Science.gov

Sample records for human mammary cell

  1. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  2. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  3. Quantification of regenerative potential in primary human mammary epithelial cells.

    PubMed

    Linnemann, Jelena R; Miura, Haruko; Meixner, Lisa K; Irmler, Martin; Kloos, Uwe J; Hirschi, Benjamin; Bartsch, Harald S; Sass, Steffen; Beckers, Johannes; Theis, Fabian J; Gabka, Christian; Sotlar, Karl; Scheel, Christina H

    2015-09-15

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis.

  4. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  5. Humanization of the mouse mammary gland.

    PubMed

    Wronski, A; Arendt, L M; Kuperwasser, Charlotte

    2015-01-01

    Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.

  6. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    NASA Astrophysics Data System (ADS)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  7. Vimentin contributes to human mammary epithelial cell migration.

    PubMed

    Gilles, C; Polette, M; Zahm, J M; Tournier, J M; Volders, L; Foidart, J M; Birembaut, P

    1999-12-01

    Vimentin expression in human mammary epithelial MCF10A cells was examined as a function of their migratory status using an in vitro wound-healing model. Analysis of the trajectories of the cells and their migratory speeds by time lapse-video microscopy revealed that vimentin mRNA and protein expression were exclusively induced in cells at the wound's edge which were actively migrating towards the center of the lesion. Actin labeling showed the reorganization of actin filaments in cells at the wound's edge which confirmed the migratory phenotype of this cell subpopulation. Moreover, the vimentin protein disappeared when the cells became stationary after wound closure. Using cells transfected with the vimentin promoter controlling the green fluorescent protein gene, we also demonstrated the specific activation of the vimentin promoter in the migratory cells at the wound's edge. Transfection of the antisense vimentin cDNA into MCF10A cells clearly reduced both their ability to express vimentin and their migratory speed. Taken together, these observations demonstrate that vimentin is transiently associated with, and could be functionally involved in, the migratory status of human epithelial cells.

  8. Culture models of human mammary epithelial cell transformation

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  9. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  10. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  11. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and...

  12. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol

    PubMed Central

    CRUZ, PAMELA; TORRES, CRISTIAN; RAMÍREZ, MARÍA EUGENIA; EPUÑÁN, MARÍA JOSÉ; VALLADARES, LUIS EMILIO; SIERRALTA, WALTER DANIEL

    2010-01-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E2) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E2, and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E2 in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E2-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels. PMID:22993572

  13. Genes involved in immortalization of human mammary cells

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings of this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of enforcing a Raf

  14. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    SciTech Connect

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline; Donner, Catherine; Perez-Morga, David; De Vos, Rita; Snoeck, Robert; Marchant, Arnaud

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  15. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  16. Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier.

    PubMed

    Lewis, Cheryl M; Herbert, Brittney-Shea; Bu, Dawei; Halloway, Shane; Beck, Adam; Shadeo, Ashleen; Zhang, Cindy; Ashfaq, Raheela; Shay, Jerry W; Euhus, David M

    2006-09-01

    A novel human mammary epithelial cell line, HME348, was established from benign breast tissue from a 44-year-old germ-line BRCA2 mutation carrier with a history of stage 1 breast cancer. Mutation analysis showed that the patient had a known 6872del4 BRCA2 heterozygous mutation. The human mammary epithelial cells passaged in culture exhibited cellular replicative aging as evidenced by telomere shortening, lack of telomerase activity, and senescence. Ectopic expression of telomerase (hTERT) reconstituted telomerase activity in these cells and led to the immortalization of the cells. When grown on glass, the majority of immortalized HME348 cells expressed ESA and p63 with a small population also expressing EMA. In three-dimensional Matrigel culture, HME348 cells formed complex branching acini structures that expressed luminal (EMA, CK18) and myoepithelial (p63, CALLA, CK14) markers. Three clones derived from this culture were also p63(+)/ESA(+)/EMA(+/-) on glass but formed similar acinar structures with both luminal and myoepithelial cell differentiation in Matrigel confirming the mammary progenitor nature of these cells. Additionally, the experimentally immortalized HME348 cells formed acini in cleared mammary fat pads in vivo. As this is the first report establishing and characterizing a benign human mammary epithelial cell line derived from a BRCA2 patient without the use of viral oncogenes, these cells may be useful for the study of BRCA2 function in breast morphogenesis and carcinogenesis.

  17. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  18. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo.

    PubMed

    Bussard, Karen M; Smith, Gilbert H

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display 'normal' behavior when placed into 'normal' ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for 'normal' gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo.

  19. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    SciTech Connect

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  20. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. PMID:22223356

  1. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics.

  2. Differentiation and Genomic Instability in a Human Mammary Cell Model

    NASA Technical Reports Server (NTRS)

    Richmond, R.; Kale, R.; Pettengill, O.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Harvest of prophylactic mastectomy specimens from an obligate heterozygote for ataxia-telangiectasia provided autologous fibroblasts as well epithelial cells (HMEC). The routine availability of these autologous cells has provided an opportunity to study cell-cell interactions in coculture and monoculture, and in 3-dimensional cultures grown in the NASA rotating bioreactor. HMEC and stromal fibroblasts grown in 2-dimensional monoculture were both observed to produce extracellular matrix. Similar matrix was encountered in 3-dimensional cultures containing HMEC. Metaphases were analyzed. For stromal fibroblasts, genomic aberrations were found in 18% of metaphase spreads. For HMEC, aberrations were greater such that a majority were found to be abnormal. The level of genomic instability determined for these noncancerous cells in 2-dimensional monoculture should be useful for generating a human cell model that can correlate the effects of differentiation in 3-dimensional coculture on the level of genomic instability.

  3. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    SciTech Connect

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R. )

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV.

  4. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  5. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    SciTech Connect

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  6. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells.

    PubMed

    Nguyen, Long V; Pellacani, Davide; Lefort, Sylvain; Kannan, Nagarajan; Osako, Tomo; Makarem, Maisam; Cox, Claire L; Kennedy, William; Beer, Philip; Carles, Annaick; Moksa, Michelle; Bilenky, Misha; Balani, Sneha; Babovic, Sonja; Sun, Ivan; Rosin, Miriam; Aparicio, Samuel; Hirst, Martin; Eaves, Connie J

    2015-12-10

    Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop. PMID:26633636

  7. Enhanced growth medium and method for culturing human mammary epithelial cells

    DOEpatents

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  8. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  9. Effects of sodium butyrate on expression of members of the IGF-binding protein superfamily in human mammary epithelial cells.

    PubMed

    Tsubaki, J; Choi, W K; Ingermann, A R; Twigg, S M; Kim, H S; Rosenfeld, R G; Oh, Y

    2001-04-01

    Dietary factors play an important role in both the development and prevention of human cancers, including breast carcinoma. One dietary micronutrient, sodium butyrate (NaB), is a major end product of dietary starch and fiber, produced naturally during digestion by anaerobic bacteria in the cecum and colon. NaB is a potent growth inhibitor and initiates cell differentiation for many cell types in vitro. In this study, we investigated the effects of NaB on three human mammary epithelial cells and regulation of the IGF axis, specifically, IGF-binding protein-3 (IGFBP-3), a known growth regulator in human mammary cells, and IGFBP-related protein 2 (IGFBP-rP2)/connective tissue growth factor. NaB inhibited DNA synthesis, as measured by [3H]thymidine incorporation, in estrogen-responsive (MCF-7) and estrogen-non-responsive (Hs578T) breast cancer cells, and normal human mammary epithelial cells (HMEC) to a similar degree (up to 90% inhibition at 1-10 mM concentrations). Treatment of cells with NaB induced histone hyperacetylation, suggesting that NaB exerts its biological effects, at least in part, as a histone deacetylase inhibitor in mammary epithelial cells. Treatment of Hs578T cells with NaB caused an induction of apoptotic cell death. NaB treatment resulted in increased levels of p21(Waf1/Cip1) mRNA and protein in Hs578T cells and distinct upregulation of p27(Kip1) in HMEC, suggesting that NaB activates different genes involved in cell cycle arrest, depending upon the cell type. In the same context, among the IGFBP superfamily members tested, NaB specifically upregulated the expression of IGFBP-3 and IGFBP-rP2. These two proteins are known to be involved in inhibition of mammary epithelial cell replication. Northern blot analysis showed that NaB treatment at 1-10 mM concentrations caused a dose-dependent stimulation of IGFBP-3 mRNA expression in cancerous cells and IGFBP-rP2 mRNA expression in both cancerous and non-cancerous cells. Protein data from Western ligand

  10. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Microsatellite instability in human mammary epithelial cells transformed by heavy ions

    NASA Astrophysics Data System (ADS)

    Yanada, S.; Yang, T. C.; George, K.; Okayasu, R.; Ando, K.; Tsujii, H.

    1998-11-01

    We analyzed DNA and proteins obtained from normal and transformed human mammary epithelial cells for studying the neoplastic transformation by high-LET irradiation in vitro. We also examined microsatellite instability in human mammary cells transformed to various stages of carcinogenesis, such as normal, growth variant and tumorigenic, using microsatellite marker D5S177 on the chromosome 5 and CY17 on the Chromosome 10. Microsatellite instabilities were detected in the tumorigenic stage. These results suggest that microsatellite instability may play a role in the progression of tumorigenecity. The cause of the genomic instability has been suggested as abnormalities of DNA-repair systems which may be due to one of the three reasons: 1) alterations of cell cycle regulating genes. 2) mutations in any of the DNA mismatch repair genes, 3) mutation in any of the DNA strand breaks repair genes. No abnormality of these genes and encoded proteins, however was found in the present studies. These studies thus suggest that the microsatellite instability is induced by an alternative mechanism.

  12. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    SciTech Connect

    Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  13. Inhibitory effect of iron withdrawal by chelation on the growth of human and murine mammary carcinoma and fibrosarcoma cells.

    PubMed

    Power Coombs, Melanie R; Grant, Taryn; Greenshields, Anna L; Arsenault, Daniel J; Holbein, Bruce E; Hoskin, David W

    2015-10-01

    Since iron uptake is essential for cell growth, rapidly dividing cancer cells are sensitive to iron depletion. To explore the effect of iron withdrawal on cancer cell growth, mouse and human mammary carcinoma cells (4T1 and MDA-MB-468, respectively) and mouse and human fibrosarcoma cells (L929 and HT1080, respectively) were cultured in the absence or presence of DIBI, a novel iron-chelating polymer containing hydroxypyridinone iron-ligand functionality. Cell growth was measured by a colorimetric assay for cell metabolic activity. DIBI-treated 4T1, MDA-MB-468, L929 and HT1080 cells, as well as their normal counterparts, showed a dose- and time-dependent reduction in growth that was selective for human cancer cells and mouse fibrosarcoma cells. The inhibitory effect of DIBI on fibrosarcoma and mammary carcinoma cell growth was reversed by addition of exogenous iron in the form of iron (III) citrate, confirming the iron selectivity of DIBI and that its inhibitory activity was iron-related. Fibrosarcoma and mammary carcinoma cell growth inhibition by DIBI was associated with S-phase cell cycle arrest and low to moderate levels of cell death by apoptosis. Consistent with apoptosis induction following DIBI-mediated iron withdrawal, fibrosarcoma and mammary carcinoma cells exhibited mitochondrial membrane permeabilization. A comparison of DIBI to other iron chelators showed that DIBI was superior to deferiprone and similar to or better than deferoxamine for inhibition of fibrosarcoma and mammary carcinoma cell growth. These findings suggest that iron withdrawal from the tumor microenvironment with a selective and potent iron chelator such as DIBI may prevent or inhibit tumor progression.

  14. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    PubMed

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells.

  15. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival.

    PubMed

    Mertani, H C; Zhu, T; Goh, E L; Lee, K O; Morel, G; Lobie, P E

    2001-06-15

    By use of cDNA array technology we have screened 588 genes to determine the effect of autocrine production of human growth hormone (hGH) on gene expression in human mammary carcinoma cells. We have used a previously described cellular model to study autocrine hGH function in which the hGH gene or a translation-deficient hGH gene was stably transfected into MCF-7 cells. Fifty two of the screened genes were regulated, either positively () or negatively (), by autocrine production of hGH. We have now characterized the role of one of the up-regulated genes, chop (gadd153), in the effect of autocrine production of hGH on mammary carcinoma cell number. The effect of autocrine production of hGH on the level of CHOP mRNA was exerted at the transcriptional level as autocrine hGH increased chloramphenicol acetyltransferase production from a reporter plasmid containing a 1-kilobase pair fragment of the chop promoter. The autocrine hGH-stimulated increase in CHOP mRNA also resulted in an increase in CHOP protein. As a consequence, autocrine hGH stimulation of CHOP-mediated transcriptional activation was increased. Stable transfection of human CHOP cDNA into mammary carcinoma cells demonstrated that CHOP functioned not as a mediator of hGH-stimulated mitogenesis but rather enhanced the protection from apoptosis afforded by hGH in a p38 MAPK-dependent manner. Thus transcriptional up-regulation of chop is one mechanism by which hGH regulates mammary carcinoma cell number.

  16. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Bonin, Keith; Scarpinato, Karin; Guthold, Martin

    2014-10-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell-cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell-cell interactions).

  17. Genotoxic effects of five polycyclic aromatic hydrocarbons in human and rat mammary epithelial cells

    SciTech Connect

    Mane, S.S.; Purnell, D.M.; Hsu, Ih-chang )

    1990-01-01

    Five polycyclic aromatic hydrocarbons (PAHs) of different carcinogenic activities were evaluated for their effects on DNA synthesis ({sup 3}HTdR labeling index (L.I.)) of rat and human mammary epithelial cells (MEC) and for their effects on chromosomes in MEC-mediated sister chromatid exchange (SCE) assays. When compared with DMSO-treated cells, exposures of rat MEC to the two most potent carcinogens, i.e., 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(a)P), resulted in a 45-62% reduction in the L.I. of rat MEC. Another carcinogen, 20-methylcholanthrene (MCA), produced a 35-48% reduction in L.I., while the noncarcinogenic PAHs, 1,2-benzanthracene (BA) and benzo(e)pyrene (B(e)P), showed no effect. Similarly, exposures of human MEC to DMBA and B(a)P resulted in a 50-90% depression in L.I. while BA was significantly less effective. When co-cultivated with Chinese hamster V-79 cells in the presence of PAH, both rat and human MEC can activate and release the active metabolites to induce SCE in V-79 cells. Comparing depression of L.I., SCE, and in vivo carcinogenicity for the 5 PAHs, SCE mediated by rat MEC is better correlated with carcinogenicity in rat than L.I. depression.

  18. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes

    NASA Technical Reports Server (NTRS)

    Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D.

    2001-01-01

    Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.

  19. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  20. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells

    PubMed Central

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival. PMID:25616580

  1. Three-dimensional Culture Conditions Lead to Decreased Radiation Induced Crytoxicity in Human Mammary Epithelial Cells

    SciTech Connect

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-05-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extra cellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D vs. 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ~4 fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures

  2. Functional diversity of gro gene expression in human fibroblasts and mammary epithelial cells.

    PubMed Central

    Anisowicz, A; Zajchowski, D; Stenman, G; Sager, R

    1988-01-01

    Previous studies of gro and related genes that are overexpressed in transformed fibroblasts suggest that gro may encode a specific growth regulator. However, DNA and protein sequence comparisons reveal relatedness to platelet factor 4 and other proteins involved in the inflammatory response. In this paper, both growth-related and cytokine-induced responses in gro gene expression are described. Human foreskin fibroblasts are shown to express approximately 10-fold elevated gro, myc, and fos mRNAs in response to serum and to phorbol 12-myristate 13-acetate stimulation, with early response kinetics indicative of growth regulation. In response to interleukin 1, however, in growing cells gro mRNA is elevated at least 100-fold but myc remains constant and fos is not expressed, suggesting a second regulatory pathway. In normal cultured mammary epithelial cells, gro is constitutively expressed, and elevated mRNA levels are induced by phorbol 12-myristate 13-acetate, but not by interleukin 1. However, most carcinoma cell lines examined do not express gro mRNA, suggesting a third function of gro as a negative growth regulator in epithelial cells. Images PMID:3264403

  3. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    SciTech Connect

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  4. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance.

    PubMed

    Zhou, Tiean; Marx, Kenneth A; Dewilde, Abiche H; McIntosh, Donna; Braunhut, Susan J

    2012-02-01

    During transformation of a normal cell to a cell capable of forming a cancerous growth, cellular morphology, the cytoskeleton, and focal contacts undergo significant changes. These changes should be capable of being characterized via real-time monitoring of the dynamic cell adhesion process and viscoelastic properties of cells. Here, we describe use of the quartz crystal microbalance (QCM) to distinguish the dynamic cell adhesion signatures of human normal (HMEC) versus malignant (MCF-7) mammary epithelial cells. The significantly reduced QCM responses (changes in frequency [Δf] and motional resistance ΔR) of MCF-7 cells compared with those of HMECs mirror the cancer cells' morphological features as observed via optical microscope. We analyzed the initial 2-h cell adhesion kinetics, suggesting cell-cell cooperativity for HMECs and no or weak cell-cell interactions for MCF-7 cells. We propose that changes of the ΔR/Δf ratio, which we term the cell viscoelastic index (CVI), reflect the establishment of cytoskeleton structure and dynamic viscoelastic properties of living cells. The CVI decreases significantly on initiation of cell to surface interactions as cells establish their cytoskeletal structures. During the cell adhesion process, MCF-7 cells were consistently softer, exhibiting up to a 2.5-fold smaller CVI when compared with HMECs.

  5. Induction of benzo(a)pyrene metabolism in human mammary epithelial cells by manufactured gas residues

    SciTech Connect

    Goth-Goldstein, R.; Levine, G.; Leadon, S.A.; Chaloupka, K.; Safe, S.

    1994-12-31

    This study was undertaken to evaluate the non-genotoxic effects of manufactured gas plant residues which present complex mixtures of polycyclic aromatic hydrocarbons. The effect of these residues on benzo(a)pyrene (BaP) metabolism in human mammary epithelial cells was studied. Cells were preincubated with hexane-extractable coal tar material for 16 hr, then incubated with {sup 3}H-BaP for 2 hr and the amount of BaP metabolites in cell extracts was determined by HPLC. An up to 5-fold increase over control in BaP metabolites was seen after preincubation with 0.2 {mu}g/ml coal tar material (a oncytotoxic dose). Coal tar extracts were equally effective as pure BaP in inducing BaP metabolism. As BaP constitutes less than 1% of the coal tar, other components in the coal tar mixtures appear to be even more potent than BaP in inducing the enzyme system responsible for BaP metabolism. The increase in BaP metabolites was accompanied by a proportional increase in P4501A1 mRNA as measured by Northern blotting, and resulted in an increase of BaP adducts to DNA. These results show that coal tars and other P450-inducting compounds can act as cocarcinogens by enhancing the genotoxic effects of compounds metabolized by the P4501A1 enzyme.

  6. HER/ErbB Receptor Interactions and Signaling Patterns in Human Mammary Epithelial Cells

    SciTech Connect

    Zhang, Yi; Opresko, Lee K.; Shankaran, Harish; Chrisler, William B.; Wiley, H. S.; Resat, Haluk

    2009-10-31

    Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that cell line dependence is not important, which can be misleading because different cell lines do not always respond to a particular stimulus in the same way. The lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. In this study, we report the development of a library of human mammary epithelial (HME) cell lines which express endogenous levels of the cell surface receptor EGFR/HER1, and different levels of HER2 and HER3. Using our clone library, we have quantified the interactions among the HER1-3 receptors and systematically investigated the existing hypotheses about their interaction patterns. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3. Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3, and revealed that EGFR and HER3 activations are only weakly linked in HME cells. We have also quantified the time-dependent activation patterns of the downstream effectors Erk and Akt. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 pathways activate Erk at significant levels. Our study shows that cell libraries formed from closely related clones can be a powerful resource for pursuing the quantitative investigations that are necessary for developing a systems level understanding of cell signaling.

  7. Gene expression profiling of di-n-butyl phthalate in normal human mammary epithelial cells.

    PubMed

    Gwinn, Maureen R; Whipkey, Diana L; Tennant, Lora B; Weston, Ainsley

    2007-01-01

    Studies show that female workers in the personal-care industry have an increased risk of developing cancer believed to be the result of increased exposure to toxic and/or carcinogenic chemicals found in cosmetics, hair dyes, and nail polish. One chemical found in multiple personal-care products, di-n-butyl phthalate (DBP), is a known endocrine disruptor and has been found in increased levels in women of childbearing age. The goal of this study was to elucidate mechanisms of phthalate toxicity in normal human cells to provide information concerning interindividual variation and gene-environment interactions. Normal human mammary epithelial cell strains were obtained from discarded tissues following reduction mammoplasty [Cooperative Human Tissue Network (sponsors: NCI/NDRI)]. Gene transcription in each cell strain was analyzed using high-density oligonucleotide DNA microarrays (U133A, Affymetrix) and changes in the expression of selected genes were verified by real-time polymerase chain reaction (PCR) (ABI). DNA microarrays were hybridized with total RNA that was collected after DBP treatment for 5 hr and 10 hr. RNA was harvested from the vehicle control (acetone) at 10 hr. Data Mining Tool software (Affymetrix) was used to separate genes in clusters based on their expression patterns over time. Only 57 genes were found to be altered in all four cell strains following exposure to DBP. These included genes involved in fertility (inhibin, placental growth factor), immune response (tumor necrosis factor induced protein), and antioxidant status (glutathione peroxidase). Data from this study will help clarify the role of DBP in reproductive toxicity, and yield biomarkers of exposure for future epidemiology studies. PMID:17725530

  8. Gene expression profiling of di-n-butyl phthalate in normal human mammary epithelial cells.

    PubMed

    Gwinn, Maureen R; Whipkey, Diana L; Tennant, Lora B; Weston, Ainsley

    2007-01-01

    Studies show that female workers in the personal-care industry have an increased risk of developing cancer believed to be the result of increased exposure to toxic and/or carcinogenic chemicals found in cosmetics, hair dyes, and nail polish. One chemical found in multiple personal-care products, di-n-butyl phthalate (DBP), is a known endocrine disruptor and has been found in increased levels in women of childbearing age. The goal of this study was to elucidate mechanisms of phthalate toxicity in normal human cells to provide information concerning interindividual variation and gene-environment interactions. Normal human mammary epithelial cell strains were obtained from discarded tissues following reduction mammoplasty [Cooperative Human Tissue Network (sponsors: NCI/NDRI)]. Gene transcription in each cell strain was analyzed using high-density oligonucleotide DNA microarrays (U133A, Affymetrix) and changes in the expression of selected genes were verified by real-time polymerase chain reaction (PCR) (ABI). DNA microarrays were hybridized with total RNA that was collected after DBP treatment for 5 hr and 10 hr. RNA was harvested from the vehicle control (acetone) at 10 hr. Data Mining Tool software (Affymetrix) was used to separate genes in clusters based on their expression patterns over time. Only 57 genes were found to be altered in all four cell strains following exposure to DBP. These included genes involved in fertility (inhibin, placental growth factor), immune response (tumor necrosis factor induced protein), and antioxidant status (glutathione peroxidase). Data from this study will help clarify the role of DBP in reproductive toxicity, and yield biomarkers of exposure for future epidemiology studies.

  9. Salivary α-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells

    PubMed Central

    2011-01-01

    Background Breast cancer is one of the most diagnosed cancers in females, frequently with fatal outcome, so that new strategies for modulating cell proliferation in the mammary tissue are urgently needed. There is some, as yet inconclusive evidence that α-amylase may constitute a novel candidate for affecting cellular growth. Methods The present investigation aimed to examine if salivary α-amylase, an enzyme well known for the metabolism of starch and recently introduced as a stress marker, is able to exert antiproliferative effects on the growth of mammary gland epithelial cells. For this purpose, primary epithelial cultures of breast tissue from two different inbred rat strains, Fischer 344 (F344) and Lewis, as well as breast tumor cells of human origin were used. Treatment with human salivary α-amylase was performed once daily for 2 days followed by cell counting (trypan blue assay) to determine alterations in cell numbers. Cell senescence after α-amylase treatment was assessed by β-galactosidase assay. Endogenous α-amylase was detected in cells from F344 and Lewis by immunofluorescence. Results Salivary α-amylase treatment in vitro significantly decreased the proliferation of primary cells from F344 and Lewis rats in a concentration-dependent manner. Noticeably, the sensitivity towards α-amylase was significantly higher in Lewis cells with stronger impact on cell growth after 5 and 50 U/ml compared to F344 cells. An antiproliferative effect of α-amylase was also determined in mammary tumor cells of human origin, but this effect varied depending on the donor, age, and type of the cells. Conclusions The results presented here indicate for the first time that salivary α-amylase affects cell growth in rat mammary epithelial cells and in breast tumor cells of human origin. Thus, α-amylase may be considered a novel, promising target for balancing cellular growth, which may provide an interesting tool for tumor prophylaxis and treatment. PMID:22027017

  10. Of Microenvironments and Mammary Stem Cells

    SciTech Connect

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  11. Tamoxifen Induces Expression of Immune Response-Related Genes in Cultured Normal Human Mammary Epithelial Cells

    PubMed Central

    Schild-Hay, Laura J.; Leil, Tarek A.; Divi, Rao L.; Olivero, Ofelia, A.; Weston, Ainsley; Poirier, Miriam C.

    2008-01-01

    Use of tamoxifen (TAM) is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented TAM-induced gene expression changes in cultured normal human mammary epithelial cells (NHMEC strains numbered 5, 16 and 40), established from tissue taken at reduction mammoplasty from 3 individuals. Cells exposed to 0, 10 or 50 μM TAM for 48 hours were evaluated for (E)-α-(deoxyguanosin-N2-yl)-tamoxifen (dG-N2-TAM) adduct formation by TAM-DNA (DNA modified with dG-N2-TAM) chemiluminescence immunoassay (CIA), gene expression changes using NCI DNA-oligonucleotide microarray, and real time (RT)-PCR. At 48 hr, cells exposed to 10 μM and 50 μM TAM were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N2-TAM adducts. For microarray, cells were exposed to 10 μM TAM and genes with expression changes of ≥ 3-fold were as follows: thirteen genes up-regulated and one down-related for strain 16; seventeen genes up-regulated for strain 5; and eleven genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, IFNA1, MXI and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all 3 strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. RT-PCR revealed up-regulation of interferon α (IFNA1) and confirmed the TAM-induced up-regulation of the genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of interferon-related genes in the three NHMEC strains suggests that, in addition to hormonal effects, TAM exposure may enhance immune response in normal breast tissue. PMID:19155303

  12. BRCA1/FANCD2/BRG1-Driven DNA Repair Stabilizes the Differentiation State of Human Mammary Epithelial Cells.

    PubMed

    Wang, Hua; Bierie, Brian; Li, Andrew G; Pathania, Shailja; Toomire, Kimberly; Dimitrov, Stoil D; Liu, Ben; Gelman, Rebecca; Giobbie-Hurder, Anita; Feunteun, Jean; Polyak, Kornelia; Livingston, David M

    2016-07-21

    An abnormal differentiation state is common in BRCA1-deficient mammary epithelial cells, but the underlying mechanism is unclear. Here, we report a convergence between DNA repair and normal, cultured human mammary epithelial (HME) cell differentiation. Surprisingly, depleting BRCA1 or FANCD2 (Fanconi anemia [FA] proteins) or BRG1, a mSWI/SNF subunit, caused HME cells to undergo spontaneous epithelial-to-mesenchymal transition (EMT) and aberrant differentiation. This also occurred when wild-type HMEs were exposed to chemicals that generate DNA interstrand crosslinks (repaired by FA proteins), but not in response to double-strand breaks. Suppressed expression of ΔNP63 also occurred in each of these settings, an effect that links DNA damage to the aberrant differentiation outcome. Taken together with somatic breast cancer genome data, these results point to a breakdown in a BRCA/FA-mSWI/SNF-ΔNP63-mediated DNA repair and differentiation maintenance process in mammary epithelial cells that may contribute to sporadic breast cancer development. PMID:27373334

  13. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  14. Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    PubMed Central

    Savanur, Mohammed Azharuddin; Eligar, Sachin M.; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind.; Kalraiya, Rajiv D.; Swamy, Bale M.; Rhodes, Jonathan M.; Yu, Lu-Gang; Inamdar, Shashikala R.

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent. PMID:25364905

  15. Bovine mammary stem cells: new perspective for dairy science.

    PubMed

    Martignani, E; Cravero, D; Miretti, S; Accornero, P; Baratta, M

    2014-01-01

    Mammary stem cells provide opportunities for the cyclic remodelling of the bovine mammary gland. Therefore, understanding the character and regulation of mammary stem cells is important for increasing animal health and productivity. The exciting possibility that stem cell expansion can influence milk production is currently being investigated by several researchers. In fact, appropriate regulation of mammary stem cells could hopefully benefit milk yield, persistency of lactation, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and regulate the function of bovine mammary stem cells. However, research on mammary stem cells requires tissue biopsies, which represents a limitation for the management of animal welfare. Interestingly, different studies recently reported the identification of putative mammary stem cells in human breast milk. The possible identification of primitive cell types within cow's milk may provide a non-invasive source of relevant mammary cells for a wide range of applications. In this review, we have summarized the main achievements in this field for dairy cow science and described the interesting perspectives open to manipulate milk persistency during lactation and to cope with oxidative stress during the transition period by regulating mammary stem cells.

  16. Two monoclonal antibodies selective for human mammary carcinoma.

    PubMed

    White, C A; Dulbecco, R; Allen, R; Bowman, M; Armstrong, B

    1985-03-01

    Mouse myeloma cells were fused with spleen cells from BALB/c mice immunized with the MCF-7 human mammary carcinoma cell line. Among hybridomas, two (3B18 and 15A8) were selected and cloned. Hybridoma 3B18 produces kappa-IgG1 antibodies that react with a cytoplasmic component of MCF-7 cells. In immunoperoxidase assays, 3B18 reacts with 27 of 31 specimens of human mammary carcinoma. It reacts most consistently with poorly differentiated and infiltrating ductal breast cancers, but it also reacts with isolated cells in 3 of 5 benign mammary pathological lesions with a variable distribution. The antibody does not react with normal mammary epithelium. It does not react with any normal human tissues, and it reacts with only one of 19 other cancers tested. Hybridoma 15A8 produces kappa-IgG1 antibodies that react with the surface membranes of the cells of two human breast cancer cell lines but not with a human fibroblast cell line. In immunoperoxidase assays, the antibody reacted with 28 out of 31 human mammary carcinomas. The antibody also reacts more weakly with normal human epithelial cells of breast, renal proximal tubule, skin, esophagus, and salivary gland, but no other normal tissue. The antibody was unreactive with 14 of 18 other malignant tissues tested. Since 3B18 and 15A8 detect antigens found predominantly in human mammary carcinomas and, possibly, distinguish overlapping categories of human mammary carcinomas, they may prove useful in determining the cellular lineage from which human mammary carcinomas arise, or they may have other clinical applications in breast cancer.

  17. Establishment and characterization of a dairy goat mammary epithelial cell line with human telomerase (hT-MECs).

    PubMed

    Shi, Huaiping; Shi, Hengbo; Luo, Jun; Wang, Wei; Haile, Abiel B; Xu, Huifen; Li, Jun

    2014-07-01

    Although research on dairy goat mammary gland have referred extensively to molecular mechanisms, research on lines of dairy goat mammary epithelial cells (MECs) are still rare. This paper sought to establish an immortal MEC line by stable transfection of human telomerase. MECs from a lactating (45 days post-parturition) Xinong Saanen dairy goat were cultured purely and subsequently transfected with a plasmid carrying the sequence of human telomerase. Immortalized MECs by human telomerase (hT-MECs) exhibited a typical cobblestone morphology and activity and expression levels of telomerase resembled that of MCF-7 cells. hT-MECs on passage 42 grew vigorously and 'S' sigmoid curves of growth were observed. Moreover, hT-MECs maintained a normal chromosome modal number of 2n=60, keratin 8 and epithelial membrane antigen (EMA) were evidently expressed, and beta-casein protein was synthesized and secreted. Beta-casein expression was enhanced by prolactin (P<0.05). Lipid droplets were found in hT-MECs, and messenger RNA levels of PPARG, SREBP, FASN, ACC and SCD in hT-MECs (passage 40) were similar to MECs (passage 7). In conclusion, the obtained hT-MEC line retained a normal morphology, growth characteristics, cytogenetics and secretory characteristics as primary MECs. Hence, it can be a representative model cell line, for molecular and functional analysis, of dairy goat MECs for an extended period of time. PMID:24889218

  18. Establishment and characterization of a dairy goat mammary epithelial cell line with human telomerase (hT-MECs).

    PubMed

    Shi, Huaiping; Shi, Hengbo; Luo, Jun; Wang, Wei; Haile, Abiel B; Xu, Huifen; Li, Jun

    2014-07-01

    Although research on dairy goat mammary gland have referred extensively to molecular mechanisms, research on lines of dairy goat mammary epithelial cells (MECs) are still rare. This paper sought to establish an immortal MEC line by stable transfection of human telomerase. MECs from a lactating (45 days post-parturition) Xinong Saanen dairy goat were cultured purely and subsequently transfected with a plasmid carrying the sequence of human telomerase. Immortalized MECs by human telomerase (hT-MECs) exhibited a typical cobblestone morphology and activity and expression levels of telomerase resembled that of MCF-7 cells. hT-MECs on passage 42 grew vigorously and 'S' sigmoid curves of growth were observed. Moreover, hT-MECs maintained a normal chromosome modal number of 2n=60, keratin 8 and epithelial membrane antigen (EMA) were evidently expressed, and beta-casein protein was synthesized and secreted. Beta-casein expression was enhanced by prolactin (P<0.05). Lipid droplets were found in hT-MECs, and messenger RNA levels of PPARG, SREBP, FASN, ACC and SCD in hT-MECs (passage 40) were similar to MECs (passage 7). In conclusion, the obtained hT-MEC line retained a normal morphology, growth characteristics, cytogenetics and secretory characteristics as primary MECs. Hence, it can be a representative model cell line, for molecular and functional analysis, of dairy goat MECs for an extended period of time.

  19. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells.

    PubMed

    Coombs, Melanie R Power; Harrison, Megan E; Hoskin, David W

    2016-10-01

    Programmed death ligand 1 (PD-L1) is expressed by many cancer cell types, as well as by activated T cells and antigen-presenting cells. Constitutive and inducible PD-L1 expression contributes to immune evasion by breast cancer (BC) cells. We show here that the dietary phytochemical apigenin inhibited interferon (IFN)-γ-induced PD-L1 upregulation by triple-negative MDA-MB-468 BC cells, HER2(+) SK-BR-3 BC cells, and 4T1 mouse mammary carcinoma cells, as well as human mammary epithelial cells, but did not affect constitutive PD-L1 expression by triple-negative MDA-MB-231 BC cells. IFN-β-induced expression of PD-L1 by MDA-MB-468 cells was also inhibited by apigenin. In addition, luteolin, the major metabolite of apigenin, inhibited IFN-γ-induced PD-L1 expression by MDA-MB-468 cells. Apigenin-mediated inhibition of IFN-γ-induced PD-L1 expression by MDA-MB-468 and 4T1 cells was associated with reduced phosphorylation of STAT1, which was early and transient at Tyr701 and sustained at Ser727. Apigenin-mediated inhibition of IFN-γ-induced PD-L1 expression by MDA-MB-468 cells also increased proliferation and interleukin-2 synthesis by PD-1-expressing Jurkat T cells that were co-cultured with MDA-MB-468 cells. Apigenin therefore has the potential to increase the vulnerability of BC cells to T cell-mediated anti-tumor immune responses. PMID:27378243

  20. Morphological and histological characteristics of mammary dysplasias occurring in cell dissociation-derived murine mammary outgrowths

    SciTech Connect

    Ethier, S.P.; Adams, L.M.; Ullrich, R.L.

    1984-10-01

    The morphological and histological characteristics of ductal dysplasias that were observed in mammary outgrowths derived from monodispersed mammary cells of carcinogen-treated mice are described. Mammary outgrowths were derived by injecting either 10(4) or 10(5) enzymatically dissociated mammary cells, obtained from control or carcinogen-treated BALB/c mice, into gland-free mammary fat pads of syngeneic hosts. The mammary dysplasias observed varied considerably in morphological and histological characteristics. The majority of the lesions were ductal in origin and were associated with epithelial hyperplasia which ranged from mild hyperplasia, in which only a few extra layers of epithelium were present, to severe hyperplasia, in which the ducts and end buds were occluded and distended with epithelial cells. In addition, papillary and lobular lesions were observed which were also associated with varying degrees of hyperplasia. The range of mammary dysplasias observed in these outgrowths closely resembles that of lesions associated with the pathogenesis of mammary carcinoma in mice, rats, and humans.

  1. Protein Secretion in Human Mammary Epithelial Cells following HER1 Receptor Activation: Influence of HER2 and HER3 Expression

    SciTech Connect

    Zhang, Yi; Gonzalez-Hernandez, Rachel M.; Zangar, Richard C.

    2011-02-14

    Background: Secretion of proteins by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a very limited understanding of the cellular regulatory processes that regulate protein secretion. Method: In this study, we utilize an ELISA microarray platform to evaluate the effects of epidermal growth factor receptor (HER) expression on protein secretion in human epithelial mammary cells (HMEC). These secreted proteins included several HER1 ligands, interleukins 1α and 18, RANTES, vascular endothelial and platelet derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. Result: We utilized HMEC lines that were engineered to express different levels of HER1, HER2 and HER3. We determined the effects of these receptors on the secretion of a variety of growth factors, cytokines, and proteases. Conclusion: Overall, this study suggests that HER overexpression orchestrate broad affects on the tumor microenvironment by altering the secretion of a diverse group of biologically active proteins.

  2. c-Myc Transforms Human Mammary Epithelial Cells through Repression of the Wnt Inhibitors DKK1 and SFRP1▿ †

    PubMed Central

    Cowling, Victoria H.; D'Cruz, Celina M.; Chodosh, Lewis A.; Cole, Michael D.

    2007-01-01

    c-myc is frequently amplified in breast cancer; however, the mechanism of myc-induced mammary epithelial cell transformation has not been defined. We show that c-Myc induces a profound morphological transformation in human mammary epithelial cells and anchorage-independent growth. c-Myc suppresses the Wnt inhibitors DKK1 and SFRP1, and derepression of DKK1 or SFRP1 reduces Myc-dependent transforming activity. Myc-dependent repression of DKK1 and SFRP1 is accompanied by Wnt target gene activation and endogenous T-cell factor activity. Myc-induced mouse mammary tumors have repressed SFRP1 and increased expression of Wnt target genes. DKK1 and SFRP1 inhibit the transformed phenotype of breast cancer cell lines, and DKK1 inhibits tumor formation. We propose a positive feedback loop for activation of the c-myc and Wnt pathways in breast cancer. PMID:17485441

  3. Genotoxicity profiles in exfoliated human mammary cells recovered from lactating mothers in Istanbul; relationship with demographic and dietary factors.

    PubMed

    Yilmaz, Bayram; Sandal, Suleyman; Ayvaci, Habibe; Tug, Niyazi; Vitrinel, Ayca

    2012-12-12

    We have investigated the presence of DNA damage in human mammary epithelial cells collected from healthy lactating mothers (age, 20-35 years) who were resident in the Istanbul area. Breast milk (10ml) was collected from 30 women between one and two weeks post-partum. Demographic information (parity, breast cancer, occupation, duration of residency in Istanbul, consumption of fish, beef and poultry) was also obtained. Milk samples were diluted 1:1 with RPMI 1640 medium and centrifuged to collect cells. The cells were re-suspended and cell viability was determined by use of 0.4% trypan blue. DNA damage was assessed by use of the comet assay (alkaline single-cell gel electrophoresis). Fifty cells per slide and two slides per sample were scored to evaluate DNA damage. The cells were visually classified into four categories on the basis of extent of migration: undamaged (UD), lightly damaged (LD), moderately damaged (MD) and highly damaged (HD). Total comet scores (TCS) were calculated as: 1× UD+2× LD+3× MD+4× HD. Exfoliated mammary cells of the donors showed high (TCS≥150a.u.), moderate and low DNA damage in 10 (33.3%), 8 (26.7%) and 12 (40%) mothers, respectively. There was no significant correlation between TCS for DNA damage and the duration of previous breastfeeding, parity or age. None of the mothers was vegetarian, smoker or on any medication. Meat and chicken consumption did not significantly correlate with the TCS values. Fish consumption was significantly correlated with TCS results (Spearman's rho=0.39, p<0.05). No significant correlation was found between the DNA-damage scores and the period of residency in Istanbul, but fish consumption increased as the duration of stay was longer (Spearman's rho=0.53, p<0.01). These findings suggest that the primary causes of differences in genotoxicity detected in lactating mothers in Istanbul may be of dietary origin. Our experience also confirms that sampling breast milk from lactating mothers provides a valuable

  4. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    SciTech Connect

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  5. Culture of normal and malignant primary human mammary epithelial cells in a physiological manner simulates in vivo growth patterns and allows discrimination of cell type.

    PubMed

    Bergstraesser, L M; Weitzman, S A

    1993-06-01

    We cultured primary human mammary epithelial cells from five reduction mammoplasties and five breast carcinomas and attempted to improve culture conditions and define cell populations grown. Normal cells cultured on Matrigel basement membrane-like substance formed multicellular three-dimensional structures reminiscent of tissue ducts and alveoli, while malignant cells remained as single cells crawling through Matrigel much as malignant cells separate and invade basement membrane in vivo. This re-creation of normal and malignant breast cell morphology may facilitate studies of breast cancer cell biology and determination of malignant cell authenticity in culture. Growth of cells in a reduced oxygen concentration of 12% improved cell proliferation over room air (21%); however, cells could not proliferate in a completely physiological oxygen concentration of 6%, perhaps because of the medium used. We developed an improved medium for malignant cell growth, which lengthened their life span in culture, and a completely defined medium which supported cell proliferation for six passages. Methods to determine the epithelial nature of mammary epithelial cells are illustrated and discussed. The authenticity of malignant cells in culture was suggested by their proliferation without certain growth factors required for normal cell growth or with transforming growth factor-beta, which arrests normal cell proliferation, and by their contact independence.

  6. Mammary stem cells have myoepithelial cell properties

    PubMed Central

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  7. Osteopontin(OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent.

    PubMed

    Tuck, A B; Hota, C; Chambers, A F

    2001-12-01

    We have recently shown that either exogenous or endogenous, transfected OPN induces both uPA expression and increased invasiveness of 21 PT (non-tumorigenic) and 21 NT (tumorigenic) human mammary epithelial cells. Here we asked whether uPA contributes functionally to the increased invasiveness of these cells. The most invasive OPN-transfected cells were assessed for migration through Matrigel in transwell assays, in the presence or absence of various blocking antibodies and uPA inhibitors. Antibodies to both uPA and uPA receptor (uPAR) were shown to significantly inhibit cell invasion, as did the uPA inhibitors (plasminogen activator inhibitor-1 [PAI-1], p-aminobenzamidine [PABN], aprotinin, and amiloride). Both anti-uPA and anti-uPAR antibodies inhibited invasion to a level comparable to that of the control vector transfected cells. In contrast, non-specific IgG showed no antiinvasive effect. Cell migration experiments performed with the parental cell lines in the presence or absence of anti-uPA or anti-uPAR antibodies showed that uPA is also required for migratory responsiveness to exogenous OPN. These data thus provide direct evidence that OPN-induced invasion and migration of these cells requires uPA. PMID:11804183

  8. Mammary Epithelial Cell Hierarchy in the Dairy Cow Throughout Lactation.

    PubMed

    Perruchot, Marie-Hélène; Arévalo-Turrubiarte, Magdalena; Dufreneix, Florence; Finot, Laurence; Lollivier, Vanessa; Chanat, Eric; Mayeur, Frédérique; Dessauge, Frédéric

    2016-10-01

    The plasticity of the mammary gland relies on adult mammary stem cells (MaSCs) and their progenitors, which give rise to various populations of mammary epithelial cells (MECs). To face global challenges, an in-depth characterization of milk-producing animal mammary gland plasticity is required, to select more sustainable and robust dairy cows. The identification and characterization of MaSC and their progenitors will also provide innovative tools in veterinary/human medicine regarding mammary tissue damage (carcinogenesis, bacterial infections). This study aimed to determine the dynamics of mammary cell populations throughout a lactation cycle. Using mammary biopsies from primiparous lactating dairy cows at 30, 90, 150, and 250 days of lactation, we phenotyped cell populations by flow cytometry. To investigate cell lineages, we used specific cell-surface markers, including CD49f, CD24, EpCAM (epithelial cell adhesion molecule), and CD10. Two cell populations linked to milk production were identified: CD49f(+)/EpCAM(-) (y = 0.88x + 4.42, R(2) = 0.36, P < 0.05) and CD49f(-)/EpCAM(-) (y = -1.15x + 92.44, R(2) = 0.51, P < 0.05) cells. Combining immunostaining analysis, flow cytometry, daily milk production data, and statistical approaches, we defined a stem cell population (CD24(+)/CD49f(+)) and four progenitor cell populations that include bipotent luminal progenitors (CD24(-)/CD49f(+)), lumino-alveolar progenitors (CD24(-)/EpCAM(+)), myoepithelial progenitors (CD24(+)/CD10(-)), and lumino-ductal progenitors (CD49f(-)/EpCAM(+)). Interestingly, we found that the bipotent luminal progenitors (CD24(-)/CD49f(+)) decreased significantly (P < 0.05) during lactation. This study provides the first results of mammary cell lineage, allowing insight into mammary cell plasticity during lactation.

  9. Mammary Epithelial Cell Hierarchy in the Dairy Cow Throughout Lactation.

    PubMed

    Perruchot, Marie-Hélène; Arévalo-Turrubiarte, Magdalena; Dufreneix, Florence; Finot, Laurence; Lollivier, Vanessa; Chanat, Eric; Mayeur, Frédérique; Dessauge, Frédéric

    2016-10-01

    The plasticity of the mammary gland relies on adult mammary stem cells (MaSCs) and their progenitors, which give rise to various populations of mammary epithelial cells (MECs). To face global challenges, an in-depth characterization of milk-producing animal mammary gland plasticity is required, to select more sustainable and robust dairy cows. The identification and characterization of MaSC and their progenitors will also provide innovative tools in veterinary/human medicine regarding mammary tissue damage (carcinogenesis, bacterial infections). This study aimed to determine the dynamics of mammary cell populations throughout a lactation cycle. Using mammary biopsies from primiparous lactating dairy cows at 30, 90, 150, and 250 days of lactation, we phenotyped cell populations by flow cytometry. To investigate cell lineages, we used specific cell-surface markers, including CD49f, CD24, EpCAM (epithelial cell adhesion molecule), and CD10. Two cell populations linked to milk production were identified: CD49f(+)/EpCAM(-) (y = 0.88x + 4.42, R(2) = 0.36, P < 0.05) and CD49f(-)/EpCAM(-) (y = -1.15x + 92.44, R(2) = 0.51, P < 0.05) cells. Combining immunostaining analysis, flow cytometry, daily milk production data, and statistical approaches, we defined a stem cell population (CD24(+)/CD49f(+)) and four progenitor cell populations that include bipotent luminal progenitors (CD24(-)/CD49f(+)), lumino-alveolar progenitors (CD24(-)/EpCAM(+)), myoepithelial progenitors (CD24(+)/CD10(-)), and lumino-ductal progenitors (CD49f(-)/EpCAM(+)). Interestingly, we found that the bipotent luminal progenitors (CD24(-)/CD49f(+)) decreased significantly (P < 0.05) during lactation. This study provides the first results of mammary cell lineage, allowing insight into mammary cell plasticity during lactation. PMID:27520504

  10. Sanguinarine Inhibits Vascular Endothelial Growth Factor Release by Generation of Reactive Oxygen Species in MCF-7 Human Mammary Adenocarcinoma Cells

    PubMed Central

    Dong, Xian-zhe; Zhang, Miao; Wang, Kun; Liu, Ping; Guo, Dai-hong; Zheng, Xiao-li; Ge, Xiao-yue

    2013-01-01

    The inhibitory action and the possible mechanism of anticancer compound Sanguinarine (SAN) on vascular endothelial growth factor (VEGF) in human mammary adenocarcinoma cells MCF-7 were evaluated in this study. We exposed MCF-7 to SAN for 24 h, then cell viability was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Human VEGF was measured using a paired antibody quantitative ELISA kit, relative expression of VEGF mRNA was calculated using the real-time PCR studies, and the effect of SAN on the reactive oxygen species (ROS) level was detected by the flow cytometer. Treatment with SAN remarkably inhibited growth of MCF-7 cells and induced cell apoptosis. We found that VEGF release was stimulated by subtoxic concentrations of SAN and inhibited by high dose of SAN, SAN-evoked VEGF release was mimicked by low concentration of H2O2, and SAN-regulated VEGF inhibition was accompanied by increasing of ROS; these changes were abolished by antioxidant. High concentration of SAN inhibited VEGF mRNA expression in MCF-7 cultures, suggesting an effect at transcriptional level, and was also abolished by antioxidant. The present findings indicated that the regulation of VEGF expression and release from MCF-7 cells were possibly through reactive oxygen species evoked by SAN. PMID:23762849

  11. Correlation between hormone dependency and the regulation of epidermal growth factor receptor by tumor promoters in human mammary carcinoma cells.

    PubMed Central

    Roos, W; Fabbro, D; Küng, W; Costa, S D; Eppenberger, U

    1986-01-01

    The effects of the tumor promoter phorbol 12-tetradecanoate 13-acetate (TPA) on the epidermal growth factor (EGF) receptor levels were investigated in hormone-dependent (MCF-7, T-47-D, and ZR-75-1) and hormone-independent (MDA-MB-231, HBL-100, and BT-20) human mammary carcinoma cell lines. In the absence of TPA, hormone-independent cell lines contained high concentrations of low-affinity EGF receptors (apparent Kd = 8 X 10(-10) M), whereas hormone-dependent cell lines exhibited low concentrations of high-affinity receptors (apparent Kd = 1 X 10(-10) M). TPA causes a change of the receptor from a high- to the low-affinity state in hormone-dependent cell lines (MCF-7, T-47-D, and ZR-75-1), as well as in the hormone-independent HBL-100, whereas the affinity remained unchanged in MDA-MB-231 and BT-20 cells. In addition, progesterone receptor levels are decreased after TPA treatment in the hormone-dependent cell lines MCF-7, T-47-D, and ZR-75-1, whereas the estrogen receptor levels remained unchanged. Tumor promoters such as TPA or teleocidin inhibited the proliferation of these cell lines at concentrations above 10 microM with the exception of the T-47-D cells. The most sensitive cell line towards growth inhibition by tumor promoter was the hormone-dependent MCF-7 cell line. Evaluation of different TPA analogs indicated a positive correlation between the growth-inhibitory effects and their ability to stimulate the subcellular redistribution of protein kinase C activity in MCF-7 cells. These data suggest a protein kinase C-mediated down-regulation of the progesterone receptor concentration and of the EGF receptor affinity, which is supposed to mediate the mitogenic response. Furthermore, these results support the hypothesis that the tumor-derived growth factors induced by estradiol act via the EGF receptor in hormone-dependent mammary carcinoma cells. PMID:3006036

  12. Similarity of GATA-3 Expression between Rat and Human Mammary Glands.

    PubMed

    Kinoshita, Yuichi; Yoshizawa, Katsuhiko; Emoto, Yuko; Yuki, Michiko; Yuri, Takashi; Shikata, Nobuaki; Tsubura, Airo

    2014-07-01

    The GATA family members are zinc finger transcription factors involved in cell differentiation and proliferation. In particular, GATA-3 is necessary for mammary gland maturation and is a useful marker in the characterization of mammary carcinoma in humans. The expression of GATA-3 protein in normal mammary glands, fibroadenomas and carcinomas was immunohistochemically compared in female rats and humans. In normal mammary glands of rats and humans, scattered luminal cells in the acini and whole ductal epithelial cells were positive for GATA-3 in the nuclei. No positive cells were detected in rat or human fibroadenomas. In rat and human mammary carcinomas, the nuclei of proliferating luminal-derived cancer cells expressed GATA-3. Therefore, GATA-3 protein is a candidate marker for mammary carcinoma in rats as well as humans.

  13. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    PubMed

    Girard, Brian J; Regan Anderson, Tarah M; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L; Ostrander, Julie H

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.

  14. Cytoplasmic PELP1 and ERRgamma Protect Human Mammary Epithelial Cells from Tam-Induced Cell Death

    PubMed Central

    Girard, Brian J.; Regan Anderson, Tarah M.; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L.; Ostrander, Julie H.

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness. PMID:25789479

  15. Comparison of human coagulation factor VIII expression directed by cytomegalovirus and mammary gland-specific promoters in HC11 cells and transgenic mice.

    PubMed

    Wang, Qing; Hao, Siguo; Ma, Liyuan; Zhang, Wenhao; Wan, Jiangbo; Deng, Xiaohui

    2015-10-01

    Hemophilia A is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. The conventional treatment involves the administration of recombinant human FVIII (rhFVIII) preparations. In this study, the mammary gland 'bioreactor' is designed to specifically and efficiently express a foreign protein hFVIII in the mammary glands of transgenic mice. We constructed a P1A3-hFVIIIBD vector directed by the mammary gland-specific P1A3 promoter, and transiently transfected HC11 cells and mouse mammary glands with P1A3-hFVIIIBD or CMV-hFVIIIBD vectors directed by a ubiquitous cytomegalovirus (CMV) promoter, respectively. We also generated P1A3-hFVIIIBD and CMV-hFVIIIBD transgenic mice by microinjection, respectively. Our data indicated that both vectors effectively expressed hFVIIIBD in HC11 cells at the transcription level, and hFVIIIBD protein was efficiently expressed in mouse milk after the injection of the hFVIIIBD vectors into mouse mammary glands during lactation. In both CMV-hFVIIIBD and P1A3-hFVIIIBD transgenic mice, hFVIIIBD proteins were efficiently expressed in the mammary glands at the mRNA and protein levels. No significant difference was observed in hFVIIIBD levels between the CMV-hFVIIIBD and P1A3-hFVIIIBD transgenic mice (P > 0.05). However, the activity of hFVIII in CMV-directed transgenic mice was slightly higher than that in P1A3-directed transgenic mice (P < 0.05). While hFVIIIBD was present in multiple organs in CMV-hFVIIIBD mice, P1A3-hFVIIIBD mice showed negligible hFVIIIBD expression in organs other than the mammary glands. This study demonstrated that the mammary gland-specific P1A3-hFVIIIBD vector was more suitable for the generation of hFVIIIBD mammary gland bioreactor.

  16. Visible micro-Raman spectroscopy of single human mammary epithelial cells exposed to x-ray radiation.

    PubMed

    Delfino, Ines; Perna, Giuseppe; Lasalvia, Maria; Capozzi, Vito; Manti, Lorenzo; Camerlingo, Carlo; Lepore, Maria

    2015-03-01

    A micro-Raman spectroscopy investigation has been performed in vitro on single human mammary epithelial cells after irradiation by graded x-ray doses. The analysis by principal component analysis (PCA) and interval-PCA (i-PCA) methods has allowed us to point out the small differences in the Raman spectra induced by irradiation. This experimental approach has enabled us to delineate radiation-induced changes in protein, nucleic acid, lipid, and carbohydrate content. In particular, the dose dependence of PCA and i-PCA components has been analyzed. Our results have confirmed that micro-Raman spectroscopy coupled to properly chosen data analysis methods is a very sensitive technique to detect early molecular changes at the single-cell level following exposure to ionizing radiation. This would help in developing innovative approaches to monitor radiation cancer radiotherapy outcome so as to reduce the overall radiation dose and minimize damage to the surrounding healthy cells, both aspects being of great importance in the field of radiation therapy. PMID:25769498

  17. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells

    SciTech Connect

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-11-04

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.

  18. Exome-wide Mutation Profile in Benzo[a]pyrene-derived Post-stasis and Immortal Human Mammary Epithelial Cells

    PubMed Central

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-01-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and towards immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355

  19. Metabolism of benzo(a)pyrene by human mammary epithelial cells: toxicity and DNA adduct formation

    SciTech Connect

    Stampfer, M.R.; Batholomew, J.C.; Smith, H.S.; Bartley, J.C.

    1981-10-01

    Pure cultures of human breast epithelial cells and of fibroblastic cells in early passage provided the opportunity to ask whether either cell type had the capability for metabolizing chemical carcinogens and, if so, was the fate of the metabolic products compatible with chemical carcinogens being a factor in the initiation of breast cancer in women. For this purpose, cells were exposed to benzo(a)pyrene(BaP), and (i) the influence on growth potential and (ii) the extent, type, and persistence of adducts between the metabolites of BaP and DNA were measured. Compared with fibroblasts, inhibition of growth by epithelial cells was 50-100 times more sensitive to BaP. Because of this differential sensitivity, epithelial cells were exposed to 0.4 ..mu..M BaP and fibroblasts were exposed to 4.0 ..mu..M BaP in the studies of DNA adduct formation. Separation by high-pressure liquid chromatography of adducts between (+/-)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BaP diol epoxide) and nucleosides from purified DNA revealed that epithelial cells contained modified DNA within 6 hr after adding BaP. Adducts between the 7R anti stereoisomer of BaP diol epoxide and deoxyguanosine predominated at all times. syn BaP diol epoxide adducts with deoxyguanosine and what appeared to be BaP diol epoxide adducts with deoxycytidine were consistently present but at much lower frequency. All three types of BaP diol epoxide-DNA adducts persisted in epithelial cells for 72 hr in BaP-free medium. No adducts were detected in fibroblastic cultures until 96 hr after first exposure to BaP. At this time, the type and extent of BaP diol epoxide-DNA adduct formation was similar to that in epithelial cells exposed to one-tenth the dose of BaP. The type, extent, rate of formation, and persistence of the adducts in human breast epithelial cells was similar to that in cells transformable by exposure to BaP, an indication that they may be targets for chemically induced carcinogenesis.

  20. Stem cells and the developing mammary gland.

    PubMed

    Makarem, Maisam; Spike, Benjamin T; Dravis, Christopher; Kannan, Nagarajan; Wahl, Geoffrey M; Eaves, Connie J

    2013-06-01

    The mammary gland undergoes dynamic changes throughout life. In the mouse, these begin with initial morphogenesis of the gland in the mid-gestation embryo followed by hormonally regulated changes during puberty and later in adulthood. The adult mammary gland contains a hierarchy of cell types with varying potentials for self-maintenance and differentiation. These include cells able to produce complete, functional mammary glands in vivo and that contain daughter cells with the same remarkable regenerative potential, as well as cells with more limited clonogenic activity in vitro. Here we review how applying in vitro and in vivo methods for quantifying these cells in adult mammary tissue to fetal mammary cells has enabled the first cells fulfilling the functional criteria of transplantable, isolated mammary stem cells to be identified a few days before birth. Thereafter, the number of these cells increases rapidly. Populations containing these fetal stem cells display growth and gene expression programs that differ from their adult counterparts but share signatures characteristic of certain types of breast cancer. Such observations reinforce growing evidence of important differences between tissue-specific fetal and adult cells with stem cell properties and emphasize the merits of investigating their molecular basis.

  1. An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer.

    PubMed

    He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y

    2009-06-01

    Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo. PMID:19303628

  2. An immortalized goat mammary epithelial cell line induced with human telomerase reverse transcriptase (hTERT) gene transfer.

    PubMed

    He, Y L; Wu, Y H; He, X N; Liu, F J; He, X Y; Zhang, Y

    2009-06-01

    Although mammary epithelial cell lines can provide a rapid and reliable indicator of gene expression efficiency of transgenic animals, their short lifespan greatly limits this application. To provide stable and long lifespan cells, goat mammary epithelial cells (GMECs) were transduced with pLNCX2-hTERT by retrovirus-mediated gene transfer. Transduced GMECs were evaluated by reverse transcriptase polymerase chain reaction (RT-PCR), proliferation assays, karyotype analysis, telomerase activity assay, western blotting, soft agar assay, and injection into nude mice. Non-transduced GMECs were used as a control. The hTERT-GMECs had higher telomerase activity and extended proliferative lifespan compared to non-transfected GMECs; even after Passage 50, hTERT-GMECs had a near diploid complement of chromosomes. Furthermore, they did not gain the anchorage-independent growth property and were not associated with a malignant phenotype in vitro or in vivo.

  3. Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2

    PubMed Central

    Kaminker, Patrick; Plachot, Cedric; Kim, Sahn-Ho; Chung, Peter; Crippen, Danielle; Petersen, Ole W.; Bissell, Mina J.; Campisi, Judith; Lelièvre, Sophie A.

    2010-01-01

    Summary Nuclear organization, such as the formation of specific nuclear subdomains, is generally thought to be involved in the control of cellular phenotype; however, there are relatively few specific examples of how mammalian nuclei organize during radical changes in phenotype, such as those occurring during differentiation and growth arrest. Using human mammary epithelial cells in which growth arrest is essential for morphological differentiation, we show that the arrest of cell proliferation is accompanied by a reorganization of the telomere-associated protein, TIN2, into one to three large nuclear subdomains. The large TIN2 domains do not contain telomeres and occur concomitant with the continued presence of TIN2 at telomeres. The TIN2 domains were sensitive to DNase, but not RNase, occurred frequently, but not exclusively near nucleoli, and overlapped often with dense domains containing heterochromatin protein 1γ. Expression of truncated forms of TIN2 simultaneously prevented the formation of TIN2 domains and relaxed the stringent morphogenesis-induced growth arrest in human mammary epithelial cells. Here we show that a novel extra-telomeric organization of TIN2 is associated with the control of cell proliferation and identify TIN2 as an important regulator of mammary epithelial differentiation. PMID:15741234

  4. YB-1 transforms human mammary epithelial cells through chromatin remodeling leading to the development of basal-like breast cancer

    PubMed Central

    Davies, Alastair H.; Reipas, Kristen M.; Pambid, Mary Rose; Berns, Rachel; Stratford, Anna L.; Fotovati, Abbas; Firmino, Natalie; Astanehe, Arezoo; Hu, Kaiji; Maxwell, Christopher; Mills, Gordon B.; Dunn, Sandra E.

    2015-01-01

    There is growing evidence that cancer-initiation could result from epigenetic changes. Y-box binding protein-1 (YB-1) is a transcription/translation factor that promotes the formation of tumors in transgenic mice; however, the underlying molecular events are not understood. To explore this in a human model system, YB-1 was expressed in mammary epithelial cells under the control of a tetracycline-inducible promoter. The induction of YB-1 promoted phenotypes associated with malignancy in three-dimensional breast acini cultures. This was attributed to YB-1 enhancing the expression and activity of the histone acetyltransferase p300 leading to chromatin remodeling. Specifically, this relaxation of chromatin allowed YB-1 to bind to the BMI1 promoter. The induction of BMI1 engaged the Polycomb complex resulting in histone H2A ubiquitylation and repression of the CDKN2A locus. These events manifested functionally as enhanced self-renewal capacity that occurred in a BMI1-dependent manner. Conversely, p300 inhibition with anacardic acid prevented YB-1 from binding to the BMI1 promoter and thereby subverted self-renewal. Despite these early changes, full malignant transformation was not achieved until RSK2 became overexpressed concomitant with elevated hTERT activity. The YB-1/RSK2/hTERT expressing cells formed tumors in mice that were molecularly subtyped as basal-like breast cancer. We conclude that YB-1 cooperates with p300 to allow BMI1 to over-ride p16INK4a-mediated cell cycle arrest enabling self-renewal and the development of aggressive breast tumors. PMID:24648416

  5. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells

    DOE PAGES

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-11-04

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less

  6. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells

    PubMed Central

    2011-01-01

    Introduction The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5′ DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents. Methods Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively. Results We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome

  7. Culture and characterization of mammary cancer stem cells in mammospheres.

    PubMed

    Piscitelli, Eleonora; Cocola, Cinzia; Thaden, Frank Rüdiger; Pelucchi, Paride; Gray, Brian; Bertalot, Giovanni; Albertini, Alberto; Reinbold, Rolland; Zucchi, Ileana

    2015-01-01

    Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.

  8. Human MCF10A Mammary Epithelial Cells Undergo Apoptosis following Actin Depolymerization That Is Independent of Attachment and Rescued by Bcl-2

    PubMed Central

    Martin, Stuart S.; Leder, Philip

    2001-01-01

    Many tumor cells are impaired in adhesion-regulated apoptosis, which contributes to their metastatic potential. However, suppression of this apoptotic pathway in untransformed cells is not mediated only by adhesion to the extracellular matrix but also through the resulting ability to spread and adopt a distinct morphology. Since cell spreading is dependent on the integrity of the actin microfilament cytoskeleton, we sought to determine if actin depolymerization was sufficient to induce apoptosis, even in the presence of continuous attachment. For this study, we used a human mammary epithelial cell line (MCF10A), which is immortalized but remains adhesion dependent for survival. Treatment of MCF10A cells with latrunculin-A (LA), an inhibitor of actin polymerization, rapidly led to disruption of the actin cytoskeleton and caused cell rounding but preserved attachment. Initiation of apoptosis in LA-treated MCF10A cells was detected by mitochondrial localization of the Bax apoptotic protein, which was prevented by overexpression of Bcl-2. DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage in LA-treated MCF10A cells indicated progression to the execution phase of apoptosis. The MDA-MB-453 cell line, which was derived from a metastatic human mammary tumor, was resistant to PARP cleavage and loss of viability in response to actin depolymerization. Stable overexpression of Bcl-2 in the untransformed MCF10A cells was able to recapitulate the resistance to apoptosis found in the tumor cell line. We demonstrate that inhibition of actin polymerization is sufficient to stimulate apoptosis in attached MCF10A cells, and we present a novel role for Bcl-2 in cell death induced by direct disruption of the actin cytoskeleton. PMID:11533241

  9. Human MCF10A mammary epithelial cells undergo apoptosis following actin depolymerization that is independent of attachment and rescued by Bcl-2.

    PubMed

    Martin, S S; Leder, P

    2001-10-01

    Many tumor cells are impaired in adhesion-regulated apoptosis, which contributes to their metastatic potential. However, suppression of this apoptotic pathway in untransformed cells is not mediated only by adhesion to the extracellular matrix but also through the resulting ability to spread and adopt a distinct morphology. Since cell spreading is dependent on the integrity of the actin microfilament cytoskeleton, we sought to determine if actin depolymerization was sufficient to induce apoptosis, even in the presence of continuous attachment. For this study, we used a human mammary epithelial cell line (MCF10A), which is immortalized but remains adhesion dependent for survival. Treatment of MCF10A cells with latrunculin-A (LA), an inhibitor of actin polymerization, rapidly led to disruption of the actin cytoskeleton and caused cell rounding but preserved attachment. Initiation of apoptosis in LA-treated MCF10A cells was detected by mitochondrial localization of the Bax apoptotic protein, which was prevented by overexpression of Bcl-2. DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage in LA-treated MCF10A cells indicated progression to the execution phase of apoptosis. The MDA-MB-453 cell line, which was derived from a metastatic human mammary tumor, was resistant to PARP cleavage and loss of viability in response to actin depolymerization. Stable overexpression of Bcl-2 in the untransformed MCF10A cells was able to recapitulate the resistance to apoptosis found in the tumor cell line. We demonstrate that inhibition of actin polymerization is sufficient to stimulate apoptosis in attached MCF10A cells, and we present a novel role for Bcl-2 in cell death induced by direct disruption of the actin cytoskeleton.

  10. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors

    PubMed Central

    Callahan, Robert; Mudunuri, Uma; Bargo, Sharon; Raafat, Ahmed; McCurdy, David; Boulanger, Corinne; Lowther, William; Stephens, Robert; Luke, Brian T.; Stewart, Claudia; Wu, Xiaolin; Munroe, David; Smith, Gilbert H.

    2012-01-01

    The accumulation of mutations is a contributing factor in the initiation of premalignant mammary lesions and their progression to malignancy and metastasis. We have used a mouse model in which the carcinogen is the mouse mammary tumor virus (MMTV) which induces clonal premalignant mammary lesions and malignant mammary tumors by insertional mutagenesis. Identification of the genes and signaling pathways affected in MMTV-induced mouse mammary lesions provides a rationale for determining whether genetic alteration of the human orthologues of these genes/pathways may contribute to human breast carcinogenesis. A high-throughput platform for inverse PCR to identify MMTV-host junction fragments and their nucleotide sequences in a large panel of MMTV-induced lesions was developed. Validation of the genes affected by MMTV-insertion was carried out by microarray analysis. Common integration site (CIS) means that the gene was altered by an MMTV proviral insertion in at least two independent lesions arising in different hosts. Three of the new genes identified as CIS for MMTV were assayed for their capability to confer on HC11 mouse mammary epithelial cells the ability for invasion, anchorage independent growth and tumor development in nude mice. Analysis of MMTV induced mammary premalignant hyperplastic outgrowth (HOG) lines and mammary tumors led to the identification of CIS restricted to 35 loci. Within these loci members of the Wnt, Fgf and Rspo gene families plus two linked genes (Npm3 and Ddn) were frequently activated in tumors induced by MMTV. A second group of 15 CIS occur at a low frequency (2-5 observations) in mammary HOGs or tumors. In this latter group the expression of either Phf19 or Sdc2 was shown to increase HC11 cells invasion capability. Foxl1 expression conferred on HC11 cells the capability for anchorage-independent colony formation in soft agar and tumor development in nude mice. The published transcriptome and nucleotide sequence analysis of gene

  11. Bovine mammary stem cells: Cell biology meets production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  12. Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics.

    PubMed

    Choudhury, Sibgat; Almendro, Vanessa; Merino, Vanessa F; Wu, Zhenhua; Maruyama, Reo; Su, Ying; Martins, Filipe C; Fackler, Mary Jo; Bessarabova, Marina; Kowalczyk, Adam; Conway, Thomas; Beresford-Smith, Bryan; Macintyre, Geoff; Cheng, Yu-Kang; Lopez-Bujanda, Zoila; Kaspi, Antony; Hu, Rong; Robens, Judith; Nikolskaya, Tatiana; Haakensen, Vilde D; Schnitt, Stuart J; Argani, Pedram; Ethington, Gabrielle; Panos, Laura; Grant, Michael; Clark, Jason; Herlihy, William; Lin, S Joyce; Chew, Grace; Thompson, Erik W; Greene-Colozzi, April; Richardson, Andrea L; Rosson, Gedge D; Pike, Malcolm; Garber, Judy E; Nikolsky, Yuri; Blum, Joanne L; Au, Alfred; Hwang, E Shelley; Tamimi, Rulla M; Michor, Franziska; Haviv, Izhak; Liu, X Shirley; Sukumar, Saraswati; Polyak, Kornelia

    2013-07-01

    Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.

  13. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    SciTech Connect

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Davey, Robert A.; Ross, Susan R.

    2008-11-25

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment.

  14. Mammary Stem Cells: A Clinician's View.

    PubMed

    Schneider, José

    2015-01-01

    Mammary stem cells were identified and isolated more than a decade ago and, although much remains to be learned, a lot has been revealed about their properties and behavior. Yet there is a gap between the newly acquired knowledge and its successful clinical application. This chapter presented a critical view from the perspective of a clinician. PMID:26040694

  15. Mammary stem cells: expansion and animal productivity

    PubMed Central

    2014-01-01

    Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally. PMID:25057352

  16. Mammary stem cells: expansion and animal productivity.

    PubMed

    Choudhary, Ratan K

    2014-01-01

    Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally.

  17. Pleiotrophin (PTN) expression and function and in the mouse mammary gland and mammary epithelial cells.

    PubMed

    Rosenfield, Sonia M; Bowden, Emma T; Cohen-Missner, Shani; Gibby, Krissa A; Ory, Virginie; Henke, Ralf T; Riegel, Anna T; Wellstein, Anton

    2012-01-01

    Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.

  18. Regulation of expression of N-methylpurine DNA glycosylase in human mammary epithelial cells: role of transcription factor AP-2.

    PubMed

    Cerda, S R; Chu, S S; Garcia, P; Chung, J; Grumet, J D; Thimmapaya, B; Weitzman, S A

    1999-11-01

    The DNA repair enzyme, N-methylpurine DNA glyclosylase (MPG), is overexpressed in breast cancer as compared with its expression in normal breast epithelial cells. In an effort to determine the mechanism responsible for this difference in expression, we studied rates and regulation of transcription of the MPG gene in normal (HMEC), spontaneously immortalized (MCF10A), and malignant (T47D) mammary epithelial cells. Steady state levels of MPG mRNA are 3-4-fold greater in T47D cells than in MCF10A cells. Nuclear "run-off" transcription measurements revealed MPG transcription rates to be approximately 3-fold greater in the tumor cells than in normal cells. Characterization of the MPG promoter by deletion analysis and transient transfection experiments revealed that all basal promoter activity resided between nucleotides -227 and -81 upstream from the ATG translation start site. Constructs containing this region were expressed at 4-fold greater levels when transfected into malignant T47D cells (56 x baseline) than in MCF10A cells (14 x baseline). Computer database analysis of the region of nucleotides -227 to -81 revealed multiple overlapping Sp1 consensus binding sites and two overlapping consensus AP-2 binding sites located between bases -181 and -169. Electrophoretic mobility shift assays indicated that while Sp1 bound this region of the promoter, nuclear extracts from both cell types contained equal Sp1 binding activity. In contrast, AP-2 binding activity was significantly greater in T47D cells, and Western blots confirmed increased AP-2 protein levels in these cells. Cotransfection into MCF10A cells of the MPG promoter construct and an AP-2 expression plasmid increased MPG promoter activity 2.1-fold. Cotransfection of a dominant negative mutant of AP-2 into T47D cells reduced the extent of MPG promoter-driven transcription by 50%. To investigate the functional significance of the two overlapping AP-2 consensus binding sites, each site was mutated separately

  19. Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse.

    PubMed

    Outzen, H C; Custer, R P

    1975-12-01

    Dysplastic and malignant human breast tissues were grown successfully in the cleared mammary fat pads (CFP) of nude mice. The mammary fat pads were cleared while the mice were in a germfree isolator. Prepared mice were removed fron the germfree enviornment to facilitate transplantation of the human mammary tissue into their CFP and subsequently were maintained in sterile laminar flow racks.

  20. Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells.

    PubMed

    Teh, Jessica L F; Shah, Raj; La Cava, Stephanie; Dolfi, Sonia C; Mehta, Madhura S; Kongara, Sameera; Price, Sandy; Ganesan, Shridar; Reuhl, Kenneth R; Hirshfield, Kim M; Karantza, Vassiliki; Chen, Suzie

    2015-05-01

    Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60-80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential

  1. Three-Dimensional Cultures of Mouse Mammary Epithelial Cells

    PubMed Central

    Mroue, Rana; Bissell, Mina J.

    2013-01-01

    The mammary gland is an ideal “model organism” for studying tissue specificity and gene expression in mammals: it is one of the few organs that develop after birth and it undergoes multiple cycles of growth, differentiation and regression during the animal’s lifetime in preparation for the important function of lactation. The basic “functional differentiation” unit in the gland is the mammary acinus made up of a layer of polarized epithelial cells specialized for milk production surrounded by myoepithelial contractile cells, and the two-layered structure is surrounded by basement membrane. Much knowledge about the regulation of mammary gland development has been acquired from studying the physiology of the gland and of lactation in rodents. Culture studies, however, were hampered by the inability to maintain functional differentiation on conventional tissue culture plastic. We now know that the microenvironment, including the extracellular matrix and tissue architecture, plays a crucial role in directing functional differentiation of organs. Thus, in order for culture systems to be effective experimental models, they need to recapitulate the basic unit of differentiated function in the tissue or organ and to maintain its three-dimensional (3D) structure. Mouse mammary culture models evolved from basic monolayers of cells to an array of complex 3D systems that observe the importance of the microenvironment in dictating proper tissue function and structure. In this chapter, we focus on how 3D mouse mammary epithelial cultures have enabled investigators to gain a better understanding of the organization, development and function of the acinus, and to identify key molecular, structural, and mechanical cues important for maintaining mammary function and architecture. The accompanying chapter of Vidi et al. describes 3D models developed for human cells. Here, we describe how mouse primary epithelial cells and cell lines—essentially those we use in our

  2. Mammary Adipose Tissue-Derived Lysophospholipids Promote Estrogen Receptor-Negative Mammary Epithelial Cell Proliferation.

    PubMed

    Volden, Paul A; Skor, Maxwell N; Johnson, Marianna B; Singh, Puneet; Patel, Feenalie N; McClintock, Martha K; Brady, Matthew J; Conzen, Suzanne D

    2016-05-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiologic and pathologic processes, including cancer. LPA is converted from lysophosphatidylcholine (LPC) by the secreted phospholipase autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA levels. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA axis) signaling to breast cancer is poorly understood. Using murine mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. Cancer Prev Res; 9(5); 367-78. ©2016 AACR. PMID:26862086

  3. Quantitation of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene binding to nuclear macromolecules in human and rat mammary epithelial cells.

    PubMed

    Moore, C J; Eldridge, S R; Tricomi, W A; Gould, M N

    1987-05-15

    Our laboratory has developed virtually identical techniques for the isolation and culture of mammary epithelial cells (MEC) from rats and humans. In a cell-mediated mutagenesis assay, rat MEC activated 7,12-dimethylbenz(a)anthracene (DMBA) but not benzo(a)pyrene [B(a)P] to mutagenic forms, and the opposite pattern was found with human MEC. These species-specific patterns were not readily explained by either qualitative or quantitative differences in Phase I metabolism of these compounds. In contrast, relative levels of covalent binding of these compounds to DNA in the human and rat cells under identical assay conditions generally parallel the pattern of the mutagenesis results, while not reflecting the absolute levels of metabolism in each system. The ability of the rat MEC to bind relatively higher levels of DMBA than B(a)P to nuclear DNA, and the reversed pattern in human MEC, was found at all incubation times tested between 6 and 48 h. Culture density was found to exert a greater effect on the levels of PAH-DNA binding in rat than in human cells, but in neither case did it affect the ratio of DMBA to B(a)P binding within a species. C2SO4 gradient separation of nuclear macromolecules from PAH-treated MEC revealed that the relative DNA binding levels of DMBA and B(a)P did not correlate with relative levels of nuclear protein binding. For both species, nuclear (DNA + protein) binding levels of B(a)P were approximately 2-fold higher than DMBA. However, these binding levels were 4 to 5-fold higher for both carcinogens in the human than in the rat MEC. The species-specific patterns of PAH activation shown by these cells suggest that caution should be used in extrapolating rodent carcinogenesis data to humans, for either quantitative or qualitative purposes.

  4. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  5. Mammary Fat Can Adjust Prolactin Effect on Mammary Epithelial Cells via Leptin and Estrogen.

    PubMed

    Feuermann, Yonatan; Mabjeesh, Sameer J; Shamay, Avi

    2009-01-01

    Leptin, like estrogen, is one of the endo/paracrine factors, which are synthesized in and secreted from mature adipocytes. The roles of the mammary fat pad and mammary adipocytes in the initiation of lactation are not clear. In this study, we showed that combination of prolactin, leptin and estrogen elevated the expression of the milk protein beta-lactoglobulin. We also showed that after prolactin stimulate the secretion of leptin from the mammary fat, leptin upregulated the expression of estrogen receptor alpha in the mammary epithelial cells. Also, prolactin affected aromatase mRNA expression in the bovine mammary fat and we demonstrated that leptin and prolactin can affect cholesterol secretion from explants in culture to the medium. Therefore, we suggest that prolactin initiates estrogen expression (as represented by aromatase mRNA) in the mammary fat pad, whereas leptin stimulates estrogen receptor alpha expression in the mammary epithelial cells. We hypothesize that leptin and estrogen, secreted from the mammary fat regulate lactation after stimulation of prolactin. PMID:20049155

  6. Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress

    PubMed Central

    Domínguez, Daniel; Feijoo, Purificación; Bernal, Aina; Ercilla, Amaia; Agell, Neus; Genescà, Anna; Tusell, Laura

    2015-01-01

    Virtually all human cancers display chromosome instability (CIN), a condition in which chromosomes are gained or lost at a high rate. CIN occurs early in cancer development where it may undermine the advance of the neoplastic disease. With the aim of establishing the mechanisms underlying CIN in cancer, we investigated possible links between telomere-dysfunction and centrosome defects, which were seen to coincide in early in breast carcinogenesis using human mammary epithelial cells (HMECs). In this study, we show that TP53 proficient vHMECs cells develop centrosome aberrations when telomere-dysfunction genotoxic stress is produced in the presence of a defective p16INK4a setting and in parallel with an activation of the DNA damage checkpoint response. These aberrations consist of the accumulation of centrosomes in polyploid vHMECs, plus centriole overduplication in both diploid and polyploid cells, thus reflecting that distinct mechanisms underlie the generation of centrosome aberrations in vHMECs. Transduction of vHMEC with hTERT, which rescued the telomere dysfunction phenotype and consequently reduced DNA damage checkpoint activation, led to a progressive reduction of centrosome aberrations with cell culture, both in diploid and in polyploid vHMECs. Radiation-induced DNA damage also raised centrosome aberrations in vHMEC-hTERT. Collectively, our results, using vHMECs define a model where p16INK4a deficiency along with short dysfunctional telomeres cooperatively engenders centrosome abnormalities before p53 function is compromised. PMID:26318587

  7. Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21.

    PubMed

    Khaidakov, Magomed; Mehta, Jawahar L

    2012-01-01

    Dyslipidemia and obesity are primary risk factors for the development of atherosclerosis and are also epidemiologically linked to increased susceptibility to a variety of cancers including breast cancer. One of the prominent features of dyslipidemia is enhanced production of oxidized LDL (ox-LDL), which has been shown to be implicated in key steps of atherogenesis including inflammatory signaling and proliferation of vascular cells. In this study we analyzed the effects of ox-LDL in human mammary epithelial cells (MCF10A). MCF10A cells avidly internalized dil-ox-LDL and exhibited increased proliferative response to ox-LDL within the range of 1-50 µg/ml in a dose-dependent manner. Treatment of cells with 20 µg/ml ox-LDL for 2 and 12 hours was associated with upregulation of LOX-1 and CD36 scavenger receptors while MSR1 and CXLC16 receptors did not change. Ox-LDL-treated cells displayed significant upregulation of NADPH oxidases (subunits P22(phox) and P47(phox)), lipoxygenases-12 and -15, and cytoplasmic, but not mitochondrial, SOD. Ox-LDL also triggered phosphorylation of IκBα coupled with nuclear translocation of NF-κB and stimulated p44/42 MAPK, PI3K and Akt while intracellular PTEN (PI3K/Akt pathway inhibitor and target of miR-21) declined. Quantitative PCR revealed increased expression of hsa-miR-21 in ox-LDL treated cells coupled with inhibition of miR-21 target genes. Further, transfection of MCF10A cells with miR-21 inhibitor prevented ox-LDL mediated stimulation of PI3K and Akt. We conclude that, similarly to vascular cells, mammary epithelial cells respond to ox-LDL by upregulation of proliferative and pro-inflammatory signaling. We also report for the first time that part of ox-LDL triggered reactions in MCF10A cells is mediated by oncogenic hsa-miR-21 through inhibition of its target gene PTEN and consequent activation of PI3K/Akt pathway.

  8. Stem cells in normal mammary gland and breast cancer.

    PubMed

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  9. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    SciTech Connect

    Garbe, James C.; Vrba, Lukas; Sputova, Klara; Fuchs, Laura; Novak, Petr; Brothman, Arthur R.; Jackson, Mark; Chin, Koei; LaBarge, Mark A.; Watts, George; Futscher, Bernard W.; Stampfer, Martha R.

    2014-10-29

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.

  10. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    DOE PAGES

    Garbe, James C.; Vrba, Lukas; Sputova, Klara; Fuchs, Laura; Novak, Petr; Brothman, Arthur R.; Jackson, Mark; Chin, Koei; LaBarge, Mark A.; Watts, George; et al

    2014-10-29

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agentsmore » are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.« less

  11. CELL CONTACTS IN THE MOUSE MAMMARY GLAND

    PubMed Central

    Pitelka, Dorothy R.; Hamamoto, Susan T.; Duafala, Joan G.; Nemanic, Michael K.

    1973-01-01

    The nature and distribution of cell contacts have been examined in thin sections and freeze-fracture replicas of mammary gland samples from female C3H/Crgl mice at stages from birth through pregnancy, lactation, and postweaning involution. Epithelial cells of major mammary ducts at all stages examined are linked at their luminal borders by junctional complexes consisting of tight junctions, variable intermediate junctions, occasional small gap junctions, and one or more series of desmosomes. Scattered desmosomes and gap junctions link ductal epithelial and myoepithelial cells in all combinations; hemidesmosomes attach myoepithelial cells to the basal lamina. Freeze-fracture replicas confirm the erratic distribution of gap junctions and reveal a loose, irregular network of ridges comprising the continuous tight-junctional belts. Alveoli develop early in gestation and initially resemble ducts. Later, as alveoli and small ducts become actively secretory, they lose all desmosomes and most intermediate junctions, whereas tight and gap junctions persist, The tight-junctional network becomes compact and orderly, its undulating ridges oriented predominantly parallel to the luminal surface. It is suggested that these changes in junctional morphology, occurring in secretory cells around parturition, may be related to the greatly enhanced rate of movement of milk precursors and products through the lactating epithelium, or to the profound and recurrent changes in shape of secretory cells that occur in relation to myoepithelial cell contraction, or to both. PMID:4569313

  12. Trefoil Factor 3 Is Oncogenic and Mediates Anti-Estrogen Resistance in Human Mammary Carcinoma123

    PubMed Central

    Kannan, Nagarajan; Kang, Jian; Kong, Xiangjun; Tang, Jianzhong; Perry, Jo K; Mohankumar, Kumarasamypet M; Miller, Lance D; Liu, Edison T; Mertani, Hichem C; Zhu, Tao; Grandison, Prudence M; Liu, Dong-Xu; Lobie, Peter E

    2010-01-01

    We report herein that trefoil factor 3 (TFF3) is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Forced expression of TFF3 in mammary carcinoma cells increased cell proliferation and survival, enhanced anchorage-independent growth, and promoted migration and invasion. Moreover, forced expression of TFF3 increased tumor size in xenograft models. Conversely, depletion of endogenous TFF3 with small interfering RNA (siRNA) decreased the oncogenicity and invasiveness of mammary carcinoma cells. Neutralization of secreted TFF3 by antibody promoted apoptosis, decreased cell growth in vitro, and arrested mammary carcinoma xenograft growth. TFF3 expression was significantly correlated to decreased survival of estrogen receptor (ER)-positive breast cancer patients treated with tamoxifen. Forced expression of TFF3 in mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth, and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. siRNA-mediated depletion or antibody inhibition of TFF3 significantly enhanced the efficacy of antiestrogens. Increased TFF3 expression was observed in tamoxifen-resistant (TAMR) cells and antibody inhibition of TFF3 in TAMR cells improved tamoxifen sensitivity. Functional antagonism of TFF3 therefore warrants consideration as a novel therapeutic strategy for mammary carcinoma. PMID:21170268

  13. Trefoil factor 3 is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma.

    PubMed

    Kannan, Nagarajan; Kang, Jian; Kong, Xiangjun; Tang, Jianzhong; Perry, Jo K; Mohankumar, Kumarasamypet M; Miller, Lance D; Liu, Edison T; Mertani, Hichem C; Zhu, Tao; Grandison, Prudence M; Liu, Dong-Xu; Lobie, Peter E

    2010-12-01

    We report herein that trefoil factor 3 (TFF3) is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Forced expression of TFF3 in mammary carcinoma cells increased cell proliferation and survival, enhanced anchorage-independent growth, and promoted migration and invasion. Moreover, forced expression of TFF3 increased tumor size in xenograft models. Conversely, depletion of endogenous TFF3 with small interfering RNA (siRNA) decreased the oncogenicity and invasiveness of mammary carcinoma cells. Neutralization of secreted TFF3 by antibody promoted apoptosis, decreased cell growth in vitro, and arrested mammary carcinoma xenograft growth. TFF3 expression was significantly correlated to decreased survival of estrogen receptor (ER)-positive breast cancer patients treated with tamoxifen. Forced expression of TFF3 in mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth, and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. siRNA-mediated depletion or antibody inhibition of TFF3 significantly enhanced the efficacy of antiestrogens. Increased TFF3 expression was observed in tamoxifen-resistant (TAMR) cells and antibody inhibition of TFF3 in TAMR cells improved tamoxifen sensitivity. Functional antagonism of TFF3 therefore warrants consideration as a novel therapeutic strategy for mammary carcinoma.

  14. Progesterone generates cancer stem cells through membrane progesterone receptor-triggered signaling in basal-like human mammary cells.

    PubMed

    Vares, Guillaume; Sai, Sei; Wang, Bing; Fujimori, Akira; Nenoi, Mitsuru; Nakajima, Tetsuo

    2015-07-01

    Ionizing radiation and cumulative exposure to steroid hormones are known risk factors for breast cancer. There is increasing evidence that breast tumors are driven by a subpopulation of tumor-initiating cancer stem cells (CSCs). In MCF10A non-cancerous basal-like PR(-) cells, progesterone treatment and X-rays generated ALDH(+) and CD44(+)/CD24(-) CSCs. Here, we report that in irradiated MCF10A cells, progesterone activated the PI3K/Akt pathway via membrane progesterone receptor (mPR). Inhibition of the PI3K/Akt pathway counteracted the generation of CSCs by progesterone and irradiation. The stimulation of PI3K/Akt via mPR resulted in the inactivation of FOXO transcriptional activity, the upregulation of snail and slug expression and a downregulation of miR-29 expression, which led to increased levels of KLF4, a transcription factor required for breast CSC maintenance. Stabilization of miR-29 expression impeded the generation of CSCs, while its inhibition alone was sufficient to generate CSCs. This study provides a new mechanistic basis for progesterone and radiation-induced breast cancer risk in basal cells. In addition, the elucidation of new pathways and miRNA regulations involved in CSC generation and maintenance may open the door to potential novel anti-CSC strategies.

  15. Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland.

    PubMed

    Anderson, Lisa H; Boulanger, Corinne A; Smith, Gilbert H; Carmeliet, Peter; Watson, Christine J

    2011-03-01

    Prominin-1 (Prom1) is recognized as a stem cell marker in several tissues, including blood, neuroepithelium, and gut, and in human and mouse embryos and many cancers. Although Prom1 is routinely used as a marker for isolating stem cells, its biological function remains unclear. Here we use a knockout model to investigate the role of Prom1 in the mammary gland. We demonstrate that complete loss of Prom1 does not affect the regenerative capacity of the mammary epithelium. Surprisingly, we also show that in the absence of Prom1, mammary glands have reduced ductal branching, and an increased ratio of luminal to basal cells. The effects of Prom1 loss in the mammary gland are associated with decreased expression of prolactin receptor and matrix metalloproteinase-3. These experiments reveal a novel, functional role for Prom1 that is not related to stem cell activity, and demonstrate the importance of tissue-specific characterization of putative stem cell markers.

  16. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo.

    PubMed

    Choudhary, Ratan K; Choudhary, Shanti; Kaur, Harmanjot; Pathak, Devendra

    2016-01-01

    Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify

  17. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo.

    PubMed

    Choudhary, Ratan K; Choudhary, Shanti; Kaur, Harmanjot; Pathak, Devendra

    2016-01-01

    Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify

  18. 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-{kappa}B and ERK/MAPK

    SciTech Connect

    Chen Zhihua; Na, Hye-Kyung; Hurh, Yeon-Jin; Surh, Young-Joon . E-mail: surh@plaza.snu.ac.kr

    2005-10-01

    Catechol estrogens, the hydroxylated metabolites of 17{beta}-estradiol (E{sub 2}), have been considered to be implicated in estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE{sub 2}), an oxidized metabolite of E{sub 2} formed preferentially by cytochrome P450 1B1, reacts with DNA to form depurinating adducts thereby exerting genotoxicity and carcinogenicity. 4-OHE{sub 2} undergoes 2-electron oxidation to quinone via semiquinone, and during this process, reactive oxygen species (ROS) can be generated to cause DNA damage and cell death. In the present study, 4-OHE{sub 2} was found to elicit cytotoxicity in cultured human mammary epithelial (MCF-10A) cells, which was blocked by the antioxidant trolox. MCF-10A cells treated with 4-OHE{sub 2} exhibited increased intracellular ROS accumulation and 8-oxo-7,8-dihydroxy-2'-deoxyguanosine formation, and underwent apoptosis as determined by poly(ADP-ribose)polymerase cleavage and disruption of mitochondrial transmembrane potential. The redox-sensitive transcription factor nuclear factor {kappa}B (NF-{kappa}B) was transiently activated by 4-OHE{sub 2} treatment. Cotreatment of MCF-10A cells with the NF-{kappa}B inhibitor, L-1-tosylamido-2-phenylethyl chloromethyl ketone, exacerbated 4-OHE{sub 2}-induced cell death. 4-OHE{sub 2} also caused transient activation of extracellular signal-regulated protein kinases (ERK) involved in transmitting cell survival or death signals. A pharmacological inhibitor of ERK aggravated the 4-OHE{sub 2}-induced cytotoxicity, supporting the pivotal role of ERK in protecting against catechol estrogen-induced oxidative cell death.

  19. Amplification of mouse mammary tumor virus genomes in non-mammary tumor cells.

    PubMed Central

    Racevskis, J; Beyer, H

    1989-01-01

    Extra proviral copies of mouse mammary tumor virus (MMTV) are known to be present in the genomes of certain T-cell lymphomas of mice. Analysis of additional non-mammary tumor cell types known to express MMTV transcripts and antigens revealed the presence of extra acquired MMTV proviruses in a pituitary tumor cell line, a macrophage line, and Leydig testicular tumor cells. The nature of the amplified MMTV proviruses in these various tumor cell types differed with regard to copy number and presence of alterations in the long terminal repeat region. Images PMID:2535749

  20. ERrrr…where are the progenitors? Hormone receptors and mammary cell heterogeneity.

    PubMed

    Tornillo, Giusy; Smalley, Matthew J

    2015-06-01

    The mammary epithelium is a highly heterogenous and dynamic tissue that includes a range of cell types with varying levels of proliferative capacity and differentiation potential, from stem to committed progenitor and mature cells. Generation of mature cells through expansion and specification of immature precursors is driven by hormonal and local stimuli. Intriguingly, although circulating hormones can be directly sensed only by a subset of mammary cells, they also regulate the behaviour of cells lacking their cognate receptors through paracrine mechanisms. Thus, mapping the hormonal signalling network on to the emerging mammary cell hierarchy appears to be a difficult task. Nevertheless, a first step towards a better understanding is the characterization of the hormone receptor expression pattern across individual cell types in the mammary epithelium. Here we review the most relevant findings on the cellular distribution of hormone receptors in the mammary gland, taking into account differences between mice and humans, the methods employed to assess receptor expression as well as the variety of approaches used to resolve the mammary cell heterogeneity.

  1. Developmental biology: cell fate in the mammary gland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most breast cancers have their origin in the luminal epithelial cells of the mammary gland. Defining how a master regulator controls the development of this cell lineage could provide important hints about why this should be. ...

  2. Establishment of mammary gland model in vitro: culture and evaluation of a yak mammary epithelial cell line.

    PubMed

    Fu, Mei; Chen, Yabing; Xiong, Xianrong; Lan, Daoliang; Li, Jian

    2014-01-01

    This study aimed to establish yak mammary epithelial cells (YMECs) for an in vitro model of yak mammary gland biology. The primary culture of YMECs was obtained from mammary gland tissues of lactating yak and then characterized using immunocytochemistry, RT-PCR, and western blot analysis. Whether foreign genes could be transfected into the YMECs were examined by transfecting the EGFP gene into the cells. Finally, the effect of Staphylococcus aureus infection on YMECs was determined. The established YMECs retained the mammary epithelial cell characteristics. A spontaneously immortalized yak mammary epithelial cell line was established and could be continuously subcultured for more than 60 passages without senescence. The EGFP gene was successfully transferred into the YMECs, and the transfected cells could be maintained for a long duration in the culture by continuous subculturing. The cells expressed more antimicrobial peptides upon S.aureus invasion. Therefore, the established cell line could be considered a model system to understand yak mammary gland biology.

  3. Fibronectin Expression Modulates Mammary Epithelial Cell Proliferation during Acinar Differentiation

    PubMed Central

    Williams, Courtney M.; Engler, Adam J.; Slone, R. Daniel; Galante, Leontine L.; Schwarzbauer, Jean E.

    2009-01-01

    The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland. PMID:18451144

  4. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    PubMed

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.

  5. Technical note: Isolation and characterization of porcine mammary epithelial cells.

    PubMed

    Dahanayaka, S; Rezaei, R; Porter, W W; Johnson, G A; Burghardt, R C; Bazer, F W; Hou, Y Q; Wu, Z L; Wu, G

    2015-11-01

    Within the mammary gland, functional synthesis of milk is performed by its epithelial (alveolar) cells. The availability of a stable mammary epithelial cell line is essential for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of lactation. Therefore, porcine mammary epithelial cells (PMEC) were isolated from mammary glands of a 9-mo-old nonpregnant and nonlactating gilt and cultured to establish a nonimmortalized cell line. These cells were characterized by expression of cytokeratin-18 (an intermediate filament specific for epithelial cells), β-casein (a specific marker for mammary epithelial cells), and α-lactalbumin. In culture, the PMEC doubled in number every 24 h and maintained a cobblestone morphology, typical for cultured epithelial cells, for at least 15 passages. Addition of 0.2 to 2 μg/mL prolactin to culture medium for 3 d induced the production of β-casein and α-lactalbumin by PMEC in a dose-dependent manner. Thus, we have successfully developed a useful PMEC line for future studies of cellular and molecular regulation of milk synthesis by mammary epithelial cells of the sow. PMID:26641038

  6. A role for T-lymphocytes in human breast cancer and in canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Queiroga, Felisbina L

    2014-01-01

    Chronic inflammation in the tumor microenvironment has a prominent role in carcinogenesis and benefits the proliferation and survival of malignant cells, promoting angiogenesis and metastasis. Mammary tumors are frequently infiltrated by a heterogeneous population of immune cells where T-lymphocytes have a great importance. Interestingly, similar inflammatory cell infiltrates, cytokine and chemokine expression in humans and canine mammary tumors were recently described. However, in both species, despite all the scientific evidences that appoint for a significant role of T-lymphocytes, a definitive conclusion concerning the effectiveness of T-cell dependent immune mechanisms has not been achieved yet. In the present review, we describe similarities between human breast cancer and canine mammary tumors regarding tumor T-lymphocyte infiltration, such as relationship of TILs and mammary tumors malignancy, association of ratio CD4+/ CD8+ T-cells with low survival rates, promotion of tumor progression by Th2 cells actions, and association of great amounts of Treg cells with poor prognostic factors. This apparent parallelism together with the fact that dogs develop spontaneous tumors in the context of a natural immune system highlight the dog as a possible useful biological model for studies in human breast cancer immunology. PMID:24672781

  7. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells

    SciTech Connect

    Gong, Chunhong; Zhang, Yi; Shankaran, Harish; Resat, Haluk

    2014-10-02

    Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.

  8. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells

    DOE PAGES

    Gong, Chunhong; Zhang, Yi; Shankaran, Harish; Resat, Haluk

    2014-10-02

    Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis tomore » quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.« less

  9. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    PubMed

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis.

  10. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction.

    PubMed

    Alcorn, J; Lu, X; Moscow, J A; McNamara, P J

    2002-11-01

    Transporter-mediated processes in the lactating mammary gland may explain the significant accumulation of certain drugs in breast milk. The purpose of this study was to identify potential candidate drug transport proteins involved in drug accumulation in milk. Quantitative reverse transcription-polymerase chain reaction methods were developed to determine the relative RNA levels of 30 different drug transporter genes. Transporter gene RNA levels in lactating mammary epithelial cells (MEC) purified from pooled fresh breast milk samples were compared with levels in nonlactating MEC, liver, and kidney tissue. Transcripts were detected in lactating MEC for OCT1, OCT3, OCTN1, OCTN2, OATP-A, OATP-B, OATP-D, OATP-E, MRP1, MRP2, MRP5, MDR1, CNT1, CNT3, ENT1, ENT3, NCBT1, PEPT1, and PEPT2. No transcripts were detected for OCT2, OAT1, OAT2, OAT3, OAT4, OATP-C, MRP3, MRP4, CNT2, ENT2, and NCBT2. Lactating MEC demonstrated more than 4-fold higher RNA levels of OCT1, OCTN1, PEPT2, CNT1, CNT3, and ENT3, and more than 4-fold lower RNA levels of MDR1 and OCTN2 relative to nonlactating MEC. Lactating MEC showed significantly higher RNA levels of CNT3 relative to liver and kidney, increased PEPT2 RNA levels relative to liver, and increased OATP-A RNA levels relative to kidney. These data imply CNT3 may play a specialized role in nucleoside accumulation in milk and may identify an important role for PEPT2 and OATP-A transporters at the lactating mammary epithelium. Furthermore, transporters expressed in lactating MEC identify a potential role for these transporters in drug disposition at the mammary gland.

  11. A bcl-xS adenovirus selectively induces apoptosis in transformed cells compared to normal mammary cells.

    PubMed

    Sumantran, V N; Lee, D S; Woods Ignatoski, K M; Ethier, S P; Wicha, M S

    2000-01-01

    Oncogenes which drive the cell cycle, such as c-myc, can sensitize cells to apoptosis. This suggests the possibility that the expression of genes such as bcl-2 or bcl-xL is required to inhibit apoptosis induced by oncogene expression. We hypothesized that inhibition of Bcl-2/Bcl-xL by the pro-apoptotic Bcl-xS protein, would result in selective induction of apoptosis in mammary carcinoma cells compared to their nontransformed counterparts. Therefore, we compared the effects of Bcl-xS expression delivered by a bcl-xS adenovirus (bcl-xS-Adv) vector, on viability and apoptosis of nontransformed versus transformed mammary epithelial cells. We report that c-myc-transformed murine mammary cells are extremely sensitive to apoptosis induced by the bcl-xS adenovirus (bcl-xS-Adv) vector, whereas immortalized, nontransformed murine mammary cells are relatively resistant to apoptosis induced by this vector. Likewise, human mammary epithelial cells transduced with c-erbB-2 were more sensitive to apoptosis induced by the bcl-xS vector than the nontransformed parental cells. Similar results were obtained when we tested the effects of bcl-xS adenoviral infection on primary normal human mammary epithelial cells and SUM-190 PT cells, (a c-erbB-2 over-expressing human mammary carcinoma cell line) grown on Matrigel. These data are consistent with the hypothesis that inhibition of Bcl-2/Bcl-xL can result in selective killing of cancer cells compared to their nontransformed counterparts.

  12. To grow mouse mammary epithelial cells in culture

    PubMed Central

    1984-01-01

    Normal mouse mammary epithelial cells from Balb/c mice were successfully cultivated on tissue culture plastic with lethally irradiated LA7 feeder cells. The feeder cells also promoted colony formation from single mouse mammary cells, and the fraction of cells that formed colonies was proportional to the density of feeder cells. The mouse mammary cells could be passaged at least 8-12 times as long as new feeder cells were added at each passage. The cells now in culture have doubled in number at least 30 times, but the in vitro lifespan is not yet known. The cultures of mouse cells maintained by this technique never became overgrown with fibroblasts and numerous domes formed in the cultures. PMID:6699079

  13. SERMs attenuate estrogen-induced malignant transformation of human mammary epithelial cells by upregulating detoxification of oxidative metabolites.

    PubMed

    Hemachandra, L P Madhubhani P; Patel, Hitisha; Chandrasena, R Esala P; Choi, Jaewoo; Piyankarage, Sujeewa C; Wang, Shuai; Wang, Yijin; Thayer, Emily N; Scism, Robert A; Michalsen, Bradley T; Xiong, Rui; Siklos, Marton I; Bolton, Judy L; Thatcher, Gregory R J

    2014-05-01

    The risk of developing hormone-dependent cancers with long-term exposure to estrogens is attributed both to proliferative, hormonal actions at the estrogen receptor (ER) and to chemical carcinogenesis elicited by genotoxic, oxidative estrogen metabolites. Nontumorigenic MCF-10A human breast epithelial cells are classified as ER(-) and undergo estrogen-induced malignant transformation. Selective estrogen receptor modulators (SERM), in use for breast cancer chemoprevention and for postmenopausal osteoporosis, were observed to inhibit malignant transformation, as measured by anchorage-independent colony growth. This chemopreventive activity was observed to correlate with reduced levels of oxidative estrogen metabolites, cellular reactive oxygen species (ROS), and DNA oxidation. The ability of raloxifene, desmethylarzoxifene (DMA), and bazedoxifene to inhibit this chemical carcinogenesis pathway was not shared by 4-hydroxytamoxifen. Regulation of phase II rather than phase I metabolic enzymes was implicated mechanistically: raloxifene and DMA were observed to upregulate sulfotransferase (SULT 1E1) and glucuronidase (UGT 1A1). The results support upregulation of phase II metabolism in detoxification of catechol estrogen metabolites leading to attenuated ROS formation as a mechanism for inhibition of malignant transformation by a subset of clinically important SERMs.

  14. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells

    PubMed Central

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G.; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E.; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-01-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12–induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12–transformed HMECs that spontaneously escaped H-Ras-V12–induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12–induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer. PMID:22357622

  15. Mast cells in canine cutaneous hemangioma, hemangiosarcoma and mammary tumors.

    PubMed

    Woldemeskel, Moges; Rajeev, Sreekumari

    2010-02-01

    Mast cell count (MCC) in 45 dogs with cutaneous hemangioma (HA, n = 12), hemangiosarcoma (HSA, n = 12), mammary adenoma (AD, n = 9) and mammary adenocarcinoma (AC, n = 12) was made using Toluidine blue stained sections. Antibodies against endothelial cell markers, Factor VIII and VEGF were used to visualize and determine the hot spot micro-vessel density (MVD). Total MCC and MCC along the invasive edges were significantly higher (p < 0.001) in canine mammary AC than in AD. The total MCC did not significantly differ (p > 0.05), in HSAs (8.6 +/- 3.3) than in HAs (5.5 +/- 2.8). There is a positive correlation (r = 0.14) between the hot spot MCC and MVD in mammary AC, although not significant (p = 0.3172), indicating that mast cells are associated with angiogenesis in canine mammary AC. This study suggests that mast cells may play an important role in neovascularization of canine cutaneous vascular and mammary neoplasms. Detailed studies encompassing correlation of MCC and MVD with clinical outcomes and prognosis in these neoplasms are recommended.

  16. Mammary gland development: cell fate specification, stem cells and the microenvironment.

    PubMed

    Inman, Jamie L; Robertson, Claire; Mott, Joni D; Bissell, Mina J

    2015-03-15

    The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the 'stem/progenitor' cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.

  17. Precursors of hexoneogenesis within the human mammary gland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breast...

  18. HGFL supports mammary tumorigenesis by enhancing tumor cell intrinsic survival and influencing macrophage and T-cell responses

    PubMed Central

    Benight, Nancy M.; Wagh, Purnima K.; Zinser, Glendon M.; Peace, Belinda E.; Stuart, William D.; Vasiliauskas, Juozas; Pathrose, Peterson; Starnes, Sandra L.; Waltz, Susan E.

    2015-01-01

    The Ron receptor is overexpressed in human breast cancers and is associated with heightened metastasis and poor survival. Ron overexpression in the mammary epithelium of mice is sufficient to induce aggressive mammary tumors with a high degree of metastasis. Despite the well-documented role of Ron in breast cancer, few studies have examined the necessity of the endogenous Ron ligand, hepatocyte growth factor-like protein (HGFL) in mammary tumorigenesis. Herein, mammary tumor growth and metastasis were examined in mice overexpressing Ron in the mammary epithelium with or without HGFL. HGFL ablation decreased oncogenic Ron activation and delayed mammary tumor initiation. HGFL was important for tumor cell proliferation and survival. HGFL loss resulted in increased numbers of macrophages and T-cells within the tumor. T-cell proliferation and cytotoxicity dramatically increased in HGFL deficient mice. Biochemical analysis of HGFL proficient tumors showed increased local HGFL production, with HGFL loss decreasing β-catenin expression and NF-κB activation. Re-expression of HGFL in HGFL deficient tumor cells stimulated cell migration and invasion with coordinate activation of NF-κB and reduced apoptosis. Together, these results demonstrate critical in vivo functions for HGFL in promoting breast tumorigenesis and suggest that targeting HGFL may inhibit tumor growth and reactivate anti-tumor immune responses. PMID:25938541

  19. Expression of class II beta-tubulin by proliferative myoepithelial cells in canine mammary mixed tumors.

    PubMed

    Arai, K; Nakano, H; Shibutani, M; Naoi, M; Matsuda, H

    2003-11-01

    Benign mammary mixed tumors in dogs resemble human salivary pleomorphic adenomas with regard to their histogenesis, including the occurrence of cartilaginous or bony metaplasia as well as the expression pattern of cytoskeletal proteins in proliferative myoepithelial cells. Recently, a monoclonal antibody specific for class II beta-tubulin has been developed. The epitope it recognizes was determined to be the heptapeptide Glu-Glu-Glu-Glu-Gly-Glu-Asp, which is the common sequence found among the canine, rat, mouse, and human class II beta-tubulin-specific regions. We carried out immunohistochemical studies on mammary mixed tumors obtained from three female dogs using this the monoclonal antibody. The antibody to class II beta-tubulin reacted intensely with proliferative myoepithelial cells in canine mammary mixed tumors, whereas staining was barely detectable in normal myoepithelial cells surrounding alveoli and alveolar ducts within the tumor and adjacent normal tissue. Proliferative myoepithelial cells also expressed vimentin, but alpha-smooth muscle actin (alphaSMA) staining was barely detectable. Immunoblot analysis showed that class II beta-tubulin and vimentin were expressed in myoepithelial cell lines prepared from the three mammary mixed tumors. On the other hand, only one cell line, which was negative for alphaSMA, produced cartilage-specific type II collagen. These results suggest that class II beta-tubulin could be a new molecular marker of proliferating myoepithelial cells in canine mammary mixed tumors and that differential expression of cytoskeletal components is associated with cartilaginous metaplasia of proliferative myoepithelial cells in mixed mammary tumors.

  20. Autophagy regulates keratin 8 homeostasis in mammary epithelial cells and in breast tumors

    PubMed Central

    Kongara, Sameera; Kravchuk, Olga; Teplova, Irina; Lozy, Fred; Schulte, Jennifer; Moore, Dirk; Barnard, Nicola; Neumann, Carola A.; White, Eileen; Karantza, Vassiliki

    2010-01-01

    Autophagy is activated in response to cellular stressors and mediates lysosomal degradation and recycling of cytoplasmic material and organelles as a temporary cell survival mechanism. Defective autophagy is implicated in human pathology, as disruption of protein and organelle homeostasis enables disease-promoting mechanisms such as toxic protein aggregation, oxidative stress, genomic damage and inflammation. We previously showed that autophagy-defective immortalized mouse mammary epithelial cells (iMMECs) are susceptible to metabolic stress, DNA damage and genomic instability. We now report that autophagy deficiency was associated with ER and oxidative stress, and deregulation of p62-mediated keratin homeostasis in mammary cells and allograft tumors and in mammary tissues from genetically engineered mice. In human breast tumors, high phospho(Ser73)-K8 levels inversely correlated with Beclin 1 expression. Thus, autophagy preserves cellular fitness by limiting ER and oxidative stress, a function potentially important in autophagy-mediated suppression of mammary tumorigenesis. Furthermore, autophagy regulates keratin homeostasis in the mammary gland via a p62-dependent mechanism. High phospho(Ser73)-K8 expression may be a marker of autophagy functional status in breast tumors and, as such, could have therapeutic implications for breast cancer patients. PMID:20530580

  1. Sp1 binding plays a critical role in Erb-B2- and v-ras-mediated downregulation of alpha2-integrin expression in human mammary epithelial cells.

    PubMed Central

    Ye, J; Xu, R H; Taylor-Papadimitriou, J; Pitha, P M

    1996-01-01

    The human alpha2-integrin gene is transcriptionally downregulated in a nontumorigenic human mammary epithelial cell line, MTSV1-7, and its clonal variant HB2, overexpressing the Erb-B2 oncogene. In this study, we have used deletion mutations within the alpha2-integrin promoter inserted 5' of the chloramphenicol acetyltransferase or luciferase reporter genes to identify the element that is responsible for the Erb-B2-mediated downregulation. The results of the transient-transfection assay showed that the Sp1 binding element located in the core region (positions --64 to +1) of the alpha2-integrin promoter plays an essential role in the alpha2-integrin promoter activity and its downregulation by Erb-B2. By gel shift assay, we have demonstrated that this element binds with a high degree of affinity not only to Sp1, but also to Sp3. The downregulation of the alpha2-integrin promoter activity could also be achieved by overexpression of v-Hras (v-ras), suggesting that the signals generated by Erb-B2, which lead to downregulation of the alpha2-integrin gene expression, may proceed through the ras pathway. Both the Erb-B2- and the v-ras-overexpressing cells exhibited a Sp1 DNA binding activity lower than that of the parental line, while the relative levels of Sp1 protein in these cells were not altered. The Erb-B2- and v-ras-mediated downregulation could be reversed by the overexpression of Sp1 and by a dominant negative variant of ras (rasN17), confirming the importance of Sp1 and the ras pathway. The inhibitory effects of Erb-B2 on transcriptional activity of the alpha2-integrin promoter were observed in transient-cotransfection assays using alpha2-integrin reporter plasmids and plasmids expressing the Erb-B2 or v-ras oncogene. The same effects were seen when an alpha2-integrin reporter gene construct was transfected into MTSV1-7 or HB2 cells permanently overexpressing Erb-B2 or v-ras. The effects of Erb-B2 or v-ras on the transcriptional activity of the alpha2-integrin

  2. Parsing ERK Activation Reveals Quantitatively Equivalent Contributions From Epidermal Growth Factor Receptor and HER2 In Human Mammary Epithelial Cells

    SciTech Connect

    Hendriks, Bart S.; Orr, Galya; Wells, Alan H.; Wiley, H. S.; Lauffenburger, Douglas A.

    2005-02-18

    HER2, a member of the EGFR tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we apply a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2, and their downstream activation of extracellular signal-related kinase (ERK) to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we can separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrate that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activated ERK are quantitatively equivalent . We find that HER2-mediated effects on EGFR dimerization and trafficking are sufficient to explain the detected HER2-mediated amplification of EGF-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared to the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking, with resultant EGFR sparing, cause the sustained HER2-mediated enhancement of ERK signaling.

  3. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts

    PubMed Central

    Boutinaud, Marion; Herve, Lucile; Lollivier, Vanessa

    2015-01-01

    Milk is produced in the udder by mammary epithelial cells (MEC). Milk contains MEC, which are gradually exfoliated from the epithelium during lactation. Isolation of MEC from milk using immunomagnetic separation may be a useful non-invasive method to investigate transcriptional regulations in ruminants’ udder. This review aims to describe the process of isolating MEC from milk, to provide an overview on the studies that use this method to analyze gene expression by qRT PCR and to evaluate the validity of this method by analyzing and comparing the results between studies. In several goat and cow studies, consistent reductions in alpha-lactalbumin mRNA levels during once-daily milking (ODM) and in SLC2A1 mRNA level during feed restriction are observed. The effect of ODM on alpha-lactalbumin mRNA level was similarly observed in milk isolated MEC and mammary biopsy. Moreover, we and others showed decreasing alpha-lactalbumin and increasing BAX mRNA levels with advanced stages of lactation in dairy cows and buffalo. The relevance of using the milk-isolated MEC method to analyze mammary gene expression is proven, as the transcript variations were also consistent with milk yield and composition variations under the effect of different factors such as prolactin inhibition or photoperiod. However, the RNA from milk-isolated MEC is particularly sensitive to degradation. This could explain the differences obtained between milk-isolated MEC and mammary biopsy in two studies where gene expression was compared using qRT-PCR or RNA Sequencing analyses. As a conclusion, when the RNA quality is conserved, MEC isolated from milk are a valuable, non-invasive source of mammary mRNA to study various factors that impact milk yield and composition (ODM, feeding level, endocrine status, photoperiod modulation, and stage of lactation). PMID:26579195

  4. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1. PMID:26966064

  5. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  6. Differential expression of living mammary epithelial cell subpopulations in milk during lactation in dairy cows.

    PubMed

    Baratta, M; Volpe, M G; Nucera, D; Gabai, G; Guzzo, N; Fustini, M; Faustini, M; Martignani, E

    2015-10-01

    Epithelial cells are shed into milk during lactation, and although they generally reflect the cellular characteristics of terminally differentiated luminal cells, previously the detection of more primitive cells was described in human milk where a cell population of epithelial lineage was detected expressing markers typical of progenitor cells. In this investigation, we report the development of flow cytometry analysis to allow multiparametric assessment of mammary epithelial cells observed in milk. Cells collected from milk samples of 10 healthy dairy cows were directly analyzed for 6 different markers: CD45, CD49f, cytokeratin 14, cytokeratin 18, presence of nucleus, and cell viability. Milk samples were collected in 3 different periods of lactation: early lactation (EL=d 0-30), mid-lactation (ML=d 90-120), and late lactation (LL=210-250). Here we identify the differential expression of precursor or differentiated cell markers (or both) in mammary epithelial cells present in bovine milk. Myoepithelial cells, as indicated by cells staining positively for cytokeratin 14(+)/cytokeratin 18(-), were observed to increase from EL to LL with a high correlation with nuclear staining inferring potential proliferative activity. Furthermore, a significant increase in CD49f(+) and cytokeratin 14(+)/cytokeratin 18(+) positive cells was observed in LL. This assay is a sensitive approach for evaluating the variations in the frequency and features of living epithelial cells, whose reciprocal balance may be significant in understanding mammary gland cellular function throughout lactation. These observations suggest that mammary epithelial cell immunophenotypes could be investigated as biomarkers for mammary gland function in dairy cows.

  7. Oxytocin binding by myoepithelial cell membranes from involuted mammary tissue.

    PubMed

    Ruberti, A; Olins, G M; Eakle, K A; Bremel, R D

    1983-04-29

    Oxytocin binding activity of myoepithelial cell membranes from mammary tissue was measured under a variety of different experimental conditions. Mammary tissue from non-lactating rats bound oxytocin with a Kd of 9.2 +/- 1.6 nM (+/- S.E.) and indicates that receptors are retained by the myoepithelial cells in a non-lactating state. Ovariectomy of non-lactating rats did not depress the binding activity of the membranes. Administration of the estrogenic compounds estradiol-17 beta and diethylstibestrol at doses which affect uterine weight and are known to increase uterine oxytocin binding did not influence the binding activity of the myoepithelial cells. This indicates that the oxytocin receptors of the mammary gland are not under the same endocrine control as the uterine receptors. PMID:6303330

  8. The dynamics of murine mammary stem/progenitor cells

    PubMed Central

    DONG, Qiaoxiang; SUN, Lu-Zhe

    2014-01-01

    The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups. PMID:25580105

  9. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  10. Correlation between CYP1A1 transcript, protein level, enzyme activity and DNA adduct formation in normal human mammary epithelial cell strains exposed to benzo[a]pyrene

    PubMed Central

    Divi, Rao L.; Einem Lindeman, Tracey L.; Shockley, Marie E.; Keshava, Channa; Weston, Ainsley; Poirier, Miriam C.

    2014-01-01

    The polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene (BP) is thought to bind covalently to DNA, through metabolism by cytochrome P450 1A1 (CYP1A1) and CYP1B1, and other enzymes, to form r7, t8, t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]-pyrene (BPdG). Evaluation of RNA expression data, to understand the contribution of different metabolic enzymes to BPdG formation, is typically presented as fold-change observed upon BP exposure, leaving the actual number of RNA transcripts unknown. Here, we have quantified RNA copies/ng cDNA (RNA cpn) for CYP1A1 and CYP1B1, as well as NAD(P)H:quinone oxidoreductase 1 (NQO1), which may reduce formation of BPdG adducts, using primary normal human mammary epithelial cell (NHMEC) strains, and the MCF-7 breast cancer cell line. In unexposed NHMECs, basal RNA cpn values were 58–836 for CYP1A1, 336–5587 for CYP1B1 and 5943–40112 for NQO1. In cells exposed to 4.0 µM BP for 12h, RNA cpn values were 251–13234 for CYP1A1, 4133–57078 for CYP1B1 and 4456–55887 for NQO1. There were 3.5 (mean, range 0.2–15.8) BPdG adducts/108 nucleotides in the NHMECs (n = 16), and 790 in the MCF-7s. In the NHMECs, BP-induced CYP1A1 RNA cpn was highly associated with BPdG (P = 0.002), but CYP1B1 and NQO1 were not. Western blots of four NHMEC strains, chosen for different levels of BPdG adducts, showed a linear correlation between BPdG and CYP1A1, but not CYP1B1 or NQO1. Ethoxyresorufin-O-deethylase (EROD) activity, which measures CYP1A1 and CYP1B1 together, correlated with BPdG, but NQO1 activity did not. Despite more numerous levels of CYP1B1 and NQO1 RNA cpn in unexposed and BP-exposed NHMECs and MCF-7cells, BPdG formation was only correlated with induction of CYP1A1 RNA cpn. The higher level of BPdG in MCF-7 cells, compared to NHMECs, may have been due to a much increased induction of CYP1A1 and EROD. Overall, BPdG correlation was observed with CYP1A1 protein and CYP1A1/1B1 enzyme activity, but not with CYP1B1 or NQO

  11. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line. PMID:20400167

  12. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line.

  13. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  14. Mammary Stem Cell Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    PubMed Central

    Zhang, Zheng; Christin, John R.; Wang, Chunhui; Ge, Kai; Oktay, Maja H.; Guo, Wenjun

    2016-01-01

    SUMMARY Cancer genomics have provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC) organoid-based approach for rapid generation of somatic GEMMs (genetically engineered mouse models). By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study established a robust in vivo platform for functional cancer genomics and discovered functional breast cancer mutations. PMID:27653681

  15. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation.

    PubMed

    Zhang, Zheng; Christin, John R; Wang, Chunhui; Ge, Kai; Oktay, Maja H; Guo, Wenjun

    2016-09-20

    Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC) organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs). By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations. PMID:27653681

  16. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    SciTech Connect

    Booth, Brian W.; Boulanger, Corinne A.; Anderson, Lisa H.; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H.

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.

  17. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer.

    PubMed

    Liu, Deli; Xiong, Huan; Ellis, Angela E; Northrup, Nicole C; Rodriguez, Carlos O; O'Regan, Ruth M; Dalton, Stephen; Zhao, Shaying

    2014-09-15

    Spontaneously occurring canine mammary cancer represents an excellent model of human breast cancer, but is greatly understudied. To better use this valuable resource, we performed whole-genome sequencing, whole-exome sequencing, RNA-seq, and/or high-density arrays on twelve canine mammary cancer cases, including seven simple carcinomas and four complex carcinomas. Canine simple carcinomas, which histologically match human breast carcinomas, harbor extensive genomic aberrations, many of which faithfully recapitulate key features of human breast cancer. Canine complex carcinomas, which are characterized by proliferation of both luminal and myoepithelial cells and are rare in human breast cancer, seem to lack genomic abnormalities. Instead, these tumors have about 35 chromatin-modification genes downregulated and are abnormally enriched with active histone modification H4-acetylation, whereas aberrantly depleted with repressive histone modification H3K9me3. Our findings indicate the likelihood that canine simple carcinomas arise from genomic aberrations, whereas complex carcinomas originate from epigenomic alterations, reinforcing their unique value. Canine complex carcinomas offer an ideal system to study myoepithelial cells, the second major cell lineage of the mammary gland. Canine simple carcinomas, which faithfully represent human breast carcinomas at the molecular level, provide indispensable models for basic and translational breast cancer research. PMID:25082814

  18. Curcuminoid-phospholipid complex induces apoptosis in mammary epithelial cells by STAT-3 signaling

    PubMed Central

    Cucuzza, Laura Starvaggi; Motta, Massimiliano; Miretti, Silvia; Accornero, Paolo

    2008-01-01

    Curcumin (from the rhizome of Curcuma longa) is well documented for its medicinal properties in Indian and Chinese systems of medicine where it is widely used for the treatment of several diseases. Epidemiological observations are suggestive that curcumin consumption may reduce the risk of some form of cancers and provide other protective biological effects in humans. These biological properties have been attributed to curcuminoids that have been widely studied for their anti-inflammatory, anti-angiogenic, antioxidant, wound healing and anti-cancer effects. In this study we have investigated on the effect of a curcumin phospholipid complex on mammary epithelial cell viability. HC11 and BME-UV cell lines, validated models to study biology of normal, not tumoral, mammary epithelial cells, were used to analyse these effects. We report that curcumin acts on STAT-3 signal pathway to reduce cell viability and increase apoptosis evaluated by the the amount of activated caspase 3. Further it reduces MAPK and AKT activations. JSI-124, a STAT-3 inhibitor (100 nM) was able to block the negative effect of curcumin on cell viability and caspase 3 activation. Finally the negative effect of cucumin on cell viability has been impaired in STAT-3i HC11, where STAT-3 protein was greatly reduced by shRNA-interference. These results indicate that curcumin presents a potential adverse effect to normal mammary epithelial cells and that it has a specific effect on signal trasduction in mammary epithelium. PMID:19116450

  19. Mammary epithelial cell phagocytosis downstream of TGF-β3 is characterized by adherens junction reorganization

    PubMed Central

    Fornetti, J; Flanders, K C; Henson, P M; Tan, A-C; Borges, V F; Schedin, P

    2016-01-01

    After weaning, during mammary gland involution, milk-producing mammary epithelial cells undergo apoptosis. Effective clearance of these dying cells is essential, as persistent apoptotic cells have a negative impact on gland homeostasis, future lactation and cancer susceptibility. In mice, apoptotic cells are cleared by the neighboring epithelium, yet little is known about how mammary epithelial cells become phagocytic or whether this function is conserved between species. Here we use a rat model of weaning-induced involution and involuting breast tissue from women, to demonstrate apoptotic cells within luminal epithelial cells and epithelial expression of the scavenger mannose receptor, suggesting conservation of phagocytosis by epithelial cells. In the rat, epithelial transforming growth factor-β (TGF-β) signaling is increased during involution, a pathway known to promote phagocytic capability. To test whether TGF-β enhances the phagocytic ability of mammary epithelial cells, non-transformed murine mammary epithelial EpH4 cells were cultured to achieve tight junction impermeability, such as occurs during lactation. TGF-β3 treatment promoted loss of tight junction impermeability, reorganization and cleavage of the adherens junction protein E-cadherin (E-cad), and phagocytosis. Phagocytosis correlated with junction disruption, suggesting junction reorganization is necessary for phagocytosis by epithelial cells. Supporting this hypothesis, epithelial cell E-cad reorganization and cleavage were observed in rat and human involuting mammary glands. Further, in the rat, E-cad cleavage correlated with increased γ-secretase activity and β-catenin nuclear localization. In vitro, pharmacologic inhibitors of γ-secretase or β-catenin reduced the effect of TGF-β3 on phagocytosis to near baseline levels. However, β-catenin signaling through LiCl treatment did not enhance phagocytic capacity, suggesting a model in which both reorganization of cell junctions and

  20. The antiproliferative effect of bovine lactoferrin on canine mammary gland tumor cells.

    PubMed

    Yamada, Yuichi; Sato, Reeko; Kobayashi, Saori; Hankanga, Careen; Inanami, Osamu; Kuwabara, Mikinori; Momota, Yutaka; Tomizawa, Nobuyuki; Yasuda, Jun

    2008-05-01

    Lactoferrin has several biological activities, including antitumor activities in some human and animal tumor cells. Clinical trials have been carried out in human medicine based on these effects. However, the antitumor effects of lactoferrin in veterinary medicine remain unknown. In this in vitro study, we demonstrated that co-incubation of canine mammary gland tumor cells (CIPp and CHMp) and bovine lactoferrin induced growth arrest of tumor cells. This growth arrest was associated with induction of G1 arrest. Furthermore, this effect was stronger in tumor cells than in normal cells. These findings demonstrate that bovine lactoferrin has anti-tumor activity in canine mammary tumors and has the potential for use in tumor-bearing dogs.

  1. Differential Subcellular Localization Renders HAI-2 a Matriptase Inhibitor in Breast Cancer Cells but Not in Mammary Epithelial Cells

    PubMed Central

    Chang, Hsiang-Hua D.; Xu, Yuan; Lai, Hongyu; Yang, Xiaoyu; Tseng, Chun-Che; Lai, Ying-Jung J.; Pan, Yu; Zhou, Emily; Johnson, Michael D.; Wang, Jehng-Kang; Lin, Chen-Yong

    2015-01-01

    The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells. PMID:25786220

  2. Characterization of an epithelial cell line from bovine mammary gland.

    PubMed

    German, Tania; Barash, Itamar

    2002-05-01

    Elucidation of the bovine mammary gland's unique characteristics depends on obtaining an authentic cell line that will reproduce its function in vitro. Representative clones from bovine mammary cell populations, differing in their attachment capabilities, were cultured. L-1 cells showed strong attachment to the plate, whereas H-7 cells detached easily. Cultures established from these clones were nontumorigenic upon transplantation to an immunodeficient host; they exhibited the epithelial cell characteristics of positive cytokeratin but not smooth muscle actin staining. Both cell lines depended on fetal calf serum for proliferation. They exhibited distinct levels of differentiation on Matrigel in serum-free, insulin-supplemented medium on the basis of their organization and beta-lactoglobulin (BLG) secretion. H-7 cells organized into mammospheres, whereas L-1 cells arrested in a duct-like morphology. In both cell lines, prolactin activated phosphorylation of the signal transducer and activator of transcription, Stat5-a regulator of milk protein gene transcription, and of PHAS-I-an inhibitor of translation initiation in its nonphosphorylated form. De novo synthesis and secretion of BLG were detected in differentiated cultures: in L-1 cells, BLG was dependent on lactogenic hormones for maximal induction but was less stringently controlled than was beta-casein in the mouse CID-9 cell line. L-1 cells also encompassed a near-diploid chromosomal karyotype and may serve as a tool for studying functional characteristics of the bovine mammary gland.

  3. Significance of rat mammary tumors for human risk assessment.

    PubMed

    Russo, Jose

    2015-02-01

    We have previously indicated that the ideal animal tumor model should mimic the human disease. This means that the investigator should be able to ascertain the influence of host factors on the initiation of tumorigenesis, mimic the susceptibility of tumor response based on age and reproductive history, and determine the response of the tumors induced to chemotherapy. The utilization of experimental models of mammary carcinogenesis in risk assessment requires that the influence of ovarian, pituitary, and placental hormones, among others, as well as overall reproductive events are taken into consideration, since they are important modifiers of the susceptibility of the organ to neoplastic development. Several species, such as rodents, dogs, cats, and monkeys, have been evaluated for these purposes; however, none of them fulfills all the criteria specified previously. Rodents, however, are the most widely used models; therefore, this work will concentrate on discussing the rat rodent model of mammary carcinogenesis. PMID:25714400

  4. Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number.

    PubMed

    Ayyanan, Ayyakkannu; Laribi, Ouahiba; Schuepbach-Mallepell, Sonia; Schrick, Christina; Gutierrez, Maria; Tanos, Tamara; Lefebvre, Gregory; Rougemont, Jacques; Yalcin-Ozuysal, Ozden; Brisken, Cathrin

    2011-11-01

    Bisphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane] is one of the highest-volume chemicals produced worldwide. It is detected in body fluids of more than 90% of the human population. Originally synthesized as an estrogenic compound, it is currently utilized to manufacture food and beverage containers resulting in uptake with food and drinks. There is concern that exposure to low doses of BPA, defined as less than or equal to 5 mg/kg body weight /d, may have developmental effects on various hormone-responsive organs including the mammary gland. Here, we asked whether perinatal exposure to a range of low doses of BPA is sufficient to alter mammary gland hormone response later on in life, with a possible impact on breast cancer risk. To mimic human exposure, we added BPA to the drinking water of C57/Bl6 breeding pairs. Analysis of the mammary glands of their daughters at puberty showed that estrogen-dependent transcriptional events were perturbed and the number of terminal end buds, estrogen-induced proliferative structures, was altered in a dose-dependent fashion. Importantly, adult females showed an increase in mammary epithelial cell numbers comparable to that seen in females exposed to diethylbestrol, a compound exposure to which was previously linked to increased breast cancer risk. Molecularly, the mRNAs encoding Wnt-4 and receptor activator of nuclear factor κB ligand, two key mediators of hormone function implicated in control of mammary stem cell proliferation and carcinogenesis, showed increased induction by progesterone in the mammary tissue of exposed mice. Thus, perinatal exposure to environmentally relevant doses of BPA alters long-term hormone response that may increase the propensity to develop breast cancer.

  5. Murine mammary stem/progenitor cell isolation: Different method matters?

    PubMed

    Gao, Hui; Dong, Qiaoxiang; Chen, Yuanhong; Zhang, Fuchuang; Wu, Anqi; Shi, Yuanshuo; Bandyopadhyay, Abhik; Daniel, Benjamin J; Huang, Changjiang; Sun, Lu-Zhe

    2016-01-01

    Murine mammary stem/progenitor cell isolation has been routinely used in many laboratories, yet direct comparison among different methods is lacking. In this study, we compared two frequently used digestion methods and three sets of frequently used surface markers for their efficiency in enriching mammary stem and progenitor cells in two commonly used mouse strains, C57BL/6J and FVB. Our findings revealed that the slow overnight digestion method using gentle collagenase/hyaluronidase could be easily adopted and yielded reliable and consistent results in different batches of animals. In contrast, the different fast digestion protocols, as described in published studies, yielded high percent of non-epithelial cells with very few basal epithelial cells liberated in our hands. The three sets of markers tested in our hands reveal rather equally efficiency in separating luminal and basal cells if same fluorochrome conjugations were used. However, the tendency of non-epithelial cell inclusion in the basal cell gate was highest in samples profiled by CD24/CD29 and lowest in samples profiled by CD49f/EpCAM, this is especially true in mammary cells isolated from C57BL/6J mice. This finding will have significant implication when sorted basal cells are used for subsequent gene expression analysis. PMID:26933638

  6. Mammary gland-specific expression of biologically active human osteoprotegerin in transgenic mice.

    PubMed

    Sung, Yoon-Young; Lee, Chul-Sang

    2013-03-01

    Osteoprotegerin (OPG) is a secreted glycoprotein that regulates bone resorption by inhibiting differentiation and activation of osteoclast, thereby potentially useful for the treatment of many bone diseases associated with increased bone loss. In this study, we designed a novel cDNA expression cassette by modifying the potent and mammary gland-specific goat β-casein/hGH hybrid gene construct and examined human OPG (hOPG) cDNA expression in transgenic mice. Six transgenic mice all successfully expressed hOPG in their milk at the level of 0.06-2,000 µg/ml. An estimated molecular weight of the milk hOPG was 55 kDa in SDS-PAGE, which is the same as a naturally glycosylated monomer. This hOPG expression was highly specific to the mammary glands of transgenic mice. hOPG mRNA was not detected in any organs analyzed except mammary gland. Functional integrity of milk hOPG was evaluated by TRAP (tartrate-resistant acid phosphatase) activity assay in bone marrow cell cultures. OPG ligand (OPG-L) treatment increased TRAP activity by two fold but it was completely abolished by co-treatment with transgenic milk containing hOPG. Taken together, our novel cDNA expression cassette could direct an efficient expression of biologically active hOPG, a potential candidate pharmaceutical for bone diseases, only in the mammary gland of transgenic mice.

  7. Activation of dioxin response element (DRE)-associated genes by benzo(a)pyrene 3,6-quinone and benzo(a)pyrene 1,6-quinone in MCF-10A human mammary epithelial cells

    SciTech Connect

    Burchiel, Scott W. . E-mail: SBurchiel@salud.unm.edu; Thompson, Todd A.; Lauer, Fredine T.; Oprea, Tudor I.

    2007-06-01

    Benzo(a)pyrene (BaP) is a known human carcinogen and a suspected breast cancer complete carcinogen. BaP is metabolized by several metabolic pathways, some having bioactivation and others detoxification properties. BaP-quinones (BPQs) are formed via cytochrome P450 and peroxidase dependent pathways. Previous studies by our laboratory have shown that BPQs have significant growth promoting and anti-apoptotic activities in human MCF-10A mammary epithelial cells examined in vitro. Previous results suggest that BPQs act via redox-cycling and oxidative stress. However, because two specific BPQs (1,6-BPQ and 3,6-BPQ) differed in their ability to produce reactive oxygen species (ROS) and yet both had strong proliferative and EGF receptor activating activity, we utilized mRNA expression arrays and qRT-PCR to determine potential pathways and mechanisms of gene activation. The results of the present studies demonstrated that 1,6-BPQ and 3,6-BPQ activate dioxin response elements (DRE, also known as xenobiotic response elements, XRE) and anti-oxidant response elements (ARE, also known as electrophile response elements, EpRE). 3,6-BPQ had greater DRE activity than 1,6-BPQ, whereas the opposite was true for the activation of ARE. Both 3,6-BPQ and 1,6-BPQ induced oxidative stress-associated genes (HMOX1, GCLC, GCLM, and SLC7A11), phase 2 enzyme genes (NQO1, NQO2, ALDH3A1), PAH metabolizing genes (CYP1B1, EPHX1, AKR1C1), and certain EGF receptor-associated genes (EGFR, IER3, ING1, SQSTM1 and TRIM16). The results of these studies demonstrate that BPQs activate numerous pathways in human mammary epithelial cells associated with increased cell growth and survival that may play important roles in tumor promotion.

  8. ACTIVATION OF DIOXIN RESPONSE ELEMENT (DRE)-ASSOCIATED GENES BY BENZO(A)PYRENE 3,6-QUINONE AND BENZO(A)PYRENE 1,6-QUINONE IN MCF-10A HUMAN MAMMARY EPITHELIAL CELLS

    PubMed Central

    Burchiel, Scott W.; Thompson, Todd A.; Lauer, Fredine T.; Oprea, Tudor I.

    2007-01-01

    Benzo(a)pyrene (BaP) is a known human carcinogen and a suspected breast cancer complete carcinogen. BaP is metabolized by several metabolic pathways, some having bioactivation and others detoxification properties. BaP-quinones (BPQs) are formed via cytochrome P450 and peroxidase dependent pathways. Previous studies by our laboratory have shown that BPQs have significant growth promoting and anti-apoptotic activities in human MCF-10A mammary epithelial cells examined in vitro. Previous results suggest that BPQs act via redox-cycling and oxidative stress. However, because two specific BPQs (1,6-BPQ and 3,6-BPQ) differed in their ability to produce reactive oxygen species (ROS) and yet both had strong proliferative and EGF receptor activating activity, we utilized mRNA expression arrays and qRT-PCR to determine potential pathways and mechanisms of gene activation. The results of the present studies demonstrated that 1,6-BPQ and 3,6-BPQ activate dioxin response elements (DRE, also known as xenobiotic response elements, XRE) and anti-oxidant response elements (ARE, also known and electrophile response elements, EpRE). 3,6-BPQ had greater DRE activity than 1,6-BPQ, whereas the opposite was true for the activation of ARE. Both 3,6-BPQ and 1,6-BPQ induced oxidative stress associated genes (HMOX1, GCLC, GCLM, and SLC7A11), phase 2 enzyme genes (NQO1, NQO2, ALDH3A1) PAH metabolizing genes (CYP1B1, EPHX1, AKR1C1), and certain EGF receptor associated genes (EGFR, IER3, ING1, SQSTM1 and TRIM16). The results of these studies demonstrate that BPQs activate numerous pathways in human mammary epithelial cells associated with increased cell growth and survival that may play important roles in tumor promotion. PMID:17466351

  9. Transcription factors link mouse WAP-T mammary tumors with human breast cancer.

    PubMed

    Otto, Benjamin; Streichert, Thomas; Wegwitz, Florian; Gevensleben, Heidrun; Klätschke, Kristin; Wagener, Christoph; Deppert, Wolfgang; Tolstonog, Genrich V

    2013-03-15

    Mouse models are important tools to decipher the molecular mechanisms of mammary carcinogenesis and to mimic the respective human disease. Despite sharing common phenotypic and genetic features, the proper translation of murine models to human breast cancer remains a challenging task. In a previous study we showed that in the SV40 transgenic WAP-T mice an active Met-pathway and epithelial-mesenchymal characteristics distinguish low- and high-grade mammary carcinoma. To assign these murine tumors to corresponding human tumors we here incorporated the analysis of expression of transcription factor (TF) coding genes and show that thereby a more accurate interspecies translation can be achieved. We describe a novel cross-species translation procedure and demonstrate that expression of unsupervised selected TFs, such as ELF5, HOXA5 and TFCP2L1, can clearly distinguish between the human molecular breast cancer subtypes--or as, for example, expression of TFAP2B between yet unclassified subgroups. By integrating different levels of information like histology, gene set enrichment, expression of differentiation markers and TFs we conclude that tumors in WAP-T mice exhibit similarities to both, human basal-like and non-basal-like subtypes. We furthermore suggest that the low- and high-grade WAP-T tumor phenotypes might arise from distinct cells of tumor origin. Our results underscore the importance of TFs as common cross-species denominators in the regulatory networks underlying mammary carcinogenesis.

  10. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets.

    PubMed

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W; Sun, Lu-Zhe

    2016-01-01

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies. PMID:27558284

  11. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets

    PubMed Central

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M.; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W.; Sun, Lu-Zhe

    2016-01-01

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies. PMID:27558284

  12. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    PubMed

    Gracanin, Ana; Timmermans-Sprang, Elpetra P M; van Wolferen, Monique E; Rao, Nagesha A S; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  13. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    PubMed Central

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  14. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    PubMed

    Gracanin, Ana; Timmermans-Sprang, Elpetra P M; van Wolferen, Monique E; Rao, Nagesha A S; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms. PMID:24887235

  15. Expression of novel, putative stem cell markers in prepubertal and lactating mammary glands of bovine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) are essential for growth and maintenance of the mammary epithelium. Two main phases of mammary growth include ductal elongation prior to puberty and lobulo-alveolar growth and development during pregnancy. Some studies have utilized morphological characteristics and retenti...

  16. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells.

    PubMed

    Dravis, Christopher; Spike, Benjamin T; Harrell, J Chuck; Johns, Claire; Trejo, Christy L; Southard-Smith, E Michelle; Perou, Charles M; Wahl, Geoffrey M

    2015-09-29

    To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable. PMID:26365194

  17. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    PubMed

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  18. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells.

    PubMed

    Boyle, S T; Ingman, W V; Poltavets, V; Faulkner, J W; Whitfield, R J; McColl, S R; Kochetkova, M

    2016-01-01

    The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.

  19. The prolactin receptor mediates HOXA1-stimulated oncogenicity in mammary carcinoma cells.

    PubMed

    Hou, Lin; Xu, Bing; Mohankumar, Kumarasamypet M; Goffin, Vincent; Perry, Jo K; Lobie, Peter E; Liu, Dong-Xu

    2012-12-01

    The HOX genes are a highly conserved subgroup of homeodomain-containing transcription factors that are crucial to normal development. Forced expression of HOXA1 results in oncogenic transformation of immortalized human mammary cells with aggressive tumour formation in vivo. Microarray analysis identified that the prolactin receptor (PRLR) was significantly upregulated by forced expression of HOXA1 in mammary carcinoma cells. To determine prolactin (PRL) involvement in HOXA1‑induced oncogenicity in mammary carcinoma cells (MCF-7), we examined the effect of human prolactin (hPRL)-initiated PRLR signal transduction on changes in cellular behaviour mediated by HOXA1. Forced expression of HOXA1 in MCF-7 cells increased PRLR mRNA and protein expression. Forced expression of HOXA1 also enhanced hPRL-stimulated phosphorylation of both STAT5A/B and p44/42 MAPK, and increased subsequent transcriptional activity of STAT5A and STAT5B, and Elk-1 and Sap1a, respectively. Moreover, forced expression of HOXA1 in MCF-7 cells enhanced the hPRL‑stimulated increase in total cell number as a consequence of enhanced cell proliferation and cell survival, and also enhanced hPRL-stimulated anchorage-independent growth in soft agar. Increased anchorage-independent growth was attenuated by the PRLR antagonist ∆1-9-G129R‑hPRL. In conclusion, we have demonstrated that HOXA1 increases expression of the cell surface receptor PRLR and enhances PRLR-mediated signal transduction. Thus, the PRLR is one mediator of HOXA1‑stimulated oncogenicity in mammary carcinoma cells. PMID:23064471

  20. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    PubMed Central

    Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.

    2011-01-01

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877

  1. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells.

    PubMed

    Chanson, Lea; Brownfield, Douglas; Garbe, James C; Kuhn, Irene; Stampfer, Martha R; Bissell, Mina J; LaBarge, Mark A

    2011-02-22

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877

  2. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    SciTech Connect

    Chanson, L.; Brownfield, D.; Garbe, J. C.; Kuhn, I.; Stampfer, M. R.; Bissell, M. J.; LaBarge, M. A.

    2011-02-07

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.

  3. Human saliva as route of inter-human infection for mouse mammary tumor virus.

    PubMed

    Mazzanti, Chiara Maria; Lessi, Francesca; Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-07-30

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma.

  4. Human saliva as route of inter-human infection for mouse mammary tumor virus

    PubMed Central

    Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-01-01

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma. PMID:26214095

  5. The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2

    PubMed Central

    Zeng, X; Shaikh, FY; Harrison, MK; Adon, AM; Trimboli, AJ; Carroll, KA; Sharma, N; Timmers, C; Chodosh, LA; Leone, G; Saavedra, HI

    2010-01-01

    Centrosome amplification (CA) contributes to carcinogenesis by generating aneuploidy. Elevated frequencies of CA in most benign breast lesions and primary tumors suggest a causative role for CA in breast cancers. Clearly, identifying which and how altered signal transduction pathways contribute to CA is crucial to breast cancer control. Although a causative and cooperative role for c-Myc and Ras in mammary tumorigenesis is well documented, their ability to generate CA during mammary tumor initiation remains unexplored. To answer that question, K-RasG12D and c-Myc were induced in mouse mammary glands. Although CA was observed in mammary tumors initiated by c-Myc or K-RasG12D, it was detected only in premalignant mammary lesions expressing K-RasG12D. CA, both in vivo and in vitro, was associated with increased expression of the centrosome-regulatory proteins, cyclin D1 and Nek2. Abolishing the expression of cyclin D1, Cdk4 or Nek2 in MCF10A human mammary epithelial cells expressing H-RasG12V abrogated Ras-induced CA, whereas silencing cyclin E1 or B2 had no effect. Thus, we conclude that CA precedes mammary tumorigenesis, and interfering with centrosome-regulatory targets suppresses CA. PMID:20581865

  6. Use of CD10 as a marker of canine mammary myoepithelial cells.

    PubMed

    Sánchez-Céspedes, R; Suárez-Bonnet, A; Millán, Y; Guil-Luna, S; Reymundo, C; Herráez, P; Espinosa de Los Monteros, A; Martin de Las Mulas, J

    2013-02-01

    CD10 is an important cell marker in the diagnosis of acute lymphoblastic leukaemia and of breast myoepithelial (ME) cells in humans. The objective of this study was to assess the value of CD10 as a marker of canine ME cells using immunohistochemistry on routinely processed normal, dysplastic and neoplastic mammary tissue. Five different CD10 positive cell types were identified on the basis of cell morphology, pattern of immunoreactivity, and on the co-expression of additional cell lineage-specific markers. Type 1 cells were typical fusiform cells with a ME cell phenotype (calponin- and cytokeratin [CK] 14-positive, CK8/18-negative). Type 2 cells were typical or atypical polyhedral cells with a luminal epithelial (LE) cell phenotype (calponin- and CK14-negative, CK8/18-positive). Type 3 cells had a type 1 phenotype with variable morphology, and type 4 were atypical neoplastic cells with a mixed ME/LE phenotype. Type 5 cells were typical fusiform cells with a stromal phenotype. Type 1 cells were considered normal ME cells and were found in all sample types; type 2 cells were considered normal or neoplastic LE cells and were also found in all sample types; types 3 and 4 cells were restricted to tumour samples and to malignant tumours, respectively, and type 5 cells were found in all sample types, although predominantly in neoplastic tissue. The findings indicate that the CD10 antigen is a sensitive (although not specific) marker of canine ME cells in normal, dysplastic and neoplastic mammary tissue. Differences in the distribution and staining intensity of CD10-positive cells suggest a number of potential roles for this protein in the pathogenesis of canine mammary neoplasia. PMID:22819182

  7. Establishment of a Mammary Carcinoma Cell Line from Syrian Hamsters Treated with N-Methyl-N-Nitrosourea

    PubMed Central

    Coburn, Malari A.; Brueggemann, Sabrina; Bhatia, Shilpa; Cheng, Bing; Li, Benjamin D. L.; Li, Xiao-Lin; Luraguiz, Natalia; Maxuitenko, Yulia Y.; Orchard, Elysse A.; Zhang, Songlin; Stoff-Khalili, Mariam A.; Mathis, J. Michael; Kleiner-Hancock, Heather E.

    2011-01-01

    Clearly new breast cancer models are necessary in developing novel therapies. To address this challenge, we examined mammary tumor formation in the Syrian hamster using the chemical carcinogen N-methyl-N-nitrosourea (MNU). A single 50 mg/kg intraperitoneal dose of MNU resulted in a 60% incidence of premalignant mammary lesions, and a 20% incidence of mammary adenocarcinomas. Two cell lines, HMAM4A and HMAM4B, were derived from one of the primary mammary tumors induced by MNU. The morphology of the primary tumor was similar to a high-grade poorly differentiated adenocarcinoma in human breast cancer. The primary tumor stained positively for both HER-2/neu and pancytokeratin, and negatively for both cytokeratin 5/6 and p63. When the HMAM4B cell line was implanted subcutaneously into syngeneic female hamsters, tumors grew at a take rate of 50%. A tumor derived from HMAM4B cells implanted into a syngeneic hamster was further propagated in vitro as a stable cell line HMAM5. The HMAM5 cells grew in female syngeneic hamsters with a 70% take rate of tumor formation. These cells proliferate in vitro, form colonies in soft agar, and are aneuploid with a modal chromosomal number of 74 (the normal chromosome number for Syrian hamster is 44). To determine responsiveness to the estrogen receptor (ER), a cell proliferation assay was examined using increasing concentrations of tamoxifen. Both HMAM5 and human MCF-7 (ER positive) cells showed a similar decrease at 24 h. However, MDA-MB-231 (ER negative) cells were relatively insensitive to any decrease in proliferation from tamoxifen treatment. These results suggest that the HMAM5 cell line was likely derived from a luminal B subtype of mammary tumor. These results also represent characterization of the first mammary tumor cell line available from the Syrian hamster. The HMAM5 cell line is likely to be useful as an immunocompetent model for human breast cancer in developing novel therapies. PMID:21893382

  8. Establishment and characterization of a new feline mammary cancer cell line, FkMTp.

    PubMed

    Borges, Ana; Adega, Filomena; Chaves, Raquel

    2016-08-01

    Studies on tumours in domestic animals are believed to greatly contribute to a better understanding of similar diseases in humans. Comparative studies have shown that feline mammary carcinomas share important features with human breast cancers, including a similar biological behaviour and histological appearance. In the present study we have established and characterized at different cellular levels one feline mammary cancer cell line, FkMTp, derived from a cat mammary carcinoma. The FkMTp cell line revealed to be a promising resource and tool to study tumour microevolution and all the mechanisms and processes involved in carcinogenesis from the tumour (primary culture) to the immortalized cell line. Several assays were conducted to assess the growth behaviour, differentiated morphology, anchorage independent growth in soft agar, wound-healing invasion and migration of the cell line across time (from the primary culture until the 160th passage). FkMTp revealed increased levels of anchorage independence, migration and invasion according to the course of time as well as different numbers of ploidy. These results demonstrate and validate the in vitro tumorigenicity of the FkMTp cell line. During the cell line establishment, it was cryopreserved approximately every six passages, including the tumour primary culture, allowing now the possibility to access almost any specific momento of the tumour progression.

  9. Cyclopedic protein expression analysis of cultured canine mammary gland adenocarcinoma cells from six tumours.

    PubMed

    Nakagawa, T; Watanabe, M; Ohashi, E; Uyama, R; Takauji, S; Mochizuki, M; Nishimura, R; Ogawa, H; Sugano, S; Sasaki, N

    2006-06-01

    We characterised cultured canine mammary gland adenocarcinoma cells by exhaustive step protein expression analysis to identify factors associated with tumour progression or metastasis of canine mammary gland tumour. Cultured adenocarcinoma cells derived from a total of 3 primary and 3 metastatic lesions from 3 dogs (CHMp/m, CIPp/m and CNMp/m, where CHM, CIP, and CNM indicate the 3 animals) were used in this study. The expression of 24 proteins reported to be related to tumourigenesis or malignancy of human breast cancers were examined by Western blot analysis using 24 antibodies. The expression of sialyl Lewis X [sLe(x)] was only observed in CHMm cells, which were derived from pleural effusion. This expression was further confirmed by immunohistochemistry. The levels of some factors, such as 14-3-3sigma, cyclinD1 and Rb, differed among cells or between the primary and metastatic cells in the pair. Though the difference in their expression was not consistent within the cells from primary and metastatic origin, this characterisation should provide useful information for further molecular analysis of these cultured cells. Since some of the factors, such as sLe(x), 14-3-3sigma, cyclinD1 and Rb, showed different levels of expression in the pair, these cultured cells might be meaningful tools for clarification of distant metastasis in canine mammary gland tumours.

  10. Evaluation of STAT5A Gene Expression in Aflatoxin B1 Treated Bovine Mammary Epithelial Cells

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Aflatoxin B1 (AFB1) is a potent mycotoxin which has been produced by fungi such as Aspergillus flavus and Aspergillus parasiticus as secondary metabolites due to their growth on food stuffs and induces hepatocellular carcinoma in many animal species, including humans. In the present study, the effect of AFB1 on STAT5A gene expression was investigated in bovine mammary epithelial cells using real time RT-PCR. Methods: Bovine mammary epithelial cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, cells were treated with AFB1 and incubated for 8 h. For real time PCR reaction, total RNA from the cultured and treated cells was extracted and used for complementary DNA synthesis. Results: The expression of STAT5A gene was significantly down regulated by AFB1 in dose- dependent manner and led to the reduction of proliferation and differentiation of epithelial cells, which has direct effect in milk protein quantity and quality. Conclusion: According to the results, it seems that down regulation of STAT5A gene in AFB1-treated cells maybe due to DNA damage induced by AFB1 in bovine mammary epithelial cells. PMID:24312879

  11. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. PMID:20113446

  12. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing.

  13. Relative biological effectiveness of 25 and 10 kV X-rays for the induction of chromosomal aberrations in two human mammary epithelial cell lines.

    PubMed

    Beyreuther, Elke; Dörr, Wolfgang; Lehnert, Anna; Lessmann, Elisabeth; Pawelke, Jörg

    2009-08-01

    Administration of ionizing radiation for diagnostic purposes can be associated with a risk for the induction of tumors. Therefore, particularly with regard to general screening programs, e.g. with mammography, cost-benefit considerations must be discussed including risk estimation depending upon the radiation quality administered. The present study was initiated to investigate the in vitro X-ray energy dependence for the induction of chromosomal aberrations in the two mammary epithelial cell lines, 184A1 and MCF-12A. The induced excess fragments, dicentric chromosomes and centric rings were analyzed and the relative biological effectiveness (RBE) was determined for 10 and 25 kV X-rays relative to 200 kV X-rays. The assumed energy dependence with higher values for 10 kV X-rays was confirmed for the excess fragments, with RBE(M) values of 1.92 +/- 0.26 and 1.40 +/- 0.12 for 10 kV X-rays and 1.17 +/- 0.12 and 0.97 +/- 0.10 for 25 kV photons determined for cell lines 184A1 and MCF-12A, respectively. Meaningful results for the induction of dicentric chromosomes and centric rings were obtained only for higher doses with RBE values of 1.31 +/- 0.21 and 1.70 +/- 0.29 for 184A1 and 1.08 +/- 0.08 and 1.43 +/- 0.12 for MCF-12A irradiated with 25 and 10 kV X-rays, respectively.

  14. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    NASA Technical Reports Server (NTRS)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  15. Control of Differentiation of a Mammary Cell Line by Lipids

    NASA Astrophysics Data System (ADS)

    Dulbecco, Renato; Bologna, Mauro; Unger, Michael

    1980-03-01

    A rat mammary cell line (LA7) undergoes spontaneous differentiation into domes due to production of specific inducers by the cells. Some of these inducers may be lipids, and we show that lipids regulate this differentiation as both inducers and inhibitors. One inhibitor is the tumor promoter tetradecanoyl-13 phorbol 12-acetate. The inducers are saturated fatty acids of two groups: butyric acid and acids with chain lengths from C13 to C16, especially myristic acid (C14). Other inducers are myristoyl and palmitoyl lysolecithins, myristic acid methyl ester, and two cationic detergents with a tetradecenyl chain. We propose that the lipids with a C14-C16 alkyl chain affect differentiation by recognizing specific receptors through their alkyl chains and that the effects obtained depend on the head groups. These lipids may be physiological regulators in the mammary gland.

  16. Molecular biological aspects on canine and human mammary tumors.

    PubMed

    Rivera, P; von Euler, H

    2011-01-01

    The high incidence of mammary tumor disease reported in certain canine breeds suggests a significant genetic component, as has already been described in human familial breast cancer-in BRCA1- and BRCA2-associated breast cancer in particular. The identification of genetic risk factors is critical to improvements in the prevention, diagnosis, and treatment of these tumors. In recent years, there has been significant progress in developing the tools and reagents necessary to analyze the canine genome. This work has culminated in a high-quality draft genome sequence, as well as a single-nucleotide polymorphism map and single-nucleotide polymorphism arrays for genomewide association analysis. These tools provide an unprecedented opportunity to characterize the genetic influences in canine diseases such as cancer, eventually allowing for exploration of more effective therapies. Given the high homology between the canine genome sequence and its human counterpart--as well as the many similarities regarding the morphology, biological behavior, and clinical course of mammary tumors in both species--the dog has proven to be an excellent comparative model. This review highlights the comparative aspects regarding certain areas within molecular biology, and it discusses future perspectives. The findings in larger genomewide association analyses and cDNA expression arrays are described, and the BRCA1/BRCA2 complex is compared in detail between the 2 species. PMID:21147766

  17. In vitro differentiation of a cloned bovine mammary epithelial cell.

    PubMed

    Rose, Michael T; Aso, Hisashi; Yonekura, Shinichi; Komatsu, Tokushi; Hagino, Akihiko; Ozutsumi, Kyouhei; Obara, Yoshiaki

    2002-08-01

    The aim of the study was to establish in vitro a bovine mammary epithelial cell (MEC) clone, able to respond to mitogenic growth factors and to lactogenic hormones. Mammary tissue from a 200-d pregnant Holstein cow was used as a source of MEC, from which a clone was established through a process of limiting dilution. When plated on plastic, the cells assumed a monolayer, cobblestone, epithelial-like morphology, with close contact between cells. Inclusion of IGF-1 and EGF in the media significantly increased the number of cells 5 d after plating. All cells stained strongly for cytokeratin and moderately for vimentin at young and old passage stages, indicating the epithelial nature of this cell clone. When the cells were plated at a high density on a thin layer of a commercial extracellular matrix preparation (Matrigel), lobular, alveoli-like structures developed within approximately 5 d, with a clearly visible lumen. When cells were plated onto Matrigel in differentiation media (containing lactogenic hormones), detectable quantities of alpha-casein were present in the media and particularly on the lumen side of the structures. Omission of one of the lactogenic hormones (insulin, prolactin or hydrocortisone) reduced alpha-casein release to the limit of detection of the assay used. Lactoferrin was also produced when the cells were plated on Matrigel, again principally on the lumen side of the lobules, though this was independent of the lactogenic hormones. By passage 40, the cells had senesced, and it was not possible to induce alpha-casein or lactoferrin production. This study notes the establishment of a functional bovine mammary epithelial cell clone, which is responsive to mitogenic and lactogenic hormones and an extracellular matrix.

  18. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    SciTech Connect

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  19. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    SciTech Connect

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  20. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer

    PubMed Central

    Liu, Deli; Xiong, Huan; Ellis, Angela E.; Northrup, Nicole C.; Rodriguez, Carlos O.; O'Regan, Ruth M.; Dalton, Stephen; Zhao, Shaying

    2014-01-01

    Spontaneously occurring canine mammary cancer (MC) represents an excellent model of human breast cancer but is greatly understudied. To better utilize this valuable resource, we performed whole genome sequencing, whole exome sequencing, RNA-seq and/or high density arrays on 12 canine MC cases, including 7 simple carcinomas and four complex carcinomas. Canine simple carcinomas, which histologically match human breast carcinomas, harbor extensive genomic aberrations, many of which faithfully recapitulate key features of human breast cancer. Canine complex carcinomas, which are characterized by proliferation of both luminal and myoepithelial cells and are rare in human breast cancer, appear to lack genomic abnormalities. Instead, these tumors have about 35 chromatin-modification genes downregulated, and are abnormally enriched with active histone modification H4-acetylation while aberrantly depleted with repressive histone modification H3K9me3. Our findings indicate the likelihood that canine simple carcinomas arise from genomic aberrations whereas complex carcinomas originate from epigenomic alterations, reinforcing their unique value. Canine complex carcinomas offer an ideal system to study myoepithelial cells, the second major cell lineage of the mammary gland. Canine simple carcinomas, which faithfully represent human breast carcinomas at the molecular level, provide indispensable models for basic and translational breast cancer research. PMID:25082814

  1. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation?

    PubMed

    Rodríguez, Juan M

    2014-11-01

    Human milk is a source of bacteria to the infant gut; however, the origin of milk bacteria, as well as their impact on neonatal gut microbiota establishment, remains largely unknown. In the past years, results provided by different research groups suggest that certain bacteria from the maternal gastrointestinal tract could translocate through a mechanism involving mononuclear immune cells, migrate to the mammary glands via an endogenous cellular route (the bacterial entero-mammary pathway), and subsequently colonize the gastrointestinal tract of the breast-fed neonate. If such findings are confirmed in the future, we could exert a positive influence on infant health by modulating the maternal gut microbiota.

  2. Expression of the gene encoding growth hormone in the human mammary gland

    SciTech Connect

    Mol, J.A.; Misdorp, W.; Rijnberk, A.

    1995-10-01

    Progestins cause a syndrome of growth hormone (GH) excess and enhanced mammary tumorigenesis in the dog. This has been regarded as being specific for the dog. Recently we reported that progestin-induced GH excess originates from foci of hyperplastic ductular epithelium of the mammary gland in the dog. In the present report we demonstrate by reverse-transcriptase PCR and immunohistochemistry that a main factor involved in tissue growth, i.e. GH, is also expressed in normal and neoplastic human mammary glands. The gene expressed in the human mammary gland proved to be identical to the gene encoding GH in the pituitary gland. The role of progesterone in the GH expression of the human mammary gland needs, however, to be proven. It is hypothesized that this locally produced hGH may play a pathogenetic role in breast cancer. 21 refs., 2 figs., 1 tab.

  3. GANP protein encoded on human chromosome 21/mouse chromosome 10 is associated with resistance to mammary tumor development.

    PubMed

    Kuwahara, Kazuhiko; Yamamoto-Ibusuki, Mutsuko; Zhang, Zhenhuan; Phimsen, Suchada; Gondo, Naomi; Yamashita, Hiroko; Takeo, Toru; Nakagata, Naomi; Yamashita, Daisuke; Fukushima, Yoshimi; Yamamoto, Yutaka; Iwata, Hiroji; Saya, Hideyuki; Kondo, Eisaku; Matsuo, Keitaro; Takeya, Motohiro; Iwase, Hirotaka; Sakaguchi, Nobuo

    2016-04-01

    Human chromosome 21 is known to be associated with the high risk of hematological malignancy but with resistance to breast cancer in the study of Down syndrome. In human cancers, we previously observed the significant alterations of the protein expression encoded by the ganp/MCM3AP gene on human chromosome 21q22.3. Here, we investigated GANP protein alterations in human breast cancer samples (416 cases) at various stages by immunohistochemical analysis. This cohort study clearly showed that expression of GANP is significantly decreased in human breast cancer cases with poor prognosis as an independent risk factor (relapse-free survival, hazard ratio = 2.37, 95% confidence interval, 1.27-4.42, P = 0.007 [univariate analysis]; hazard ratio = 2.70, 95% confidence interval, 1.42-5.13, P = 0.002 [multivariate analysis]). To investigate whether the altered GANP expression is associated with mammary tumorigenesis, we created mutant mice that were conditionally deficient in the ganp/MCM3AP gene using wap-cre recombinase transgenic mice. Mammary gland tumors occurred at a very high incidence in female mammary gland-specific GANP-deficient mice after severe impairment of mammary gland development during pregnancy. Moreover, tumor development also occurred in female post parous GANP-heterodeficient mice. GANP has a significant role in the suppression of DNA damage caused by estrogen in human breast cancer cell lines. These results indicated that the GANP protein is associated with breast cancer resistance. PMID:26749495

  4. Generation of Induced Pluripotent Stem Cells from Bovine Epithelial Cells and Partial Redirection Toward a Mammary Phenotype In Vitro.

    PubMed

    Cravero, Diego; Martignani, Eugenio; Miretti, Silvia; Accornero, Paulo; Pauciullo, Alfredo; Sharma, Ruchi; Donadeu, Francesco Xavier; Baratta, Mario

    2015-06-01

    In contrast to adult stem cells, induced pluripotent stem cells (iPSCs) can be grown robustly in vitro and differentiated into virtually any tissue, thus providing an attractive alternative for biomedical applications. Although iPSC technology is already being used in human biomedicine, its potential in animal production has not been investigated. Herein, we investigated the potential application of iPSCs in dairy production by generating bovine iPSCs and establishing their ability to generate mammary epithelial tissue. iPSCs were derived by retrovirus-mediated expression of murine Oct4, Sox2, Klf4, and c-Myc in mammary epithelium and dermal fibroblasts. The resulting reprogrammed cells stained positive for alkaline phosphatase and showed renewed expression of pluripotency genes, including Lin28, Rex1, Oct4, Sox2, and Nanog. In addition, injection of epithelial- or fibroblast-derived reprogrammed cells into nonobese diabetic (NOD/NOD) mice resulted in the formation of teratomas containing differentiated derivatives of the three germ layers, including cartilage, membranous ossification, stratified squamous epithelial tissue, hair follicles, neural pinwheels, and different types of glandular tissue. Finally, mammary epithelium-derived iPSCs could be induced to differentiate back to a mammary phenotype characterized by epithelial cells expressing cytokeratin 14 (CK14), CK18, and smooth muscle actin (SMA) as a result of treatment with 10 nM progesterone. This study reports for the first time the generation of iPSCs from bovine epithelial cells and demonstrates the potential of using iPSCs technology for generating bovine mammary tissue in vitro. PMID:26053520

  5. Characterization of Nitrogen Mustard Formamidopyrimidine Adduct Formation of bis-(2-Chloroethyl)ethylamine with Calf Thymus DNA and a Human Mammary Cancer Cell Line

    PubMed Central

    Gruppi, Francesca; Hejazi, Leila; Christov, Plamen P.; Krishnamachari, Sesha; Turesky, Robert J.; Rizzo, Carmelo J.

    2015-01-01

    A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS3) method was established to characterize and measure five deoxyguanosine (dG) adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis-(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its crosslink (G-NM-G), the ring-opened formamidopyrimidine (FapyG) mono-adduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 107 DNA bases, when the equivalent of 5 μg DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G mono-adduct; the FapyG-NM-FapyG adduct was at the limit of detection. The NM-FapyG adducts formed in CT DNA at a level of ~20% that of the NM-G adduct. NM-FapyG has not been previously quanitified and the FapyG-NM-G and FapyG-NM-FapyG adducts have not be previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 107 bases), followed by G-NM-G (240 adducts per 107 bases) and NM-FapyG (180 adducts per 107 bases), and lastly the FapyG-NM-G cross-link adduct (6.0 adducts per 107 bases). These lesions are expected to contribute to the NM-mediated toxicity and

  6. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway

    PubMed Central

    Voutilainen, Maria; Lönnblad, Darielle; Shirokova, Vera; Elo, Teresa; Rysti, Elisa; Schmidt-Ullrich, Ruth; Schneider, Pascal; Mikkola, Marja L.

    2015-01-01

    Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants. PMID:26581094

  7. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway.

    PubMed

    Voutilainen, Maria; Lindfors, Päivi H; Trela, Ewelina; Lönnblad, Darielle; Shirokova, Vera; Elo, Teresa; Rysti, Elisa; Schmidt-Ullrich, Ruth; Schneider, Pascal; Mikkola, Marja L

    2015-11-01

    Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants. PMID:26581094

  8. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway.

    PubMed

    Voutilainen, Maria; Lindfors, Päivi H; Trela, Ewelina; Lönnblad, Darielle; Shirokova, Vera; Elo, Teresa; Rysti, Elisa; Schmidt-Ullrich, Ruth; Schneider, Pascal; Mikkola, Marja L

    2015-11-01

    Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.

  9. β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing mammary glands.

    PubMed

    Monzani, P S; Bressan, F F; Mesquita, L G; Sangalli, J R; Meirelles, F V

    2011-04-12

    Epithelial cells from mammary gland tissue that are cultured in vitro are able to maintain specific functions of this gland, such as cellular differentiation and milk protein synthesis. These characteristics make these cells a useful model to study mammary gland physiology, development and differentiation; they can also be used for production of exogenous proteins of pharmaceutical interest. Bovine mammary epithelial cells were cultured in vitro after isolation from mammary gland tissue of animals at different stages of development. The cells were plated on Petri dishes and isolated from fibroblasts using saline/EDTA treatment, followed by trypsinization. Cells isolated on plastic were capable of differentiating into alveolus-like structures; however, only cells derived from non-pregnant and non-lactating animals expressed β-casein. Real-time qPCR and epifluorescence microscopy analyses revealed that alveolus-like structures were competent at expressing Emerald green fluorescent protein (EmGFP) driven by the β-casein promoter, independent of β-casein expression.

  10. Immunolocalization of the human basal epithelial marker monoclonal antibody 312C8-1 in normal tissue and mammary tumours of rodents.

    PubMed

    Tsubura, A; Inui, T; Senzaki, H; Morii, S; Dairkee, S H

    1989-01-01

    Using immunoperoxidase staining of monoclonal antibody 312C8-1 against 51,000 dalton human keratin polypeptide, immunolocalization was observed in frozen sections of normal tissue and mammary tumours of adult female mice and rats. In normal tissue, the epitope was recognized in myoepithelial cells of the mammary, sweat and salivary glands, and in basal and suprabasal cells of the epidermis. However, the antibody did not react with luminal epithelial cells of the above glands or with mesenchymal cells. In spontaneous mammary tumours of mice, marker-positive tumour cells were distributed only in the outer layer of adenocarcinoma Type A, while they were scattered in some foci of adenocarcinoma Type B, and encircled the epithelial foci of pregnancy dependent tumours (plaque). All layers of epidermoid structures in adenoacanthoma revealed positivity. In rat mammary tumours induced by local dusting with 7, 12-dimethylbenz(a)anthracene (DMBA) powder, the staining pattern of benign tumours was comparable to that of the normal mammary gland. But, in addition to basally situated cells, marker-positive tumour cells were found scattered in the foci of adenocarcinoma, and were not restricted to basal cells in squamous cell carcinoma. The marker was not found in sarcomatous tissue. This antibody can therefore also be applied to rodents, and the staining pattern can be used to identify the epithelial subclass specific marker in normal tissue and in mammary tumours.

  11. Cholera toxin enhances Na+ absorption across MCF10A human mammary epithelia

    PubMed Central

    Wang, Qian

    2013-01-01

    Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+ channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+ concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+ transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. PMID:24371040

  12. Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions

    SciTech Connect

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

    2010-12-22

    To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

  13. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

    PubMed

    Prat, Aleix; Karginova, Olga; Parker, Joel S; Fan, Cheng; He, Xiaping; Bixby, Lisa; Harrell, J Chuck; Roman, Erick; Adamo, Barbara; Troester, Melissa; Perou, Charles M

    2013-11-01

    Five molecular subtypes (luminal A, luminal B, HER2-enriched, basal-like, and claudin-low) with clinical implications exist in breast cancer. Here, we evaluated the molecular and phenotypic relationships of (1) a large in vitro panel of human breast cancer cell lines (BCCLs), human mammary fibroblasts (HMFs), and human mammary epithelial cells (HMECs); (2) in vivo breast tumors; (3) normal breast cell subpopulations; (4) human embryonic stem cells (hESCs); and (5) bone marrow-derived mesenchymal stem cells (hMSC). First, by integrating genomic data of 337 breast tumor samples with 93 cell lines we were able to identify all the intrinsic tumor subtypes in the cell lines, except for luminal A. Secondly, we observed that the cell lines recapitulate the differentiation hierarchy detected in the normal mammary gland, with claudin-low BCCLs and HMFs cells showing a stromal phenotype, HMECs showing a mammary stem cell/bipotent progenitor phenotype, basal-like cells showing a luminal progenitor phenotype, and luminal B cell lines showing a mature luminal phenotype. Thirdly, we identified basal-like and highly migratory claudin-low subpopulations of cells within a subset of triple-negative BCCLs (SUM149PT, HCC1143, and HCC38). Interestingly, both subpopulations within SUM149PT were enriched for tumor-initiating cells, but the basal-like subpopulation grew tumors faster than the claudin-low subpopulation. Finally, claudin-low BCCLs resembled the phenotype of hMSCs, whereas hESCs cells showed an epithelial phenotype without basal or luminal differentiation. The results presented here help to improve our understanding of the wide range of breast cancer cell line models through the appropriate pairing of cell lines with relevant in vivo tumor and normal cell counterparts.

  14. Mammary Tumor-Associated RNAs Impact Tumor Cell Proliferation, Invasion, and Migration.

    PubMed

    Diermeier, Sarah D; Chang, Kung-Chi; Freier, Susan M; Song, Junyan; El Demerdash, Osama; Krasnitz, Alexander; Rigo, Frank; Bennett, C Frank; Spector, David L

    2016-09-27

    Long non-coding RNAs (lncRNAs) represent the largest and most diverse class of non-coding RNAs, comprising almost 16,000 currently annotated transcripts in human and 10,000 in mouse. Here, we investigated the role of lncRNAs in mammary tumors by performing RNA-seq on tumor sections and organoids derived from MMTV-PyMT and MMTV-Neu-NDL mice. We identified several hundred lncRNAs that were overexpressed compared to normal mammary epithelium. Among these potentially oncogenic lncRNAs we prioritized a subset as Mammary Tumor Associated RNAs (MaTARs) and determined their human counterparts, hMaTARs. To functionally validate the role of MaTARs, we performed antisense knockdown and observed reduced cell proliferation, invasion, and/or organoid branching in a cancer-specific context. Assessing the expression of hMaTARs in human breast tumors revealed that 19 hMaTARs are significantly upregulated and many of these correlate with breast cancer subtype and/or hormone receptor status, indicating potential clinical relevance. PMID:27681436

  15. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution.

    PubMed

    McCormick, Nicholas H; Hennigar, Stephen R; Kiselyov, Kirill; Kelleher, Shannon L

    2014-03-01

    Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.

  16. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors.

    PubMed

    Smart, Chanel E; Askarian Amiri, Marjan E; Wronski, Ania; Dinger, Marcel E; Crawford, Joanna; Ovchinnikov, Dmitry A; Vargas, Ana Cristina; Reid, Lynne; Simpson, Peter T; Song, Sarah; Wiesner, Christiane; French, Juliet D; Dave, Richa K; da Silva, Leonard; Purdon, Amy; Andrew, Megan; Mattick, John S; Lakhani, Sunil R; Brown, Melissa A; Kellie, Stuart

    2012-01-01

    The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  17. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation

    PubMed Central

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C.

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  18. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation.

    PubMed

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  19. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation.

    PubMed

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.

  20. Paradoxical antiproliferative effect by a murine mammary tumor-derived epithelial cell line

    PubMed Central

    Gurzov, Esteban N; Nabha, Sanaa M; Yamamoto, Hamilto; Meng, Hong; Scharovsky, O Graciela; Bonfil, R Daniel

    2007-01-01

    Background Despite significant advancement in breast cancer therapy, there is a great need for a better understanding of the mechanisms involved in breast carcinogenesis and progression, as well as of the role of epigenetic contributions from stromal cells in mammary tumorigenesis. In this study, we isolated and characterized murine mammary tumor-derived epithelial and myofibroblast cell lines, and investigated the in vitro and in vivo effect of cellular soluble factors produced by the epithelial cell line on tumor cells. Methods Morphology, immunophenotype, cytogenetics, invasiveness, and tumorigenicity of epithelial (LM-234ep) and myofibroblast (LM-234mf) cell lines isolated from two murine mammary adenocarcinomas with common ancestor were studied. The in vitro effects of LM-234ep conditioned medium on proliferation, cell cycle distribution, and expression of cell cycle proteins, were investigated in LM-234mf cells, mouse melanoma cells (B16-F10), and human cervical adenocarcinoma cells (HeLa). The in vivo anti-tumor activity of LM-234ep conditioned media was evaluated in subcutaneous tumors formed in nude mice by B16-F10 and HeLa cells. Results LM-234ep cells were found to be cytokeratin positive and hipertriploid, whereas LM-234mf cells were α-smooth muscle actin positive and hypohexaploid. Chromosome aberrations were found in both cases. Only LM-234mf revealed to be invasive in vitro and to secrete active MMP-2, though neither of the cell types were able to produce progressing tumors. LM-234ep-derived factors were able to inhibit the in vitro growth of LM-234mf, B16-F10, and HeLa cells, inducing cell cycle arrest in G0/G1 phase. The administration of LM-234ep conditioned medium inhibited the growth of B16-F10 and HeLa tumors in nude mice. Conclusion Our data suggest the existence of epithelial cell variants with tumor suppressive properties within mammary tumors. To our knowledge, this is the first report showing antiproliferative and antineoplastic

  1. MicroRNA-206 is differentially expressed in Brca1-deficient mice and regulates epithelial and stromal cell compartments of the mouse mammary gland

    PubMed Central

    Wronski, A; Sandhu, G K; Milevskiy, M J G; Brewster, B L; Bridge, J A; Shewan, A M; Edwards, S L; French, J D; Brown, M A

    2016-01-01

    Depletion of Brca1 leads to defects in mouse mammary gland development and mammary tumors in humans and mice. To explore the role of microRNAs (miRNAs) in this process, we examined the mammary glands of MMTV-Cre Brca1Co/Co mice for differential miRNA expression using a candidate approach. Several miRNAs were differentially expressed in mammary tissue at day 1 of lactation and in mammary epithelial cell lines in which Brca1 messenger RNA (mRNA) levels have been reduced. Functional studies revealed that several of these miRNAs regulate mammary epithelial cell function in vitro, including miR-206. Creation and analysis of MMTV-miR-206 transgenic mice showed no effect on lactational mammary development and no tumors, but indicates a role in mammary tissue remodeling in mature mice, potentially involving Igf-1 and Sfrp1. These results indicate the potential of miRNAs to mediate the consequences of Brca1 loss and suggest a novel function for miR-206. PMID:27043663

  2. Comparative aspects of mammary gland development and homeostasis.

    PubMed

    Capuco, Anthony V; Ellis, Steven E

    2013-01-01

    Mammary glands are crucial to the reproductive strategy of mammals, and the milk of domesticated ruminants serves as an important source of nutrients for the human population. The majority of mammary gland development occurs postnatally, and the mammary gland undergoes cyclical periods of growth, differentiation, lactation, and regression that are coordinated to provide nutrients for offspring or are driven by strategies to manage reproduction and milk production of domesticated species. Growth and maintenance of the mammary epithelium depends on the function of mammary stem cells and progenitor cells. In this review, we provide an overview of postnatal mammary gland development, cyclical phases of mammary gland regression (regression during lactation and between successive lactations), and mammary stem cells and progenitor cells. Where possible, these processes are related to animal production and compared across species, particularly bovine, porcine, murine, and human.

  3. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  4. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  5. Anatomy of the human mammary gland: Current status of knowledge.

    PubMed

    Hassiotou, Foteini; Geddes, Donna

    2013-01-01

    Mammary glands are unique to mammals, with the specific function of synthesizing, secreting, and delivering milk to the newborn. Given this function, it is only during a pregnancy/lactation cycle that the gland reaches a mature developmental state via hormonal influences at the cellular level that effect drastic modifications in the micro- and macro-anatomy of the gland, resulting in remodeling of the gland into a milk-secretory organ. Pubertal and post-pubertal development of the breast in females aids in preparing it to assume a functional state during pregnancy and lactation. Remarkably, this organ has the capacity to regress to a resting state upon cessation of lactation, and then undergo the same cycle of expansion and regression again in subsequent pregnancies during reproductive life. This plasticity suggests tight hormonal regulation, which is paramount for the normal function of the gland. This review presents the current status of knowledge of the normal macro- and micro-anatomy of the human mammary gland and the distinct changes it undergoes during the key developmental stages that characterize it, from embryonic life through to post-menopausal age. In addition, it discusses recent advances in our understanding of the normal function of the breast during lactation, with special reference to breastmilk, its composition, and how it can be utilized as a tool to advance knowledge on normal and aberrant breast development and function. Finally, anatomical and molecular traits associated with aberrant expansion of the breast are discussed to set the basis for future comparisons that may illuminate the origin of breast cancer.

  6. Comparison of the transcriptpmes of long-tern label retaining-cells and C cells microdissected from mammary epithelium: an initial study to character potential stem/progenitor cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) account for the cell lineage of mammary epithelia and provide for mammary growth, development and tissue homeostasis. The presence of MaSC was clearly demonstrated by the generation of an entire mammary gland from a single cell implanted into epithelium-ablated mammary fat...

  7. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    SciTech Connect

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.; Lauer, Fredine T.; Burchiel, Scott W.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  8. Unilateral once daily milking locally induces differential gene expression in both mammary tissue and milk epithelial cells revealing mammary remodeling.

    PubMed

    Boutinaud, Marion; Galio, Laurent; Lollivier, Vanessa; Finot, Laurence; Wiart, Sandra; Esquerré, Diane; Devinoy, Eve

    2013-10-16

    Once daily milking reduces milk yield, but the underlying mechanisms are not yet fully understood. Local regulation due to milk stasis in the tissue may contribute to this effect, but such mechanisms have not yet been fully described. To challenge this hypothesis, one udder half of six Holstein dairy cows was milked once a day (ODM), and the other twice a day (TDM). On the 8th day of unilateral ODM, mammary epithelial cells (MEC) were purified from the milk using immunomagnetic separation. Mammary biopsies were harvested from both udder halves. The differences in transcript profiles between biopsies from ODM and TDM udder halves were analyzed by a 22k bovine oligonucleotide array, revealing 490 transcripts that were differentially expressed. The principal category of upregulated transcripts concerned mechanisms involved in cell proliferation and death. We further confirmed remodeling of the mammary tissue by immunohistochemistry, which showed less cell proliferation and more apoptosis in ODM udder halves. Gene expression analyzed by RT-qPCR in MEC purified from milk and mammary biopsies showed a common downregulation of six transcripts (ABCG2, FABP3, NUCB2, RNASE1 and 5, and SLC34A2) but also some discrepancies. First, none of the upregulated transcripts in biopsies varied in milk-purified MEC. Second, only milk-purified MEC showed significant LALBA downregulation, which suggests therefore that they correspond to a mammary epithelial cell subpopulation. Our results, obtained after unilateral milking, suggest that cell remodeling during ODM is due to a local effect, which may be triggered by milk accumulation.

  9. Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer.

    PubMed

    Sum, Eleanor Y M; Segara, Davendra; Duscio, Belinda; Bath, Mary L; Field, Andrew S; Sutherland, Robert L; Lindeman, Geoffrey J; Visvader, Jane E

    2005-05-24

    The zinc finger protein LMO4 is overexpressed in a high proportion of breast carcinomas. Here, we report that overexpression of a mouse mammary tumor virus (MMTV)-Lmo4 transgene in the mouse mammary gland elicits hyperplasia and mammary intraepithelial neoplasia or adenosquamous carcinoma in two transgenic strains with a tumor latency of 13-18 months. To investigate cellular processes controlled by LMO4 and those that may be deregulated during oncogenesis, we used RNA interference. Down-regulation of LMO4 expression reduced proliferation of human breast cancer cells and increased differentiation of mouse mammary epithelial cells. Furthermore, small-interfering-RNA-transfected breast cancer cells (MDA-MB-231) had a reduced capacity to migrate and invade an extracellular matrix. Conversely, overexpression of LMO4 in noninvasive, immortalized human MCF10A cells promoted cell motility and invasion. Significantly, in a cohort of 159 primary breast cancers, high nuclear levels of LMO4 were an independent predictor of death from breast cancer. Together, these findings suggest that deregulation of LMO4 in breast epithelium contributes directly to breast neoplasia by altering the rate of cellular proliferation and promoting cell invasion.

  10. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    PubMed

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  11. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells.

    PubMed

    Chung, Myung-Hoon; Kim, Do-Hee; Na, Hye-Kyung; Kim, Jung-Hwan; Kim, Ha-Na; Haegeman, Guy; Surh, Young-Joon

    2014-10-01

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  12. Expression of tracheal antimicrobial peptide in bovine mammary epithelial cells.

    PubMed

    López-Meza, Joel E; Gutiérrez-Barroso, Angelina; Ochoa-Zarzosa, Alejandra

    2009-08-01

    The production of antimicrobial peptides is an important key of innate immunity. Tracheal antimicrobial peptide (TAP) expression has been reported in bovine tracheal epithelial cells and it can be modulated by bacterial infection or bacterial components. In mammary gland TAP expression has been reported, but the cell type that produces it is unknown. The objective of this work was to evaluate if bovine mammary epithelial cells (bMEC) express TAP mRNA, and evaluate the regulation of its expression in response to Staphylococcus aureus infection, bovine prolactin (bPRL) or acetyl salicylic acid (ASA). By retrotranscription and PCR, we demonstrated that bMEC express TAP mRNA. bMEC infected with live S. aureus down-regulates TAP expression, whereas the challenge with gentamicin-killed S. aureus up-regulates it. Also, bPRL do not significantly modify TAP expression, but in the presence of 5 mM ASA it was down-regulated, suggesting that nuclear factor kappaB (NF-kappaB) pathway can be involved in its regulation. PMID:19181355

  13. A cyclized peptide derived from alpha fetoprotein inhibits the proliferation of ER-positive canine mammary cancer cells.

    PubMed

    Torres, Cristian Gabriel; Pino, Ana María; Sierralta, Walter Daniel

    2009-06-01

    The effects of estradiol (E2) and of an AFP-derived cyclized peptide (cP) on the proliferation of primary cultures of cancer cells isolated from spontaneous canine mammary tumors were studied. The cellular response to E2 and cP was related to the expression of estradiol receptor (isoforms alpha and beta). In ER-positive cells, 2 nM estradiol increased cell proliferation and the phosphorylation of ERK1/2; 2 microg/ml cP inhibited all these effects. Estradiol also increased HER2 immunoreactivity in ER-positive cells, an effect that was reverted to its basal values by cP. Estradiol stimulated in these cells the release of MMP2 and MMP9 and the shedding of HB-EGF, effects that the cP did not affect. ER-negative cells were refractory to estradiol or cP. All canine mammary tumor cells in culture responded to treatments analogously to human mammary cancer cells. Our results support the proposal of cP as a new, potentially effective therapeutic agent for the management of mammary cancer. PMID:19424616

  14. Intracellular killing of mastitis pathogens by penethamate hydriodide following internalization into mammary epithelial cells.

    PubMed

    Almeida, R A; Patel, D; Friton, G M; Oliver, S P

    2007-04-01

    Penethamate hydriodide was highly effective in killing Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae and Staphylococcus aureus that internalized mammary epithelial cells. At higher concentrations (32 microg/mL to 32 mg/mL), killing rates ranged from 85% to 100%. At lower concentrations (0.032 microg/mL to 3.2 microg/mL), killing rates ranged from 0 to 80%. Results of this proof-of-concept study demonstrated that: (1) penethamate hydriodide is capable of entering mammary epithelial cells and killing intracellular mastitis pathogens without affecting mammary epithelial cell viability, (2) the in vitro model used is capable of quantifying the fate of mastitis pathogens internalized into mammary epithelial cells, and (3) this in vitro model can be used to determine the effectiveness of antibiotics at killing bacteria within the cytoplasm of mammary epithelial cells.

  15. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.

    PubMed

    Vouyovitch, Cécile M; Perry, Jo K; Liu, Dong Xu; Bezin, Laurent; Vilain, Eric; Diaz, Jean-Jacques; Lobie, Peter E; Mertani, Hichem C

    2016-07-01

    The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.

  16. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.

    PubMed

    Vouyovitch, Cécile M; Perry, Jo K; Liu, Dong Xu; Bezin, Laurent; Vilain, Eric; Diaz, Jean-Jacques; Lobie, Peter E; Mertani, Hichem C

    2016-07-01

    The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype. PMID:27323961

  17. Optimization and characterization of an in vitro bovine mammary cell culture system to study regulation of milk protein synthesis and mammary differentiation

    SciTech Connect

    Talhouk, R.S.

    1988-01-01

    A long term bovine mammary cell culture system that maintains normal mammary cell function was established and optimized to study milk protein synthesis and secretion and mammary differentiation. This culture system used bovine mammary acini isolated from developing or lactating mammary gland by enzymatic dissociation, and cryopreserved until thawed and plated for growth in vitro for these studies. Cells in M199 with lactogenic hormones {plus minus} fetal calf serum (FCS) were cultured on plastic, 100ul and 500ul type I collagen, and Matrigel, or embedded within type I collagen. Cell morphology, cell number, and total TCA-precipitable {sup 35}S-labelled proteins were monitored. Milk protein ({alpha}{sub s,1}-casein, lactoferrin (LF), {alpha}-lactalbumin, and {beta}-lactoglobulin) secretion and intracellular levels were determined by an ELISA assay.

  18. Remodeling of Endogenous Mammary Epithelium by Breast Cancer Stem Cells

    PubMed Central

    Parashurama, Natesh; Lobo, Neethan A.; Ito, Ken; Mosley, Adriane R.; Habte, Frezghi G.; Zabala, Maider; Smith, Bryan R.; Lam, Jessica; Weissman, Irving L.; Clarke, Michael F.; Gambhir, Sanjiv S.

    2014-01-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  19. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    PubMed

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  20. Precursors of hexoneogenesis within the human mammary gland.

    PubMed

    Mohammad, Mahmoud A; Maningat, Patricia; Sunehag, Agneta L; Haymond, Morey W

    2015-04-15

    The human mammary gland is capable of de novo synthesis of glucose and galactose (hexoneogenesis); however, the carbon source is incompletely understood. In this study, we investigated the role of acetate, glutamine, lactate and glycerol as potential carbon sources for hexoneogenesis. Healthy breastfeeding women were studied following a 24-h fast on two occasions separated by 1-3 wk. Five women were infused with [U-¹³C]lactate or [1,2-¹³C₂]glutamine and five women with [U-¹³C]glycerol or [1,2-¹³C₂]acetate. Enrichments of ¹³C in plasma and milk substrates were analyzed using GC-MS. Infusion of labeled lactate, glycerol, glutamine, and acetate resulted in plasma glucose being 22.0±3.7, 11.2±1.0, 2.5±0.5, and 1.3±0.2% labeled, respectively. Lactate, glutamine, or acetate did not contribute to milk glucose or galactose (0-2%). In milk, ¹³C-free glycerol enrichment was one-fourth that in plasma but free glycerol concentration in milk was fourfold higher than in plasma. Using [U-¹³C]glycerol and by accounting for tracer dilution, glycerol alone contributed to 10±2 and 69±11% of the hexoneogenesis of milk glucose and galactose, respectively. During [U-¹³C]glycerol infusion, the ratio of M₃ enrichment on 4-6 carbons/M₃ on 1-3 carbons of galactose was higher (P<0.05, 1.22±0.05) than those of glucose in plasma (1.05±0.03) and milk (1.07±0.02). Reanalysis of samples from a previous study involving [U-¹³C]glucose infusion alone suggested labeling a portion of galactose consistent with pentose phosphate pathway (PPP) activity. We conclude that, although lactate contributed significantly to gluconeogenesis, glycerol alone provides the vast majority of substrate for hexoneogenesis. The relative contribution of the PPP vs. the reversal Embden-Meyerhof pathway to hexoneogenesis within the human mammary gland remains to be determined.

  1. Neuregulin-regulated gene expression in mammary carcinoma cells.

    PubMed

    Amin, Dhara N; Tuck, David; Stern, David F

    2005-09-10

    Recent studies have suggested that autocrine production of Neuregulin (NRG), a growth factor that activates members of the Epidermal Growth Factor Receptor/ErbB family of proto-oncogenes, is sufficient for breast tumor initiation and progression. To elucidate the molecular mechanisms regulating these events, we undertook a global analysis of genes regulated by NRG in luminal mammary epithelial cell lines. Gene expression profiling of estrogen receptor-positive T47D cells exposed to NRG-1 revealed both previously identified and novel targets of NRG activation. Profiling of other estrogen receptor-positive breast cancer cell lines, MCF7 and SUM44, yielded a group of twenty-one genes whose transcripts are upregulated by NRG in all three lines tested. The NRG targets are FBJ murine osteosarcoma viral oncogene homolog B, Early growth response 1, v-jun avian sarcoma virus 17 oncogene homolog, Activating transcription factor 3, Homo sapiens cDNA FLJ31636 fis, Jun B proto-oncogene, Forkhead box C1, Platelet/endothelial cell adhesion molecule 1, NADPH-dependent retinol dehydrogenase/reductase, Dual specificity phosphatase 5, NGF inducible protein TIS21, Connective tissue growth factor, Jun D proto-oncogene, Serum response factor, Cullin 1, v-myc avian myelocytomatosis viral oncogene, Transient receptor potential channel 1, Low density lipoprotein receptor, Transforming growth factor beta 1, Nucleoporin 88 kDa, and Pleckstrin homology-like domain A1. Since NRG activation of these cells induces resistance to anti-hormonal therapy, the identified genes may provide clues to molecular events regulating mammary tumor progression and hormone independence.

  2. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.

    PubMed

    Wyckoff, Jeffrey B; Wang, Yarong; Lin, Elaine Y; Li, Jiu-feng; Goswami, Sumanta; Stanley, E Richard; Segall, Jeffrey E; Pollard, Jeffrey W; Condeelis, John

    2007-03-15

    Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

  3. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    SciTech Connect

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  4. Mathematical analysis of mammary ducts in lactating human breast.

    PubMed

    Mortazavi, S Negin; Geddes, Donna; Hassiotou, Foteini; Hassanipour, Fatemeh

    2014-01-01

    This work studies a simple model for milk transport through lactating human breast ducts, and describes mathematically the mass transfer from alveolar sacs through the mammary ducts to the nipple. In this model both the phenomena of diffusion in the sacs and conventional flow in ducts have been considered. The ensuing analysis reveals that there is an optimal range of bifurcation numbers leading to the easiest milk flow based on the minimum flow resistance. This model formulates certain difficult-to-measure values like diameter of the alveolar sacs, and the total length of the milk path as a function of easy-to-measure properties such as milk fluid properties and macroscopic measurements of the breast. Alveolar dimensions from breast tissues of six lactating women are measured and reported in this paper. The theoretically calculated alveoli diameters for optimum milk flow (as a function of bifurcation numbers) show excellent match with our biological data on alveolar dimensions. Also, the mathematical model indicates that for minimum milk flow resistance the glandular tissue must be within a short distance from the base of the nipple, an observation that matches well with the latest anatomical and physiological research.

  5. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    SciTech Connect

    Medina, D.; Oborn, C.J. ); Li, M.L.; Bissell, M.J. )

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.

  6. Fingerprinting Breast Cancer vs. Normal Mammary Cells by Mass Spectrometric Analysis of Volatiles

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Sinues, Pablo Martinez-Lozano; Hollmén, Maija; Li, Xue; Detmar, Michael; Zenobi, Renato

    2014-06-01

    There is increasing interest in the development of noninvasive diagnostic methods for early cancer detection, to improve the survival rate and quality of life of cancer patients. Identification of volatile metabolic compounds may provide an approach for noninvasive early diagnosis of malignant diseases. Here we analyzed the volatile metabolic signature of human breast cancer cell lines versus normal human mammary cells. Volatile compounds in the headspace of conditioned culture medium were directly fingerprinted by secondary electrospray ionization-mass spectrometry. The mass spectra were subsequently treated statistically to identify discriminating features between normal vs. cancerous cell types. We were able to classify different samples by using feature selection followed by principal component analysis (PCA). Additionally, high-resolution mass spectrometry allowed us to propose their chemical structures for some of the most discriminating molecules. We conclude that cancerous cells can release a characteristic odor whose constituents may be used as disease markers.

  7. Synthesis of milk specific fatty acids and proteins by dispersed goat mammary-gland epithelial cells.

    PubMed Central

    Hansen, H O; Tornehave, D; Knudsen, J

    1986-01-01

    The method now described for preparation of dispersed lactating goat mammary-gland cells gives a high yield of morphologically and functionally normal mammary cells. The cells synthesize specific goat milk fatty acids in the right proportions, and they respond to hormones by increased protein synthesis. The cells can be frozen and thawed without losing the above properties, which makes them an excellent tool for metabolic and hormonal studies. Images Fig. 1. Fig. 2. PMID:3800930

  8. Establishment and Characterization of a New Cell Line of Canine Inflammatory Mammary Cancer: IPC-366

    PubMed Central

    Caceres, Sara; Peña, Laura; de Andres, Paloma J.; Illera, Maria J.; Lopez, Mirtha S.; Woodward, Wendy A.; Reuben, James M.; Illera, Juan C.

    2015-01-01

    Canine inflammatory mammary cancer (IMC) shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC). The aim of this study was to characterize a new cell line from IMC (IPC-366) for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC) characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %). At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the comparative

  9. Retinoids induce lumen morphogenesis in mammary epithelial cells.

    PubMed

    Montesano, Roberto; Soulié, Priscilla

    2002-12-01

    Lumen formation is a fundamental step in the development of the structural and functional units of glandular organs, such as alveoli and ducts. In an attempt to elucidate the molecular signals that govern this morphogenetic event, we set up an in vitro system in which cloned mammary epithelial cells grown in collagen gels under serum-free conditions form solid, lumen-less colonies. Addition of as little as 0.1% donor calf serum (DCS) was sufficient to induce the formation of a central cavity. Among a number of serum constituents analyzed, retinol was found to mimic the effect of DCS in inducing lumen morphogenesis. Since the biological activities of retinol are largely dependent on its conversion to all-trans-retinoic acid (RA), we examined in more detail the effect of RA on lumen formation. RA induced the formation of lumen-containing colonies (cysts) in a concentration- and time-dependent manner, a half-maximal effect after 9 days of culture being observed with 100 pM RA. The pleiotropic effects of retinoids are mediated by nuclear retinoic acid receptors (RARs; alpha, beta and gamma) and retinoid X receptors (RXRs; alpha, beta and gamma). To identify the signaling pathway involved in RA-induced lumen formation, we used receptor-specific synthetic retinoids. TTNPB, a selective RAR agonist, promoted lumen morphogenesis, whereas RXR-selective ligands lacked this activity. Lumen formation was also induced at picomolar concentrations by Am-580, a synthetic retinoid that selectively binds the RARalpha receptor subtype. Moreover, co-addition of Ro 41-5253, an antagonist of RARalpha, abrogated the lumen-inducing activity of both RA and DCS, indicating that this biological response is mediated through an RARalpha-dependent signaling pathway. To gain insight into the mechanisms underlying RA-induced lumen formation, we assessed the potential role of matrix metalloproteinases (MMP). Using gelatin zymography, we observed a dose-dependent increase in latent and active forms

  10. Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland.

    PubMed

    Baldassarre, Hernan; Hockley, Duncan K; Olaniyan, Benjamen; Brochu, Eric; Zhao, Xin; Mustafa, Arif; Bordignon, Vilceu

    2008-10-01

    The use of the mammary gland of transgenic goats as a bioreactor is a well established platform for the efficient production of recombinant proteins, especially for molecules that cannot be adequately produced in traditional systems using genetically engineered microorganisms and cells. However, the extraordinary demand placed on the secretory epithelium by the expression of large amounts of the recombinant protein, may result in a compromised mammary physiology. In this study, milk composition was compared between control and transgenic goats expressing high levels (1-5 g/l) of recombinant human butyrylcholinesterase in the milk. Casein concentration, as evaluated by acid precipitation, was significantly reduced in the transgenic compared with the control goats throughout lactation (P < 0.01). Milk fatty acid composition for transgenic goats, as determined by gas chromatography, was found to have significantly fewer short chain fatty acids (P < 0.01) and more saturated fatty acids (P < 0.05) compared to controls, suggesting an overall metabolic stress and/or decreased expression of key enzymes (e.g. fatty acid synthase, stearoyl-CoA desaturase). The concentration of Na(+), K(+), assessed by atomic absorption spectrophotometry, and serum albumin, determined by bromocresol green dye and scanning densitometry, were similar in transgenic and control goats during the first several weeks of lactation. However, as lactation progressed, a significant increase in Na and serum albumin concentrations and a decrease in K(+) concentration were found in the milk of transgenic goats, while control animals remained unchanged (P < 0.01). These findings suggest that: (a) high expression of recombinant proteins may be associated with a slow-down in other synthetic activities at the mammary epithelium, as evidenced by a reduced casein expression and a decreased de-novo synthesis of fatty acids; (b) the development of permeable tight junctions may be the main mechanism involved in the

  11. Cloning mammary cell cDNAs from 17q12-q23 using interspecific somatic cell hybrids and subtractive hybridization

    SciTech Connect

    Cerosaletti, K.M.; Shapero, M.H.; Fournier, R.E.K.

    1995-01-01

    We have cloned human genes that are encoded in the region 17q12-q23 and expressed in breast tissue using interspecific somatic cell hybrids and subtractive hybridization. Two mouse microcell hybrids containing fragments of human chromosome 17 with a nonoverlap region at 17q12-q23 were generated by microcell transfer. Radiolabeled cDNA was synthesized from the hybrid cell containing the 17q12-q23 interval and was subtracted with an excess of RNA from the hybrid cell lacking the interval. Resulting cDNA probes enriched for sequences from 17q12-q23 were used to screen a human premenopausal breast cDNA library, and 60 cDNAs were identified. Three of these cDNAs mapped to the hybrid cell nonoverlap region. These cDNAs were expressed in mammary epithelial cell hybrids, although none appeared to be breast-specific. Sequence analysis of the cDNAs revealed that clone 93A represents a previously unidentified gene, clone 98C has homology to an expressed sequence tag from goat mammary tissue, and clone 200A is identical to the human homologue of the Drosophila melanogaster flightless-I gene. These genes map outside a 1-cM region linked to early onset familial breast cancer but may be useful genetic markers in the 17q12-q23 region. 47 refs., 6 figs.

  12. Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours.

    PubMed

    DeInnocentes, P; Perry, A L; Graff, E C; Lutful Kabir, F M; Curtis Bird, R

    2015-09-01

    Spatial/temporal controls of development are regulated by the homeotic (HOX) gene complex and require integration with oncogenes and tumour suppressors regulating cell cycle exit. Spontaneously derived neoplastic canine mammary carcinoma cell models were investigated to determine if HOX expression profiles were associated with neoplasia as HOX genes promote neoplastic potential in human cancers. Comparative assessment of human and canine breast cancer expression profiles revealed remarkable similarity for all four paralogous HOX gene clusters and several unlinked HOX genes. Five canine HOX genes were overexpressed with expression profiles consistent with oncogene-like character (HOXA1, HOXA13, HOXD4, HOXD9 and SIX1) and three HOX genes with underexpressed profiles (HOXA11, HOXC8 and HOXC9) were also identified as was an apparent nonsense mutation in HOXC6. This data, as well as a comparative analysis of similar data from human breast cancers suggested expression of selected HOX genes in canine mammary carcinoma could be contributing to the neoplastic phenotype. PMID:24034269

  13. Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours.

    PubMed

    DeInnocentes, P; Perry, A L; Graff, E C; Lutful Kabir, F M; Curtis Bird, R

    2015-09-01

    Spatial/temporal controls of development are regulated by the homeotic (HOX) gene complex and require integration with oncogenes and tumour suppressors regulating cell cycle exit. Spontaneously derived neoplastic canine mammary carcinoma cell models were investigated to determine if HOX expression profiles were associated with neoplasia as HOX genes promote neoplastic potential in human cancers. Comparative assessment of human and canine breast cancer expression profiles revealed remarkable similarity for all four paralogous HOX gene clusters and several unlinked HOX genes. Five canine HOX genes were overexpressed with expression profiles consistent with oncogene-like character (HOXA1, HOXA13, HOXD4, HOXD9 and SIX1) and three HOX genes with underexpressed profiles (HOXA11, HOXC8 and HOXC9) were also identified as was an apparent nonsense mutation in HOXC6. This data, as well as a comparative analysis of similar data from human breast cancers suggested expression of selected HOX genes in canine mammary carcinoma could be contributing to the neoplastic phenotype.

  14. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor

    SciTech Connect

    Zhang Xufeng; Wu Guoxiang; Chen, Jian-Quan; Zhang Aimin; Liu Siguo; Jiao Binghua . E-mail: jiaobh@uninet.com.cn; Cheng Guoxiang . E-mail: Chenggx@cngenon.com

    2005-07-22

    Yeast artificial chromosomes (YACs) as transgenes in transgenic animals are likely to ensure optimal expression levels. Microinjection of YACs is the exclusive technique used to produce YACs transgenic livestock so far. However, low efficiency and high cost are its critical restrictive factors. In this study, we presented a novel procedure to produce YACs transgenic livestock as mammary gland bioreactor. A targeting vector, containing the gene of interest-a human serum albumin minigene (intron 1, 2), yeast selectable marker (G418R), and mammalian cell resistance marker (neo{sup r}), replaced the {alpha}-lactalbumin gene in a 210 kb human {alpha}-lactalbumin YAC by homogeneous recombination in yeasts. The chimeric YAC was introduced into goat fetal fibroblasts using polyethylene glycol-mediated spheroplast fusion. PCR and Southern analysis showed that intact YAC was integrated in the genome of resistant cells. Perhaps, it may offer a cell-based route by nuclear transfer to produce YACs transgenic livestock.

  15. In vitro activity of a Solanum tuberosum extract against mammary carcinoma cells.

    PubMed

    De Lorenzo, M S; Lorenzano Menna, P L; Alonso, D F; Gomez, D E

    2001-03-01

    We investigated the antitumor properties of a Solanum tuberosum extract (STE) on F3II mouse mammary carcinoma cells. STE significantly inhibited adhesion on fibronectin-coated surfaces and blocked migration of tumor cells in vitro. A major gelatinolytic activity (gelatinase) of 82 kD was identified in STE by zymographic analysis and characterized by exposure to different experimental conditions. Proteolytic activity of STE may be responsible, at least in part, for the in vitro effects on mammary carcinoma cells.

  16. A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer.

    PubMed

    von Eyss, Björn; Jaenicke, Laura A; Kortlever, Roderik M; Royla, Nadine; Wiese, Katrin E; Letschert, Sebastian; McDuffus, Leigh-Anne; Sauer, Markus; Rosenwald, Andreas; Evan, Gerard I; Kempa, Stefan; Eilers, Martin

    2015-12-14

    In several developmental lineages, an increase in MYC expression drives the transition from quiescent stem cells to transit-amplifying cells. We show that MYC activates a stereotypic transcriptional program of genes involved in cell growth in mammary epithelial cells. This change in gene expression indirectly inhibits the YAP/TAZ co-activators, which maintain the clonogenic potential of these cells. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. MYC-dependent growth strains cellular energy resources and stimulates AMP-activated kinase (AMPK). PLD6 alters mitochondrial fusion and fission dynamics downstream of MYC. This change activates AMPK, which in turn inhibits YAP/TAZ. Mouse models and human pathological data show that MYC enhances AMPK and suppresses YAP/TAZ activity in mammary tumors. PMID:26678338

  17. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells.

    PubMed Central

    Sandhu, C; Garbe, J; Bhattacharya, N; Daksis, J; Pan, C H; Yaswen, P; Koh, J; Slingerland, J M; Stampfer, M R

    1997-01-01

    The effects of transforming growth factor beta (TGF-beta) were studied in closely related human mammary epithelial cells (HMEC), both finite-life-span 184 cells and immortal derivatives, 184A1S, and 184A1L5R, which differ in their cell cycle responses to TGF-beta but express type I and type II TGF-beta receptors and retain TGF-beta induction of extracellular matrix. The arrest-resistant phenotype was not due to loss of cyclin-dependent kinase (cdk) inhibitors. TGF-beta was shown to regulate p15INK4B expression at at least two levels: mRNA accumulation and protein stability. In TGF-beta-arrested HMEC, there was not only an increase in p15 mRNA but also a major increase in p5INK4B protein stability. As cdk4- and cdk6-associated p15INK4B increased during TGF-beta arrest of sensitive cells, there was a loss of cyclin D1, p21Cip1, and p27Kip1 from these kinase complexes, and cyclin E-cdk2-associated p27Kip1 increased. In HMEC, p15INK4B complexes did not contain detectable cyclin. p15INK4B from both sensitive and resistant cells could displace in vitro cyclin D1, p21Cip1, and p27Kip1 from cdk4 isolated from sensitive cells. Cyclin D1 could not be displaced from cdk4 in the resistant 184A1L5R cell lysates. Thus, in TGF-beta arrest, p15INK4B may displace already associated cyclin D1 from cdks and prevent new cyclin D1-cdk complexes from forming. Furthermore, p27Kip1 binding shifts from cdk4 to cyclin E-cdk2 during TGF-beta-mediated arrest. The importance of posttranslational regulation of p15INK4B by TGF-beta is underlined by the observation that in TGF-beta-resistant 184A1L5R, although the p15 transcript increased, p15INK4B protein was not stabilized and did not accumulate, and cyclin D1-cdk association and kinase activation were not inhibited. PMID:9111314

  18. Platelet factors induce chemotactic migration of murine mammary adenocarcinoma cells with different metastatic capabilities.

    PubMed Central

    Sarach, M. A.; Rovasio, R. A.; Eynard, A. R.

    1993-01-01

    The chemotactic response of neoplastic cells (NC) induced by soluble platelet factors was investigated. NC suspensions isolated from murine mammary gland adenocarcinomas having different metastatic capabilities were incubated in Boyden's chambers and challenged with (1) 'Early Platelet Factors' (EP), obtained from the soluble fraction of recently collagen-activated human platelets, and (2) 'Late Platelet Factors' (LP), isolated after 24 hours incubation of the platelet aggregates. Chemotaxis was expressed as the distance travelled by NC through nitrocellulose filters. NC isolated from M3, the tumour line having the stronger metastatic potential, showed a significant chemotactic response towards LP factors, whereas NC from the M2 line exhibiting the lower metastatic behaviour, showed a chemotactic response towards EP factors. Both tumour cell lines lacked motion capability towards the well known chemoattractant peptide N-f-Met-Leu-Phe-Phe as well as to serum, plasma, collagen type I or culture medium. The different chemotactic response of both tumour lines when they were challenged by concentration gradients of factors released by early or late collagen-activated human platelets, confirm a relationship between platelet activity and metastatic capabilities and suggests that platelet chemoattractants might play a role in the metastatic dissemination of these mammary gland adenocarcinomas. Images Figure 1 PMID:8217786

  19. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice.

    PubMed

    Lakritz, Jessica R; Poutahidis, Theofilos; Levkovich, Tatiana; Varian, Bernard J; Ibrahim, Yassin M; Chatzigiagkos, Antonis; Mirabal, Sheyla; Alm, Eric J; Erdman, Susan E

    2014-08-01

    Recent studies suggest health benefits including protection from cancer after eating fermented foods such as probiotic yogurt, though the mechanisms are not well understood. Here we tested mechanistic hypotheses using two different animal models: the first model studied development of mammary cancer when eating a Westernized diet, and the second studied animals with a genetic predilection to breast cancer. For the first model, outbred Swiss mice were fed a Westernized chow putting them at increased risk for development of mammary tumors. In this Westernized diet model, mammary carcinogenesis was inhibited by routine exposure to Lactobacillus reuteri ATCC-PTA-6475 in drinking water. The second model was FVB strain erbB2 (HER2) mutant mice, genetically susceptible to mammary tumors mimicking breast cancers in humans, being fed a regular (non-Westernized) chow diet. We found that oral supplement with these purified lactic acid bacteria alone was sufficient to inhibit features of mammary neoplasia in both models. The protective mechanism was determined to be microbially-triggered CD4+CD25+ lymphocytes. When isolated and transplanted into other subjects, these L. reuteri-stimulated lymphocytes were sufficient to convey transplantable anti-cancer protection in the cell recipient animals. These data demonstrate that host immune responses to environmental microbes significantly impact and inhibit cancer progression in distal tissues such as mammary glands, even in genetically susceptible mice. This leads us to conclude that consuming fermentative microbes such as L. reuteri may offer a tractable public health approach to help counteract the accumulated dietary and genetic carcinogenic events integral in the Westernized diet and lifestyle. PMID:24382758

  20. Cloned kids derived from caprine mammary gland epithelial cells.

    PubMed

    Yuan, Y-G; Cheng, Y; Guo, L; Ding, G-L; Bai, Y-J; Miao, M-X; An, L-Y; Zhao, J-H; Cao, Y-J

    2009-09-01

    The use of nucleus transfer techniques to generate transgenic dairy goats capable of producing recombinant therapeutic proteins in milk could have a major impact on the pharmaceutical industry. However, transfection or gene targeting of nucleus transfer donor cells requires a long in vitro culture period and the selection of marker genes. In the current study, we evaluated the potential for using caprine mammary gland epithelial cells (CMGECs), isolated from udders of lactating F1 hybrid goats (Capra hircus) and cryopreserved at Passages 24 to 26, for nucleus transfer into enucleated in vivo-matured oocytes. Pronuclear-stage reconstructed embryos were transferred into the oviducts of 31 recipient goats. Twenty-three (74%), 21 (72%), and 14 (48%) recipients were confirmed pregnant by ultrasonography on Days 30, 60, and 90, respectively. Four recipients aborted between 35 and 137 d of gestation. Five recipients carried the pregnancies to term and delivered one goat kid each, one of which subsequently died due to respiratory difficulties. The remaining four goat kids were healthy and well. Single-strand conformation polymorphism analysis confirmed that all kids were clones of the donor cells. In conclusion, the CMGECs remained totipotent for nucleus transfer.

  1. A model of spontaneous mouse mammary tumor for human estrogen receptor- and progesterone receptor-negative breast cancer

    PubMed Central

    ZHENG, LIXIANG; ZHOU, BUGAO; MENG, XIANMING; ZHU, WEIFENG; ZUO, AIREN; WANG, XIAOMIN; JIANG, RUNDE; YU, SHIPING

    2014-01-01

    Breast cancer (BC) is the most frequently malignancy in women. Therefore, establishment of an animal model for the development of preventative measures and effective treatment for tumors is required. A novel heterogeneous spontaneous mammary tumor animal model of Kunming mice was generated. The purpose of this study was to characterize the spontaneous mammary tumor model. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and muscle tissue. Metastatic spread through blood vessel into liver and lungs was observed by hematoxylin eosin staining. No estrogen receptor (ER) or progesterone receptor (PR) immunoreactivity was detected in their associated malignant tumors, human epidermal growth factor receptor-2 (HER-2) protein weak expression was found by immunohistochemistry. High expression of vascular endothelial growth factor (VEGF), moderate or high expression of c-Myc and cyclin D1 were observed in tumor sections at different stages (2, 4, 6 and 8 weeks after cancer being found) when compared with that of the normal mammary glands. The result showed that the model is of an invasive ductal carcinoma. Remarkably in the mouse model, ER and PR-negative and HER2 weak positivity are observed. The high or moderate expressions of breast cancer markers (VEGF, c-Myc and cyclin D1) in mammary cancer tissue change at different stages. To our knowledge, this is the first report of a spontaneous mammary model displaying colony-strain, outbred mice. This model will be an attractive tool to understand the biology of anti-hormonal breast cancer in women. PMID:25230850

  2. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model

    PubMed Central

    Ma, Li-bing; He, Xiao-ning; Si, Wan-tong; Zheng, Yue-Mao

    2016-01-01

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  3. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    PubMed

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  4. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    PubMed

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos.

  5. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer

    PubMed Central

    Tiede, Benjamin; Kang, Yibin

    2011-01-01

    Adult stem cells of the mammary gland (MaSCs) are a highly dynamic population of cells that are responsible for the generation of the gland during puberty and its expansion during pregnancy. In recent years significant advances have been made in understanding how these cells are regulated during these developmentally important processes both in humans and in mice. Understanding how MaSCs are regulated is becoming a particularly important area of research, given that they may be particularly susceptible targets for transformation in breast cancer. Here, we summarize the identification of MaSCs, how they are regulated and the evidence for their serving as the origins of breast cancer. In particular, we focus on how changes in MaSC populations may explain both the increased risk of developing aggressive ER/PR(−) breast cancer shortly after pregnancy and the long-term decreased risk of developing ER/PR(+) tumors. PMID:21243011

  6. The Transcriptional Repressor ZNF503/Zeppo2 Promotes Mammary Epithelial Cell Proliferation and Enhances Cell Invasion.

    PubMed

    Shahi, Payam; Slorach, Euan M; Wang, Chih-Yang; Chou, Jonathan; Lu, Angela; Ruderisch, Aline; Werb, Zena

    2015-02-01

    The NET (nocA, Nlz, elB, TLP-1) subfamily of zinc finger proteins is an important mediator during developmental processes. The evolutionary conserved zinc finger protein ZNF503/Zeppo2 (zinc finger elbow-related proline domain protein 2, Zpo2) plays critical roles during embryogenesis. We found that Zpo2 is expressed in adult tissue and examined its function. We found that ZPO2 is a nuclearly targeted transcriptional repressor that is expressed in mammary epithelial cells. Elevated Zpo2 levels increase mammary epithelial cell proliferation. Zpo2 promotes cellular invasion through down-regulation of E-cadherin and regulates the invasive phenotype in a RAC1-dependent manner. We detect elevated Zpo2 expression during breast cancer progression in a MMTV-PyMT transgenic mouse model. Tumor transplant experiments indicated that overexpression of Zpo2 in MMTV-PyMT mammary tumor cell lines enhances lung metastasis. Our findings suggest that Zpo2 plays a significant role in mammary gland homeostasis and that deregulation of Zpo2 may promote breast cancer development.

  7. Use of p63, a Myoepithelial Cell Marker, in Determining the Invasiveness of Spontaneous Mammary Neoplasia in a Rhesus Macaque (Macaca mulatta)

    PubMed Central

    Williams-Fritze, Misty J; Scholz, Jodi A Carlson; Bossuyt, Veerle; Booth, Carmen J

    2011-01-01

    Here we describe a case of mammary gland ductal carcinoma in an aged rhesus macaque. Tumors were diagnosed based on routine hematoxylin and eosin staining. Invasiveness was further characterized by p63 immunohistochemistry. p63 is a p53 homolog that strongly and specifically stains nuclei of myoepithelial cells in human and canine mammary tissue. Because p63 has an affinity for the nucleus of myoepithelial cells, it is readily visible. Staining of mammary tissue from the monkey for p63 revealed that multiple foci of neoplastic cells had breached the myoepithelial cell layer surrounding ducts, suggesting the potential for local invasion of the tumor. Regional metastasis was confirmed at necropsy. To our knowledge, this is the first documented use of p63 for effectively determining the invasive nature of a mammary tumor in a nonhuman primate and the first use of p63 as an effective means of staining myoepithelial cells in a mammary ductal carcinoma in a nonhuman primate. Because nonhuman primates are important animal models for human diseases, including neoplasia, this method may prove useful for both diagnostic and research purposes. PMID:21439221

  8. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia

    PubMed Central

    Garbe, James C; Pepin, Francois; Pelissier, Fanny; Sputova, Klara; Fridriksdottir, Agla J; Guo, Diana E; Villadsen, Rene; Park, Morag; Petersen, Ole W; Borowsky, Alexander D.; Stampfer, Martha R; LaBarge, Mark A

    2012-01-01

    Women over 50 years of age account for 75% of new breast cancer diagnoses, and the majority of these tumors are of a luminal subtype. Although age-associated changes, including endocrine profiles and alterations within the breast microenvironment, increase cancer risk, an understanding of the molecular mechanisms that underlie these observations is lacking. In this study, we generated a large collection of normal human mammary epithelial cell strains from women aged 16 to 91 years, derived from primary tissues, to investigate the molecular changes that occur in aging breast cells. We found that in finite-lifespan cultured and uncultured epithelial cells, aging is associated with a reduction of myoepithelial cells and an increase in luminal cells that express keratin 14 and integrin α6, a phenotype that is usually expressed exclusively in myoepithelial cells in women under 30. Changes to the luminal lineage resulted from age-dependent expansion of defective multipotent progenitors that gave rise to incompletely differentiated luminal or myoepithelial cells. The aging process therefore results in both a shift in the balance of luminal/myoepithelial lineages and to changes in the functional spectrum of multipotent progenitors, which together increase the potential for malignant transformation. Together, our findings provide a cellular basis to explain the observed vulnerability to breast cancer that increases with age. PMID:22552289

  9. CD151 represses mammary gland development by maintaining the niches of progenitor cells

    PubMed Central

    Yin, Yuanqin; Deng, Xinyu; Liu, Zeyi; Baldwin, Lauren A; Lefringhouse, Jason; Zhang, Jiayang; Hoff, John T; Erfani, Sonia F; Rucker, Edmund B; O'Connor, Kathleen; Liu, Chunming; Wu, Yadi; Zhou, Binhua P; Yang, Xiuwei H

    2014-01-01

    Tetraspanin CD151 interacts with laminin-binding integrins (i.e., α3β1, α6β1 and α6β4) and other cell surface molecules to control diverse cellular and physiological processes, ranging from cell adhesion, migration and survival to tissue architecture and homeostasis. Here, we report a novel role of CD151 in maintaining the branching morphogenesis and activity of progenitor cells during the pubertal development of mammary glands. In contrast to the disruption of laminin-binding integrins, CD151 removal in mice enhanced the tertiary branching in mammary glands by 2.4-fold and the number of terminal end buds (TEBs) by 30%, while having minimal influence on either primary or secondary ductal branching. Consistent with these morphological changes are the skewed distribution of basal/myoepithelial cells and a 3.2-fold increase in proliferating Ki67-positive cells. These novel observations suggest that CD151 impacts the branching morphogenesis of mammary glands by upregulating the activities of bipotent progenitor cells. Indeed, our subsequent analyses indicate that upon CD151 removal the proportion of CD24HiCD49fLow progenitor cells in the mammary gland increased by 34%, and their proliferating and differentiating activities were significantly upregulated. Importantly, fibronectin, a pro-branching extracellular matrix (ECM) protein deposited underlying mammary epithelial or progenitor cells, increased by >7.2-fold. Moreover, there was a concomitant increase in the expression and nuclear distribution of Slug, a transcription factor implicated in the maintenance of mammary progenitor cell activities. Taken together, our studies demonstrate that integrin-associated CD151 represses mammary branching morphogenesis by controlling progenitor cell activities, ECM integrity and transcription program. PMID:25486358

  10. In Vitro Culture and Characterization of a Mammary Epithelial Cell Line from Chinese Holstein Dairy Cow

    PubMed Central

    Hu, Han; Wang, Jiaqi; Bu, Dengpan; Wei, Hongyang; Zhou, Linyun; Li, Fadi; Loor, Juan J.

    2009-01-01

    Background The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro. Methodology Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition) was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture. Principal Findings The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n = 60. Furthermore, they were capable of synthesizing β-casein (CSN2), acetyl-CoA carboxylase-α (ACACA) and butyrophilin (BTN1A1). An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line. Conclusions The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs). PMID:19888476

  11. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  12. Multiple RT-PCR markers for the detection of circulating tumour cells of metastatic canine mammary tumours.

    PubMed

    da Costa, A; Kohn, B; Gruber, A D; Klopfleisch, R

    2013-04-01

    In humans, detection of circulating tumour cells (CTCs) using nucleic acid-based methods such as reverse transcription polymerase chain reaction (RT-PCR) has proven to be of prognostic relevance. However, similar procedures are still lacking in veterinary oncology. To assess the correlation of CTC markers with the metastatic potential of canine mammary tumours, 120 peripheral blood samples from bitches with mammary carcinomas with (group 1) and without (group 2) histological evidence of vascular invasion and/or presence of lymph node metastases and mammary adenomas (group 3) were analyzed. Blood samples were collected in EDTA tubes and RNA was extracted within 48 h. Subsequently, the samples were tested by RT-PCR for a panel of seven CTC mRNA markers. CRYAB was the most sensitive single marker with a sensitivity of 35% and also the most specific marker with a specificity of 100% to detect group 1 blood samples. A multimarker assay combining four genes enhanced the sensitivity up to 77.5%, but decreased the specificity to 80%. CRYAB appeared to be highly specific but only moderately sensitive at detecting blood samples from dogs with metastatic tumours and detection significantly correlated with vascular invasion of primary mammary tumours. However, a multimarker assay of four genes significantly enhanced the sensitivity of the assay and is therefore preferable for CTC detection. PMID:23036177

  13. Ceramide Kinase Promotes Tumor Cell Survival and Mammary Tumor Recurrence

    PubMed Central

    Payne, Ania W.; Pant, Dhruv K.; Pan, Tien-chi; Chodosh, Lewis A.

    2014-01-01

    Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTCs) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that Ceramide Kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously up-regulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly up-regulated in tumor cells following HER2/neu down-regulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu down-regulation. Consistent with our observations in mouse models, analysis of gene expression profiles from over 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. Additionally, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are ER–, HER2+, basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathological variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this pro-survival pathway. PMID:25164007

  14. Luminal Epithelial Cells within the Mammary Gland Can Produce Basal Cells upon Oncogenic Stress

    PubMed Central

    Hein, Sarah M.; Haricharan, Svasti; Johnston, Alyssa N.; Toneff, Michael J.; Reddy, Jay P.; Dong, Jie; Bu, Wen; Li, Yi

    2015-01-01

    In the normal mammary gland, the basal epithelium is known to be bi-potent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bi-potent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here, we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in vivo lineage tracing work demonstrates that luminal cells are capable of producing basal cells upon activation of either Polyoma Middle T antigen (PyMT) or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer. PMID:26096929

  15. P-glycoprotein expression in canine mammary gland tumours related with myoepithelial cells.

    PubMed

    Kim, N-H; Hwang, Y-H; Im, K-S; Kim, J-H; Chon, S-K; Kim, H-Y; Sur, J-H

    2012-12-01

    P-glycoprotein is influential in chemotherapy-resistance in numerous cancers and has been widely studied in human breast cancer research, but is less studied in canine mammary gland tumour (MGT). The study was to evaluate P-glycoprotein expression and its localisations related with prognostic factors with monoclonal antibody C219, by immunohistochemistry (IHC) of 68 cases of canine malignant (n=54) and benign (n=14) MGT. Additional immunofluorescence (IF) and reverse transcriptase-polymerase chain reaction (RT-PCR) were also performed. There was a novel finding that P-glycoprotein expression with C219 localised at two different cell types: epithelial and myoepithelial cells. Myoepithelial localised tumours were 5 benign (35.5%) and 21 malignant (63.6%), while epithelial localised tumours were 12 cases, all malignant (36.5%). Unlike conventional belief, semi-quantitative evaluation of IHC intensity scores of C219 expression in malignant MGT was related with favourable histopathological parameters. PMID:22554937

  16. Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland

    PubMed Central

    Li, Guangyuan; Hayward, Isaac N.; Jenkins, Brittany R.; Rothfuss, Heather M.; Young, Coleman H.; Nevalainen, Marja T.; Muth, Aaron; Thompson, Paul R.; Navratil, Amy M.; Cherrington, Brian D.

    2016-01-01

    Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation. PMID:26799659

  17. Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland.

    PubMed

    Li, Guangyuan; Hayward, Isaac N; Jenkins, Brittany R; Rothfuss, Heather M; Young, Coleman H; Nevalainen, Marja T; Muth, Aaron; Thompson, Paul R; Navratil, Amy M; Cherrington, Brian D

    2016-01-01

    Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation. PMID:26799659

  18. Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland.

    PubMed

    Li, Guangyuan; Hayward, Isaac N; Jenkins, Brittany R; Rothfuss, Heather M; Young, Coleman H; Nevalainen, Marja T; Muth, Aaron; Thompson, Paul R; Navratil, Amy M; Cherrington, Brian D

    2016-01-01

    Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation.

  19. Three-dimensional Mammary Epithelial Cell Morphogenesis Model for Analysis of TGFß Signaling.

    PubMed

    Rashidian, Juliet; Luo, Kunxin

    2016-01-01

    Culturing mammary epithelial cells in laminin-rich extracellular matrices (three dimensional or 3D culture) offers significant advantages over that in the conventional two-dimensional (2D) tissue culture system in that it takes into considetation the impact of extracellular matrix (ECM) microenvironment on the proliferation, survival, and differentiation of mammary epithelial cells. When grown in the 3D culture, untransformed mammary epithelial cells undergo morphogenesis to form a multicellular and polarized acini-like structure that functionally mimics the differentiated alveoli in the pregnancy mammary gland. This process is subjected to regulation by many growth factors and cytokines. The transforming growth factor-ß (TGFß) is a multipotent cytokine that regulates multiple aspects of development and tumorigenesis. In addition to its effects on epithelial cell proliferation, survival, and differentiation, it is also a potent regulator of the cell-matrix interaction. Thus, the 3D culture model may recapitulate the complex in vivo epithelial cell microenvironment and allow us to fully evaluate the role of TGFß signaling in multiple aspects of normal and cancerous cell behavior. In this chapter we provide detailed protocols for growing mammary epithelial cells in the 3D Matrigel for analysis of signaling pathways.

  20. Intracellular accumulation, subcellular distribution, and efflux of tilmicosin in bovine mammary, blood, and lung cells.

    PubMed

    Scorneaux, B; Shryock, T R

    1999-06-01

    Tilmicosin is a semisynthetic macrolide antibiotic currently approved for veterinary use in cattle and swine to combat respiratory disease. Because the concentrations of tilmicosin are generally low in bovine serum, the interaction of tilmicosin with three types of bovine phagocytes (monocyte-macrophages, macrophages, and neutrophils from blood, lungs, and mammary gland, respectively) and mammary gland epithelial cells was evaluated to provide an understanding of potential clinical efficacy. After incubation with radiolabeled tilmicosin, uptake was determined and expressed as the ratio of the intracellular to the extracellular drug concentration. Accumulation of tilmicosin at 4 h of incubation by the alveolar macrophages (Cc/Ce 193) was 4 to 13 times more than that observed in monocyte-macrophages (Cc/Ce 43), neutrophils, (Cc/Ce 13), or mammary epithelial cells (Cc/Ce 20). Subcellular distribution showed that 70 to 80% of tilmicosin was localized in the lysosomes. Uptake in mammary gland cells was dependent on cell viability, temperature, and pH, but was not influenced by metabolic inhibitors or anaerobiosis. However, lipopolysaccharide exposure increased tilmicosin uptake by the bovine mammary macrophages and epithelial cells. When neutrophils and epithelial cells were incubated in the presence of tilmicosin and extracellular tilmicosin was then removed, 40% of the intracellular tilmicosin remained cell associated after 4 h of incubation (i.e., 60% effluxed), but only 25% remained in macrophages. These in vitro interactions of tilmicosin with bovine phagocytes and epithelial cells suggest an integral role in effecting clinical efficacy.

  1. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    PubMed

    Kunasegaran, Kamini; Ho, Victor; Chang, Ted H-T; De Silva, Duvini; Bakker, Martijn L; Christoffels, Vincent M; Pietersen, Alexandra M

    2014-01-01

    The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  2. Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts

    PubMed Central

    2010-01-01

    Introduction Amniotic fluid harbors cells indicative of all three germ layers, and pluripotent fetal amniotic fluid stem cells (AFSs) are considered potentially valuable for applications in cellular therapy and tissue engineering. We investigated whether it is possible to direct the cell fate of AFSs in vivo by transplantation experiments into a particular microenvironment, the mammary fat pad. This microenvironment provides the prerequisites to study stem cell function and the communication between mesenchymal and epithelial cells. On clearance of the endogenous epithelium, the ductal tree can be reconstituted by the transfer of exogenously provided mammary stem cells. Analogously, exogenously provided stem cells from other tissues can be investigated for their potential to contribute to mammary gland regeneration. Methods We derived pluripotent murine AFSs, measured the expression of stem cell markers, and confirmed their in vitro differentiation potential. AFSs were transplanted into cleared and non cleared fat pads of immunocompromised mice to evaluate their ability to assume particular cell fates under the instructive conditions of the fat-pad microenvironment and the hormonal stimulation during pregnancy. Results Transplantation of AFSs into cleared fat pads alone or in the presence of exogenous mammary epithelial cells caused their differentiation into stroma and adipocytes and replaced endogenous mesenchymal components surrounding the ducts in co-transplantation experiments. Similarly, transplantation of AFSs into fat pads that had not been previously cleared led to AFS-derived stromal cells surrounding the elongating endogenous ducts. AFSs expressed the marker protein α-SMA, but did not integrate into the myoepithelial cell layer of the ducts in virgin mice. With pregnancy, a small number of AFS-derived cells were present in acinar structures. Conclusions Our data demonstrate that the microenvironmental cues of the mammary fat pad cause AFSs to

  3. Transcriptional Repressor Tbx3 Is Required for the Hormone-Sensing Cell Lineage in Mammary Epithelium

    PubMed Central

    Kunasegaran, Kamini; Ho, Victor; Chang, Ted H-. T.; De Silva, Duvini; Bakker, Martijn L.; Christoffels, Vincent M.; Pietersen, Alexandra M.

    2014-01-01

    The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells. PMID:25343378

  4. Localization and quantitation of macrophages, mast cells, and eosinophils in the developing bovine mammary gland.

    PubMed

    Beaudry, K L; Parsons, C L M; Ellis, S E; Akers, R M

    2016-01-01

    Prepubertal mammary development involves elongation and branching of ducts and stromal tissue remodeling. This process is highly regulated and in mice is known to be affected by the presence of innate immune cells. Whether or not such immune cells are present or involved in bovine mammary development is unknown. For the first time, we determined the presence, location (relative to mammary ductal structures), and changes in numbers of eosinophils, mast cells, and macrophages in prepubertal bovine mammary tissue, and evaluated the effects of age, ovariectomy, and exogenous estrogen on numbers of each cell type. Chemical stains and immunofluorescence were used to identify the 3 cell types in formalin-fixed, paraffin-embedded mammary tissue from prepubertal female calves from 3 archived tissue sets. The ontogeny tissue set included samples of mammary tissue from female calves (n=4/wk) from birth to 6 wk of age. The ovary tissue set contained samples from ovary intact and ovariectomized heifers allowing us to investigate the influence of the ovaries on immune cells in the developing mammary gland in prepubertal heifers. Nineteen animals were intact or ovariectomized 30 d before sampling; they were 90, 120, or 150 d old at the time of sampling. A third tissue set, the estrogen set, allowed us to determine the effect of exogenous estrogen on innate immune cells in the gland. Eosinophils were identified via Luna staining, mast cells by May-Grunwald Giemsa staining, and macrophages with immunofluorescence. Key findings were that more eosinophils and mast cells were observed in near versus far stroma in the ontogeny and ovary tissue sets but not estrogen. More macrophages were observed in near versus far stroma in ontogeny animals. Eosinophils were more abundant in the younger animals, and fewer macrophages tended to be observed in ovariectomized heifers as compared with intact heifers and estrogen treatment resulted in a reduction in cell numbers. In summary, we show for

  5. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    PubMed Central

    Hammer, Susanne C.; Becker, Annegret; Rateitschak, Katja; Mohr, Annika; Lüder Ripoli, Florenza; Hennecke, Silvia; Junginger, Johannes; Hewicker-Trautwein, Marion; Brenig, Bertram; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2016-01-01

    Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies. PMID:27690019

  6. Canine mammary tumours as a model to study human breast cancer: most recent findings.

    PubMed

    Queiroga, Felisbina Luisa; Raposo, Teresa; Carvalho, Maria Isabel; Prada, Justina; Pires, Isabel

    2011-01-01

    Clinical and molecular similarities between canine mammary tumours and human breast cancer have been described in recent decades. Clinically, the similarities are very strong: spontaneous tumours, hormonal aetiology, age of onset and an identical course of the disease. The clinical characteristics that have an impact on the clinical outcome are also identical: tumour size, lymph node invasiveness and clinical stage. Nowadays, as far as human medicine is concerned, the goal is to identify prognostic factors, mainly at the molecular level, such as those involved in metastasis, which could be used as therapeutic targets to support a better outcome. Moreover, in this area, canine mammary tumours seem to mimic human breast cancer, as a range of similarities are found at the molecular level concerning the overexpression of steroid receptors, proliferation markers, epidermal growth factor, p53 supressor gene mutations, metalloproteinases, cyclooxygenases, among many others. Clinical and molecular data that support canine mammary tumours as a model to study human breast cancer are analysed in this review. Additionally, it is shown that some recent molecular targets in canine mammary tumours may be seen as indicators for similar research to be performed in the corresponding human disease. PMID:21576423

  7. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases

    PubMed Central

    Bouchard, G; Bouvette, G; Therriault, H; Bujold, R; Saucier, C; Paquette, B

    2013-01-01

    Background: In most patients with breast cancer, radiotherapy induces inflammation that is characterised by an increase of promigratory factors in healthy tissues surrounding the tumour. However, their role in the emergence of the migration phenotype and formation of metastases is still unclear. Methods: A single mammary gland of BALB/c mice was irradiated with four doses of 6 Gy given at a 24-h interval. After the last session of irradiation, treated and control mammary glands were either collected for quantification of promigratory and proinflammatory factors or were implanted with fluorescent ubiquitination-based cell cycle indicator (FUCCI)-expressing mouse mammary cancer D2A1 cells. The migration of cancer cells in the mammary glands was monitored by optical imaging. On day 21, mammary tumours and lungs were collected for histology analyses and the quantification of metastases. Results: Pre-irradiation of the mammary gland increased by 1.8-fold the migration of cancer cells, by 2-fold the quantity of circulating cancer cells and by 2.4-fold the number of lung metastases. These adverse effects were associated with the induction of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). Conclusion: The emergence of the metastasis phenotype is believed to be associated with the accumulation of mutations in cancer cells. Our results suggest an alternative mechanism based on promigratory factors from irradiated mammary glands. In clinic, the efficiency of radiotherapy could be improved by anti-inflammatory agents that would prevent the stimulation of cancer cell migration induced by radiation. PMID:24002607

  8. Essential role for a novel population of binucleated mammary epithelial cells in lactation.

    PubMed

    Rios, Anne C; Fu, Nai Yang; Jamieson, Paul R; Pal, Bhupinder; Whitehead, Lachlan; Nicholas, Kevin R; Lindeman, Geoffrey J; Visvader, Jane E

    2016-01-01

    The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species. PMID:27102712

  9. Essential role for a novel population of binucleated mammary epithelial cells in lactation.

    PubMed

    Rios, Anne C; Fu, Nai Yang; Jamieson, Paul R; Pal, Bhupinder; Whitehead, Lachlan; Nicholas, Kevin R; Lindeman, Geoffrey J; Visvader, Jane E

    2016-04-22

    The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species.

  10. Essential role for a novel population of binucleated mammary epithelial cells in lactation

    PubMed Central

    Rios, Anne C.; Fu, Nai Yang; Jamieson, Paul R.; Pal, Bhupinder; Whitehead, Lachlan; Nicholas, Kevin R.; Lindeman, Geoffrey J.; Visvader, Jane E.

    2016-01-01

    The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional confocal imaging of intact tissue. We observed that the majority of secretory alveolar cells are binucleated. These cells first arise in very late pregnancy due to failure of cytokinesis and are larger than mononucleated cells. Augmented expression of Aurora kinase-A and Polo-like kinase-1 at the lactogenic switch likely mediates the formation of binucleated cells. Our findings demonstrate an important physiological role for polyploid mammary epithelial cells in lactation, and based on their presence in five different species, suggest that binucleated cells evolved to maximize milk production and promote the survival of offspring across all mammalian species. PMID:27102712

  11. The co-factor of LIM domains (CLIM/LDB/NLI) maintains basal mammary epithelial stem cells and promotes breast tumorigenesis.

    PubMed

    Salmans, Michael L; Yu, Zhengquan; Watanabe, Kazuhide; Cam, Eric; Sun, Peng; Smyth, Padhraic; Dai, Xing; Andersen, Bogi

    2014-07-01

    Mammary gland branching morphogenesis and ductal homeostasis relies on mammary stem cell function for the maintenance of basal and luminal cell compartments. The mechanisms of transcriptional regulation of the basal cell compartment are currently unknown. We explored these mechanisms in the basal cell compartment and identified the Co-factor of LIM domains (CLIM/LDB/NLI) as a transcriptional regulator that maintains these cells. Clims act within the basal cell compartment to promote branching morphogenesis by maintaining the number and proliferative potential of basal mammary epithelial stem cells. Clim2, in a complex with LMO4, supports mammary stem cells by directly targeting the Fgfr2 promoter in basal cells to increase its expression. Strikingly, Clims also coordinate basal-specific transcriptional programs to preserve luminal cell identity. These basal-derived cues inhibit epidermis-like differentiation of the luminal cell compartment and enhance the expression of luminal cell-specific oncogenes ErbB2 and ErbB3. Consistently, basal-expressed Clims promote the initiation and progression of breast cancer in the MMTV-PyMT tumor model, and the Clim-regulated branching morphogenesis gene network is a prognostic indicator of poor breast cancer outcome in humans.

  12. Establishment of two hormone-responsive mouse mammary carcinoma cell lines derived from a metastatic mammary tumor.

    PubMed

    Efeyan, Alejo; Fabris, Victoria; Merani, Susana; Lanari, Claudia; Molinolo, Alfredo A

    2004-02-01

    We report the establishment of two mouse mammary cancer cell lines, MC7-2A and MC7-2B obtained from a mouse mammary carcinoma induced by medroxyprogesterone acetate (MPA) and maintained by syngeneic transplantation in BALB/c mice. They are epithelial (express cytokeratins) and express both estrogen receptors alpha (ERalpha) and progesterone receptors (PRs) isoforms A and B (western blots). In vitro, MPA inhibited 3H-thymidine uptake, starting from concentrations as low as 10(-13) M in MC7-2A and 10(10) M in MC7-2B; the antiprogestin RU 486 exerted a stimulatory effect at 10(-14) M in both cell lines; 17-beta-estradiol (E2) also exerted a stimulatory effect starting at 10(-10) M in MC7-2A and at 10(-13) M in MC7-2B. When transplanted in syngeneic mice, both cell lines originated adenocarcinomas that gave rise to lung metastases within 3 months. In in vivo studies, in MC7-2A, the antiprogestin inhibited completely tumor growth, E2 induced a slight although significant ( p < 0.05) stimulatory effect and MPA stimulated tumor growth while MC7-2B cells were unresponsive to all treatments. ER and PR were also expressed in tumors as assessed by immunohistochemistry. Two marker chromosomes were identified by FISH as translocations between chromosomes 4 and 7, and between chromosomes X and 2; the third marker chromosome remains unidentified. All these markers were also present in the parental tumor. A new marker, a centric fusion of chromosomes 2, was acquired in both cell lines. Considering that there are very few murine breast carcinoma responsive cell lines, these cells represent new tools in which the regulatory effect of hormones can be studied. PMID:14758093

  13. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes.

    PubMed

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M

    2015-12-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage-tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types and the signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective.

  14. Mechanical strain induces involution-associated events in mammary epithelial cells

    PubMed Central

    Quaglino, Ana; Salierno, Marcelo; Pellegrotti, Jesica; Rubinstein, Natalia; Kordon, Edith C

    2009-01-01

    Background Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. Results We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. Conclusion Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device

  15. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland.

    PubMed

    Maga, E A; Shoemaker, C F; Rowe, J D; Bondurant, R H; Anderson, G B; Murray, J D

    2006-02-01

    The potential for applying biotechnology to benefit animal agriculture and food production has long been speculated. The addition of human milk components with intrinsic antimicrobial activity and positive charge to livestock milk by genetic engineering has the potential to benefit animal health, as well as food safety and production. We generated one line of transgenic goats as a model for the dairy cow designed to express human lysozyme in the mammary gland. Here we report the characterization of the milk from 5 transgenic females of this line expressing human lysozyme in their milk at 270 microg/mL or 68% of the level found in human milk. Milk from transgenic animals had a lower somatic cell count, but the overall component composition of the milk and milk production were not different from controls. Milk from transgenic animals had a shorter rennet clotting time and increased curd strength. Milk of such nature may be of benefit to the producer by influencing udder health and milk processing.

  16. Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells

    PubMed Central

    Zhao, Wang-Sheng; Hu, Shi-Liang; Yu, Kang; Wang, Hui; Wang, Wei; Loor, Juan; Luo, Jun

    2014-01-01

    Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis. PMID:25501331

  17. Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells.

    PubMed

    Han, Zhao-Yu; Mu, Tian; Yang, Zhen

    2015-01-01

    The aim of this study was to investigate the effects of methionine on cell proliferation, antioxidant activity, apoptosis, the expression levels of related genes (HSF-1, HSP70, Bax and Bcl-2) and the expression levels of protein (HSP70) in mammary epithelial cells, after heat treatment. Methionine (60 mg/L) increased the viability and attenuated morphological damage in hyperthermia-treated bovine mammary epithelial cells (BMECs). Additionally, methionine significantly reduced lactate dehydrogenase leakage, malondialdehyde formation, nitric oxide, and nitric oxide synthase activity. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity was increased significantly in the presence of methionine. Bovine mammary epithelial cells also exhibited a certain amount of HSP70 reserve after methionine pretreatment for 24 h, and the expression level of the HSP70 gene and protein further increased with incubation at 42 °C for 30 min. Compared to the control, the expression of HSF-1 mRNA increased, and there was a significantly reduced expression of Bax/Bcl-2 mRNA and a reduced activity of caspase-3 against heat stress. Methionine also increased survival and decreased early apoptosis of hyperthermia-treated BMECs. Thus, methionine has cytoprotective effects on hyperthermia-induced damage in BMECs.

  18. Function of phosphoenolpyruvate carboxykinase in mammary gland epithelial cells[S

    PubMed Central

    Hsieh, Chang-Wen; Huang, Charles; Bederman, Ilya; Yang, Jianqi; Beidelschies, Michelle; Hatzoglou, Maria; Puchowicz, Michelle; Croniger, Colleen M.

    2011-01-01

    Previously, we have shown that Pck1 expression in mammary gland adipocytes and white adipose tissue maintains triglyceride stores through glyceroneogenesis, and these lipids were used for synthesis of milk triglycerides during lactation. Reduced milk triglycerides during lactation resulted in patterning of the newborn for insulin resistance. In this study, the role of Pck1 in mammary gland epithelial cells was analyzed. The developmental expression of Pck1 decreased in isolated mouse mammary gland epithelial cells through development and during lactation. Using HC11, a clonal mammary epithelial cell line, we found that both Janus kinase 2 signal transducers and activators of transcription 5 and the AKT pathways contributed to the repression of Pck1 mRNA by prolactin. These pathways necessitate three accessory factor regions of the Pck1 promoter for repression by prolactin. Using [U-13C6]glucose, [U-13C3]pyruvate, and [U-13C3]glycerol in HC11 cells, we determined that Pck1 functions in the pathway for the conversion of gluconeogenic precursors to glucose and contributes to glycerol-3-phosphate synthesis through glyceroneogenesis. Therefore, Pck1 plays an important role in both the mammary gland adipocytes and epithelial cells during lactation. PMID:21504969

  19. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    SciTech Connect

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. ); Ojakian, G.K. )

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  20. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate

    PubMed Central

    Kendrick, Howard; Regan, Joseph L; Magnay, Fiona-Ann; Grigoriadis, Anita; Mitsopoulos, Costas; Zvelebil, Marketa; Smalley, Matthew J

    2008-01-01

    Background Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. Results A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. Conclusion The mouse mammary epithelium is composed of three main cell types with distinct gene expression patterns

  1. Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells

    PubMed Central

    Fang, Mingzhu; Guo, Wei-Ren; Park, Youngil; Kang, Hwan-Goo; Zarbl, Helmut

    2015-01-01

    We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis. PMID:26544624

  2. Anti-influenza neuraminidase inhibitor oseltamivir phosphate induces canine mammary cancer cell aggressiveness.

    PubMed

    de Oliveira, Joana T; Santos, Ana L; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J; Vasconcelos, M Helena; Oliveira, Maria José; Reis, Celso A; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness. PMID:25850034

  3. Anti-Influenza Neuraminidase Inhibitor Oseltamivir Phosphate Induces Canine Mammary Cancer Cell Aggressiveness

    PubMed Central

    de Oliveira, Joana T.; Santos, Ana L.; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J.; Vasconcelos, M. Helena; Oliveira, Maria José; Reis, Celso A.; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness. PMID:25850034

  4. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    SciTech Connect

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  5. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  6. Stem/progenitor cells in non-lactating versus lactating equine mammary gland.

    PubMed

    Spaas, Jan H; Chiers, Koen; Bussche, Leen; Burvenich, Christian; Van de Walle, Gerlinde R

    2012-11-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, important data has been gathered on MaSC of men and mice, although knowledge on MaSC in other mammals remains limited. Therefore, the aim of this work was to isolate and characterize MaSC from the mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met the 2 in vitro hallmark properties of stem cells, namely the ability to self-renew and to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f, and Ki67. Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSC during different physiological phases since it was observed that equine lactating mammary gland contains significantly more mammosphere-initiating cells than the inactive, nonlactating gland (a reflection of MaSC self-renewal) and, moreover, that these spheres were significantly larger in size upon initial cultivation (a reflection of progenitor cell proliferation). Taken together, this study not only extends the current knowledge of mammary gland biology, but also benefits the comparative approach to study and compare MaSC in different mammalian species.

  7. Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1

    SciTech Connect

    Desprez, P.; Hara, E.; Bissell, M.J.

    1995-06-01

    Cell proliferation and differentiation are precisely coordinated during the development and maturation of the mammary gland, and this balance invariably is disrupted during carcinogenesis. Little is known about the cell-specific transcription factors that regulate these processes in the mammary gland. The mouse mammary epithelial cell line SCp2 grows well under standard culture conditions but arrests growth, forms alveolus-like structures, and expresses {beta}-casein, a differentiation marker, 4 to 5 days after exposure to basement membrane and lactogenic hormones (differentiation signals). The authors show that this differentiation entails a marked decline in the expression of Id-1, a helix-loop-helix (HLH) protein that inactivates basic HLH transcription factors in other cell types. SCp2 cells stably transfected with an Id-1 expression vector grew more rapidly than control cells under standard conditions, but in response to differentiation signals, they lost three-dimensional organization, invaded the basement membrane, and then resumed growth. SCp2 cells expressing an Id-1 antisense vector grew more slowly than controls; in response to differentiation signals, they remained stably growth arrested and fully differentiated, as did control cells. The authors suggest that Id-1 renders cells refractory to differentiation signals and receptive to growth signals by inactivating one or more basic HLH proteins that coordinate growth and differentiation in the mammary epithelium. 53 refs., 6 figs.

  8. Identification of Putative Bovine Mammary Epithelial Stem Cells by Their Retention of Labeled DNA Strands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem cells characteristically retain labeled DNA for extended periods due to their selective segregation of template DNA strands during mitosis. In this study, proliferating cells in the prepubertal bovine mammary gland were labeled using five daily-injections of 5-bromo-2-deoxyuridine (BrdU). Fiv...

  9. The Numb/p53 circuitry couples replicative self-renewal and tumor suppression in mammary epithelial cells

    PubMed Central

    Tosoni, Daniela; Zecchini, Silvia; Coazzoli, Marco; Colaluca, Ivan; Mazzarol, Giovanni; Rubio, Alicia; Caccia, Michele; Villa, Emanuele; Zilian, Olav

    2015-01-01

    The cell fate determinant Numb orchestrates tissue morphogenesis and patterning in developmental systems. In the human mammary gland, Numb is a tumor suppressor and regulates p53 levels. However, whether this function is linked to its role in fate determination remains unclear. Here, by exploiting an ex vivo system, we show that at mitosis of purified mammary stem cells (SCs), Numb ensures the asymmetric outcome of self-renewing divisions by partitioning into the progeny that retains the SC identity, where it sustains high p53 activity. Numb also controls progenitor maturation. At this level, Numb loss associates with the epithelial-to-mesenchymal transition and results in differentiation defects and reacquisition of stemness features. The mammary gland of Numb-knockout mice displays an expansion of the SC compartment, associated with morphological alterations and tumorigenicity in orthotopic transplants. This is because of low p53 levels and can be inhibited by restoration of Numb levels or p53 activity, which results in successful SC-targeted treatment. PMID:26598619

  10. The Numb/p53 circuitry couples replicative self-renewal and tumor suppression in mammary epithelial cells.

    PubMed

    Tosoni, Daniela; Zecchini, Silvia; Coazzoli, Marco; Colaluca, Ivan; Mazzarol, Giovanni; Rubio, Alicia; Caccia, Michele; Villa, Emanuele; Zilian, Olav; Di Fiore, Pier Paolo; Pece, Salvatore

    2015-11-23

    The cell fate determinant Numb orchestrates tissue morphogenesis and patterning in developmental systems. In the human mammary gland, Numb is a tumor suppressor and regulates p53 levels. However, whether this function is linked to its role in fate determination remains unclear. Here, by exploiting an ex vivo system, we show that at mitosis of purified mammary stem cells (SCs), Numb ensures the asymmetric outcome of self-renewing divisions by partitioning into the progeny that retains the SC identity, where it sustains high p53 activity. Numb also controls progenitor maturation. At this level, Numb loss associates with the epithelial-to-mesenchymal transition and results in differentiation defects and reacquisition of stemness features. The mammary gland of Numb-knockout mice displays an expansion of the SC compartment, associated with morphological alterations and tumorigenicity in orthotopic transplants. This is because of low p53 levels and can be inhibited by restoration of Numb levels or p53 activity, which results in successful SC-targeted treatment. PMID:26598619

  11. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development.

    PubMed

    Giraddi, Rajshekhar R; Shehata, Mona; Gallardo, Mercedes; Blasco, Maria A; Simons, Benjamin D; Stingl, John

    2015-01-01

    The cycling properties of mammary stem and progenitor cells is not well understood. To determine the division properties of these cells, we administered synthetic nucleosides for varying periods of time to mice at different stages of postnatal development and monitored the rate of uptake of these nucleosides in the different mammary cell compartments. Here we show that most cell division in the adult virgin gland is restricted to the oestrogen receptor-expressing luminal cell lineage. Our data also demonstrate that the oestrogen receptor-expressing, milk and basal cell subpopulations have telomere lengths and cell division kinetics that are not compatible with these cells being hierarchically organized; instead, our data indicate that in the adult homeostatic gland, each cell type is largely maintained by its own restricted progenitors. We also observe that transplantable stem cells are largely quiescent during oestrus, but are cycling during dioestrus when progesterone levels are high.

  12. [NUCLEAR STRUCTURE IN THE SECRETORY CELLS OF MAMMARY GLANDS IN LACTATING AND NON-LACTATING RATS].

    PubMed

    Tyutina, K V; Skopichev, V G; Bogolyubov, D S; Bogolyubova, I O

    2016-01-01

    The features of structural and functional organization of the main nuclear compartments and distribution of their key molecular components (chromatin-remodeling protein ATRX, RNA polymerase I and II, and the splicing factor SC35) has been studied in the nuclei of mammary gland cells at different functional states. No significant differences between the nuclei of the cells in the lactating and non-lactating mammary glands have been revealed at the ultrastructural level. At the same time, photometric analysis has revealed higher intensity of nucleoplasmic immunofluorescent staining of mammary glands in the lactating animals when antibodies against the proteins ATRX and SC35 were used. Apparently, this observation reflects the changes of the structural and functional status of chromatin as well as the redistribution of splicing factors between the sites of their deposition and transcription. PMID:27228661

  13. Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: Role of the extracellular matrix

    SciTech Connect

    Bissell, M.J.; Ram, T.G. )

    1989-03-01

    Primary mammary epithelial cells provide a versatile system for the study of hormone and extracellular matrix (ECM) influences on tissue-specific gene expression. The authors have characterized the formation of aveolarlike morphogenesis and mammary-specific functional differentiation that occur when these cells are cultured on a reconstituted basement membrane (EHS). Cells cultured on EHS exhibit many ultrastructural and biochemical features indicative of polarized and functionally differentiated mammary epithelium in vivo. The increased expression and specific vectorial secretion of milk proteins into lumina formed in culture are accompanied by large increases in milk protein mRNA expression. However, when individual ECM components are tested, smaller increases in milk protein mRNA are measured on heparan sulfate proteoglycan (HSPG) and laminin, and these responses are not associated with full functional cytodifferentiation or histotypic configuration. This indicates that multiple levels of regulation are involved in mammary-specific gene expression, and that in addition to individual ligand requirements cooperative interactions between various ECM molecules and cells are necessary for functional differentiation in culture. They have also shown that endogenous production of ECM molecules and changes in cell geometry are correlated with changes in functional and histogenic gene expression. They have previously proposed a model of cell-ECM interactions that is consistent with these data.

  14. EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

    PubMed Central

    Fauvet, Frédérique; Courtois-Cox, Stéphanie; Wierinckx, Anne; Devouassoux-Shisheboran, Mojgan; Treilleux, Isabelle; Tissier, Agnès; Gras, Baptiste; Pourchet, Julie; Puisieux, Isabelle; Browne, Gareth J.; Spicer, Douglas B.; Lachuer, Joël; Ansieau, Stéphane; Puisieux, Alain

    2012-01-01

    The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation. PMID:22654675

  15. Genistein-mediated inhibition of mammary stromal adipocyte differentiation limits expansion of mammary stem/progenitor cells by paracrine signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary adiposity may contribute to breast cancer development and progression by releasing cytokines and other inflammatory mediators that promote mammary epithelial proliferation. We evaluated the effects of soy isoflavone genistein (GEN) on the adipogenic differentiation of a SV40-immortalized mou...

  16. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    PubMed Central

    Römer, Winfried; Sonnleitner, Alois

    2015-01-01

    Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5), a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex) to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs) in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type. PMID:25767807

  17. Expression of Human NSAID Activated Gene 1 in Mice Leads to Altered Mammary Gland Differentiation and Impaired Lactation.

    PubMed

    Binder, April K; Kosak, Justin P; Janardhan, Kyathanahalli S; Janhardhan, Kyathanahalli S; Moser, Glenda; Eling, Thomas E; Korach, Kenneth S

    2016-01-01

    Transgenic mice expressing human non-steroidal anti-inflammatory drug activated gene 1 (NAG-1) have less adipose tissue, improved insulin sensitivity, lower insulin levels and are resistant to dietary induced obesity. The hNAG-1 expressing mice are more metabolically active with a higher energy expenditure. This study investigates female reproduction in the hNAG-1 transgenic mice and finds the female mice are fertile but have reduced pup survival after birth. Examination of the mammary glands in these mice suggests that hNAG-1 expressing mice have altered mammary epithelial development during pregnancy, including reduced occupancy of the fat pad and increased apoptosis via TUNEL positive cells on lactation day 2. Pups nursing from hNAG-1 expressing dams have reduced milk spots compared to pups nursing from WT dams. When CD-1 pups were cross-fostered with hNAG-1 or WT dams; reduced milk volume was observed in pups nursing from hNAG-1 dams compared to pups nursing from WT dams in a lactation challenge study. Milk was isolated from WT and hNAG-1 dams, and the milk was found to have secreted NAG-1 protein (approximately 25 ng/mL) from hNAG-1 dams. The WT dams had no detectable hNAG-1 in the milk. A decrease in non-esterified free fatty acids in the milk of hNAG-1 dams was observed. Altered milk composition suggests that the pups were receiving inadequate nutrients during perinatal development. To examine this hypothesis serum was isolated from pups and clinical chemistry points were measured. Male and female pups nursing from hNAG-1 dams had reduced serum triglyceride concentrations. Microarray analysis revealed that genes involved in lipid metabolism are differentially expressed in hNAG-1 mammary glands. Furthermore, the expression of Cidea/CIDEA that has been shown to regulate milk lipid secretion in the mammary gland was reduced in hNAG-1 mammary glands. This study suggests that expression of hNAG-1 in mice leads to impaired lactation and reduces pup survival due to

  18. Expression of Human NSAID Activated Gene 1 in Mice Leads to Altered Mammary Gland Differentiation and Impaired Lactation.

    PubMed

    Binder, April K; Kosak, Justin P; Janardhan, Kyathanahalli S; Janhardhan, Kyathanahalli S; Moser, Glenda; Eling, Thomas E; Korach, Kenneth S

    2016-01-01

    Transgenic mice expressing human non-steroidal anti-inflammatory drug activated gene 1 (NAG-1) have less adipose tissue, improved insulin sensitivity, lower insulin levels and are resistant to dietary induced obesity. The hNAG-1 expressing mice are more metabolically active with a higher energy expenditure. This study investigates female reproduction in the hNAG-1 transgenic mice and finds the female mice are fertile but have reduced pup survival after birth. Examination of the mammary glands in these mice suggests that hNAG-1 expressing mice have altered mammary epithelial development during pregnancy, including reduced occupancy of the fat pad and increased apoptosis via TUNEL positive cells on lactation day 2. Pups nursing from hNAG-1 expressing dams have reduced milk spots compared to pups nursing from WT dams. When CD-1 pups were cross-fostered with hNAG-1 or WT dams; reduced milk volume was observed in pups nursing from hNAG-1 dams compared to pups nursing from WT dams in a lactation challenge study. Milk was isolated from WT and hNAG-1 dams, and the milk was found to have secreted NAG-1 protein (approximately 25 ng/mL) from hNAG-1 dams. The WT dams had no detectable hNAG-1 in the milk. A decrease in non-esterified free fatty acids in the milk of hNAG-1 dams was observed. Altered milk composition suggests that the pups were receiving inadequate nutrients during perinatal development. To examine this hypothesis serum was isolated from pups and clinical chemistry points were measured. Male and female pups nursing from hNAG-1 dams had reduced serum triglyceride concentrations. Microarray analysis revealed that genes involved in lipid metabolism are differentially expressed in hNAG-1 mammary glands. Furthermore, the expression of Cidea/CIDEA that has been shown to regulate milk lipid secretion in the mammary gland was reduced in hNAG-1 mammary glands. This study suggests that expression of hNAG-1 in mice leads to impaired lactation and reduces pup survival due to

  19. Kruppel-like factor 4 regulates laminin alpha 3A expression in mammary epithelial cells.

    PubMed

    Miller, K A; Eklund, E A; Peddinghaus, M L; Cao, Z; Fernandes, N; Turk, P W; Thimmapaya, B; Weitzman, S A

    2001-11-16

    Laminin-5, the major extracellular matrix protein produced by mammary epithelial cells, is composed of three chains (designated alpha3A, beta3, and gamma2), each encoded by a separate gene. Laminin-5 is markedly down-regulated in breast cancer cells. Little is known about the regulation of laminin gene transcription in normal breast cells, nor about the mechanism underlying the down-regulation seen in cancer. In the present study, we cloned the promoter of the gene for the human laminin alpha3A chain (LAMA3A) and investigated its regulation in functionally normal MCF10A breast epithelial cells and several breast cancer cell lines. Using site-directed mutagenesis of promoter-reporter constructs in transient transfection assays in MCF10A cells, we find that two binding sites for Kruppel-like factor 4 (KLF4/GKLF/EZF) are required for expression driven by the LAMA3A promoter. Electrophoretic mobility shift assays reveal absence of KLF4 binding activity in extracts from T47D, MDA-MB 231, ZR75-1, MDA-MB 436, and MCF7 breast cancer cells. Transient transfection of a plasmid expressing KLF4 activates transcription from the LAMA3A promoter in breast cancer cells. A reporter vector containing duplicate KLF4-binding sites in its promoter is expressed at high levels in MCF10A cells but at negligible levels in breast cancer cells. Thus, KLF4 is required for LAMA3A expression and absence of laminin alpha3A in breast cancer cells appears, at least in part, attributable to the lack of KLF4 activity.

  20. Regulated expression of mouse mammary tumor proviral genes in cells of the B lineage

    PubMed Central

    1991-01-01

    We evaluated the expression of mouse mammary tumor proviral (MMTV) transcripts during B cell ontogeny and compared levels of RNA in B lymphocytes and B cell lines with levels in other cells of the hematopoietic lineage and in a mammary cell line. We demonstrate that MMTV transcripts are expressed as early as the pro-B cell stage in ontogeny and are expressed at basal constitutive levels throughout most of the B cell developmental pathway. The level of MMTV expression in B cells is similar to constitutive levels in mammary tissues and two to three orders of magnitude greater than in activated T cells. Levels of MMTV transcripts in B cells are not solely due to positional effects. Transient transfection assays showed that MMTV upregulation resulted from transcriptional activation of the viral LTR, indicating that there are specific and inducible transcription factors that regulate MMTV expression in B cells. MMTV transcripts could not be upregulated in pre- B cell lines but could be induced in some mature B cell lines. There was a correlation between the ability to stimulate B cells to secrete antibody and the ability to induce upregulated MMTV expression. Evidence is presented that suggests that the principal transcription factors involved in MMTV expression do not include the B cell factors OTF-2 or NF-kappa B, but rather are likely to be novel factors that are induced during differentiation to antibody secretion. A hypothesis for why mammary tumor viruses are well adapted for expression in cells of the B lineage is proposed, and the implications of this for the documented influence of MMTV gene products on the T cell repertoire are discussed. PMID:1660524

  1. Genome aberrations in canine mammary carcinomas and their detection in cell-free plasma DNA.

    PubMed

    Beck, Julia; Hennecke, Silvia; Bornemann-Kolatzki, Kirsten; Urnovitz, Howard B; Neumann, Stephan; Ströbel, Philipp; Kaup, Franz-Josef; Brenig, Bertram; Schütz, Ekkehard

    2013-01-01

    Mammary tumors are the most frequent cancers in female dogs exhibiting a variety of histopathological differences. There is lack of knowledge about the genomes of these common dog tumors. Five tumors of three different histological subtypes were evaluated. Massive parallel sequencing (MPS) was performed in comparison to the respective somatic genome of each animal. Copy number and structural aberrations were validated using droplet digital PCR (ddPCR). Using mate-pair sequencing chromosomal aneuploidies were found in two tumors, frequent smaller deletions were found in one, inter-chromosomal fusions in one other, whereas one tumor was almost normal. These aberrations affect several known cancer associated genes such as cMYC, and KIT. One common deletion of the proximal end of CFA27, harboring the tumor suppressor gene PFDN5 was detected in four tumors. Using ddPCR, this deletion was validated and detected in 50% of tumors (N = 20). Breakpoint specific dPCRs were established for four tumors and tumor specific cell-free DNA (cfDNA) was detected in the plasma. In one animal tumor-specific cfDNA was found >1 year after surgery, attributable to a lung metastasis. Paired-end sequencing proved that copy-number imbalances of the tumor are reflected by the cfDNA. This report on chromosomal instability of canine mammary cancers reveals similarities to human breast cancers as well as special canine alterations. This animal model provides a framework for using MPS for screening for individual cancer biomarkers with cost effective confirmation and monitoring using ddPCR. The possibility exists that ddPCR can be expanded to screening for common cancer related variants. PMID:24098698

  2. A Progesterone-CXCR4 Axis Controls Mammary Progenitor Cell Fate in the Adult Gland

    PubMed Central

    Shiah, Yu-Jia; Tharmapalan, Pirashaanthy; Casey, Alison E.; Joshi, Purna A.; McKee, Trevor D.; Jackson, Hartland W.; Beristain, Alexander G.; Chan-Seng-Yue, Michelle A.; Bader, Gary D.; Lydon, John P.; Waterhouse, Paul D.; Boutros, Paul C.; Khokha, Rama

    2015-01-01

    Summary Progesterone drives mammary stem and progenitor cell dynamics through paracrine mechanisms that are currently not well understood. Here, we demonstrate that CXCR4, the receptor for stromal-derived factor 1 (SDF-1; CXC12), is a crucial instructor of hormone-induced mammary stem and progenitor cell function. Progesterone elicits specific changes in the transcriptome of basal and luminal mammary epithelial populations, where CXCL12 and CXCR4 represent a putative ligand-receptor pair. In situ, CXCL12 localizes to progesterone-receptor-positive luminal cells, whereas CXCR4 is induced in both basal and luminal compartments in a progesterone-dependent manner. Pharmacological inhibition of CXCR4 signaling abrogates progesterone-directed expansion of basal (CD24+CD49fhi) and luminal (CD24+CD49flo) subsets. This is accompanied by a marked reduction in CD49b+SCA-1− luminal progenitors, their functional capacity, and lobuloalveologenesis. These findings uncover CXCL12 and CXCR4 as novel paracrine effectors of hormone signaling in the adult mammary gland, and present a new avenue for potentially targeting progenitor cell growth and malignant transformation in breast cancer.

  3. Effect of elevated selenium intakes on mammary cell proliferation in rats

    SciTech Connect

    Salbe, A.D.; Albanes, D.; Winick, M.; Taylor, P.R.; Levander, O.A. National Institutes of Health, Bethesda, MD )

    1991-03-15

    Elevated selenium (Se) intakes and calorie restriction (CR) inhibit mammary tumorigenesis in experimental animals. The present study was designed to investigate cell proliferation in the mammary tissue gland. Female weanling Sprague-Dawley rats were divided into 4 groups: control, 40% CR, 4 or 6 ppm Se in water as selenate. Control rats and Se rats were fed a control diet ad lib. CR rats were pair-fed 40% less than controls with a diet providing equal nutrients except carbohydrate calories. After 3 weeks, rats were injected with ({sup 3}H)-thymidine and killed 1 hr later. Se at 4 ppm significantly decreased only the number of ducts, whereas 6 ppm Se decreased both the number of ducts as well as the number and percent of labeled cells. CR had no effect on mammary cell proliferation. These results suggest that elevated Se intakes may protect against mammary tumorigenesis by decreasing cell proliferation, a mechanism which may affect the dose-response of the genotoxic chemicals frequently used as initiating agents in animal experiments.

  4. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells

    SciTech Connect

    Simian, M.; Harail, Y.; Navre, M.; Werb, Z.; Lochter, A.; Bissell, M.J.

    2002-03-06

    The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP-3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a critical role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.

  5. Examination of Duct Physiology in the Human Mammary Gland

    PubMed Central

    Mills, Dixie; Gomberawalla, Ameer; Gordon, Eva J.; Tondre, Julie; Nejad, Mitra; Nguyen, Tinh; Pogoda, Janice M.; Rao, Jianyu; Chatterton, Robert; Henning, Susanne; Love, Susan M.

    2016-01-01

    Background The human breast comprise several ductal systems, or lobes, which contain a small amount of fluid containing cells, hormones, proteins and metabolites. The complex physiology of these ducts is likely a contributing factor to the development of breast cancer, especially given that the vast majority of breast cancers begin in a single lobular unit. Methods We examined the levels of total protein, progesterone, estradiol, estrone sulfate, dehydroepiandrosterone sulfate, and macrophages in ductal fluid samples obtained from 3 ducts each in 78 women, sampled twice over a 6 month period. Samples were processed for both cytological and molecular analysis. Intraclass correlation coefficients and mixed models were utilized to identify significant data. Results We found that the levels of these ductal fluid components were generally uncorrelated among ducts within a single breast and over time, suggesting that each lobe within the breast has a distinct physiology. However, we also found that estradiol was more correlated in women who were nulliparous or produced nipple aspirate fluid. Conclusions Our results provide evidence that the microenvironment of any given lobular unit is unique to that individual unit, findings that may provide clues about the initiation and development of ductal carcinomas. PMID:27073976

  6. Relative quantification of beta-casein expression in primary goat mammary epithelial cell lines.

    PubMed

    Ogorevc, J; Dovč, P

    2015-04-15

    Primary mammary epithelial cell cultures were established from mammary tissue of lactating and non-lactating goats to assess the expression of beta-casein (CSN2) in vitro. Primary cell cultures were established by enzymatic digestion of mammary tissue and characterized using antibodies against cytokeratin 14, cytokeratin 18, and vimentin. The established primary cell lines in the second passage were grown in basal medium on plastic and in hormone-supplemented (lactogenic) medium on plastic and on an extracellular matrix-covered surface, respectively. CSN2 gene expression was evaluated using quantitative reverse transcription PCR. The presence of CSN2 transcripts was detected in all samples, including cells originating from non-lactating goat, grown in basal medium. The presence of CSN2 protein was confirmed using immunofluorescence. Response to the hormonal treatment and cell morphology differed between the cell lines and treatments. In 2 cell lines supplemented with lactogenic hormones in the medium, CSN2 expression was increased, while CSN2 levels in one of the cell lines remained constant, regardless of the treatment. Addition of extracellular matrix showed positive effects on CSN2 transcription activity in 1 of the cell lines, while in the other 2 showed no statistically significant effects. CSN2 expression appeared to depend on subtle differences in physiological state of the starting tissue material, growth conditions, cell types present in the culture, and methods used for cell culture establishment. Further studies are necessary to identify factors that determine hormone-responsiveness and transcriptional activity of milk protein genes in goat primary mammary cell cultures.

  7. Oncolytic reovirus synergizes with chemotherapeutic agents to promote cell death in canine mammary gland tumor

    PubMed Central

    Igase, Masaya; Hwang, Chung Chew; Kambayashi, Satoshi; Kubo, Masato; Coffey, Matt; Miyama, Takako Shimokawa; Baba, Kenji; Okuda, Masaru; Noguchi, Shunsuke; Mizuno, Takuya

    2016-01-01

    The oncolytic effects of reovirus in various cancers have been proven in many clinical trials in human medicine. Oncolytic virotherapy using reovirus for canine cancers is being developed in our laboratory. The objective of this study was to examine the synergistic anti-cancer effects of a combination of reovirus and low doses of various chemotherapeutic agents on mammary gland tumors (MGTs) in dogs. The first part of this study demonstrated the efficacy of reovirus in canine MGTs in vitro and in vivo. Reovirus alone exerted significant cell death by means of caspase-dependent apoptosis in canine MGT cell lines. A single injection of reovirus impeded growth of canine MGT tumors in xenografted mice, but was insufficient to induce complete tumor regression. The second part of this study highlighted the anti-tumor effects of reovirus in combination with low doses of paclitaxel, carboplatin, gemcitabine, or toceranib. Enhanced synergistic activity was observed in the MGT cell line treated concomitantly with reovirus and in all the chemotherapeutic agents except toceranib. In addition, combining reovirus with paclitaxel or gemcitabine at half dosage of half maximal inhibitory concentration (IC50) enhanced cytotoxicity by activating caspase 3. Our data suggest that the combination of reovirus and low dose chemotherapeutic agents provides an attractive option in canine cancer therapy. PMID:26733729

  8. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP. PMID:27452799

  9. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP.

  10. Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

    PubMed

    Honeth, Gabriella; Schiavinotto, Tommaso; Vaggi, Federico; Marlow, Rebecca; Kanno, Tokuwa; Shinomiya, Ireneusz; Lombardi, Sara; Buchupalli, Bharath; Graham, Rosalind; Gazinska, Patrycja; Ramalingam, Vernie; Burchell, Joy; Purushotham, Anand D; Pinder, Sarah E; Csikasz-Nagy, Attila; Dontu, Gabriela

    2015-04-14

    Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.

  11. Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

    PubMed

    Honeth, Gabriella; Schiavinotto, Tommaso; Vaggi, Federico; Marlow, Rebecca; Kanno, Tokuwa; Shinomiya, Ireneusz; Lombardi, Sara; Buchupalli, Bharath; Graham, Rosalind; Gazinska, Patrycja; Ramalingam, Vernie; Burchell, Joy; Purushotham, Anand D; Pinder, Sarah E; Csikasz-Nagy, Attila; Dontu, Gabriela

    2015-04-14

    Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers. PMID:25818813

  12. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    PubMed

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  13. Comparative value of clinical, cytological, and histopathological features in feline mammary gland tumors; an experimental model for the study of human breast cancer

    PubMed Central

    2013-01-01

    Background The diagnosis of breast lesions is usually confirmed by fine-needle aspiration cytology (FNAC) or histological biopsy. Although there is increasing literature regarding the advantages and limitations of both modalities, there is no literature regarding the accuracy of these modalities for diagnosing breast lesions in high-risk patients, who usually have lesions detected by screening. Moreover, few studies have been published regarding the cytopathology of mammary tumors in cats despite widespread use of the animal model for breast cancer formation and inhibition. The objective of the present study was to evaluate the diagnostic interest of cytological and histopathological analysis in feline mammary tumours (FMTs), in order to evaluate its possible value as an animal model. Methods The study was performed in 3 female cats submitted to surgical resections of mammary tumours. The mammary tumours were excised by simple mastectomy or regional mastectomy, with or without the superficial inguinal lymph nodes. Female cats were of different breeds (1 siamese and 2 persians). Before surgical excision of the tumour, FNA cytology was performed using a 0.4 mm diameter needle attached to a 8 ml syringe held in a standard metal syringe holder. The cytological sample was smeared onto a glass slide and either air-dried for May-Grünwald-stain and masses were surgically removed, the tumours were grossly examined and tissue samples were fixed in 10%-buffered-formalin and embedded in paraffin. Sections 4 μm thick were obtained from each sample and H&E stained. Results Cytologically, atypical epithelial cells coupled to giant nucleus, chromatin anomalies, mitotic figures, spindle shape cells, anisocytosis with anisokaryosis and hyperchromasia were found. Histologically, these tumors are characterized by pleomorphic and polygonal cell population together with mitotic figures, necrotic foci and various numbers inflammatory foci. Also, spindle shaped cells, haemorrhage

  14. Binding of Host Factors Influences Internalization and Intracellular Trafficking of Streptococcus uberis in Bovine Mammary Epithelial Cells

    PubMed Central

    Almeida, Raul A.; Dunlap, John R.; Oliver, Stephen P.

    2010-01-01

    We showed that internalization of Streptococcus uberis into bovine mammary epithelial cells occurred through receptor- (RME) and caveolae-mediated endocytosis (CME). We reported also that treatment of S. uberis with host proteins including lactoferrin (LF) enhanced its internalization into host cells. Since the underlying mechanism(s) involved in such enhancement was unknown we investigated if preincubation of S. uberis with host proteins drives internalization of this pathogen into host cells through CME. Thus, experiments involving coculture of collagen-, fibronectin-, and LF-pretreated S. uberis with bovine mammary epithelial cells treated with RME and CME inhibitors were conducted. Results showed that internalization of host proteins-pretreated S. uberis into mammary epithelial cells treated with RME inhibitors was higher than that of untreated controls. These results suggest that pretreatment with selected host proteins commits S. uberis to CME, thus avoiding intracellular bactericidal mechanisms and allowing its persistence into bovine mammary epithelial cells. PMID:20614000

  15. Neoplastic transformation of mouse mammary epithelial cells by deregulated myc expression.

    PubMed Central

    Telang, N T; Osborne, M P; Sweterlitsch, L A; Narayanan, R

    1990-01-01

    A spontaneously immortalized, nontumorigenic mouse mammary epithelial cell line (MMEC) was transfected with an activated myc construct by electroporation. Constitutive expression of myc in MMEC resulted in anchorage independence in soft agar and tumorigenicity in nude mice. The myc-expressing MMEC showed higher saturation density, faster growth rate, and partial abrogation of serum-derived growth factor(s) requirement compared with parent MMEC. Epidermal growth factor or transforming growth factor alpha stimulated the anchorage-independent growth, but not the anchorage-dependent growth, of MMEC-myc cells. Type 1 transforming growth factor beta, on the other hand, inhibited both the anchorage-independent and anchorage-dependent growth of MMEC-myc cells. These results demonstrate that deregulated expression of myc results in neoplastic transformation iin mammary epithelial cells. Accompanying the transformation is altered sensitivity to polypeptide growth factors. Images PMID:2088530

  16. Decrease in an Inwardly Rectifying Potassium Conductance in Mouse Mammary Secretory Cells after Forced Weaning

    PubMed Central

    Kamikawa, Akihiro; Sugimoto, Shota; Ichii, Osamu; Kondoh, Daisuke

    2015-01-01

    Mammary glands are physiologically active in female mammals only during nursing. Immediately after weaning, most lactation-related genes are downregulated and milk production ceases. In our previous study, we have detected an inwardly rectifying potassium channel (Kir) 2.1-like current in mammary secretory (MS) cells freshly isolated from lactating mice. This current is highly sensitive to external Ba2+. The potassium permeability of the Kir channels may contribute to the secretion and/or preservation of ions in milk. We hypothesized that the functions of the Kir channels in MS cells are regulated after weaning. To test this hypothesis, we examined the effect of forced weaning on the Ba2+-sensitive Kir current and Kir2.1 expression in the mouse mammary glands. Twenty-four hours after weaning, the lumina of mammary acini were histologically enlarged by milk accumulation. The whole-cell patch-clamp analyses showed that the Ba2+-sensitive Kir current in the post-weaning MS cells was smaller than in the lactating MS cells. The inward conductances of the current in the lactating and post-weaning cells were 4.25 ± 0.77 and 0.93 ± 0.34 nS, respectively. Furthermore, real-time PCR and Western blot analyses showed that Kir2.1 mRNA and protein expression decreased in the post-weaning mammary gland (mRNA, 90% reduction; protein, 47% reduction). Moreover, the local milk accumulation caused by teat sealing decreased Kir conductance in MS cells (2.74 ± 0.45 and 0.36 ± 0.27 nS for control and sealed mammary glands, respectively). This was concomitant with the reduction in the Kir2.1 mRNA expression. Our results suggest that milk stasis after weaning immediately decreases the Kir conductance in MS cells. This decrease in the Kir conductance may be partly caused by the reduction in the Kir2.1 mRNA and protein expression. These alterations during the post-weaning period may be involved in the cessation of ion secretion and/or preservation in the milk. PMID:26484867

  17. Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer

    PubMed Central

    Best, Sarah; Ledger, Anita; Mooney, Anne-Marie; Ferguson, Alison; Shore, Paul; Swarbrick, Alexander; Ormandy, Christopher J; Simpson, Peter T; Carroll, Jason S; Visvader, Jane; Naylor, Matthew J

    2014-01-01

    Regulators of differentiated cell fate can offer targets for managing cancer development and progression. Here we identify Runx2 as a new regulator of epithelial cell fate in mammary gland development and breast cancer. Runx2 is expressed in the epithelium of pregnant mice in a strict temporally and hormonally-regulated manner. During pregnancy, Runx2 genetic deletion impaired alveolar differentiation in a manner that disrupted alveolar progenitor cell populations. Conversely, exogenous transgenic expression of Runx2 in mammary epithelial cells blocked milk production, suggesting that the decrease in endogenous Runx2 observed late in pregnancy is necessary for full differentiation. In addition, overexpression of Runx2 drove EMT-like changes in normal mammary epithelial cells, while Runx2 deletion in basal breast cancer cells inhibited cellular phenotypes associated with tumorigenesis. Notably, loss of Runx2 expression increased tumor latency and enhanced overall survival in a mouse model of breast cancer, with Runx2-deficient tumors exhibiting reduced cell proliferation. Together, our results establish a novel function for Runx2 in breast cancer that may offer a novel generalized route for therapeutic interventions. PMID:25056120

  18. The myoepithelial cell: its role in normal mammary glands and breast cancer.

    PubMed

    Sopel, M

    2010-02-01

    Mammary gland epithelium is composed of an inner layer of secretory cells (luminal) and an outer layer of myoepithelial cells (MEC) bordering the basal lamina which separates the epithelial layer from the extracellular matrix. Mature MECs morphologically resemble smooth muscle cells; however, they exhibit features typical for epithelial cells, such as the presence of specific cytokeratin filaments. During lactation, secretory cells synthesize milk components, which are collected in alveoli and duct lumen, and transported to the nipple as a result of MEC contraction. Although the induction of MEC contraction results from oxytocin action, also other, still unknown auto/paracrine mechanisms participate in the regulation of this process. As well as milk ejection, MECs are involved in mammary gland morphogenesis in all developmental stages, modulating proliferation and differentiation of luminal cells. They take part in the formation of extracellular matrix, synthesizing its components and secreting proteinases and their inhibitors. In addition, MECs are regarded as natural cancer suppressors, stabilizing the normal structure of the mammary gland, they secrete suppressor proteins (e.g. maspin) limiting cancer growth, invasiveness, and neoangiogenesis. The majority of malignant breast cancers are derived from luminal cells, whereas neoplasms of MEC origin are the most seldom and usually benign form of breast tumours. MECs are markedly resistant to malignant transformation and they are able to suppress the transformation of neighboring luminal cells. Therefore, a deeper insight into the role of MECs in the physiology and pathology of mammary glands would allow a better understanding of cancerogenesis mechanisms and possible application of specific MEC markers in the diagnosis and therapy of breast cancer.

  19. β-Glucan modulates the lipopolysaccharide-induced innate immune response in rat mammary epithelial cells.

    PubMed

    Zhu, Wei; Ma, Haitian; Miao, Jinfeng; Huang, Guoqing; Tong, Mingqing; Zou, Sixiang

    2013-02-01

    Mastitis, caused by mammary pathogenic bacteria which are frequent implications of Escherichia coli, is an important disease affecting women and dairy animals worldwide. The β-glucan binding of dectin-1 can induce its own intracellular signaling and can mediate a variety of cellular responses. This work was to investigate the effect of β-glucan on the lipopolysaccharide (LPS)-induced inflammatory response and related innate immune signaling in primary rat mammary epithelial cells. Cells were treated with serum-free medium added with a DMSO solution containing β-glucans at concentrations of 0, 1, 5, 25 μmol/L for 12h, and then exposed to 10 μg/mL LPS for 40 min. Moreover, cells were pretreated with BAY 11-7082 to inhibit NF-κB and then successively exposed to 5 μmol/L β-glucan, 10 μg/mL LPS, 5 μmol/L β-glucan and 10 μg/mL LPS, according to the specific experimental design. Normal control cultures contained an equal volume of DMSO, which was collected at the same time. After incubating rat mammary epithelial cells for 40 min with 10 μg/mL LPS, TLR4, MyD88 and NF-κB expression all increased (P<0.05), as did the secretion of TNF-α and IL-1β (P<0.05), but IκB and β-casein expression both decreased (P<0.05). Treatment with different concentrations of β-glucan for 12h activated Dectin1/Syk, which subsequently suppressed TLR4, MyD88 and NF-κB expression and TNF-α and IL-1β secretion. However, it restored the IκB and β-casein expression that had been induced by the 40 min incubation with 10 μg/mL LPS. Pretreatment with BAY 11-7082 at 10 µmol/L for 2h partially prevented NF-κB induction by LPS, but the presence of β-glucan prevented this inactivation. BAY 11-7082 could not simultaneously inhibit LPS induction of TLR4, MyD88 and β-glucan activation of Dectin1/Syk in rat mammary epithelial cells. These findings demonstrated that β-glucan activation of Dectin1/Syk attenuated LPS induction of TLR4/MyD88/NF-κB and inhibited the LPS

  20. Roles of Fas and Fas ligand during mammary gland remodeling

    PubMed Central

    Song, Joon; Sapi, Eva; Brown, Wendi; Nilsen, Jon; Tartaro, Karrie; Kacinski, Barry M.; Craft, Joseph; Naftolin, Frederick; Mor, Gil

    2000-01-01

    Mammary involution is associated with degeneration of the alveolar structure and programmed cell death of mammary epithelial cells. In this study, we evaluated the expression of Fas and Fas ligand (FasL) in the mammary gland tissue and their possible role in the induction of apoptosis of mammary cells. FasL-positive cells were observed in normal mammary epithelium from pregnant and lactating mice, but not in nonpregnant/virgin mouse mammary tissue. Fas expression was observed in epithelial and stromal cells in nonpregnant mice but was absent during pregnancy. At day 1 after weaning, high levels of both Fas and FasL proteins and caspase 3 were observed and coincided with the appearance of apoptotic cells in ducts and glands. During the same period, no apoptotic cells were found in the Fas-deficient (MRL/lpr) and FasL-deficient (C3H/gld) mice. Increase in Fas and FasL protein was demonstrated in human (MCF10A) and mouse (HC-11) mammary epithelial cells after incubation in hormone-deprived media, before apoptosis was detected. These results suggest that the Fas-FasL interaction plays an important role in the normal remodeling of mammary tissue. Furthermore, this autocrine induction of apoptosis may prevent accumulation of cells with mutations and subsequent neoplastic development. Failure of the Fas/FasL signal could contribute to tumor development. PMID:11086022

  1. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    SciTech Connect

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2002-02-22

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types.

  2. Role of endothelial cells in bovine mammary gland health and disease.

    PubMed

    Ryman, Valerie E; Packiriswamy, Nandakumar; Sordillo, Lorraine M

    2015-12-01

    The bovine mammary gland is a dynamic and complex organ composed of various cell types that work together for the purpose of milk synthesis and secretion. A layer of endothelial cells establishes the blood-milk barrier, which exists to facilitate the exchange of solutes and macromolecules necessary for optimal milk production. During bacterial challenge, however, endothelial cells divert some of their lactation function to protect the underlying tissue from damage by initiating inflammation. At the onset of inflammation, endothelial cells tightly regulate the movement of plasma components and leukocytes into affected tissue. Unfortunately, endothelial dysfunction as a result of exacerbated or sustained inflammation can negatively affect both barrier integrity and the health of surrounding extravascular tissue. The objective of this review is to highlight the role of endothelial cells in supporting milk production and regulating optimal inflammatory responses. The consequences of endothelial dysfunction and sustained inflammation on milk synthesis and secretion are discussed. Given the important role of endothelial cells in orchestrating the inflammatory response, a better understanding of endothelial function during mastitis may support development of targeted therapies to protect bovine mammary tissue and mammary endothelium.

  3. Trichostatin A Inhibits β-Casein Expression in Mammary Epithelial Cells

    PubMed Central

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2010-01-01

    Many aspects of cellular behavior are defined by the content of information provided by association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein β-casein. We have previously found that the minimal ECM- and Prl-responsive enhancer element BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous β-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of β-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM mediated rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types. PMID:11746508

  4. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    PubMed Central

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  5. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells.

    PubMed

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C B; Hashim, Onn H; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  6. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C.B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  7. Intracellular localization of samarium in the lactating mammary gland cells: ultrastructural and microanalytical study.

    PubMed

    Ahlem, Ayadi; Samira, Maghraoui; Jean-Nicolas, Audinot; Mohamed-Habib, Jaafoura; Henri-Noël, Migeon; Ali, El Hili; Leila, Tekaya

    2012-04-01

    The frequent use of some rare earths in the medical and industrial domains make us worry about their intracellular behavior into the body. Reason for which we have investigated the subcellular localization of one of these elements, the samarium, in the mammary gland of lactating female wistar rats using two very sensitive methods of observation and microanalysis, the transmission electron microscopy and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits in the lactating mammary glandular epithelial cell lysosomes of the samarium-treated rats, but no loaded lysosomes were observed in those of control rats. The microanalytical study allowed both the identification of the chemical species present in those deposits as samarium isotopes ((152) Sm(+)) and the cartography of its distribution. Our results confirm the previous ones showing that lysosomes of the glandular epithelial cells are the site of the intracellular concentration of foreign elements such as gallium. The intralysosomal deposits observed in the mammary glandular cells of the samarium-treated rats are similar in their form and density to those observed with the same element in other varieties of cells, such as liver, bone marrow, and spleen cells. Our ultrastructural and microanalytical results and those obtained in previous studies allow deducing that the intralysosomal deposits are very probably composed of an insoluble samarium phosphate salt. PMID:22021164

  8. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    SciTech Connect

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  9. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    SciTech Connect

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  10. Colostrogenesis: candidate genes for IgG1 transcytosis mechanisms in primary bovine mammary epithelial cells.

    PubMed

    Stark, A; Vachkova, E; Wellnitz, O; Bruckmaier, R; Baumrucker, C

    2013-12-01

    Bovine colostrogenesis is distinguished by the specific transfer of IgG1 from the blood to mammary secretions. The process has been shown to be initiated by hormones and occurs during the last weeks of pregnancy when steroid concentrations of estradiol (E2 ) and progesterone (P4 ) are highly elevated. Rodent intestinal uptake of immunoglobulin G is mediated by a receptor termed Fc fragment of IgG, Receptor, Transporter, alpha (FcGRT) and supported by light chain Beta-2-Microglobulin (β2M). We hypothesized that steroid hormone treatments (E2 and P4 ) of bovine mammary epithelial cells in vitro would induce up-regulation of IgG1 transcytosis candidate gene mRNA expression suggesting involvement in IgG1 transcytosis. Two different primary bovine mammary epithelial cell cultures were cultured on plastic and rat tail collagen and treated with hormonal combinations (steroids/lactogenic hormones). Evaluated mRNA components were bLactoferrin (bLf: a control), bFcGRT, β2M, and various small GTPases; the latter components are reported to direct endosomal movements in eukaryotic cells. All tested transcytosis components showed strong expression of mRNA in the cells. Expression of bFcGRT, bRab25 and bRhoB were significantly up-regulated (p < 0.05) by steroid hormones. bRab25 and bRhoB showed increased expression by steroid treatments, but also with lactogenic hormones. Analysis for the oestrogen receptor (ER) mRNA was mostly negative, but 25% of the cultures tested exhibited weak expression, while the progesterone receptor (PR) mRNA was always detected. bRab25 and bRhoB and likely bFcGRT are potential candidate genes for IgG1 transcytosis in bovine mammary cells. PMID:23279563

  11. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    PubMed

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815

  12. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    PubMed

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.

  13. Curative radioimmunotherapy of human mammary carcinoma xenografts with iodine-131-labeled monoclonal antibodies

    SciTech Connect

    Senekowitsch, R.; Reidel, G.; Moellenstaedt, S.Kr.; Kriegel, H.; Pabst, H.W. )

    1989-04-01

    The radioiodinated monoclonal antibody BW 495/36 showed an exceptionally high uptake and long residence time in human ductal mammary carcinoma xenografts in nude mice. There was a mean tumor uptake of 82%/g 24 hr p.i., decreasing with a biologic half-life of approximately 6 days, to 15%/g by Day 16. The tumor-to-blood ratio increased from 2.8 to 21.4 and the percentage of the whole-body retention recovered in the tumor from 47% to 80% during the same time interval. The therapeutic efficiency of two injections of 7.4 MBq {sup 131}I-BW 495/36 was evaluated by comparing the tumor size with that in mice injected with either the same amount of the unlabeled MoAb, the same radioactivity of an {sup 131}I-labeled nonspecific MoAb, or with saline only. The high tumor accumulation of {sup 131}I-BW 495/36 led to a total tumor dose of 77 Gy resulting in a mean reduction in tumor diameter of 50%, corresponding to a reduction in tumor volume of 88% within 42 days p.i. Unlabeled MoAb had no effect on tumor growth compared with controls, whereas {sup 131}I nonspecific antibody caused a slight inhibition of tumor growth. Histologic tumor sections showed large areas of necrosis and a pronounced vacuolation of the tumor cell cytoplasm between Days 7 and 30 p.i. By Day 42 all remaining tissue in the tumor was identified as mouse connective tissue.

  14. SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells.

    PubMed

    Barutcu, A Rasim; Lajoie, Bryan R; Fritz, Andrew J; McCord, Rachel P; Nickerson, Jeffrey A; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Dekker, Job; Stein, Gary S; Imbalzano, Anthony N

    2016-09-01

    The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization. PMID:27435934

  15. CEACAM1-4S, a cell-cell adhesion molecule, mediates apoptosis and reverts mammary carcinoma cells to a normal morphogenic phenotype in a 3D culture.

    PubMed

    Kirshner, Julia; Chen, Charng-Jui; Liu, Pingfang; Huang, Jie; Shively, John E

    2003-01-21

    In a 3D model of breast morphogenesis, CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) plays an essential role in lumen formation in a subline of the nonmalignant human breast cell line (MCF10A). We show that mammary carcinoma cells (MCF7), which do not express CEACAM1 or form lumena when grown in Matrigel, are restored to a normal morphogenic program when transfected with CEACAM1-4S, the short cytoplasmic isoform of CEACAM1 that predominates in breast epithelia. During the time course of lumen formation, CEACAM1-4S was found initially between the cells, and in mature acini, it was found exclusively in an apical location, identical to its expression pattern in normal breast. Lumena were formed by apoptosis as opposed to necrosis of the central cells within the alveolar structures, and apoptotic cells within the lumena expressed CEACAM1-4S. Dying cells exhibited classical hallmarks of apoptosis, including nuclear condensation, membrane blebbing, caspase activation, and DNA laddering. Apoptosis was mediated by Bax translocation to the mitochondria and release of cytochrome c into the cytoplasm, and was partially inhibited by culturing cells with caspase inhibitors. The dynamic changes in CEACAM1 expression during morphogenesis, together with studies implicating extracellular matrix and integrin signaling, suggest that a morphogenic program integrates cell-cell and cell-extracellular matrix signaling to produce the lumena in mammary glands. This report reveals a function of CEACAM1-4S relevant to cellular physiology that distinguishes it from its related long cytoplasmic domain isoform.

  16. Multiple Mechanisms Are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells*

    PubMed Central

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle; Opresko, Lee K.; Coffey, Robert J.; Zangar, Richard; Wiley, H. Steven

    2008-01-01

    The number of distinct signaling pathways that can transactivate the epidermal growth factor receptor (EGFR) in a single cell type is unclear. Using a single strain of human mammary epithelial cells, we found that a wide variety of agonists, such as lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-α, require EGFR activity to induce ERK phosphorylation. In contrast, hepatocyte growth factor can stimulate ERK phosphorylation independent of the EGFR. EGFR transactivation also correlated with an increase in cell proliferation and could be inhibited with metalloprotease inhibitors. However, there were significant differences with respect to transactivation kinetics and sensitivity to different inhibitors. In particular, IGF-1 displayed relatively slow transactivation kinetics and was resistant to inhibition by the selective ADAM-17 inhibitor WAY-022 compared with LPA-induced transactivation. Studies using anti-ligand antibodies showed that IGF-1 transactivation required amphiregulin production, whereas LPA was dependent on multiple ligands. Direct measurement of ligand shedding confirmed that LPA treatment stimulated shedding of multiple EGFR ligands, but paradoxically, IGF-1 had little effect on the shedding rate of any ligand, including amphiregulin. Instead, IGF-1 appeared to work by enhancing EGFR activation of Ras in response to constitutively produced amphiregulin. This enhancement of EGFR signaling was independent of both receptor phosphorylation and PI-3-kinase activity, suggestive of a novel mechanism. Our studies demonstrate that within a single cell type, the EGFR autocrine system can couple multiple signaling pathways to ERK activation and that this modulation of EGFR autocrine signaling can be accomplished at multiple regulatory steps. PMID:18782770

  17. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol

    PubMed Central

    Jin, Xiaolu; Wang, Kai; Liu, Hongyun; Hu, Fuliang; Zhao, Fengqi; Liu, Jianxin

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after H2O2 exposure. Resveratrol helped MAC-T cells to prevent H2O2-induced endoplasmic reticulum stress and mitochondria-related cell apoptosis. Moreover, resveratrol induced mRNA expression of multiple antioxidant defense genes in MAC-T cells under normal/oxidative conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) was required for the cytoprotective effects on MAC-T cells by resveratrol, as knockdown of Nrf2 significantly abolished resveratrol-induced cytoprotective effects against OS. In addition, by using selective inhibitors, we further confirmed that the induction of Nrf2 by resveratrol was mediated through the prolonged activation of PI3K/Akt and ERK/MAPK pathways but negatively regulated by p38/MAPK pathway. Overall, resveratrol has beneficial effects on bovine MECs redox balance and may be potentially used as a therapeutic medicine against oxidative insult in lactating animals. PMID:26962394

  18. Sequencing the transcriptome of milk production: milk trumps mammary tissue

    PubMed Central

    2013-01-01

    Background Studies of normal human mammary gland development and function have mostly relied on cell culture, limited surgical specimens, and rodent models. Although RNA extracted from human milk has been used to assay the mammary transcriptome non-invasively, this assay has not been adequately validated in primates. Thus, the objectives of the current study were to assess the suitability of lactating rhesus macaques as a model for lactating humans and to determine whether RNA extracted from milk fractions is representative of RNA extracted from mammary tissue for the purpose of studying the transcriptome of milk-producing cells. Results We confirmed that macaque milk contains cytoplasmic crescents and that ample high-quality RNA can be obtained for sequencing. Using RNA sequencing, RNA extracted from macaque milk fat and milk cell fractions more accurately represented RNA from mammary epithelial cells (cells that produce milk) than did RNA from whole mammary tissue. Mammary epithelium-specific transcripts were more abundant in macaque milk fat, whereas adipose or stroma-specific transcripts were more abundant in mammary tissue. Functional analyses confirmed the validity of milk as a source of RNA from milk-producing mammary epithelial cells. Conclusions RNA extracted from the milk fat during lactation accurately portrayed the RNA profile of milk-producing mammary epithelial cells in a non-human primate. However, this sample type clearly requires protocols that minimize RNA degradation. Overall, we validated the use of RNA extracted from human and macaque milk and provided evidence to support the use of lactating macaques as a model for human lactation. PMID:24330573

  19. Contractile effects of 3,4-methylenedioxymethamphetamine on the human internal mammary artery.

    PubMed

    Silva, Sónia; Carvalho, Félix; Fernandes, Eduarda; Antunes, Manuel J; Cotrim, Maria Dulce

    2016-08-01

    Since the late 1980s numerous reports have detailed adverse reactions to the use of 3,4-methylenedioxymethamphetamine (MDMA) associated with cardiovascular collapse and sudden death, following ventricular tachycardia and hypertension. For a better understanding of the effects of MDMA on the cardiovascular system, it is critical to determine their effects at the vasculature level, including the transporter or neurotransmitter systems that are most affected at the whole range of drug doses. With this purpose in mind, the aim of our study was to evaluate the contractile effect of MDMA in the human internal mammary artery, the contribution of SERT for this effect and the responsiveness of this artery to 5-HT in the presence of MDMA. We have also studied the possible involvement of 5-HT2 receptors on the MDMA contractile effect in this human blood vessel using ketanserin. Our results showed that MDMA contracted the studied human's internal mammary artery in a SERT-independent form, through activation of 5-HT2A receptors. Considering the high plasma concentrations achieved in heavy users or in situations of acute exposure to drugs, this effect is probably involved in the cardiovascular risk profile of this psychostimulant, especially in subjects with pre-existing cardiovascular disease. PMID:27079619

  20. Downregulation of the KLF4 transcription factor inhibits the proliferation and migration of canine mammary tumor cells.

    PubMed

    Tien, Yung-Tien; Chang, Mei-Hsien; Chu, Pei-Yi; Lin, Chen-Si; Liu, Chen-Hsuan; Liao, Albert T

    2015-08-01

    Canine mammary tumor (CMT) is the most common neoplasm in female dogs, and over 50% of CMTs are diagnosed as malignant. Krüppel-like factor 4 (KLF4) is a member of the KLF family of transcription factors and is associated with cell proliferation, differentiation, migration, and apoptosis. Although the role of KLF4 is still controversial in various human cancers, KLF4 has been identified as an oncogene in human breast cancer. Moreover, high KLF4 expression is correlated with an aggressive phenotype in CMT. Therefore, investigating the function of KLF4 may help better understand the pathogenesis of CMT. In this study, partial sequences of canine KLF4 and KLF4 expression were identified in various normal canine tissues, as well as CMT cells and Madin-Darby canine kidney (MDCK) cells. Kenpaullone, a small molecule inhibitor of KLF4, downregulated KLF4 expression in CMT cells and reduced CMT cell proliferation, migration, and colony formation in soft agar. Kenpaullone treatment induced S and G2/M phase arrest in CMT and MDCK cells, and induced death in CMT cells, but not in MDCK cells. It was concluded that KLF4 is expressed in various normal canine tissues, and downregulation of KLF4 inhibited CMT cell proliferation and migration, and induced cell death. The results of this study suggest that KLF4 may represent a suitable therapeutic target for CMT therapy. PMID:25616642

  1. A role for interleukin-1 alpha in the 1,25 dihydroxyvitamin D3 response in mammary epithelial cells.

    PubMed

    Maund, Sophia L; Shi, Lihong; Cramer, Scott D

    2013-01-01

    Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.

  2. A Role for Interleukin-1 Alpha in the 1,25 Dihydroxyvitamin D3 Response in Mammary Epithelial Cells

    PubMed Central

    Maund, Sophia L.; Shi, Lihong; Cramer, Scott D.

    2013-01-01

    Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3. PMID:24244740

  3. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro.

    PubMed

    Sipka, Anja; Pomeroy, Brianna; Klaessig, Suzanne; Schukken, Ynte

    2016-10-01

    Natural killer (NK) cells are early responders in bacterial infections but their role in bovine mastitis has not been characterized. For the first time, we show the presence of NK cells (NKp46(+)/CD3(-)) in bovine mammary gland tissue after an intramammary challenge with Escherichia (E.) coli. A small number of NK cells was detected in milk from quarters before and during an E. coli challenge. In vitro cultures of primary bovine mammary gland epithelial cells stimulated with UV irradiated E. coli induced significant migration of peripheral blood NK cells (pbNK) within 2h. Furthermore, pbNK cells significantly reduced counts of live E. coli in vitro within 2h of culture. The results show that bovine NK cells have the capacity to migrate to the site of infection and produce antibacterial mediators. These findings introduce NK cells as a leukocyte population in the mammary gland with potential functions in the innate immune response in bovine mastitis. PMID:27638120

  4. Identification and characterization of microRNA sequences from bovine mammary epithelial cells.

    PubMed

    Bu, D P; Nan, X M; Wang, F; Loor, J J; Wang, J Q

    2015-03-01

    The bovine mammary gland is composed of various cell types including bovine mammary epithelial cells (BMEC). The use of BMEC to uncover the microRNA (miRNA) profile would allow us to obtain a more specific profile of miRNA sequences that could be associated with lactation and avoid interference from other cell types. The objective of this study was to characterize the miRNA sequences expressed in isolated BMEC. The miRNA were identified by Solexa sequencing technology (Illumina Inc., San Diego, CA). Furthermore, novel miRNA were uncovered by stem-loop reverse transcription-PCR and sequencing of PCR products. To detect tissue specificity, expression of novel miRNA sequences was measured by stem-loop RT-PCR and sequencing of PCR products in mammary gland, liver, adipose, ileum, spleen and kidney tissue from 3 lactating Holstein cows (50±10 d postpartum). After bioinformatics analysis, 12,323,451 reads were obtained by Solexa sequencing, of which 11,979,706 were clean reads, matching the bovine genome. Among clean reads, 9,428,122 belonged to miRNA sequences. Further analysis revealed that the miRNA bta-mir-184 had the most abundant expression, and 388 loci possessed the typical stem-loop structures matching known miRNA hairpins. In total, 38 loci with novel hairpins were identified as novel miRNA and were numbered from bta-U1 to bta-U38. One novel miRNA (bta-U21) was specific to mammary gland. Seven novel miRNA, including bta-U21, had tissue-restricted distribution. Uncovering the specific roles of these novel miRNA during lactation appears warranted.

  5. Cytokine networks that mediate epithelial cell-macrophage crosstalk in the mammary gland: implications for development and cancer.

    PubMed

    Sun, Xuan; Ingman, Wendy V

    2014-07-01

    Dynamic interactions between the hormone responsive mammary gland epithelium and surrounding stromal macrophage populations are critical for normal development and function of the mammary gland. Macrophages are versatile cells capable of diverse roles in mammary gland development and maintenance of homeostasis, and their function is highly dependent on signals within the local cytokine microenvironment. The mammary epithelium secretes a number of cytokines, including colony stimulating factor 1 (CSF1), transforming growth factor beta 1 (TGFB1), and chemokine ligand 2 (CCL2) that affect the abundance, phenotype and function of macrophages. However, aberrations in these interactions have been found to increase the risk of tumour formation, and utilisation of stromal macrophage support by tumours can increase the invasive and metastatic potential of the cancer. Studies utilising genetically modified mouse models have shed light on the significance of epithelial cell-macrophage crosstalk, and the cytokines that mediate this communication, in mammary gland development and tumourigenesis. This article reviews the current status of our understanding of the roles of epithelial cell-derived cytokines in mammary gland development and cancer, with a focus on the crosstalk between epithelial cells and the local macrophage population.

  6. Immunohistochemical identification of myoepithelial, epithelial, and connective tissue cells in canine mammary tumors.

    PubMed

    Destexhe, E; Lespagnard, L; Degeyter, M; Heymann, R; Coignoul, F

    1993-03-01

    Fifty-eight formalin-fixed paraffin-embedded canine mammary tumors, 19 malignant and 39 benign, were used in this study. Tumors were obtained from dogs submitted for surgical resection of lesions at private veterinary practices in Brussels or from the surgery unit of the Faculty of Veterinary Medicine, University of Liège. Immunohistochemical evaluation was performed, using monoclonal antibodies directed against keratins 8-18 and 19, vimentin, desmin, and alpha-actin and polyclonal antibodies directed against high-molecular-weight keratins and S-100 protein. The main cell types, epithelial, myoepithelial, and connective, were identified, and myoepithelial cells represented the major component of most tumors, both benign and malignant. Myoepithelial cells had five patterns: resting and proliferative suprabasal cells, spindle and star-shaped interstitial cells, and cartilage. Reactivity to keratin 19, vimentin, alpha-actin, and S-100 protein suggested a progressive transformation from resting cells to cartilage. Epithelial cell reactivities were limited to keratins; only keratinized cells were positive for polyclonal keratins. Myofibroblasts were positive for both vimentin and alpha-actin, and connective tissue cells were positive for vimentin. Myoepithelial cells appeared to be the major component of carcinomas, justifying reevaluation and simplification of histomorphologic classifications, with a "pleomorphic carcinoma" group including all carcinomas except squamous, mucinous, and comedo carcinomas. Immunohistochemical evaluation, in addition to routine hematoxylin and eosin histopathologic evaluation is recommended for precise classification of canine mammary tumors. PMID:7682367

  7. STAT5 transcriptional activity is impaired by LIF in a mammary epithelial cell line.

    PubMed

    Granillo, Agustina Rodriguez; Boffi, Juan Carlos; Barañao, Lino; Kordon, Edith; Pecci, Adali; Guberman, Alejandra

    2007-05-11

    Gene regulation mediated by STAT factors has been implicated in cellular functions with relevance to a variety of processes. Particularly, STAT5 and STAT3 play a crucial role in mammary epithelium displaying reciprocal activation kinetics during pregnancy, lactation and involution. Here, we show that LIF treatment of mammary epithelial HC11 cells reduces the phosphorylation levels and transcriptional activity of p-STAT5 in correlation with STAT3 phosphorylation. We have also found that STAT5 activity is negatively modulated by this cytokine, both on a gene whose expression is induced, as well as on a promoter repressed by STAT5. Besides, our results show that lactogenic hormones increase LIF effect on gene induction without modifying STAT3 phosphorylation state. Our findings strongly suggest that there is crosstalk between STAT5 and STAT3 pathways that could modulate their ability to regulate gene expression.

  8. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro

    PubMed Central

    Xiao, Lin; Harrell, J. Chuck; Perou, Charles M.; Dudley, Andrew C.

    2013-01-01

    Long-term, in vitro propagation of tumor-specific endothelial cells (TEC) allows for functional studies and genome-wide expression profiling of clonally-derived, well-characterized subpopulations. Using a genetically engineered mouse model (GEMM) of mammary adenocarcinoma, we have optimized an isolation procedure and defined growth conditions for long-term propagation of mammary TEC. The isolated TEC maintain their endothelial specification and phenotype in culture. Furthermore, gene expression profiling of multiple TEC subpopulations revealed striking, persistent overexpression of several candidate genes including Irx2 and Zfp503 (transcription factors), Alcam and Cd133 (cell surface markers), Ccl4 and neurotensin (Nts) (angiocrine factors), and Gpr182 and Cnr2 (G protein-coupled receptors, GPCRs). Taken together, we have developed an effective method for isolating and culture-expanding mammary TEC, and uncovered several new TEC-selective genes whose overexpression persists even after long-term in vitro culture. These results suggest that the tumor microenvironment may induce changes in vascular endothelium in vivo that are stably transmittable in vitro. PMID:24257808

  9. Presence of mouse mammary tumour‐like virus gene sequences may be associated with morphology of specific human breast cancer

    PubMed Central

    Lawson, J S; Tran, D D; Carpenter, E; Ford, C E; Rawlinson, W D; Whitaker, N J; Delprado, W

    2006-01-01

    Background Mouse mammary tumour virus (MMTV) has a proven role in breast carcinogenesis in wild mice and genetically susceptible in‐bred mice. MMTV‐like env gene sequences, which indicate the presence of a replication‐competent MMTV‐like virus, have been identified in some human breast cancers, but rarely in normal breast tissues. However, no evidence for a causal role of an MMTV‐like virus in human breast cancer has emerged, although there are precedents for associations between specific histological characteristics of human cancers and the presence of oncogenic viruses. Aim To investigate the possibility of an association between breast cancer and MMTV‐like viruses. Methods Histological characteristics of invasive ductal human breast cancer specimens were compared with archival MMTV‐associated mammary tumours from C3H experimental mice. The presence of MMTV‐like env DNA sequences in the human breast cancer specimens was determined by polymerase chain reaction and confirmed by Southern hybridisation. Results MMTV‐like env gene sequences were identified in 22 of 59 (37.3%) human breast cancer specimens. Seventeen of 43 (39.5%) invasive ductal carcinoma breast cancer specimens and 4 of 16 (25%) ductal carcinoma in situ specimens had some histological characteristics, which were similar to MMTV‐associated mouse mammary tumours. However, these similarities were not associated with the presence or absence of MMTV‐like gene sequences in the human breast tumour specimens. A significant (p = 0.05) correlation was found between the grade of the human breast cancer and similarity to the mouse mammary tumours. The lower the grade, the greater the similarity. Conclusion Some human breast cancer specimens, in which MMTV‐like env DNA sequences have been identified, were shown to have histological characteristics (morphology) similar to MMTV‐associated mouse mammary tumours. These observations are compatible with, but not conclusive of, an

  10. Normal mammary epithelial cells promote carcinoma basement membrane invasion by inducing microtubule-rich protrusions

    PubMed Central

    Lee, Meng-Horng; Wu, Pei-Hsun; Gilkes, Daniele; Aifuwa, Ivie; Wirtz, Denis

    2015-01-01

    Recent work suggests that the dissemination of tumor cells may occur in parallel with, and even preceed, tumor growth. The mechanism for this early invasion is largely unknown. Here, we find that mammary epithelial cells (MECs) induce neighboring breast carcinoma cells (BCCs) to cross the basement membrane by secreting soluble laminin. Laminin continuously produced by MECs induce long membrane cellular protrusions in BCCs that promote their contractility and invasion into the surrounding matrix. These protrusions depend on microtubule bundles assembled de novo through laminin-integrin β1 signaling. These results describe how non-cancerous MECs can actively participate in the invasive process of BCCs. PMID:26334095

  11. Mouse Mammary Tumor Virus-Like Nucleotide Sequences in Canine and Feline Mammary Tumors▿

    PubMed Central

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-01-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats. PMID:20881168

  12. Persistence of a Staphylococcus aureus small colony variants (S. aureus SCV) within bovine mammary epithelial cells.

    PubMed

    Atalla, Heba; Gyles, Carlton; Mallard, Bonnie

    2010-07-14

    Persistent bovine Staphylococcus aureus mastitis is attributable to the versatility of this pathogen within the mammary gland environment and to the formation of small colony variants (SCVs) that can survive within host cells. Previous studies had shown that S. aureus SCV Heba3231, isolated from a cow with chronic mastitis, had invaded and persisted in primary bovine aortic endothelial cells but caused minimal deleterious effects. The objective of this study was to investigate the interaction of SCV Heba3231 with bovine mammary epithelial cells (MAC-T cells) compared to its parent strain 3231 and to prototype strain Newbould 305. Monolayer cells were infected with each strain at various multiplicity of infections (MOIs) for 1 and 3.5h, followed by 20 min incubation with lysostaphin. Recovery of the SCV was significantly higher (P<0.05) after 3.8h with MOI of 100 compared to recovery of strains 3231 and Newbould 305. Upon further incubation, viable SCV were detected up to 96 h while 3231 were not isolated at 24h or later. Transmission electron microscopy demonstrated SCV uptake by MAC-T cells following a series of events similar to those for strain 3231. At 24h, multiple SCV were seen within enclosed vacuoles, while the 3231 parent strain was released extracellularly and the monolayer cells were damaged. The ability of SCV Heba3231 to survive inside vacuoles could be related to up-regulation of protective mechanisms. These findings highlight the potential role of bovine mammary epithelial cells and S. aureus SCV in persistent bovine mastitis.

  13. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion

    SciTech Connect

    Lee, E.Y.H.P.; Lee, W.H.; Kaetzel, C.S.; Parry, G.; Bissell, M.J.

    1985-03-01

    Mouse mammary epithelial cells (MMEC) secrete certain milk proteins only when cultured on floating collagen gels. The authors demonstrate that modulation of milk proteins by substrata is manifested at several regulatory levels; (i) cells cultured on floating collagen gels have 3- to 10-fold more casein mRNA than cells cultured on plastic or attached collagen gels. (ii) Cells on the latter two flat substrata, nevertheless, synthesize a significant amount of caseins, indicating that the remaining mRNA is functional. (iii) Cells on all substrata are inducible for casein mRNA and casein proteins by prolactin, but the extent of induction is greater on collagen than that on plastic - i.e., the substratum confers an altered degree of inducibility. (iv) Cells on all substrata synthesize casein proteins at rates proportional to the amount of casein mRNA, but the newly synthesized caseins in cells on plastic are degraded intracellularly, whereas those synthesized by cells on floating gels are secreted into the medium. (v) Cells on all substrata examined lose virtually all mRNA for whey acidic protein despite the fact that this mRNA is abundant in the mammary gland itself; the authors conclude that additional, as-yet-unknown, factors are necessary for synthesis and secretion of whey acidic protein in culture.

  14. Characterization of a myoepithelial cell line derived from a neonatal rat mammary gland

    PubMed Central

    1981-01-01

    A clonal, myoepithelial-like cell line has been obtained from a primary culture established from the mammary gland of a 7-d-old rat. In a number of respects, this cell line, termed Rama 401, resembles the myoepithelial cells of the mammary gland, especially when grown on floating collagen gels. The cells grow as multilayers on the gel surface and form branching structures that do not appear to contain a lumen. They are rather elongated, with irregular-shaped, flattened nuclei that contain large amounts of peripheral chromatin. Elongated processes project from the cell surface and numerous membrane pinocytotic vesicles can be seen. The cytoplasm is filled with linear arrays of 5- to 7-nm filaments with occasional dense foci. Cell junctions with associated 8- to 11-nm tonofilaments are also observed. Immunofluorescence techniques reveal actin and myosin filaments and also intermediate filaments of both prekeratin and vimentin types. Rama 401 cells secrete an amorphous material that, when an immunoperoxidase technique is used, stains with antibodies to basement membrane-specific type IV collagen. Localized densities of the cell membrane, which resemble hemidesmosomes, are located adjacent to these extracellular deposits. Immunofluorescence staining and immunoprecipitation techniques reveal that the cells also synthesize two other basement membrane proteins, laminin and fibronectin. The type IV collagen consists of two chains with molecular weights of 195,000 and 185,000. PMID:7199047

  15. The effect of G protein-coupled receptor kinase 2 (GRK2) on lactation and on proliferation of mammary epithelial cells from dairy cows.

    PubMed

    Hou, Xiaoming; Hu, Hongliu; Lin, Ye; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-07-01

    Milk protein is an important component of milk and a nutritional source for human consumption. To better understand the molecular events underlying synthesis of milk proteins, the global gene expression patterns in mammary glands of dairy cow with high-quality milk (>3% milk protein; >3.5% milk fat) and low-quality milk (<3% milk protein; <3.5% milk fat) were examined via digital gene expression study. A total of 139 upregulated and 66 downregulated genes were detected in the mammary tissues of lactating cows with high-quality milk compared with the tissues of cows with low-quality milk. A pathway enrichment study of these genes revealed that the top 5 pathways that were differentially affected in the tissues of cows with high- versus low-quality milk involved metabolic pathways, cancer, cytokine-cytokine receptor interactions, regulation of the actin cytoskeleton, and insulin signaling. We also found that the G protein-coupled receptor kinase 2 (GRK2) was one of the most highly upregulated genes in lactating mammary tissue with low-quality milk compared with tissue with high-quality milk. The knockdown of GRK2 in cultured bovine mammary epithelial cells enhanced CSN2 expression and activated signaling molecules related to translation, including protein kinase B, mammalian target of rapamycin, and p70 ribosomal protein S6 kinase 1 (S6K1), whereas overexpression of GRK2 had the opposite effects. However, expression of genes involved in the mitogen-activated protein kinase pathway was positively regulated by GRK2. Therefore, GRK2 seems to act as a negative mediator of milk-protein synthesis via the protein kinase B-mammalian target of rapamycin signaling axis. Furthermore, GRK2 may negatively control milk-protein synthesis by activating the mitogen-activated protein kinase pathway in dairy cow mammary epithelial cells. PMID:27132107

  16. NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity.

    PubMed

    Zhang, Yongshu; Xia, Jixiang; Li, Qinglin; Yao, Yuan; Eades, Gabriel; Gernapudi, Ramkishore; Duru, Nadire; Kensler, Thomas W; Zhou, Qun

    2014-11-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression in embryonic stem cell (ESC) self-renewal and differentiation. In ESCs, lncRNAs are regulated at the genetic level via transcription factor binding to lncRNA gene promoters. Here we demonstrate that the key cytoprotective transcription factor NRF2 controls lncRNA expression in mammary stem cells. By profiling lncRNAs in wild-type and NRF2 knockdown mammary stem cells, we demonstrate that the lncRNA ROR, a regulator of embryonic stem cell pluripotency, is overexpressed upon NRF2 knockdown. We performed promoter analyses and examined predicted NRF2 binding elements in the ROR promoter using luciferase reporter constructs of a ROR promoter deletion series. Our studies revealed that NRF2 binds to two specific NRF2 response elements flanking the ROR promoter and that these two NRF2 response elements are equally important to suppress ROR transcription. In addition, we identified associated H3K27me3 chromatin modification and EZH2 binding at the ROR promoter that was dependent on NRF2 binding. We observed that NRF2 knockdown or ROR overexpression leads to increased stem cell self-renewal in mammary stem cells. Furthermore, we demonstrate Nrf2 regulation of the mammary stem cell population in vivo. These observations provide further evidence for the critical role of NRF2 in maintaining normal stem cell subpopulations in mammary epithelium.

  17. Changes in PACAP immunoreactivity in human milk and presence of PAC1 receptor in mammary gland during lactation.

    PubMed

    Csanaky, Katalin; Banki, Eszter; Szabadfi, Krisztina; Reglodi, Dora; Tarcai, Ibolya; Czegledi, Levente; Helyes, Zsuzsanna; Ertl, Tibor; Gyarmati, Judit; Szanto, Zalan; Zapf, Istvan; Sipos, Erika; Shioda, Seiji; Tamas, Andrea

    2012-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence in the nervous system and peripheral organs, including the mammary gland. Previously, we have shown that PACAP38 is present in the human milk at higher levels than in respective blood samples. However, it is not known how PACAP levels and the expression of PAC1 receptor change during lactation. Therefore, the aim of our study was to investigate PACAP38-like immunoreactivity (PACAP38-LI) in human colostrums and transitional and mature milk during lactation and to compare the expression of PAC1 receptors in lactating and non-lactating mammary glands. We found that PACAP38-LI was significantly higher in human colostrum samples than in the transitional and mature milk. PACAP38-LI did not show any significant changes within the first 10-month period of lactation, but a significant increase was observed thereafter, up to the examined 17th month. Weak expression of PAC1 receptors was detected in non-lactating sheep and human mammary glands, but a significant increase was observed in the lactating sheep samples. In summary, the present study is the first to show changes of PACAP levels in human milk during lactation. The presence of PACAP in the milk suggests a potential role in the development of newborn, while the increased expressions of PAC1 receptors on lactating breast may indicate a PACAP38/PAC1 interaction in the mammary gland during lactation.

  18. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    SciTech Connect

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S.

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  19. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    PubMed Central

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  20. Expression of M-N#1, a histo-blood group B-like antigen, is strongly up-regulated in nonapoptosing mammary epithelial cells during rat mammary gland involution.

    PubMed

    Mengwasser, J; Sleeman, J P

    2001-06-01

    Antibodies against the histo-blood group B-like antigen M-N#1 efficiently block the growth in vivo of rat mammary carcinoma cells that bear the antigen (Sleeman et al., 1999, Oncogene 18, 4485--4494). To try to understand the function of the M-N#1 antigen, we investigated when and where the antigen is expressed during the normal function of the rat mammary gland. Expression was virtually only seen during mammary gland involution. Here, strong expression of the antigen was observed in mammary epithelial cells, beginning around 2 days postweaning and lasting throughout the involution process. Dexamethasone treatment of animals postlactation inhibited alveolar collapse and remodeling in the mammary gland but inhibited neither the apoptosis of mammary epithelial cells nor the expression of the M-N#1 antigen. We show that up-regulation of carbohydrate antigens is not a general phenomenon during mammary gland involution, and thus that M-N#1 antigen expression is specifically regulated. Up-regulation of alpha(1,2)fucosyltransferase A, an enzyme required for M-N#1 antigen synthesis, is at least partly responsible for regulated M-N#1 antigen expression postlactation. Most significantly, we observed that the M-N#1 antigen is virtually exclusively expressed on nonapoptosing epithelial cells in the involuting mammary gland. These data suggest that M-N#1 antigen expression might either provide a survival function and/or be expressed in epithelial cells that are destined to grow and remodel mammary duct structures. PMID:11445549

  1. Influence of several extracellular matrix components in primary cultures of bovine mammary epithelial cells.

    PubMed

    Delabarre, S; Claudon, C; Laurent, F

    1997-02-01

    Mammary epithelial cells, obtained from lactating cows, were cultured onto inserts coated with several components of extracellular matrix. The influence of these components upon the maintenance of differentiation has been determinated. Every day, alpha S1-casein secretion was measured by radioimmunoassay (RIA) in apical and basal compartments. Reorganization of functional tight junctions was evaluated by measurement of transepithelial electrical resistance (TER). On EHS matrix, cells underwent alveolar structures and never established TER. alpha S1-casein secretion strongly fluctuated with the day of culture. When plated onto fibronectin, cells reorganized a typical pavement and established TER. Nevertheless, TER and casein secretion highly fluctuated. On laminin-coated inserts, a few cells bound to the substratum, dedifferentiated, and proliferated to confluency within 9 days. TER progressively increased to a stable level after 15 days. Casein was not recovered after 6 days. Cells on type I collagen-coated inserts reorganized an epithelial pavement within 2 days and quickly established a stable TER. They secreted apically high levels of casein during 2 weeks. As cells maintained their biochemical differentiation, the culture on type I collagen-coated inserts seems an efficient model for primary culture of bovine mammary epithelial cells and allows studies of polarized alpha S1-casein secretion.

  2. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells

    PubMed Central

    1986-01-01

    The cell surface proteoglycan on normal murine mammary gland mouse mammary epithelial cells consists of an ectodomain bearing heparan and chondroitin sulfate chains and a lipophilic domain that is presumed to be intercalated into the plasma membrane. Because the ectodomain binds to matrix components produced by stromal cells with specificity and high affinity, we have proposed that the cell surface proteoglycan is a matrix receptor that binds epithelial cells to their underlying basement membrane. We now show that the proteoglycan surrounds cells grown in subconfluent or newly confluent monolayers, but becomes restricted to the basolateral surface of cells that have been confluent for a week or more; Triton X-100 extraction distinguishes three fractions of cell surface proteoglycan: a fraction released by detergent and presumed to be free in the membrane, a fraction bound via a salt-labile linkage, and a nonextractable fraction; the latter two fractions co-localize with actin filament bundles at the basal cell surface; and when proteoglycans at the apical cell surface are cross- linked by antibodies, they initially assimilate into detergent- resistant, immobile clusters that are subsequently aggregated by the cytoskeleton. These findings suggest that the proteoglycan, initially present on the entire surface and free in the plane of the membrane, becomes sequestered at the basolateral cell surface and bound to the actin-rich cytoskeleton as the cells become polarized in vitro. Binding of matrix components may cross-link proteoglycans at the basal cell surface and cause them to associate with the actin cytoskeleton, providing a mechanism by which the cell surface proteoglycan acts as a matrix receptor to stabilize the morphology of epithelial sheets. PMID:3025223

  3. Spontaneous lesions in the reproductive tract and mammary gland of female non-human primates.

    PubMed

    Cooper, Timothy K; Gabrielson, Kathleen L

    2007-04-01

    Because of their close phylogenic relationship with humans, the use of non-human primates (NHP) as experimental subjects has a long history in biomedical research. Although research topics have shifted focus and species used have changed, NHP remain vital as models in basic and applied research. While there is a wealth of information available on the spontaneous lesions of NHP, most of this information is fragmented, dated, or narrow in focus, often limited to single case reports. This review attempts to integrate this information to illustrate and enumerate the spectrum of spontaneous pathology of the reproductive tract and mammary gland of NHP. Although not the focus of this review, steroid-related changes are inextricably linked to these tissues, and brief consideration is given to this subject as well. PMID:17342758

  4. Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression.

    PubMed

    Osaki, Tomohiro; Sunden, Yuji; Sugiyama, Akihiko; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-09-30

    Canine mammary gland tumors (CMGTs), which are the most common neoplasms in sexually intact female dogs, have been suggested as a model for studying human breast cancer because of several similarities, including relative age of onset, risk factors, incidence, histological and molecular features, biological behavior, metastatic pattern, and responses to therapy. In the present study, we established a new cell line, the SNP cell line, from a CMGT. A tumor formed in each NOD.CB17-Prkdc(scid)/J mouse at the site of subcutaneous SNP cell injection. SNP cells are characterized by proliferation in a tubulopapillary pattern and are vimentin positive. Moreover, we examined miRNA expression in the cultured cells and found that the expression values of miRNA-143 and miRNA-138a showed the greatest increase and decrease, respectively, of all miRNAs observed, indicating that these miRNAs might play a significant role in the malignancy of SNP cells. Overall, the results of this study indicate that SNP cells might serve as a model for future genetic analysis and clinical treatments of human breast tumors.

  5. Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression

    PubMed Central

    Sunden, Yuji; Sugiyama, Akihiko; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-01-01

    Canine mammary gland tumors (CMGTs), which are the most common neoplasms in sexually intact female dogs, have been suggested as a model for studying human breast cancer because of several similarities, including relative age of onset, risk factors, incidence, histological and molecular features, biological behavior, metastatic pattern, and responses to therapy. In the present study, we established a new cell line, the SNP cell line, from a CMGT. A tumor formed in each NOD.CB17-Prkdcscid/J mouse at the site of subcutaneous SNP cell injection. SNP cells are characterized by proliferation in a tubulopapillary pattern and are vimentin positive. Moreover, we examined miRNA expression in the cultured cells and found that the expression values of miRNA-143 and miRNA-138a showed the greatest increase and decrease, respectively, of all miRNAs observed, indicating that these miRNAs might play a significant role in the malignancy of SNP cells. Overall, the results of this study indicate that SNP cells might serve as a model for future genetic analysis and clinical treatments of human breast tumors. PMID:26726024

  6. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  7. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    SciTech Connect

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  8. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model

    PubMed Central

    Riabov, Vladimir; Yin, Shuiping; Song, Bin; Avdic, Aida; Schledzewski, Kai; Ovsiy, Ilja; Gratchev, Alexei; Verdiell, Maria Llopis; Sticht, Carsten; Schmuttermaier, Christina; Schönhaber, Hiltrud; Weiss, Christel; Fields, Alan P.; Simon-Keller, Katja; Pfister, Frederick; Berlit, Sebastian; Marx, Alexander; Arnold, Bernd; Goerdt, Sergij; Kzhyshkowska, Julia

    2016-01-01

    Stabilin-1 is a multifunctional scavenger receptor expressed on alternatively-activated macrophages. Stabilin-1 mediates phagocytosis of “unwanted-self” components, intracellular sorting, and endocytic clearance of extracellular ligands including SPARC that modulates breast cancer growth. The expression of stabilin-1 was found on tumor-associated macrophages (TAM) in mouse and human cancers including melanoma, lymphoma, glioblastoma, and pancreatic insulinoma. Despite its tumor-promoting role in mouse models of melanoma and lymphoma the expression and functional role of stabilin-1 in breast cancer was unknown. Here, we demonstrate that stabilin-1 is expressed on TAM in human breast cancer, and its expression is most pronounced on stage I disease. Using stabilin-1 knockout (ko) mice we show that stabilin-1 facilitates growth of mouse TS/A mammary adenocarcinoma. Endocytosis assay on stabilin-1 ko TAM demonstrated impaired clearance of stabilin-1 ligands including SPARC that was capable of inducing cell death in TS/A cells. Affymetrix microarray analysis on purified TAM and reporter assays in stabilin-1 expressing cell lines demonstrated no influence of stabilin-1 expression on intracellular signalling. Our results suggest stabilin-1 mediated silent clearance of extracellular tumor growth-inhibiting factors (e.g. SPARC) as a mechanism of stabilin-1 induced tumor growth. Silent clearance function of stabilin-1 makes it an attractive candidate for delivery of immunomodulatory anti-cancer therapeutic drugs to TAM. PMID:27105498

  9. Radiation-Induced Reprogramming of Pre-Senescent Mammary Epithelial Cells Enriches Putative CD44+/CD24−/low Stem Cell Phenotype

    PubMed Central

    Gao, Xuefeng; Sishc, Brock J.; Nelson, Christopher B.; Hahnfeldt, Philip; Bailey, Susan M.; Hlatky, Lynn

    2016-01-01

    The enrichment of putative CD44+/CD24−/low breast stem cell populations following exposure to ionizing radiation (IR) has been ascribed to their inherent radioresistance and an elevated frequency of symmetric division during repopulation. However, recent studies demonstrating radiation-induced phenotypic reprogramming (the transition of non-CD44+/CD24−/low cells into the CD44+/CD24−/low phenotype) as a potential mechanism of CD44+/CD24−/low cell enrichment have raised the question of whether a higher survival and increased self-renewal of existing CD44+/CD24−/low cells or induced reprogramming is an additional mode of enrichment. To investigate this question, we combined a cellular automata model with in vitro experimental data using both MCF-10A non-tumorigenic human mammary epithelial cells and MCF-7 breast cancer cells, with the goal of identifying the mechanistic basis of CD44+/CD24−/low stem cell enrichment in the context of radiation-induced cellular senescence. Quantitative modeling revealed that incomplete phenotypic reprogramming of pre-senescent non-stem cells (reprogramming whereby the CD44+/CD24−/low phenotype is conveyed, along with the short-term proliferation capacity of the original cell) could be an additional mode of enriching the CD44+/CD24−/low subpopulation. Furthermore, stem cell enrichment in MCF-7 cells occurs both at lower doses and earlier time points, and has longer persistence, than that observed in MCF-10A cells, suggesting that phenotypic plasticity appears to be less regulated in breast cancer cells. Taken together, these results suggest that reprogramming of pre-senescent non-stem cells may play a significant role in both cancer and non-tumorigenic mammary epithelial populations following exposure to IR, a finding with important implications for both radiation therapy and radiation carcinogenesis. PMID:27379202

  10. Chemerin is a novel regulator of lactogenesis in bovine mammary epithelial cells.

    PubMed

    Suzuki, Yutaka; Haga, Satoshi; Katoh, Daiki; So, Kyoung-ha; Choi, Ki-choon; Jung, U-suk; Lee, Hong-gu; Katoh, Kazuo; Roh, Sang-gun

    2015-10-23

    Chemerin is a chemoattractant cytokine (chemokine) produced by adipocytes and hepatocytes; it regulates insulin sensitivity and adipocyte differentiation. The objective of this study was to investigate the effect of chemerin on the expression of genes related to lactogenesis and the regulators of chemerin signaling in a bovine mammary epithelial cell line (MAC-T). Two types of chemerin receptors, chemokine like-receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2), were detected in cultured MAC-T cells, whereas chemerin was not detected. G protein-coupled receptor 1 (GPR1), another receptor of chemerin, was undetectable in MAC-T cells. Chemerin upregulated transcript expression of CMKLR1, CCRL2, and genes associated with fatty acid synthesis, glucose uptake, insulin signaling, and casein synthesis in MAC-T cells. Lactogenic hormones (insulin, growth hormone, and prolactin) downregulated the expression of CMKLR1 in MAC-T cells. Adiponectin suppressed CMKLR1 expression. TNF-α suppressed CMKLR1, but induced CCRL2 expression. These data suggest chemerin is a novel regulator of lactogenesis via its own receptor in bovine mammary epithelial cells. PMID:26342800

  11. ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution

    PubMed Central

    Hennigar, Stephen R.; Seo, Young Ah; Sharma, Supriya; Soybel, David I.; Kelleher, Shannon L.

    2015-01-01

    Mammary gland involution is the most dramatic example of physiological cell death. It occurs through an initial phase of lysosomal-mediated cell death (LCD) followed by mitochondrial-mediated apoptosis. Zinc (Zn) activates both LCD and apoptosis in vitro. The Zn transporter ZnT2 imports Zn into vesicles and mitochondria and ZnT2-overexpression activates cell death in mammary epithelial cells (MECs). We tested the hypothesis that ZnT2-mediated Zn transport is critical for mammary gland involution in mice. Following weaning, ZnT2 abundance increased in lysosomes and mitochondria, which paralleled Zn accumulation in each of these organelles. Adenoviral expression of ZnT2 in lactating mouse mammary glands in vivo increased Zn in lysosomes and mitochondria and activated LCD and apoptosis, promoting a profound reduction in MECs and alveoli. Injection of TNFα, a potent activator of early involution, into the mammary gland fat pads of lactating mice increased ZnT2 and Zn in lysosomes and activated premature involution. Exposure of cultured MECs to TNFα redistributed ZnT2 to lysosomes and increased lysosomal Zn, which activated lysosomal swelling, cathepsin B release, and LCD. Our data implicate ZnT2 as a critical mediator of cell death during involution and importantly, that as an initial involution signal, TNFα redistributes ZnT2 to lysosomes to activate LCD. PMID:25620235

  12. The Effects of Matrix Metalloproteinase-9 on Dairy Goat Mastitis and Cell Survival of Goat Mammary Epithelial Cells.

    PubMed

    Li, Hui; Zheng, Huiling; Li, Lihui; Shen, Xingai; Zang, Wenjuan; Sun, Yongsen

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a zinc-dependent enzyme, and plays a crucial role in extracellular matrix degeneration, inflammation and tissue remodeling. However, the relationship between MMP-9 and somatic cell count (SCC) in goat milk and the role of MMP-9 in the regulation of mastitis are still unknown. In this study, we found MMP-9 was predominantly expressed in the spleen, intestine and mammary gland. The SCC in goat milk was positively correlated with MMP-9 expression, and staphylococcus aureus could markedly increase MMP-9 expression in goat mammary epithelial cells (GMEC) in dosage and time dependent manner. We also demonstrated that SB-3CT, an inhibitor of MMP-9, promoted apoptosis and inhibited proliferation in GMEC. Thus, MMP-9 may emerge as an easily measurable and sensitive parameter that reflects the number of somatic cells present in milk and a regulatory factor of apoptosis in GMEC. PMID:27518717

  13. The Effects of Matrix Metalloproteinase-9 on Dairy Goat Mastitis and Cell Survival of Goat Mammary Epithelial Cells

    PubMed Central

    Li, Hui; Zheng, Huiling; Li, Lihui; Shen, Xingai; Zang, Wenjuan; Sun, Yongsen

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a zinc-dependent enzyme, and plays a crucial role in extracellular matrix degeneration, inflammation and tissue remodeling. However, the relationship between MMP-9 and somatic cell count (SCC) in goat milk and the role of MMP-9 in the regulation of mastitis are still unknown. In this study, we found MMP-9 was predominantly expressed in the spleen, intestine and mammary gland. The SCC in goat milk was positively correlated with MMP-9 expression, and staphylococcus aureus could markedly increase MMP-9 expression in goat mammary epithelial cells (GMEC) in dosage and time dependent manner. We also demonstrated that SB-3CT, an inhibitor of MMP-9, promoted apoptosis and inhibited proliferation in GMEC. Thus, MMP-9 may emerge as an easily measurable and sensitive parameter that reflects the number of somatic cells present in milk and a regulatory factor of apoptosis in GMEC. PMID:27518717

  14. ΔFosB regulates Ca²⁺ release and proliferation of goat mammary epithelial cells.

    PubMed

    Zheng, Huiling; Li, Hui; Li, Lihui; Ma, Shaoyang; Liu, Xuemei

    2014-07-25

    ΔFosB is a member of the family of transcription factor activating proteins-1 (AP-1) and is known to play important roles in Ca(2+) metabolism processes of osteoblast formation and differentiation in humans and rodents. The postpartum mammary gland is one of the significant organs for Ca(2+) metabolism processes. However, very little information is available on the role of ΔFosB in goat mammary gland. In this investigation, the full-length cDNA of ΔFosB from Xinong Saanen dairy goats was cloned, which contains an open-reading frame (ORF) of 723 bp encoding 240 amino acids. The amino acid sequence is highly homologous with cattle (99.17%). Quantitative real time PCR (QRT-PCR) and western blotting assays showed that ΔFosB was expressed in goat heart, liver, lung, and breast, but little in the hypophysis and spleen. The fluorescence signals revealed that the Ca(2+) was decreased in goat mammary epithelial cells (GMECs) over-expressed ΔFosB at 72h. Consistently, intracellular Ca(2+) was increased in GMECs suppressing expressed ΔFosB at 72 h. QRT-PCR assay showed that ΔFosB positively regulated the mRNA expression of runt related transcription factor 2 (Runx2), SMAD family member 4 (Smad4), S100 calcium binding protein A4 (S100A4) and S100 calcium binding protein A13 (S100A13) genes in GMECs, which had been proven to be relative to calcium metabolism in humans and rodents. Ca(2+) could induce a dose-dependent increase of the ΔFosB mRNA expression and a dose-dependent decrease in cell viability when the GMECs were treated with CaCl2. Suppressing ΔFosB expression in GMECs also inhibited the cell viability. These discoveries suggest that ΔFosB plays important roles in regulating Ca(2+) release and proliferation of the GMECs, which may prove useful in regulation of milk production. PMID:24831832

  15. Differentiation dynamics of mammary epithelial stem cells from Korean holstein dairy cattle under ECM-free conditions.

    PubMed

    Sharma, Neelesh; Kim, Jeong Hyun; Sodhi, Simrinder Singh; Luong, Do Huynh; Kim, Sung-Woo; Oh, Sung Jong; Jeong, Dong Kee

    2015-01-01

    The "stem cells" are commonly defined as "cells capable of self-renewal through replication and differentiating into specific lineages". The mammary gland contains functional stem/progenitor cells. The current study was planned with the objectives to study the differentiation dynamics of Korean Holstein mammary epithelial stem cells (KHMESCs) under the optimum culture conditions. Lineage negative KHMESCs isolated from mammary tissue of lactating cows have shown the typical differentiation dynamics with formation of lobulo-alveolar structures in in vitro culture. This suggests the existence of bipotential mammary epithelial stem cells in the mammary gland. The strong mRNA expression of pluripotency factors indicates stemness, whereas expression of milk protein genes and epithelial cell-specific gene indicate their differentiation capabilities. Further, immunostaining results have shown the differentiation capabilities of KHMESCs into both luminal and basal lineages under the extracellular matrix (ECM, matrigel) free environment. However, under matrigel, the differentiation process was comparatively higher than without matrigel. Immunostaining results also suggested that differentiated cells could secrete milk proteins such as β-casein. To our knowledge, these data represent the first report on the differentiation dynamics and establishment of mammary epithelial stem cells from Korean Holstein with typical stemness properties. It was observed that isolated KHMESCs had normal morphology, growth pattern, differentiation ability, cytogenetic and secretory activity even without ECM. Therefore, it is concluded that established KHMESCs could be used for further studies on Korean Holstein dairy cows related to lactation studies, as non-GMO animal bioreactors and stem cell-based management of bovine mastitis including post-mastitis damage.

  16. Gap junctions mediate STAT5-independent β-casein expression in CID-9 mammary epithelial cells.

    PubMed

    Talhouk, Rabih S; Khalil, Antoine A; Bajjani, Rachid; Rahme, Gilbert J; El-Sabban, Marwan E

    2011-10-01

    Crosstalk between gap junction intracellular communication (GJIC), STAT5 and OCT-1 in gap junction (GJ)-dependent β-casein expression was investigated. CID-9 mammary cells plated with prolactin on non-adherent substratum (poly-HEMA) expressed β-casein independent of STAT5 only in the presence of the GJIC inducer, cAMP. Nuclear STAT5 levels were not detectable. By contrast, cells on EHS-drip expressed β-casein in a STAT5-dependent manner and nuclear STAT5 levels were up-regulated. A 75 kDa OCT-1 isoform was detected in conditions that induced β-casein expression regardless of substratum. Interestingly, 40 and 28 kDa OCT-1 isoforms were induced in cells on polyHEMA with cAMP. Electrophoretic mobility shift assays (EMSA) for OCT-1 revealed two band shifts in cells on polyHEMA with cAMP and on EHS-drip, which were repressed by the GJIC inhibitor, 18α-GA. These studies demonstrated that mammary cells on polyHEMA expressed β-casein in response to prolactin in a pathway that involves GJIC and OCT-1 and is independent of STAT5 nuclear translocation.

  17. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  18. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands

    PubMed Central

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  19. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    SciTech Connect

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-02-24

    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  20. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development. PMID:26854194

  1. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk.

    PubMed

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E; Geddes, Donna T; Kakulas, Foteini

    2016-02-08

    Human milk (HM) contains regulatory biomolecules including miRNAs, the origin and functional significance of which are still undetermined. We used TaqMan OpenArrays to profile 681 mature miRNAs in HM cells and fat, and compared them with maternal peripheral blood mononuclear cells (PBMCs) and plasma, and bovine and soy infant formulae. HM cells and PBMCs (292 and 345 miRNAs, respectively) had higher miRNA content than HM fat and plasma (242 and 219 miRNAs, respectively) (p < 0.05). A strong association in miRNA profiles was found between HM cells and fat, whilst PBMCs and plasma were distinctly different to HM, displaying marked inter-individual variation. Considering the dominance of epithelial cells in mature milk of healthy women, these results suggest that HM miRNAs primarily originate from the mammary epithelium, whilst the maternal circulation may have a smaller contribution. Our findings demonstrate that unlike infant formulae, which contained very few human miRNA, HM is a rich source of lactation-specific miRNA, which could be used as biomarkers of the performance and health status of the lactating mammary gland. Given the recently identified stability, uptake and functionality of food- and milk-derived miRNA in vivo, HM miRNA are likely to contribute to infant protection and development.

  2. Identification of mammary epithelial cells subject to chronic oxidative stress in mammary epithelium of young women and teenagers living in USA

    PubMed Central

    Shearer, Debra A; Murata, Erin; Patrick, Susan D; Han, Bing; Berg, Arthur; Clawson, Gary A

    2012-01-01

    Current knowledge of changes in the mammary epithelium relevant to breast carcinogenesis is limited to when histological changes are already present because of a lack of biomarkers needed to identify where such molecular changes might be ongoing earlier during the decades-long latent stages of breast carcinogenesis. Breast reduction tissues from young women and teenagers, representative of the USA's high breast cancer incidence population, were studied using immunocytochemistry and a targeted PCR array in order to learn whether a marker of chronic oxidative stress [protein adducts of 4-hydroxy-2-nonenal (4HNE)] can identify where molecular changes relevant to carcinogenesis might be taking place prior to any histological changes. 4HNE-immunopositive (4HNE+) mammary epithelial cell-clusters were identified in breast tissue sections from most women and from many teenagers (ages 14–30 y) and, in tissues from women ages 17–27 y with many vs. few 4HNE+ cells, the expression of 30 of 84 oxidative stress associated genes represented in SA Bioscience RT2 Oxidative Stress and Antioxidant PCR array was decreased and only one was increased > 2-fold. This is in contrast to increased expression of many of these genes known to be elicited by acute oxidative stress. The findings validate using 4HNE-adducts to identify where molecular changes of potential relevance to carcinogenesis are taking place in histologically normal mammary epithelium and highlight differences between responses to acute vs. chronic oxidative stress. We posit that the altered gene expression in 4HNE+ tissues identified reflects adaptive responses to chronic oxidative stress that enable some cells to evade mechanisms that have evolved to prevent propagation of cells with oxidatively-damaged DNA and to accrue heritable changes needed to establish a cancer. PMID:22231390

  3. Telomerase and estrogen-sensing activities are essential for continued mammary growth in vivo but dispensable for “reprogramming” neural stem cells

    PubMed Central

    George, Andrea L.; Boulanger, Corinne A.; Smith, Gilbert H.

    2016-01-01

    It has been proposed that the erosion of telomere length is a limiting factor in replicative capacity and important in cell senescence. To determine if this activity was essential in the mouse mammary gland in vivo, we serially transplanted mammary fragments from wild type (TER+/+), heterozygous (TER+/−), and homozygous (TER−/−) mammary tissues into the cleared mammary fat pads of immune-compromised nude mice. Individual implants from both homozygous and heterozygous TER null outgrowths showed growth senescence beginning at transplant generation two, earlier than implants from TER+/+ mammary glands which continued to show growth. This result suggests that either mammary epithelial stem cells maintain their telomere length in order to self renew, or that the absence or reduction of telomerase template results in more frequent death/extinction of stem cells during symmetric divisions. A third possibility is the inability of signaling cells in the niche to replicate resulting in reduction of the maintenance signals necessary for stem cell renewal. Consistent with this, examination of senescent outgrowths revealed the absence of estrogen receptor alpha (ERα+) epithelium although progesterone receptor (PR+) cells were abundant. Despite their inability to establish mammary growth in vivo, TER+/− cells were able to direct neural stem cells to mammary cell fates. PMID:27347776

  4. Telomerase and estrogen-sensing activities are essential for continued mammary growth in vivo but dispensable for "reprogramming" neural stem cells.

    PubMed

    George, Andrea L; Boulanger, Corinne A; Smith, Gilbert H

    2016-07-01

    It has been proposed that the erosion of telomere length is a limiting factor in replicative capacity and important in cell senescence. To determine if this activity was essential in the mouse mammary gland in vivo, we serially transplanted mammary fragments from wild type (TER+/+), heterozygous (TER+/-), and homozygous (TER-/-) mammary tissues into the cleared mammary fat pads of immune-compromised nude mice. Individual implants from both homozygous and heterozygous TER null outgrowths showed growth senescence beginning at transplant generation two, earlier than implants from TER+/+ mammary glands which continued to show growth. This result suggests that either mammary epithelial stem cells maintain their telomere length in order to self renew, or that the absence or reduction of telomerase template results in more frequent death/extinction of stem cells during symmetric divisions. A third possibility is the inability of signaling cells in the niche to replicate resulting in reduction of the maintenance signals necessary for stem cell renewal. Consistent with this, examination of senescent outgrowths revealed the absence of estrogen receptor alpha (ERα+) epithelium although progesterone receptor (PR+) cells were abundant. Despite their inability to establish mammary growth in vivo, TER+/- cells were able to direct neural stem cells to mammary cell fates. PMID:27347776

  5. R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal

    PubMed Central

    Cai, Cheguo; Yu, Qing Cissy; Jiang, Weimin; Liu, Wei; Song, Wenqian; Yu, Hua; Zhang, Lei; Yang, Ying

    2014-01-01

    Signals from the niche play pivotal roles in regulating adult stem cell self-renewal. Previous studies indicated that the steroid hormones can expand mammary stem cells (MaSCs) in vivo. However, the facilitating local niche factors that directly contribute to the MaSC expansion remain unclear. Here we identify R-spondin1 (Rspo1) as a novel hormonal mediator in the mammary gland. Pregnancy and hormonal treatment up-regulate Rspo1 expression. Rspo1 cooperates with another hormonal mediator, Wnt4, to promote MaSC self-renewal through Wnt/β-catenin signaling. Knockdown of Rspo1 and Wnt4 simultaneously abolishes the stem cell reconstitution ability. In culture, hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. Our data unveil the intriguing concept that hormones induce a collaborative local niche environment for stem cells. PMID:25260709

  6. Limiting amino acid for protein synthesis with mammary cells in tissue culture.

    PubMed

    Park, C S; Chandler, P T; Norman, A W

    1976-05-01

    To identify the limiting amino acid in the minimal essential medium as published by Eagle (Science 130:432, 1959) for milk protein synthesis in rat mammary cells in tissue culture, two different experimental approaches were used. The first study involved the reduction of amino acids singly from the total amino acid complement of the medium for milk protein synthesis. The second study was to investigate the effect on milk protein synthesis of single amino acid addition to the basic complement of amino acids. Order of limiting amino acids was lysine (first) and possible methionine, valine, or arginine (second).

  7. Comparative genome-wide transcriptional analysis of human left and right internal mammary arteries

    PubMed Central

    Ferrari, Giovanni; Quackenbush, John; Strobeck, John; Hu, Lan; Johnson, Christopher K.; Mak, Andrew; Shaw, Richard E.; Sayles, Kathleen; Brizzio, Mariano E.; Zapolanski, Alex; Grau, Juan B.

    2014-01-01

    In coronary artery bypass grafting (CABG), the combined use of left and right internal mammary arteries (LIMA and RIMA) — collectively known as bilateral IMAs (BIMAs) provides a survival advantage over the use of LIMA alone. However, gene expression in RIMA has never been compared to that in LIMA. Here we report a genome-wide transcriptional analysis of BIMA to investigate the expression profiles of these conduits in patients undergoing CABG. As expected, in comparing the BIMAs to the aorta, we found differences in pathways and processes associated with atherosclerosis, inflammation, and cell signaling — pathways which provide biological support for the observation that BIMA grafts deliver long-term benefits to the patients and protect against continued atherosclerosis. These data support the widespread use of BIMAs as the preferred conduits in CABG. PMID:24858532

  8. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata

    SciTech Connect

    Lee, E.Y.H.; Parry, G.; Bissell, M.J.

    1984-01-01

    It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce ..gamma..-casein, a member of the casein gene family, only if they are maintained on floating collagen gels. In this paper we show: (a) Cells on floating collagen gels secrete not only ..gamma..-casein but also ..cap alpha../sub 1/-, ..cap alpha../sub 2/-, and ..beta..-caseins. These are not secreted by cells on plastic and are secreted to only a very limited extent by cells on attached collagen gels. (b) The floating collagen gel regulates at the level of synthesis and/or stabilization of the caseins rather than at the level of secretion alone. Contraction of the floating gel is important in that cells cultured on floating glutaraldehyde cross-linked gels do not secrete any of the caseins. (c) The secretion of an 80,000-mol-wt protein, most probably transferrin, and a 67,000-mol-wt protein, probably butyrophilin, a major protein of the milk fat globule membrane, are partially modulated by substrata. However, in contrast to the caseins, these are always detectable in media from cells cultured on plastic and attached gels. (d) Whey acidic protein, a major whey protein, is actively secreted by freshly isolated cells but is secreted in extremely limited quantities in cultured cells regardless of the nature of the substratum used. Lactalbumin secretion is also decreased significantly in cultured cells. (e) A previously unreported set of proteins, which may be minor milk proteins, are prominently secreted by the mammary cells on all substrata tested. We conclude that while the substratum profoundly influences the secretion of the caseins, it does not regulate the expression of every milk-specific protein in the same way. The mechanistic implications of these findings are discussed.

  9. Effects of phenylalanine and threonine oligopeptides on milk protein synthesis in cultured bovine mammary epithelial cells.

    PubMed

    Zhou, M M; Wu, Y M; Liu, H Y; Liu, J X

    2015-04-01

    This study was conducted to investigate the effects of phenylalanine (Phe) and threonine (Thr) oligopeptides on αs1 casein gene expression and milk protein synthesis in bovine mammary epithelial cells. Primary mammary epithelial cells were obtained from Holstein dairy cows and incubated in Dulbecco's modified Eagle's medium-F12 medium (DMEM/F12) containing lactogenic hormones (prolactin and glucocorticoids). Free Phe (117 μg/ml) was substituted partly with peptide-bound Phe (phenylalanylphenylalanine, phenylalanyl threonine, threonyl-phenylalanyl-phenylalanine) in the experimental media. After incubation with experimental medium, cells were collected for gene expression analysis and medium was collected for milk protein or amino acid determination. The results showed that peptide-bound Phe at 10% (11.7 μg/ml) significantly enhanced αs1 casein gene expression and milk protein synthesis as compared with equivalent amount of free Phe. When 10% Phe was replaced by phenylalanylphenylalanine, the disappearance of most essential amino acids increased significantly, and gene expression of peptide transporter 2 and some amino acid transporters was significantly enhanced. These results indicate that the Phe and Thr oligopeptides are important for milk protein synthesis, and peptide-bound amino acids could be utilised more efficiently in milk protein synthesis than the equivalent amount of free amino acids.

  10. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells. PMID:24312827

  11. TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli

    NASA Astrophysics Data System (ADS)

    Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.

    2014-04-01

    Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53-/- mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53-/- mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.

  12. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    PubMed

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.

  13. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    PubMed

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling. PMID:26839364

  14. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  15. Development of human epithelial cell systems for radiation risk assessment.

    PubMed

    Yang, C H; Craise, L M

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells. PMID:11538024

  16. Asymmetric Expression of Connexins between luminal epithelial- and myoepithelial- cells is Essential for Contractile Function of the Mammary Gland

    PubMed Central

    Mroue, Rana; Inman, Jamie; Mott, Joni; Budunova, Irina; Bissell, Mina J.

    2016-01-01

    Intercellular communication is essential for glandular functions and tissue homeostasis. Gap junctions couple cells homotypically and heterotypically and coordinate reciprocal responses between the different cell types. Connexins (Cxs) are the main mammalian gap junction proteins, and the distribution of some Cx subtypes in the heterotypic gap junctions is not symmetrical; in the murine mammary gland, Cx26, Cx30 and Cx32 are expressed only in the luminal epithelial cells and Cx43 is expressed only in myoepithelial cells. Expression of all four Cxs peaks during late pregnancy and throughout lactation suggesting essential roles for these proteins in the functional secretory activity of the gland. Transgenic (Tg) mice over-expressing Cx26 driven by keratin 5 promoter had an unexpected mammary phenotype: the mothers were unable to feed their pups to weaning age leading to litter starvation and demise in early to mid-lactation. The mammary gland of K5-Cx26 female mice developed normally and produced normal levels of milk protein, suggesting a defect in delivery rather than milk production. Because the mammary gland of K5-Cx26 mothers contained excessive milk, we hypothesized that the defect may be in an inability to eject the milk. Using ex vivo three-dimensional mammary organoid cultures, we showed that tissues isolated from wild-type FVB females contracted upon treatment with oxytocin, whereas, organoids from Tg mice failed to do so. Unexpectedly, we found that ectopic expression of Cx26 in myoepithelial cells altered the expression of endogenous Cx43 resulting in impaired gap junction communication, demonstrated by defective dye coupling in mammary epithelial cells of Tg mice. Inhibition of gap junction communication or knock-down of Cx43 in organoids from wild-type mice impaired contraction in response to oxytocin, recapitulating the observations from the mammary glands of Tg mice. We conclude that Cx26 acts as a trans-dominant negative for Cx43 function in

  17. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis

    PubMed Central

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    abstract Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2–5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer. PMID:26699876

  18. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    PubMed

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer. PMID:26699876

  19. The WNT-controlled transcriptional regulator LBH is required for mammary stem cell expansion and maintenance of the basal lineage

    PubMed Central

    Lindley, Linsey E.; Curtis, Kevin M.; Sanchez-Mejias, Avencia; Rieger, Megan E.; Robbins, David J.; Briegel, Karoline J.

    2015-01-01

    The identification of multipotent mammary stem cells (MaSCs) has provided an explanation for the unique regenerative capacity of the mammary gland throughout adult life. However, it remains unclear what genes maintain MaSCs and control their specification into the two epithelial lineages: luminal and basal. LBH is a novel transcription co-factor in the WNT pathway with hitherto unknown physiological function. LBH is expressed during mammary gland development and aberrantly overexpressed in aggressive ‘basal’ subtype breast cancers. Here, we have explored the in vivo role of LBH in mammopoiesis. We show that in postnatal mammary epithelia, LBH is predominantly expressed in the Lin−CD29highCD24+ basal MaSC population. Upon conditional inactivation of LBH, mice exhibit pronounced delays in mammary tissue expansion during puberty and pregnancy, accompanied by increased luminal differentiation at the expense of basal lineage specification. These defects could be traced to a severe reduction in the frequency and self-renewal/differentiation potential of basal MaSCs. Mechanistically, LBH induces expression of key epithelial stem cell transcription factor ΔNp63 to promote a basal MaSC state and repress luminal differentiation genes, mainly that encoding estrogen receptor α (Esr1/ERα). Collectively, these studies identify LBH as an essential regulator of basal MaSC expansion/maintenance, raising important implications for its potential role in breast cancer pathogenesis. PMID:25655704

  20. ApcMin, A Mutation in the Murine Apc Gene, Predisposes to Mammary Carcinomas and Focal Alveolar Hyperplasias

    NASA Astrophysics Data System (ADS)

    Moser, Amy Rapaich; Mattes, Ellen M.; Dove, William F.; Lindstrom, Mary J.; Haag, Jill D.; Gould, Michael N.

    1993-10-01

    ApcMin (Min, multiple intestinal neoplasia) is a point mutation in the murine homolog of the APC gene. Min/+ mice develop multiple intestinal adenomas, as do humans carrying germ-line mutations in APC. Female mice carrying Min are also prone to develop mammary tumors. Min/+ mammary glands are more sensitive to chemical carcinogenesis than are +/+ mammary glands. Transplantation of mammary cells from Min/+ or +/+ donors into +/+ hosts demonstrates that the propensity to develop mammary tumors is intrinsic to the Min/+ mammary cells. Long-term grafts of Min/+ mammary glands also gave rise to focal alveolar hyperplasias, indicating that the presence of the Min mutation also has a role in the development of these lesions.

  1. Effects of polyamine inhibitors on zinc uptake by COMMA-1D mammary epithelial cells

    SciTech Connect

    Allen, J.C.; Haedrich, L.H. )

    1991-03-15

    Zn uptake or transport is stimulated by glucocorticoids in many types of epithelial cells, including the COMMA-1D mouse mammary cell line. The current objective was to determine whether polyamines also mediate glucocorticoid stimulation of Zn-uptake. Initially, cells grown in lactogenic hormone supplemented-media had approximately 65% greater {sup 65}Zn-uptake over 24 h than cells in nonsupplemented growth media (GM). {sup 65}Zn-uptake from HM with 10{sup {minus}5}M methylglyoxal-bis(guanylhydrazone) (MGBG) (s-adenosyl-methionine decarboxylase inhibitor to block polyamine synthesis) added was less than from GM. Exogenous spermidine added to the MGBG-HM media increased {sup 65}Zn-uptake. However, up to 10mM difluoromethylornithine (DFMO), a more specific inhibitor of sperimidine synthesis, had no significant effect on 24-h {sup 65}Zn-uptake by cells in HM. In GM, DFMO caused a slight dose-dependent decrease in {sup 65}Zn-uptake over the range 10{sup {minus}6} to 5 {times} 10{sup 3}M. Also, with 8 h of incubation, DFMO tended to decrease {sup 65}Zn-uptake in HM-stimulated cells. These data cannot yet distinguish between the possibilities that DFMO is inactivated during the 24-h incubation or that the dramatic effects of MGBG on {sup 65}Zn-uptake in these mammary-derived cells is not related to its inhibition of polyamine synthesis. Because COMMA-1D cells alter Zn uptake in response to lactogenic hormones and MGBG, the model system is suitable for further studies of the mechanisms of zinc transport in epithelia.

  2. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding.

    PubMed

    Hassiotou, Foteini; Geddes, Donna T

    2015-05-01

    Breastfeeding has been regarded first and foremost as a means of nutrition for infants, providing essential components for their unique growth and developmental requirements. However, breast milk is also rich in immunologic factors, highlighting its importance as a mediator of protection. In accordance with its evolutionary origin, the mammary gland offers via the breastfeeding route continuation of the maternal to infant immunologic support established in utero. At birth, the infant's immune system is immature, and although it was exposed to the maternal microbial flora during pregnancy, it experiences an abrupt change in its microbial environment during and after birth, which is challenging and renders the infant highly susceptible to infection. Active and passive immunity protects the infant via breast milk, which is rich in immunoglobulins, lactoferrin, lysozyme, cytokines, and numerous other immunologic factors, including maternal leukocytes. Breast milk leukocytes provide active immunity and promote development of immunocompetence in the infant. Additionally, it has been speculated that they play a role in the protection of the mammary gland from infection. Leukocytes are thought to exert these functions via phagocytosis, secretion of antimicrobial factors and/or antigen presentation in both the mammary gland and the gastrointestinal tract of the infant, and also in other infant tissues, where they are transported via the systemic circulation. Recently, it has been demonstrated that breast milk leukocytes respond dynamically to maternal as well as infant infections, and are fewer in nonexclusively compared with exclusively breastfeeding dyads, further emphasizing their importance for both the mother and infant. This review summarizes the current knowledge of human milk leukocytes and factors influencing them, and presents recent novel findings supporting their potential as a diagnostic marker for infections of the lactating breast and of the breastfed infant.

  3. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells.

    PubMed

    Kung, M H; Lee, Y J; Hsu, J T; Huang, M C; Ju, Y T

    2015-06-01

    Goat β-casein (CSN2) promoter has been extensively used to derive expression of recombinant therapeutic protein in transgenic goats; however, little direct evidence exists for signaling molecules and the cis-elements of goat CSN2 promoter in response to lactogenic hormone stimulation in goat mammary epithelial cells. Here, we use an immortalized caprine mammary epithelial cell line (CMC) to search for evidence of the above. Serial 5'-flanking regions deleted of promoter and intron 1 in goat CSN2 (-4,047 to +2,054) driven by firefly luciferase reporter gene were constructed and applied to measure promoter activity in CMC. The intron 1 region (+393 to +501) significantly decreased basal activity of the promoter. This finding contradicts other studies of the role of intron 1. The signal transducer and activator of transcription (STAT)5a played a significant role in activating promoter activity by prolactin stimulation. Hydrocortisone enhanced and prolonged the activity of STAT5a and promoter in CMC, but was independent of the glucocorticoid receptor response element. The minimum length of the CSN2 promoter segment in response to lactogenic stimulation was confirmed by 5' serial deletions. A cis-element located from -300 to -90 in proximal goat CSN2 promoter that is absent in bovine and human CSN2 promoter was newly identified. We demonstrated the presence of a STAT5a binding site (-102 to -82) and preservation of the guanosine nucleotide at position -90 based on responses to the presence of lactogenic hormone using internal deletions and point mutations of the predicted STAT5a binding site, and chromatin immunoprecipitation assay. Together, these findings demonstrate that the proximal -300 bp of goat CSN2 promoter containing the STAT5a binding site (-102 to -82) is the response element for lactogenic hormone stimulation. Additionally, intron 1 may be required for tissue or developmental stage-specific expression in mammary gland. The role of the far-distal regions of

  4. The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells

    PubMed Central

    KIKU, Yoshio; NAGASAWA, Yuya; TANABE, Fuyuko; SUGAWARA, Kazue; WATANABE, Atsushi; HATA, Eiji; OZAWA, Tomomi; NAKAJIMA, Kei-ichi; ARAI, Toshiro; HAYASHI, Tomohito

    2016-01-01

    Staphylococcus aureus (SA) is a major cause of bovine mastitis, but its pathogenic mechanism remains poorly understood. To evaluate the role of lipoteichoic acid (LTA) in the immune or inflammatory response of SA mastitis, we investigated the gene expression profile in bovine mammary epithelial cells stimulated with LTA alone or with formalin-killed SA (FKSA) using cap analysis of gene expression. Seven common differentially expressed genes related to immune or inflammatory mediators were up-regulated under both LTA and FKSA stimulations. Three of these genes encode chemokines (IL-8, CXCL6 and CCL2) functioning as chemoattractant molecules for neutrophils and macrophages. These results suggest that the initial inflammatory response of SA infection in mammary gland may be related with LTA induced chemokine genes. PMID:27211287

  5. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. PMID:26298750

  6. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    PubMed

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these a