PMID:15479470

  12. Plasmodium knowlesi and human malaria parasites in Khan Phu, Vietnam: Gametocyte production in humans and frequent co-infection of mosquitoes.

    PubMed

    Maeno, Y; Culleton, R; Quang, N T; Kawai, S; Marchand, R P; Nakazawa, S

    2017-04-01

    Four species of malaria parasite, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium knowlesi infect humans living in the Khanh Phu commune, Khanh Hoa Province, Vietnam. The latter species also infects wild macaque monkeys in this region. In order to understand the transmission dynamics of the three species, we attempted to detect gametocytes of the three species in the blood of infected individuals, and sporozoites in the salivary glands of mosquitoes from the same region. For the detection of gametocyte-specific mRNA, we targeted region 3 of pfg377, pvs25, pmg and pks25 as indicators of the presence of P. falciparum, P. vivax, P. malariae and P. knowlesi gametocytes, respectively. Gametocyte-specific mRNA was present in 37, 61, 0 and 47% of people infected with P. falciparum (n = 95), P. vivax (n = 69), P. malariae (n = 6) or P. knowlesi (n = 32), respectively. We found that 70% of mosquitoes that had P. knowlesi in their salivary glands also carried human malaria parasites, suggesting that mosquitoes are infected with P. knowlesi from human infections.

  13. Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile.

    PubMed

    Krungkrai, Sudaratana R; Aoki, Sayaka; Palacpac, Nirianne Marie Q; Sato, Dan; Mitamura, Toshihide; Krungkrai, Jerapan; Horii, Toshihiro

    2004-04-01

    Plasmodium falciparum, the causative agent of the most lethal form of human malaria, relies on de novo pyrimidine biosynthesis. A gene encoding orotate phosphoribosyltransferase (OPRT), the fifth enzyme of the de novo pathway catalyzing formation of orotidine 5'-monophosphate (OMP) and pyrophosphate (PP(i)) from 5-phosphoribosyl-1-pyrophosphate (PRPP) and orotate, was identified from P. falciparum (pfOPRT). The deduced amino acid sequence for pfOPRT was compared with OPRTs from other organisms and found to be most similar to that of Escherichia coli. The catalytic residues and consensus sequences for substrate binding in the enzyme were conserved among other organisms. The pfOPRT was exceptional in that it contained a unique insertion of 20 amino acids and an amino-terminal extension of 66 amino acids, making the longest amino acid sequence (281 amino acids with a predicted molecular mass of 33kDa). The cDNA of the pfOPRT gene was cloned, sequenced and functionally expressed in soluble form. The recombinant pfOPRT was purified from the E. coli lysate by two steps, nickel metal-affinity and gel-filtration chromatography. From 1l E. coli culture, 1.2-1.5mg of pure pfOPRT was obtained. SDS-PAGE revealed that the pfOPRT had a molecular mass of 33kDa and analytical gel-filtration chromatography showed that the enzyme activity eluted at approximately 67kDa. Using dimethyl suberimidate to cross-link neighboring subunits of the pfOPRT, it was confirmed that the native enzyme exists in a dimeric form. The steady state kinetics of initial velocity and product inhibition studies indicate that the enzyme pfOPRT follows a random sequential kinetic mechanism. Compounds aimed at the pfOPRT nexus may act against the parasite through at least two mechanisms: by directly inhibiting the enzyme activity, or be processed to an inhibitor of thymidylate synthase. This study provides a working system with which to investigate new antimalarial agents targeted against P. falciparum OPRT.

  14. Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study.

    PubMed

    Regules, Jason A; Cicatelli, Susan B; Bennett, Jason W; Paolino, Kristopher M; Twomey, Patrick S; Moon, James E; Kathcart, April K; Hauns, Kevin D; Komisar, Jack L; Qabar, Aziz N; Davidson, Silas A; Dutta, Sheetij; Griffith, Matthew E; Magee, Charles D; Wojnarski, Mariusz; Livezey, Jeffrey R; Kress, Adrian T; Waterman, Paige E; Jongert, Erik; Wille-Reece, Ulrike; Volkmuth, Wayne; Emerling, Daniel; Robinson, William H; Lievens, Marc; Morelle, Danielle; Lee, Cynthia K; Yassin-Rajkumar, Bebi; Weltzin, Richard; Cohen, Joe; Paris, Robert M; Waters, Norman C; Birkett, Ashley J; Kaslow, David C; Ballou, W Ripley; Ockenhouse, Christian F; Vekemans, Johan

    2016-09-01

    Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. NCT01857869. Published by Oxford University Press on behalf of the Infectious Diseases Society of America, 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    PubMed

    Silvestrini, Francesco; Lasonder, Edwin; Olivieri, Anna; Camarda, Grazia; van Schaijk, Ben; Sanchez, Massimo; Younis Younis, Sumera; Sauerwein, Robert; Alano, Pietro

    2010-07-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent development of the elongated gametocyte. We developed a protocol to obtain for the first time highly purified preparations of early gametocytes using a transgenic line expressing a green fluorescent protein from the onset of gametocytogenesis. We determined the cellular proteome (1427 proteins) of this parasite stage by high accuracy tandem mass spectrometry and newly determined the proteomes of asexual trophozoites and mature gametocytes, identifying altogether 1090 previously undetected parasite proteins. Quantitative label-free comparative proteomics analysis determined enriched protein clusters for the three parasite developmental stages. Gene set enrichment analysis on the 251 proteins enriched in the early gametocyte proteome revealed that proteins putatively exported and involved in erythrocyte remodeling are the most overrepresented protein set in these stages. One-tenth of the early gametocyte-enriched proteome is constituted of putatively exported proteins, here named PfGEXPs (P. falciparum gametocyte-exported proteins). N-terminal processing and N-acetylation at a conserved leucine residue within the Plasmodium export element pentamotif were detected by mass spectrometry for three such proteins in the early but not in the mature gametocyte sample, further supporting a specific role in protein export in early gametocytogenesis. Previous reports and results of our experiments confirm that the three proteins are indeed exported in the erythrocyte cytoplasm. This work indicates that protein export profoundly marks early sexual differentiation in P. falciparum, probably contributing to host cell remodeling in this phase of the life cycle, and that gametocyte

  16. Development of a Multiplex PCR-Ligase Detection Reaction Assay for Diagnosis of Infection by the Four Parasite Species Causing Malaria in Humans

    PubMed Central

    McNamara, David T.; Thomson, Jodi M.; Kasehagen, Laurin J.; Zimmerman, Peter A.

    2004-01-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/μl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies. PMID:15184411

  17. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans.

    PubMed

    McNamara, David T; Thomson, Jodi M; Kasehagen, Laurin J; Zimmerman, Peter A

    2004-06-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/microl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies.

  18. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  19. Construction of a human functional single-chain variable fragment (scFv) antibody recognizing the malaria parasite Plasmodium falciparum.

    PubMed

    Wajanarogana, Sumet; Prasomrothanakul, Teerawat; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2006-04-01

    Falciparum malaria is one of the most deadly and profound human health problems around the tropical world. Antimalarial drugs are now considered to be a powerful treatment; however, there are drugs currently being used that are resistant to Plasmodium falciparum parasites spreading in different parts of the world. Although the protective immune response against intraerythrocytic stages of the falciparum malaria parasite is still not fully understood, immune antibodies have been shown to be associated with reduced parasite prevalence. Therefore antibodies of the right specificity present in adequate concentrations and affinity are reasonably effective in providing protection. In the present study, VH (variable domain of heavy chain) and VL (variable domain of light chain) were isolated from human blood lymphocytes of P. falciparum in one person who had high serum titre to RESA (ring-infected erythrocyte surface antigen). Equal amounts of VH and VL were assembled together with universal linker (G4S)3 to generate scFvs (single-chain variable fragments). The scFv antibodies were expressed with a phage system for the selection process. Exclusively, an expressed scFv against asynchronous culture of P. falciparum-infected erythrocytes was selected and characterized. Sequence analysis of selected scFv revealed that this clone could be classified into a VH family-derived germline gene (VH1) and Vkappa family segment (Vkappa1). Using an indirect immunofluorescence assay, we could show that soluble expressed scFv reacted with falciparum-infected erythrocytes. The results encourage the further study of scFvs for development as a potential immunotherapeutic agent.

  20. Dynamics of the Major Histocompatibility Complex Class I Processing and Presentation Pathway in the Course of Malaria Parasite Development in Human Hepatocytes: Implications for Vaccine Development

    PubMed Central

    Ma, Jinxia; Trop, Stefanie; Baer, Samantha; Rakhmanaliev, Elian; Arany, Zita; Dumoulin, Peter; Zhang, Hao; Romano, Julia; Coppens, Isabelle; Levitsky, Victor; Levitskaya, Jelena

    2013-01-01

    Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver. PMID:24086507

  1. Ion Regulation in the Malaria Parasite.

    PubMed

    Kirk, Kiaran

    2015-01-01

    Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.

  2. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum

    PubMed Central

    Patra, Kailash P.; Johnson, Jeff R.; Cantin, Greg T.; Yates, John R.

    2009-01-01

    Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (>50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission. PMID:18563747

  3. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum.

    PubMed

    Patra, Kailash P; Johnson, Jeff R; Cantin, Greg T; Yates, John R; Vinetz, Joseph M

    2008-06-01

    Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.

  4. Chimpanzee malaria parasites related to Plasmodium ovale in Africa.

    PubMed

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.

  5. Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    PubMed Central

    Duval, Linda; Nerrienet, Eric; Rousset, Dominique; Sadeuh Mba, Serge Alain; Houze, Sandrine; Fourment, Mathieu; Le Bras, Jacques; Robert, Vincent; Ariey, Frederic

    2009-01-01

    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes. PMID:19436742

  6. M17 leucine aminopeptidase of the human malaria parasite Plasmodium vivax.

    PubMed

    Lee, Jung-Yub; Song, Su-Min; Seok, Ji-Woong; Jha, Bijay Kumar; Han, Eun-Taek; Song, Hyun-Ouk; Yu, Hak-Sun; Hong, Yeonchul; Kong, Hyun-Hee; Chung, Dong-Il

    2010-03-01

    Amino acids derived from hemoglobin are essential to protein synthesis required for growth and development of the Plasmodium vivax malaria parasite. M17 leucine aminopeptidase (LAP) is a cytosolic metallo-exopeptidase that catalyzes the removal of amino acids from the peptide generated in the process of hemoglobin degradation. Inhibitors of the enzyme have shown promise as drugs against Plasmodium infections, implicating aminopeptidases as a novel potential anti-malarial chemotherapy target. In this study, we isolated a cDNA encoding a 68kDa P. vivax LAP (PvLAP). Deduced amino acid sequence of PvLAP exhibited significant sequence homology with LAP from Plasmodium falciparum. Biochemical analysis of the recombinant PvLAP protein produced in Escherichia coli demonstrated preferential substrate specificity for the fluorogenic peptide Leu-7-amido-4-methylcoumarin hydroxide and inhibition by EDTA, 1,10-phenanthroline, and bestatin, which are conserved characteristics of the M17 family of LAP. PvLAP was optimally active at slightly alkaline pH and its activity was dependent on divalent metal ions. Based on the biochemical properties and immunofluorescence localization, PvLAP is concluded to represent a LAP in P. vivax. The enzyme is most likely responsible for the catabolism of host hemoglobin and, hence, represents a potential target of both P. falciparum and P. vivax chemotherapy.

  7. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    PubMed

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-04-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.

  9. Genome sequences reveal divergence times of malaria parasite lineages

    PubMed Central

    SILVA, JOANA C.; EGAN, AMY; FRIEDMAN, ROBERT; MUNRO, JAMES B.; CARLTON, JANE M.; HUGHES, AUSTIN L.

    2010-01-01

    SUMMARY Objective The evolutionary history of human malaria parasites (genus Plasmodium) has long been a subject of speculation and controversy. The complete genome sequences of the two most widespread human malaria parasites, P. falciparum and P. vivax, and of the monkey parasite P. knowlesi are now available, together with the draft genomes of the chimpanzee parasite P. reichenowi, three rodent parasites, P. yoelii yoelli, P. berghei and P. chabaudi chabaudi, and one avian parasite, P. gallinaceum. Methods We present here an analysis of 45 orthologous gene sequences across the eight species that resolves the relationships of major Plasmodium lineages, and provides the first comprehensive dating of the age of those groups. Results Our analyses support the hypothesis that the last common ancestor of P. falciparum and the chimpanzee parasite P. reichenowi occurred around the time of the human-chimpanzee divergence. P. falciparum infections of African apes are most likely derived from humans and not the other way around. On the other hand, P. vivax, split from the monkey parasite P. knowlesi in the much more distant past, during the time that encompasses the separation of the Great Apes and Old World Monkeys. Conclusion The results support an ancient association between malaria parasites and their primate hosts, including humans. PMID:21118608

  10. The immunological balance between host and parasite in malaria.

    PubMed

    Deroost, Katrien; Pham, Thao-Thy; Opdenakker, Ghislain; Van den Steen, Philippe E

    2016-03-01

    Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.

  11. Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

    DTIC Science & Technology

    2014-07-28

    Looareesuwan S, 2002. Intesti- nal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol 88...J 12: e67. 52. McKenzie FE, Jeffery GM, Collins WE, 2002. Plasmodium malariae infection boosts Plasmodium falciparum gametocyte production. Am J Trop... falciparum ,27–29 which provides opportunities to target STHs and malaria with the same iver- mectin and albendazole MDA platform. In addition to STHs

  12. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut.

    PubMed

    Simon, Nina; Lasonder, Edwin; Scheuermayer, Matthias; Kuehn, Andrea; Tews, Sabrina; Fischer, Rainer; Zipfel, Peter F; Skerka, Christine; Pradel, Gabriele

    2013-01-16

    Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.

  13. Recombinant plasmepsin 1 from the human malaria parasite Plasmodium falciparum: Enzymatic characterization, active site inhibitor design, and structural analysis

    PubMed Central

    Liu, Peng; Marzahn, Melissa R.; Robbins, Arthur H.; Gutiérrez-de-Terán, Hugo; Rodríguez, David; McClung, Scott; Stevens, Stanley M.; Yowell, Charles A.; Dame, John B.; McKenna, Robert; Dunn, Ben M.

    2009-01-01

    A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in E. coli. The auto-maturation process was carried out at pH 4.0 and 4.5, and the optimal catalytic pH of the resulting mature PfPM1 was determined to be pH 5.5. This mature PfPM1 showed comparable binding affinity to peptide substrates and inhibitors with the naturally-occurring form isolated from parasites. The S3-S3’ subsite preferences of the recombinant mature PfPM1 were explored using combinatorial chemistry based peptide libraries. Based on the results, a peptidomimetic inhibitor (compound 1) was designed and yielded 5-fold selectivity for binding to PfPM1 versus the homologous human cathepsin D (hcatD). The 2.8 Å structure of the PfPMP2-compound 1 complex is reported. Modeling studies were conducted using a series of peptidomimetic inhibitors (compounds 1–6, Table 3) and three plasmepsins: the crystal structure of PfPM2, and homology derived models of PfPM1 and PfPM4. PMID:19271776

  14. DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bunnik, Evelien M; Polishko, Anton; Prudhomme, Jacques; Ponts, Nadia; Gill, Sarjeet S; Lonardi, Stefano; Le Roch, Karine G

    2014-05-08

    In eukaryotic organisms, packaging of DNA into nucleosomes controls gene expression by regulating access of the promoter to transcription factors. The human malaria parasite Plasmodium falciparum encodes relatively few transcription factors, while extensive nucleosome remodeling occurs during its replicative cycle in red blood cells. These observations point towards an important role of the nucleosome landscape in regulating gene expression. However, the relation between nucleosome positioning and transcriptional activity has thus far not been explored in detail in the parasite. Here, we analyzed nucleosome positioning in the asexual and sexual stages of the parasite's erythrocytic cycle using chromatin immunoprecipitation of MNase-digested chromatin, followed by next-generation sequencing. We observed a relatively open chromatin structure at the trophozoite and gametocyte stages, consistent with high levels of transcriptional activity in these stages. Nucleosome occupancy of genes and promoter regions were subsequently compared to steady-state mRNA expression levels. Transcript abundance showed a strong inverse correlation with nucleosome occupancy levels in promoter regions. In addition, AT-repeat sequences were strongly unfavorable for nucleosome binding in P. falciparum, and were overrepresented in promoters of highly expressed genes. The connection between chromatin structure and gene expression in P. falciparum shares similarities with other eukaryotes. However, the remarkable nucleosome dynamics during the erythrocytic stages and the absence of a large variety of transcription factors may indicate that nucleosome binding and remodeling are critical regulators of transcript levels. Moreover, the strong dependency between chromatin structure and DNA sequence suggests that the P. falciparum genome may have been shaped by nucleosome binding preferences. Nucleosome remodeling mechanisms in this deadly parasite could thus provide potent novel anti-malarial targets.

  15. Humans frequently exposed to a range of non-human primate malaria parasite species through the bites of Anopheles dirus mosquitoes in South-central Vietnam.

    PubMed

    Maeno, Yoshimasa; Quang, Nguyen Tuyen; Culleton, Richard; Kawai, Satoru; Masuda, Gaku; Nakazawa, Shusuke; Marchand, Ron P

    2015-07-16

    Recent studies have described natural human infections of the non-human primate parasites Plasmodium knowlesi and Plasmodium cynomolgi. In Southeast Asia, mosquitoes of the Anopheles leucosphyrus group bite both humans and monkeys in the forest and thus offer a possible route for Plasmodium species to bridge the species barrier. In this study we analysed the species composition of malarial sporozoites infecting the salivary glands of Anopheles dirus in order to determine their potential role as bridge vectors of Plasmodium parasites from monkeys to humans. Mosquitoes were collected in the forest and forest fringe area of Khanh Phu commune by human-baited landing collection. Anopheles species were determined on the basis of morphologic features. Sporozoite-infected salivary glands were applied to filter paper and dried in an ambient atmosphere, before storage in closed vials at 4-6 °C. Detection and identification of Plasmodium species in salivary glands were carried out by nested-PCR of the small subunit ribosomal RNA gene. Six species of Plasmodium parasites were detected by PCR, of which P. vivax was the most common, followed by P. knowlesi, P. inui, P. cynomolgi, P. coatneyi and P. falciparum. Twenty-six of the 79 sporozoite infected mosquitoes showed multiple infections, most of which were a combination of P. vivax with one or more of the non-human primate Plasmodium species. These results suggest that humans overnighting in this forest are frequently inoculated with both human and non-human primate malaria parasites, leading to a situation conducive for the emergence of novel zoonotic malaria.

  16. Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Barry, Alyssa E.; Schultz, Lee; Buckee, Caroline O.; Reeder, John C.

    2009-01-01

    The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next

  17. Immune Evasion Strategies of Pre-Erythrocytic Malaria Parasites

    PubMed Central

    Zheng, Hong; Tan, Zhangping

    2014-01-01

    Malaria is a mosquito-borne infectious disease of humans. It begins with a bite from an infected female Anopheles mosquito and leads to the development of the pre-erythrocytic and blood stages. Blood-stage infection is the exclusive cause of clinical symptoms of malaria. In contrast, the pre-erythrocytic stage is clinically asymptomatic and could be an excellent target for preventive therapies. Although the robust host immune responses limit the development of the liver stage, malaria parasites have also evolved strategies to suppress host defenses at the pre-erythrocytic stage. This paper reviews the immune evasion strategies of malaria parasites at the pre-erythrocytic stage, which could provide us with potential targets to design prophylactic strategies against malaria. PMID:24891764

  18. Controlled human malaria infection.

    PubMed

    Spring, Michele; Polhemus, Mark; Ockenhouse, Christian

    2014-06-15

    Since 1986, investigators at Walter Reed Army Institute of Research (WRAIR) have been using controlled human malaria challenge (CHMI) in malaria-naive adults in order to define the protective efficacy of a malaria vaccine and thus guide programmatic decisions on vaccine candidates. Adapting this model to the dengue field could provide similar evidential support for a vaccine or therapeutic product. After completing a vaccine regimen, volunteers are bitten by 5 malaria-infected female Anopheles mosquitoes in a controlled environment. Volunteers are then monitored daily for peripheral parasitemia in a hotel setting with 24-hour access to a nurse and physician. If a single verified parasite is detected, effective antimalarials are promptly administered. The vast majority of the over 1000 volunteers having participated in CHMI clinical studies have done so at US military research centers. Numerous pre-erythrocytic and erythrocytic vaccine candidates have been evaluated safely and without any related serious adverse events using this model, including the soon-to-be licensed RTS,S malaria vaccine. The lessons learned from over 25 years of experience in consistent, careful preparation and execution of the CHMI model at WRAIR can provide a foundation from which the dengue field can begin to develop a rigorous and safe "CHDI" model. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Biochemical and genetic analysis of the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.

    PubMed

    Reynolds, Jennifer M; Takebe, Sachiko; Choi, Jae-Yeon; El Bissati, Kamal; Witola, William H; Bobenchik, April M; Hoch, Jeffrey C; Voelker, Dennis R; Mamoun, Choukri Ben

    2008-03-21

    The PfPMT enzyme of Plasmodium falciparum, the agent of severe human malaria, is a member of a large family of known and predicted phosphoethanolamine methyltransferases (PMTs) recently identified in plants, worms, and protozoa. Functional studies in P. falciparum revealed that PfPMT plays a critical role in the synthesis of phosphatidylcholine via a plant-like pathway involving serine decarboxylation and phosphoethanolamine methylation. Despite their important biological functions, PMT structures have not yet been solved, and nothing is known about which amino acids in these enzymes are critical for catalysis and binding to S-adenosyl-methionine and phosphoethanolamine substrates. Here we have performed a mutational analysis of PfPMT focused on 24 residues within and outside the predicted catalytic motif. The ability of PfPMT to complement the choline auxotrophy of a yeast mutant defective in phospholipid methylation enabled us to characterize the activity of the PfPMT mutants. Mutations in residues Asp-61, Gly-83 and Asp-128 dramatically altered PfPMT activity and its complementation of the yeast mutant. Our analyses identify the importance of these residues in PfPMT activity and set the stage for advanced structural understanding of this class of enzymes.

  20. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts

    PubMed Central

    Sinden, Robert E.; Poulton, Ian D.; Griffin, Jamie T.; Upton, Leanna M.; Sala, Katarzyna A.; Angrisano, Fiona; Hill, Adrian V. S.; Blagborough, Andrew M.

    2017-01-01

    Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials. PMID:28081253

  1. Paths to a malaria vaccine illuminated by parasite genomics.

    PubMed

    Conway, David J

    2015-02-01

    More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials.

  2. Genetic engineering of attenuated malaria parasites for vaccination.

    PubMed

    Khan, Shahid M; Janse, Chris J; Kappe, Stefan H I; Mikolajczak, Sebastian A

    2012-12-01

    Vaccination with live-attenuated Plasmodium sporozoites that arrest in the liver can completely protect against a malaria infection both in animal models and in humans; this has provided the conceptual basis for the most promising, but also challenging, approach to develop an efficacious malaria vaccine. Advances in genetic manipulation of Plasmodium in conjunction with improved genomic and biological information has enabled new approaches to design genetically attenuated parasites (GAPs). In this review we discuss the principles in discovery and development of GAPs in preclinical models that are important in selecting GAP parasites for first-in-human clinical studies. Finally, we highlight the challenges in manufacture, formulation and delivery of a live-attenuated whole parasite malaria vaccine, as well as the further refinements that may be implemented in the next generation GAP vaccines.

  3. Parasites and human evolution.

    PubMed

    Perry, George H

    2014-01-01

    Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. As examples, the tapeworm life cycle is dependent on our consumption of meat, the divergence of body and head lice may have been subsequent to the development of clothing, and malaria hyperendemicity may be associated with agriculture. Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.

  4. Development of transgenic fungi that kill human malaria parasites in mosquitoes.

    PubMed

    Fang, Weiguo; Vega-Rodríguez, Joel; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Kang, Angray; St Leger, Raymond J

    2011-02-25

    Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.

  5. DIAGNOSING INFECTION LEVELS OF FOUR HUMAN MALARIA PARASITE SPECIES BY A POLYMERASE CHAIN REACTION/LIGASE DETECTION REACTION FLUORESCENT MICROSPHERE-BASED ASSAY

    PubMed Central

    McNAMARA, DAVID T.; KASEHAGEN, LAURIN J.; GRIMBERG, BRIAN T.; COLE-TOBIAN, JENNIFER; COLLINS, WILLIAM E.; ZIMMERMAN, PETER A.

    2013-01-01

    Improving strategies for diagnosing infection by the four human Plasmodium species parasites is important as field-based epidemiologic and clinical studies focused on malaria become more ambitious. Expectations for malaria diagnostic assays include rapid processing with minimal expertise, very high specificity and sensitivity, and quantitative evaluation of parasitemia to be delivered at a very low cost. Toward fulfilling many of these expectations, we have developed a post-polymerase chain reaction (PCR)/ligase detection reaction-fluorescent microsphere assay (LDR-FMA). This assay, which uses Luminex® FlexMAP™ microspheres, provides simultaneous, semi-quantitative detection of infection by all four human malaria parasite species at a sensitivity and specificity equal to other PCR-based assays. In blinded studies using P. falciparum-infected blood from in vitro cultures, we identified infected and uninfected samples with 100% concordance. Additionally, in analyses of P. falciparum in vitro cultures and P. vivax-infected monkeys, comparisons between parasitemia and LDR-FMA signal intensity showed very strong positive correlations (r > 0.95). Application of this multiplex Plasmodium species LDR-FMA diagnostic assay will increase the speed, accuracy, and reliability of diagnosing human Plasmodium species infections in epidemiologic studies of complex malaria-endemic settings. PMID:16525099

  6. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay.

    PubMed

    McNamara, David T; Kasehagen, Laurin J; Grimberg, Brian T; Cole-Tobian, Jennifer; Collins, William E; Zimmerman, Peter A

    2006-03-01

    Improving strategies for diagnosing infection by the four human Plasmodium species parasites is important as field-based epidemiologic and clinical studies focused on malaria become more ambitious. Expectations for malaria diagnostic assays include rapid processing with minimal expertise, very high specificity and sensitivity, and quantitative evaluation of parasitemia to be delivered at a very low cost. Toward fulfilling many of these expectations, we have developed a post-polymerase chain reaction (PCR)/ligase detection reaction-fluorescent microsphere assay (LDR-FMA). This assay, which uses Luminex FlexMAP microspheres, provides simultaneous, semi-quantitative detection of infection by all four human malaria parasite species at a sensitivity and specificity equal to other PCR-based assays. In blinded studies using P. falciparum-infected blood from in vitro cultures, we identified infected and uninfected samples with 100% concordance. Additionally, in analyses of P. falciparum in vitro cultures and P. vivax-infected monkeys, comparisons between parasitemia and LDR-FMA signal intensity showed very strong positive correlations (r > 0.95). Application of this multiplex Plasmodium species LDR-FMA diagnostic assay will increase the speed, accuracy, and reliability of diagnosing human Plasmodium species infections in epidemiologic studies of complex malaria-endemic settings.

  7. Functional Analysis of Protein Kinase CK2 of the Human Malaria Parasite Plasmodium falciparum▿ †

    PubMed Central

    Holland, Zoë; Prudent, Renaud; Reiser, Jean-Baptiste; Cochet, Claude; Doerig, Christian

    2009-01-01

    Protein kinase CK2 (casein kinase 2) is a eukaryotic serine/threonine protein kinase with multiple substrates and roles in diverse cellular processes, including differentiation, proliferation, and translation. The mammalian holoenzyme consists of two catalytic alpha or alpha′ subunits and two regulatory beta subunits. We report the identification and characterization of a Plasmodium falciparum CK2α orthologue, PfCK2α, and two PfCK2β orthologues, PfCK2β1 and PfCK2β2. Recombinant PfCK2α possesses protein kinase activity, exhibits similar substrate and cosubstrate preferences to those of CK2α subunits from other organisms, and interacts with both of the PfCK2β subunits in vitro. Gene disruption experiments show that the presence of PfCK2α is crucial to asexual blood stage parasites and thereby validate the enzyme as a possible drug target. PfCK2α is amenable to inhibitor screening, and we report differential susceptibility between the human and P. falciparum CK2α enzymes to a small molecule inhibitor. Taken together, our data identify PfCK2α as a potential target for antimalarial chemotherapeutic intervention. PMID:19114502

  8. African origin of the malaria parasite Plasmodium vivax

    PubMed Central

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  9. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum.

    PubMed

    Schuck, Desirée C; Jordão, Alessandro K; Nakabashi, Myna; Cunha, Anna C; Ferreira, Vitor F; Garcia, Célia R S

    2014-05-06

    Discovering the mechanisms by which cell signaling controls the cell cycle of the human malaria parasite Plasmodium falciparum is fundamental to designing more effective antimalarials. To better understand the impacts of melatonin structure and function on the cell cycle of P. falciparum, we have synthesized two families of structurally-related melatonin compounds (7-11 and 12-16). All synthesized melatonin analogs were assayed in P. falciparum culture and their antimalarial activities were measured by flow cytometry. We have found that the chemical modification of the carboxamide group attached at C-3 position of the indole ring of melatonin (6) was crucial for the action of the indole-related compounds on the P. falciparum cell cycle. Among the melatonin derivatives, only the compounds 12, 13 and 14 were capable of inhibiting the P. falciparum growth in low micromolar IC50. These results open good perspectives for the development of new drugs with novel mechanisms of action. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Renal cortical necrosis and acute kidney injury associated with Plasmodium vivax: a neglected human malaria parasite.

    PubMed

    Kute, Vivek B; Vanikar, Aruna V; Ghuge, Pramod P; Goswami, Jitendra G; Patel, Mohan P; Patel, Himanshu V; Gumber, Manoj R; Shah, Pankaj R; Trivedi, Hargovind L

    2012-11-01

    Plasmodium vivax is causing increasingly more cases of severe malaria worldwide. There is an urgent need to reexamine the clinical spectrum and burden of P. vivax so that adequate control measures can be implemented against this emerging but neglected disease. Herein, we report a case of renal acute cortical necrosis and acute kidney injury (AKI) associated with P. vivax monoinfection. Her initial serum creatinine was 7.3 mg/dL on admission. Modification of Diet in Renal Disease (MDRD) Study glomerular filtration rate (GFR) value was 7 mL/min/1.73 m(2) (normal kidney function-GFR above 90 mL/min/1.73 m(2) and no proteinuria). On follow-up, 5 months later, her SCr. was 2.43 mg/dl with no proteinuria. MDRD GFR value was 24 mL/min/1.73 m(2) suggesting severe chronic kidney disease (CKD; GFR less than 60 or kidney damage for at least 3 months), stage 4. Our case report highlights the fact that P. vivax malaria is benign by name but not always by nature. AKI associated with P. vivax malaria can lead to CKD. Further studies are needed to determine why P. vivax infections are becoming more severe.

  11. Malaria Parasites: The Great Escape

    PubMed Central

    Rénia, Laurent; Goh, Yun Shan

    2016-01-01

    Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses. PMID:27872623

  12. Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum.

    PubMed Central

    Berriman, M; Fairlamb, A H

    1998-01-01

    Cyclosporin (Cs) A has pronounced antimalarial activity in vitro and in vivo. In other organisms, the drug is thought to exert its effects either by inhibiting the peptidylprolyl cis/trans isomerase activity of cyclophilin (CyP) or by forming a CyP-CsA complex that inhibits the phosphatase activity of calcineurin. We have cloned and overexpressed in Escherichia coli a gene encoding a CyP from Plasmodium falciparum (PfCyP19) that is located on chromosome 3. The sequence of PfCyP19 shows remarkable sequence identity with human CyPA and, unlike the two previously identified CyPs from P. falciparum, PfCyP19 has no signal peptide or N-terminal sequence extension, suggesting a cytosolic localization. All the residues implicated in the recognition of the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide are conserved, resulting in characteristically high Michaelis-Menten and specificity constants (Km>>120 microM, kcat/Km=1.2x10(7) M-1.s-1 respectively). As the first line in the functional characterization of this enzyme, we have assessed its binding affinity for CsA. In accordance with its tryptophan-containing CsA-binding domain, PfCyP19 binds CsA with high affinity (Kd=13 nM, Ki=6.9 nM). Twelve CsA analogues were also found to possess Ki values similar to CsA, with the notable exceptions of Val2-Cs (Ki=218 nM) and Thr2-Cs (Ki=690 nM). The immunosuppressants rapamycin and FK506 were inactive as inhibitors, consistent with other members of the CyP family of rotamases. The CsA analogues were also assessed as inhibitors of P. falciparum growth in vitro. Although their antimalarial activity did not correlate with inhibition of enzyme activity, residues 3 and 4 of CsA appeared to be important for inhibition of parasite growth and residues 1 and 2 for PfCyP19 inhibition. We propose that a malarial CyP-CsA complex presents residues 3 and 4 as part of an 'effector surface' for recognition by a downstream target, similar to the proposed mechanism for T

  13. Malaria genomics: tracking a diverse and evolving parasite population.

    PubMed

    Kwiatkowski, Dominic

    2015-03-01

    Malaria parasites are continually evolving to evade the immune system and human attempts to control the disease. To eliminate malaria from regions where it is deeply entrenched we need ways of monitoring what is going on in the parasite population, detecting problematic changes as soon as they arise, and executing a prompt and effective response based on a deep understanding of this natural evolutionary process. Powerful new tools to address this problem are emerging from the fast-growing field of genomic epidemiology, driven by new sequencing technologies and computational methods that allow parasite genome variation to be studied in much greater detail and in many more samples than was previously considered possible. These new tools will provide a deep understanding of what is going on in the parasite population, generating actionable knowledge for strategic planning of control interventions, for monitoring their effects and steering them for greatest impact, and for raising the alert if things start to go wrong.

  14. Malaria genomics: tracking a diverse and evolving parasite population

    PubMed Central

    Kwiatkowski, Dominic

    2015-01-01

    Malaria parasites are continually evolving to evade the immune system and human attempts to control the disease. To eliminate malaria from regions where it is deeply entrenched we need ways of monitoring what is going on in the parasite population, detecting problematic changes as soon as they arise, and executing a prompt and effective response based on a deep understanding of this natural evolutionary process. Powerful new tools to address this problem are emerging from the fast-growing field of genomic epidemiology, driven by new sequencing technologies and computational methods that allow parasite genome variation to be studied in much greater detail and in many more samples than was previously considered possible. These new tools will provide a deep understanding of what is going on in the parasite population, generating actionable knowledge for strategic planning of control interventions, for monitoring their effects and steering them for greatest impact, and for raising the alert if things start to go wrong. PMID:25733556

  15. Immune Escape Strategies of Malaria Parasites

    PubMed Central

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  16. Immune Escape Strategies of Malaria Parasites.

    PubMed

    Gomes, Pollyanna S; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  17. Malaria Parasite Liver Infection and Exoerythrocytic Biology.

    PubMed

    Vaughan, Ashley M; Kappe, Stefan H I

    2017-02-27

    In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.

  18. Molecular targets of 5-fluoroorotate in the human malaria parasite, Plasmodium falciparum.

    PubMed Central

    Rathod, P K; Leffers, N P; Young, R D

    1992-01-01

    5-Fluoroorotate is known to have potent antimalarial activity against chloroquine-susceptible as well as chloroquine-resistant clones of Plasmodium falciparum. It was hypothesized that this activity was mediated through synthesis of 5-fluoro-2'-deoxyuridylate, an inactivator of thymidylate synthase, or through incorporation of 5-fluoropyrimidine residues into nucleic acids. Treatment of P. falciparum in culture with 100 nM 5-fluoroorotate resulted in rapid inactivation of malarial thymidylate synthase activity. A 50% loss of thymidylate synthase activity as well as a 50% decrease in parasite proliferation were seen with 5 nM 5-fluoroorotate. Dihydrofolate reductase activity, which resides on the same bifunctional protein as thymidylate synthase, was not affected by 5-fluoroorotate treatment. Incubation of malarial parasites with 3 to 10 microM radioactive 5-fluoroorotic acid for 48 h resulted in significant incorporation of radioactivity into the RNA fraction of P. falciparum; approximately 9% of the uridine residues were substituted with 5-fluorouridine. However, compared with the 50% inhibitory concentrations of 5-fluoroorotate, a 1,000-fold higher concentration of the pyrimidine analog was required to see significant modification of RNA molecules. Results of these studies are consistent with the hypothesis that thymidylate synthase is the primary target of 5-fluoroorotate in malarial parasites. PMID:1503432

  19. Sir2a regulates rDNA transcription and multiplication rate in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Mancio-Silva, Liliana; Lopez-Rubio, Jose Juan; Claes, Aurélie; Scherf, Artur

    2013-01-01

    The Plasmodium falciparum histone deacetylase Sir2a localizes at telomeric regions where it contributes to epigenetic silencing of clonally variant virulence genes. Apart from telomeres, PfSir2a also accumulates in the nucleolus, which harbours the developmentally regulated ribosomal RNA genes. Here we investigate the nucleolar function of PfSir2a and demonstrate that PfSir2a fine-tunes ribosomal RNA gene transcription. Using a parasite line in which PfSir2a has been disrupted, we observe that histones near the transcription start sites of all ribosomal RNA genes are hyperacetylated and that transcription of ribosomal RNA genes is upregulated. Complementation of the PfSir2a-disrupted parasites restores the ribosomal RNA levels, whereas PfSir2a overexpression in wild-type parasites decreases ribosomal RNA synthesis. Furthermore, we observe that PfSir2a modulation of ribosomal RNA synthesis is linked to an altered number of daughter merozoites and the parasite multiplication rate. These findings provide new insights into an epigenetic mechanism that controls malaria parasite proliferation and virulence. PMID:23443558

  20. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum.

    PubMed

    Bhartiya, Deeksha; Chawla, Vandna; Ghosh, Sourav; Shankar, Ravi; Kumar, Niti

    2016-12-01

    The AT-rich genome of P. falciparum has uniquely localized G-rich stretches that have propensity to form G-quadruplexes. However, their global occurrence and potential biological roles in the parasite are poorly explored. Our genome-wide analysis revealed unique enrichment of quadruplexes in P. falciparum genome which was remarkably different from other Plasmodium species. A distinct predominance of quadruplexes was observed in nuclear and organellar genes that participate in antigenic variation, pathogenesis, DNA/RNA regulation, metabolic and protein quality control processes. Data also suggested association of quadruplexes with SNPs and DNA methylation. Furthermore, analysis of steady state mRNA (RNA-seq) and polysome-associated mRNA (Ribosome profiling) data revealed stage-specific differences in translational efficiency of quadruplex harboring genes. Taken together, our findings hint towards existence of regulatory dynamics associated with quadruplexes that may modulate translational efficiency of quadruplex harboring genes to provide survival advantage to the parasite against host immune response and antimalarial drug pressure.

  1. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    M El Bakkouri; A Pow; A Mulichak; K Cheung; J Artz; M Amani; S Fell; T de Koning-Ward; C Goodman; et al.

    2011-12-31

    The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  2. Acidic calcium pools in intraerythrocytic malaria parasites.

    PubMed

    Garcia, C R; Ann, S E; Tavares, E S; Dluzewski, A R; Mason, W T; Paiva, F B

    1998-06-01

    Calcium uptake by permeabilized P. chabaudi malaria parasites was measured at the trophozoite stage to assess calcium accumulation by the parasite organelles. As determined with 45Ca2+, the total calcium in the parasite was found to be 11 pmoles/10(7) cells. When the K+/H+ uncoupling agent, nigericin was present, this level fell to 6.5 pmoles/10(7) cells. A similar regulatory mechanism operates in P. falciparum, since addition of nigericin to intact parasites in calcium free-medium resulted in a transient elevation of free calcium in the parasite cytosol, as judged by fluorescent imaging of single cells loaded with the calcium indicator fluo-3,AM. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) and monensin, inhibitors of H+ ATPases and K+/H+ ionophore respectively, induced calcium elevation in fluo-3, AM-labeled intact P. chabaudi parasites. We conclude that malaria parasites utilize acidic intracellular compartments to regulate their cytosolic free calcium concentration.

  3. Host-parasite interactions that guide red blood cell invasion by malaria parasites.

    PubMed

    Paul, Aditya S; Egan, Elizabeth S; Duraisingh, Manoj T

    2015-05-01

    Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism, and indicate opportunities for malaria control.

  4. Host-parasite interactions that guide red blood cell invasion by malaria parasites

    PubMed Central

    Paul, Aditya S.; Egan, Elizabeth S.; Duraisingh, Manoj T.

    2015-01-01

    Purpose of Review Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent findings Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. Summary New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism; and indicate opportunities for malaria control. PMID:25767956

  5. [From malaria parasite point of view--Plasmodium falciparum evolution].

    PubMed

    Zerka, Agata; Kaczmarek, Radosław; Jaśkiewicz, Ewa

    2015-12-31

    Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  6. Targeting Human Transmission Biology for Malaria Elimination

    PubMed Central

    Buckee, Caroline; Marti, Matthias

    2015-01-01

    Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps. PMID:26086192

  7. Predicting functional and regulatory divergence of a drug resistance transporter gene in the human malaria parasite.

    PubMed

    Siwo, Geoffrey H; Tan, Asako; Button-Simons, Katrina A; Samarakoon, Upeka; Checkley, Lisa A; Pinapati, Richard S; Ferdig, Michael T

    2015-02-22

    The paradigm of resistance evolution to chemotherapeutic agents is that a key coding mutation in a specific gene drives resistance to a particular drug. In the case of resistance to the anti-malarial drug chloroquine (CQ), a specific mutation in the transporter pfcrt is associated with resistance. Here, we apply a series of analytical steps to gene expression data from our lab and leverage 3 independent datasets to identify pfcrt-interacting genes. Resulting networks provide insights into pfcrt's biological functions and regulation, as well as the divergent phenotypic effects of its allelic variants in different genetic backgrounds. To identify pfcrt-interacting genes, we analyze pfcrt co-expression networks in 2 phenotypic states - CQ-resistant (CQR) and CQ-sensitive (CQS) recombinant progeny clones - using a computational approach that prioritizes gene interactions into functional and regulatory relationships. For both phenotypic states, pfcrt co-expressed gene sets are associated with hemoglobin metabolism, consistent with CQ's expected mode of action. To predict the drivers of co-expression divergence, we integrate topological relationships in the co-expression networks with available high confidence protein-protein interaction data. This analysis identifies 3 transcriptional regulators from the ApiAP2 family and histone acetylation as potential mediators of these divergences. We validate the predicted divergences in DNA mismatch repair and histone acetylation by measuring the effects of small molecule inhibitors in recombinant progeny clones combined with quantitative trait locus (QTL) mapping. This work demonstrates the utility of differential co-expression viewed in a network framework to uncover functional and regulatory divergence in phenotypically distinct parasites. pfcrt-associated co-expression in the CQ resistant progeny highlights CQR-specific gene relationships and possible targeted intervention strategies. The approaches outlined here can be

  8. Host-based Prophylaxis Successfully Targets Liver Stage Malaria Parasites

    PubMed Central

    Douglass, Alyse N; Kain, Heather S; Abdullahi, Marian; Arang, Nadia; Austin, Laura S; Mikolajczak, Sebastian A; Billman, Zachary P; Hume, Jen C C; Murphy, Sean C; Kappe, Stefan H I; Kaushansky, Alexis

    2015-01-01

    Eliminating malaria parasites during the asymptomatic but obligate liver stages (LSs) of infection would stop disease and subsequent transmission. Unfortunately, only a single licensed drug that targets all LSs, Primaquine, is available. Targeting host proteins might significantly expand the repertoire of prophylactic drugs against malaria. Here, we demonstrate that both Bcl-2 inhibitors and P53 agonists dramatically reduce LS burden in a mouse malaria model in vitro and in vivo by altering the activity of key hepatocyte factors on which the parasite relies. Bcl-2 inhibitors act primarily by inducing apoptosis in infected hepatocytes, whereas P53 agonists eliminate parasites in an apoptosis-independent fashion. In combination, Bcl-2 inhibitors and P53 agonists act synergistically to delay, and in some cases completely prevent, the onset of blood stage disease. Both families of drugs are highly effective at doses that do not cause substantial hepatocyte cell death in vitro or liver damage in vivo. P53 agonists and Bcl-2 inhibitors were also effective when administered to humanized mice infected with Plasmodium falciparum. Our data demonstrate that host-based prophylaxis could be developed into an effective intervention strategy that eliminates LS parasites before the onset of clinical disease and thus opens a new avenue to prevent malaria. PMID:25648263

  9. Molecular basis of human cerebral malaria development.

    PubMed

    Wah, Saw Thu; Hananantachai, Hathairad; Kerdpin, Usanee; Plabplueng, Chotiros; Prachayasittikul, Virapong; Nuchnoi, Pornlada

    2016-01-01

    Cerebral malaria is still a deleterious health problem in tropical countries. The wide spread of malarial drug resistance and the lack of an effective vaccine are obstacles for disease management and prevention. Parasite and human genetic factors play important roles in malaria susceptibility and disease severity. The malaria parasite exerted a potent selective signature on the human genome, which is apparent in the genetic polymorphism landscape of genes related to pathogenesis. Currently, much genomic data and a novel body of knowledge, including the identification of microRNAs, are being increasingly accumulated for the development of laboratory testing cassettes for cerebral malaria prevention. Therefore, understanding of the underlying complex molecular basis of cerebral malaria is important for the design of strategy for cerebral malaria treatment and control.

  10. Engineering mosquito resistance to malaria parasites: the avian malaria model.

    PubMed

    James, A A

    2002-10-01

    Genetic approaches to controlling the transmission of mosquito-borne diseases are being developed to augment the available chemical control practices and environmental manipulation methods. Much progress has been made in laboratory-based research that seeks to develop antipathogen or antivector effector genes and methods for genetically manipulating host vector strains. Research is summarized here in the development of a malaria-resistant phenotype using as a model system the avian parasite, Plasmodium gallinaceum, and the mosquito, Aedes aegypti. Robust transformation technology based on a number of transposable elements, the identification of promoter regions derived from endogenous mosquito genes, and the development of single-chain antibodies as effector genes have made it possible to produce malaria-resistant mosquitoes. Future challenges include discovery of methods for spreading antiparasite genes through mosquito populations, determining the threshold levels below which parasite intensities of infection must be held, and defining the circumstances in which a genetic control strategy would be employed in the field.

  11. Big bang in the evolution of extant malaria parasites.

    PubMed

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  12. Can Mixed Parasite Infections Thwart Targeted Malaria Elimination Program in India?

    PubMed Central

    Singh, Upasana Shyamsunder; Siwal, Nisha; Pande, Veena

    2017-01-01

    India is highly endemic to malaria with prevalence of all five species of human malaria parasites of Plasmodium genus. India is set for malaria elimination by 2030. Since cases of mixed Plasmodium species infections remain usually undetected but cause huge disease burden, in order to understand the distributional prevalence of both monospecies infections and mixed species infections in India, we collated published data on the differential infection incidences of the five different malaria parasites based on PCR diagnostic assay. About 11% of total cases were due to mixed species infection. Among several interesting observations on both single and mixed parasitic infections, incidences of Plasmodium falciparum monoinfection were found to be significantly higher than P. vivax monoinfection. Also, P. malariae seems to be emerging as a potential malaria threat in India. Putting all the facts together, it appears that the dream of achieving malaria elimination in India will not be completely successful without dealing with mixed species infection. PMID:28900620

  13. Chemical activation of a high-affinity glutamate transporter in human erythrocytes and its implications for malaria-parasite-induced glutamate uptake.

    PubMed

    Winterberg, Markus; Rajendran, Esther; Baumeister, Stefan; Bietz, Sven; Kirk, Kiaran; Lingelbach, Klaus

    2012-04-12

    Human erythrocytes have a low basal permeability to L-glutamate and are not known to have a functional glutamate transporter. Here, treatment of human erythrocytes with arsenite was shown to induce the uptake of L-glutamate and D-aspartate, but not that of D-glutamate or L-alanine. The majority of the arsenite-induced L-glutamate influx was via a high-affinity, Na(+)-dependent system showing characteristics of members of the "excitatory amino acid transporter" (EAAT) family. Western blots and immunofluorescence assays revealed the presence of a member of this family, EAAT3, on the erythrocyte membrane. Erythrocytes infected with the malaria parasite Plasmodium falciparum take up glutamate from the extracellular environment. Although the majority of uptake is via a low-affinity Na(+)-independent pathway there is, in addition, a high-affinity uptake component, raising the possibility that the parasite activates the host cell glutamate transporter.

  14. Compartmentation of Redox Metabolism in Malaria Parasites

    PubMed Central

    Rahlfs, Stefan; Przyborski, Jude M.; Becker, Katja

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention. PMID:21203490

  15. Numerical Distributions of Parasite Densities During Asymptomatic Malaria

    PubMed Central

    Imwong, Mallika; Stepniewska, Kasia; Tripura, Rupam; Peto, Thomas J.; Lwin, Khin Maung; Vihokhern, Benchawan; Wongsaen, Klanarong; von Seidlein, Lorenz; Dhorda, Mehul; Snounou, Georges; Keereecharoen, Lilly; Singhasivanon, Pratap; Sirithiranont, Pasathorn; Chalk, Jem; Nguon, Chea; Day, Nicholas P. J.; Nosten, Francois; Dondorp, Arjen; White, Nicholas J.

    2016-01-01

    Background. Asymptomatic parasitemia is common even in areas of low seasonal malaria transmission, but the true proportion of the population infected has not been estimated previously because of the limited sensitivity of available detection methods. Methods. Cross-sectional malaria surveys were conducted in areas of low seasonal transmission along the border between eastern Myanmar and northwestern Thailand and in western Cambodia. DNA was quantitated by an ultrasensitive polymerase chain reaction (uPCR) assay (limit of accurate detection, 22 parasites/mL) to characterize parasite density distributions for Plasmodium falciparum and Plasmodium vivax, and the proportions of undetected infections were imputed. Results. The prevalence of asymptomatic malaria as determined by uPCR was 27.5% (1303 of 4740 people tested). Both P. vivax and P. falciparum density distributions were unimodal and log normal, with modal values well within the quantifiable range. The estimated proportions of all parasitemic individuals identified by uPCR were >70% among individuals infected with P. falciparum and >85% among those infected with P. vivax. Overall, 83% of infections were predicted to be P. vivax infections, 13% were predicted to be P. falciparum infections, and 4% were predicted to be mixed infections. Geometric mean parasite densities were similar; 5601 P. vivax parasites/mL and 5158 P. falciparum parasites/mL. Conclusions. This uPCR method identified most infected individuals in malaria-endemic areas. Malaria parasitemia persists in humans at levels that optimize the probability of generating transmissible gametocyte densities without causing illness. PMID:26681777

  16. The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum.

    PubMed

    Atamna, H; Ginsburg, H

    1997-12-15

    Malaria-infected red blood cells are under a substantial oxidative stress. Glutathione metabolism may play an important role in antioxidant defense in these cells, as it does in other eukaryotes. In this work, we have determined the levels of reduced and oxidized glutathione (GSH and GSSG, respectively) and their distributions in the parasite, and in the host-cell compartments of human erythrocytes infected with the malaria parasite Plasmodium falciparum. In intact trophozoite-infected erythrocytes, [GSH] is low and [GSSG] is high, compared with the levels in normal erythrocytes. Normal erythrocytes and the parasite compartment display high GSH/GSSG ratios of 321.6 and 284.5, respectively, indicating adequate antioxidant defense. This ratio drops to 26.7 in the host-cell compartment, indicating a forceful oxidant challenge, the low ratios resulting from an increase in GSSG and a decline in GSH concentrations. On the other hand, the concentrations of GSH and GSSG in the parasite compartment remain physiological and comparable to their concentrations in normal red blood cells. This results from de novo glutathione synthesis and its recycling, assisted by the intensive activity of the hexose monophosphate shunt in the parasite. A large efflux of GSSG from infected cells has been observed, its rate being similar from free parasites and from intact infected cells. This result suggests that de novo synthesis by the parasite is the dominating process in infected cells. GSSG efflux from the intact infected cell is more than 60-fold higher than the rate observed in normal erythrocytes, and is mediated by permeability pathways that the parasite induces in the erythrocyte's membrane. The main route for GSSG efflux through the cytoplasmic membrane of the parasite seems to be due to a specific transport system and occurs against a concentration gradient. Gamma-glutamylcysteine [Glu(-Cys)] and GSH can penetrate through the pathways from the extracellular space into the host

  17. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum.

    PubMed

    Koyama, Fernanda C; Azevedo, Mauro F; Budu, Alexandre; Chakrabarti, Debopam; Garcia, Célia R S

    2014-12-03

    There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  18. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    PubMed Central

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å3 Da−1). PMID:16754976

  19. Preservation of Wild Isolates of Human Malaria Parasites in Wet Ice and Adaptation Efficacy to In Vitro Culture

    PubMed Central

    Tantular, Indah S.; Pusarawati, Suhintam; Khin, Lin; Kanbe, Toshio; Kimura, Masatsugu; Kido, Yasutoshi; Kawamoto, Fumihiko

    2012-01-01

    Wild isolates of malaria parasites were preserved in wet ice for 2–12 days and cultivated by a candle jar method. In four isolates of Plasmodium falciparum collected from Myanmar and preserved for 12 days, all failed to grow. In 31 isolates preserved for 5–10 days, nine were transformed to young gametocytes, but 22 isolates grew well. From Ranong, Thailand, nine isolates preserved for 7 days were examined, and six grew well. On the other hand, all of the 59 isolates collected from eastern Indonesian islands failed to establish as culture-adapted isolates, even most of them were preserved only for 2–3 days: 10 isolates stopped to grow, and 49 isolates were transformed to sexual stages by Day 10. These results indicated that a great difference in adaptation to in vitro culture may exist between wild isolates distributed in continental Southeast Asia and in eastern Indonesia and that gametocytogenesis might be easily switched on in Indonesian isolates. In wild isolates of P. vivax, P. malariae and P. ovale preserved for 2–9 days, ring forms or young trophozoites survived, but adaptation to in vitro culture failed. These results indicate that wild isolates can be preserved in wet ice for 9–10 days. PMID:23097618

  20. The development of malaria parasites in the mosquito midgut

    PubMed Central

    Bennink, Sandra; Kiesow, Meike J.

    2016-01-01

    Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  1. The neurology of parasitic diseases and malaria.

    PubMed

    Román, Gustavo C

    2011-02-01

    Neurologists should be aware of parasitic diseases occurring in travelers and recent migrants because the world has become a global village as a result of tourism and immigration. Global warming is changing the distribution of diseases formerly confined to the tropics. The two most common parasitic diseases of the nervous system are Plasmodium falciparum malaria presenting as a febrile encephalopathy with normal CSF and neurocysticercosis causing seizures with focal MRI lesions or with intracranial hypertension. Numerous parasites may cause larva migrans with eosinophilic meningitis. Spinal cord involvement is the signature presentation of schistosomiasis. Trypanosoma cruzi, the agent of Chagas disease in the Americas, may cause myocardiopathy and embolic stroke. Sleeping sickness remains the most common manifestation of African trypanosomiasis. These conditions are challenging to diagnose unless a history of travel is elicited. Prospective travelers should be advised of preventive measures to avoid potentially severe infections of the nervous system.

  2. Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector.

    PubMed Central

    Paul, Rick E L; Nu, Van Anh Ton; Krettli, Antoniana U; Brey, Paul T

    2002-01-01

    The role of species interactions in structuring parasite communities remains controversial. Here, we show that interspecific competition between two avian malaria parasite species, Plasmodium gallinaceum and P. juxtanucleare, occurs as a result of interference during parasite fertilization within the bloodmeal of the mosquito. The significant reduction in the transmission success of P. gallinaceum to mosquitoes, due to the co-infecting P. juxtanucleare, is predicted to have compromised its colonization of regions occupied by P. juxtanucleare and, thus, may have contributed to the restricted global distribution of P. gallinaceum. Such interspecies interactions may occur between human malaria parasites and, thus, impact upon parasite species epidemiology, especially in regions of seasonal transmission. PMID:12573069

  3. Protein S-Glutathionylation in Malaria Parasites

    PubMed Central

    Kehr, Sebastian; Jortzik, Esther; Delahunty, Claire; Yates, John R.; Rahlfs, Stefan

    2011-01-01

    Abstract Aims: Protein S-glutathionylation is a widely distributed post-translational modification of thiol groups with glutathione that can function as a redox-sensitive switch to mediate redox regulation and signal transduction. The malaria parasite Plasmodium falciparum is exposed to intense oxidative stress and possesses the enzymatic system required to regulate protein S-glutathionylation, but despite its potential importance, protein S-glutathionylation has not yet been studied in malaria parasites. In this work we applied a method based on enzymatic deglutathionylation, affinity purification of biotin-maleimide-tagged proteins, and proteomic analyses to characterize the Plasmodium glutathionylome. Results: We identified 493 targets of protein S-glutathionylation in Plasmodium. Functional profiles revealed that the targets are components of central metabolic pathways, such as nitrogen compound metabolism and protein metabolism. Fifteen identified proteins with important functions in metabolic pathways (thioredoxin reductase, thioredoxin, thioredoxin peroxidase 1, glutathione reductase, glutathione S-transferase, plasmoredoxin, mitochondrial dihydrolipoamide dehydrogenase, glutamate dehydrogenase 1, glyoxalase I and II, ornithine δ-aminotransferase, lactate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], pyruvate kinase [PK], and phosphoglycerate mutase) were further analyzed to study their ability to form mixed disulfides with glutathione. We demonstrate that P. falciparum GAPDH, PK, and ornithine δ-aminotransferase are reversibly inhibited by S-glutathionylation. Further, we provide evidence that not only P. falciparum glutaredoxin 1, but also thioredoxin 1 and plasmoredoxin are able to efficiently catalyze protein deglutathionylation. Innovation: We used an affinity-purification based proteomic approach to characterize the Plasmodium glutathionylome. Conclusion: Our results indicate a wide regulative use of S-glutathionylation in the

  4. Parasites that cause problems in Malaysia: soil-transmitted helminths and malaria parasites.

    PubMed

    Singh, B; Cox-Singh, J

    2001-12-01

    Malaysia is a developing country with a range of parasitic infections. Indeed, soil-transmitted helminths and malaria parasites continue to have a significant impact on public health in Malaysia. In this article, the prevalence and distribution of these parasites, the problems associated with parasitic infections, the control measures taken to deal with these parasites and implications for the future will be discussed.

  5. Quantifying Transmission Investment in Malaria Parasites

    PubMed Central

    Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.

    2016-01-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485

  6. Quantifying Transmission Investment in Malaria Parasites.

    PubMed

    Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N

    2016-02-01

    Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.

  7. Molecular Genetic Analysis of Parasite Survival in P. falciparum Malaria

    DTIC Science & Technology

    1993-02-08

    AD-A279 410 GRANT NO: DAMN17-89-Z-9003 TITLE: MOLECULAR GENETIC ANALYSIS OF PARASITE SURVIVAL IN R. E&LEZjpAIM MALARIA PRINCIPAL INVESTIGATOR... Analysis of Parasite Survival Grant No. in P. Falciparum Malaria DAMDi 7-89- Z-9003 -6. AUTHOR(S) Jeffrey V. Ravetch, M.D., Ph.D. 7. PERFORMING...consequences of genetic variation for parasite survival. Genetic polymorphisms in PRfalciparum were initially detected by pulsed-field gel analysis of intact

  8. Kinetic benefits and thermal stability of orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase enzyme complex in human malaria parasite Plasmodium falciparum.

    PubMed

    Kanchanaphum, Panan; Krungkrai, Jerapan

    2009-12-11

    We have previously shown that orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC) in human malaria parasite Plasmodium falciparum form an enzyme complex, containing two subunits each of OPRT and OMPDC. To enable further characterization, we expressed and purified P. falciparum OPRT-OMPDC enzyme complex in Escherichia coli. The OPRT and OMPDC activities of the enzyme complex co-eluted in the chromatographic columns used during purification. Kinetic parameters (K(m), k(cat) and k(cat)/K(m)) of the enzyme complex were 5- to 125-folds higher compared to the monofunctional enzyme. Interestingly, pyrophosphate was a potent inhibitor to the enzyme complex, but had a slightly inhibitory effect for the monofunctional enzyme. The enzyme complex resisted thermal inactivation at higher temperature than the monofunctional OPRT and OMPDC. The result suggests that the OPRT-OMPDC enzyme complex might have kinetic benefits and thermal stability significantly different from the monofunctional enzyme.

  9. Comprehensive quantitative analysis of purines and pyrimidines in the human malaria parasite using ion-pairing ultra-performance liquid chromatography-mass spectrometry

    PubMed Central

    Laourdakis, Christian D.; Merino, Emilio F.; Neilson, Andrew P.; Cassera, Maria B.

    2014-01-01

    Targeted metabolite profiling has aided in the understanding of a variety of biological processes in the malaria parasite as well as in drug discovery. A fast and sensitive analytical method, based on ion-pairing reversed phase ultra-high performance liquid chromatography tandem mass spectrometry (IP-RP-UPLC-MS/MS), was optimized for the simultaneous analysis of intracellular levels of 35 purine and pyrimidine nucleobases, nucleosides, and nucleotides. This analytical method allows for chromatographic separation of highly polar metabolites using reverse phase chemistry within 15 minutes. The analytical performance of the method was evaluated and successfully applied to the quantification of purines and pyrimidines in Plasmodium falciparum and its host cell, the human erythrocyte. In addition, this method can be customized to include other related metabolites such as NADPH and NADP, among others. PMID:25089957

  10. Malaria

    PubMed Central

    Suh, Kathryn N.; Kain, Kevin C.; Keystone, Jay S.

    2004-01-01

    Malaria is a parasitic infection of global importance. Although relatively uncommon in developed countries, where the disease occurs mainly in travellers who have returned from endemic regions, it remains one of the most prevalent infections of humans worldwide. In endemic regions, malaria is a significant cause of morbidity and mortality and creates enormous social and economic burdens. Current efforts to control malaria focus on reducing attributable morbidity and mortality. Targeted chemoprophylaxis and use of insecticide-treated bed nets have been successful in some endemic areas. For travellers to malaria-endemic regions, personal protective measures and appropriate chemoprophylaxis can significantly reduce the risk of infection. Prompt evaluation of the febrile traveller, a high degree of suspicion of malaria, rapid and accurate diagnosis, and appropriate antimalarial therapy are essential in order to optimize clinical outcomes of infected patients. Additional approaches to malaria control, including genetic manipulation of mosquitoes and malaria vaccines, are areas of ongoing research. PMID:15159369

  11. Identification of New Human Malaria Parasite Plasmodium Falciparum Dihydroorotate Dehydrogenase Inhibitors by Pharmacophore and Structure-Based Virtual Screening

    PubMed Central

    Pavadai, Elumalai; El Mazouni, Farah; Wittlin, Sergio; de Kock, Carmen; Phillips, Margaret A.; Chibale, Kelly

    2016-01-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 μM, three of which exhibited IC50 values in the range of 0.38–20 μM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 μM. In addition to this, thirteen compounds inhibited parasite growth with IC50 values of ≤ 50 μM, four of which showed IC50 values in the range of 5–12 μM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors. PMID:26915022

  12. Identification of New Human Malaria Parasite Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors by Pharmacophore and Structure-Based Virtual Screening.

    PubMed

    Pavadai, Elumalai; El Mazouni, Farah; Wittlin, Sergio; de Kock, Carmen; Phillips, Margaret A; Chibale, Kelly

    2016-03-28

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a key enzyme in the de novo pyrimidine biosynthesis pathway, which the Plasmodium falciparum relies on exclusively for survival, has emerged as a promising target for antimalarial drugs. In an effort to discover new and potent PfDHODH inhibitors, 3D-QSAR pharmacophore models were developed based on the structures of known PfDHODH inhibitors and the validated Hypo1 model was used as a 3D search query for virtual screening of the National Cancer Institute database. The virtual hit compounds were further filtered based on molecular docking and Molecular Mechanics/Generalized Born Surface Area binding energy calculations. The combination of the pharmacophore and structure-based virtual screening resulted in the identification of nine new compounds that showed >25% inhibition of PfDHODH at a concentration of 10 μM, three of which exhibited IC50 values in the range of 0.38-20 μM. The most active compound, NSC336047, displayed species-selectivity for PfDHODH over human DHODH and inhibited parasite growth with an IC50 of 26 μM. In addition to this, 13 compounds inhibited parasite growth with IC50 values of ≤ 50 μM, 4 of which showed IC50 values in the range of 5-12 μM. These compounds could be further explored in the identification and development of more potent PfDHODH and parasite growth inhibitors.

  13. Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed

    Alleva, L M; Kirk, K

    2001-10-01

    The regulation of intracellular Ca(2+) in the intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, was investigated using parasites 'isolated' from their host cells by saponin-permeabilisation of the erythrocyte membrane. The isolated parasites maintained tight control over their resting cytosolic Ca(2+) concentration which ranged from approximately 100 nM in the absence of extracellular Ca(2+) to approximately 700 nM in the presence of 1 mM extracellular Ca(2+). The parasite has two functionally discrete intracellular Ca(2+) stores. One is an 'endoplasmic reticulum (ER)-like' store, the other an 'acidic store'. The ER-like store was discharged by cyclopiazonic acid (CPA), an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) of animal and plant cells, but not by thapsigargin (TG), a more specific inhibitor of SERCAs of animal cells. The acidic store was discharged by nigericin and by NH(4)(+). The amount of Ca(2+) in the ER-like store increased with increasing extracellular Ca(2+) concentration, whereas the amount of Ca(2+) in the acidic store did not. Ca(2+) released from the ER-like store by CPA was cleared from the parasite cytosol by uptake into the acidic store (over a range of extracellular Ca(2+) concentrations), consistent with the acidic store serving as a Ca(2+) reservoir within the intracellular parasite.

  14. The Antibiotic Micrococcin Is a Potent Inhibitor of Growth and Protein Synthesis in the Malaria Parasite

    PubMed Central

    Rogers, M. John; Cundliffe, Eric; McCutchan, Thomas F.

    1998-01-01

    The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite. PMID:9517961

  15. The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite.

    PubMed

    Rogers, M J; Cundliffe, E; McCutchan, T F

    1998-03-01

    The antibiotic micrococcin is a potent growth inhibitor of the human malaria parasite Plasmodium falciparum, with a 50% inhibitory concentration of 35 nM. This is comparable to or less than the corresponding levels of commonly used antimalarial drugs. Micrococcin, like thiostrepton, putatively targets protein synthesis in the plastid-like organelle of the parasite.

  16. Organization of ETRAMPs and EXP-1 at the parasite-host cell interface of malaria parasites.

    PubMed

    Spielmann, Tobias; Gardiner, Donald L; Beck, Hans-Peter; Trenholme, Katharine R; Kemp, David J

    2006-02-01

    The parasite-host cell interface is a key compartment of vacuolated intracellular pathogens but little is known about its molecular composition and architecture. We used in vivo cross-linking to analyse the parasite-host cell interface of asexual stages of the most virulent human malaria parasite Plasmodium falciparum. We show that the integral membrane protein members of the early transcribed membrane protein (ETRAMP) family and exported protein 1 (EXP-1), which are components of the parasite-host cell interface, form complexes of oligomeric arrays in this compartment. The most notable feature is that each ETRAMP member and EXP-1 define separate arrays, demonstrating that the protein distribution in this membrane is non-random. Each of three recombinant ETRAMPs readily oligomerized in bacterial membranes, confirming that these arrays can form independently of other Plasmodium proteins. We propose that the malaria parasite-host cell interface contains patches of integral membrane proteins forming a mosaic of different microdomains in this membrane.

  17. Deoxyhypusine hydroxylase from Plasmodium vivax, the neglected human malaria parasite: molecular cloning, expression and specific inhibition by the 5-LOX inhibitor zileuton.

    PubMed

    Atemnkeng, Veronika Anyigoh; Pink, Mario; Schmitz-Spanke, Simone; Wu, Xian-Jun; Dong, Liang-Liang; Zhao, Kai-Hong; May, Caroline; Laufer, Stefan; Langer, Barbara; Kaiser, Annette

    2013-01-01

    Primaquine, an 8-aminoquinoline, is the only drug which cures the dormant hypnozoites of persistent liver stages from P. vivax. Increasing resistance needs the discovery of alternative pathways as drug targets to develop novel drug entities. Deoxyhypusine hydroxylase (DOHH) completes hypusine biosynthesis in eukaryotic initiation factor (eIF-5A) which is the only cellular protein known to contain the unusual amino acid hypusine. Modified EIF-5A is important for proliferation of the malaria parasite. Here, we present the first successful cloning and expression of DOHH from P. vivax causing tertiary malaria. The nucleic acid sequence of 1041 bp encodes an open reading frame of 346 amino acids. Histidine tagged expression of P. vivax DOHH detected a protein of 39.01 kDa in E. coli. The DOHH protein from P. vivax shares significant amino acid identity to the simian orthologues from P. knowlesi and P. yoelii strain H. In contrast to P. falciparum only four E-Z-type HEAT-like repeats are present in P. vivax DOHH with different homology to phycocyanin lyase subunits from cyanobacteria and in proteins participating in energy metabolism of Archaea and Halobacteria. However, phycocyanin lyase activity is absent in P. vivax DOHH. The dohh gene is present as a single copy gene and transcribed throughout the whole erythrocytic cycle. Specific inhibition of recombinant P. vivax DOHH is possible by complexing the ferrous iron with zileuton, an inhibitor of mammalian 5-lipoxygenase (5-LOX). Ferrous iron in the active site of 5-LOX is coordinated by three conserved histidines and the carboxylate of isoleucine(673). Zileuton inhibited the P. vivax DOHH protein with an IC50 of 12,5 nmol determined by a relative quantification by GC/MS. By contrast, the human orthologue is only less affected with an IC50 of 90 nmol suggesting a selective iron-complexing strategy for the parasitic enzyme.

  18. Deoxyhypusine Hydroxylase from Plasmodium vivax, the Neglected Human Malaria Parasite: Molecular Cloning, Expression and Specific Inhibition by the 5-LOX Inhibitor Zileuton

    PubMed Central

    Atemnkeng, Veronika Anyigoh; Pink, Mario; Schmitz-Spanke, Simone; Wu, Xian-Jun; Dong, Liang-Liang; Zhao, Kai-Hong; May, Caroline; Laufer, Stefan; Langer, Barbara; Kaiser, Annette

    2013-01-01

    Primaquine, an 8-aminoquinoline, is the only drug which cures the dormant hypnozoites of persistent liver stages from P. vivax. Increasing resistance needs the discovery of alternative pathways as drug targets to develop novel drug entities. Deoxyhypusine hydroxylase (DOHH) completes hypusine biosynthesis in eukaryotic initiation factor (eIF-5A) which is the only cellular protein known to contain the unusual amino acid hypusine. Modified EIF-5A is important for proliferation of the malaria parasite. Here, we present the first successful cloning and expression of DOHH from P. vivax causing tertiary malaria. The nucleic acid sequence of 1041 bp encodes an open reading frame of 346 amino acids. Histidine tagged expression of P. vivax DOHH detected a protein of 39.01 kDa in E. coli. The DOHH protein from P. vivax shares significant amino acid identity to the simian orthologues from P. knowlesi and P. yoelii strain H. In contrast to P. falciparum only four E-Z-type HEAT-like repeats are present in P. vivax DOHH with different homology to phycocyanin lyase subunits from cyanobacteria and in proteins participating in energy metabolism of Archaea and Halobacteria. However, phycocyanin lyase activity is absent in P. vivax DOHH. The dohh gene is present as a single copy gene and transcribed throughout the whole erythrocytic cycle. Specific inhibition of recombinant P. vivax DOHH is possible by complexing the ferrous iron with zileuton, an inhibitor of mammalian 5-lipoxygenase (5-LOX). Ferrous iron in the active site of 5-LOX is coordinated by three conserved histidines and the carboxylate of isoleucine673. Zileuton inhibited the P. vivax DOHH protein with an IC50 of 12,5 nmol determined by a relative quantification by GC/MS. By contrast, the human orthologue is only less affected with an IC50 of 90 nmol suggesting a selective iron-complexing strategy for the parasitic enzyme. PMID:23505486

  19. Malaria parasites and red cell variants: when a house is not a home

    PubMed Central

    Taylor, Steve M.; Fairhurst, Rick M.

    2014-01-01

    Purpose of review Multiple red cell variants are known to confer protection from malaria. Here we review advances in identifying new variants that modulate malaria risk and in defining molecular mechanisms that mediate malaria protection. Recent findings New red cell variants, including an innate variant in the red cell’s major Ca2+ pump and the acquired state of iron deficiency, have been associated with protection from clinical falciparum malaria. The hemoglobin (Hb) mutants HbC and HbS – known to protect carriers from severe falciparum malaria – enhance parasite passage to mosquitoes and may promote malaria transmission. At the molecular level, substantial advances have been made in understanding the impact of HbS and HbC upon the interactions between host microRNAs and Plasmodium falciparum protein translation; remodeling of red cell cytoskeletal components and transport of parasite proteins to the red cell surface; and chronic activation of the human innate immune system which induces tolerance to blood-stage parasites. Several polymorphisms have now been associated with protection from clinical vivax malaria or reduced P. vivax density, including Southeast Asian ovalocytosis and two common forms of glucose-6-phosphate dehydrogenase deficiency. Summary Red cell variants that modulate malaria risk can serve as models to identify clinically relevant mechanisms of pathogenesis, and thus define parasite and host targets for next-generation therapies. PMID:24675047

  20. Mesangial proliferative glomerulonephritis in murine malaria parasite, Plasmodium chabaudi AS, infected NC mice.

    PubMed

    Yashima, Akihito; Mizuno, Masashi; Yuzawa, Yukio; Shimada, Koki; Suzuki, Norihiko; Tawada, Hideo; Sato, Waichi; Tsuboi, Naotake; Maruyama, Shoichi; Ito, Yasuhiko; Matsuo, Seiichi; Ohno, Tamio

    2017-08-01

    Malaria is an important tropical disease and has remained a serious health problem in many countries. One of the critical complications of malarial infection is renal injury, such as acute renal failure and chronic glomerulopathy. Few animal models of nephropathy related to malarial infection have been reported. Therefore, we developed and investigated a novel malarial nephropathy model in mice infected by murine malaria parasites. NC mice and C57BL/6J mice were infected with Ttwo different murine malaria parasites, Plasmodium (P.) chabaudi AS and P. yoelii 17X. After the infection, renal pathology and blood and urinary biochemistry were analyzed. NC mice infected by the murine malaria parasite P. chabaudi AS, but not P. yoelii 17X, developed mesangial proliferative glomerulonephritis with endothelial damage, and decreased serum albumin concentration and increased proteinuria. These pathological changes were accompanied by deposition of immunoglobulin G and complement component 3, mainly in the mesangium until day 4 and in the mesangium and glomerular capillaries from day 8. On day 21, renal pathology developed to focal segmental sclerosis according to light microscopy. In C57BL/6J mice, renal injuries were not observed from either parasite infection. The clinical and pathological features of P. chabaudi AS infection in NC mice might be similar to quartan malarial nephropathy resulting from human malaria parasite P. malariae infection. The NC mouse model might therefore be useful in analyzing the underlying mechanisms and developing therapeutic approaches to malaria-related nephropathy.

  1. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites

    PubMed Central

    Absalon, Sabrina; Robbins, Jonathan A.; Dvorin, Jeffrey D.

    2016-01-01

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites. PMID:27121004

  2. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine.

    PubMed

    Wrenger, Carsten; Eschbach, Marie-Luise; Müller, Ingrid B; Laun, Nathan P; Begley, Tadhg P; Walter, Rolf D

    2006-01-01

    Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K(m)app values of 68 microM for THZ and 12 microM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors.

  4. Plasmodium falciparum GFP-E-NTPDase expression at the intraerythrocytic stages and its inhibition blocks the development of the human malaria parasite.

    PubMed

    Borges-Pereira, Lucas; Meissner, Kamila Anna; Wrenger, Carsten; Garcia, Célia R S

    2017-03-11

    Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.

  5. Giant Host Red Blood Cell Membrane Mimicking Polymersomes Bind Parasite Proteins and Malaria Parasites.

    PubMed

    Najer, Adrian; Thamboo, Sagana; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2016-01-01

    Malaria is an infectious disease that needs to be addressed using innovative approaches to counteract spread of drug resistance and to establish or optimize vaccination strategies. With our approach, we aim for a dual action with drug- and 'vaccine-like' activity against malaria. By inhibiting entry of malaria parasites into host red blood cells (RBCs) - using polymer vesicle-based (polymersome) nanomimics of RBC membranes - the life cycle of the parasite is interrupted and the exposed parasites are accessible to the host immune system. Here, we describe how host cell-sized RBC membrane mimics, formed with the same block copolymers as nanomimics, also bind the corresponding malaria parasite ligand and whole malaria parasites, similar to nanomimics. This was demonstrated using fluorescence imaging techniques and confirms the suitability of giant polymersomes (GUVs) as simple mimics for RBC membranes.

  6. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Ngwa, Che J.; Kiesow, Meike J.; Papst, Olga; Orchard, Lindsey M.; Filarsky, Michael; Rosinski, Alina N.; Voss, Till S.; Llinás, Manuel; Pradel, Gabriele

    2017-01-01

    Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1

  7. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum.

    PubMed

    Ngwa, Che J; Kiesow, Meike J; Papst, Olga; Orchard, Lindsey M; Filarsky, Michael; Rosinski, Alina N; Voss, Till S; Llinás, Manuel; Pradel, Gabriele

    2017-01-01

    Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1

  8. The distinct proteome of placental malaria parasites.

    SciTech Connect

    Fried, Michal; Hixson, Kim K.; Anderson, Lori; Ogata, Yuko; Mutabingwa, Theonest K.; Duffy, Patrick E.

    2007-09-01

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.

  9. A class of tricyclic compounds blocking malaria parasite oocyst development and transmission.

    PubMed

    Eastman, Richard T; Pattaradilokrat, Sittiporn; Raj, Dipak K; Dixit, Saurabh; Deng, Bingbing; Miura, Kazutoyo; Yuan, Jing; Tanaka, Takeshi Q; Johnson, Ronald L; Jiang, Hongying; Huang, Ruili; Williamson, Kim C; Lambert, Lynn E; Long, Carole; Austin, Christopher P; Wu, Yimin; Su, Xin-Zhuan

    2013-01-01

    Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.

  10. Differentiating the pathologies of cerebral malaria by postmortem parasite counts.

    PubMed

    Taylor, Terrie E; Fu, Wenjiang J; Carr, Richard A; Whitten, Richard O; Mueller, Jeffrey S; Fosiko, Nedson G; Lewallen, Susan; Liomba, N George; Molyneux, Malcolm E; Mueller, Jeffrey G

    2004-02-01

    To study the pathogenesis of fatal cerebral malaria, we conducted autopsies in 31 children with this clinical diagnosis. We found that 23% of the children had actually died from other causes. The remaining patients had parasites sequestered in cerebral capillaries, and 75% of those had additional intra- and perivascular pathology. Retinopathy was the only clinical sign distinguishing malarial from nonmalarial coma. These data have implications for treating malaria patients, designing clinical trials and assessing malaria-specific disease associations.

  11. The interplay between drug resistance and fitness in malaria parasites.

    PubMed

    Rosenthal, Philip J

    2013-09-01

    Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymorphisms on parasite fitness have been characterized in vitro and in animal models. Additional insights have come from analyses of samples from clinical studies, both evaluating parasites under different selective pressures and determining the clinical consequences of infection with different parasites. With some exceptions, resistance-mediating polymorphisms lead to malaria parasites that, compared with wild type, grow less well in culture and in animals, and are replaced by wild type when drug pressure diminishes in the clinical setting. In some cases, the fitness costs of resistance may be offset by compensatory mutations that increase virulence or changes that enhance malaria transmission. However, not enough is known about effects of resistance mediators on parasite fitness. A better appreciation of the costs of fitness-mediating mutations will facilitate the development of optimal guidelines for the treatment and prevention of malaria.

  12. Spatial Localisation of Actin Filaments across Developmental Stages of the Malaria Parasite

    PubMed Central

    Angrisano, Fiona; Delves, Michael J.; Zuccala, Elizabeth S.; Turnbull, Lynne; Dekiwadia, Chaitali; Olshina, Maya A.; Marapana, Danushka S.; Wong, Wilson; Mollard, Vanessa; Bradin, Clare H.; Tonkin, Christopher J.; Gunning, Peter W.; Ralph, Stuart A.; Whitchurch, Cynthia B.; Sinden, Robert E.; Cowman, Alan F.; McFadden, Geoffrey I.; Baum, Jake

    2012-01-01

    Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu. PMID:22389687

  13. Computational microscopic imaging for malaria parasite detection: a systematic review.

    PubMed

    Das, D K; Mukherjee, R; Chakraborty, C

    2015-10-01

    Malaria, being an epidemic disease, demands its rapid and accurate diagnosis for proper intervention. Microscopic image-based characterization of erythrocytes plays an integral role in screening of malaria parasites. In practice, microscopic evaluation of blood smear image is the gold standard for malaria diagnosis; where the pathologist visually examines the stained slide under the light microscope. This visual inspection is subjective, error-prone and time consuming. In order to address such issues, computational microscopic imaging methods have been given importance in recent times in the field of digital pathology. Recently, such quantitative microscopic techniques have rapidly evolved for abnormal erythrocyte detection, segmentation and semi/fully automated classification by minimizing such diagnostic errors for computerized malaria detection. The aim of this paper is to present a review on enhancement, segmentation, microscopic feature extraction and computer-aided classification for malaria parasite detection. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Malaria parasite epigenetics: when virulence and romance collide.

    PubMed

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events.

  15. Sickle cell microRNAs inhibit the malaria parasite.

    PubMed

    Duraisingh, Manoj T; Lodish, Harvey F

    2012-08-16

    Sickle cell hemoglobin conveys resistance to malaria. In this issue of Cell Host & Microbe, LaMonte et al. (2012) demonstrate a surprising mechanism for this innate immunity. A microRNA enriched in sickle red blood cells is translocated into the parasite, incorporated covalently into P. falciparum mRNAs and inhibits parasite growth.

  16. Emerging functions of transcription factors in malaria parasite.

    PubMed

    Tuteja, Renu; Ansari, Abulaish; Chauhan, Virander Singh

    2011-01-01

    Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  17. In Vitro Analysis of the Interaction between Atovaquone and Proguanil against Liver Stage Malaria Parasites.

    PubMed

    Barata, Lídia; Houzé, Pascal; Boutbibe, Khadija; Zanghi, Gigliola; Franetich, Jean-François; Mazier, Dominique; Clain, Jérôme

    2016-07-01

    The interaction between atovaquone and proguanil has never been studied against liver stage malaria, which is the main target of this drug combination when used for chemoprevention. Using human hepatocytes lacking cytochrome P450 activity, and thus avoiding proguanil metabolizing into potent cycloguanil, we show in vitro that the atovaquone-proguanil combination synergistically inhibits the growth of rodent Plasmodium yoelii parasites. These results provide a pharmacological basis for the high efficacy of atovaquone-proguanil used as malaria chemoprevention.

  18. In Vitro Analysis of the Interaction between Atovaquone and Proguanil against Liver Stage Malaria Parasites

    PubMed Central

    Barata, Lídia; Houzé, Pascal; Boutbibe, Khadija; Zanghi, Gigliola; Franetich, Jean-François

    2016-01-01

    The interaction between atovaquone and proguanil has never been studied against liver stage malaria, which is the main target of this drug combination when used for chemoprevention. Using human hepatocytes lacking cytochrome P450 activity, and thus avoiding proguanil metabolizing into potent cycloguanil, we show in vitro that the atovaquone-proguanil combination synergistically inhibits the growth of rodent Plasmodium yoelii parasites. These results provide a pharmacological basis for the high efficacy of atovaquone-proguanil used as malaria chemoprevention. PMID:26926628

  19. Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load.

    PubMed

    Haeberlein, Simone; Chevalley-Maurel, Séverine; Ozir-Fazalalikhan, Arifa; Koppejan, Hester; Winkel, Beatrice M F; Ramesar, Jai; Khan, Shahid M; Sauerwein, Robert W; Roestenberg, Meta; Janse, Chris J; Smits, Hermelijn H; Franke-Fayard, Blandine

    2017-09-04

    In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8(+) and CD4(+) effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8(+) dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.

  20. Drug repurposing and human parasitic protozoan diseases

    PubMed Central

    Andrews, Katherine T.; Fisher, Gillian; Skinner-Adams, Tina S.

    2014-01-01

    Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis. PMID:25057459

  1. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data

    PubMed Central

    Ruktanonchai, Nick W.; DeLeenheer, Patrick; Tatem, Andrew J.; Alegana, Victor A.; Caughlin, T. Trevor; zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W.; Smith, David L.

    2016-01-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model. PMID:27043913

  2. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data.

    PubMed

    Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J; Alegana, Victor A; Caughlin, T Trevor; Zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W; Smith, David L

    2016-04-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.

  3. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed Central

    Kay, Katherine

    2015-01-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. PMID:26239987

  4. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs.

  5. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  6. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.

  7. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  8. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.

    PubMed Central

    Elliott, J L; Saliba, K J; Kirk, K

    2001-01-01

    The mature, intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, is reliant on glycolysis for its energetic requirements. It produces large quantities of lactic acid, which have to be removed from the parasite's cytosol to maintain the cell's integrity and metabolic viability. Here we show that the monocarboxylates lactate and pyruvate are both transported across the parasite's plasma membrane via a H(+)/monocarboxylate symport process that is saturable and inhibited by the bioflavonoid phloretin. The results provide direct evidence for the presence at the parasite surface of a H(+)-coupled monocarboxylate transporter with features in common with members of the MCT (monocarboxylate transporter) family of higher eukaryotes. PMID:11311136

  9. A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria.

    PubMed

    Giddam, Ashwini Kumar; Reiman, Jennifer M; Zaman, Mehfuz; Skwarczynski, Mariusz; Toth, Istvan; Good, Michael F

    2016-10-15

    Although attenuated malaria parasitized red blood cells (pRBCs) are promising vaccine candidates, their application in humans may be restricted for ethical and regulatory reasons. Therefore, we developed an organic microparticle-based delivery platform as a whole parasite malaria-antigen carrier to mimic pRBCs. Killed blood stage parasites were encapsulated within liposomes that are targeted to antigen presenting cells (APCs). Mannosylated lipid core peptides (MLCPs) were used as targeting ligands for the liposome-encapsulated parasite antigens. MLCP-liposomes, but not unmannosylated liposomes, were taken-up efficiently by APCs which then significantly upregulated expression of MHC-ll and costimulatory molecules, CD80 and CD86. Two such vaccines using rodent model systems were constructed - one with Plasmodium chabaudi and the other with P. yoelii. MLCP-liposome vaccines were able to control the parasite burden and extended the survival of mice. Thus, we have demonstrated an alternative delivery system to attenuated pRBCs with similar vaccine efficacy and added clinical advantages. Such liposomes are promising candidates for a human malaria vaccine. Attenuated whole parasite-based vaccines, by incorporating all parasite antigens, are very promising candidates, but issues relating to production, storage and safety concerns are significantly slowing their development. We therefore developed a semi-synthetic whole parasite malaria vaccine that is easily manufactured and stored. Two such prototype vaccines (a P. chabaudi and a P. yoelii vaccine) have been constructed. They are non-infectious, highly immunogenic and give good protection profiles. This semi-synthetic delivery platform is an exciting strategy to accelerate the development of a licensed malaria vaccine. Moreover, this strategy can be potentially applied to a wide range of pathogens. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution

    PubMed Central

    Koch, Marion

    2016-01-01

    Summary Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non‐essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin–myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre‐invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite‐derived lipid material, that the merozoite may initiate cytoskeletal re‐arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms. PMID:26663815

  11. Defining species specific genome differences in malaria parasites.

    PubMed

    Liew, Kingsley J L; Hu, Guangan; Bozdech, Zbynek; Peter, Preiser R

    2010-02-23

    In recent years a number of genome sequences for different plasmodium species have become available. This has allowed the identification of numerous conserved genes across the different species and has significantly enhanced our understanding of parasite biology. In contrast little is known about species specific differences between the different genomes partly due to the lower sequence coverage and therefore relatively poor annotation of some of the draft genomes particularly the rodent malarias parasite species. To improve the current annotation and gene identification status of the draft genomes of P. berghei, P. chabaudi and P. yoelii, we performed genome-wide comparisons between these three species. Through analyses via comparative genome hybridizations using a newly designed pan-rodent array as well as in depth bioinformatics analysis, we were able to improve on the coverage of the draft rodent parasite genomes by detecting orthologous genes between these related rodent parasite species. More than 1,000 orthologs for P. yoelii were now newly associated with a P. falciparum gene. In addition to extending the current core gene set for all plasmodium species this analysis also for the first time identifies a relatively small number of genes that are unique to the primate malaria parasites while a larger gene set is uniquely conserved amongst the rodent malaria parasites. These findings allow a more thorough investigation of the genes that are important for host specificity in malaria.

  12. The Plasmodium apicoplast genome: conserved structure and close relationship of P. ovale to rodent malaria parasites.

    PubMed

    Arisue, Nobuko; Hashimoto, Tetsuo; Mitsui, Hideya; Palacpac, Nirianne M Q; Kaneko, Akira; Kawai, Satoru; Hasegawa, Masami; Tanabe, Kazuyuki; Horii, Toshihiro

    2012-09-01

    Apicoplast, a nonphotosynthetic plastid derived from secondary symbiotic origin, is essential for the survival of malaria parasites of the genus Plasmodium. Elucidation of the evolution of the apicoplast genome in Plasmodium species is important to better understand the functions of the organelle. However, the complete apicoplast genome is available for only the most virulent human malaria parasite, Plasmodium falciparum. Here, we obtained the near-complete apicoplast genome sequences from eight Plasmodium species that infect a wide variety of vertebrate hosts and performed structural and phylogenetic analyses. We found that gene repertoire, gene arrangement, and other structural attributes were highly conserved. Phylogenetic reconstruction using 30 protein-coding genes of the apicoplast genome inferred, for the first time, a close relationship between P. ovale and rodent parasites. This close relatedness was robustly supported using multiple evolutionary assumptions and models. The finding suggests that an ancestral host switch occurred between rodent and human Plasmodium parasites.

  13. Development and Assessment of Transgenic Rodent Parasites for the Preclinical Evaluation of Malaria Vaccines.

    PubMed

    Espinosa, Diego A; Radtke, Andrea J; Zavala, Fidel

    2016-01-01

    Rodent transgenic parasites are useful tools for the preclinical evaluation of malaria vaccines. Over the last decade, several studies have reported the development of transgenic rodent parasites expressing P. falciparum antigens for the assessment of vaccine-induced immune responses, which traditionally have been limited to in vitro assays. However, the genetic manipulation of rodent Plasmodium species can have detrimental effects on the parasite's infectivity and development. In this chapter, we present a few guidelines for designing transfection plasmids, which should improve transfection efficiency and facilitate the generation of functional transgenic parasite strains. In addition, we provide a transfection protocol for the development of transgenic P. berghei parasites as well as practical methods to assess the viability and infectivity of these newly generated strains throughout different stages of their life cycle. These techniques should allow researchers to develop novel rodent malaria parasites expressing antigens from human malaria species and to determine whether these transgenic strains are fully infectious and thus represent stringent platforms for the in vivo evaluation of malaria vaccine candidates.

  14. Malaria.

    PubMed

    Phillips, Margaret A; Burrows, Jeremy N; Manyando, Christine; van Huijsduijnen, Rob Hooft; Van Voorhis, Wesley C; Wells, Timothy N C

    2017-08-03

    Malaria is caused in humans by five species of single-celled eukaryotic Plasmodium parasites (mainly Plasmodium falciparum and Plasmodium vivax) that are transmitted by the bite of Anopheles spp. mosquitoes. Malaria remains one of the most serious infectious diseases; it threatens nearly half of the world's population and led to hundreds of thousands of deaths in 2015, predominantly among children in Africa. Malaria is managed through a combination of vector control approaches (such as insecticide spraying and the use of insecticide-treated bed nets) and drugs for both treatment and prevention. The widespread use of artemisinin-based combination therapies has contributed to substantial declines in the number of malaria-related deaths; however, the emergence of drug resistance threatens to reverse this progress. Advances in our understanding of the underlying molecular basis of pathogenesis have fuelled the development of new diagnostics, drugs and insecticides. Several new combination therapies are in clinical development that have efficacy against drug-resistant parasites and the potential to be used in single-dose regimens to improve compliance. This ambitious programme to eliminate malaria also includes new approaches that could yield malaria vaccines or novel vector control strategies. However, despite these achievements, a well-coordinated global effort on multiple fronts is needed if malaria elimination is to be achieved.

  15. Enrichment of malaria parasites by antibody immobilized magnetic nanoparticles.

    PubMed

    Tangchaikeeree, Tienrat; Jangpatarapongsa, Kulachart; Polpanich, Duangporn; Thiramanas, Raweewan; Pornjarone, Atcharavalai; Udnaen, Somkiat; Udomsangpetch, Rachanee; Tangboriboonrat, Pramuan

    2013-10-01

    The simple and less expensive technique based on magnetic nanoparticles (MNPs) was developed for separation of malaria parasites containing specific antigens. The carboxylated MNPs were chemically bound with anti-P. falciparum IgG antibodies (Ab-MNPs) purified from the plasma of malaria patients and then used for removal of P. falciparum malaria-infected erythrocytes from other non-infected blood cells in malaria culture at a given percent parasitemia. The results from optical microscope showed that all blood stages parasites, i.e., ring, trophozoite and schizont, could be separated from other blood components with high purity (> or = 95%) and yield of 33.5% (the early stages of ring and trophozoite:the schizont stage were 1:1.34). Highly specific interaction between Ab-MNPs and the P. falciparum malaria infected erythrocytes was confirmed by scanning electron microscope. When compared to the centrifugation with Percoll gradient and depletion by sorbitol lysis which are specific to the mature and the ring stages, respectively, our technique would be more useful for production of high quality of parasites to use in malaria pathogenesis or immunological studies, and in detection techniques.

  16. Clearance of young parasite forms following treatment of falciparum malaria in humans: comparison of three simple mathematical models.

    PubMed Central

    Davis, T. M.; Martin, R. B.

    1997-01-01

    To characterize post-treatment clearance of young forms of Plasmodium falciparum from the blood, three differential equation models, a linear decline, a linear then logarithmic decline, and the Michaelis-Menten (MM) kinetic equation, were fitted to log-transformed serial parasite counts from 30 semi-immune patients with synchronous parasitaemias allocated one of six antimalarial drug regimens. The first two equations were solved analytically. The MM equation was solved numerically using a fifth-order Runge-Kutta method. For each equation, parasite clearance was assumed stochastic and log-transformed parasite counts were assumed to be normally distributed at each time-point. Comparisons between models were by Minimum Akaike Information Criterion Estimate. A constrained MM equation fitted the data at least as well as the other two models in 5 of 6 drug groups and also when pooled data were analysed, providing a single index which could be used in drug efficacy studies in similar situations or as part of more complex models that encompass asynchronous, complicated infections. PMID:9287945

  17. Species formation by host shifting in avian malaria parasites.

    PubMed

    Ricklefs, Robert E; Outlaw, Diana C; Svensson-Coelho, Maria; Medeiros, Matthew C I; Ellis, Vincenzo A; Latta, Steven

    2014-10-14

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host-pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts.

  18. Species formation by host shifting in avian malaria parasites

    PubMed Central

    Ricklefs, Robert E.; Outlaw, Diana C.; Svensson-Coelho, Maria; Medeiros, Matthew C. I.; Ellis, Vincenzo A.; Latta, Steven

    2014-01-01

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host–pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts. PMID:25271324

  19. Dual fluorescent labelling of the human malaria parasite Plasmodium falciparum for the analysis of the ABC type transporter pfmdr2.

    PubMed

    Rosental, Benyamin; Hadad, Uzi; Sinay, Rosa; Braiman, Alex; Porgador, Angel; Pollack, Yaakov

    2012-11-08

    The study of the Plasmodium falciparum heavy metal transporter gene pfmdr2 employed radioactive labelled heavy metal. As the use of radioactive isotopes shrank considerably during the last few years, resulting in the cessation of the production of some isotopes, amongst them Cadmium109 which was used for that purpose, a different approach had to be developed. Herein, a dual fluorescent labelling of heavy metals accumulation in the P. falciparum parasite is proposed as an alternative to the use of radioactive labelled heavy metals. Plasmodium falciparum Cd resistant and sensitive strains at the trophozoite stage were used in this study. The cells were cultured at different CdCl2 concentrations and for different time periods followed by staining of the infected red blood cells with Fluo-3/AM for Cd detection and Hoechst 33342 for parasite DNA labelling. The fluorescent analysis was done by flow cytometry and confocal microscopy. The results show that the sensitive strain has a higher Fluo-3/AM fluorescence in a Cd concentration and time dependent manner, whereas in the resistant strain Fluo-3/AM fluorescence levels were negligible and increased only at high concentrations of Cd and at long incubation periods, but to a much lesser extent than the sensitive strain. No Cd uptake is observed in uninfected red blood cells populations originating from cultures infected with either sensitive or resistant strain. In addition, confocal microscopy overlay of Fluo-3/AM and Hoechst staining shows that the Cd metal accumulates in the parasite itself. The dual fluorescent labelling is a valid method for detecting heavy metal accumulation in P. falciparum. Furthermore, in contrast to the use of radioactive labelled heavy metal, the fluorescent labelling enables us to differentiate between the different populations existing in a P. falciparum infected red blood cells cultures and thus actually study a phenomenon at the level of a single cell.

  20. A clash to conquer: the malaria parasite liver infection.

    PubMed

    Mikolajczak, Sebastian A; Kappe, Stefan H

    2006-12-01

    All mammalian malaria parasite species have an initial tissue stage in liver cells. The liver stage produces new parasite forms that can enter and live inside red blood cells. Accordingly, the first place of residence provides parasites with a radically different cellular and molecular environment from their subsequent red blood cell home. Liver stages have remained refractory to reveal their secrets, yet the last few years have seen several advances in elucidating their biology. This review looks at the more recent findings concerning the liver stage-host hepatocyte association, some of which may become powerful weapons in the prevention of malaria infection. We also outline areas of liver stage research and technological development that provide promising foci to accelerate a better understanding of this most elusive of the parasites many life cycle stages.

  1. Why do malaria parasites increase host erythrocyte permeability?

    PubMed Central

    Desai, Sanjay A.

    2014-01-01

    Malaria parasites increase erythrocyte permeability to diverse solutes including anions, some cations, and organic solutes, as characterized with several independent methods. Over the last decade, patch-clamp studies have determined that the permeability results from one or more ion channels on the infected erythrocyte host membrane. However, the biological role(s) served by these channels, if any, remain controversial. Recent studies implicate the plasmodial surface anion channel (PSAC) and a role in parasite nutrient acquisition. A debated alternative role in remodeling host ion composition for the benefit of the parasite appears to be nonessential. Because both channel activity and the associated clag3 genes are strictly conserved in malaria parasites, channel-mediated permeability is an attractive target for development of new therapies. PMID:24507014

  2. Genome content analysis yields new insights into the relationship between the human malaria parasite Plasmodium falciparum and its anopheline vectors.

    PubMed

    Oppenheim, Sara J; Rosenfeld, Jeffrey A; DeSalle, Rob

    2017-02-27

    The persistent and growing gap between the availability of sequenced genomes and the ability to assign functions to sequenced genes led us to explore ways to maximize the information content of automated annotation for studies of anopheline mosquitos. Specifically, we use genome content analysis of a large number of previously sequenced anopheline mosquitos to follow the loss and gain of protein families over the evolutionary history of this group. The importance of this endeavor lies in the potential for comparative genomic studies between Anopheles and closely related non-vector species to reveal ancestral genome content dynamics involved in vector competence. In addition, comparisons within Anopheles could identify genome content changes responsible for variation in the vectorial capacity of this family of important parasite vectors. The competence and capacity of P. falciparum vectors do not appear to be phylogenetically constrained within the Anophelinae. Instead, using ancestral reconstruction methods, we suggest that a previously unexamined component of vector biology, anopheline nucleotide metabolism, may contribute to the unique status of anophelines as P. falciparum vectors. While the fitness effects of nucleotide co-option by P. falciparum parasites on their anopheline hosts are not yet known, our results suggest that anopheline genome content may be responding to selection pressure from P. falciparum. Whether this response is defensive, in an attempt to redress improper nucleotide balance resulting from P. falciparum infection, or perhaps symbiotic, resulting from an as-yet-unknown mutualism between anophelines and P. falciparum, is an open question that deserves further study. Clearly, there is a wealth of functional information to be gained from detailed manual genome annotation, yet the rapid increase in the number of available sequences means that most researchers will not have the time or resources to manually annotate all the sequence data they

  3. Mitochondrial genes support a common origin of rodent malaria parasites and Plasmodium falciparum's relatives infecting great apes.

    PubMed

    Blanquart, Samuel; Gascuel, Olivier

    2011-03-15

    Plasmodium falciparum is responsible for the most acute form of human malaria. Most recent studies demonstrate that it belongs to a monophyletic lineage specialized in the infection of great ape hosts. Several other Plasmodium species cause human malaria. They all belong to another distinct lineage of parasites which infect a wider range of primate species. All known mammalian malaria parasites appear to be monophyletic. Their clade includes the two previous distinct lineages of parasites of primates and great apes, one lineage of rodent parasites, and presumably Hepatocystis species. Plasmodium falciparum and great ape parasites are commonly thought to be the sister-group of all other mammal-infecting malaria parasites. However, some studies supported contradictory origins and found parasites of great apes to be closer to those of rodents, or to those of other primates. To distinguish between these mutually exclusive hypotheses on the origin of Plasmodium falciparum and its great ape infecting relatives, we performed a comprehensive phylogenetic analysis based on a data set of three mitochondrial genes from 33 to 84 malaria parasites. We showed that malarial mitochondrial genes have evolved slowly and are compositionally homogeneous. We estimated their phylogenetic relationships using Bayesian and maximum-likelihood methods. Inferred trees were checked for their robustness to the (i) site selection, (ii) assumptions of various probabilistic models, and (iii) taxon sampling. Our results robustly support a common ancestry of rodent parasites and Plasmodium falciparum's relatives infecting great apes. Our results refute the most common view of the origin of great ape malaria parasites, and instead demonstrate the robustness of a less well-established phylogenetic hypothesis, under which Plasmodium falciparum and its relatives infecting great apes are closely related to rodent parasites. This study sheds light on the evolutionary history of Plasmodium falciparum, a

  4. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro.

    PubMed

    Kenry; Lim, Ying Bena; Nai, Mui Hoon; Cao, Jianshu; Loh, Kian Ping; Lim, Chwee Teck

    2017-09-28

    The interactions between graphene oxide (GO) and various biological entities have been actively investigated in recent years, resulting in numerous potential bioapplications of these nanomaterials. Despite this, the biological interactions between GO and disease-causing protozoan parasites have not been well elucidated and remain relatively unexplored. Here, we investigate the in vitro interactions between GO nanosheets and a particular species of malaria parasites, Plasmodium falciparum (P. falciparum). We hypothesize that GO nanosheets may exhibit antimalarial characteristic via action mechanisms of physical obstruction of P. falciparum parasites as well as nutrient depletion. To ascertain this, we characterize the physical interactions between GO nanosheets, red blood cells (RBCs), and malarial parasites as well as the adsorption of several biomolecules necessary for parasitic survival and growth on GO nanosheets. Subsequent to establishing the origin of this antimalarial behavior of GO nanosheets, their efficiency in inhibiting parasite invasion is evaluated. We observe that GO nanosheets at various tested concentrations significantly inhibit the invasion of malaria parasites into RBCs. Furthermore, GO nanosheets delay parasite progression from the ring to the trophozoite stage. Overall, this study may further shed light on the graphene-parasite interactions and potentially facilitate the development of nanomaterial-based strategies for combating malaria.

  5. Effects of lime juice on malaria parasite clearance.

    PubMed

    Adegoke, S A; Oyelami, O A; Olatunya, O S; Adeyemi, L A

    2011-10-01

    One hundred and twenty children with acute uncomplicated malaria who were managed at the children's outpatient department of the Wesley Guild Hospital, Ilesa (a unit of Obafemi Awolowo University Teaching Hospitals' Complex, Ile-Ife, Osun state, Nigeria) were recruited into the study to determine the effects of lime juice on malaria parasite clearance. These children were randomized into treatment with World Health Organization recommended antimalarials (artemisinin combination therapy, ACT) either alone or with lime juice. Nine of them were lost to follow-up, four were in the group that were managed with ACT and lime, and five in the group that were managed on ACT alone. The average (SD) time to achieve >75% reduction in parasite load was significantly lower in patients on ACT and lime; 30.5 ± 2.4 h against 38.6 ± 3.3 h for those on ACT alone (p < 0.001). Also, while a significantly higher proportion of children on antimalarial drugs and lime juice achieved complete parasite clearance by 72 h of therapy (p = 0.007), ten (18.2%) patients without lime had early treatment failure (p = 0.003). There were no side effects with the use of lime juice. It may therefore be inferred, from this preliminary work, that lime juice when used with the appropriate antimalarial may enhance malaria parasite clearance especially in those with uncomplicated malaria.

  6. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    PubMed

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  7. Parasitic diseases in humans transmitted by vectors.

    PubMed

    Cholewiński, Marcin; Derda, Monika; Hadaś, Edward

    2015-01-01

    Despite the considerable progress of medicine, parasitic diseases still pose a great threat to human health and life. Among parasitic diseases, those transmitted by vectors, mainly arthropods, play a particular role. These diseases occur most frequently in the poorest countries and affect a vast part of the human population. They include malaria, babesiosis, trypanosomiasis, leishmaniasis and filariasis. This study presents those vector-transmitted diseases that are responsible for the greatest incidence and mortality of people on a global scale. Attention is focused primarily on diseases transmitted by mosquitoes, flies, Hemiptera and ticks.

  8. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  9. A Bioinformatics Approach for Integrated Transcriptomic and Proteomic Comparative Analyses of Model and Non-sequenced Anopheline Vectors of Human Malaria Parasites*

    PubMed Central

    Mohien, Ceereena Ubaida; Colquhoun, David R.; Mathias, Derrick K.; Gibbons, John G.; Armistead, Jennifer S.; Rodriguez, Maria C.; Rodriguez, Mario Henry; Edwards, Nathan J.; Hartler, Jürgen; Thallinger, Gerhard G.; Graham, David R.; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R.

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus. PMID:23082028

  10. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.

    PubMed

    Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

  11. Malaria

    MedlinePlus

    Malaria is a serious disease caused by a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of death worldwide, but ... at risk. There are four different types of malaria caused by four related parasites. The most deadly ...

  12. Enhanced transmission of malaria parasites to mosquitoes in a murine model of type 2 diabetes.

    PubMed

    Pakpour, Nazzy; Cheung, Kong Wai; Luckhart, Shirley

    2016-04-21

    More than half of the world's population is at risk of malaria and simultaneously, many malaria-endemic regions are facing dramatic increases in the prevalence of type 2 diabetes. Studies in murine malaria models have examined the impact of malaria infection on type 2 diabetes pathology, it remains unclear how this chronic metabolic disorder impacts the transmission of malaria. In this report, the ability type 2 diabetic rodents infected with malaria to transmit parasites to Anopheles stephensi mosquitoes is quantified. The infection prevalence and intensity of An. stephensi mosquitoes that fed upon control or type 2 diabetic C57BL/6 db/db mice infected with either lethal Plasmodium berghei NK65 or non-lethal Plasmodium yoelii 17XNL murine malaria strains were determined. Daily parasitaemias were also recorded. A higher percentage of mosquitoes (87.5 vs 61.5 % for P. yoelii and 76.9 vs 50 % for P. berghei) became infected following blood feeding on Plasmodium-infected type 2 diabetic mice compared to mosquitoes that fed on infected control animals, despite no significant differences in circulating gametocyte levels. These results suggest that type 2 diabetic mice infected with malaria are more efficient at infecting mosquitoes, raising the question of whether a similar synergy exists in humans.

  13. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria

    PubMed Central

    Kaddumukasa, Mark; Lwanira, Catherine; Lugaajju, Allan; Katabira, Elly; Persson, Kristina E. M.; Wahlgren, Mats; Kironde, Fred

    2015-01-01

    Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status. PMID:25906165

  14. Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis

    PubMed Central

    Kaushansky, A; Metzger, P G; Douglass, A N; Mikolajczak, S A; Lakshmanan, V; Kain, H S; Kappe, S HI

    2013-01-01

    Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis. PMID:23928701

  15. New molecular detection methods of malaria parasites with multiple genes from genomes.

    PubMed

    Gupta, Himanshu; Srivastava, Shikha; Chaudhari, Sima; Vasudevan, Thanvanthri G; Hande, Manjunath H; D'souza, Sydney C; Umakanth, Shashikiran; Satyamoorthy, Kapaettu

    2016-08-01

    For the effective control of malaria, development of sensitive, accurate and rapid tool to diagnose and manage the disease is essential. In humans subjects, the severe form of malaria is caused by Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) and there is need to identify these parasites in acute, chronic and latent (during and post-infection) stages of the disease. In this study, we report a species specific and sensitive diagnostic method for the detection of Pf and Pv in humans. First, we identified intra and intergenic multiloci short stretch of 152 (PfMLS152) and 110 (PvMLS110) nucleotides which is present up to 44 and 34 times in the genomes of Pf and Pv respectively. We developed the single-step amplification-based method using isolated DNA or from lysed red blood cells for the detection of the two malaria parasites. The limit of detection of real-time polymerase chain reaction based assays were 0.1copyof parasite/μl for PfMLS152 and PvMLS110 target sequences. Next, we have tested 250 clinically suspected cases of malaria to validate the method. Sensitivity and specificity for both targets were 100% compared to the quantitative buffy coat microscopy analysis and real-time PCR (Pf-chloroquine resistance transporter (PfCRT) and Pv-lactate dehydrogenase (PvLDH)) based assays. The sensitivity of microscopy and real-time PCR (PfCRT and PvLDH primers) assays were 80.63%; 95%CI 75.22%-85.31%; p<0.05 and 97.61%; 95%CI 94.50%-99.21%; p<0.05 in detecting malaria infection respectively when compared to PfMLS152 and PvMLS110 targets to identify malaria infection in patients. These improved assays may have potential applications in evaluating malaria in asymptomatic patients, treatment, blood donors and in vaccine studies.

  16. In vivo removal of malaria parasites from red blood cells without their destruction in acute falciparum malaria.

    PubMed

    Angus, B J; Chotivanich, K; Udomsangpetch, R; White, N J

    1997-09-01

    During acute falciparum malaria infection, red blood cells (RBC) containing abundant ring-infected erythrocyte surface antigen (Pf 155 or RESA), but no intracellular parasites, are present in the circulation. These RESA-positive parasite negative RBC are not seen in parasite cultures in vitro. This indicates that in acute falciparum malaria there is active removal of intraerythrocytic parasites by a host mechanism in vivo (probably the spleen) without destruction of the parasitized RBC. This may explain the observed disparity between the drop in hematocrit and decrease in parasite count in some hyperparasitemic patients. The fate of these "once-parasitized" RBC in vivo is not known.

  17. Image classification of unlabeled malaria parasites in red blood cells.

    PubMed

    Zheng Zhang; Ong, L L Sharon; Kong Fang; Matthew, Athul; Dauwels, Justin; Ming Dao; Asada, Harry

    2016-08-01

    This paper presents a method to detect unlabeled malaria parasites in red blood cells. The current "gold standard" for malaria diagnosis is microscopic examination of thick blood smear, a time consuming process requiring extensive training. Our goal is to develop an automate process to identify malaria infected red blood cells. Major issues in automated analysis of microscopy images of unstained blood smears include overlapping cells and oddly shaped cells. Our approach creates robust templates to detect infected and uninfected red cells. Histogram of Oriented Gradients (HOGs) features are extracted from templates and used to train a classifier offline. Next, the ViolaJones object detection framework is applied to detect infected and uninfected red cells and the image background. Results show our approach out-performs classification approaches with PCA features by 50% and cell detection algorithms applying Hough transforms by 24%. Majority of related work are designed to automatically detect stained parasites in blood smears where the cells are fixed. Although it is more challenging to design algorithms for unstained parasites, our methods will allow analysis of parasite progression in live cells under different drug treatments.

  18. Chemosensitization potential of P-glycoprotein inhibitors in malaria parasites.

    PubMed

    Alcantara, Laura M; Kim, Junwon; Moraes, Carolina B; Franco, Caio H; Franzoi, Kathrin D; Lee, Sukjun; Freitas-Junior, Lucio H; Ayong, Lawrence S

    2013-06-01

    Members of the ATP-binding cassette (ABC)-type transporter superfamily have been implicated in multidrug resistance in malaria, and various mechanistic models have been postulated to explain their interaction with diverse antimalarial drugs. To gain insight into the pharmacological benefits of inhibiting ABC-type transporters in malaria chemotherapy, we investigated the in vitro chemosensitization potential of various P-glycoprotein inhibitors. A fluorescent chloroquine derivative was synthesized and used to assess the efflux dynamics of chloroquine in MDR and wild type Plasmodium falciparum parasites. This novel BODIPY-based probe accumulated in the digestive vacuole (DV) of CQ-sensitive parasites but less so in MDR cells. Pre-exposure of the MDR parasites to non-cytocidal concentrations of unlabeled chloroquine resulted in a diffused cytoplasmic retention of the probe whereas a similar treatment with the CQR-reversing agent, chlorpheniramine, resulted in DV accumulation. A diffused cytoplasmic distribution of the probe was also obtained following treatment with the P-gp specific inhibitors zosuquidar and tariquidar, whereas treatments with the tyrosine kinase inhibitors gefitinib or imatinib produced a partial accumulation within the DV. Isobologram analyses of the interactions between these inhibitors and the antimalarial drugs chloroquine, mefloquine, and artemisinin revealed distinct patterns of drug synergism, additivity and antagonism. Taken together, the data indicate that competitive tyrosine kinase and noncompetitive P-glycoprotein ATPase-specific inhibitors represent two new classes of chemosensitizing agents in malaria parasites, but caution against the indiscriminate use of these agents in antimalarial drug combinations.

  19. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa.

    PubMed

    Ghansah, Anita; Amenga-Etego, Lucas; Amambua-Ngwa, Alfred; Andagalu, Ben; Apinjoh, Tobias; Bouyou-Akotet, Marielle; Cornelius, Victoria; Golassa, Lemu; Andrianaranjaka, Voahangy Hanitriniaina; Ishengoma, Deus; Johnson, Kimberly; Kamau, Edwin; Maïga-Ascofaré, Oumou; Mumba, Dieudonne; Tindana, Paulina; Tshefu-Kitoto, Antoinette; Randrianarivelojosia, Milijaona; William, Yavo; Kwiatkowski, Dominic P; Djimde, Abdoulaye A

    2014-09-12

    The African continent continues to bear the greatest burden of malaria and the greatest diversity of parasites, mosquito vectors, and human victims. The evolutionary plasticity of malaria parasites and their vectors is a major obstacle to eliminating the disease. Of current concern is the recently reported emergence of resistance to the front-line drug, artemisinin, in South-East Asia in Plasmodium falciparum, which calls for preemptive surveillance of the African parasite population for genetic markers of emerging drug resistance. Here we describe the Plasmodium Diversity Network Africa (PDNA), which has been established across 11 countries in sub-Saharan Africa to ensure that African scientists are enabled to work together and to play a key role in the global effort for tracking and responding to this public health threat.

  20. How Robust Are Malaria Parasite Clearance Rates as Indicators of Drug Effectiveness and Resistance?

    PubMed

    Hastings, Ian M; Kay, Katherine; Hodel, Eva Maria

    2015-10-01

    Artemisinin-based combination therapies (ACTs) are currently the first-line drugs for treating uncomplicated falciparum malaria, the most deadly of the human malarias. Malaria parasite clearance rates estimated from patients' blood following ACT treatment have been widely adopted as a measure of drug effectiveness and as surveillance tools for detecting the presence of potential artemisinin resistance. This metric has not been investigated in detail, nor have its properties or potential shortcomings been identified. Herein, the pharmacology of drug treatment, parasite biology, and human immunity are combined to investigate the dynamics of parasite clearance following ACT. This approach parsimoniously recovers the principal clinical features and dynamics of clearance. Human immunity is the primary determinant of clearance rates, unless or until artemisinin killing has fallen to near-ineffective levels. Clearance rates are therefore highly insensitive metrics for surveillance that may lead to overconfidence, as even quite substantial reductions in drug sensitivity may not be detected as lower clearance rates. Equally serious is the use of clearance rates to quantify the impact of ACT regimen changes, as this strategy will plausibly miss even very substantial increases in drug effectiveness. In particular, the malaria community may be missing the opportunity to dramatically increase ACT effectiveness through regimen changes, particularly through a switch to twice-daily regimens and/or increases in artemisinin dosing levels. The malaria community therefore appears overreliant on a single metric of drug effectiveness, the parasite clearance rate, that has significant and serious shortcomings. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Diverse chemotypes disrupt ion homeostasis in the Malaria parasite.

    PubMed

    Lehane, Adele M; Ridgway, Melanie C; Baker, Eileen; Kirk, Kiaran

    2014-10-01

    The antimalarial spiroindolones disrupt Plasmodium falciparum Na(+) regulation and induce an alkalinization of the parasite cytosol. It has been proposed that they do so by inhibiting PfATP4, a parasite plasma membrane P-type ATPase postulated to export Na(+) and import H(+) equivalents. Here, we screened the 400 antiplasmodial compounds of the open access 'Malaria Box' for their effects on parasite ion regulation. Twenty eight compounds affected parasite Na(+) and pH regulation in a manner consistent with PfATP4 inhibition. Six of these, with chemically diverse structures, were selected for further analysis. All six showed reduced antiplasmodial activity against spiroindolone-resistant parasites carrying mutations in pfatp4. We exposed parasites to incrementally increasing concentrations of two of the six compounds and in both cases obtained resistant parasites with mutations in pfatp4. The finding that diverse chemotypes have an apparently similar mechanism of action indicates that PfATP4 may be a significant Achilles' heel for the parasite. © 2014 John Wiley & Sons Ltd.

  2. Parasite-based malaria diagnosis: Are Health Systems in Uganda equipped enough to implement the policy?

    PubMed Central

    2012-01-01

    Background Malaria case management is a key strategy for malaria control. Effective coverage of parasite-based malaria diagnosis (PMD) remains limited in malaria endemic countries. This study assessed the health system's capacity to absorb PMD at primary health care facilities in Uganda. Methods In a cross sectional survey, using multi-stage cluster sampling, lower level health facilities (LLHF) in 11 districts in Uganda were assessed for 1) tools, 2) skills, 3) staff and infrastructure, and 4) structures, systems and roles necessary for the implementing of PMD. Results Tools for PMD (microscopy and/or RDTs) were available at 30 (24%) of the 125 LLHF. All LLHF had patient registers and 15% had functional in-patient facilities. Three months’ long stock-out periods were reported for oral and parenteral quinine at 39% and 47% of LLHF respectively. Out of 131 health workers interviewed, 86 (66%) were nursing assistants; 56 (43%) had received on-job training on malaria case management and 47 (36%) had adequate knowledge in malaria case management. Overall, only 18% (131/730) Ministry of Health approved staff positions were filled by qualified personnel and 12% were recruited or transferred within six months preceding the survey. Of 186 patients that received referrals from LLHF, 130(70%) had received pre-referral anti-malarial drugs, none received pre-referral rectal artesunate and 35% had been referred due to poor response to antimalarial drugs. Conclusion Primary health care facilities had inadequate human and infrastructural capacity to effectively implement universal parasite-based malaria diagnosis. The priority capacity building needs identified were: 1) recruitment and retention of qualified staff, 2) comprehensive training of health workers in fever management, 3) malaria diagnosis quality control systems and 4) strengthening of supply chain, stock management and referral systems. PMID:22920954

  3. Parasite-based malaria diagnosis: are health systems in Uganda equipped enough to implement the policy?

    PubMed

    Kyabayinze, Daniel J; Achan, Jane; Nakanjako, Damalie; Mpeka, Betty; Mawejje, Henry; Mugizi, Rukaaka; Kalyango, Joan N; D'Alessandro, Umberto; Talisuna, Ambrose; Jean-Pierre, Van geertruyden

    2012-08-24

    Malaria case management is a key strategy for malaria control. Effective coverage of parasite-based malaria diagnosis (PMD) remains limited in malaria endemic countries. This study assessed the health system's capacity to absorb PMD at primary health care facilities in Uganda. In a cross sectional survey, using multi-stage cluster sampling, lower level health facilities (LLHF) in 11 districts in Uganda were assessed for 1) tools, 2) skills, 3) staff and infrastructure, and 4) structures, systems and roles necessary for the implementing of PMD. Tools for PMD (microscopy and/or RDTs) were available at 30 (24%) of the 125 LLHF. All LLHF had patient registers and 15% had functional in-patient facilities. Three months' long stock-out periods were reported for oral and parenteral quinine at 39% and 47% of LLHF respectively. Out of 131 health workers interviewed, 86 (66%) were nursing assistants; 56 (43%) had received on-job training on malaria case management and 47 (36%) had adequate knowledge in malaria case management. Overall, only 18% (131/730) Ministry of Health approved staff positions were filled by qualified personnel and 12% were recruited or transferred within six months preceding the survey. Of 186 patients that received referrals from LLHF, 130(70%) had received pre-referral anti-malarial drugs, none received pre-referral rectal artesunate and 35% had been referred due to poor response to antimalarial drugs. Primary health care facilities had inadequate human and infrastructural capacity to effectively implement universal parasite-based malaria diagnosis. The priority capacity building needs identified were: 1) recruitment and retention of qualified staff, 2) comprehensive training of health workers in fever management, 3) malaria diagnosis quality control systems and 4) strengthening of supply chain, stock management and referral systems.

  4. Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy.

    PubMed

    Martínez-de la Puente, Josué; Muñoz, Joaquín; Capelli, Gioia; Montarsi, Fabrizio; Soriguer, Ramón; Arnoldi, Daniele; Rizzoli, Annapaola; Figuerola, Jordi

    2015-01-28

    The invasive Asian tiger mosquito Aedes albopictus has dramatically expanded its distribution range, being catalogued as one of the world's 100 worst invasive alien species. As vectors of pathogens, Ae. albopictus may create novel epidemiological scenarios in the invaded areas. Here, the frequency of encounters of Ae. albopictus with the avian malaria parasite Plasmodium and the related Haemoproteus was studied in an area with established populations in northeastern Italy and compared with those from four native mosquito species, Anopheles maculipennis s.l., Culex hortensis, Culex pipiens, and Ochlerotatus caspius. The abdomens of mosquitoes with a recent blood meal were used to identify both the blood meal source and the parasites harboured. Aedes albopictus had a clear antropophilic behaviour while An. maculipennis and Oc. caspius fed mainly on non-human mammals. Birds were the most common hosts of Cx. pipiens and reptiles of Cx. hortensis. Parasites were isolated from three mosquito species, with Cx. pipiens (30%) showing the highest parasite prevalence followed by Cx. hortensis (9%) and Ae. albopictus (5%). These results are the first identifying the avian malaria parasites harboured by mosquitoes in Italy and represent the first evidence supporting that, although Ae. albopictus could be involved in the transmission of avian malaria parasites, the risk of avian malaria parasite spread by this invasive mosquito in Europe would be minimal.

  5. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass

    PubMed Central

    Bernabeu, Maria; Danziger, Samuel A.; Avril, Marion; Vaz, Marina; Babar, Prasad H.; Brazier, Andrew J.; Herricks, Thurston; Maki, Jennifer N.; Pereira, Ligia; Mascarenhas, Anjali; Gomes, Edwin; Chery, Laura; Aitchison, John D.; Rathod, Pradipsinh K.; Smith, Joseph D.

    2016-01-01

    The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence. PMID:27185931

  6. Malaria parasite chitinase and penetration of the mosquito peritrophic membrane.

    PubMed Central

    Huber, M; Cabib, E; Miller, L H

    1991-01-01

    Malaria parasites (ookinetes) appear to digest the peritrophic membrane in the mosquito midgut during penetration. Previous studies demonstrated that lectins specific for N-acetylglucosamine bind to the peritrophic membrane and proposed that the membrane contains chitin [Rudin, W. & Hecker, H. (1989) Parasitol. Res. 75, 268-279]. In the present study, we show that the peritrophic membrane is digested by Serratia marcescens chitinase (EC 3.2.1.14), leading to the release of N-acetylglucosamine and fragmentation of the membrane. We also report the presence of a malaria parasite chitinase that digests 4-methylumbelliferyl chitotriose. The enzyme is not detectable until 15 hr after zygote formation, the time required for maturation of the parasite from a zygote to an ookinete, the invasive form of the parasite. At 20 hr, the enzyme begins to appear in the culture supernatant. The chitinase extracted from the parasite and found in the culture supernatant consists of a major band and two minor bands of activity on native polyacrylamide gel electrophoresis. The presence of chitin in the peritrophic membrane, the disruption of the peritrophic membrane during invasion, and the presence of chitinase in ookinetes suggest that the chitinase in ookinetes is used in the penetration of the peritrophic membrane. Images PMID:2011589

  7. Biology of Human Malaria Plasmodia Including Plasmodium Knowlesi

    PubMed Central

    Antinori, Spinello; Galimberti, Laura; Milazzo, Laura; Corbellino, Mario

    2012-01-01

    Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that are able to infect and replicate within the erythrocytes after a clinically silent replication phase in the liver. Four species (P.falciparum, P.malariae, P.ovale and P.vivax) are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review. PMID:22550559

  8. The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression.

    PubMed

    Videvall, Elin; Cornwallis, Charlie K; Ahrén, Dag; Palinauskas, Vaidas; Valkiūnas, Gediminas; Hellgren, Olof

    2017-06-01

    Malaria parasites (Plasmodium spp.) include some of the world's most widespread and virulent pathogens. Our knowledge of the molecular mechanisms these parasites use to invade and exploit their hosts other than in mice and primates is, however, extremely limited. It is therefore imperative to characterize transcriptome-wide gene expression from nonmodel malaria parasites and how this varies across individual hosts. Here, we used high-throughput Illumina RNA sequencing on blood from wild-caught Eurasian siskins experimentally infected with a clonal strain of the avian malaria parasite Plasmodium ashfordi (lineage GRW2). Using a bioinformatic multistep approach to filter out host transcripts, we successfully assembled the blood-stage transcriptome of P. ashfordi. A total of 11 954 expressed transcripts were identified, and 7860 were annotated with protein information. We quantified gene expression levels of all parasite transcripts across three hosts during two infection stages - peak and decreasing parasitemia. Interestingly, parasites from the same host displayed remarkably similar expression profiles during different infection stages, but showed large differences across hosts, indicating that P. ashfordi may adjust its gene expression to specific host individuals. We further show that the majority of transcripts are most similar to the human parasite Plasmodium falciparum, and a large number of red blood cell invasion genes were discovered, suggesting evolutionary conserved invasion strategies between mammalian and avian Plasmodium. The transcriptome of P. ashfordi and its host-specific gene expression advances our understanding of Plasmodium plasticity and is a valuable resource as it allows for further studies analysing gene evolution and comparisons of parasite gene expression. © 2017 John Wiley & Sons Ltd.

  9. Statistical properties of parasite density estimators in malaria.

    PubMed

    Hammami, Imen; Nuel, Grégory; Garcia, André

    2013-01-01

    Malaria is a global health problem responsible for nearly one million deaths every year around 85% of which concern children younger than five years old in Sub-Saharan Africa. In addition, around 300 million clinical cases are declared every year. The level of infection, expressed as parasite density, is classically defined as the number of asexual parasites relative to a microliter of blood. Microscopy of Giemsa-stained thick blood films is the gold standard for parasite enumeration. Parasite density estimation methods usually involve threshold values; either the number of white blood cells counted or the number of high power fields read. However, the statistical properties of parasite density estimators generated by these methods have largely been overlooked. Here, we studied the statistical properties (mean error, coefficient of variation, false negative rates) of parasite density estimators of commonly used threshold-based counting techniques depending on variable threshold values. We also assessed the influence of the thresholds on the cost-effectiveness of parasite density estimation methods. In addition, we gave more insights on the behavior of measurement errors according to varying threshold values, and on what should be the optimal threshold values that minimize this variability.

  10. Improved methods for magnetic purification of malaria parasites and haemozoin.

    PubMed

    Kim, Charles C; Wilson, Emily B; DeRisi, Joseph L

    2010-01-14

    Malaria parasites generate free haem upon catabolism of host haemoglobin during their intraerythrocytic growth cycle. In order to minimize oxidative toxicity of the ferric iron, the free haem molecules are polymerized into the biomineral beta-haematin (commonly referred to as haemozoin). Haemozoin crystals are paramagnetic, and this property can be exploited for the purification of late stage parasites as they contain larger haemozoin crystals than early stage parasites and uninfected cells. Commercially available magnets that were originally developed for the purpose of antibody-mediated cell purification are widely used for this purpose. As these methods are not necessarily optimized for parasite purification, the relationship between magnetic field strength and the quantity and quality of yield during parasite purification was explored. Inexpensive rare-earth neodymium magnets with commercially available disposable columns were employed to explore the relationship between magnetic field strength and recovery of free haemozoin and infected erythrocytes (iRBCs). Yields of free haemozoin increased nearly linearly with increasing magnetic field strength to the strongest fields tested (8,500 Gauss). Stronger magnetic fields also improved the recovery of iRBCs with no detrimental effects on parasite viability. An in-house constructed magnetic stand, built for $75 in materials, produced superior results when compared with much more expensive commercial products. Existing protocols for the magnetic purification of free haemozoin and iRBCs result in sub-optimal yields. Inexpensive high-strength neodymium magnets offer a better option, resulting in higher yields with no detrimental effects on parasite viability.

  11. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei.

    PubMed

    Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

    2015-03-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

  12. Malaria parasite colonisation of the mosquito midgut--placing the Plasmodium ookinete centre stage.

    PubMed

    Angrisano, Fiona; Tan, Yan-Hong; Sturm, Angelika; McFadden, Geoffrey I; Baum, Jake

    2012-05-15

    Vector-borne diseases constitute an enormous burden on public health across the world. However, despite the importance of interactions between infectious pathogens and their respective vector for disease transmission, the biology of the pathogen in the insect is often less well understood than the forms that cause human infections. Even with the global impact of Plasmodium parasites, the causative agents of malarial disease, no vaccine exists to prevent infection and resistance to all frontline drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population bottleneck of the lifecycle and therefore represents a powerful, although as yet relatively untapped, target for therapeutic intervention. The understanding of parasite-mosquito interactions has increased in recent years with developments in genome-wide approaches, genomics and proteomics. Each development has shed significant light on the biology of the malaria parasite during the mosquito phase of the lifecycle. Less well understood, however, is the process of midgut colonisation and oocyst formation, the precursor to parasite re-infection from the next mosquito bite. Here, we review the current understanding of cellular and molecular events underlying midgut colonisation centred on the role of the motile ookinete. Further insight into the major interactions between the parasite and the mosquito will help support the broader goal to identify targets for transmission-blocking therapies against malarial disease. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites.

    PubMed

    Huijben, Silvie; Nelson, William A; Wargo, Andrew R; Sim, Derek G; Drew, Damien R; Read, Andrew F

    2010-10-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low-dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within-host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high-dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance-management strategies for humans.

  14. Cryo transmission x-ray imaging of the malaria parasite, P. falciparum

    PubMed Central

    Hanssen, Eric; Knoechel, Christian; Klonis, Nectarios; Abu-Bakar, Nurhidanatasha; Deed, Samantha; LeGros, Mark; Larabell, Carolyn; Tilley, Leann

    2010-01-01

    Cryo transmission x-ray microscopy in the “water window” of photon energies has recently been introduced as a method that exploits the natural contrast of biological samples. We have used cryo tomographic x-ray imaging of the intraerythrocytic malaria parasite, Plasmodium falciparum, to undertake a survey of the cellular features of this important human pathogen. We examined whole hydrated cells at different stages of growth and defined some of the structures with different x-ray density, including the parasite nucleus, cytoplasm, digestive vacuole and the hemoglobin degradation product, hemozoin. As the parasite develops from an early cup-shaped morphology to a more rounded shape, puncta of hemozoin are formed; these coalesce in the mature trophozoite into a central compartment. In some trophozoite stage parasites we observed invaginations of the parasite surface and, using a selective permeabilization process, showed that these remain connected to the RBC cytoplasm. Some of these invaginations have large openings consistent with phagocytic structures and we observed independent endocytic vesicles in the parasite cytoplasm which appear to play a role in hemoglobin uptake. In schizont stage parasites staggered mitosis was observed and x-ray-dense lipid-rich structures were evident at their apical ends of the developing daughter cells. Treatment of parasites with the antimalarial drug artemisinin appears to affect parasite development and their ability to produce the hemoglobin breakdown product, hemozoin. PMID:20826218

  15. Erythrocytic vacuolar rafts induced by malaria parasites.

    PubMed

    Haldar, K; Samuel, B U; Mohandas, N; Harrison, T; Hiller, N L

    2001-03-01

    Studies in the past year displaced long-standing dogmas and provided many new molecular insights into how proteins and solutes move between the erythrocyte plasma membrane and the malarial vacuole. Highlights include a demonstration that (1) detergent-resistant membrane (DRM) rafts exist in the red cell membrane and their resident proteins are detected as rafts in the plasmodial vacuole, (2) a voltage-gated channel in the infected red cell membrane mediates uptake of extracellular nutrient solutes, and (3) intraerythrocytic membranes transport a parasite-encoded adherence antigen to the red cell surface.

  16. PhenoPlasm: a database of disruption phenotypes for malaria parasite genes

    PubMed Central

    Sanderson, Theo; Rayner, Julian C.

    2017-01-01

    Two decades after the first Plasmodium transfection, attempts have been made to disrupt more than 3,151 genes in malaria parasites, across five Plasmodium species. While results from rodent malaria transfections have been curated and systematised, empowering large-scale analysis, phenotypic data from human malaria parasite transfections currently exists as individual reports scattered across a the literature. To facilitate systematic analysis of published experimental genetic data across Plasmodium species, we have built PhenoPlasm ( http://www.phenoplasm.org), a database of phenotypes generated by transfection experiments in all Plasmodium parasites. The site provides a simple interface linking citation-backed Plasmodium reverse-genetic phenotypes to gene IDs. The database has been populated with phenotypic data on 367 P. falciparum genes, curated from 176 individual publications, as well as existing data on rodent Plasmodium species from RMgmDB and PlasmoGEM. This is the first time that all available data on P. falciparum transfection experiments has been brought together in a single place. These data are presented using ortholog mapping to allow a researcher interested in a gene in one species to see results across other Plasmodium species. The collaborative nature of the database enables any researcher to add new phenotypes as they are discovered. As an example of database utility, we use the currently available datasets to identify RAP (RNA-binding domain abundant in Apicomplexa)-domain containing proteins as crucial to parasite survival. PMID:28748223

  17. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project

    PubMed Central

    Guerra, Carlos A; Hay, Simon I; Lucioparedes, Lorena S; Gikandi, Priscilla W; Tatem, Andrew J; Noor, Abdisalan M; Snow, Robert W

    2007-01-01

    Background Open access to databases of information generated by the research community can synergize individual efforts and are epitomized by the genome mapping projects. Open source models for outputs of scientific research funded by tax-payers and charities are becoming the norm. This has yet to be extended to malaria epidemiology and control. Methods The exhaustive searches and assembly process for a global database of malaria parasite prevalence as part of the Malaria Atlas Project (MAP) are described. The different data sources visited and how productive these were in terms of availability of parasite rate (PR) data are presented, followed by a description of the methods used to assemble a relational database and an associated geographic information system. The challenges facing spatial data assembly from varied sources are described in an effort to help inform similar future applications. Results At the time of writing, the MAP database held 3,351 spatially independent PR estimates from community surveys conducted since 1985. These include 3,036 Plasmodium falciparum and 1,347 Plasmodium vivax estimates in 74 countries derived from 671 primary sources. More than half of these data represent malaria prevalence after the year 2000. Conclusion This database will help refine maps of the global spatial limits of malaria and be the foundation for the development of global malaria endemicity models as part of MAP. A widespread application of these maps is envisaged. The data compiled and the products generated by MAP are planned to be released in June 2009 to facilitate a more informed approach to global malaria control. PMID:17306022

  18. Pellicle formation in the malaria parasite

    PubMed Central

    Kono, Maya; Heincke, Dorothee; Wilcke, Louisa; Wong, Tatianna Wai Ying; Bruns, Caroline; Herrmann, Susann; Spielmann, Tobias; Gilberger, Tim W.

    2016-01-01

    ABSTRACT The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasite's plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division. PMID:26763910

  19. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  20. Evaluation of the NOW Malaria Immunochromatographic Test for Quantitative Diagnosis of Falciparum and Vivax Malaria Parasite Density

    PubMed Central

    Katakai, Yuko; Komaki-Yasuda, Kanako; Tangpukdee, Noppadon; Wilairatana, Polrat; Krudsood, Srivicha; Kano, Shigeyuki

    2011-01-01

    The NOW® Malaria Test, an immunochromatographic test (ICT), was evaluated to determine its ability to quantitatively detect malaria parasites using 100 blood samples from Thailand, including 50 Plasmodium falciparum (Pf) infections and 50 P. vivax (Pv) infections. Intensities of the thickness of the visible bands of the positive ICT were compared with the parasite densities. In cases of Pf infection, the intensities of both HRP-2 bands (T1 bands: Pf specific bands) and aldolase bands (T2 bands: pan-Plasmodium bands) correlated with the parasite densities. The intensities of T2 bands in Pf positive samples showed better correlation with the parasite densities than the T1 bands. In the cases of Pv infection, the intensities of T2 bands were also well correlated with parasite density. These results suggest that the ICT is useful not only for rapid detection of malaria parasites but also for estimating parasite density. PMID:22438699

  1. Evaluation of the NOW Malaria Immunochromatographic Test for Quantitative Diagnosis of Falciparum and Vivax Malaria Parasite Density.

    PubMed

    Katakai, Yuko; Komaki-Yasuda, Kanako; Tangpukdee, Noppadon; Wilairatana, Polrat; Krudsood, Srivicha; Kano, Shigeyuki

    2011-12-01

    The NOW® Malaria Test, an immunochromatographic test (ICT), was evaluated to determine its ability to quantitatively detect malaria parasites using 100 blood samples from Thailand, including 50 Plasmodium falciparum (Pf) infections and 50 P. vivax (Pv) infections. Intensities of the thickness of the visible bands of the positive ICT were compared with the parasite densities. In cases of Pf infection, the intensities of both HRP-2 bands (T1 bands: Pf specific bands) and aldolase bands (T2 bands: pan-Plasmodium bands) correlated with the parasite densities. The intensities of T2 bands in Pf positive samples showed better correlation with the parasite densities than the T1 bands. In the cases of Pv infection, the intensities of T2 bands were also well correlated with parasite density. These results suggest that the ICT is useful not only for rapid detection of malaria parasites but also for estimating parasite density.

  2. Cerebral malaria

    PubMed Central

    Rénia, Laurent; Wu Howland, Shanshan; Claser, Carla; Charlotte Gruner, Anne; Suwanarusk, Rossarin; Hui Teo, Teck; Russell, Bruce; Ng, Lisa

    2012-01-01

    Cerebral malaria is the most severe pathology caused by the malaria parasite, Plasmodium falciparum. The pathogenic mechanisms leading to cerebral malaria are still poorly defined as studies have been hampered by limited accessibility to human tissues. Nevertheless, histopathology of post-mortem human tissues and mouse models of cerebral malaria have indicated involvement of the blood-brain barrier in cerebral malaria. In contrast to viruses and bacteria, malaria parasites do not infiltrate and infect the brain parenchyma. Instead, rupture of the blood-brain barrier occurs and may lead to hemorrhages resulting in neurological alterations. Here, we review the most recent findings from human studies and mouse models on the interactions of malaria parasites and the blood-brain barrier, shedding light on the pathogenesis of cerebral malaria, which may provide directions for possible interventions. PMID:22460644

  3. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite

    PubMed Central

    Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.

    2016-01-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019

  4. Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria.

    PubMed

    Patel, Kashyap; Batty, Kevin T; Moore, Brioni R; Gibbons, Peter L; Bulitta, Jürgen B; Kirkpatrick, Carl M

    2013-01-01

    Murine models are used to study erythrocytic stages of malaria infection, because parasite morphology and development are comparable to those in human malaria infections. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) models for antimalarials are scarce, despite their potential to optimize antimalarial combination therapy. The aim of this study was to develop a mechanism-based growth model (MBGM) for Plasmodium berghei and then characterize the parasiticidal effect of dihydroartemisinin (DHA) in murine malaria (MBGM-PK-PD). Stage-specific (ring, early trophozoite, late trophozoite, and schizont) parasite density data from Swiss mice inoculated with Plasmodium berghei were used for model development in S-ADAPT. A single dose of intraperitoneal DHA (10 to 100 mg/kg) or vehicle was administered 56 h postinoculation. The MBGM explicitly reflected all four erythrocytic stages of the 24-hour P. berghei life cycle. Merozoite invasion of erythrocytes was described by a first-order process that declined with increasing parasitemia. An efflux pathway with subsequent return was additionally required to describe the schizont data, thus representing parasite sequestration or trapping in the microvasculature, with a return to circulation. A 1-compartment model with zero-order absorption described the PK of DHA, with an estimated clearance and distribution volume of 1.95 liters h(-1) and 0.851 liter, respectively. Parasite killing was described by a turnover model, with DHA inhibiting the production of physiological intermediates (IC(50), 1.46 ng/ml). Overall, the MBGM-PK-PD described the rise in parasitemia, the nadir following DHA dosing, and subsequent parasite resurgence. This novel model is a promising tool for studying malaria infections, identifying the stage specificity of antimalarials, and providing insight into antimalarial treatment strategies.

  5. The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites.

    PubMed

    Russell, Bruce M; Cooke, Brian M

    2017-04-01

    Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs.

  6. Protective immunity against malaria by 'natural immunization': a question of dose, parasite diversity, or both?

    PubMed

    Borrmann, Steffen; Matuschewski, Kai

    2011-08-01

    Plasmodium undergoes an obligate liver phase before the onset of malaria, which is caused exclusively by cyclic propagation of the parasite inside erythrocytes. The diagnostically inaccessible and clinically silent pre-erythrocytic expansion phase is a promising target for inducing sterilizing immunity against reinfections. Recent studies in rodent and human malaria models called attention to the induction of potent protective immunity by administration of anti-malarial drugs during sporozoite exposure. Here, we review the concept of drug-mediated pathogen arrest as a natural immunization strategy. This previously unrecognized immunological benefit might also open new opportunities for population-wide presumptive drug administration as an adjunct malaria control tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  8. Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells.

    PubMed

    Proellocks, Nicholas I; Coppel, Ross L; Mohandas, Narla; Cooke, Brian M

    2016-01-01

    Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.

  9. Timing the origin of human malarias: the lemur puzzle

    PubMed Central

    2011-01-01

    Background Timing the origin of human malarias has been a focus of great interest. Previous studies on the mitochondrial genome concluded that Plasmodium in primates, including those parasitic to humans, radiated relatively recently during a process where host switches were common. Those investigations, however, assumed constant rate of evolution and tightly bound (fixed) calibration points based on host fossils or host distribution. We investigate the effect of such assumptions using different molecular dating methods. We include parasites from Lemuroidea since their distribution provides an external validation to time estimates allowing us to disregard scenarios that cannot explain their introduction in Madagascar. Results We reject the assumption that the Plasmodium mitochondrial genome, as a unit or each gene separately, evolves at a constant rate. Our analyses show that Lemuroidea parasites are a monophyletic group that shares a common ancestor with all Catarrhini malarias except those related to P. falciparum. However, we found no evidence that this group of parasites branched with their hosts early in the evolution of primates. We applied relaxed clock methods and different calibrations points to explore the origin of primate malarias including those found in African apes. We showed that previous studies likely underestimated the origin of malarial parasites in primates. Conclusions The use of fossils from the host as absolute calibration and the assumption of a strict clock likely underestimate time when performing molecular dating analyses on malarial parasites. Indeed, by exploring different calibration points, we found that the time for the radiation of primate parasites may have taken place in the Eocene, a time consistent with the radiation of African anthropoids. The radiation of the four human parasite lineages was part of such events. The time frame estimated in this investigation, together with our phylogenetic analyses, made plausible a scenario

  10. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    PubMed

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer

  11. Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    PubMed Central

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Background Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Methodology/Principal Findings Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Conclusions/Significance Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a

  12. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  13. Motility precedes egress of malaria parasites from oocysts

    PubMed Central

    Klug, Dennis; Frischknecht, Friedrich

    2017-01-01

    Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI: http://dx.doi.org/10.7554/eLife.19157.001 PMID:28115054

  14. Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites

    PubMed Central

    Lucchi, Naomi W.; Gaye, Marie; Diallo, Mammadou Alpha; Goldman, Ira F.; Ljolje, Dragan; Deme, Awa Bineta; Badiane, Aida; Ndiaye, Yaye Die; Barnwell, John W.; Udhayakumar, Venkatachalam; Ndiaye, Daouda

    2016-01-01

    Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/μl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis. PMID:27827432

  15. Phenotypic plasticity in reproductive effort: malaria parasites respond to resource availability.

    PubMed

    Birget, Philip L G; Repton, Charlotte; O'Donnell, Aidan J; Schneider, Petra; Reece, Sarah E

    2017-08-16

    The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections-i.e. is phenotypically plastic-in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections. © 2017 The Authors.

  16. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    PubMed Central

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  17. Costs of crowding for the transmission of malaria parasites

    PubMed Central

    Pollitt, Laura C; Churcher, Thomas S; Dawes, Emma J; Khan, Shahid M; Sajid, Mohammed; Basáñez, María-Gloria; Colegrave, Nick; Reece, Sarah E

    2013-01-01

    The utility of using evolutionary and ecological frameworks to understand the dynamics of infectious diseases is gaining increasing recognition. However, integrating evolutionary ecology and infectious disease epidemiology is challenging because within-host dynamics can have counterintuitive consequences for between-host transmission, especially for vector-borne parasites. A major obstacle to linking within- and between-host processes is that the drivers of the relationships between the density, virulence, and fitness of parasites are poorly understood. By experimentally manipulating the intensity of rodent malaria (Plasmodium berghei) infections in Anopheles stephensi mosquitoes under different environmental conditions, we show that parasites experience substantial density-dependent fitness costs because crowding reduces both parasite proliferation and vector survival. We then use our data to predict how interactions between parasite density and vector environmental conditions shape within-vector processes and onward disease transmission. Our model predicts that density-dependent processes can have substantial and unexpected effects on the transmission potential of vector-borne disease, which should be considered in the development and evaluation of transmission-blocking interventions. PMID:23789029

  18. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  19. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution

    PubMed Central

    Rutledge, Gavin G.; Böhme, Ulrike; Sanders, Mandy; Reid, Adam J.; Cotton, James A.; Maiga-Ascofare, Oumou; Djimdé, Abdoulaye A.; Apinjoh, Tobias O.; Amenga-Etego, Lucas; Manske, Magnus; Barnwell, John W.; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Anstey, Nicholas M.; Auburn, Sarah; Price, Ric N.; McCarthy, James S.; Kwiatkowski, Dominic P.; Newbold, Chris I.; Berriman, Matthew; Otto, Thomas D.

    2017-01-01

    Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. These species are prevalent across most regions in which malaria is endemic2,3 and are often undetectable by light microscopy4, rendering their study in human populations difficult5. The exact evolutionary relationship of these species to the other human-infective species has been contested6,7. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole. PMID:28117441

  20. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution.

    PubMed

    Rutledge, Gavin G; Böhme, Ulrike; Sanders, Mandy; Reid, Adam J; Cotton, James A; Maiga-Ascofare, Oumou; Djimdé, Abdoulaye A; Apinjoh, Tobias O; Amenga-Etego, Lucas; Manske, Magnus; Barnwell, John W; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Anstey, Nicholas M; Auburn, Sarah; Price, Ric N; McCarthy, James S; Kwiatkowski, Dominic P; Newbold, Chris I; Berriman, Matthew; Otto, Thomas D

    2017-02-02

    Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.

  1. Electrophysiological studies of malaria parasite-infected erythrocytes: Current status

    PubMed Central

    Staines, Henry M.; Alkhalil, Abdulnaser; Allen, Richard J.; De Jonge, Hugo R.; Derbyshire, Elvira; Egée, Stéphane; Ginsburg, Hagai; Hill, David A.; Huber, Stephan M.; Kirk, Kiaran; Lang, Florian; Lisk, Godfrey; Oteng, Eugene; Pillai, Ajay D.; Rayavara, Kempaiah; Rouhani, Sherin; Saliba, Kevin J.; Shen, Crystal; Solomon, Tsione; Thomas, Serge L. Y.; Verloo, Patrick; Desai, Sanjay A.

    2009-01-01

    The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding. PMID:17292372

  2. Improved methods for magnetic purification of malaria parasites and haemozoin

    PubMed Central

    2010-01-01

    Background Malaria parasites generate free haem upon catabolism of host haemoglobin during their intraerythrocytic growth cycle. In order to minimize oxidative toxicity of the ferric iron, the free haem molecules are polymerized into the biomineral beta-haematin (commonly referred to as haemozoin). Haemozoin crystals are paramagnetic, and this property can be exploited for the purification of late stage parasites as they contain larger haemozoin crystals than early stage parasites and uninfected cells. Commercially available magnets that were originally developed for the purpose of antibody-mediated cell purification are widely used for this purpose. As these methods are not necessarily optimized for parasite purification, the relationship between magnetic field strength and the quantity and quality of yield during parasite purification was explored. Methods Inexpensive rare-earth neodymium magnets with commercially available disposable columns were employed to explore the relationship between magnetic field strength and recovery of free haemozoin and infected erythrocytes (iRBCs). Results Yields of free haemozoin increased nearly linearly with increasing magnetic field strength to the strongest fields tested (8,500 Gauss). Stronger magnetic fields also improved the recovery of iRBCs with no detrimental effects on parasite viability. An in-house constructed magnetic stand, built for $75 in materials, produced superior results when compared with much more expensive commercial products. Conclusions Existing protocols for the magnetic purification of free haemozoin and iRBCs result in sub-optimal yields. Inexpensive high-strength neodymium magnets offer a better option, resulting in higher yields with no detrimental effects on parasite viability. PMID:20074366

  3. Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite

    PubMed Central

    2016-01-01

    Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database. PMID:27247560

  4. Laminin and the malaria parasite's journey through the mosquito midgut.

    PubMed

    Arrighi, Romanico B G; Lycett, Gareth; Mahairaki, Vassiliki; Siden-Kiamos, Inga; Louis, Christos

    2005-07-01

    During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.

  5. On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos

    PubMed Central

    Pacheco, M. Andreina; Mugisha, Lawrence; André, Claudine; Halbwax, Michel; Fischer, Anne; Krief, Jean-Michel; Kasenene, John M.; Crandfield, Mike; Cornejo, Omar E.; Chavatte, Jean-Marc; Lin, Clara; Letourneur, Franck; Grüner, Anne Charlotte; McCutchan, Thomas F.; Rénia, Laurent; Snounou, Georges

    2010-01-01

    The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria. PMID:20169187

  6. Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.

    PubMed

    Fricke, Jennifer M; Vardo-Zalik, Anne M; Schall, Jos J

    2010-04-01

    Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern.

  7. Parasite Infection, Carcinogenesis and Human Malignancy.

    PubMed

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Origin of Robustness in Generating Drug-Resistant Malaria Parasites

    PubMed Central

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H.; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W.; Kamchonwongpaisan, Sumalee; Fidock, David A.; Kirkman, Laura A.; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-01-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs. PMID:24739308

  9. Competition and the Evolution of Reproductive Restraint in Malaria Parasites

    PubMed Central

    Pollitt, Laura C.; Mideo, Nicole; Drew, Damien R.; Schneider, Petra; Colegrave, Nick; Reece, Sarah E.

    2014-01-01

    All organisms must trade off resource allocation between different life processes that determine their survival and reproduction. Malaria parasites replicate asexually in the host but must produce sexual stages to transmit between hosts. Because different specialized stages are required for these functions, the division of resources between these life-history components is a key problem for natural selection to solve. Despite the medical and economic importance of these parasites, their reproductive strategies remain poorly understood and often seem counterintuitive. Here, we tested recent theory predicting that in-host competition shapes how parasites trade off investment in in-host replication relative to between-host transmission. We demonstrate, across several genotypes, that Plasmodium chabaudi parasites detect the presence of competing genotypes and facultatively respond by reducing their investment in sexual stages in the manner predicted to maximize their competitive ability. Furthermore, we show that genotypes adjust their allocation to sexual stages in line with the availability of exploitable red blood cell resources. Our findings are predicted by evolutionary theory developed to explain life-history trade-offs in more traditionally studied multicellular taxa and suggest that the answer to the long-standing question of why so few transmission stages are produced is that in most natural infections heavy investment in reproduction may compromise in-host survival. PMID:21460544

  10. A broad analysis of resistance development in the malaria parasite.

    PubMed

    Corey, Victoria C; Lukens, Amanda K; Istvan, Eva S; Lee, Marcus C S; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A; Gamo, Francisco-Javier; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A

    2016-06-15

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.

  11. A broad analysis of resistance development in the malaria parasite

    PubMed Central

    Corey, Victoria C.; Lukens, Amanda K.; Istvan, Eva S.; Lee, Marcus C. S.; Franco, Virginia; Magistrado, Pamela; Coburn-Flynn, Olivia; Sakata-Kato, Tomoyo; Fuchs, Olivia; Gnädig, Nina F.; Goldgof, Greg; Linares, Maria; Gomez-Lorenzo, Maria G.; De Cózar, Cristina; Lafuente-Monasterio, Maria Jose; Prats, Sara; Meister, Stephan; Tanaseichuk, Olga; Wree, Melanie; Zhou, Yingyao; Willis, Paul A.; Gamo, Francisco-Javier; Goldberg, Daniel E.; Fidock, David A.; Wirth, Dyann F.; Winzeler, Elizabeth A.

    2016-01-01

    Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance. PMID:27301419

  12. Origin of robustness in generating drug-resistant malaria parasites.

    PubMed

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W; Kamchonwongpaisan, Sumalee; Fidock, David A; Kirkman, Laura A; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-07-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs.

  13. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  14. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  15. Human movement data for malaria control and elimination strategic planning

    PubMed Central

    2012-01-01

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements. PMID:22703541

  16. Human movement data for malaria control and elimination strategic planning.

    PubMed

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  17. Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    PubMed Central

    Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich

    2011-01-01

    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220

  18. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    PubMed

    Yoshida, Shigeto; Shimada, Yohei; Kondoh, Daisuke; Kouzuma, Yoshiaki; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Sinden, Robert E

    2007-12-01

    The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.

  19. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    PubMed

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.

  20. Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system.

    PubMed

    Jasinskiene, Nijole; Coleman, Judy; Ashikyan, Aurora; Salampessy, Michael; Marinotti, Osvaldo; James, Anthony A

    2007-06-01

    Genetic strategies for controlling malaria transmission based on engineering pathogen resistance in Anopheles mosquitoes are being tested in a number of animal models. A key component is the effector molecule and the efficiency with which it reduces parasite transmission. Single-chain antibodies (scFvs) that bind the circumsporozoite protein of the avian parasite, Plasmodium gallinaceum, can reduce mean intensities of sporozoite infection of salivary glands by two to four orders of magnitude in transgenic Aedes aegypti. Significantly, mosquitoes with as few as 20 sporozoites in their salivary glands are infectious for a vertebrate host, Gallus gallus. Although scFvs hold promise as effector molecules, they will have to reduce mean intensities of infection to zero to prevent parasite transmission and disease. We conclude that similar endpoints must be reached with human pathogens if we are to expect an effect on disease transmission.

  1. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential

    PubMed Central

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2011-01-01

    Plasmodium falciparum (P. falciparum) is responsible for the majority of life-threatening cases of human malaria, causing 1.5-2.7 million annual deaths. The global emergence of drug-resistant malaria parasites necessitates identification and characterization of novel drug targets and their potential inhibitors. We identified the carbonic anhydrase (CA) genes in P. falciparum. The pfCA gene encodes anα-carbonic anhydrase, a Zn2+-metalloenzme, possessing catalytic properties distinct from that of the human host CA enzyme. The amino acid sequence of the pfCA enzyme is different from the analogous protozoan and human enzymes. A library of aromatic/heterocyclic sulfonamides possessing a large diversity of scaffolds were found to be very good inhibitors for the malarial enzyme at moderate-low micromolar and submicromolar inhibitions. The structure of the groups substituting the aromatic-ureido- or aromatic-azomethine fragment of the molecule and the length of the parent sulfonamide were critical parameters for the inhibitory properties of the sulfonamides. One derivative, that is, 4- (3, 4-dichlorophenylureido)thioureido-benzenesulfonamide (compound 10) was the most effective in vitro Plasmodium falciparum CA inhibitor, and was also the most effective antimalarial compound on the in vitro P. falciparum growth inhibition. The compound 10 was also effective in vivo antimalarial agent in mice infected with Plasmodium berghei, an animal model of drug testing for human malaria infection. It is therefore concluded that the sulphonamide inhibitors targeting the parasite CA may have potential for the development of novel therapies against human malaria. PMID:23569766

  2. Environmental factors affecting malaria parasite prevalence in rural Bolifamba, South West Cameroon.

    PubMed

    Nkuo-Akenji, Theresa; Ntonifor, Nelson N; Ndukum, Maze B; Abongwa, Edith L; Nkwescheu, Armand; Anong, Damain N; Songmbe, Michael; Boyo, Michael G; Ndamukong, Kenneth N; Titanji, Vincent P K

    2006-01-01

    The impact of some environmental factors on malaria parasite prevalence was investigated in rural Bolifamba, Cameroon. The study population comprised 1454 subjects aged 0 - 65 years. Malaria parasite prevalence was higher in the rainy (50.1 %) than in the dry season (44.2 %) with a significant difference (P = 0.001) in mean parasite density between seasons. Individuals < 15 years old had significantly higher malaria parasite prevalence (55.5 %) than those > 15 years (37.4 %). Malaria parasite prevalence (P = 0.001) and parasite density (P = 0.03) were higher in the individuals of wooden plank houses than those of cement brick houses. Inhabitants of houses surrounded by bushes or garbage heaps and swamps or stagnant water showed higher malaria parasite prevalence and densities compared with those from cleaner surroundings. Anopheles gambiae (63.8 %) and A. funestus (32.8 %) were associated with perennial transmission of malaria. Our data indicates that poor environmental sanitation and housing conditions may be significant risk factors for malaria parasite burden in Bolifamba.

  3. Proteolysis at a Specific Extracellular Residue Implicates Integral Membrane CLAG3 in Malaria Parasite Nutrient Channels

    PubMed Central

    Nguitragool, Wang; Rayavara, Kempaiah; Desai, Sanjay A.

    2014-01-01

    The plasmodial surface anion channel mediates uptake of nutrients and other solutes into erythrocytes infected with malaria parasites. The clag3 genes of P. falciparum determine this channel’s activity in human malaria, but how the encoded proteins contribute to transport is unknown. Here, we used proteases to examine the channel’s composition and function. While proteases with distinct specificities all cleaved within an extracellular domain of CLAG3, they produced differing degrees of transport inhibition. Chymotrypsin-induced inhibition depended on parasite genotype, with channels induced by the HB3 parasite affected to a greater extent than those of the Dd2 clone. Inheritance of functional proteolysis in the HB3×Dd2 genetic cross, DNA transfection, and gene silencing experiments all pointed to the clag3 genes, providing independent evidence for a role of these genes. Protease protection assays with a Dd2-specific inhibitor and site-directed mutagenesis revealed that a variant L1115F residue on a CLAG3 extracellular loop contributes to inhibitor binding and accounts for differences in functional proteolysis. These findings indicate that surface-exposed CLAG3 is the relevant pool of this protein for channel function. They also suggest structural models for how exposed CLAG3 domains contribute to pore formation and parasite nutrient uptake. PMID:24699906

  4. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum.

    PubMed

    Lee, Andrew H; Symington, Lorraine S; Fidock, David A

    2014-09-01

    Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.

  5. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Lee, Andrew H.; Symington, Lorraine S.

    2014-01-01

    SUMMARY Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen. PMID:25184562

  6. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention?

    PubMed Central

    Aminake, Makoah Nigel; Arndt, Hans-Dieter; Pradel, Gabriele

    2012-01-01

    The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs. PMID:24533266

  7. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants

    PubMed Central

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A.; Kwiatkowski, Dominic P.; Conway, David J.

    2017-01-01

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture. PMID:28117431

  8. Malaria.

    PubMed

    Heck, J E

    1991-03-01

    Human malaria is caused by four species of the genus plasmodium. The sexual stage of the parasite occurs in the mosquito and asexual reproduction occurs in man. Symptoms of fever, chills, headache, and myalgia result from the invasion and rupture of erythrocytes. Merozoites are released from erythrocytes and invade other cells, thus propagating the infection. The most vulnerable hosts are nonimmune travelers, young children living in the tropics, and pregnant women. P. falciparum causes the most severe infections because it infects RBCs of all ages and has the propensity to develop resistance to antimalarials. Rapid diagnosis can be made with a malarial smear, and treatment should be initiated promptly. In some regions (Mexico, Central America except Panama, and North Africa) chloroquine phosphate is effective therapy. In subsaharan Africa, South America, and Southeast Asia, chloroquine resistance has become widespread, and other antimalarials are necessary. The primary care physician should have a high index of suspicion for malaria in the traveler returning from the tropics. Malaria should also be suspected in the febrile transfusion recipient and newborns of mothers with malaria.

  9. Controlled Human Malaria Infection: Applications, Advances and Challenges.

    PubMed

    Stanisic, Danielle I; McCarthy, James S; Good, Michael F

    2017-09-18

    Controlled Human Malaria Infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or direct injection of sporozoites or parasitised erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of anti-malarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development where it is used to evaluate products in well-controlled early phase proof-of-concept clinical studies thus facilitating progression of only the most promising candidates for further evaluation in malaria-endemic areas. Controlled infections have also been used to immunise against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of P. falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well characterised and genetically distinct cultured malaria cell banks for blood-stage infection, and P. vivax-specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.

  10. Malaria burden in human population of Quetta, Pakistan

    PubMed Central

    Tareen, A. M.; Rafique, M.; Wadood, A.; Qasim, M.; Rahman, H.; Shah, S. H.; Khan, K.; Pirkani, G. S.

    2012-01-01

    Malaria is a serious global health challenge, which is responsible for more than one million deaths a year. Malarial infection is more prevalent in developing countries including Pakistan. Significant efforts have been made to control malaria; however, due to socio-environmental factors, it remains a frequent problem in Quetta. The present study was undertaken to determine the malarial incidence, species prevalence, and its demographic evaluation in human population of Quetta, Pakistan. A total of 1831 subjects, comprising 1072 male and 759 female presenting symptoms of malaria, were included in this study. Blood samples from clinically suspected individuals were subjected to the standard immunochromatographic and malaria parasite smear analysis for malaria diagnosis. Out of 1831 subjects, 338 (18.45%) patients were positive for malarial parasite while the species prevalence was found as 276 (81.66%) and 62 (18.34%) for Plasmodium vivax, and Plasmodium falciparum, respectively. Furthermore, seasonal variations gradual increase in the prevalence rate. The age group of 21–30 years (30.47%) was found more prone to malaria. The suspected malaria cases were found more frequent in rural (72.1%) as compared to urban (27.9%). In addition, the malaria burden was high in urban area (22.89%) population as compared to the rural area (16.74%) population. It was observed that the highest disease occurrence was caused by P. vivax, which reflects a serious threat for public health. The current findings will be helpful to plan effective strategies to prevent and control malaria in this area. PMID:24688766

  11. Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile.

    PubMed

    Verma, Ruchi; Varshney, Grish C; Raghava, G P S

    2010-06-01

    The rate of human death due to malaria is increasing day-by-day. Thus the malaria causing parasite Plasmodium falciparum (PF) remains the cause of concern. With the wealth of data now available, it is imperative to understand protein localization in order to gain deeper insight into their functional roles. In this manuscript, an attempt has been made to develop prediction method for the localization of mitochondrial proteins. In this study, we describe a method for predicting mitochondrial proteins of malaria parasite using machine-learning technique. All models were trained and tested on 175 proteins (40 mitochondrial and 135 non-mitochondrial proteins) and evaluated using five-fold cross validation. We developed a Support Vector Machine (SVM) model for predicting mitochondrial proteins of P. falciparum, using amino acids and dipeptides composition and achieved maximum MCC 0.38 and 0.51, respectively. In this study, split amino acid composition (SAAC) is used where composition of N-termini, C-termini, and rest of protein is computed separately. The performance of SVM model improved significantly from MCC 0.38 to 0.73 when SAAC instead of simple amino acid composition was used as input. In addition, SVM model has been developed using composition of PSSM profile with MCC 0.75 and accuracy 91.38%. We achieved maximum MCC 0.81 with accuracy 92% using a hybrid model, which combines PSSM profile and SAAC. When evaluated on an independent dataset our method performs better than existing methods. A web server PFMpred has been developed for predicting mitochondrial proteins of malaria parasites ( http://www.imtech.res.in/raghava/pfmpred/).

  12. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2015-07-31

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.

  13. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  14. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    NASA Astrophysics Data System (ADS)

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-07-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min-1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  15. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX)

    PubMed Central

    Birch, Christina M.; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C.

    2015-01-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 106) from unbound oligonucleotides at high volume throughput (~2 × 106 cells min−1). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts. PMID:26126714

  16. Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX).

    PubMed

    Birch, Christina M; Hou, Han Wei; Han, Jongyoon; Niles, Jacquin C

    2015-07-01

    Plasmodium falciparum malaria parasites invade and remodel human red blood cells (RBCs) by trafficking parasite-synthesized proteins to the RBC surface. While these proteins mediate interactions with host cells that contribute to disease pathogenesis, the infected RBC surface proteome remains poorly characterized. Here we use a novel strategy (I-SELEX) to discover high affinity aptamers that selectively recognize distinct epitopes uniquely present on parasite-infected RBCs. Based on inertial focusing in spiral microfluidic channels, I-SELEX enables stringent partitioning of cells (efficiency ≥ 10(6)) from unbound oligonucleotides at high volume throughput (~2 × 10(6) cells min(-1)). Using an RBC model displaying a single, non-native antigen and live malaria parasite-infected RBCs as targets, we establish suitability of this strategy for de novo aptamer selections. We demonstrate recovery of a diverse set of aptamers that recognize distinct, surface-displayed epitopes on parasite-infected RBCs with nanomolar affinity, including an aptamer against the protein responsible for placental sequestration, var2CSA. These findings validate I-SELEX as a broadly applicable aptamer discovery platform that enables identification of new reagents for mapping the parasite-infected RBC surface proteome at higher molecular resolution to potentially contribute to malaria diagnostics, therapeutics and vaccine efforts.

  17. Efficient expression systems for cysteine proteases of malaria parasites

    PubMed Central

    Sarduy, Emir Salas; de los A. Chávez Planes, María

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863

  18. Discovery of HDAC Inhibitors with Potent Activity Against Multiple Malaria Parasite Life Cycle Stages

    PubMed Central

    Hansen, Finn K.; Sumanadasa, Subathdrage D. M.; Stenzel, Katharina; Duffy, Sandra; Meister, Stephan; Marek, Linda; Schmetter, Rebekka; Kuna, Krystina; Hamacher, Alexandra; Mordmüller, Benjamin; Kassack, Matthias U.; Winzeler, Elizabeth A.; Avery, Vicky M.; Andrews, Katherine T.; Kurz, Thomas

    2015-01-01

    In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage P. falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against P. berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages. PMID:24904967

  19. Malaria Pathogenesis

    NASA Astrophysics Data System (ADS)

    Miller, Louis H.; Good, Michael F.; Milon, Genevieve

    1994-06-01

    Malaria is a disease caused by repeated cycles of growth of the parasite Plasmodium in the erythrocyte. Various cellular and molecular strategies allow the parasite to evade the human immune response for many cycles of parasite multiplication. Under certain circumstances Plasmodium infection causes severe anemia or cerebral malaria; the expression of disease is influenced by both parasite and host factors, as exemplified by the exacerbation of disease during pregnancy. This article provides an overview of malaria pathogenesis, synthesizing the recent field, laboratory, and epidemiological data that will lead to the development of strategies to reduce mortality and morbidity.

  20. The Power of Malaria Vaccine Trials Using Controlled Human Malaria Infection

    PubMed Central

    Hermsen, Cornelus C.; Sauerwein, Robert W.; de Vlas, Sake J.

    2017-01-01

    Controlled human malaria infection (CHMI) in healthy human volunteers is an important and powerful tool in clinical malaria vaccine development. However, power calculations are essential to obtain meaningful estimates of protective efficacy, while minimizing the risk of adverse events. To optimize power calculations for CHMI-based malaria vaccine trials, we developed a novel non-linear statistical model for parasite kinetics as measured by qPCR, using data from mosquito-based CHMI experiments in 57 individuals. We robustly account for important sources of variation between and within individuals using a Bayesian framework. Study power is most dependent on the number of individuals in each treatment arm; inter-individual variation in vaccine efficacy and the number of blood samples taken per day matter relatively little. Due to high inter-individual variation in the number of first-generation parasites, hepatic vaccine trials required significantly more study subjects than erythrocytic vaccine trials. We provide power calculations for hypothetical malaria vaccine trials of various designs and conclude that so far, power calculations have been overly optimistic. We further illustrate how upcoming techniques like needle-injected CHMI may reduce required sample sizes. PMID:28081133

  1. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells

    PubMed Central

    Baldwin, Michael R.; Li, Xuerong; Hanada, Toshihiko; Liu, Shih-Chun

    2015-01-01

    Plasmodium falciparum invasion of human red blood cells (RBCs) is an intricate process requiring a number of distinct ligand-receptor interactions at the merozoite-erythrocyte interface. Merozoite surface protein 1 (MSP1), a highly abundant ligand coating the merozoite surface in all species of malaria parasites, is essential for RBC invasion and considered a leading candidate for inclusion in a multiple-subunit vaccine against malaria. Our previous studies identified an interaction between the carboxyl-terminus of MSP1 and RBC band 3. Here, by employing phage display technology, we report a novel interaction between the amino-terminus of MSP1 and RBC glycophorin A (GPA). Mapping of the binding domains established a direct interaction between malaria MSP1 and human GPA within a region of MSP1 known to potently inhibit P falciparum invasion of human RBCs. Furthermore, a genetically modified mouse model lacking the GPA– band 3 complex in RBCs is completely resistant to malaria infection in vivo. These findings suggest an essential role of the MSP1-GPA–band 3 complex during the initial adhesion phase of malaria parasite invasion of RBCs. PMID:25778531

  2. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells.

    PubMed

    Baldwin, Michael R; Li, Xuerong; Hanada, Toshihiko; Liu, Shih-Chun; Chishti, Athar H

    2015-04-23

    Plasmodium falciparum invasion of human red blood cells (RBCs) is an intricate process requiring a number of distinct ligand-receptor interactions at the merozoite-erythrocyte interface. Merozoite surface protein 1 (MSP1), a highly abundant ligand coating the merozoite surface in all species of malaria parasites, is essential for RBC invasion and considered a leading candidate for inclusion in a multiple-subunit vaccine against malaria. Our previous studies identified an interaction between the carboxyl-terminus of MSP1 and RBC band 3. Here, by employing phage display technology, we report a novel interaction between the amino-terminus of MSP1 and RBC glycophorin A (GPA). Mapping of the binding domains established a direct interaction between malaria MSP1 and human GPA within a region of MSP1 known to potently inhibit P falciparum invasion of human RBCs. Furthermore, a genetically modified mouse model lacking the GPA- band 3 complex in RBCs is completely resistant to malaria infection in vivo. These findings suggest an essential role of the MSP1-GPA-band 3 complex during the initial adhesion phase of malaria parasite invasion of RBCs.

  3. Identification of a vir-orthologous immune evasion gene family from primate malaria parasites.

    PubMed

    Prajapati, Surendra Kumar; Singh, Om Prakash

    2014-04-01

    The immune evasion gene family of malaria parasites encodes variant surface proteins that are expressed at the surface of infected erythrocytes and help the parasite in evading the host immune response by means of antigenic variation. The identification of Plasmodium vivax vir orthologous immune evasion gene family from primate malaria parasites would provide new insight into the evolution of virulence and pathogenesis. Three vir subfamilies viz. vir-B, vir-D and vir-G were successfully PCR amplified from primate malaria parasites, cloned and sequenced. DNA sequence analysis confirmed orthologues of vir-D subfamily in Plasmodium cynomolgi, Plasmodium simium, Plasmodium simiovale and Plasmodium fieldi. The identified vir-D orthologues are 1-9 distinct members of the immune evasion gene family which have 68-83% sequence identity with vir-D and 71.2-98.5% sequence identity within the members identified from primate malaria parasites. The absence of other vir subfamilies among primate malaria parasites reflects the limitations in the experimental approach. This study clearly identified the presence of vir-D like sequences in four species of Plasmodium infecting primates that would be useful in understanding the evolution of virulence in malaria parasites.

  4. Blood Smear Image Based Malaria Parasite and Infected-Erythrocyte Detection and Segmentation.

    PubMed

    Tsai, Meng-Hsiun; Yu, Shyr-Shen; Chan, Yung-Kuan; Jen, Chun-Chu

    2015-10-01

    In this study, an automatic malaria parasite detector is proposed to perceive the malaria-infected erythrocytes in a blood smear image and to separate parasites from the infected erythrocytes. The detector hence can verify whether a patient is infected with malaria. It could more objectively and efficiently help a doctor in diagnosing malaria. The experimental results show that the proposed method can provide impressive performance in segmenting the malaria-infected erythrocytes and the parasites from a blood smear image taken under a microscope. This paper also presents a weighted Sobel operation to compute the image gradient. The experimental results demonstrates that the weighted Sobel operation can provide more clear-cut and thinner object contours in object segmentation.

  5. Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu: inferred malaria dispersal and implications for malaria control.

    PubMed

    Lum, J K; Kaneko, A; Taleo, G; Amos, M; Reiff, D M

    2007-08-01

    A comparison of the patterns of gene flow within and between islands and the genetic diversities of the three species required for malaria transmission (humans, Plasmodium falciparum, and Anopheles farauti s.s.) within the model island system of Vanuatu, shows that the active dispersal of An. farauti s.s. is responsible for within island movement of parasites. In contrast, since both P. falciparum and An. farauti s.s. populations are largely restricted to islands, movement of parasites between islands is likely due to human transport. Thus, control of vectors is crucial for controlling malaria within islands, while control of human movement is essential to control malaria transmission across the archipelago.

  6. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes.

    PubMed

    Frischknecht, Friedrich; Baldacci, Patricia; Martin, Béatrice; Zimmer, Christophe; Thiberge, Sabine; Olivo-Marin, Jean-Christophe; Shorte, Spencer L; Ménard, Robert

    2004-07-01

    Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.

  7. Analysis of the Clinical Profile in Patients with Plasmodium falciparum Malaria and Its Association with Parasite Density.

    PubMed

    Mangal, Praveen; Mittal, Shilpa; Kachhawa, Kamal; Agrawal, Divya; Rath, Bhabagrahi; Kumar, Sanjay

    2017-01-01

    Malaria remains a major health hazard in the modern world, particularly in developing countries. In Plasmodium falciparum malaria, there is a direct correlation between asexual erythrocytic stage parasite density and disease severity. Accordingly, the correlations between parasite density and various clinical presentations, severity, and outcome were examined in falciparum malaria in India. The study was conducted in a tertiary health-care center in North India. Of 100 cases of falciparum malaria, 65 patients were male and 35 were female. A total of 54 patients were in the uncomplicated group and 46 patients were in the complicated malaria group. Fever, anemia, icterus, splenomegaly, hepatomegaly, and hepatosplenomegaly were common clinical findings. All clinical findings were significantly more common in the complicated malaria group and patients with a high parasite density than in the uncomplicated group and those with a low parasite density. All patients in the uncomplicated malaria group had a parasite density of <5% while most patients in the complicated malaria group had a parasite density of >5%, and the difference between groups was statistically significant. The incidence of cerebral malaria was significantly higher in cases with a high parasite density; 58.33% mortality was observed in these cases. Cerebral malaria and hyperbilirubinemia was the most frequently encountered combination of complications. In P. falciparum malaria, parasite density was associated with complications and poor clinical outcomes. These results may inform treatment decisions and suggest that a threshold parasite density of 5% is informative.

  8. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses.

    PubMed

    Wu, Xianzhu; Gowda, Nagaraj M; Kumar, Sanjeev; Gowda, D Channe

    2010-04-15

    Dendritic cells (DCs) play a crucial role in the development of protective immunity to malaria. However, it remains unclear how malaria parasites trigger immune responses in DCs. In this study, we purified merozoites, food vacuoles, and parasite membrane fragments released during the Plasmodium falciparum schizont burst to homogeneity and tested for the activation of bone marrow-derived DCs from wild-type and TLR2(-/-), TLR4(-/-), TLR9(-/-), and MyD88(-/-) C57BL/6J mice. The results demonstrate that a protein-DNA complex is the exclusive parasite component that activates DCs by a TLR9-dependent pathway to produce inflammatory cytokines. Complex formation with proteins is essential for the entry of parasite DNA into DCs for TLR9 recognition and, thus, proteins convert inactive DNA into a potent immunostimulatory molecule. Exogenous cationic polymers, polylysine and chitosan, can impart stimulatory activity to parasite DNA, indicating that complex formation involves ionic interactions. Merozoites and DNA-protein complex could also induce inflammatory cytokine responses in human blood DCs. Hemozoin is neither a TLR9 ligand for DCs nor functions as a carrier of DNA into cells. Additionally, although TLR9 is critical for DCs to induce the production of IFN-gamma by NK cells, this receptor is not required for NK cells to secret IFN-gamma, and cell-cell contact among myeloid DCs, plasmacytoid DCs, and NK cells is required for IFN-gamma production. Together, these results contribute substantially toward the understanding of malaria parasite-recognition mechanisms. More importantly, our finding that proteins and carbohydrate polymers are able to confer stimulatory activity to an otherwise inactive parasite DNA have important implications for the development of a vaccine against malaria.

  9. Identification of mitochondrial proteins of malaria parasite using analysis of variance.

    PubMed

    Ding, Hui; Li, Dongmei

    2015-02-01

    As a parasitic protozoan, Plasmodium falciparum (P. falciparum) can cause malaria. The mitochondrial proteins of malaria parasite play important roles in the discovery of anti-malarial drug targets. Thus, accurate identification of mitochondrial proteins of malaria parasite is a key step for understanding their functions and finding potential drug targets. In this work, we developed a sequence-based method to identify the mitochondrial proteins of malaria parasite. At first, we extended adjoining dipeptide composition to g-gap dipeptide composition for discretely formulating the protein sequences. Subsequently, the analysis of variance (ANOVA) combined with incremental feature selection (IFS) was used to pick out the optimal features. Finally, the jackknife cross-validation was used to evaluate the performance of the proposed model. Evaluation results showed that the maximum accuracy of 97.1% could be achieved by using 101 optimal 5-gap dipeptides. The comparison with previous methods demonstrated that our method was accurate and efficient.

  10. Genetically engineered parasites: the solution to designing an effective malaria vaccine?

    PubMed

    Fitchett, Joseph R; Cooke, Mary K

    2010-07-01

    Genetic engineering provides an ingenious method of attenuating Plasmodium falciparum parasites for next generation vaccines. A novel approach stimulates new optimism in the struggle to eliminate the burden of malaria.

  11. The epidemiology of drug resistance of malaria parasites: Memorandum from a WHO Meeting*

    PubMed Central

    1987-01-01

    This Memorandum presents current knowledge concerning the epidemiology of drug resistance of malaria parasites and outlines 33 research proposals which could lead to a better understanding of that epidemiology and to a better management of the problem. PMID:3325184

  12. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.

  13. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum.

    PubMed

    Adjalley, Sophie H; Chabbert, Christophe D; Klaus, Bernd; Pelechano, Vicent; Steinmetz, Lars M

    2016-03-15

    A comprehensive map of transcription start sites (TSSs) across the highly AT-rich genome of P. falciparum would aid progress toward deciphering the molecular mechanisms that underlie the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single-nucleotide resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcription unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

  14. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    PubMed

    Prasad, Rajesh; Atul; Soni, Awakash; Puri, Sunil Kumar; Sijwali, Puran Singh

    2012-01-01

    Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries

  15. Human ecology and behaviour in malaria control in tropical Africa

    PubMed Central

    MacCormack, C. P.

    1984-01-01

    Since about 250 BC, human modification of African environments has created increasingly favourable breeding conditions for Anopheles gambiae. Subsequent adaptations to the increased malaria risk are briefly described and reference is made to Macdonald's mathematical model for the disease. Since values for the variables in that model are high in tropical Africa, there is little possibility that simple, inexpensive, self-help primary health care initiatives can control malaria in the region. However, in combination with more substantial public health initiatives, simple primary health care activities might be done by communities to (1) prevent mosquitos from feeding on people, (2) prevent or reduce mosquito breeding, (3) destroy adult mosquitos, and (4) eliminate malaria parasites from human hosts. Lay methods of protection and self-care are examined and some topics for further research are indicated. Culturally appropriate health education methods are also suggested. PMID:6335685

  16. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito

    PubMed Central

    Hart, Robert J.; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S.; Ben Mamoun, Choukri; Aly, Ahmed S. I.

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  17. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-09-20

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.

  18. Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.

    2017-01-01

    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705

  19. A morphology-based method for the diagnosis of red blood cells parasitized by Plasmodium malariae and Plasmodium ovale.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Haghi, Afsaneh Motevalli; Faghihi, Shahab

    2014-05-01

    The morphology of red blood cells (RBCs) is altered significantly during the maturation stages of malaria parasites, which include ring, trophozoite, and schizont. There is dissimilarity in terms of the morphological characteristics of parasitized RBCs infected by the 4 species of Plasmodium, including falciparum, vivax, malariae, and ovale. This makes the process of diagnosis very difficult, which may lead to a wrong treatment method and substantial damage to the health of the patient. An innovative technique in introduced that accurately defines the shape of parasitized RBCs at each stage of infection as a potential method of diagnosis. Giemsa-stained thin blood films were prepared using blood samples collected from healthy donors as well as patients infected with P. malariae and P. ovale. The diameter and thickness of healthy and infected RBCs at each stage of infection were measured from their optical images using Olysia and Scanning Probe Image Processor (SPIP) software, respectively. A shape equation was fitted based on the morphological characteristics of RBCs, and their relative 2-dimensional shapes were plotted using Wolfram Mathematica. At the ring stage, the thicknesses of RBCs parasitized by P. malariae (Pm-RBCs) and P. ovale (Po-RBCs) increased by 42% and 51%, respectively. Both Pm-RBCs and Po-RBCs remained nearly biconcave throughout parasite development even though their volumes increased. It is proposed that the morphology-based characterization technique introduced here could be used to intensify the accuracy of the Giemsa staining diagnosis method for the detection of the Plasmodium genus and infection stage. Based on the significant morphological alterations induced by different Plasmodium species, the results may also find practical use for faster prediction and treatment of human malaria.

  20. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite.

    PubMed

    Wetzel, Johanna; Herrmann, Susann; Swapna, Lakshmipuram Seshadri; Prusty, Dhaneswar; John Peter, Arun T; Kono, Maya; Saini, Sidharth; Nellimarla, Srinivas; Wong, Tatianna Wai Ying; Wilcke, Louisa; Ramsay, Olivia; Cabrera, Ana; Biller, Laura; Heincke, Dorothee; Mossman, Karen; Spielmann, Tobias; Ungermann, Christian; Parkinson, John; Gilberger, Tim W

    2015-01-16

    To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.

  1. Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax.

    PubMed Central

    Na, Byoung-Kuk; Shenai, Bhaskar R; Sijwali, Puran S; Choe, Youngchool; Pandey, Kailash C; Singh, Ajay; Craik, Charles S; Rosenthal, Philip J

    2004-01-01

    Cysteine proteases play important roles in the life cycles of malaria parasites. Cysteine protease inhibitors block haemoglobin hydrolysis and development in Plasmodium falciparum, suggesting that the cysteine proteases of this major human pathogen, termed falcipains, are appropriate therapeutic targets. To expand our understanding of plasmodial proteases to Plasmodium vivax, the other prevalent human malaria parasite, we identified and cloned genes encoding the P. vivax cysteine proteases, vivapain-2 and vivapain-3, and functionally expressed the proteases in Escherichia coli. The vivapain-2 and vivapain-3 genes predicted papain-family cysteine proteases, which shared a number of unusual features with falcipain-2 and falcipain-3, including large prodomains and short N-terminal extensions on the catalytic domain. Recombinant vivapain-2 and vivapain-3 shared properties with the falcipains, including acidic pH optima, requirements for reducing conditions for activity and hydrolysis of substrates with positively charged residues at P1 and Leu at P2. Both enzymes hydrolysed native haemoglobin at acidic pH and the erythrocyte cytoskeletal protein 4.1 at neutral pH, suggesting similar biological roles to the falcipains. Considering inhibitor profiles, the vivapains were inhibited by fluoromethylketone and vinyl sulphone inhibitors that also inhibited falcipains and have demonstrated potent antimalarial activity. PMID:14629194

  2. Malaria and Human Red Blood Cells

    PubMed Central

    Mohandas, Narla; An, Xiuli

    2013-01-01

    Invasion by the malaria parasite, P. falciparum brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species, and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that include cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interaction with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia a serious clinical manifestation of malaria is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton. PMID:22965173

  3. Malaria and human red blood cells.

    PubMed

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  4. Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria.

    PubMed

    Imwong, Mallika; Woodrow, Charles J; Hendriksen, Ilse C E; Veenemans, Jacobien; Verhoef, Hans; Faiz, M Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D; Day, Nicholas P J; Dondorp, Arjen M; White, Nicholas J

    2015-04-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples.

  5. Multivariable analysis of host amino acids in plasma and liver during infection of malaria parasite Plasmodium yoelii

    PubMed Central

    2013-01-01

    Background Malaria is the most significant human parasitic disease, and yet understanding of the energy metabolism of the principle pathogen, Plasmodium falciparum, remains to be fully elucidated. Amino acids were shown to be essential nutritional requirements since early times and much of the current knowledge of Plasmodium energy metabolism is based on early biochemical work, performed using basic analytical techniques, carried out almost exclusively on human plasma with considerable inter-individual variability. Methods In order to further characterize the fate of amino acid metabolism in malaria parasite, multivariate analysis using statistical modelling of amino acid concentrations (aminogram) of plasma and liver were determined in host infected with rodent malaria parasite, Plasmodium yoelii. Results and conclusion Comprehensive and statistical aminogram analysis revealed that P. yoelii infection caused drastic change of plasma and liver aminogram, and altered intra- and inter-correlation of amino acid concentration in plasma and liver. These findings of the interactions between amino acids and Plasmodium infection may provide insight to reveal the interaction between nutrients and parasites. PMID:23324562

  6. A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei

    PubMed Central

    Yiangou, Loukia; Montandon, Ruddy; Modrzynska, Katarzyna; Rosen, Barry; Bushell, Wendy; Hale, Christine; Billker, Oliver; Rayner, Julian C.

    2016-01-01

    The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types. PMID:27362409

  7. Rapid detection of malaria parasite by toluidine blue method: a new staining method.

    PubMed

    Annam, Vamseedhar; Mohan, Chakkirala Nalini; Mrinalini, Vazhayil Ramunny

    2013-10-01

    Malaria is a commonest mosquito-borne infectious disease worldwide. Early identification and management of malaria prevents complications and mortality. Identification of the malaria mainly relies on detection of the parasite on blood smears. The present study was conducted to compare Toluidine blue method with Leishman method for detection of malaria parasite and also to study the efficacy and advantages of using Toluidine blue method. In 540 consecutive patients with clinical suspicion of malaria, peripheral smears were prepared. Smears were processed for both conventional Leishman method and Toluidine blue method simultaneously. The significance of Toluidine blue method over Leishman method was analyzed using Chi-square (χ(2)) test. Out of 540 smears, 28.3% (153/540) were positive for malaria parasite on conventional Leishman method, while the smear positivity was more by Toluidine blue method to 33.3% (180/540) [P value < 0.01]. The remaining 66.67% (360/540) were negative by both Toluidine blue method and conventional Leishman method. The Toluidine blue method is simple, rapid, inexpensive, and easily available. The implementation of Toluidine blue method clearly improves microscopic detection of malaria parasite and can be a useful contribution to routine hematology even at rural health sectors.

  8. Purine import into malaria parasites as a target for antimalarial drug development.

    PubMed

    Frame, I J; Deniskin, Roman; Arora, Avish; Akabas, Myles H

    2015-04-01

    Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 μM). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.

  9. Influence of host factors and parasite biomass on the severity of imported Plasmodium falciparum malaria.

    PubMed

    Argy, Nicolas; Kendjo, Eric; Augé-Courtoi, Claire; Cojean, Sandrine; Clain, Jérôme; Houzé, Pascal; Thellier, Marc; Hubert, Veronique; Deloron, Philippe; Houzé, Sandrine

    2017-01-01

    Imported malaria in France is characterized by various clinical manifestations observed in a heterogeneous population of patients such as travelers/expatriates and African migrants. In this population, host factors and parasite biomass associated with severe imported malaria are poorly known. From data collected by the Centre National de Référence du Paludisme, we identified epidemiological, demographic and biological features including parasite biomass and anti-plasmodial antibody levels (negative, positive and strongly positive serology) associated with different disease severity groups (very severe, moderately severe, and uncomplicated malaria) in 3 epidemiological groups (travelers/expatriates, first- and second-generation migrants). Age, ethnicity, absence of prior infection with P. falciparum, antibody levels, plasma PfHRP2 levels, total and circulating parasite biomass were related to severe malaria onset. Sequestered parasite biomass tended to be increased in very severe malaria, and was strongly correlated to the antibody level of the host. Prior exposure to P. falciparum is associated with high anti-plasmodial antibody levels which influence clinical presentation of imported malaria and its correlated circulating and sequestered parasite burden.

  10. Influence of host factors and parasite biomass on the severity of imported Plasmodium falciparum malaria

    PubMed Central

    Kendjo, Eric; Augé-Courtoi, Claire; Cojean, Sandrine; Clain, Jérôme; Houzé, Pascal; Thellier, Marc; Hubert, Veronique; Deloron, Philippe; Houzé, Sandrine

    2017-01-01

    Objectives Imported malaria in France is characterized by various clinical manifestations observed in a heterogeneous population of patients such as travelers/expatriates and African migrants. In this population, host factors and parasite biomass associated with severe imported malaria are poorly known. Methods From data collected by the Centre National de Référence du Paludisme, we identified epidemiological, demographic and biological features including parasite biomass and anti-plasmodial antibody levels (negative, positive and strongly positive serology) associated with different disease severity groups (very severe, moderately severe, and uncomplicated malaria) in 3 epidemiological groups (travelers/expatriates, first- and second-generation migrants). Results Age, ethnicity, absence of prior infection with P. falciparum, antibody levels, plasma PfHRP2 levels, total and circulating parasite biomass were related to severe malaria onset. Sequestered parasite biomass tended to be increased in very severe malaria, and was strongly correlated to the antibody level of the host. Conclusions Prior exposure to P. falciparum is associated with high anti-plasmodial antibody levels which influence clinical presentation of imported malaria and its correlated circulating and sequestered parasite burden. PMID:28410415

  11. Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases.

    PubMed

    Khan, Sameena

    2016-04-12

    Escalating drug resistance in malaria parasites and lack of vaccine entails the discovery of novel drug targets and inhibitor molecules. The multi-component protein translation machinery is a rich source of such drug targets. Malaria parasites contain three translational compartments: the cytoplasm, apicoplast and mitochondrion, of which the latter two are of the prokaryotic type. Recent explorations by many groups into the malaria parasite protein translation enzymes, aminoacyl-tRNA synthetases (aaRSs), have yielded many promising inhibitors. The understanding of the biology of this unique set of 36 enzymes has become much clearer in recent times. Current review discusses the advances made in understanding of crucial aaRSs from Plasmodium and also the specific inhibitors found against malaria aaRSs.

  12. Intravenous Artesunate Reduces Parasite Clearance Time, Duration of Intensive Care, and Hospital Treatment in Patients With Severe Malaria in Europe: The TropNet Severe Malaria Study.

    PubMed

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu; Clerinx, Jan; Antinori, Spinello; Gjørup, Ida E; Gascon, Joaquím; Mørch, Kristine; Nicastri, Emanuele; Ramharter, Michael; Bartoloni, Alessandro; Visser, Leo; Rolling, Thierry; Zanger, Philipp; Calleri, Guido; Salas-Coronas, Joaquín; Nielsen, Henrik; Just-Nübling, Gudrun; Neumayr, Andreas; Hachfeld, Anna; Schmid, Matthias L; Antonini, Pietro; Pongratz, Peter; Kern, Peter; Saraiva da Cunha, José; Soriano-Arandes, Antoni; Schunk, Mirjam; Suttorp, Norbert; Hatz, Christoph; Zoller, Thomas

    2015-11-01

    Intravenous artesunate improves survival in severe malaria, but clinical trial data from nonendemic countries are scarce. The TropNet severe malaria database was analyzed to compare outcomes of artesunate vs quinine treatment. Artesunate reduced parasite clearance time and duration of intensive care unit and hospital treatment in European patients with imported severe malaria.

  13. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    PubMed Central

    Piña-Vázquez, Carolina; Reyes-López, Magda; Ortíz-Estrada, Guillermo; de la Garza, Mireya; Serrano-Luna, Jesús

    2012-01-01

    Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa. PMID:22792442

  14. Review of data on susceptibility of mosquitos in the USSR to imported strains of malaria parasites*

    PubMed Central

    Daškova, N. G.; Rasnicyn, S. P.

    1982-01-01

    Studies on the susceptibility of mosquitos in the USSR to imported species and strains of human malaria parasites have revealed that Anopheles atroparvus, A. messeae, and A. sacharovi are highly susceptible to strains of Plasmodium vivax from Africa, Asia, and South America. There was no significant variation in the level of adaptation to the various vector species. In experiments on infection of A. atroparvus and A. messeae with imported strains of P. falciparum from Africa and southern Asia, all the results were negative. It was possible to infect A. subalpinus with an African strain of P. falciparum, sporozoites being found in the salivary glands of all the mosquitos studied. Contradictory results have been obtained on the development of tropical strains of P. falciparum in A. sacharovi. In most experiments the parasite did not develop but in 5 experiments, oocysts and sporozoites were seen in 9 mosquitos. Attempts to infect A. atroparvus with West African strains of P. ovale and P. malariae were unsuccessful. PMID:6761003

  15. Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite

    PubMed Central

    Poulin, Benoit; Patzewitz, Eva-Maria; Brady, Declan; Silvie, Olivier; Wright, Megan H.; Ferguson, David J. P.; Wall, Richard J.; Whipple, Sarah; Guttery, David S.; Tate, Edward W.; Wickstead, Bill; Holder, Anthony A.; Tewari, Rita

    2013-01-01

    Summary The phylum Apicomplexa comprises over 5000 intracellular protozoan parasites, including Plasmodium and Toxoplasma, that are clinically important pathogens affecting humans and livestock. Malaria parasites belonging to the genus Plasmodium possess a pellicle comprised of a plasmalemma and inner membrane complex (IMC), which is implicated in parasite motility and invasion. Using live cell imaging and reverse genetics in the rodent malaria model P. berghei, we localise two unique IMC sub-compartment proteins (ISPs) and examine their role in defining apical polarity during zygote (ookinete) development. We show that these proteins localise to the anterior apical end of the parasite where IMC organisation is initiated, and are expressed at all developmental stages, especially those that are invasive. Both ISP proteins are N-myristoylated, phosphorylated and membrane-bound. Gene disruption studies suggest that ISP1 is likely essential for parasite development, whereas ISP3 is not. However, an absence of ISP3 alters the apical localisation of ISP1 in all invasive stages including ookinetes and sporozoites, suggesting a coordinated function for these proteins in the organisation of apical polarity in the parasite. PMID:24244852

  16. Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and In Vivo Models of Malaria

    PubMed Central

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Kim, Peter S.; Engwerda, Christian R.; Haque, Ashraful

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  17. Quantitative Assessment of Multiorgan Sequestration of Parasites in Fatal Pediatric Cerebral Malaria.

    PubMed

    Milner, Danny A; Lee, Jonathan J; Frantzreb, Charles; Whitten, Richard O; Kamiza, Steve; Carr, Richard A; Pradham, Alana; Factor, Rachel E; Playforth, Krupa; Liomba, George; Dzamalala, Charles; Seydel, Karl B; Molyneux, Malcolm E; Taylor, Terrie E

    2015-10-15

    Children in sub-Saharan Africa continue to acquire and die from cerebral malaria, despite efforts to control or eliminate the causative agent, Plasmodium falciparum. We present a quantitative histopathological assessment of the sequestration of parasitized erythrocytes in multiple organs obtained during a prospective series of 103 autopsies performed between 1996 and 2010 in Blantyre, Malawi, on pediatric patients who died from cerebral malaria and controls. After the brain, sequestration of parasites was most intense in the gastrointestinal tract, both in patients with cerebral malaria and those with parasitemia in other organs. Within cases of histologically defined cerebral malaria, which includes phenotypes termed "sequestration only" (CM1) and "sequestration with extravascular pathology" (CM2), CM1 was associated with large parasite numbers in the spleen and CM2 with intense parasite sequestration in the skin. A striking histological finding overall was the marked sequestration of parasitized erythrocytes across most organs in patients with fatal cerebral malaria, supporting the hypothesis that the disease is, in part, a result of a high level of total-body parasite sequestration. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites.

    PubMed

    Rosenthal, P J

    1995-03-01

    The effects of peptide proteinase inhibitors on globin hydrolysis by cultured malaria parasites were studied. All of the four cysteine proteinase inhibitors evaluated blocked globin hydrolysis, as documented by the development of a morphological abnormality in which parasite food vacuoles filled with undegraded globin and by SDS-PAGE showing that the cysteine proteinase inhibitor-treated parasites accumulated large quantities of globin. The aspartic proteinase inhibitor pepstatin did not block globin hydrolysis by cultured parasites. None of seven antimalarial drugs tested elicited the food vacuole abnormality caused by cysteine proteinase inhibitors, indicating that this morphological alteration was not simply a sign of nonspecific parasite toxicity. Our results indicate that a trophozoite cysteine proteinase is required for initial cleavages of globin by intact malaria parasites.

  19. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies.

    PubMed

    Babiker, Hamza A; Hastings, Ian M; Swedberg, Göte

    2009-06-01

    Malaria, a leading parasitic disease, inflicts an enormous toll on human lives and is caused by protozoal parasites belonging to the genus Plasmodium. Antimalarial drugs targeting essential biochemical processes in the parasite are the primary resources for management and control. However, the parasite has established mutations, substantially reducing the efficacy of these drugs. First-line therapy is faced the with the consistent evolution of drug-resistant genotypes carrying these mutations. However, drug-resistant genotypes are likely to be less fit than the wild-type, suggesting that they might disappear by reducing the volume of drug pressure. A substantial body of epidemiological evidence confirmed that the frequency of resistant genotypes wanes when active drug selection declines. Drug selection on the parasite genome that removes genetic variation in the vicinity of drug-resistant genes (hitch-hiking) is common among resistant parasites in the field. This can further disadvantage drug-resistant strains and limit their variability in the face of a mounting immune response. Attempts to provide unequivocal evidence for the fitness cost of drug resistance have monitored the outcomes of laboratory competition experiments of deliberate mixtures of sensitive and resistant strains, in the absence of drug pressure, using isogenic clones produced either by drug selection or gene manipulation. Some of these experiments provided inconclusive results, but they all suggested reduced fitness of drug-resistant clones in the absence of drug pressure. In addition, biochemical analyses provided clearer information demonstrating that the mutation of some antimalarial-targeted enzymes lowers their activity compared with the wild-type enzyme. Here, we review current evidences for the disadvantage of drug-resistance mutations, and discuss some strategies of drug deployment to maximize the cost of resistance and limit its spread.

  20. Malaria parasite strain characterization, cryopreservation, and banking of isolates: a WHO memorandum.

    PubMed

    1981-01-01

    There has been considerable progress in the biological characterization of malaria parasites in the past few years. Physiological parameters such as host adaptation, virulence, exoerythrocytic development, in vitro growth of erythrocytic stages, and drug sensitivity are of particular importance to epidemiologists. Advances in enzyme analysis, 2-dimensional protein electrophoresis, and nucleic acid analysis have produced several new techniques that can be applied to the malaria parasite. Similarly, antigenic characterization is expected to progress as a result of technical improvements. Many of the biological parameters are needed for the study of parasite genetics, a field which has expanded greatly through the development of cloning techniques. The latter also hold interest for the production, and the future use in research, of biologically well characterized standard clones. In this connexion, the cryopreservation and banking of malaria parasites deserve attention, in order to ensure the supply of well defined, viable isolates and clones to interested research workers.

  1. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system.

    PubMed

    Cornet, Stéphane; Bichet, Coraline; Larcombe, Stephen; Faivre, Bruno; Sorci, Gabriele

    2014-01-01

    Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenotypic variation in host exploitation by the avian malaria parasite Plasmodium relictum. We investigated how the nutritional status of birds altered parasite within-host dynamics and virulence, and how the interaction between past and current environments experienced by the parasite accounts for the variation in the infection dynamics. Experimentally infected canaries were allocated to control or supplemented diets. Plasmodium parasites experiencing the two different environments were subsequently transmitted in a full-factorial design to new hosts reared under similar control or supplemented diets. Food supplementation was effective since supplemented hosts gained body mass during a 15-day period that preceded the infection. Host nutrition had strong effects on infection dynamics and parasite virulence. Overall, parasites were more successful in control nonsupplemented birds, reaching larger population sizes and producing more sexual (transmissible) stages. However, supplemented hosts paid a higher cost of infection, and when keeping parasitaemia constant, they had lower haematocrit than control hosts. Parasites grown on control hosts were better able to exploit the subsequent hosts since they reached higher parasitaemia than parasites originating from supplemented hosts. They were also more virulent since they

  2. A conserved region in the EBL proteins is implicated in microneme targeting of the malaria parasite Plasmodium falciparum.

    PubMed

    Treeck, Moritz; Struck, Nicole S; Haase, Silvia; Langer, Christine; Herrmann, Susann; Healer, Julie; Cowman, Alan F; Gilberger, Tim W

    2006-10-20

    The proliferation of the malaria parasite Plasmodium falciparum within the human host is dependent upon invasion of erythrocytes. This process is accomplished by the merozoite, a highly specialized form of the parasite. Secretory organelles including micronemes and rhoptries play a pivotal role in the invasion process by storing and releasing parasite proteins. The mechanism of protein sorting to these compartments is unclear. Using a transgenic approach we show that trafficking of the most abundant micronemal proteins (members of the EBL-family: EBA-175, EBA-140/BAEBL, and EBA-181/JSEBL) is independent of their cytoplasmic and transmembrane domains, respectively. To identify the minimal sequence requirements for microneme trafficking, we generated parasites expressing EBA-GFP chimeric proteins and analyzed their distribution within the infected erythrocyte. This revealed that: (i) a conserved cysteine-rich region in the ectodomain is necessary for protein trafficking to the micronemes and (ii) correct sorting is dependent on accurate timing of expression.

  3. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  4. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites.

    PubMed

    Mohring, Franziska; Rahbari, Mahsa; Zechmann, Bernd; Rahlfs, Stefan; Przyborski, Jude M; Meyer, Andreas J; Becker, Katja

    2017-03-01

    The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.

  5. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials.

    PubMed

    Steel, Ryan Wj; Kappe, Stefan Hi; Sack, Brandon K

    2016-12-01

    Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.

  6. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region.

    PubMed

    Knox, Tessa B; Juma, Elijah O; Ochomo, Eric O; Pates Jamet, Helen; Ndungo, Laban; Chege, Patrick; Bayoh, Nabie M; N'Guessan, Raphael; Christian, Riann N; Hunt, Richard H; Coetzee, Maureen

    2014-02-21

    Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper. A systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data. Literature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010-2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution of insecticide resistance in

  7. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region

    PubMed Central

    2014-01-01

    Background Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper. Methods A systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data. Results Literature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010–2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution

  8. Paleoparasitology: the origin of human parasites.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando; Pucu, Elisa; Chieffi, Pedro Paulo

    2013-09-01

    Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  9. The human malaria parasite Plasmodium falciparum exports the ATP-binding cassette protein PFGCN20 to membrane structures in the host red blood cell.

    PubMed

    Bozdech, Z; VanWye, J; Haldar, K; Schurr, E

    1998-11-30

    PFGCN20 is a member of the ATP-binding cassette family of proteins that is closely related to the yeast translational regulator Gcn20p. We have generated a polyclonal antibody against the N-terminal region of PFGCN20 and studied the cellular localization of PFGCN20 throughout the erythrocytic life cycle of Plasmodium falciparum. PFGCN20 was found to be present at all stages and a pronounced export of PFGCN20 into the erythrocyte was observed in the trophozoite and schizont stages. In the indirect immunofluorescence assay, PFGCN20 was found to display significant colocalization with antigens detected by the monoclonal antibody 41E11. In contrast, there was only a minimal overlap of PFGCN20 localization with EMP2 and HRP2. Immunoelectron microscopy demonstrated a pronounced accumulation of PFGCN20 in the lumen of the parasitophorous vacuole and deconvolution fluorescence microscopy showed membrane association with selective regions of a tubovesicular network in the red cell. We also observed a concentration of PFGCN20 in electron-dense plaques just underneath the parasite's plasma membrane and an association of PFGCN20 with cytoplasmic vesicular structures within the parasite. The observed export of PFGCN20 and its association with the tubovesicular network in host red cells, may be indicative of the fact that PFGCN20 functions as ATP-binding subunit of an unknown multimeric ABC-transporter. The cytoplasmic localization of PFGCN20 in the parasite, however, suggests that the involvement of PFGCN20 in translational regulation or other cytoplasmic biological functions cannot be ruled out.

  10. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites.

    PubMed

    Marchesini, N; Luo, S; Rodrigues, C O; Moreno, S N; Docampo, R

    2000-04-01

    Plasmodium berghei trophozoites were loaded with the fluorescent calcium indicator, fura-2 acetoxymethyl ester, to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)). [Ca(2+)](i) was increased in the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin. Trophozoites also possess a significant amount of Ca(2+) stored in an acidic compartment. This was indicated by: (1) the increase in [Ca(2+)](i) induced by bafilomycin A(1), nigericin, monensin, or the weak base, NH(4)Cl, in the nominal absence of extracellular Ca(2+), and (2) the effect of ionomycin, which cannot take Ca(2+) out of acidic organelles and was more effective after alkalinization of this compartment by addition of bafilomycin A(1), nigericin, monensin, or NH(4)Cl. Inorganic PP(i) promoted the acidification of a subcellular compartment in cell homogenates of trophozoites. The proton gradient driven by PP(i) collapsed by addition of the K(+)/H(+) exchanger, nigericin, and eliminated by the PP(i) analogue, aminomethylenediphosphonate (AMDP). Both PP(i) hydrolysis and proton transport were dependent upon K(+), and Na(+) caused partial inhibition of these activities. PP(i) hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, sodium fluoride, dicyclohexylcarbodi-imide and to the thiol reagent, N-ethylmaleimide. Immunofluorescence microscopy using antibodies raised against conserved peptide sequences of a plant vacuolar pyrophosphatase (V-H(+)-PPase) suggested that the proton pyrophosphatase is located in intracellular vacuoles and the plasma membrane of trophozoites. AMDP caused an increase in [Ca(2+)](i) in the nominal absence of extracellular Ca(2+). Ionomycin was more effective in releasing Ca(2+) from this acidic intracellular compartment after treatment of the cells with AMDP. Taken together, these results suggest the presence in malaria parasites of acidocalcisomes with similar characteristics to those described in

  11. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites.

    PubMed Central

    Marchesini, N; Luo, S; Rodrigues, C O; Moreno, S N; Docampo, R

    2000-01-01

    Plasmodium berghei trophozoites were loaded with the fluorescent calcium indicator, fura-2 acetoxymethyl ester, to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)). [Ca(2+)](i) was increased in the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin. Trophozoites also possess a significant amount of Ca(2+) stored in an acidic compartment. This was indicated by: (1) the increase in [Ca(2+)](i) induced by bafilomycin A(1), nigericin, monensin, or the weak base, NH(4)Cl, in the nominal absence of extracellular Ca(2+), and (2) the effect of ionomycin, which cannot take Ca(2+) out of acidic organelles and was more effective after alkalinization of this compartment by addition of bafilomycin A(1), nigericin, monensin, or NH(4)Cl. Inorganic PP(i) promoted the acidification of a subcellular compartment in cell homogenates of trophozoites. The proton gradient driven by PP(i) collapsed by addition of the K(+)/H(+) exchanger, nigericin, and eliminated by the PP(i) analogue, aminomethylenediphosphonate (AMDP). Both PP(i) hydrolysis and proton transport were dependent upon K(+), and Na(+) caused partial inhibition of these activities. PP(i) hydrolysis was sensitive in a dose-dependent manner to AMDP, imidodiphosphate, sodium fluoride, dicyclohexylcarbodi-imide and to the thiol reagent, N-ethylmaleimide. Immunofluorescence microscopy using antibodies raised against conserved peptide sequences of a plant vacuolar pyrophosphatase (V-H(+)-PPase) suggested that the proton pyrophosphatase is located in intracellular vacuoles and the plasma membrane of trophozoites. AMDP caused an increase in [Ca(2+)](i) in the nominal absence of extracellular Ca(2+). Ionomycin was more effective in releasing Ca(2+) from this acidic intracellular compartment after treatment of the cells with AMDP. Taken together, these results suggest the presence in malaria parasites of acidocalcisomes with similar characteristics to those described in

  12. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    SciTech Connect

    Larson, E.T.; Deng, W.; Krumm, B.E.; Napuli, A.; Mueller, N.; Voorhis, W.C.Van; Buckner, F.S.; Fan, E.; Lauricella, A.; DeTitta, G.; Luft, J.; Zucker, F.; Hol, W.G.J.; Verlinde, C.L.M.J.; Merritt, E.A.

    2009-05-20

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.

  13. A novel live-dead staining methodology to study malaria parasite viability

    PubMed Central

    2013-01-01

    Background Malaria is a major health and socio-economical problem in tropical and sub-tropical areas of the world. Several methodologies have been used to assess parasite viability during the adaption of field strains to culture or the assessment of drug potential, but these are in general not able to provide an accurate real-time assessment of whether parasites are alive or dead. Methods Different commercial dyes and kits were assessed for their potential to allow for the real-time detection of whether a blood stage malaria parasite is dead or alive. Results Here, a methodology is presented based on the potential-sensitive mitochondrial probe JC-1, which allows for the real-time visualization of live (red staining) and/or dead (absence of red staining) blood stage parasites in vitro and ex vivo. This method is applicable across malaria parasite species and strains and allows to visualize all parasite blood stages including gametocytes. Further, this methodology has been assessed also for use in drug sensitivity testing. Conclusions The JC-1 staining approach is a versatile methodology that can be used to assess parasite viability during the adaptation of field samples to culture and during drug treatment. It was found to hold promise in the assessment of drugs expected to lead to delayed death phenotypes and it currently being evaluated as a method for the assessment of parasite viability during the adaptation of patient-derived Plasmodium vivax to long-term in vitro culture. PMID:23758788

  14. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    PubMed

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    NASA Astrophysics Data System (ADS)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  16. Complement and Antibody-mediated Enhancement of Red Blood Cell Invasion and Growth of Malaria Parasites.

    PubMed

    Biryukov, Sergei; Angov, Evelina; Landmesser, Mary E; Spring, Michele D; Ockenhouse, Christian F; Stoute, José A

    2016-07-01

    Plasmodium falciparum malaria is a deadly pathogen. The invasion of red blood cells (RBCs) by merozoites is a target for vaccine development. Although anti-merozoite antibodies can block invasion in vitro, there is no efficacy in vivo. To explain this discrepancy we hypothesized that complement activation could enhance RBC invasion by binding to the complement receptor 1 (CR1). Here we show that a monoclonal antibody directed against the merozoite and human polyclonal IgG from merozoite vaccine recipients enhanced RBC invasion in a complement-dependent manner and that soluble CR1 inhibited this enhancement. Sialic acid-independent strains, that presumably are able to bind to CR1 via a native ligand, showed less complement-dependent enhancement of RBC invasion than sialic acid-dependent strains that do not utilize native CR1 ligands. Confocal fluorescent microscopy revealed that complement-dependent invasion resulted in aggregation of CR1 at the RBC surface in contact with the merozoite. Finally, total anti-P. berghei IgG enhanced parasite growth and C3 deficiency decreased parasite growth in mice. These results demonstrate, contrary to current views, that complement activation in conjunction with antibodies can paradoxically aid parasites invade RBCs and should be considered in future design and testing of merozoite vaccines. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Infectiousness of malaria-endemic human populations to vectors.

    PubMed

    Killeen, Gerry F; Ross, Amanda; Smith, Thomas

    2006-08-01

    Despite its key role in determining the stability and intensity of malaria transmission, the infectiousness of human populations to mosquitoes has rarely been estimated. Field-based analyses of malaria transmission have frequently relied on the prevalence of asexual parasites or gametocytes as proxies for infectiousness. We now summarize empirical data on human infectiousness from Africa and Papua New Guinea. Over a wide range of transmission intensities there is little relationship between the infectiousness of human populations to vector mosquitoes and mosquito-to-human transmission intensity. We compare these data with the predictions of a stochastic simulation model of Plasmodium falciparum epidemiology. This model predicted little variation in the infectiousness of the human population for entomologic inoculation rates (EIRs) greater than approximately 10 infectious bites per year, demonstrating that the lack of relationship between the EIR and the infectious reservoir can be explained without invoking any effects of acquired transmission-blocking immunity. The near absence of field data from areas with an EIR < 10 per year precluded validation of the model predictions for low EIR values. These results suggest that interventions reducing mosquito-to-human transmission will have little or no effect on human infectiousness at the levels of transmission found in most rural areas of sub-Saharan Africa. Unless very large reductions in transmission can be achieved, measures to prevent mosquito-to-human transmission need to be complemented with interventions that reduce the density or infectiousness of blood stage parasites.

  18. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

    PubMed Central

    Dong, Yuemei; Manfredini, Fabio; Dimopoulos, George

    2009-01-01

    Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. PMID:19424427

  19. Rapid identification of genes controlling virulence and immunity in malaria parasites

    PubMed Central

    Xangsayarath, Phonepadith; Tang, Jianxia; Yahata, Kazuhide; Zoungrana, Augustin; Mitaka, Hayato; Acharjee, Arita; Datta, Partha P.; Hunt, Paul; Carter, Richard; Kaneko, Osamu; Mustonen, Ville; Pain, Arnab

    2017-01-01

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites. PMID:28704525

  20. Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes

    PubMed Central

    Cunnington, Aubrey J.; Riley, Eleanor M.; Walther, Michael

    2013-01-01

    Severe malaria defines individuals at increased risk of death from their infection. Proposed pathogenic mechanisms include parasite sequestration, inflammation, and endothelial dysfunction. Severe malaria is not a single entity, manifesting with distinct syndromes such as severe anemia, severe respiratory distress or coma, each characterized by differences in epidemiology, underlying biology, and risk of death. The relative contribution of the various pathogenic mechanisms may differ between syndromes, and this is supported by accumulating evidence, which challenges sequestration as the initiating event. Here we propose that high parasite biomass is the common initiating feature, but subtle variations in the interaction between the host and parasite exist, and understanding these differences may be crucial to improve outcomes in patients with severe malaria. PMID:24210256

  1. Whole-Killed Blood-Stage Vaccine-Induced Immunity Suppresses the Development of Malaria Parasites in Mosquitoes.

    PubMed

    Zhu, Feng; Liu, Taiping; Zhao, Chenhao; Lu, Xiao; Zhang, Jian; Xu, Wenyue

    2017-01-01

    As a malaria transmission-blocking vaccine alone does not confer a direct benefit to the recipient, it is necessary to develop a vaccine that not only blocks malaria transmission but also protects vaccinated individuals. In this study we observed that a whole-killed blood-stage vaccine (WKV) not only conferred protection against the blood-stage challenge but also markedly inhibited the transmission of different strains of the malaria parasite. Although the parasitemia is much lower in WKV-immunized mice challenged with malaria parasites, the gametocytemia is comparable between control and immunized mice during the early stages of infection. The depletion of CD4(+) T cells prior to the adoptive transfer of parasites into WKV-immunized mice has no effect on the development of the malaria parasite in the mosquito, but the adoptive transfer of the serum from the immunized mice into the parasite-inoculated mice remarkably suppresses the development of malaria parasites in mosquitoes. Furthermore, immunized mice challenged with the malaria parasite generate higher levels of parasite-specific Abs and the inflammatory cytokines MCP-1 and IFN-γ. However, the adoptive transfer of parasite-specific IgG or the depletion of MCP-1, but not IFN-γ, to some extent is closely associated with the suppression of malaria parasite development in mosquitoes. These data strongly suggest that WKV-induced immune responses confer protection against the mosquito stage, which is largely dependent on malaria parasite-specific Abs and MCP-1. This finding sheds new light on blocking malaria transmission through the immunization of individuals with the WKV. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Parasitic procrastination: late-presenting ovale malaria and schistosomiasis.

    PubMed

    Davis, T M; Singh, B; Sheridan, G

    2001-08-06

    A 29-year-old woman with ovale malaria (most likely contracted, together with asymptomatic schistosomiasis, in East Africa two years previously) had fever, nausea and confusion, jaundice, anaemia, thrombocytopenia, hyponatraemia and hypokalaemia. She was initially diagnosed with and treated for blood-smear-positive vivax malaria. Because of the unusual clinical presentation, blood was analysed by a malaria species-specific nested polymerase chain reaction (PCR) assay which identified Plasmodium ovale as the only infecting species. This case illustrates (i) that a detailed travel history remains a vital part of clinical assessment, (ii) ovale malaria can have an exceptionally long incubation period and features of a moderately severe acute infection, and (iii) PCR assay may prove a valuable adjunct to blood film examination in the diagnosis and speciation of malaria.

  3. Malaria proteases mediate inside-out egress of gametocytes from red blood cells following parasite transmission to the mosquito.

    PubMed

    Sologub, Ludmilla; Kuehn, Andrea; Kern, Selina; Przyborski, Jude; Schillig, Rebecca; Pradel, Gabriele

    2011-06-01

    Malaria parasites reside in human erythrocytes within a parasitophorous vacuole. The parasites are transmitted from the human to the mosquito by the uptake of intraerythrocytic gametocytes during a blood meal, which in the midgut become activated by external stimuli and subsequently egress from the enveloping erythrocyte. Gametocyte egress is a crucial step for the parasite to prepare for fertilization, but the molecular mechanisms of egress are not well understood. Via electron microscopy, we show that Plasmodium falciparum gametocytes exit the erythrocyte by an inside-out type of egress. The parasitophorous vacuole membrane (PVM) ruptures at multiple sites within less than a minute following activation, a process that requires a temperature drop and parasite contact with xanthurenic acid. PVM rupture can also be triggered by the ionophore nigericin and is sensitive to the cysteine protease inhibitor E-64d. Following PVM rupture the subpellicular membrane begins to disintegrate. This membrane is specific to malaria gametocytes, and disintegration is impaired by the aspartic protease inhibitor EPNP and the cysteine/serine protease inhibitor TLCK. Approximately 15 min post activation, the erythrocyte membrane ruptures at a single breaking point, which can be inhibited by inhibitors TLCK and TPCK. In all cases inhibitor treatment results in interrupted gametogenesis. © 2011 Blackwell Publishing Ltd.

  4. Malaria Induces Anemia through CD8+ T Cell-Dependent Parasite Clearance and Erythrocyte Removal in the Spleen

    PubMed Central

    Safeukui, Innocent; Gomez, Noé D.; Adelani, Aanuoluwa A.; Burte, Florence; Afolabi, Nathaniel K.; Akondy, Rama; Velazquez, Peter; Tewari, Rita; Buffet, Pierre; Brown, Biobele J.; Shokunbi, Wuraola A.; Olaleye, David; Sodeinde, Olugbemiro; Kazura, James; Ahmed, Rafi; Mohandas, Narla; Fernandez-Reyes, Delmiro

    2015-01-01

    ABSTRACT  Severe malarial anemia (SMA) in semi-immune individuals eliminates both infected and uninfected erythrocytes and is a frequent fatal complication. It is proportional not to circulating parasitemia but total parasite mass (sequestered) in the organs. Thus, immune responses that clear parasites in organs may trigger changes leading to anemia. Here, we use an outbred-rat model where increasing parasite removal in the spleen escalated uninfected-erythrocyte removal. Splenic parasite clearance was associated with activated CD8+ T cells, immunodepletion of which prevented parasite clearance. CD8+ T cell repletion and concomitant reduction of the parasite load was associated with exacerbated (40 to 60%) hemoglobin loss and changes in properties of uninfected erythrocytes. Together, these data suggest that CD8+ T cell-dependent parasite clearance causes erythrocyte removal in the spleen and thus anemia. In children infected with the human malaria parasite Plasmodium falciparum, elevation of parasite biomass (not the number of circulating parasites) increased the odds ratio for SMA by 3.5-fold (95% confidence intervals [CI95%], 1.8- to 7.5-fold). CD8+ T cell expansion/activation independently increased the odds ratio by 2.4-fold (CI95%, 1.0- to 5.7-fold). Concomitant increases in both conferred a 7-fold (CI95%, 1.9- to 27.4-fold)-greater risk for SMA. Together, these data suggest that CD8+-dependent parasite clearance may predispose individuals to uninfected-erythrocyte loss and SMA, thus informing severe disease diagnosis and strategies for vaccine development. PMID:25604792

  5. Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon

    PubMed Central

    Coutinho, Julia Penna; Aguiar, Anna Caroline Campos; dos Santos, Pierre Alexandre; Lima, Joaquim Corsino; Rocha, Maria Gabrielle Lima; Zani, Carlos Leomar; Alves, Tânia Maria Almeida; Santana, Antônio Euzébio Goulart; Pereira, Maria de Meneses; Krettli, Antoniana Ursine

    2013-01-01

    Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials. PMID:24402150

  6. Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon.

    PubMed

    Coutinho, Julia Penna; Aguiar, Anna Caroline Campos; dos Santos, Pierre Alexandre; Lima, Joaquim Corsino; Rocha, Maria Gabrielle Lima; Zani, Carlos Leomar; Alves, Tânia Maria Almeida; Santana, Antônio Euzébio Goulart; Pereira, Maria de Meneses; Krettli, Antoniana Ursine

    2013-12-01

    Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  7. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite.

    PubMed

    Ahmad, Moaz; Tuteja, Renu

    2014-12-01

    Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Malaria rapid diagnostic tests in elimination settings—can they find the last parasite?

    PubMed Central

    McMorrow, M. L.; Aidoo, M.; Kachur, S. P.

    2016-01-01

    Rapid diagnostic tests (RDTs) for malaria have improved the availability of parasite-based diagnosis throughout the malaria-endemic world. Accurate malaria diagnosis is essential for malaria case management, surveillance, and elimination. RDTs are inexpensive, simple to perform, and provide results in 15–20 min. Despite high sensitivity and specificity for Plasmodium falciparum infections, RDTs have several limitations that may reduce their utility in low-transmission settings: they do not reliably detect low-density parasitaemia (≤200 parasites/μL), many are less sensitive for Plasmodium vivax infections, and their ability to detect Plasmodium ovale and Plasmodium malariae is unknown. Therefore, in elimination settings, alternative tools with higher sensitivity for low-density infections (e.g. nucleic acid-based tests) are required to complement field diagnostics, and new highly sensitive and specific field-appropriate tests must be developed to ensure accurate diagnosis of symptomatic and asymptomatic carriers. As malaria transmission declines, the proportion of low-density infections among symptomatic and asymptomatic persons is likely to increase, which may limit the utility of RDTs. Monitoring malaria in elimination settings will probably depend on the use of more than one diagnostic tool in clinical-care and surveillance activities, and the combination of tools utilized will need to be informed by regular monitoring of test performance through effective quality assurance. PMID:21910780

  9. Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database.

    PubMed

    Khan, Shahid M; Kroeze, Hans; Franke-Fayard, Blandine; Janse, Chris J

    2013-01-01

    Genetically modified Plasmodium parasites are central gene function reagents in malaria research. The Rodent Malaria genetically modified DataBase (RMgmDB) ( www.pberghei.eu ) is a manually curated Web - based repository that contains information on genetically modified rodent malaria parasites. It provides easy and rapid access to information on the genotype and phenotype of genetically modified mutant and reporter parasites. Here, we provide guidelines for generating and describing rodent malaria parasite mutants. Standardization in describing mutant genotypes and phenotypes is important not only to enhance publication quality but also to facilitate cross-linking and mining data from multiple sources, and should permit information derived from mutant parasites to be used in integrative system biology approaches. We also provide guidelines on how to submit information to RMgmDB on non-published mutants, mutants that do not exhibit a clear phenotype, as well as negative attempts to disrupt/mutate genes. Such information helps to prevent unnecessary duplication of experiments in different laboratories, and can provide indirect evidence that these genes are essential for blood-stage development.

  10. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite.

    PubMed

    Chakarov, Nayden; Linke, Burkhard; Boerner, Martina; Goesmann, Alexander; Krüger, Oliver; Hoffman, Joseph I

    2015-03-01

    Parasite transmission strategies strongly impact host-parasite co-evolution and virulence. However, studies of vector-borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high-throughput sequencing to develop microsatellites for malaria-like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph-specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector-mediated parent-to-offspring transmission. The conditions for such 'quasi-vertical' transmission may be common and could suppress the evolution of pathogen virulence.

  11. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites.

  12. Gametocyte sex ratio of a malaria parasite: response to experimental manipulation of parasite clonal diversity.

    PubMed

    Osgood, S M; Schall, J J

    2004-01-01

    Sex ratio theory posits that the adaptive proportion of male to female gametocytes of a malaria parasite within the vertebrate host depends on the degree of inbreeding within the vector. Gametocyte sex ratio could be phenotypically flexible, being altered based on the infection's clonal diversity, and thus likely inbreeding. This idea was tested by manipulating the clonal diversity of infections of Plasmodium mexicanum in its lizard host, Sceloporus occidentalis. Naive lizards were inoculated with infected blood from a single donor or 3 pooled donors. Donors varied in their gametocyte sex ratios (17-46%, male), and sex ratio theory allowed estimation of the clonal diversity within donor and recipient infections. Phenotypic plasticity would produce a correlation between donor and recipient infections for infections initiated from a single donor, and a less female-biased gametocyte sex ratio in recipients that received a mixed blood inoculum (with predicted higher clonal diversity) than recipients receiving blood from a single donor. Neither pattern was observed. Gametocyte sex ratio of most infections ranged from 35 to 42% male, expected if clonal diversity was high for all infections. Alternative explanations are suggested for the observed variation of gametocyte sex ratio among P. mexicanum infections.

  13. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians.

    PubMed

    Ngassa Mbenda, Huguette Gaelle; Das, Aparup

    2014-01-01

    The malaria parasite Plasmodium vivax is known to be majorly endemic to Asian and Latin American countries with no or very few reports of Africans infected with this parasite. Since the human Duffy antigens act as receptors for P. vivax to invade human RBCs and Africans are generally Duffy-negative, non-endemicity of P. vivax in Africa has been attributed to this fact. However, recent reports describing P. vivax infections in Duffy-negative Africans from West and Central parts of Africa have been surfaced including a recent report on P. vivax infection in native Cameroonians. In order to know if Cameroonians living in the southern regions are also susceptible to P. vivax infection, we collected finger-prick blood samples from 485 malarial symptomatic patients in five locations and followed PCR diagnostic assays with DNA sequencing of the 18S ribosomal RNA gene. Out of the 201 malaria positive cases detected, 193 were pure P. falciparum, six pure P. vivax and two mixed parasite infections (P. falciparum + P. vivax). The eight P. vivax infected samples (six single + two mixed) were further subjected to DNA sequencing of the P. vivax multidrug resistance 1 (pvmdr1) and the P.vivax circumsporozoite (pvcsp) genes. Alignment of the eight Cameroonian pvmdr1 sequences with the reference sequence showed high sequence similarities, reconfirming P. vivax infection in all the eight patients. DNA sequencing of the pvcsp gene indicated all the eight P. vivax to be of VK247 type. Interestingly, DNA sequencing of a part of the human Duffy gene covering the promoter region in the eight P. vivax-infected Cameroonians to identify the T-33C mutation revealed all these patients as Duffy-negative. The results provide evidence of single P. vivax as well as mixed malaria parasite infection in native Cameroonians and add knowledge to the growing evidences of P. vivax infection in Duffy-negative Africans.

  14. Biochemistry of malaria parasite infected red blood cells by X-ray microscopy.

    PubMed

    Kapishnikov, S; Leiserowitz, L; Yang, Y; Cloetens, P; Pereiro, E; Awamu Ndonglack, F; Matuschewski, K; Als-Nielsen, J

    2017-04-11

    Red blood cells infected by the malaria parasite Plasmodium falciparum are correlatively imaged by tomography using soft X-rays as well as by scanning hard nano-X-ray beam to obtain fluorescence maps of various elements such as S and Fe. In this way one can deduce the amount of Fe bound either in hemoglobin or in hemozoin crystals in the digestive vacuole of the malaria parasite as well as determine the hemoglobin concentrations in the cytosols of the red blood cell and of the parasite. Fluorescence map of K shows that in the parasite's schizont stage the K concentration in the red blood cell cytosol is diminished by a factor of seven relative to a pristine red blood cell but the total amount of K in the infected red blood cell is the same as in the pristine red blood cell.

  15. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development.

    PubMed

    Malleret, Benoît; Claser, Carla; Ong, Alice Soh Meoy; Suwanarusk, Rossarin; Sriprawat, Kanlaya; Howland, Shanshan Wu; Russell, Bruce; Nosten, Francois; Rénia, Laurent

    2011-01-01

    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing.

  16. Antibody recognition of rodent malaria parasite antigens exposed at the infected erythrocyte surface: specificity of immunity generated in hyperimmune mice.

    PubMed

    Mota, M M; Brown, K N; Do Rosário, V E; Holder, A A; Jarra, W

    2001-04-01

    In regions where malaria is endemic, inhabitants remain susceptible to repeated reinfection as they develop and maintain clinical immunity. This immunity includes responses to surface-exposed antigens on Plasmodium sp.-infected erythrocytes. Some of these parasite-encoded antigens may be diverse and phenotypically variable, and the ability to respond to this diversity and variability is an important component of acquired immunity. Characterizing the relative specificities of antibody responses during the acquisition of immunity and in hyperimmune individuals is thus an important adjunct to vaccine research. This is logistically difficult to do in the field but is relatively easily carried out in animal models. Infections in inbred mice with rodent malaria parasite Plasmodium chabaudi chabaudi AS represent a good model for Plasmodium falciparum in humans. This model has been used in the present study in a comparative analysis of cross-reactive and specific immune responses in rodent malaria. CBA/Ca mice were rendered hyperimmune to P. chabaudi chabaudi (AS or CB lines) or Plasmodium berghei (KSP-11 line) by repeated infection with homologous parasites. Serum from P. chabaudi chabaudi AS hyperimmune mice reacted with antigens released from disrupted P. chabaudi chabaudi AS-infected erythrocytes, but P. chabaudi chabaudi CB and P. berghei KSP-11 hyperimmune serum also contained cross-reactive antibodies to these antigens. However, antibody activity directed against antigens exposed at the surfaces of intact P. chabaudi chabaudi-infected erythrocytes was mainly parasite species specific and, to a lesser extent, parasite line specific. Importantly, this response included opsonizing antibodies, which bound to infected erythrocytes, leading to their phagocytosis and destruction by macrophages. The results are discussed in the context of the role that antibodies to both variable and invariant antigens may play in protective immunity in the face of continuous susceptibility

  17. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population.

    PubMed

    Chang, Hsiao-Han; Park, Daniel J; Galinsky, Kevin J; Schaffner, Stephen F; Ndiaye, Daouda; Ndir, Omar; Mboup, Souleymane; Wiegand, Roger C; Volkman, Sarah K; Sabeti, Pardis C; Wirth, Dyann F; Neafsey, Daniel E; Hartl, Daniel L

    2012-11-01

    Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.

  18. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite

    PubMed Central

    Lehane, Adele M; Saliba, Kevin J

    2008-01-01

    Background Flavonoids are abundant plant phenolic compounds. More than 6000 have been identified to date, and some have been shown to possess antiparasitic activity. Here we investigate the effects of a range of common dietary flavonoids on the growth of two strains of the human malaria parasite Plasmodium falciparum. Findings A chloroquine-sensitive (3D7) and a chloroquine-resistant (7G8) strain of P. falciparum were tested for in vitro susceptibility to a range of individual dietary flavonoids and flavonoid combinations. Parasite susceptibility was measured in 96-well plates over 96 h using a previously described [3H]hypoxanthine incorporation assay. Of the eleven flavonoids tested, eight showed antiplasmodial activity against the 3D7 strain (with IC50 values between 11 and 66 μM), and all showed activity against the 7G8 strain (with IC50 values between 12 and 76 μM). The most active compound against both strains was luteolin, with IC50 values of 11 ± 1 μM and 12 ± 1 μM for 3D7 and 7G8, respectively. Luteolin was found to prevent the progression of parasite growth beyond the young trophozoite stage, and did not affect parasite susceptibility to the antimalarial drugs chloroquine or artemisinin. Combining low concentrations of flavonoids was found to produce an apparent additive antiplasmodial effect. Conclusion Certain common dietary flavonoids inhibit the intraerythrocytic growth of the 3D7 and 7G8 strains of P. falciparum. Flavonoid combinations warrant further investigation as antiplasmodial agents. PMID:18710482

  19. The Malaria Parasite Progressively Dismantles the Host Erythrocyte Cytoskeleton for Efficient Egress*

    PubMed Central

    Millholland, Melanie G.; Chandramohanadas, Rajesh; Pizzarro, Angel; Wehr, Angela; Shi, Hui; Darling, Claire; Lim, Chwee Teck; Greenbaum, Doron C.

    2011-01-01

    Plasmodium falciparum is an obligate intracellular pathogen responsible for worldwide morbidity and mortality. This parasite establishes a parasitophorous vacuole within infected red blood cells wherein it differentiates into multiple daughter cells that must rupture their host cells to continue another infectious cycle. Using atomic force microscopy, we establish that progressive macrostructural changes occur to the host cell cytoskeleton during the last 15 h of the erythrocytic life cycle. We used a comparative proteomics approach to determine changes in the membrane proteome of infected red blood cells during the final steps of parasite development that lead to egress. Mass spectrometry-based analysis comparing the red blood cell membrane proteome in uninfected red blood cells to that of infected red blood cells and postrupture vesicles highlighted two temporally distinct events; (Hay, S. I., et al. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 6, e1000048) the striking loss of cytoskeletal adaptor proteins that are part of the junctional complex, including α/β-adducin and tropomyosin, correlating temporally with the emergence of large holes in the cytoskeleton seen by AFM as early ∼35 h postinvasion, and (Maier, A. G., et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48–61) large-scale proteolysis of the cytoskeleton during rupture ∼48 h postinvasion, mediated by host calpain-1. We thus propose a sequential mechanism whereby parasites first remove a selected set of cytoskeletal adaptor proteins to weaken the host membrane and then use host calpain-1 to dismantle the remaining cytoskeleton, leading to red blood cell membrane collapse and parasite release. PMID:21903871

  20. Prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria.

    PubMed

    Zhang, Hong-Wei; Li, San-Jin; Hu, Tao; Yu, Yong-Min; Yang, Cheng-Yun; Zhou, Rui-Min; Liu, Ying; Tang, Jing; Wang, Jing-Jing; Wang, Xiu-Yun; Sun, Yong-Xiang; Feng, Zhan-Chun; Xu, Bian-Li

    2017-04-04

    The spleen plays a pivotal role in the rapid clearance of parasitized red blood cells in patients with falciparum malaria after artemisinin treatment. Prolonged parasite clearance can be found in patients who have had a splenectomy, or those with hemoglobin abnormalities and/or reduced immunity, which are all distinguishable from artemisinin resistance. This paper reports on a case of prolonged parasite clearance in a Chinese splenectomized patient with falciparum malaria imported from Nigeria. A 35-year-old Chinese male suffered 2 days of febrile illness after returning to Zhumadian city of Henan province from Nigeria on October 1, 2014. The main symptoms were febrile, including the highest axillary temperature of 40 °C, headache, and chills. A peripheral blood smear showed parasitemia (53 913 asexual parasites/μl) of Plasmodium falciparum. The patient had not used any chemoprophylaxis against malaria in Nigeria when he worked there as a construction worker between 2009 and 2014. The patient had three episodes of malaria in Nigeria and had a splenectomy due to a traffic accident 8 years ago from the time he was admitted to hospital. The patient was orally administrated a total of 320 mg/2.56 g dihydroartemisinin-piperaquine for 2 days and intravenously administrated a total of 3 000 mg artesunate for 18 days. The axillary temperature of the patient ranged between 37.0 and 37.7 °C from Day 0 to Day 3, and blood microscopy revealed falciparum malaria parasitemia (26 674 asexual parasites/μl) on Day 3. The patient was afebrile on Day 4, falciparum malaria parasitemia was continuously present and then gradually decreased on the next days, and was negative on Day 21. The patient was cured and left hospital on Day 24 after no plasmodium falciparum was found in the blood on Day 21 to Day 23. No mutation was found in the K13 propeller gene when compared with the PF3D7_1343700 K13 propeller gene reference sequence. This is the first reported case in China of

  1. Parasite Biomass-Related Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Vivax Malaria

    PubMed Central

    Barber, Bridget E.; William, Timothy; Grigg, Matthew J.; Parameswaran, Uma; Piera, Kim A.; Price, Ric N.; Yeo, Tsin W.; Anstey, Nicholas M.

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  2. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    PubMed

    Bell, Andrew S; Huijben, Silvie; Paaijmans, Krijn P; Sim, Derek G; Chan, Brian H K; Nelson, William A; Read, Andrew F

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  3. Can a single "powerless" mitochondrion in the malaria parasite contribute to parasite programmed cell death in the asexual stages?

    PubMed

    Ch'ng, Jun-Hong; Yeo, Su-Ping; Shyong-Wei Tan, Kevin

    2013-05-01

    The protozoan pathogens responsible for malaria are from the Plasmodium genus, with Plasmodium falciparum and Plasmodium vivax accounting for almost all clinical infections. With recent estimates of mortality exceeding 800,000 annually, malaria continues to take a terrible toll on lives and the early promises of medicine to eradicate the disease have yet to approach realization, in part due to the spread of drug resistant parasites. Recent reports of artemisinin-resistance have prompted renewed efforts to identify novel therapeutic options, and one such pathway being considered for antimalarial exploit is the parasite's programmed cell death (PCD) pathway. In this mini-review, we will discuss the roles of the plasmodium mitochondria in cell death and as a target of antimalarial compounds, taking into account recent data suggesting that PCD pathways involving the mitochondria may be attractive antimalarial targets.

  4. Evolutionary implications for the determination of gametocyte sex ratios under fecundity variation for the malaria parasite.

    PubMed

    Teboh-Ewungkem, Miranda I; Yuster, Thomas

    2016-11-07

    We investigate sex ratio determination strategies for the Malaria parasite based on putative changes in its male fecundity over the lifetime of an infection, and how such strategies might have evolved. We model fitness using the incomplete fertilization limit developed in Teboh-Ewungkem and Yuster (2010). We divide the infection lifetime of a strain into two periods, assume each human is infected by two different strains, and assume that there are two different strategies present among the many strains in the general malaria parasite population. A unique parameter dependent ESS exists for all parameter values in both of our main models, with many such strategies unbeatable. These strategies produce both male and female biased population sex ratios with female bias predominating over most of the parameter space. The first model (SKM) suggests that strains without the ability to detect characteristics of other strains present could still have evolved strategies to vary sex ratio over their lifetimes, and the second model (DKM) suggests strains with detection abilities might have evolved after that. Our analysis suggests that once the ability to detect the population sizes and fecundities of other strains has developed, detection of their sex ratio choices confers no additional selective advantage in that a DKM ESS is still an ESS among sex ratio detecting strategies. The sex ratio choices for each DKM ESS are given by the equilibrium values of the parameter equivalent sex ratio detecting strategy described in Teboh-Ewungkem and Wang (2012), in the case where two strains employing that strategy encounter each other.

  5. Total and Putative Surface Proteomics of Malaria Parasite Salivary Gland Sporozoites*

    PubMed Central

    Lindner, Scott E.; Swearingen, Kristian E.; Harupa, Anke; Vaughan, Ashley M.; Sinnis, Photini; Moritz, Robert L.; Kappe, Stefan H. I.

    2013-01-01

    Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage

  6. Immunological memory to blood-stage malaria infection is controlled by the histamine releasing factor (HRF) of the parasite.

    PubMed

    Demarta-Gatsi, Claudia; Peronet, Roger; Smith, Leanna; Thiberge, Sabine; Ménard, Robert; Mécheri, Salaheddine

    2017-08-22

    While most subunit malaria vaccines provide only limited efficacy, pre-erythrocytic and erythrocytic genetically attenuated parasites (GAP) have been shown to confer complete sterilizing immunity. We recently generated a Plasmodium berghei (PbNK65) parasite that lacks a secreted factor, the histamine releasing factor (HRF) (PbNK65 hrfΔ), and induces in infected mice a self-resolving blood stage infection accompanied by a long lasting immunity. Here, we explore the immunological mechanisms underlying the anti-parasite protective properties of the mutant PbNK65 hrfΔ and demonstrate that in addition to an up-regulation of IL-6 production, CD4(+) but not CD8(+) T effector lymphocytes are indispensable for the clearance of malaria infection. Maintenance of T cell-associated protection is associated with the reduction in CD4(+)PD-1(+) and CD8(+)PD-1(+) T cell numbers. A higher number of central and effector memory B cells in mutant-infected mice also plays a pivotal role in protection. Importantly, we also demonstrate that prior infection with WT parasites followed by a drug cure does not prevent the induction of PbNK65 hrfΔ-induced protection, suggesting that such protection in humans may be efficient even in individuals that have been infected and who repeatedly received antimalarial drugs.

  7. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control

    PubMed Central

    Gabrieli, Paolo; Buckee, Caroline O.; Catteruccia, Flaminia

    2016-01-01

    The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance. PMID:27977810

  8. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    PubMed

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  9. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  10. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model.

    PubMed

    Wargo, Andrew R; Huijben, Silvie; de Roode, Jacobus C; Shepherd, James; Read, Andrew F

    2007-12-11

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance.

  11. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    USGS Publications Warehouse

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  12. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.

    PubMed

    Vardo, A M; Schall, J J

    2007-07-01

    Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or

  13. Intestinal parasites coinfection does not alter plasma cytokines profile elicited in acute malaria in subjects from endemic area of Brazil.

    PubMed

    Sánchez-Arcila, Juan Camilo; Perce-da-Silva, Daiana de Souza; Vasconcelos, Mariana Pinheiro Alves; Rodrigues-da-Silva, Rodrigo Nunes; Pereira, Virginia Araujo; Aprígio, Cesarino Junior Lima; Lima, Cleoni Alves Mendes; Fonseca e Fonseca, Bruna de Paula; Banic, Dalma Maria; Lima-Junior, Josué da Costa; Oliveira-Ferreira, Joseli

    2014-01-01

    In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax.

  14. Intestinal Parasites Coinfection Does Not Alter Plasma Cytokines Profile Elicited in Acute Malaria in Subjects from Endemic Area of Brazil

    PubMed Central

    Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2014-01-01

    In Brazil, malaria is prevalent in the Amazon region and these regions coincide with high prevalence of intestinal parasites but few studies explore the interaction between malaria and other parasites. Therefore, the present study evaluates changes in cytokine, chemokine, C-reactive protein, and nitric oxide (NO) concentrations in 264 individuals, comparing plasma from infected individuals with concurrent malaria and intestinal parasites to individuals with either malaria infection alone and uninfected. In the studied population 24% of the individuals were infected with Plasmodium and 18% coinfected with intestinal parasites. Protozoan parasites comprised the bulk of the intestinal parasites infections and subjects infected with intestinal parasites were more likely to have malaria. The use of principal component analysis and cluster analysis associated increased levels of IL-6, TNF-α, IL-10, and CRP and low levels of IL-17A predominantly with individuals with malaria alone and coinfected individuals. In contrast, low levels of almost all inflammatory mediators were associated predominantly with individuals uninfected while increased levels of IL-17A were associated predominantly with individuals with intestinal parasites only. In conclusion, our data suggest that, in our population, the infection with intestinal parasites (mainly protozoan) does not modify the pattern of cytokine production in individuals infected with P. falciparum and P. vivax. PMID:25309052

  15. Association of sub-microscopic malaria parasite carriage with transmission intensity in north-eastern Tanzania

    PubMed Central

    2011-01-01

    Background In malaria endemic areas, individuals are frequently asymptomatic and may be undetected by conventional microscopy or newer, rapid diagnostic tests. Molecular techniques allow a more accurate assessment of this asymptomatic parasite burden, the extent of which is important for malaria control. This study examines the relative prevalence of sub-microscopic level parasite carriage and clonal complexity of infections (multiplicity of infection) over a range of endemicities in a region of north-eastern Tanzania where altitude is an established proxy of malaria transmission. The PCR prevalence was then compared against other measures of transmission intensity collected in the same area. Methods This study used 1,121 blood samples collected from a previously conducted cross-sectional malario-metric survey during the short rainy season in 2001 from 13 villages (three at < 600 m, four at 600-1,200 m and six at > 1,200 m in altitude above sea level). Samples were analysed by PCR for carriage of parasites and multiplicity of infection. These data were compared with other measures of transmission intensity collected from the same area. Results Parasite prevalence was 34.7% by PCR and 13.6% by microscopy; a 2.5-fold difference in line with other recent observations. This fold difference was relatively consistent at the different altitude bands despite a marked decrease in parasite prevalence with altitude: < 600 m 70.9 vs 28.6, 600-1,200 m 35.5 vs 9.9, > 1,200 m 15.8 vs 5.9. The difference between parasite prevalence by PCR was 3.2 in individuals aged between 15 and 45 years (34.5 vs 10.9) compared with 2.5 in those aged 1-5 (34.0 vs 13.5) though this was not statistically significant. Multiplicity of infection (MOI) ranged from 1.2 to 3.7 and was positively associated with parasite prevalence assessed by both PCR and microscopy. There was no association of MOI and age. Village level PCR parasite prevalence was strongly correlated with altitude, sero-conversion rate

  16. Environmental influence on the genetic basis of mosquito resistance to malaria parasites

    PubMed Central

    Lambrechts, Louis; Chavatte, Jean-Marc; Snounou, Georges; Koella, Jacob C

    2006-01-01

    The genetic basis of a host's resistance to parasites has important epidemiological and evolutionary consequences. Understanding this genetic basis can be complicated by non-genetic factors, such as environmental quality, which may influence the expression of genetic resistance and profoundly alter patterns of disease and the host's response to selection. In particular, understanding the environmental influence on the genetic resistance of mosquitoes to malaria gives valuable knowledge concerning the use of malaria-resistant transgenic mosquitoes as a measure of malaria control. We made a step towards this understanding by challenging eight isofemale lines of the malaria vector Anopheles stephensi with the rodent malaria parasite Plasmodium yoelii yoelii and by feeding the mosquitoes with different concentrations of glucose. The isofemale lines differed in infection loads (the numbers of oocysts), corroborating earlier studies showing a genetic basis of resistance. In contrast, the proportion of infected mosquitoes did not differ among lines, suggesting that the genetic component underlying infection load differs from the genetic component underlying infection rate. In addition, the mean infection load and, in particular, its heritable variation in mosquitoes depended on the concentration of glucose, which suggests that the environment affects the expression and the evolution of the mosquitoes' resistance in nature. We found no evidence of genotype-by-environment interactions, i.e. the lines responded similarly to environmental variation. Overall, these results indicate that environmental variation can significantly reduce the importance of genes in determining the resistance of mosquitoes to malaria infection. PMID:16777744

  17. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts.

    PubMed

    Abkallo, Hussein M; Liu, Weimin; Hokama, Sarina; Ferreira, Pedro E; Nakazawa, Shusuke; Maeno, Yoshimasa; Quang, Nguyen T; Kobayashi, Nobuyuki; Kaneko, Osamu; Huffman, Michael A; Kawai, Satoru; Marchand, Ron P; Carter, Richard; Hahn, Beatrice H; Culleton, Richard

    2014-06-01

    Following the bite of an infective mosquito, malaria parasites first invade the liver where they develop and replicate for a number of days before being released into the bloodstream where they invade red blood cells and cause disease. The biology of the liver stages of malaria parasites is relatively poorly understood due to the inaccessibility of the parasites to sampling during this phase of their life cycle. Here we report the detection in blood and faecal samples of malaria parasite DNA throughout their development in the livers of mice and before the parasites begin their growth in the blood circulation. It is shown that parasite DNA derived from pre-erythrocytic stage parasites reaches the faeces via the bile. We then show that different primate malaria species can be detected by PCR in blood and faecal samples from naturally infected captive macaque monkeys. These results demonstrate that pre-erythrocytic parasites can be detected and quantified in experimentally infected animals. Furthermore, these results have important implications for both molecular epidemiology and phylogenetics of malaria parasites. In the former case, individuals who are malaria parasite negative by microscopy, but PCR positive for parasite DNA in their blood, are considered to be "sub-microscopic" blood stage parasite carriers. We now propose that PCR positivity is not necessarily an indicator of the presence of blood stage parasites, as the DNA could derive from pre-erythrocytic parasites. Similarly, in the case of molecular phylogenetics based on DNA sequences alone, we argue that DNA amplified from blood or faeces does not necessarily come from a parasite species that infects the red blood cells of that particular host.

  18. Coinfection with malaria and intestinal parasites, and its association with anaemia in children in Cameroon.

    PubMed

    Njunda, Anna Longdoh; Fon, Shuri Ghasarah; Assob, Jules Clement Nguedia; Nsagha, Dickson Shey; Kwenti, Tayong Dizzle Bita; Kwenti, Tebit Emmanuel

    2015-10-06

    The purpose of this study was to determine the prevalence of coinfection with malaria and intestinal parasites, as well as to determine its association with anaemia in children aged 10 years and below in Muyuka, Cameroon. This was a cross-sectional study. Participants were febrile children who were admitted to the Muyuka district hospital between April and October 2012. Blood and stool samples were collected from those participants who gave consent to take part in the study. Haemoglobin concentration (Hb) and complete blood count (CBC) were performed using an automated haematology analyser (Mindray®, BC-2800). Giemsa-stained blood film was examined to detect malaria parasites, while the formol-ether concentration technique was used to detect intestinal parasitic infections (IPIs). The Pearson's chi-square, Student's T-test and correlation analysis were all performed as part of the statistical analyses. Four hundred and eleven (411) children successfully took part in this study. The prevalence of malaria, IPIs, malaria and IPI coinfection, and anaemia observed were 98.5 %, 11.9 %, 11.9 % and 44.8 %, respectively. Anaemia and IPIs were significantly associated with age; anaemia was more prevalent in children under five years of age (p = 0.000), whereas IPIs were more prevalent in children aged between five and 10 years (p = 0.006). The parasite species isolated included Ascaris lumbricoides (36 [73.5 %]), Entamoeba histolytica/dispar (9 [18.4 %]) and hookworm (4 [8.2 %]). The mean Hb observed was 10.64 g/dl (±1.82). A significant negative correlation was observed between malaria parasite density and Hb. There was no significant difference in the prevalence of anaemia among children infected with malaria, IPIs, or malaria and IPI coinfection, or among non-infected children. Similarly, the mean Hb did not differ among infected and non-infected children. This study showed that malaria and IPIs still constitute a major public health problem in the study area despite a

  19. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus)

    PubMed Central

    Martinsen, Ellen S.; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J.; Forrester, Tavis D.; Ware, Lisa; Joyner, Priscilla H.; Perkins, Susan L.; Latch, Emily K.; Yabsley, Michael J.; Schall, Joseph J.; Fleischer, Robert C.

    2016-01-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites. PMID:26989785

  20. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus).

    PubMed

    Martinsen, Ellen S; McInerney, Nancy; Brightman, Heidi; Ferebee, Ken; Walsh, Tim; McShea, William J; Forrester, Tavis D; Ware, Lisa; Joyner, Priscilla H; Perkins, Susan L; Latch, Emily K; Yabsley, Michael J; Schall, Joseph J; Fleischer, Robert C

    2016-02-01

    Malaria parasites of the genus Plasmodium are diverse in mammal hosts, infecting five mammalian orders in the Old World, but were long considered absent from the diverse deer family (Cervidae) and from New World mammals. There was a description of a Plasmodium parasite infecting a single splenectomized white-tailed deer (WTD; Odocoileus virginianus) in 1967 but none have been reported since, which has proven a challenge to our understanding of malaria parasite biogeography. Using both microscopy and polymerase chain reaction, we screened a large sample of native and captive ungulate species from across the United States for malaria parasites. We found a surprisingly high prevalence (up to 25%) and extremely low parasitemia of Plasmodium parasites in WTD throughout the eastern United States. We did not detect infections in the other ungulate species nor in western WTD. We also isolated the parasites from the mosquito Anopheles punctipennis. Morphologically, the parasites resemble the parasite described in 1967, Plasmodium odocoilei. Our analysis of the cytochrome b gene revealed two divergent Plasmodium clades in WTD representative of species that likely diverged 2.3 to 6 million years ago, concurrent with the arrival of the WTD ancestor into North America across Beringia. Multigene phylogenetic analysis placed these clades within the larger malaria parasite clade. We document Plasmodium parasites to be common in WTD, endemic to the New World, and as the only known malaria parasites from deer (Cervidae). These findings reshape our knowledge of the phylogeography of the malaria parasites and suggest that other mammal taxa may harbor infection by endemic and occult malaria parasites.

  1. Photosensitized inactivation of infectious blood-borne human parasites

    NASA Astrophysics Data System (ADS)

    Judy, Millard M.; Sogandares-Bernal, Franklin M.; Matthews, James Lester

    1995-05-01

    Blood-borne viruses and protozoan parasites that are infectious to humans pose risk world-wide of infection transmission through blood and blood product transfusion. Blood-borne infectious viruses include human immunodeficiency virus (HIV-I), which causes AIDS; hepatitis C virus, which can cause chronic hepatitis; and cytomegalovirus, which can be dangerous to immunocompromised patients, e.g., the newborn, transplant recipients, and AIDS patients. Infectious blood-borne protozoan parasites include Trypanosoma cruzi, which causes Chagas' disease, endemic throughout Central and South America; the Trypanosoma species causing African sleeping sickness endemic in Central Africa; and Plasmodium falciparum, which causes malignant and increasingly drug- resistant human malaria prevalent throughout the tropics. Some researchers have focused on using photosensitizers to inactivate HIV-I and other viruses in whole blood, packed red cells, and platelet concentrates without compromising blood product function. Our group previously has reported photosensitized in vitro inactivation of P. falciparum and the mouse malaria organism Plasmodium berghei in whole blood using hematoporphyrin derivative (HPD) and of T. cruzi using benzoporphyrin derivatives BPDMA and BPDDA, dihematoporphyrin ether (DHE), and hydroxyethylvinyldeuteroporphyrin (HEVD). These results suggest that continued investigation is warranted to evaluate the potential for photosensitized inactivation of blood-borne parasites in blood banking.

  2. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector.

    PubMed

    Urbán, Patricia; Ranucci, Elisabetta; Fernàndez-Busquets, Xavier

    2015-11-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.

  3. Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Thavayogarajah, Thuvaraka; Gangopadhyay, Preetish; Rahlfs, Stefan; Becker, Katja; Lingelbach, Klaus; Przyborski, Jude M.; Holder, Anthony A.

    2015-01-01

    Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process. PMID:25909331

  4. Population genetics of malaria resistance in humans

    PubMed Central

    Hedrick, P W

    2011-01-01

    The high mortality and widespread impact of malaria have resulted in this disease being the strongest evolutionary selective force in recent human history, and genes that confer resistance to malaria provide some of the best-known case studies of strong positive selection in modern humans. I begin by reviewing JBS Haldane's initial contribution to the potential of malaria genetic resistance in humans. Further, I discuss the population genetics aspects of many of the variants, including globin, G6PD deficiency, Duffy, ovalocytosis, ABO and human leukocyte antigen variants. Many of the variants conferring resistance to malaria are ‘loss-of-function' mutants and appear to be recent polymorphisms from the last 5000–10 000 years or less. I discuss estimation of selection coefficients from case–control data and make predictions about the change for S, C and G6PD-deficiency variants. In addition, I consider the predicted joint changes when the two β-globin alleles S and C are both variable in the same population and when there is a variation for α-thalassemia and S, two unlinked, but epistatic variants. As more becomes known about genes conferring genetic resistance to malaria in humans, population genetics approaches can contribute both to investigating past selection and predicting the consequences in future generations for these variants. PMID:21427751

  5. Evaluation of a Novel Magneto-Optical Method for the Detection of Malaria Parasites

    PubMed Central

    Orbán, Ágnes; Butykai, Ádám; Molnár, András; Pröhle, Zsófia; Fülöp, Gergö; Zelles, Tivadar; Forsyth, Wasan; Hill, Danika; Müller, Ivo; Schofield, Louis; Rebelo, Maria; Hänscheid, Thomas; Karl, Stephan; Kézsmárki, István

    2014-01-01

    Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/µL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs. PMID:24824542

  6. Clinically immune hosts as a refuge for drug-sensitive malaria parasites.

    PubMed

    Klein, Eili Y; Smith, David L; Boni, Maciej F; Laxminarayan, Ramanan

    2008-04-25

    Mutations in Plasmodium falciparum that confer resistance to first-line antimalarial drugs have spread throughout the world from a few independent foci, all located in areas that were likely characterized by low or unstable malaria transmission. One of the striking differences between areas of low or unstable malaria transmission and hyperendemic areas is the difference in the size of the population of immune individuals. However, epidemiological models of malaria transmission have generally ignored the role of immune individuals in transmission, assuming that they do not affect the fitness of the parasite. This model reconsiders the role of immunity in the dynamics of malaria transmission and its impact on the evolution of antimalarial drug resistance under the assumption that immune individuals are infectious. The model is constructed as a two-stage susceptible-infected-susceptible (SIS) model of malaria transmission that assumes that individuals build up clinical immunity over a period of years. This immunity reduces the frequency and severity of clinical symptoms, and thus their use of drugs. It also reduces an individual's level of infectiousness, but does not impact the likelihood of becoming infected. Simulations found that with the introduction of resistance into a population, clinical immunity can significantly alter the fitness of the resistant parasite, and thereby impact the ability of the resistant parasite to spread from an initial host by reducing the effective reproductive number of the resistant parasite as transmission intensity increases. At high transmission levels, despite a higher basic reproductive number, R0, the effective reproductive number of the resistant parasite may fall below the reproductive number of the sensitive parasite. These results suggest that high-levels of clinical immunity create a natural ecological refuge for drug-sensitive parasites. This provides an epidemiological rationale for historical patterns of resistance

  7. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites

    PubMed Central

    Gupta, Devendra Kumar; Patra, Alok Tanala; Zhu, Lei; Gupta, Archana Patkar; Bozdech, Zbynek

    2016-01-01

    DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon. PMID:27033103

  8. Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite

    PubMed Central

    Rathore, S; Datta, G; Kaur, I; Malhotra, P; Mohmmed, A

    2015-01-01

    A regulated protein turnover machinery in the cell is essential for effective cellular homeostasis; any interference with this system induces cellular stress and alters the normal functioning of proteins important for cell survival. In this study, we show that persistent cellular stress and organelle dysfunction because of disruption of cellular homeostasis in human malaria parasite Plasmodium falciparum, leads to apoptosis-like cell death. Quantitative global proteomic analysis of the stressed parasites before onset of cell death, showed upregulation of a number of proteins involved in cellular homeostasis; protein network analyses identified upregulated metabolic pathways that may be associated with stress tolerance and pro-survival mechanism. However, persistent stress on parasites cause structural abnormalities in endoplasmic reticulum and mitochondria, subsequently a cascade of reactions are initiated in parasites including rise in cytosolic calcium levels, loss of mitochondrial membrane potential and activation of VAD-FMK-binding proteases. We further show that activation of VAD-FMK-binding proteases in the parasites leads to degradation of phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), a known target of metacaspases, as well as degradation of other components of spliceosomal complex. Loss of spliceosomal machinery impairs the mRNA splicing, leading to accumulation of unprocessed RNAs in the parasite and thus dysregulate vital cellular functions, which in turn leads to execution of apoptosis-like cell death. Our results establish one of the possible mechanisms of instigation of cell death by organelle stress in Plasmodium. PMID:26136076

  9. A new lizard malaria parasite Plasmodium intabazwe n. sp. (Apicomplexa: Haemospororida: Plasmodiidae) in the Afromontane Pseudocordylus melanotus (Sauria: Cordylidae) with a review of African saurian malaria parasites.

    PubMed

    van As, Johann; Cook, Courtney A; Netherlands, Edward C; Smit, Nico J

    2016-08-08

    Saurian malaria parasites are diverse apicomplexan blood parasites including the family Plasmodiidae Mesnil, 1903, and have been studied since the early 1900s. Currently, at least 27 species of Plasmodium are recorded in African lizards, and to date only two species, Plasmodium zonuriae (Pienaar, 1962) and Plasmodium cordyli Telford, 1987, have been reported from the African endemic family Cordylidae. This paper presents a description of a new malaria parasite in a cordylid lizard and provides a phylogenetic hypothesis for saurian Plasmodium species from South Africa. Furthermore, it provides a tabular review of the Plasmodium species that to date have been formally described infecting species of African lizards. Blood samples were collected from 77 specimens of Pseudocordylus melanotus (A. Smith, 1838) from Platberg reserve in the Eastern Free State, and two specimens of Cordylus vittifer (Reichenow, 1887) from the Roodewalshoek conservancy in Mpumalanga (South Africa). Blood smears were Giemsa-stained, screened for haematozoa, specifically saurian malaria parasites, parasite stages were photographed and measured. A small volume was also preserved for TEM studies. Plasmodium and Haemoproteus primer sets, with a nested-polymerase chain reaction (PCR) protocol, were employed to target a fragment of the cytochrome-b (cyt-b) gene region. Resulting sequences of the saurian Plasmodium species' isolates were compared with each other and to other known Plasmodium spp. sequences in the GenBank database. The presence of P. zonuriae in both specimens of the type lizard host C. vittifer was confirmed using morphological characteristics, which subsequently allowed for the species' molecular characterisation. Of the 77 P. melanotus, 44 were parasitised by a Plasmodium species, which when compared morphologically to other African saurian Plasmodium spp. and molecularly to P. zonuriae, supported its description as a new species Plasmodium intabazwe n. sp. This is the first

  10. Naturally Acquired Antibodies Specific for Plasmodium falciparum Reticulocyte-Binding Protein Homologue 5 Inhibit Parasite Growth and Predict Protection From Malaria

    PubMed Central

    Tran, Tuan M.; Ongoiba, Aissata; Coursen, Jill; Crosnier, Cecile; Diouf, Ababacar; Huang, Chiung-Yu; Li, Shanping; Doumbo, Safiatou; Doumtabe, Didier; Kone, Younoussou; Bathily, Aboudramane; Dia, Seydou; Niangaly, Moussa; Dara, Charles; Sangala, Jules; Miller, Louis H.; Doumbo, Ogobara K.; Kayentao, Kassoum; Long, Carole A.; Miura, Kazutoyo; Wright, Gavin J.; Traore, Boubacar; Crompton, Peter D.

    2014-01-01

    Background. Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) is a blood-stage parasite protein essential for host erythrocyte invasion. PfRH5-specific antibodies raised in animals inhibit parasite growth in vitro, but the relevance of naturally acquired PfRH5-specific antibodies in humans is unclear. Methods. We assessed pre–malaria season PfRH5-specific immunoglobulin G (IgG) levels in 357 Malian children and adults who were uninfected with Plasmodium. Subsequent P. falciparum infections were detected by polymerase chain reaction every 2 weeks and malaria episodes by weekly physical examination and self-referral for 7 months. The primary outcome was time between the first P. falciparum infection and the first febrile malaria episode. PfRH5-specific IgG was assayed for parasite growth-inhibitory activity. Results. The presence of PfRH5-specific IgG at enrollment was associated with a longer time between the first blood-stage infection and the first malaria episode (PfRH5-seropositive median: 71 days, PfRH5-seronegative median: 18 days; P = .001). This association remained significant after adjustment for age and other factors associated with malaria risk/exposure (hazard ratio, .62; P = .02). Concentrated PfRH5-specific IgG purified from Malians inhibited P. falciparum growth in vitro. Conclusions. Naturally acquired PfRH5-specific IgG inhibits parasite growth in vitro and predicts protection from malaria. These findings strongly support efforts to develop PfRH5 as an urgently needed blood-stage malaria vaccine. Clinical Trials Registration NCT01322581. PMID:24133188

  11. Plasmodium coatneyi in Rhesus Macaques Replicates the Multisystemic Dysfunction of Severe Malaria in Humans

    PubMed Central

    Cabrera-Mora, Monica; Garcia, AnaPatricia; Orkin, Jack; Strobert, Elizabeth; Barnwell, John W.; Galinski, Mary R.

    2013-01-01

    Severe malaria, a leading cause of mortality among children and nonimmune adults, is a multisystemic disorder characterized by complex clinical syndromes that are mechanistically poorly understood. The interplay of various parasite and host factors is critical in the pathophysiology of severe malaria. However, knowledge regarding the pathophysiological mechanisms and pathways leading to the multisystemic disorders of severe malaria in humans is limited. Here, we systematically investigate infections with Plasmodium coatneyi, a simian malaria parasite that closely mimics the biological characteristics of P. falciparum, and develop baseline data and protocols for studying erythrocyte turnover and severe malaria in greater depth. We show that rhesus macaques (Macaca mulatta) experimentally infected with P. coatneyi develop anemia, coagulopathy, and renal and metabolic dysfunction. The clinical course of acute infections required suppressive antimalaria chemotherapy, fluid support, and whole-blood transfusion, mimicking the standard of care for the management of severe malaria cases in humans. Subsequent infections in the same animals progressed with a mild illness in comparison, suggesting that immunity played a role in reducing the severity of the disease. Our results demonstrate that P. coatneyi infection in rhesus macaques can serve as a highly relevant model to investigate the physiological pathways and molecular mechanisms of malaria pathogenesis in naïve and immune individuals. Together with high-throughput postgenomic technologies, such investigations hold promise for the identification of new clinical interventions and adjunctive therapies. PMID:23509137

  12. Control of human parasitic diseases: Context and overview.

    PubMed

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  13. Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System

    PubMed Central

    Zhang, Cui; Xiao, Bo; Jiang, Yuanyuan; Zhao, Yihua; Li, Zhenkui; Gao, Han; Ling, Yuan; Wei, Jun; Li, Shaoneng; Lu, Mingke; Yuan, Jing

    2014-01-01

    ABSTRACT Malaria parasites are unicellular organisms residing inside the red blood cells, and current methods for editing the parasite genes have been inefficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and Cas9 endonuclease-mediated genome editing) system is a new powerful technique for genome editing and has been widely employed to study gene function in various organisms. However, whether this technique can be applied to modify the genomes of malaria parasites has not been determined. In this paper, we demonstrated that Cas9 is able to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. By supplying engineered homologous repair templates, we generated targeted deletion, reporter knock-in, and nucleotide replacement in multiple parasite genes, achieving up to 100% efficiency in gene deletion and 22 to 45% efficiencies in knock-in and allelic replacement. Our results establish methodologies for introducing desired modifications in the P. yoelii genome with high efficiency and accuracy, which will greatly improve our ability to study gene function of malaria parasites. PMID:24987097

  14. Parasite Polymorphism and Severe Malaria in Dakar (Senegal): A West African Urban Area

    PubMed Central

    Bob, Ndeye Sakha; Diop, Bernard Marcel; Renaud, Francois; Marrama, Laurence; Durand, Patrick; Tall, Adama; Ka, Boubacar; Ekala, Marie Therese; Bouchier, Christiane; Mercereau-Puijalon, Odile; Jambou, Ronan

    2010-01-01

    Background Transmission of malaria in West African urban areas is low and healthcare facilities are well organized. However, malaria mortality remains high. We conducted a survey in Dakar with the general objective to establish who died from severe malaria (SM) in urban areas (particularly looking at the age-groups) and to compare parasite isolates associated with mild or severe malaria. Methodology/Principal Findings The current study included mild- (MM) and severe malaria (SM) cases, treated in dispensaries (n = 2977) and hospitals (n = 104), We analysed Pfdhfr/Pfcrt-exon2 and nine microsatellite loci in 102 matched cases of SM and MM. Half of the malaria cases recorded at the dispensaries and 87% of SM cases referred to hospitals, occurred in adults, although adults only accounted for 26% of all dispensary consultations. This suggests that, in urban settings, whatever the reason for this adult over-representation, health-workers are forced to take care of increasing numbers of malaria cases among adults. Inappropriate self treatment and mutations in genes associated with drug resistance were found associated with SM in adults. SM was also associated with a specific pool of isolates highly polymorphic and different from those associated with MM. Conclusion In this urban setting, adults currently represent one of the major groups of patients attending dispensaries for malaria treatment. For these patients, despite the low level of transmission, SM was associated with a specific and highly polymorphic pool of parasites which may have been selected by inappropriate treatment. PMID:20352101

  15. Crowdsourcing Malaria Parasite Quantification: An Online Game for Analyzing Images of Infected Thick Blood Smears

    PubMed Central

    Arranz, Asier; Frean, John

    2012-01-01

    Background There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite

  16. Antigen Export during Liver Infection of the Malaria Parasite Augments Protective Immunity

    PubMed Central

    Beigier-Bompadre, Macarena; Becker, Martina; Kroczek, Richard A.; Kaufmann, Stefan H. E.; Matuschewski, Kai

    2014-01-01

    ABSTRACT Protective immunity against preerythrocytic malaria parasite infection is difficult to achieve. Intracellular Plasmodium parasites likely minimize antigen presentation by surface-expressed major histocompatibility complex class I (MHC-I) molecules on infected cells, yet they actively remodel their host cells by export of parasite factors. Whether exported liver-stage proteins constitute better candidates for MHC-I antigen presentation to CD8+ T lymphocytes remains unknown. Here, we systematically characterized the contribution of protein export to the magnitude of antigen-specific T-cell responses against Plasmodium berghei liver-stage parasites in C57BL/6 mice. We generated transgenic sporozoites that secrete a truncated ovalbumin (OVA) surrogate antigen only in the presence of an amino-terminal protein export element. Immunization with live attenuated transgenic sporozoites revealed that antigen export was not critical for CD8+ T-cell priming but enhanced CD8+ T-cell proliferation in the liver. Upon transfer of antigen-specific CD8+ T cells, liver-stage parasites secreting the target protein were eliminated more efficiently. We conclude that Plasmodium parasites strictly control protein export during liver infection to minimize immune recognition. Strategies that enhance the discharge of parasite proteins into infected hepatocytes could improve the efficacy of candidate preerythrocytic malaria vaccines. PMID:25073641

  17. Paradoxical sleep deprivation impairs mouse survival after infection with malaria parasites.

    PubMed

    Lungato, Lisandro; Gazarini, Marcos L; Paredes-Gamero, Edgar J; Tufik, Sergio; D'Almeida, Vânia

    2015-04-28

    Parasitic diseases like malaria are a major public health problem in many countries and disrupted sleep patterns are an increasingly common part of modern life. The aim of this study was to assess the effects of paradoxical sleep deprivation (PSD) and sleep rebound (RB) on malarial parasite infection in mice. After PSD, one group was immediately infected with parasites (PSD). The two other PSD rebound groups were allowed to sleep normally for either 24 h (24 h RB) or 48 h (48 h RB). After the recovery periods, mice were inoculated with parasites. The PSD group was the most affected by parasites presenting the higher death rate (0.02), higher number of infected cells (p < 0.01), and decrease in body weight (p < 0.04) compared to control and 48 h RB groups. The 24 h RB group was also different from control group in survival (p < 0.03), number of infected cells (p < 0.05) and body weight (p < 0.04). After 48 hours of sleep rebound animals were allowed to restore their response to parasitic infection similar to normal sleep animals. These results suggest that PSD is damaging to the immune system and leads to an increased infection severity of malaria parasites; only 48 hours of recovery sleep was sufficient to return the mice infection response to baseline values.

  18. Investigating the evolution of apoptosis in malaria parasites: the importance of ecology

    PubMed Central

    2010-01-01

    Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long- and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology. PMID:21080937

  19. EVALUATION OF AROMATIC 6-SUBSTITUTED THIENOPYRIMIDINES AS SCAFFOLDS AGAINST PARASITES THAT CAUSE TRYPANOSOMIASIS, LEISHMANIASIS, AND MALARIA

    PubMed Central

    Woodring, Jennifer L.; Patel, Gautam; Erath, Jessey; Behera, Ranjan; Lee, Patricia J.; Leed, Susan E.; Rodriguez, Ana; Sciotti, Richard J.; Mensa-Wilmot, Kojo; Pollastri, Michael P.

    2014-01-01

    Target repurposing is a proven method for finding new lead compounds that target Trypanosoma brucei, the causative agent of human African trypanosomiasis. Due to the recent discovery of a lapatinib-derived analog 2 with excellent potency against T. brucei (EC50 = 42 nM) and selectivity over human host cells, we have explored other classes of human tyrosine kinase inhibitor scaffolds in order to expand the range of chemotypes for pursuit. Following library expansion, we found compound 11e to have an EC50 of 84 nM against T. brucei cells while maintaining selectivity over human hepatocytes. In addition, the library was tested against causative agents of Chagas’ disease, leishmaniasis, and malaria. Two analogs with sub-micromolar potencies for T. cruzi (4j) and Plasmodium falciparum (11j) were discovered, along with an analog with considerable potency against Leishmania major amastigotes (4e). Besides identifying new and potent protozoan growth inhibitors, these data highlight the value of concurrent screening of a chemical library against different protozoan parasites. PMID:25685309

  20. EVALUATION OF AROMATIC 6-SUBSTITUTED THIENOPYRIMIDINES AS SCAFFOLDS AGAINST PARASITES THAT CAUSE TRYPANOSOMIASIS, LEISHMANIASIS, AND MALARIA.

    PubMed

    Woodring, Jennifer L; Patel, Gautam; Erath, Jessey; Behera, Ranjan; Lee, Patricia J; Leed, Susan E; Rodriguez, Ana; Sciotti, Richard J; Mensa-Wilmot, Kojo; Pollastri, Michael P

    2015-02-01

    Target repurposing is a proven method for finding new lead compounds that target Trypanosoma brucei, the causative agent of human African trypanosomiasis. Due to the recent discovery of a lapatinib-derived analog 2 with excellent potency against T. brucei (EC50 = 42 nM) and selectivity over human host cells, we have explored other classes of human tyrosine kinase inhibitor scaffolds in order to expand the range of chemotypes for pursuit. Following library expansion, we found compound 11e to have an EC50 of 84 nM against T. brucei cells while maintaining selectivity over human hepatocytes. In addition, the library was tested against causative agents of Chagas' disease, leishmaniasis, and malaria. Two analogs with sub-micromolar potencies for T. cruzi (4j) and Plasmodium falciparum (11j) were discovered, along with an analog with considerable potency against Leishmania major amastigotes (4e). Besides identifying new and potent protozoan growth inhibitors, these data highlight the value of concurrent screening of a chemical library against different protozoan parasites.

  1. HDP—A Novel Heme Detoxification Protein from the Malaria Parasite

    PubMed Central

    Beatty, Wandy; Angel, Ross; Slebodnick, Carla; Andersen, John; Kumar, Sanjai; Rathore, Dharmendar

    2008-01-01

    When malaria parasites infect host red blood cells (RBC) and proteolyze hemoglobin, a unique, albeit poorly understood parasite-specific mechanism, detoxifies released heme into hemozoin (Hz). Here, we report the identification and characterization of a novel Plasmodium Heme Detoxification Protein (HDP) that is extremely potent in converting heme into Hz. HDP is functionally conserved across Plasmodium genus and its gene locus could not be disrupted. Once expressed, the parasite utilizes a circuitous “Outbound–Inbound” trafficking route by initially secreting HDP into the cytosol of infected RBC. A subsequent endocytosis of host cytosol (and hemoglobin) delivers HDP to the food vacuole (FV), the site of Hz formation. As Hz formation is critical for survival, involvement of HDP in this process suggests that it could be a malaria drug target. PMID:18437218

  2. Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor.

    PubMed

    Dalton, John P; Demanga, Corine G; Reiling, Sarah J; Wunderlich, Juliane; Eng, Jenny W L; Rohrbach, Petra

    2012-01-01

    We describe methods for the large-scale in vitro culturing of synchronous and asynchronous blood-stage Plasmodium falciparum parasites in sterile disposable plastic bioreactors controlled by wave-induced motion (wave bioreactor). These cultures perform better than static flask cultures in terms of preserving parasite cell cycle synchronicity and reducing the number of multiple-infected erythrocytes. The straight-forward methods described here will facilitate the large scale production of malaria parasites for antigen and organelle isolation and characterisation, for the high throughput screening of compound libraries with whole cells or extracts, and the development of live- or whole-cell malaria vaccines under good manufacturing practice compliant standards. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Zoonotic parasites of bobcats around human landscapes.

    PubMed

    Carver, Scott; Scorza, Andrea V; Bevins, Sarah N; Riley, Seth P D; Crooks, Kevin R; Vandewoude, Sue; Lappin, Michael R

    2012-09-01

    We analyzed Lynx rufus fecal parasites from California and Colorado, hypothesizing that bobcats shed zoonotic parasites around human landscapes. Giardia duodenalis, Cryptosporidium, Ancylostoma, Uncinaria, and Toxocara cati were shed. Toxoplasma gondii serology demonstrated exposure. Giardia and Cryptosporidium shedding increased near large human populations. Genotyped Giardia may indicate indirect transmission with humans.

  4. Zoonotic Parasites of Bobcats around Human Landscapes

    PubMed Central

    Scorza, Andrea V.; Bevins, Sarah N.; Riley, Seth P. D.; Crooks, Kevin R.; VandeWoude, Sue; Lappin, Michael R.

    2012-01-01

    We analyzed Lynx rufus fecal parasites from California and Colorado, hypothesizing that bobcats shed zoonotic parasites around human landscapes. Giardia duodenalis, Cryptosporidium, Ancylostoma, Uncinaria, and Toxocara cati were shed. Toxoplasma gondii serology demonstrated exposure. Giardia and Cryptosporidium shedding increased near large human populations. Genotyped Giardia may indicate indirect transmission with humans. PMID:22718941

  5. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Hopp, Ann-Katrin; Saenger, Mélanie; Soichot, Julien; Scholze, Heidi; Boch, Jens; Blandin, Stéphanie A.; Marois, Eric

    2017-01-01

    Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites. PMID:28095489

  6. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  7. Sources of Variability in Determining Malaria Parasite Density by Microscopy

    DTIC Science & Technology

    2005-01-01

    DeWitt CC, Quino -Ascurra HA, Kester KE, Kain KC, Walsh DS, Ballou WR, Gasser RA, 2001. Malaria rapid diagnostic devices: performance characteristics of...Wongsrichanalai C, Magill AJ, Craig LG, Sirichais- inthop J, Bautista CT, Miller RS, Ockenhouse CF, Kester KE, Aronson NE, Andersen EM, Quino

  8. [Malaria situation in China, 1988. Advisory Committee on Parasitic Diseases].

    PubMed

    1989-01-01

    In 1988, the number of malaria cases reported was 134.2 thousand (Taiwan Province not included). Comparing with 210.6 thousand cases reported in 1987, a decrease of 36.3% was noted. Based on data reported by each county in the country, about 950.7 million people in 2,541 counties/cities were living in areas where malaria incidence was less than 0.1 per 1,000 (including originally malaria-free areas as well as areas free from the disease); 96.6 million people in 207 counties/cities with an incidence of 0.1-1.0 per 1,000; 30.4 million in 79 counties/cities with an incidence of 1.1-10.0 per 1000, and 0.4 million in 4 counties with an incidence of above 10.0 per 1,000. While the incidence decreased markedly in most endemic areas, it fluctuated in the southern part of China due to the increase in the floating population, shortage of insecticides, and natural calamities in some areas. In Hainan province the incidence increased by 21.1% over 1987; increase in incidence and focal outbreaks also occurred in some areas of Yunnan, Guangdong, Guangxi, Guizhou provinces/autonomous region. In the provinces of Anhui, Jiangsu, Henan and Jiangxi, the major endemic areas in central China, the incidence decreased by 43.6-71.4% over last year, there were 57 thousand cases, accounting for 42.6% of the total cases recorded in the country. Downward trends of incidence continued in other provinces, autonomous regions and municipalities. The distribution of falciparum malaria was confined to 63 counties of 6 provinces/autonomous region, while non-indigenous falciparum malaria cases were found in 88 counties of 8 provinces due to the population movements.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    PubMed

    Costa, Daniela Camargos; Madureira, Ana Paula; Amaral, Lara Cotta; Sanchez, Bruno Antônio Marinho; Gomes, Luciano Teixeira; Fontes, Cor Jésus Fernandes; Limongi, Jean Ezequiel; Brito, Cristiana Ferreira Alves de; Carvalho, Luzia Helena

    2014-02-01

    The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

  10. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    PubMed Central

    Costa, Daniela Camargos; Madureira, Ana Paula; Amaral, Lara Cotta; Sanchez, Bruno Antônio Marinho; Gomes, Luciano Teixeira; Fontes, Cor Jésus Fernandes; Limongi, Jean Ezequiel; de Brito, Cristiana Ferreira Alves; Carvalho, Luzia Helena

    2013-01-01

    The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur. PMID:24626306

  11. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants.

    PubMed

    Cai, Shengxin; Risinger, April L; Nair, Shalini; Peng, Jiangnan; Anderson, Timothy J C; Du, Lin; Powell, Douglas R; Mooberry, Susan L; Cichewicz, Robert